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[1] It is shown that perpendicular gradients in shear
Alfvén wave (SAW) dispersion regulate the localization of
wave power on nightside geomagnetic L-shells where
narrow Field Line Resonances (FLRs) form. We estimate
the timescale for this process, w0tc = 1/

ffiffiffiffiffiffiffiffiffi
bj ja

p
, and

demonstrate that it is analogous to optical wave focusing.
Here, b is the gradient in the global wave dispersion
parameter across L-shells in the equatorial plane, and a is
the gradient in the SAW eigenfrequency. It is demonstrated
that dispersive SAWs with wave numbers and frequencies
in a certain range, are subject to magnetospheric focusing
onto L-shells where they reach large amplitude and are
expected to dissipate. Our theory addresses a class of arc
scales that are comparable to the electron inertial length
near the ionosphere, or the ion gyroradius near the
equatorial plane. We further demonstrate that when the
gradient in the SAW frequency reverses across the edges
of auroral density cavities, it naturally traps dispersive
SAWs and focuses them down to the inertial scale.
Citation: Rankin, R., R. Marchand, J. Y. Lu, K. Kabin, and

V. T. Tikhonchuk (2005), Theory of dispersive shear Alfvén

wave focusing in Earth’s magnetosphere, Geophys. Res. Lett., 32,

L05102, doi:10.1029/2004GL021831.

1. Introduction

[2] The auroral zone supports low frequency (1–4 mHz)
standing SAWs known as field line resonances (FLRs)
[Samson et al., 1991]. It is generally accepted that disper-
sive scale SAWs are necessary to explain acceleration of
auroral electrons with energies up to several keV [Lysak and
Carlson, 1981; Thomson and Lysak, 1996; Chaston et al.,
2003]. In SAWs, field-aligned currents and parallel electric
fields produce electron precipitation through electron inertia
and electron pressure [Streltsov and Lotko, 1996] terms in
the generalized Ohm’s law.
[3] In this paper, we demonstrate how narrow perpendic-

ular scale standing SAWs might form in the inner magne-
tosphere, as a possible explanation of auroral arc formation
in FLRs [Samson et al., 1991]. FLRs may be stimulated
through resonant mode conversion of fast mode surface
waves excited by Kelvin-Helmholtz instabilities at the
magnetopause [Chen and Hasegawa, 1974; Southwood,
1974; Farrugia et al., 2000]. Other potential sources

include solar wind pressure pulses that excite cavity or
waveguide modes in the magnetosphere [Samson et al.,
1992; Wright et al., 2002], or solar wind disturbances with
frequencies matching FLR eigen-frequencies [Rankin et al.,
1993].
[4] Dispersive SAWs are discussed by Rankin et al.

[1999], where it is demonstrated that wave dispersion is a
global property of geomagnetic field lines, involving a
weighted average of strongly varying electron inertia and
thermal effects along field lines. In the nightside magne-
tosphere, inertial dispersion dominates field lines close to
Earth, whereas at larger L-shells, thermal effects are
dominant [Streltsov and Lotko, 1996]. This is described
by the dispersion parameter d (defined below) that changes
from small negative, to large positive values, as a function
of L. At locations where d and its gradient across L are
small, FLRs reach their shortest scale. This happens
because gradients in global wave dispersion rapidly defo-
cus dispersive waves where thermal dispersion is large.
This is important on field lines for which the timescale for
linear wave phase mixing to the electron skin depth is
large in comparison to the lifetime of FLRs [Lu et al.,
2003a].

2. Reduced-MHD Envelope Model for FLRs

[5] We shall investigate the properties of dispersive
SAWs using the reduced-MHD envelope model of Rankin
et al. [1999], which is valid provided the SAW amplitude
and ambient plasma are slowly varying with respect to a
wave period. The analysis is restricted to linear waves with
small azimuthal wave number in the azimuthally symmetric
magnetosphere. We can then write the slowly varying SAW
magnetic field component as

hfBf ¼ h
eq
f B

eq
0 b x; tð ÞS1 lð Þ exp i mf� w0tð Þ

where hf is the azimuthal metric coefficient in coordinates
associated with the geomagnetic field, B0

eq is the ambient
magnetic field strength at the equator, S1(l) is the SAW
eigenfunction along the field line as defined by Rankin et al.
[1999, equation (5)], and b(x, t) is the slowly varying
amplitude. The coordinate l is measured along geomagnetic
field lines with respect to the equator, while x is the
Earthward-directed perpendicular coordinate relative to a
given magnetic field line at the equator. The choice of the
envelope frequency w0 is discussed below. Referring to

GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L05102, doi:10.1029/2004GL021831, 2005

Copyright 2005 by the American Geophysical Union.
0094-8276/05/2004GL021831

L05102 1 of 5



Rankin et al. [1999], it is possible to write the evolution
equation for b(x, t) as,

@tb� iw0@x d@xbð Þ ¼ �iDwbþ w0R ð1Þ

Here, Dw(x) = wSAW � w0 is the ideal MHD eigenfrequency
detuning across L-shells, and R(x, t) is the amplitude of the
SAW driver. Equation (1) is linear, with d(x) defined by,

d ¼ L2R2
e

Z
dl

3

4

r2s
w2
0

V 2
A

hm
@lS1ð Þ2

�
þ V 2

Te

w2
0hm

@lS1ð Þ@l S1l2
e

� �
� l2

e

hm
S21

�

where rs is the ion acoustic gyroradius, le is the electron
skin depth (inertial scale), VTe is the electron thermal speed,
hm is the geomagnetic field-aligned metric coefficient, and
the integral is taken over the total length of the magnetic
field line. Equation (1) is derived from the wave equation
for Bf [see Rankin et al., 1999, equation (4)], after
substituting hfBf defined above. The resulting expression
is multiplied by the eigenfunction S1(l), and integrated along
the field line to obtain equation (1). The second term in the
integrand for d corrects a typographical error in earlier
publications (S1le

2 instead of S1
2le2).

[6] The dispersion parameter d(x) has three contributions,
corresponding to finite ion acoustic gyroradius, electron
temperature, and electron inertia, respectively. The two
thermal contributions provide positive dispersion, while
electron inertia gives a negative contribution. This designa-
tion refers to the sign of the group velocity, when computed
from w(x) � Dw(x) + w0(1 + k?

2 d), which is valid in the
WKB approximation. A convenient reference point x = 0 is
the field line on which d(x) vanishes and the SAW eigen-
frequency is w0. Then, we approximate the SAW frequency
detuning and dispersion parameter with linear functions,
Dw(x) = aw0x and d(x) = bx, respectively, where the
gradients a and b are characterized by ambient plasma
parameters [see, e.g., Lu et al., 2003a, Figure 9]. In the
nightside magnetosphere, w(x) increases toward Earth, so
that a � Re

�1 is positive, while b � �10�4 Re is negative.

3. Qualitative Analysis of Perpendicular
Gradients in SAW Dispersion

[7] First of all, we consider the condition for propagating
waves to exist in the presence of gradients in global
dispersion across geomagnetic field lines. We take a > 0,
and consider b as either positive or negative. We assume
also that dissipation can be represented by a step-like
function, such that waves with k? > kL are strongly damped.
We will show below that the location x = 0 (d = 0) is an
attractor for dispersive SAWs.
[8] Consider first b > 0. In the WKB approximation,

propagating dispersive SAWs exist for ax < ww0
�1 � 1 <

ax + kL
2bx if x > 0, and for ax > ww0

�1 � 1 > ax + kL
2bx if

x < 0. This is shown in Figure 1a, where propagating
waves exist within the hatched region on either side of the
d = 0 field line (damping is represented by the dashed
lines). The half-spaces x < 0 and x > 0 are decoupled,
meaning that wave energy cannot pass from one half-space
to the other. Each frequency on either side of the origin is
different, and all waves impinge on the dissipation layer.

This includes waves initially propagating away from x = 0,
since they will reflect from their turning point where k? = 0.
The situation ab > 0 is relevant to density cavities, where
the gradient a reverses across the cavity. Dispersive waves
are naturally trapped inside such cavities.
[9] Consider now the case b < 0. Propagating waves exist

in the half-space x > 0 for ax > ww0
�1 � 1 > ax + kL

2bx, and
for ax < ww0

�1 � 1 < ax + kL
2bx for x < 0. Figure 1b shows

that waves with the same frequency now exist on either side
of x = 0, but waves with w > w0 cannot reach this position
from the right side (they are reflected at k? = 0). Similarly,
waves with w < w0 cannot reach x = 0 from the left side. All
other waves can propagate to x = 0, and therefore, the
situation is similar to b > 0. We conclude that the location
where d(x) and its perpendicular gradient are close to zero
act as an attractor for dispersive waves across a range of
frequencies and wave numbers. Comparing the dispersion
and inhomogeneity contributions in equation (1), one can
estimate the spatial width of the resonance Dxc and the
characteristic time of the resonance formation tc:

Dxc ¼
ffiffiffiffiffiffiffiffiffiffiffi
bj j=a

p
; tc ¼ w0

ffiffiffiffiffiffiffiffi
baj j

p� 	�1

ð2Þ

These estimates should ideally be evaluated at the dissipa-
tion layer using local field line parameters. Equation (2) can
also be interpreted as space and timescales over which waves
defocus on a given field line.

Figure 1. A schematic showing the domain in the (w, x)
plane in which propagating SAWs can exist (shaded
regions). The solid lines correspond to turning points where
k? = 0 or w/w0 � 1 = ax. The dashed lines correspond to the
scale kL at which dissipation becomes important, w/w0 � 1 =
(a + kL

2b)x. (a) The case where the dispersion gradient b is
positive. (b) The more realistic situation in the magneto-
sphere where the dispersion gradient is negative.
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[10] Figure 2 shows the L-shell variation of the space and
time scales defined by equation (2) for quiet solar wind
conditions. The Tsyganenko 1996 model is used, with solar
wind pressure P = 1 nPa, Dst = �10 nT, By = 0, and Bz =
�1 nT. The defocusing time and spatial width have an
inverse relationship, and both are strongly varying through
the night-side plasma sheet. In the case of hot plasma,
beyond L � 12, tc becomes comparable to the SAW
eigenfrequency, and the envelope approximation is no
longer valid. Note that equation (2) is only an estimate of
effects of dispersion gradients. The analysis and numerical
results below indicate a faster evolution (see Figure 3, for
example).

4. Quantitative Analysis

[11] The tendency for global (i.e., whole field line) wave
energy to focus Earthward onto field lines where wave
dispersion is small, can be analyzed using a Fourier Trans-
form and Green’s function approach. The analysis is
straightforward, but only the essential results are presented.
To understand the evolution of the shear wave amplitude,
consider a Gaussian wave-packet of width Dx0 that is excited
at some equatorial position x0. An impulse R(x, t) =
R0 exp(ik0x)g[(x � x0)/Dx0]dD(t) is applied, with dD(t) the
Dirac delta-function, R0 the amplitude of the driver, and
g(x) = (2p)�1/2exp(�x2/2). Assuming that k0Dx0 	 1, it can
be shown that a particular wave number km(t) dominates the
Green’s function for b(x, t). This allows us to write the
analytic solution in the form defined by,

b x; tð Þ � 1

@k?K
exp

 
ikm tð Þxþ bw0

Z t

0

dt0km t0ð Þ
!
g x� xmð Þ=Dxm½ �;

where xm(t) = x0@k?Kjk0 is the position of the center of the
wave-packet, and Dxm(t) = Dx0@k?Kjk0 is its width. Here,
K(k?,t) is the solution to the characteristic equation dk?/dt =
�w0(a + bk?

2 ), with initial condition K(k?,0) = k?. The

dominant wave number km(t) of the wave packet is defined
by K(km(t),t) = k0. We note that K(k?,t) depends on the
relative sign of the parameters a and b. The case
corresponding to b > 0 has solutions defined by,

K k?; tð Þ ¼ kc tan arctan
k?

kc
� t

tc

� 
ð3Þ

where kc = 1/Dxc and tc are two convenient scale parameters
defined by equation (2). The case corresponding to b < 0
has two branches for the characteristics that are defined by,

K< k?; tð Þ ¼ kc tanh arctanh
k?

kc

� �
� t

tc

� 
;

K> k?; tð Þ ¼ kc coth arccoth
k?

kc

� �
� t

tc

� 
:

ð4Þ

The first definition in equation (4) is valid for jk?j < kc
whereas the second definition is valid for jk?j > kc. The
behavior of the wave-packet is determined by the derivative
@k?K that defines its position and width as a function of time.
It can be shown that the required derivative is @k?K = (k0

2 +
kc
2)/(km

2 (t) + kc
2) for b > 0 and @k?K = (k0

2 � kc
2)/(km

2 (t) � kc
2)

for b < 0.
[12] When b > 0, equation (3) shows that irrespective of

the initial wave number k0 the dominant mode km(t)
diverges to infinity after a time t = tc[p/2 � arctan(k0/kc)].
Correspondingly, its width approaches zero and its position
terminates on the d = 0 field line in the absence of
dissipation. This is shown in Figure 3a, and corresponds
to focusing of waves with all frequencies onto the location
d = 0. Alternatively, any perturbation created at an arbitrary

Figure 2. The figure shows the variation with equatorial
distance of the characteristic spatial scale (scale on right
and curves in blue) and the characteristic timescale (scale
on left and curves in red) for defocusing on a given
geomagnetic field line. The Tsyganenko 1996 geomagnetic
field model is used, with solar wind pressure P = 1 nPa,
Dst = �10 nT, By = 0, and Bz = �1 nT. The plasma sheet
density is 0.5 cm�3. Constant pressure along geomagnetic
field lines is assumed with Te = 250 eV at the equator, and
ion temperatures as indicated on the figure.

Figure 3. The figure shows the temporal evolution of the
wave number km(t) characterizing a spatial wave packet in
the WKB approximation. The axes are normalized by the
scales defined in equation (2). (a) The situation where the
dispersion gradient b is positive. (b) The more realistic
situation in the magnetosphere where the dispersion
gradient is negative. The normalization factor kc = 1/Dxc
is defined by the quantity in equation (2).
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position x0 can be said to defocus and run away from where
it is excited after a time ptc. Obviously, one should account
for dissipation if the wave number km exceeds the cut-off
wave number kL, but this is outside the scope of the present
analysis [Tikhonchuk and Rankin, 2002; Lysak and Song,
2003].
[13] The case with b < 0 is illustrated by Figure 3b. In

this case, waves with initial perpendicular wave numbers
satisfying k0 < �kc become trapped at x = 0 after a time t =
tcarctanh(kc/k0). This is similar to the previous case with
b > 0. However, all of the characteristics emanating from
k0 > �kc approach kc asymptotically in time. Correspond-
ingly, such waves propagate to infinity with decreasing
(increasing) amplitude (width). Thus, for this range of
wave numbers, wave-packets are able to escape from the
d = 0 location. We note also that for k0 > kc, waves initially
move toward the d = 0 location, but are reflected from
turning points at x = x0(1 � k0

2/kc
2) before propagating away

to infinity.
[14] The analysis discussed above is confirmed by numer-

ical solutions to equation (1). Figure 4 shows the accumu-
lation of wave energy near d = 0 for a pulse launched at time
t = 0 (a) and a constant driver (b). In both cases the wave
approaches the point x = 0 and stays there for a time of the
order of tc. Note that without accounting for dispersion
gradients, the initial wave disturbance would phase mix at

the location where it is excited. On low L-shells, the ‘‘dwell
time’’ tc exceeds the lifetime of observed FLRs, and thus the
associated inertial scale waves have sufficient time to ener-
gize auroral electrons and dissipate.

5. Conclusions

[15] Observations suggest that a certain class of discrete
arcs is associated with FLRs on low L-shells down to L � 6
(assuming a dipolar field). The observed range of night-side
latitudes for FLRs is generally attributed to mode conver-
sion of monochromatic (1–4 mHz) fast mode Alfvén waves
with frequencies matching the local SAW eigenfrequency.
However, plasma on night-side field lines is relatively hot,
making it difficult to form inertial scale FLRs because of the
temperature dependence of the global properties of wave
dispersion.
[16] We have demonstrated that thermal (perpendicular)

gradients in global (whole field line) wave dispersion
produce focusing of SAWs into the night-side inner mag-
netosphere. This does not require a monochromatic driver,
although stretched fields and the associated slow variation
of the eigenfrequency across L-shells, should lend itself to
more efficient coupling at the dissipation layer (see Lu et al.
[2003a, Figure 8], which shows numerical solutions to the
non-perturbative reduced MHD equations). Equation (2)
shows that at such locations, very short perpendicular scale
structures should naturally form [Streltsov and Lotko, 1996].
Since the perpendicular group velocity of dispersive SAWs
is small at such locations, SAW ponderomotive forces may
steepen the Alfvén speed gradient [Lu et al., 2003b]. This
should further decrease FLRs widths by focusing them into
density cavities.
[17] One speculative aspect of our analysis, is that while

global fast mode waves may often be present, they will not
couple efficiently to discrete FLRs unless the phase mixing
time is comparable to tc = (w0

ffiffiffiffiffiffiffiffiffi
bj ja

p
),�1 where tc is the

defocusing timescale, a is the gradient scale for the SAW
frequency, and b is the corresponding gradient in SAW
dispersion on a given geomagnetic field line.
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