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Abstract 

Geostatistics is a relatively new and rapidly growing discipline of engineering that 

provides a set of statistical and mathematical tools for generating numerical models of 

regionalized variables that help in data processing and decision making. 

Over the years many geostatistical estimation and simulation techniques have 

been proposed. There are, however, a number of longstanding problems associated with 

these techniques. These problems include (1) correcting the "string effect" of kriging; (2) 

removing variance inflation of collocated simple cokriging; (3) improving practical 

implementation of collocated cokriging in the case of multiple secondary variables; (4) 

development of combined measure of local uncertainty, and (5) correcting multivariate 

simulation with correlated residuals to reproduce the target correlation between variables 

of interest. 

These problems can result in poor estimates and poor distributions of uncertainty 

or systematic bias in the mean, variance and correlation between simulated realizations 

representing heterogeneity of the regionalized variables under study. The improved 

methods without these issues lead to numerical models with more realistic heterogeneity 

and improved uncertainty characterization. 

Several new modeling techniques are proposed and developed within each of the 

five target areas: (1) distance constrained kriging and finite domain kriging; (2) 



sequential Gaussian simulation with intrinsic collocated cokriging; (3) super-secondary 

approach; (4) overlap uncertainty technique; and (5) sequential Gaussian simulation that 

honors correlation at lag 0. Theoretical and/or practical developments and 

implementations are presented for each. 

This work has resulted in significant progress over a wide range of topics. The 

techniques proposed in this thesis provide an important addition to geostatistical theory 

and practice. Future research and development directions are discussed and summarized 

in the conclusions. 



Acknowledgements 

It is a great pleasure to thank my co-supervisors, Dr. Clayton V. Deutsch and Dr. Oy 

Leuangthong, for all the advice, suggestions, discussions, help and support given during 

my studies at the University of Alberta. I am especially grateful to them for introducing 

me to the theory of geostatistics. 

I would also like to thank all my colleagues at the Centre for Computational 

Geostatistics (CCG). I would especially like to thank Deepak Bhandari, David F. 

Machuca Mory and Mehran Hassanpour for their support and friendship. 

The financial support for this research provided by the sponsors of the CCG, 

Alberta Ingenuity Fund, Andrew Stewart Memorial Graduate Prize, Petro-Canada 

Graduate Scholarship in Petroleum Engineering, Provost Doctoral Entrance Award and 

International Association for Mathematical Geology student grant is greatly appreciated. 

I would like to acknowledge the encouragement of my parents, Ihor and Iryna 

Soroka, and sister Liliia Soroka. Finally and most importantly, I would like to thank to 

my husband Petro and son Stephan for their endless support, understanding and love. 



Table of Contents 

CHAPTER 1: Introduction 1 
1.1. The Approach 2 
1.3. Dissertation Outline 7 

CHAPTER 2: Overview of Geostatistics 9 
2.1. Random Variables 10 
2.2. Stationarity and Ergodicity 10 

2.2.1. Stationarity 10 
2.2.2. Ergodicity 11 

2.3. Measures of Spatial Variablity 12 
2.4. Models of Coregionalization 15 

2.4.1. Linear Model of Coregionalization 15 
2.4.2. Markov Models 16 

2.4.2.1. Markov Model 1 16 
2.4.2.2. Markov Model II 17 

2.4.3. Intrinsic Model of Coregionalization 18 
2.5. Geostatistical Estimation 19 

2.5.1. Simple Kriging 20 
2.5.2. Ordinary Kriging 20 
2.5.3. Simple Cokriging 22 
2.5.4. Collocated Simple Cokriging 23 
2.5.5. Other Forms of Kriging 24 

2.6. Geostatistical Simulation 25 
2.6.1. Matrix Simulation (LU Simulation) 26 
2.6.2. Sequential Gaussian Simulation 28 
2.6.3. Gaussian Cosimulation 29 
2.6.4. Review of Other Simulation Techniques 29 

2.7. Discussion 30 

CHAPTER 3: Correcting the String Effect 31 
3.1. Introduction: String Effect 31 
3.2. Methods for Fixing the String Effect 36 

3.2.1. Quick Fix 36 
3.2.2. Extend the String 36 
3.2.3. Use Simple Kriging 37 
3.2.4. Wrap the String 37 
3.2.5. Finite Domain Kriging of Deutsch (1994) 39 



3.3. Distance Constrained Kriging 41 
3.3.1. Methodology 41 
3.3.2. Implementation 42 

3.3.2.1. Program 43 
3.3.3. Small Examples 44 
3.3.4. Properties 47 
3.3.5. Distance Constrained Kriging: Generalization to the Case of Multiple 

Strings 48 
3.4. Finite Domain Kriging 49 

3.4.1. Methodology 49 
3.4.2. Small Examples 52 
3.4.3. Properties 56 
3.4.4. Finite Domain Kriging: Generalization to the Case of Multiple Strings 59 

3.5. Comparison of Distance Constrained Kriging and Finite Domain Kriging 60 
3.6. Discussion 63 

CHAPTER 4: Uncertainty as the Overlap of Distributions 65 
4.1. Introduction 65 
4.2. Uncertainty as the Overlap of Distributions 67 
4.3. Example with Inverse Distance and Simple Kriging 68 

4.3.1. Inverse Distance Interpolation 69 
4.3.2. Uncertainty Overlap 70 

4.4. Case Study 72 
4.5. Discussion 79 

CHAPTER 5: Intrinsic Collocated Cokriging 80 
5.1. Introduction 81 
5.2. Simple Collocated Cokriging is not an Intrinsic Model 82 
5.3. Sources of Variance Inflation in Collocated Cokriging 84 
5.4. Intrinsic Collocated Cokriging: Examples 87 

5.4.1. Example 1 87 
5.4.2. Example 2 94 

5.5. Cokriging versus Collocated Cokriging 98 
5.5.1. Difference in the Profiles of Weights 99 
5.5.2. Difference in the Results of Estimation 101 

5.6. The Super Secondary Approach 107 
5.6.1. Collocated Simple Cokriging with Multiple Secondary Data 107 
5.6.2. Merging Multiple Secondary Variables 108 
5.6.3. Proof of the Super Secondary Approach 109 

5.7. Extension of the Super Secondary Approach to Intrinsic Collocated Cokriging.... 115 
5.7.1. Intrinsic Collocated Cokriging with Multiple Secondary Data 115 
5.7.2. Intrinsic Collocated Cokriging with Super Secondary Variable 116 
5.7.3. Example 116 



5.8. Discussion 119 

CHAPTER 6: Multivariate SGS Honoring a Correlation Matrix 120 
6.1. Multivariate Sequential Gaussian Simulation 120 
6.2. Reproducing the Correlation Matrix between Variables at Lag 0 123 
6.3. Unconditional Multivariate SGS: Examples 125 

6.3.1. Example 1 125 
6.3.2. Example 2 128 

6.3.2.1. Multivariate SGS for ZX,Z2 and Z3 130 

6.3.2.2. Multivariate SGS for Z^Z^Z-^ and Z4 133 

6.3.2.3. Multivariate SGS for All Five Variables 135 
6.4. Conditional Multivariate SGS: Example 139 
6.5. Local Correction 143 
6.6. Discussion 146 

CHAPTER 7: Discussion and Conclusions 147 
7.1. Summary 148 

7.1.1. Correcting the String Effect 148 
7.1.2. Uncertainty as the Overlap of Distributions 150 
7.1.3. Intrinsic Collocated Cokriging 151 
7.1.4. Multivariate SGS Honoring a Correlation Matrix 152 

7.2. Future Work 154 
7.2.1. Improving LU/P-field Simulation 154 
7.2.2. Testing for a Multivariate Gaussian Distribution 155 
7.2.3. Variogram Upscaling 155 
7.2.4. Accounting for the Uncertainty in Mean 156 

Bibliography 158 

Appendices 
A Statistical Approach to Deterministic Inverse Distance Interpolation 167 
A.l. Introduction 167 
A.2. Background: Kriging versus Inverse Distance Interpolation 169 
A.3. Inverse Distance Interpolation 171 
A.4. Statistical Formalism 172 

A.4.1. Stationarity 172 
A.4.2. Mean and Variance of the Inverse Distance Estimator for the Stationary 

Domain 172 
A.5. Sensitivity of the Inverse Distance Weighted Interpolation to the Number of Data: 

Example 174 
A.5.1. Data 174 
A.5.2. Estimation 174 
A.5.3. Sensitivity 178 



A.6. Inverse Distance with Locally Varying Parameters: Small Example 178 
A. 7. Comparison of the Inverse Distance with Locally Varying Parameters with Kriging 

and Inverse Distance Interpolation 182 
A.8. Discussion 187 

B Direct Upscaling of Variograms and Cross Variograms for Scale Consistent 
Geomodeling 189 

B.l. Introduction 190 
B.2. Regularization 192 
B.3. Variogram Scaling Laws 192 
B.4. Direct Variogram Upscaling 195 
B.5. Linear Model of Coregionalization at a Block Support 197 
B.6. Calculating Average Covariance C(V,Vh) and Average Variogram f(V,Vh) 200 
B.7. Example: Scaling Laws vs. Direct Variogram Upscaling 201 
B.8. Discussion 203 

C Modeling Local Uncertainty accounting for the Uncertainty in Data 204 
C.l. Simple Kriging 205 
C.2. Calculating Mean and Variance of the Local Conditional Distributions accounting 

for the Uncertainty in Data 206 
C.3. Small Examples 208 

C.3.1. Example 1 208 
C.3.2. Example 2 211 

C.4. Discussion 213 



List of Tables 

3.1. The value in the left hand side of inequality (3.41) as a function of the number of 
data used in the finite domain simple kriging estimation 57 

3.2. The value in the left hand side of inequality (3.41) as a function of the number of 
data used in the finite domain ordinary kriging estimation 59 

3.3. Performance of OK vs. FDOK and DCOK in jackknife 61 

A.l. Results of the cross validation for all 310 data in the study domain obtained based on 
the inverse distance interpolation with 3, 6, 12 and 24 data and power exponent;? = 1 , 2 , 
3, 4 and 6 and based on the local inverse distance interpolation with optimal 
parameters 180 

A.2. Variogram model for the omnidirectional variograms of the nine exhaustive data 
sets 182 

A.3. Mean square error obtained in estimation of the nine study areas with exhaustive 
data based on 100 data on a regular grid 186 

A.4. Mean square error obtained in estimation of the nine study areas with exhaustive 
data based on 100 randomly selected data 186 

C.l: Data locations and values 208 

C.2. Effect of erf 's on the local uncertainty distribution 209 

C.3. Effect of jut 's on the local uncertainty distribution 210 

C.4. Theoretically-derived approach vs. Monte-Carlo simulation: Variance of the local 
uncertainty distribution 211 



List of Figures 

3.1. Finite strings of data as a result of stratigraphic boundary truncation (redrawn from 
Deutsch, 1993) 33 

3.2. Finite strings of data as a result of a limited search (redrawn from Deutsch, 1993)..33 

3.3. Profiles of ordinary kriging weights obtained for the estimation point located on a 
distance equal to the range of correlation from the string. Results are calculated based on 
a spherical variogram model with a nugget effect of 0% (a), 25% (b) and 75% (c) using 
string of 7 data 34 

3.4. Profiles of the ordinary kriging weights obtained for the estimation point located on 
the distance equal to the range of correlation (a), 50% of the range of correlation (b) and 
20% of the range of correlation (c). Results are calculated based on a spherical variogram 
model with a nugget effect of 20% using a string of 7 data 35 

3.5. Profiles of the simple kriging weights obtained for the estimation point located on the 
distance equal to the range of correlation (a), 50% of the range of correlation (b) and 20% 
of the range of correlation (c). Results are calculated based on a spherical variogram 
model with a nugget effect of 20% using a string of 7 data 38 

3.6. Profiles of the distance constrained simple kriging (solid line) and simple kriging 
(dashed line) weights. Results shown for estimation locations: a) (1, 7); b) (1.8, 7); c) 
(2.8, 7); and d) (3.8, 7) are obtained using a spherical variogram model with a range of 20 
based on a string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), 
respectively. The closest data in a string is denoted by a dark circle 45 

3.7. Profiles of the distance constrained ordinary kriging (solid line) and ordinary kriging 
(dashed line) weights. Results shown for estimation locations: a) (1, 7); b) (1.8, 7); c) 
(2.8, 7); and d) (3.8, 7) are obtained using a spherical variogram model with a range of 20 
based on a string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), 
respectively. The closest data in a string is denoted by a dark circle 46 

3.8. Profiles of the finite domain simple kriging (solid line) and simple kriging (dashed 
line) weights. Results shown for estimation locations: a) (1, 7); b) (1.8, 7); c) (2.8, 7); and 
d) (3.8, 7) are obtained using a spherical variogram model with a range of 20 based on a 
string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), respectively. The 



closest data in a string is denoted by a dark circle 53 

3.9. Profiles of the finite domain ordinary kriging (solid line) and ordinary kriging 
(dashed line) weights. Results shown for estimation locations: a) (1, 7); b) (1.8, 7); c) 
(2.8, 7); and d) (3.8, 7) are obtained using a spherical variogram model with a range of 20 
based on a string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), 
respectively. The closest data in a string is denoted by a dark circle 54 

3.10. Change in the structure of the simple kriging weights (dashed lines) with respect to 
the number of closest data in a string used for estimation of location (3.8,7). Results are 
shown for: a) 1 data; b) 2 data; c) 4 data; and d) 7 data are obtained using spherical 
variogram model with the range of correlation 20. Finite domain simple kriging weights 
calculated based on all 7 data are shown in solid line. String of 7 data is located at (1,0), 
(2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), respectively. The closest data in a string is 
denoted by a dark circle 55 

3.11. Change in the structure of the finite domain simple kriging weights with respect to 
the number of closest data in a string used for estimation of location (100,7). Results are 
obtained using spherical variogram model with the range of correlation 500. The string of 
3000 data is located at (1,0), (2,0), ..., (3000,0), respectively 58 

3.12. Change in the structure of the finite domain ordinary kriging weights with respect to 
the number of closest data in a string used for estimation of location (100,7). Results are 
obtained using spherical variogram model with the range of correlation 500. The string of 
3000 data is located at (1,0), (2,0), ..., (3000,0), respectively 58 

3.13. Locations of 180 wells with data (a) together with bitumen distribution (b). 
Estimation wells are shown in dark circles 62 

3.14. Experimental variogram and its theoretical fit in the three directions of major 
continuity for the normal score transformed bitumen from 90 estimation wells 62 

3.15. Maps of the differences between OK and DCOK (a) and OK and FDOK (b) for the 
slice at 265 m of the 3D model for the normal score transformed bitumen 63 

4.1. Schematic representation of the example results for the two local uncertainty at 
location u 0 . Solid and dashed lines represent local uncertainty obtained by two different 
estimation approaches; dark area is an overlap 68 

4.2. Schematic representation of the two example results for the four local uncertainty at 
location u 0 . Solid dashed, doted and dash-dot lines represent local uncertainty obtained 
by four different estimation approaches; dark area is an overlap 69 



4.3. Location map of 10 data (a) and their distribution (b). Points A and B represent two 
estimation locations of interest 71 

4.4. (Scaled) overlap uncertainty estimator together with inverse distance and simple 
kriging local uncertainty models for estimation location A (a); and B (b). Dash-dot, 
dashed and solid lines represent local uncertainty obtained by simple kriging, inverse 
distance and overlap uncertainty approaches 71 

4.5. Location map of 100 data from file 'cluster.dat' (a) and their distribution (b) 73 

4.6. Accuracy plots for inverse distance (a), simple kriging (b), and overlap uncertainty 
estimator (c). Results are obtained in crossvalidation of 100 normal score transformed 
primary data from file 'cluster.dat' 74 

4.7. Crossplots between: P10 (a) and Pgo (b) of the simple kriging and overlap uncertainty 

estimator and crossplots between P10 (c) and P90 (d) of the inverse distance and overlap 
uncertainty estimator for 100 normal score transformed primary data from file 
'cluster.dat' 75 

4.8. (P10 ,P90) probability intervals obtained for the first 10 data in the 'cluster.dat' data 
set based on the simple kriging (dash-dot lines), inverse distance interpolation (dashed 
lines) and overlap uncertainty estimator (solid lines). Medians (P50) for each of the three 
considered approaches are shown by dots 76 

4.9. Crossplots between the variance of the local conditional distributions (smoothing 
effect) of the: inverse distance and simple kriging (top left); inverse distance and overlap 
uncertainty estimator (top right) and simple kriging and overlap uncertainty estimator 
(bottom) obtained for the 100 data of the file 'cluster.dat' 77 

4.10. Cross validation results for the inverse distance interpolation (a); simple kriging (b); 
and overlap uncertainty estimator (c) obtained for 100 normal score transformed primary 
data from file 'cluster.dat' 78 

5.1. Distribution of the means of the secondary standard normal random variable 7 for the 
100 sequential Gaussian realizations (a); and distribution of the variances of the 
secondary standard normal random variable Y for the 100 sequential Gaussian 
realizations (b) 88 

5.2. Distribution of the means of the primary standard normal random variable Z for the 
100 sequential Gaussian realizations based on simple collocated cokriging (a); and 
distribution of the variances of the primary standard normal random variable Z for the 
100 sequential Gaussian realizations based on simple collocated cokriging (b) 88 

5.3. Distribution of the means of the primary random variable Z for the 100 sequential 
Gaussian realizations based on intrinsic collocated cokriging (a); and distribution of the 



variances of the primary random variable Z for the 100 sequential Gaussian realizations 
based on intrinsic collocated cokriging (b) 90 

5.4. Distribution of the means (first column) and variances (second column) of the 
primary random variable Z for the 100 sequential Gaussian realizations based on intrinsic 
collocated cokriging for the secondary data configuration shown in Schematic 1 with 
secondary data separation distance in X and Y directions: 1 grid cell (a); 2 grid cells (b) 
and 5 grid cells (c), respectively 91 

5.5. Reproduction of the secondary variable Y semivariogram by sequential Gaussian 
simulation 93 

5.6. Reproduction of the primary variable Z semivariogram by the sequential Gaussian 
simulation with simple collocated cokriging 93 

5.7. Reproduction of the primary variable Z semivariogram by sequential Gaussian 
simulation with intrinsic collocated cokriging 94 

5.8. Reproduction of the correlation between primary and secondary random variables for 
sequential Gaussian simulation with intrinsic collocated cokriging 95 

5.9. Locations of the 20 primary data (a) and their distribution (b); the crossplot between 
primary data and collocated secondary data (c) and the map of exhaustive secondary data 
(d). The data are in Gaussian units 96 

5.10. Example sequential Gaussian realization obtained based on simple collocated 
cokriging (a) and intrinsic collocated cokriging (b) 97 

5.11. Distribution of the means of the primary random variable for the 100 sequential 
Gaussian realizations based on simple collocated cokriging (a); and distribution of the 
variances of the primary random variable for the 100 sequential Gaussian realizations 
based on simple collocated cokriging (b) 98 

5.12. Distribution of the means of the primary random variable for the 100 sequential 
Gaussian realizations based on intrinsic collocated cokriging (a); and distribution of the 
variances of the primary random variable for the 100 sequential Gaussian realizations 
based on intrinsic collocated cokriging (b) 99 

5.13. Reproduction of the correlation between primary and secondary random variables 
for sequential Gaussian simulation with simple collocated cokriging (a) and sequential 
Gaussian simulation with intrinsic collocated cokriging (b) 100 

(d) 



5.15. Study domain with conditioning data (circles) and the estimation location (10, 10) 
(asterisk) (a); Primary data weights as a function of the ordered conditioning data, 
ordered according to the closeness to the estimation location (b) and secondary data 
weights as a function of the ordered conditioning data, zero stands for the estimation 
location (c) 103 

5.16. Study domain with conditioning data (circles) and the estimation location (35, 35) 
(asterisk) (a); Primary data weights as a function of the ordered conditioning data, 
ordered according to the closeness to the estimation location (b) and secondary data 
weights as a function of the ordered conditioning data, zero stands for the estimation 
location (c) 104 

5.17. The maps of estimates (a) and estimation variances (b) obtained based on collocated 
simple cokriging (top), simple cokriging with the intrinsic correlation model (middle) and 
simple cokriging with the linear model of corregionalization (bottom) 106 

5.18. The maps of the difference in means (a) and variances (b) for collocated simple 
cokriging and simple cokriging with the intrinsic correlation model (top) and for simple 
cokriging with the linear model of corregionalization and simple cokriging with the 
intrinsic correlation model (bottom) 127 

6.1. The histogram of the coefficients bl2 (a) and au (b) obtained in 100 fully dependent 
and fully independent, respectively, multivariate SGS 127 

6.2. Distribution of the correlation coefficients between Zx and Z2 obtained by the 
corrected multivariate SGS (a); and distribution of the correlation coefficients between 
Zx and Z2 obtained by conventional approach (b) 127 

6.3. The variogram reproduction for Zx (a) and Z2(b) obtained in the corrected 
multivariate SGS 128 

6.4. Distributions of coefficients b12 (a), bu (c), b23 (e), an (b), a13 (d), and a23 (f) 
obtained by 100 fully dependent and fully independent, respectively, multivariate 
SGS 131 

6.5. Distribution of the correlation coefficients pi2, pu and p23 obtained by the 
corrected multivariate SGS (a) and by conventional approach (b) 132 

6.6. Variogram reproduction for ZX,Z2, and Z3 obtained in the corrected multivariate 

SGS 134 

6.7. Correlation matrix between ZX,Z2,Z3, and Z4 reproduced by the corrected 
multivariate SGS (a) and by conventional approach (b) 134 



6.8. The mismatch in the reproduced correlation matrix between Zl,Z2,Zi, and Z4 

obtained by the corrected multivariate SGS (a) and by conventional approach (b) 135 

6.9. Variogram reproduction for ZX,Z2,ZZ and Z4 obtained in the corrected multivariate 
SGS 136 

6.10. Correlation matrix between Zj,Z2 ,Z3 ,Z4 , and Z5 reproduced by the corrected 

multivariate SGS (a) and by conventional approach (b) 138 

6.11. The mismatch in the reproduced correlation matrix between ZX,Z2,Z^, and Z4 

obtained by the corrected multivariate SGS (a) and by conventional approach (b) 138 

6.12. Locations of the 20 primary data (a) and their distribution (b); the crossplot between 
primary data and collocated secondary data (c) and the distribution of the secondary data 
(d). The data are in Gaussian units 140 

6.13. Distributions of coefficients bu (a) and an (b) obtained in conditional multivariate 
SGS example 141 

6.14. Distribution of the correlation coefficients between primary and secondary random 
variables obtained by the corrected multivariate SGS 141 

6.15. Variogram reproduction in the direction of major and minor continuity for primary 
(a) and secondary (b) random variables obtained in the corrected multivariate SGS.... 142 

6.16. Cross variogram reproduction in the direction of major and minor continuity 
obtained in the corrected multivariate SGS 143 

A. 1. Location map of 310 samples (a) together with their distribution (b) 175 

A.2. Experimental omnidirectional variogram (points) together with its variogram fit for 
310 samples in the study domain 175 

A.3. Results of the inverse distance interpolation for the mean (a) and variance (b) of the 
local conditional distributions obtained based on 3 data with exponent value/? equal to: 1 
(top); 3 (middle) and 9 (bottom) 176 

A.4. Results of the inverse distance interpolation for the mean (a) and variance (b) of the 
local conditional distributions obtained based on 24 data with exponent value/? equal to: 
1 (top); 3 (middle) and 9 (bottom) 177 

A. 5. The estimation variance for the inverse distance interpolator with exponent value of 
1 {p= 1) as a function of the number of data for the slice dXX= 100 179 



A.6. The estimation variances for the inverse distance interpolator obtained based on 3 
data (a) and the estimation variances for the inverse distance interpolator obtained based 
on 24 data (b) as a function of the power exponent for the slice at X = 100 179 

A.7. Result of the optimal local inverse distance interpolation for the mean (a) and 
variance (b) of the local conditional distributions; optimal power exponent (c) and 
optimal number of data (d) for all estimation locations in the study domain 181 

A. 8. Standardized omnidirectional variograms and their theoretical fits for the nine 
exhaustive data sets 183 

A.9. Locations (asterisk) of 100 points in a) data set selected on a regular grid and in b) 
data set selected with random clustered pattern. Dots denote other locations with 
exhaustive data in the study domain of 50 by 50 meters 184 

A. 10. Example of ominidirectional variograms with their fits obtained based on 100 
randomly selected data for data set 1 (a) and 100 data on a regular grid for data set 5 (b) 
and data set 6 (c) 185 

B.l. Comparison of the upscaled variograms obtained using scaling laws (dashed lines) 
and direct variogram upscaling approach (solid lines) for the block support of 2m, 5m 
and 10m 202 

B.2. Comparison of the upscaled variograms obtained using scaling laws (dashed lines) 
and direct variogram upscaling approach (solid lines) for the block support of 2m and 5m 
for lag distances up to 10m 202 

C. 1. Data configuration for Example 1 209 

(bottom) 



CHAPTER 1 

Introduction 

Geostatistics is a relatively new and rapidly growing branch of applied statistics that 

focuses on the geologic nature of the data, spatial relationship between observations and 

their volume support and precision (Deutsch, 2002). It consists of a set of statistical and 

mathematical tools for generating numerical models of regionalized variables that help in 

data processing and decision making. 

Over the years, geostatistics has become a powerful tool in many areas of natural 

resources characterization. It is widely used to quantify uncertainty in energy and 

mineral resources (Journel and Huijbregts, 1978; Chiles and Delfiner, 1999). Other 

applications consist of generating input for flow simulation (Deutsch, 2002) and 

calculating the likelihood of exceeding critical threshold in contamination studies 

(Kyriakidis and Journel, 2001). 

Geostatistical procedures rely on kriging-based techniques for optimal estimation 

and to model local conditional distributions. Kriging uses the spatial correlations 

provided by the variogram to calculate the weights that are applied to the sample values 

surrounding an unsampled location. The weights obtained from the kriging minimize the 

estimation variance and account for the spatial correlation between the surrounding 

samples and the estimation location (that is, closeness to the estimation location) and 

between samples themselves (that is, data redundancy). 

Stochastic simulation is an essential element of modern geostatistics. It represents 

a powerful tool for the description of phenomena that cannot be described 

deterministically due to their inherent complexity (Almeida and Journel, 1994). 
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Geostatistical simulation is performed by drawing from the local conditional distributions 

constructed by kriging (Journel and Kyriakidis, 2004). Simulation allows the construction 

of multiple realizations of geological heterogeneity that reproduce the local conditioning 

data, data histogram and spatial variability described by the variogram. Sequential 

Gaussian simulation is a commonly used geostatistical simulation approach. This 

approach is one of the simplest and is based on an assumption of the multivariate 

Gaussian distribution. In the Gaussian framework, the kriging estimate and kriging 

estimation variance are exactly the mean and variance of the local conditional Gaussian 

distributions. 

Geostatistical techniques, in general, focus on issues such as reproduction of the 

target statistics, uncertainty modeling and decision making after application of a transfer 

function. Kriging and simulation techniques are well known and applied in practice. 

However, some of these techniques suffer from problems such as variance inflation, 

biased reproduction of multivariate correlations, biased estimation or difficult 

implementation when there are multiple secondary data. There is a need for research to 

correct these problems. 

1.1. The Approach 

This research develops theoretically sound and practical methodologies and techniques 

for improved geostatistical modeling. The results provide important practical tools for 

geostatisticians and engineers. The proposed methodologies and techniques specifically 

address the following five important longstanding problems in geostatistics: 

(1) String Effect of Kriging 

There are two implicit assumptions behind kriging: stationarity and ergodicity. 

Stationarity is a decision to pool data for common analysis and a decision of the location-

independence of the random function probability distribution and all its moments over the 

study domain. Stationarity is usually addressed by considering trends and locally varying 

parameters of estimation. Ergodicity is almost never addressed; it is fundamental to 
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kriging. Ergodicity means that spatial averages (formed from averaging responses over 

many locations) are equivalent to probabilistic averages (formed from averaging over 

multiple replicates of the spatial process). A 

consequence of this assumption is that end 

samples in strings of data receive large 

weights in kriging, see figure in the left. 

This figure shows an example profile of 

ordinary kriging weights obtained for the 

estimation point located to the right of the 

string. Results are calculated based on a 

spherical variogram model with a nugget 

effect of 0% using a string of 7 data. Such weighting is theoretically valid; however, poor 

estimates and poor distributions of uncertainty arise when the end samples are unusually 

high or low. Many geological settings exhibit trends and such unusual grades at the 

contacts between geological domains. A number of ad-hoc corrections have been 

proposed, but none of them provide a constrained solution with a well defined measure of 

optimality. 

0.289 

(2) Obtaining a Combined ('Best') Measure of Local Uncertainty 

An important task in modern geostatistics is the assessment and quantification of local 

resource and reserve uncertainty. There are many different methods to build models of 

the local uncertainty including kriging, 

cokriging and inverse distance interpolation. 

Each of these techniques usually leads to 

different results, see figure on the left. This 

figure shows an example result obtained for 

the local uncertainty using three different 

estimation techniques including kriging and 
Value inverse distance. Due to difference in 

results, the modeler needs to choose the best approach. Best is theoretically optimal, has 

the greatest fidelity with the data, is the simplest to apply and so forth. In practice, 
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however, different techniques are best in different senses. In particular, kriging is a 

statistically optimal interpolator in the sense that it minimizes estimation variance when 

the variogram (measure of spatial continuity of the variable under study) is known and 

under the assumption of stationarity. In practice, these conditions are never satisfied. 

Inverse distance weighting, on the other hand, is a simple technique; it does not require 

prior information (variogram) to be applied to spatial prediction. There are many other 

techniques. A method for merging the uncertainties predicted by different models to 

obtain a combined measure of uncertainty that, ideally, possesses the good features of 

each alternative is of great practical interest. 

2 0.15.: 

Variance of Z(CCK) 

M 

Number of Data 100 
mean 1.283 

std. dev. 0.066 

(3) Variance Inflation of Collocated Simple Cokriging 

Sequential Gaussian simulation (SGS) with collocated cokriging is a widely used 

geostatistical simulation approach to integrate seismic data and to cosimulate multiple 

variables. This approach is based on a 

Markov-type hypothesis whereby collocated 

secondary data are assumed to screen further 

away data of the same type (Journel, 1999), 

that is, weighting the datum collocated with 

location being estimated is sufficient -

nearby secondary data bring no new 

additional information. Sequential Gaussian 

simulation with collocated cokriging is 

popular because it is simple; the correlation coefficient between the primary variable 

being modeled and secondary data is the sole additional statistic required to integrate the 

secondary data. Collocated cokriging, however, has a longstanding problem with 

variance inflation that leads to a systematic bias in the mean and variance of the 

simulated realizations, see figure above left. This figure shows an example result for the 

distribution of variances of a primary standard normal random variable Z for 100 

sequential Gaussian realizations based on simple collocated cokriging. Results are in 

Gaussian units. The target variance of 1 (shown by a dark vertical line) is clearly not met; 

3=^ 
1.0 1.20 

Variance 

the inflation of variance is more than 28%. 
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(4) Accounting for Multiple Secondary Attributes in Collocated Cokriging 

There often exist many secondary data that must be considered in geostatistical reservoir 

modeling including multiple seismic attributes, geological trends and structural controls. 

It is essential that all secondary data be 

accounted for when estimating a primary 

variable (e.g., porosity, water saturation, 

etc.) with the precision warranted by that 

secondary data type. The well data with 

primary variable are usually widely spaced 

and sparse, see schematic figure on the left. 

The secondary data are measured over the 

entire domain. There are a number of 

techniques to construct a distribution of uncertainty at an unsampled location using 

multiple well data at other locations and multiple secondary data. Cokriging is the 

standard technique in geostatistics to account for multiple data types. The most common 

variant of cokriging is collocated cokriging. Implementations of collocated cokriging are 

often limited to a single secondary variable. Practitioners often choose the most 

correlated or most relevant secondary variable. Improved models would be constructed if 

multiple variables were accounted for simultaneously. 

• Location of interest 

Naflk Secondary data at location of interest 

O Primary data at other locations 

(5) Correcting Multiple Univariate Sequential Gaussian Simulation with Correlated 

Residuals 

When dealing with several attributes in spatial modeling it is desirable to reproduce the 

collocated correlation among them. An example target global collocated correlation 

matrix between four random variables is 
5 
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shown on the left. Reproduction of the 

correlation between multiple variables can 

be achieved by using variants of cokriging, 

in particular, simple cokriging. Simple 

cokriging, however, requires fitting a linear 

model of coregionalization - an intractable 



task in the case of many variables. There is, however, another more attractive and simpler 

alternative to cokriging. This alternative is multiple univariate sequential simulation with 

correlated residuals. This simulation approach is based on performing a matrix simulation 

with LU decomposition of the correlation matrix at each step of sequential simulation. 

Modeling of each random variable is performed independently. Thus, this type of 

simulation is primarily aimed at simulation of multiple primary variables. In simulation 

the data on each individual random variable is used to calculate the mean and variance of 

the local conditional distribution for that variable using simple kriging; no inference of 

the joint model for spatial continuity is needed. Multiple univariate SGS with correlated 

residuals has many desirable features including reproduction of the target mean and 

variance as well as target variogram models. However, an unfortunate feature of this 

technique is that while it targets reproduction of the correlation matrix between random 

variables of interest, acceptable reproduction of this correlation matrix is rarely observed 

in practice. The target correlation matrix is not reproduced because of conditioning to 

local data and a combination of the variable ordering and the sequential/LU 

decomposition. 

Several new approaches were developed to deal with these five important 

problems. These approaches include: (1) distance constrained kriging and finite domain 

kriging for correcting the string effect; (2) sequential Gaussian simulation with intrinsic 

collocated cokriging as a solution to the variance inflation problem of collocated simple 

cokriging; (3) super secondary approach for merging multiple secondary variables into 

one variable for collocated cokriging; (4) overlap uncertainty approach for combining 

alternate distributions of local uncertainty; and (5) corrected multiple univariate 

sequential Gaussian simulation with correlated residuals. 

All developed methods were coded. The developed code is publicly available. 

The format is similar to the Fortran code in GSLIB (Deutsch and Journel, 1998). Some of 

the programs were modified from GSLIB programs; which is acknowledged. 
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1.2. Dissertation Outline 

Chapter 2 discusses the theoretical framework used in this dissertation with a short 

overview of the basic concepts in geostatistics. The concept of random variables is 

introduced. The assumptions of stationarity and ergodicity are explained. Measures of 

spatial variability are defined and models of coregionalization are provided. Classical 

geostatistical estimation and simulation methods are reviewed and discussed. 

Chapter 3 focuses on the string effect of kriging. Section 3.1 defines and 

illustrates the string effect of kriging as well as presents the motivation for correcting it. 

Section 3.2 reviews the methods commonly applied for correcting the string effect. 

Sections 3.3 and 3.4 present two new methods for correcting the kriging weights to avoid 

large weights to data at the end of strings. These methods for resource estimation in a 

finite domain are distance constrained kriging and finite domain kriging. The methods are 

explained in detail and illustrated with small examples. Section 3.5 compares the two 

proposed kriging methods with a case study. A brief discussion of the results and the 

methods is presented in Section 3.6. 

Chapter 4 focuses on combining local distributions of uncertainty obtained from 

different data sources or interpolation techniques. Section 4.1 reviews results of different 

comparative studies aimed at finding the best interpolation technique and explains the 

need for a combined method for local uncertainty calculation. Section 4.2 presents a new 

approach, referred to as the overlap uncertainty, for combining alternate conditional 

distributions of uncertainty. Application of the overlap uncertainty approach is shown in 

Section 4.3 by combining inverse distance interpolation results with simple kriging. 

Further analysis of the overlap uncertainty approach is conducted in Section 4.4 based on 

a small case study. A brief discussion of the results and the method is presented in 

Section 4.5. 

Chapter 5 investigates the problem of variance inflation in collocated cokriging. 

Section 5.1 reviews alternative approaches for collocated cokriging. Section 5.2 

investigates the theoretical justification for selecting only one auxiliary sample 

(collocated) for cokriging in the case of an intrinsic correlation model. Section 5.3 

explains the reasons underlying variance inflation in collocated cokriging. Then intrinsic 
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collocated cokriging to solve the variance inflation problem is presented. The proposed 

method is shown to remove systematic bias in histogram reproduction from conventional 

Markov models for collocated cokriging. Example applications are given in Section 5.4. 

Section 5.5 compares intrinsic collocated cokriging, collocated cokriging and cokriging 

with a linear model of coregionalization. Comparison is made in terms of the difference 

in the cokriging weight profiles and results of estimation. Section 5.6 presents an 

approach for improved implementation of collocated cokriging in the case of multiple 

secondary data. The theoretical validity of this approach is proven. Section 5.7 extends 

the proposed approach to intrinsic collocated cokriging. Finally, a brief discussion about 

the results and the methods is presented in Section 5.8. 

Chapter 6 investigates multiple univariate sequential Gaussian simulation with 

correlated residuals. Section 6.1 reviews options for multivariate Sequential Gaussian 

Simulation. Section 6.2 presents a correction to multiple univariate Sequential Gaussian 

Simulation with correlated residuals to reproduce the correlation between random 

variables at lag 0. Sections 6.3 and 6.4 show application of the developed correction 

technique in several small examples and a case study. Section 6.5 presents an extension 

of the multiple univariate Sequential Gaussian Simulation to reproduce locally 

correlations between random variables. A brief discussion of the results and a correction 

method is presented in Section 6.6. 

Additionally, this thesis includes several appendices with important related 

research. Appendix A proposes a statistical formalism for inverse distance interpolation. 

The proposed formalism is based on the assumption of stationarity and is aimed at 

providing the estimation variance at the unsampled locations as a measure of accuracy. A 

general approach to find the optimal exponent value and the optimal number of 

neighboring points to be used in estimation is also provided. Appendix B presents direct 

size scaling of variograms. Comparison of the direct approach with conventional 

variogram scaling laws is also given. Finally, Appendix C presents a general framework 

for integrating data uncertainty in spatial prediction. 
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CHAPTER 2 

Overview of Geostatistics 

Geostatistics is a branch of applied statistics that focuses on the geologic nature of the 

data, spatial relationship between observations and their volume support and precision 

(Deutsch, 2002). Geostatistics provides a set of statistical and mathematical tools for 

incorporating the spatial and temporal data coordinates in data processing (Goovaerts, 

1997). 

The development of geostatistics started in the 1960's and was driven by the 

problems in mining such as unbiased estimation of recoverable reserves. Problems in 

petroleum such as realistic heterogeneity models for unbiased flow predictions motivated 

the development of geostatistics from the mid 1980s through the late 1990s. Currently 

development of geostatistics is influenced by an increased need for more realistic 

geologic modeling and reliable uncertainty quantification (Deutsch, 2006). 

Geostatistics is also applied to problems in forestry, fisheries, agriculture and 

environmental sciences (e.g., Jensen and Miller, 2005; Pople et al, 2007; Cockx et al, 

2007). Geostatistical numerical models are used to spatially predict the variable of 

interest and to simulate its spatial features. Many geostatistical problems are concerned 

with reconciling data types at different scales (Deutsch, 2006). 

This section presents a short overview of the basic concepts in geostatistics. More 

extensive discussion of these concepts can be found in the well known geostatistical 

books by David (1977); Journel and Huijbregts (1978); Isaaks and Srivastava (1989); 

Goovaerts (1997); Deutsch and Journel (1998); Chiles and Delfiner (1999); Wackernagel 

(2003) and Deutsch (2002) and many other journal and book publications. 
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2.1. Random Variables 

A random variable Z is a variable that can take values according to a prescribed 

probability distribution. A spatially dependent random variable Z is denoted by Z(u), 

where u is a location within the study domain A. An outcome of the random variable Z(u) 

is denoted z(u). 

The uncertainty in the true value z(u) at an unsampled location u e A can be 

modeled using the cumulative probability distribution function of the random variable 

Z(u), 

F(u; z) = Prob(Z(u) < z). (2.1) 

This probability distribution function is a model of our lack of knowledge about the true 

value at the usampled location u. 

A set of several random variables \Z(u,), u, e A, i = 1,.. .,n\ is called a random 

function. Each of the random variables Z(ut) has its own probability distribution; the 

random variables are dependent on each other. The dependence between random 

variables are characterized by the multivariate distribution also known as a spatial law 

(Goovaerts, 1997): 

F(z(u1),...,z(u„))-i'ro6(Z(u1)<z(u1),...5Z(u„)<z(u„)), u, e A, / = 1,...,«. (2.2) 

2.2. Stationarity and Ergodicity 

2.2.1. Stationarity 

Repetitive samples are needed to infer any statistic. Unfortunately, repetitive samples are 

not available in a spatial context. Most measurements cannot be repeated at the same 

location u to obtain a probability distribution of the random variable Z(u). Stationarity is 

a decision to combine samples at other locations to obtain a model of the probability 

distribution. This amounts to assume the invariance of the random function and all its 
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moments by translation over the domain A (Deutsch, 2002). In particular, first 

orderstationarity assumes that the mean of the variable of interest is constant throughout 

the domain A; second order stationarity assumes that the covariance between data 

depends only on the separation distance between data in the study domain A. That is, 

E(Z(u)) = m, V u e i ; 
W (2.3) 

Cov(Z(u),Z(u + h)) = C(h), V u e A 

Stationarity is a property of the random function model; it is not a characteristic of 

the underlying spatial phenomenon. Since stationarity is not a hypothesis it cannot be 

tested; however, it can be judged inappropriate based on an understanding of the spatial 

phenomenon. Intrinsic stationarity is a less constraining assumption than second order 

stationarity. Intrinsic stationarity only assumes the existence of mean and variogram (the 

increments Z(u)-Z(u+h) are second order stationary). However, the covariance is not 

defined. 

In practice, the decision of stationarity permits inference of the moments of the 

population given a set of samples (z(u;), i = l,...,n}. These moments are usually 

inferred using the experimental frequencies calculated from the data. Specifically, the 

stationary first order mean m is inferred from the global stationary univariate cumulative 

distribution function F(z); the second order covariance C(h) is inferred from the 

bivariate cdf of all z and z' sample data collected from all u to u' pairs of locations, 

respectively, approximately separated by the lag h. Once these statistical parameters are 

quantified; they are used as input in geostatistical estimation and simulation algorithms to 

update the global stationary univariate cumulative distribution function (cdf) F(z) to local 

conditional cumulative distribution functions (ccdf) F(u; z\(n)) using n sample data 

surrounding each unknown u location. 

2.2.2. Ergodicity 

A set of simulated values over the study domain is referred to as a realization of a random 

function model (Deutsch, 2002). The difference between the statistics of a simulated 

realization and the statistics of the random function model is called an ergodic fluctuation 

(Goovaerts, 1997). The ergodic theorem states that for a sufficiently large domain, the 
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statistic of the realization should approximate the respective statistics of the random 

function model. In particular, a domain with size at least 8 times larger than the range of 

covariance function is considered to be large enough and, thus is called ergodic (Deutsch 

andJournel, 1998). 

In practice, the ergodic fluctuations displayed by a simulated realization is 

controlled by the algorithm used to generate the realization; the density of conditioning 

data; the size of the simulated grid and the covariance parameters. Statistical parameters 

are inferred from sample information, not the complete population; therefore ergodic 

fluctuations account to some degree for the uncertainty about sample statistical 

parameters. Reduction or removal of ergodic fluctuations may lead to a false sense of 

certainty about the simulated features (Goovaerts, 1997). 

2.3. Measures of Spatial Variablity 

A variogram 2/(h) is a measure of spatial variability and is an important statistic in 

geostatistical analysis. It measures the expected dissimilarity between two random 

variables Z(u) and Z(u + h) separated by Euclidean distance h: 

2Kh) - E(Z(u) - Z(u + h))2. (2.4) 

/(h) (half of the variogram) is referred to as the semivariogram (Journel and Huijbregts, 

1978; Chiles and Delfmer, 1999). 

The experimental variogram 2/(h) is calculated as the average of squared 

differences between data separated by a distance lag of h. In practice, angle and lag 

tolerances are defined so that reasonable number of data pairs iV(h) can be found 

approximately h apart (Deutsch and Journel, 1998): 
1 N(h) 

2r(h) = — 5 > ( u ; ) - z ( U / +h))2 . (2.5) 

Reasonable choices in the number of lags, lag separation distance and tolerances usually 

helps to get a reliable estimate of the variogram, although this is not always feasible 
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(Cressie and Hawkins, 1980). Bad choices may result in noisy variograms that are not 

representative of the phenomenon under study. 

In order to use experimental variograms in geostatistical estimation or simulation, 

they must be modeled (Gringarten and Deutsch, 2001). Variogram models must provide a 

valid measure of distance, thus, they must be positive semi-definite (Armstrong and 

Jabin, 1981). The positive semi-definiteness constraint ensures that the estimation 

variance will be non-negative. Several common variogram models that are know to fulfill 

this constraint are the Nugget Effect, Spherical, Gaussian and Exponential models. 

(Goovaerts, 1997). 

The covariance is complementary to the variogram (Deutsch and Journel, 1998). 

The covariance function C(h) is a measure of similarity between two random variables 

Z(u) and Z(u + h) separated by Euclidean distance h (see also 2.3): 

C(h) = £(Z(u)Z(u + h)) - m(vL)m(u + h), (2.6) 

where w(u) and m(u + h) denote the means of Z(u) and Z(u + h) , respectively. If 

considering covariance at a lag h = 0, then the definition of the covariance Equation (2.6) 

identifies the variance: 

C(0) = Var(Z(u)). 

Under the decision of stationarity, the semivariogram / (h) , covariance function 

C(h) and variance C(0) are related as follows 

2Kb) = E(Z(u) - Z(u + h))2 

= £(Z(u)Z(u))- 2£(Z(u)Z(u + h))+E(Z(u + h)Z(u + h)) 

- (E(Z(U)Z(U))- m2)- 2(E(Z(U)Z(U + h ) ) - m2)+ {E(Z(U + h)Z(u + h ) ) - m2) 

= 2C(0)-2C(h). 

Or, 

r(h) = C(0)-C(h). (2.7) 

When two or more variables are available, cross-variograms and cross-

covariances are used to measure their spatial relationship. They measure how dissimilar 

and similar, respectively, are variables i and j (i* j) on average at two locations 

separated by Euclidean distance h, 
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2 / , (h) = £((Z,. (u) - Z, (u + h))(Z. (u) - Zj (u + h))} 

C,(h) = £(z,(u)Z ;(u + h ) ) - iti,(n)ifiy(u + h), 

where w,(u) and w7(u + h) denote the means of Z.(u) and Zy(u + h) , respectively. 

Under decision of stationarity, the cross-semivariograms /^(h), cross-covariance 

functions Cy(h), and cross-covariance between collocated variables / and j , Cy(0)are 

related as follows (Goovaerts, 1997): 

2rtJ(h) = 4(Z,(u) - Z,(« + h))(Z,(u) - Zy (n + h))) 

= £(z,(u)Zy(u))- £ ( z » Z y ( u + h ) ) - E(zXu + h)Zy (u))+ ^ ( u + h)Zy (u + h)) 

= (£(z/(u)Zy (u))- mjnj)- (£(z/(u)Zy (u + h ) ) - /iy«y ) 

- (£(z /(u + h)Zy(u))-mifiy)+(JB(z<(u + h)Zy(u + h))-»n»iy) 

= 2C,(0)-2C,(h). 

Or, 

r , (h ) = C,(0)-C,(h). (2.9) 

Note that Equation (2.9) is valid only if the cross-covariance is assumed symmetric in h, 

that is, if Cy(h) = C;7(h). This assumption, however, may not necessarily be true. There 

are a number of different possible causes for non-symmetric covariances 

(C#(h) ^ Cyi(h))? including a well known lag effect (Journel and Huijbregts, 1978). A 

very simple example of a non-symmetric covariance is the cross-covariance calculated 

between a continuous and derivable variable Z(u) and its derivative 7(u). In this case, 

covariance is anti-symmetric, that is, CZF(h) = -Cyz(h) (Chiles and Delfiner, 1999). 

Because the cross-covariance may be asymmetric, it is important to check if the 

assumption of symmetric covariance is realistic for any real application (Wackernagel, 

2003). 

In order to incorporate experimental cross-variograms in estimation or simulation, 

they must be modeled in a mathematically consistent manner with each other, and 

provide a measure of spatial correlation that respects physical laws and ensures positive 

estimation variances (Goovaerts, 1997). 
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2.4. Models of Coregionalization 

To characterize the spatial relationship between M random variables, 

Z .(u), j = l,...,M, u e A, a matrix of covariance functions C containing covariances 

between sample points is needed. This matrix of covariance functions must be positive 

semi-definite. This will ensure that all variances are non-negative as well as the existence 

and uniqueness of solutions in kriging-based estimation and simulation. 

There are several models for the matrix of covariance functions. These include the 

linear model of coregionalization, Markov models and intrinsic model of 

coregionalization. A short description of these models follows. 

2.4.1. Linear Model of Coregionalization (LMC) 

The LMC is the most common model for describing joint spatial continuity of multiple 

random variables. It is based on the assumption that each random variable 

Zj(u), j = \,...,M, can be expressed as a linear combination of the same K independent 

stationary random functions, Yk(u),k = \,...,K, each with zero mean and distinct 

covariance function Q ( h ) : 

K 

where //. denotes the mean of the random variable Zy(Journel and Huijbregts, 1978; 

Isaaks and Srivastava, 1998). 

The LMC is given by the following system (Deutsch, 2002): 

n(h) = |Xr*(h), /,y=i,...,M, (2.io) 

where the F° denotes the nugget effect; V,i-\,...,K, are distinct nested structures that 

make up the common pool of variogram models (spherical, exponential, etc.). All direct 

and cross variogram use the same variogram nested structures. The sill contribution 
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parameters are allowed to change such that the K+\ MxMmatrices of coefficients btj, 

k = 0,1,.. .,K, are positive semi-definite. 

The LMC (2.10) can be applied to any number of random variables. Several 

procedures for automatic fitting of the linear model of coregionalization have been 

developed (e.g., Goulard and Voltz, 1992; Lark and Papritz, 2003; Pelletier, et al, 2004), 

however, the LMC is rarely applied to more than four random variables. 

2.4.2. Markov Models 

Modeling an LMC is a complex task. Two Markov models simplify this task: Markov 

Model I and Markov Model II. 

2.4.2.1. Markov Model I 

The Markov Model I (MMI) assumes that the primary Z data prevails over collocated 

secondary Y data. Formally, it can be written as (Xu et al., 1992; Almeida and Journel, 

1994; Goovaerts, 1997): 

E(Y(u) I Z(u) = z,Z(u + h) = z')= E(Y(u)\Z(u) = z), Vh,Vz'. (2.12) 

That is, dependence of the secondary variable on the primary is limited to the collocated 

primary datum. The cross covariance CFZ(h) under the Markov model I is given by: 

CYZ(h) = b-Cz(h), Vh (2.13) 

where Cz(h) is the covariance of Z; b = 
( fTHT^ / \ VQ(0) 

pYZ(0), Cz(0) and Cf(0) are 
7^(0) 

the variances of Z and Y; and pYZ (0) is the correlation coefficient of collocated Z and Y 

data. 

If only collocated secondary data are used in estimation, then the primary variable 

variogram (or covariance) and the correlation coefficient between primary and secondary 

data are the only information required under the Markov Model I to obtain the joint 

model for the matrix of covariance functions (Almeida and Journel, 1994). 
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Note that the MM1 is a reasonable model of coregionalization if Z is defined on 

the same or a larger volume support than 7. The primary data Z screens the influence of 

further away data z'. In many practical applications, however, the primary data Z is 

defined on a smaller support than the secondary data 7(u). In this case, the experimental 

cross-covariance CYZ (h) tends to share the shape of the smooth secondary covariance 

model CY (h) and, thus, Markov model I is inappropriate (Journel, 1999). 

2.4.2.2. Markov Model II 

The Markov Model II assumes that the secondary 7 data prevails over the primary Z data. 

Formally, it can be written as (Journel, 1999; Shmaryan and Journel, 1999): 

£ (Z(u) | 7(u) = y,Y(u + h) = / ) = £(Z(u) | 7(u) = y), Vh, V / (2.14) 

That is, dependence of the primary variable on the secondary is limited to the collocated 

secondary datum. The cross covariance Crz(h) under the Markov model II is given by: 

CYZ(h) = b-CY(h), Vh (2.15) 

( fTTTT^ / \ 
where Cr(h) is the covariance of 7; b = 

VO(0) 
pYZ(0), Cz(0) and Cr(0) are 

the variances of Z and 7; and pYZ (0) is the correlation coefficient of collocated Z and 7 

data. 

Although the Markov Model II results in a simple model for the cross-covariance 

(see (2.15)); the primary variable variogram must be modeled in addition to the 

secondary variable variogram. This variogram can be obtained as follows 

Cz(h) = CZ7(0)Q (h) + (1 - CZY (0))Q(h), (2.16) 

where CZY (0) is the cross-covariance between collocated Z and 7 data; Cz (h) is the 

covariance of Z; and CR(h) is any permissible covariance function (Journel, 1999). 

Although modeling of MM2 is more demanding than MMI, its underlying 

hypothesis is more appropriate for a secondary variable defined on a large support 

volume, e.g., remote sensing data such as seismic. 
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2.4.3. Intrinsic Correlation Model (ICM) 

The intrinsic correlation model is another multivariate covariance model that can be 

adopted for a covariance function matrix. It describes the relationships between the 

variables with the variance-covariance matrix B (B(i,j) = bjj, i,j = 1,...,M) and the 

relations between points in space by a spatial correlation function p(h) as follows: 

CICM(h) = B-p(h). (2.17) 

Note that the spatial correlation function p(h) is the same for all variables. The model 

(2.17) is called the intrinsic correlation model because the correlation ptj between any 

two collocated variables / and/ is independent of the spatial scale (Wackernagel, 2003): 

V ( h ) _ by 

^p(h)bjjP(h) v ^ v ' r 

In practice, the intrinsic correlation model specifies that the direct and cross 

covariance functions are all proportional to the same underlying spatial correlation 

function: 

C;CM(h) = V?(h), (2.19) 

where the coefficients btj represent the variances (i =j) and covariances (i^j) between 

collocated variables. An intrinsic model can be defined in terms of variograms. 

Specifically, the intrinsic correlation model is a product of a positive coregionalization 

matrix B of coefficients bl} and a variogram /(h), that is: 

TICM(h) = By(h). (2.20) 

When comparing a linear model of correlation (2.10) with an intrinsic correlation model 

(2.19) we note that the ICM can be viewed as a special case of the LMC. When all direct 

and cross covariance functions are proportional to the same underlying spatial correlation 

function, the linear model of correlation reduces to the intrinsic correlation model. 
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2.5. Ceostatistical Estimation 

One of the most important problems in the geosciences is the problem of spatial 

prediction. Spatial predictions are often required for planning, risk assessment, and 

decision-making. Typical applications include determining the profitability of mining an 

orebody, producing a reservoir, management of soil resources, soil properties mapping, 

pest management, designing a network of environmental monitoring stations, etc. (Weisz 

et al, 1995; Gotway et al , 1996; Moyeed and Papritz, 2002). 

Spatial prediction techniques differ from classical statistical modeling in that they 

incorporate information on the geographic position of the sample data points (Journel and 

Huijbregts, 1978; Cressie, 1993). Spatial predictions describe a variety of responses over 

different spatial scales (Schloeder, et al., 2001). They provide a unique and smooth 

distribution of estimates that reproduce the sample points (conditioning data); spatial 

prediction techniques aim at local accuracy (Isaaks and Srivastava, 1989; Journel et al., 

2000). The most common spatial prediction techniques calculate the estimates for a 

property by averaging nearby data. Weighting for each averaged data value is assigned 

either according to deterministic or statistical (spatial covariance) criteria. When a 

deterministic criterion is used, the measures of optimality are arbitrarily chosen (Borga 

and Vizzaccaro, 1997). When a statistical criterion is used, the field is considered as a 

random process and the optimality of the averaging method is determined in terms of 

minimizing the estimation variance. The methods obtained based on the statistical 

criterion are often referred to as kriging or kriging-based techniques. 

Kriging is a well-proven methodology that provides the best linear unbiased 

estimate and its variance at the unsampled location. Because it returns the original data 

values, it is considered an exact technique (Deutsch, 2002). In theory, kriging is a 

statistically optimal interpolator in the sense that it minimizes estimation variance when 

the covariance or variogram is known and under the assumption of stationarity. The 

assumption of stationarity is relaxed in some types of kriging. 

A short description of the most renowned flavors of geostatistical kriging-based 

techniques is presented next. These include simple and ordinary kriging, simple cokriging 
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and collocated cokriging (see for reference Journel and Huijbregts, 1978; Cressie, 1993; 

Deutsch, 2002). 

2.5.1. Simple Kriging 

The simple kriging estimator predicts the value of the variable of interest Z(u) at the 

estimation location u as a linear combination of neighboring observations 

Z(u(), i = \,...,n(u), (Journel and Huijbregts, 1978): 

Z*sr(u) = X4(u)Z(n,) + 
1=1 

«(») 

1-&W m, (2.21) 

where m denotes the stationary mean, X = {XX (u),..., Xn{u) (u))r denotes the vector of the 

simple kriging weights calculated from the normal system of equations 

XMu)Cov(Z(u,),Z(u,)) = Cov(Z(u),Z(Uj)), j = 1 , - , H ( U ) , (2.22) 
;=1 

where Cov(Z(u;),Z(uy)), i,j = l,---,n(u), denotes the data-to-data covariance values 

and Cov(Z(u), Z(u ;)), j = 1, • • •, «(u), is the data-to-estimation point covariance values. 

The covariance function is calculated under stationarity through the semivariogram 

model / (h ) , see Equation (2.7). 

Simple kriging is the best linear unbiased estimator, that is, it provides estimates 

with minimum error variance <T^(U) in the least square sense given by 

*2
SK(u) = C ( 0 ) - " f 4(u)Cov(Z(u),Z(uy)), (2.23) 

7 = 1 

where C(0) is the stationary variance. 

2.5.2. Ordinary Kriging 

Ordinary kriging is a common variant of kriging. It is believed to be a robust and reliable 

method of data interpolation (Yamamoto, 2005). The ordinary kriging estimator differs 

from simple kriging in that it constraints the sum of all weights to be 1. Specifically, it 
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provides a model for the value of the variable of interest at the estimation location u as 

the following linear combination of the neighboring observations Z(u,), / -\,...,n(u), 

(Journel and Huijbregts, 1978) 

Z V ( u ) = f>,.(u)Z(u,), (2.24) 

where rj = (r]l (u),...,^n(M)(u))r denote the vector of the ordinary kriging weights 

calculated from the following system of equations for the estimation location u, 

£i7,(u)Cov(Z(n,) ,Z(i iy)) + fain) = Cov(Z(u),Z(uy)), j = l , - , / i ( n ) , 

.(.) (2-25) 

2>(u) = l, 

where MOK(U)
 ls m e Lagrange parameter and, as before, Cov(Z(u.),Z(uy)), 

i,j-l,---,n(n), denotes the data-to-data covariance values and 

Cov(Z(u),Z(uy)), j = 1, • • •, H(U), is the data-to-estimation point covariance values. 

The ordinary kriging estimator is also an exact interpolator. However, ordinary 

kriging provides estimates with larger error variance cr2
OK (u) than simple kriging, 

< ( u ) = C(0) - X7,(u)Cov(Z(u),Z(u7)) - ^ ( u ) > cr2
SK(u), (2.26) 

;=i 

where C(0) is the stationary variance. 

Note that ordinary kriging is usually preferred to simple kriging in practical 

applications. This is because ordinary kriging does not require knowledge or assume 

stationarity of the mean over the entire region of interest. Ordinary kriging accounts for 

unknown or locally varying mean by limiting the region of stationarity to within the 

neighbourhood centered at the location of interest. In general, it can be shown that OK 

estimates are larger than SK estimates in high-valued areas where the local mean is larger 

than the global mean; and OK estimates are smaller than SK estimates in lower-valued 

areas where the local mean is smaller than the global mean (Goovaerts, 1997). 
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2.5.3. Simple Cokriging 

Simple cokriging (CSK) is a natural extension of simple kriging to the case when 

multivariate data is available (Vauclin et al, 1983; Wackernagel 1994; Goovaerts, 1997; 

Wackernagel, 2003). Simple cokriging allows estimating with data of the same type and 

auxiliary variables in the neighborhood. Specifically, the estimator is the following 

weighted linear combination of the mean of the variable of interest (m) and the data from 

different variables located at sample points in the neighborhood of the estimation location 

u: 

z *CSK («) = m + X IX(Z /(U J - mil 
(=1 a=\ 

{2.21) 

where the CSK weights [X\,..., AT
N f are found from a simple cokriging system given by 

• C1J • rcu C ^ Y A M fclt^ 

ci] cij c iN 

Cm ••• CNj ••• CNN 

X 

sX J 

(2.28) 

where the left hand side covariance matrix is built up with square symmetric nt by nt 

blocks C" given by 

Cl;=Cov(Z ;.K),Z,(u ;)), kj = \,...,n„ i = \,...,N, 

on the diagonal and with rectangular nt by rij blocks Ctj = CT
jt given by 

C^CovCZXu^ZjCu,)), k = \,...,nl, / = l,...,wy, i,j = l,...,N, 

off the diagonal. Note that the blocks CtJ contain either direct (/ = j) or cross (i* j) 

covariances between sample points. The vectors c'* contain the covariances with the 

variable of interest, for a specific variable of the set, between sample points and the 

estimation location. The vectors X represent the weight attached to the sample of the z'-th 

variable. 

A joint model for the matrix of covariance functions (for example, a linear model 

of coregionalization) is required in order to perform simple cokriging. Thus, when M 
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different variables are considered, the covariance matrix in the left hand side of simple 

cokriging Equation (2.28) requires — or M covariance functions to be inferred 

depending on whether this matrix is symmetric (no lag effect) or not (lag effect) (see for 

reference Journel and Huijbrogts (1978) or Goovaerts (1997)). Such inference is 

demanding in terms of data and subsequent joint modeling; therefore, a more simple 

estimation technique called collocated simple cokriging is commonly employed. 

2.5.4. Collocated Simple Cokriging 

Collocated simple cokriging is a strategy where the neighborhood of the auxiliary 

variable is reduced to the estimation location only. The value of the auxiliary variable 

7(u) is said to be collocated with the variable of interest Z(u) at the estimation location u. 

The collocated simple cokriging estimator (in the case of only one secondary data type) is 

given by (Goovaerts, 1997): 

«(«) 
Z *CCSK (U) = mZ + K ( 7 0 ) - mY ) + YJ ̂  (Z(U« ) ~ mZ \ (2-29) 

where collocated simple cokriging weights [A^, \]T are found from the following system 

of equations 

^ZZ CYZ " ^ 

14 Q(0), 
"z 

czz 

\CYZ(0)j 
(2.30) 

where Czz is the left hand matrix of the simple kriging system of Z(u) and czz is the 

corresponding right hand side covariance vector. The vector cYZ contains the cross 

covariances between the n(u) sample points of Z and the estimation location u with its 

collocated value 7(u). C7(0) is the variances of Y; and CYZ(0) is the cross-covariance 

between collocated Z and Y data. 

The cross covariance cYZ in system (2.30) is usually calculated using the Markov 

correlation Model I (Journel, 1999). Using the Markov model I for the cross covariance 

cYZ, we can rewrite system (2.29) for the collocated simple cokriging weights [J?z, J^]7 

as: 
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(C77 hc7 YlA ( c ^ 
zz 

ybcT
z Q(0) yAy j 

zz 

Crz(O). 
(2.31) 

f /TTT^T / \ 
w h e r e b •• Vow pYZ(0), Cz(0) is the variances of Z and pYZ(0) is the 

correlation coefficient of collocated Z and 7 data. 

In order to perform collocated cokriging with Markov model I, the primary 

variable covariance function, the variance of the secondary data and the correlation 

coefficient between primary and secondary data are required. Retaining only the 

collocated secondary data, in general, does not affect the resulting estimate, since nearby 

data are usually very similar in values. However, it may affect the cokriging estimation 

variance. Cokriging variances are overestimated, oftentimes significantly. This causes 

serious problems in sequential simulation (Deutsch, 2002). 

2.5.5. Other Forms of Kriging 

There are many other kriging-based techniques. They either make different assumptions 

on the mean or require the data to be transformed prior to applying kriging. In particular, 

the following forms of kriging are also commonly applied: 

• Simple kriging with locally varying mean. The global mean m in the simple 

kriging estimator is replaced by a local mean m(u). (Goovaerts, 1997; Deutsch 

and Journel, 1998; Deutsch, 2002) 

• Universal kriging or kriging with a trend. The mean is assumed to follow a 

particular regular (smooth) function, for example polynomial (Deutsch and 

Journel, 1998), logarithm (Brochu and Marcotte, 2003) or trigonometric functions 

(Seguret, 1989). The mean is fitted as a scaling of the trend function. Simple 

kiging is performed with residuals from the implicitly calculated mean values. 

(Huijbregts and Matheron, 1971; Olea, 1973; Armstrong, 1984; Deutsch and 

Journel, 1998) 

• Kriging with external drift. The mean values are estimated as a linear function 

of a secondary variable such as seismic. The mean is fitted as a scaling of the 
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external drift variable. Simple kiging is performed with residuals from the 

implicitly calculated mean values. (Moinard, 1987; Galli and Meunier, 1987; 

Castelier, 1993; Goovaerts, 1997; Bourennane, et al, 2000; Rivoirard, 2002) 

• MultiGaussian kriging. The data are transformed into the standard normal 

distribution. Simple kiging is performed with the transformed variable, then 

estimates and data are back-transformed to the original units. (Verly, 1983; 

Cressie, 1993; Emery, 2005, 2006) 

• Lognormal kriging. The data are transformed into log-normal distribution. 

Simple kiging is performed with the transformed variable, then estimates and data 

are back-transformed to the original units. (Journel, 1980; Dowd, 1982; Cressie, 

1993; Roth, 1998; Kishne, et al., 2003) 

Although kriging is locally accurate, it is characterized by a smoothing effect in 

which small values are usually overestimated and large values underestimated; the 

variance of the kriging estimates is lower than the stationary domain variance. The 

smoothing effect is observed in kriging because it is a form of spatial regression. Due to 

the smoothing effect, kriged maps do not represent the spatial variability of the variable 

under study (Isaaks and Srivastava, 1989; Deutsch, 2002). Gesotatistical simulation 

corrects the smoothing of kriging. 

2.6. Geostatistical Simulation 

Gesostatistical simulation adds a random component to the kriging estimate to produce 

the proper variation at the model scale. Multiple equally-probable realizations of 

heterogeneity are obtained by random drawing different random components. These 

realizations provide an assessment of uncertainty about the properties of the variables 

being modeled (Journel, 1990). 

Geostatistical simulation differs from kriging in two major aspects. Firstly, 

geostatistical simulation allows the calculation of the joint uncertainty when several 

locations are considered together. Secondly, in geostatistical simulation, reproduction of 

the global features and statistics (e.g., histogram and variogram) plays a more important 
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role than local accuracy, which is the goal in kriging. (Deutsch and Journel, 1998). Note 

also that geostatistical simulation ensures reproduction of the spatial variability of the 

phenomenon under study in simulation between the simulated values and the data and 

between the simulated values and themselves. 

Stochastic simulation is an important component of geostatistical analysis. It 

quantifies uncertainty in energy and mineral resources (Journel, 1974). Other applications 

consist of generating input for flow simulation (Deutsch, 2002) and calculating the 

likelihood of exceeding critical threshold in contamination studies (Kyriakidis and 

Journel, 2001). 

There are many approaches that can be used for geostatistical simulation. The 

most popular and simplest simulation techniques for continuous variables are based on 

the assumption of multivariate Gaussianity. The multivariate Gaussian distribution is 

characterized by the property that all conditional and marginal distributions are also 

Gaussian. The simple kriging mean and variance are precisely the mean and variance of 

the local conditional distribution. 

It is rare, however, that a geological variable is Gaussian; therefore, the data need 

to be transformed before analysis. Simulation is conducted in normal score or Gaussian 

units. When stochastic simulation is completed, the simulated values are back-

transformed into original units. 

There are many algorithms for Gaussian simulation. These include sequential 

Gaussian simulation, matrix approaches, moving average, turning bands and spectral 

methods. A brief description of two of the most popular, that is, sequential Gaussian 

simulation and matrix approach follows, please refer to David (1977), Journel and 

Huijbregts (1978) and Chiles and Delfiner (1999) for a review of the other approaches. 

2.6.1. Matrix Simulation (LU Simulation) 

The matrix simulation, also known as LU simulation, is based on the Cholesky 

decomposition of the positive definite covariance matrix (Alabert, 1987; Davis, 1987). 

The covariance matrix to be decomposed contains information on the covariance between 

the sample data, sample data and nodes to be simulated and between nodes to be 
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simulated. It is of size (n+N)*(n+N), where n is the number of data and N is the number 

of nodes to be simulated, that is, 

C n C12 

c = c c 
^ 2 1 ^ 2 2 

where Cn is the data-to-data covariance, C12 is data-to-simulated nodes covariance, C21 

is simulated nodes-to-data covariance and C22 is simulated nodes-to-simulated nodes 

covariance. 

The Cholesky decomposition of the covariance matrix C results in the lower and 

upper triangular matrices L and U(U = LT) such that 

C = LU = 
Ln 0 

J21 J22 0 U 22 

(2.32) 

A conditional simulated realization with LU approach can be generated as follows 

72 

Lu 0 

L 21 J22 

W, 

W. 
(2.33) 

or 

(2.34) ^i=Aiw i> 

^2 =^2l(ZnVl) + i22
W25 

where yx is an « by 1 column vector of normal scores of the conditioning data, y2 is an 

JV by 1 vector of simulated values, w{ = L\\yx and w2 is an A'' by 1 vector of standard 

normal random values. Different standard normal random values in vector w2 need to be 

generated in order to generate different realizations. 

The simulation is fast and can be performed with high efficiency after the 

Cholesky decomposition is done. Cholesky decomposition needs to be performed only 

once, therefore this method can be particularly useful if the grid is relatively small and a 

large number of realizations is required. 
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2.6.2. Sequential Gaussian Simulation 

Sequential Gaussian simulation is the most commonly adopted approach for large 

realizations. This approach is simple and flexible; it is based on decomposing the 

multivariate distribution into a series of conditional distributions for each location. Joint 

simulation of iV variables is obtained by drawing sequentially from successive univariate 

conditional distributions (and from the marginal in the first draw) (Levy, 1937). 

The aim of the sequential Gaussian simulation is to correct kriging by adding to 

the simple kriging estimate an independent normally distributed residual with mean of 

zero and variance equal to the simple kriging variance. The added residuals correct the 

smoothness of kriging and ensure that simulated values have the right variability. 

(Goovaerts, 1997). 

The shape of the conditional distributions is Gaussian ensuring that the simulated 

realizations will be standard normally distributed. The variogram reproduction is ensured 

by using original data values and simulated nodes. The following is a short summary of 

the steps required for sequential Gaussian simulation (Deutsch, 2002): 

1. Transform the variable to be standard normal. 

2. Select a random path to visit each location to be simulated. 

3. Visit each location one-by-one and perform simple kriging to find the mean 

and variance of the local conditional distributions. 

4. Draw a random value from the Gaussian conditional distribution. 

5. Consider the simulated value as a data for subsequent nodes. 

6. Repeat steps 3-5 until all locations are simulated. 

The use of random path is designed to avoid the artifacts in the simulated values. 

Multiple equally-probable realizations can be created by changing the random number 

seed, that is, changing the random path and drawing different values from the conditional 

distributions. 
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2.6.3. Gaussian Cosimulation 

There are several algorithms available for cosimulation of multiple dependent variables 

in the multivariate Gaussian context. In particular, matrix simulation (LU) can be easily 

extended to account for multiple data types. This approach, however, is impractical due 

to the size restrictions on the covariance matrix (Deutsch, 2002). 

The most popular approach for Gaussian cosimulation is based on the sequential 

Gaussian simulation. Local conditional distributions are calculated based on simple 

cokriging or collocated simple cokriging. Simple cokriging is based on the linear model 

of coregionalization to describe the spatial relationship between random variables, while 

simple collocated cokriging is based on the simpler Markov model I. 

2.6.4. Review of Other Simulation Techniques 

There are many other simulation techniques. Some do not rely on the assumption of the 

multivariate Gaussian distribution. The following are quite common. 

• Sequential indicator simulation. Data are coded as indicators at a number of 

different thresholds. A variogram model is calculated for each threshold. Kriging 

of the indicator function is used for building the distribution of uncertainty. A 

simulated value is drawn from the resulting distribution (Journel and Isaaks, 1984; 

Chu, 1996; Emery, 2004). 

• P-field simulation. P-field simulation is performed in two steps. Firstly, the local 

conditional distributions are obtained, then random field with a desired correlation 

structure is generated. At each location of the study domain, a value of the 

random variable is drawn using the known local conditional distributions 

(Froideveaux, 1993; Goovaerts, 1997; Saito and Goovaerts, 2002; Goovaerts, 

2002). 
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2.7. Discussion 

Geostatistics provides a set of statistical and mathematical tools for generating numerical 

models of regionalized variables that help in data processing and decision making. 

Although many methods for geostatistical simulation and estimation have been 

proposed over the years; there are still a lot of longstanding problems associated with 

these techniques. These problems include string effect of kriging, variance inflation of 

collocated cokriging, development of combined measure of uncertainty, improving the 

multivariate simulation with correlated residuals and others. 

The proposed work aims at investigating some of these issues and proposing 

novel theoretical and/or practical solutions for them. 
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CHAPTER 3 

Correcting the String Effect 

This chapter investigates the string effect of kriging. Two new approaches for correcting 

the kriging weights to avoid the assignment of large weights to data at the end of strings 

are proposed. Both proposed methods are shown to remove systematic bias in resource 

estimation. 

Section 3.1 defines and illustrates the string effect of kriging and presents the 

motivation for a correction. Section 3.2 reviews the methods currently applied to correct 

the string effect. Section 3.3 and Section 3.4 present two newly developed methods for 

resource estimation in a finite domain, that is, distance constrained kriging and finite 

domain kriging. The methods are explained in detail and illustrated with small examples. 

Section 3.5 compares the two proposed kriging methods with a case study. A brief 

discussion of the results and the methods is presented in Section 3.6. 

3.1. Introduction: String Effect 

Data are collected along drillholes or wells. Finite strings of data are commonly 

encountered in natural resource applications in the following two situations: (1) strings of 

data are truncated by geologic or stratigraphic boundaries (Figure 3.1), and (2) strings of 

data are truncated by a local search ellipsoid (Figure 3.2). 

When kriging is used with finite strings of data it can be frequently observed that 

outlying data in the strings receive higher weights (taking into account the sign) than all 
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other data. This counter-intuitive weighting, referred to as the string effect, is illustrated 

in Figure 3.3 for one string of data (see also Deutsch, 1993). The three profiles of 

ordinary kriging weights are shown in Figure 3.3. These weights are "the string effect". 

They are obtained based on a spherical variogram model with a range of correlation equal 

to the distance from the estimation location to the string and with nugget effects of 0%, 

25% and 75%, respectively. Figure 3.3 shows that the end samples in the string of data 

receive proportionally higher weights than the rest of the data in the string. Moreover, the 

difference in the weights increases with a decrease in the nugget effect. Note also that if 

the distance from the string to the estimation location increases then the structure of 

ordinary kriging weights remains unchanged. The only situation in which border samples 

do not receive significantly higher weights is when the estimation location is close to the 

string, see Figure 3.4. The redundancy of the data that causes the string effect is less 

important when the estimation location is close to the string. 

The unusual pattern of kriging weights is theoretically valid and is caused by the 

egrodicity assumption of kriging. The outlying samples are given a large weight because 

the data-to-data (left hand side) kriging matrix views such samples as less redundant than 

the rest of the samples (Deutsch, 1994). The outlying samples are informative of the half 

space beyond the string of data, thus, they receive higher weights. 

In the case of a bounded geologic domain or horizon, there is no volume outside the 

finite study area that would justify large weighting of the boundary samples in the strings. 

In the case of a limited search neighborhood, there are data outside of finite strings, but 

these data may not be reflected by the end points of the search neighborhood. Thus, there 

may be no justification for the string effect. The overweighting may have an especially 

strong impact when the domain under study is non-stationary, that is, when the data at the 

ends of the finite string the data values are higher or lower than in the middle of the 

string. These problems motivate development of methods for correcting the string effect. 
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Figure 3.1: Finite strings of data as a result of stratigraphic boundary truncation (redrawn 

fromDeutsch, 1993). 

V: 
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Figure 3.2: Finite strings of data as a result of a limited search (redrawn from Deutsch, 

1993). 
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a) 

Nugget effect = 0% 

b) 

Nugget effect = 25% 

c) 

Nugget effect = 75% 
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Figure 3.3: Profiles of ordinary kriging weights obtained for the estimation point located 

on a distance equal to the range of correlation from the string. Results are calculated 

based on a spherical variogram model with a nugget effect of 0% (a), 25% (b) and 75% 

(c) using string of 7 data. 
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a) 

Distance = 
range of correlation 

b) 

Distance = 
50% of range of correlation 

c) 

Distance -
20 % of range of correlation 
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Figure 3.4: Profiles of the ordinary kriging weights obtained for the estimation point 

located on the distance equal to the range of correlation (a), 50% of the range of 

correlation (b) and 20% of the range of correlation (c). Results are calculated based on a 

spherical variogram model with a nugget effect of 20% using a string of 7 data. 
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3.2. Methods for Fixing the String Effect 

What follows is a short description of five empirical solutions (Deutsch, 1993; Deutsch, 

1994; and Saito et al. 2005) to the string effect. All of these solutions are ad hoc; they 

change either the data configuration or modify the covariance function in order to ensure 

that all samples within the same string have the same average redundancy. They are not 

fully automatic with a well defined measure of optimality. 

3.2.1. Quick Fix 

A quick fix approach to the string effect restricts kriging to only use two samples from 

every string of data. In this way, both of the samples are equally informative and 

redundant. This approach for correcting the string effect does not take into account all 

available information on the variable of interest. Therefore, a major disadvantage of this 

quick fix approach is that too few data are used in estimation which may result in 

unreliable estimates. 

3.2.2. Extend the String 

Artificial or phantom data are added to each end of the string. Then, kriging is performed 

to find the weights for all data in the extended string. The weights assigned to the 

phantom data are set to zero and the remaining weights rescaled to sum to one. This 

approach can not be applied with simple kriging, since simple kriging weights do not sum 

to one. Other serious limitations include: (1) the data configuration may contain multiple 

strings with different numbers of samples in them. Thus, adding phantom data with the 

same support to the ends of each string can result in unfair weighting of strings of 

different length. (2) The data close to the phantom data could also receive significant 

weights. Thus, the edge effect may not be removed completely. Moreover, in order to 

correctly add the phantom data to each end of the string, the local direction of the string 

must be known. This may create difficulties in practical implementation. 
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3.2.3. Use Simple Kriging 

The string effect is not as pronounced when estimating with simple kriging, see Figures 

3.5-3.6 and Deutsch (1993). Simple kriging requires the mean to be specified. The mean 

is first calculated by declustering or ordinary kriging. Then, simple kriging is applied to 

find the value of the variable of interest at the estimation location. 

The correction with simple kriging is not complete: weights assigned to a string of 

data after performing the above described steps still reveal artifact large weighting of the 

end data in the string. 

3.2.4. Wrap the String 

The wrap the string method deals with the assumption of an infinite domain by modifying 

the data-to-data covariance in the left-hand side kriging covariance matrix. Specifically, 

for n data aligned in a finite string each separated from its neighbor conditioning data by 

a distance vector h, the covariance between any z'-th data Z( and j -th Zy in the string is 

modified to become 

Cov(Zi,ZJ) = C(kh), (3.1) 

where 

k = min{C/ -i + n),(i - j)}. 

The modified left-hand side covariance matrix corresponds to correcting the 

covariance between the data to show all data as equally relevant/redundant with all 

others. The wrap the string method is also applied in other image processing and 

geophysical applications, where the infinite domain assumption also causes problems in 

estimation (e.g., Aki and Richards, 1980). 
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Figure 3.5: Profiles of the simple kriging weights obtained for the estimation point 

located on the distance equal to to the range of correlation (a), 50% of the range of 

correlation (b) and 20% of the range of correlation (c). Results are calculated based on a 

spherical variogram model with a nugget effect of 20% using a string of 7 data.. 
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3.2.5. Finite Domain Kriging of Deutsch (1994) 

Finite domain kriging approach can be formulated as follows. In the case of resource 

estimation using a single string of data, the finite domain kriging estimate of the resource 

of interest at location u is found as a linear combination of neighboring 

observations Z(u(), /' = 1,..., n (u), 

2 V ( u ) = & ( u ) Z ( n ( ) , (3.2) 

where v r = (yx (u),...,v„(u)(u))r denotes the vector of the finite domain kriging weights 

calculated from the following system of equations for the estimation location u, 

n(u) 

YJ
 vi (u) r ( u * ' uj ) +

 VFDK ( U ) = Cov(Z(u), Z(Uj )), j = 1, • • •, w(u), 
M (3.3) 

n(u) V ' 

I > » = 1, 
i=\ 

where r(u ; ,uy) , i,j = l,...,n(u), denotes the redundancy measure given by 

r(ui,uJ) = Cov(Z(uilZ(uj))-[c(uJ)-C(ui)\ (3.4) 

where C(ut) is the redundancy term of sample Z(ut) of size N is given by 

C(ui) = ±fjCov(Z(ui),Z(uJ)); (3.5) 

juFDK(u) is the Lagrange parameter and, as before, Cov(Z(u),Z(uy)), j = l,---,n(u), is 

the data-to-estimation point covariance function. 

The difference with finite domain kriging (FDK) lies in the left-hand data-to-data 

covariance matrix of kriging. The covariance function in the left-hand data-to-data 

covariance matrix is replaced by the redundancy measure r (u / 5 u. ) . This measure 

ensures that all samples within the same string (N) have exactly the same average 

redundancy. In particular, the redundancy correction (3.4) results in increasing the 

redundancy of outlying samples, and decreasing that of central samples. 

One of the most substantial drawbacks of the finite domain kriging estimator is 

that it, on the contrary to all other kriging estimators, does not possess the exactitude 
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property by which all data values are honored at their exact locations. Although kriging 

estimates are not usually calculated at existing data locations (except for cross validation 

as a measure of goodness of kriging results), the lack of the exactitude property can 

create strong discontinuities in the estimates next to data locations. 

The estimation variance of the finite domain kriging estimator is: 

n(u) 

°FDK = °2 ~ Z vt (v)Cov(Z(v), Z(u,.)) - fiFDK (u) > 0. 

1=1 

Due to the lack of the exactitude property the estimation variance at the data locations 

may not be zero. 

In the case of finite domain estimation based on L strings of data, finite domain 

kriging estimates are first found for the estimation location separately based on 

n,, I = 1,..., L, data from each string 

Z * U ( u ) = ; f v , ' ( u ) Z ( u ; ) , (3.6) 

where nt locations uj are used from string / to provide an estimate at location u and 

vT =(Vj (u),...,v„(u)(u))r denotes the vector of the finite domain kriging weighs 

calculated for string /. 

Using the finite domain kriging estimates calculated for the location of interest u, 

the final finite domain kriging estimate for this location is obtained as 

Z**FD*=Il<»l<rtZ*lFDK (3-7) 
1=1 

based on the ordinary kriging system of equations 

2 > t ( u ) C ( / - * ) + //(u) = C ( / - u ) , / = 1 , - , I , 

L 

k=l (3.8) 

where the string-to-string covariance function CQ-k) and string-to-unknown 

covariance function C (/ - u) are given, respectively, by 

C(l-k) = £ZC o v(Z( u ' ) 'Z( u ; ) ) (3-9) 
nlnk ,-=1 j=l 
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and C ( / - u ) = — YC(Z(u|),Z(u)). (3.10) 

«/ w 

Note that due to the fact that each of the finite domain kriging estimates of the unknown 

resource value at location u is not exact, the final finite domain kriging estimate is also 

not exact. 

In conclusion, the finite domain kriging proposed by Deutsch (1994) never gained 

popularity due to complexity, lack of optimality and absence of exactitude property. 

3.3. Distance Constrained Kriging 

In order to correct the string effect the weights are constrained to have a certain 

reasonable influence structure. Specifically, the weights assigned to the string of data are 

ordered with respect to distance from the unsampled location: the closest data in the 

string is constrained to receive the largest weight; the second closest data is constrained 

to receive the second largest weight and so on. The data in the string located furthest 

from the estimation location is assigned the smallest weight. 

3.3.1. Methodology 

Let us consider n adjacent data at locations ut,i = \,...,n,aligned in a string. Consider 

the problem of estimating the value of a variable of interest Z at an unsampled location 

u0 using the distance constrained kriging approach. 

The distance constrained simple kriging (DCSK) estimator provides a model of 

the unsampled value Z(u0) as the following linear combination of the data in a string 

Z(u, ),i = \,...,n, and the stationary data mean m 

n 
Z *DCSK K ) = X - W , > o ) Z K ) + 

i= l 
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where ADCSK>j(u0) = ADCSJO. denotes the DCSK weight of the z'-th sample found by 

minimizing the estimation variance a2
st 

n n n 
m i l l aes> = V1 -^^CSKfO^i^ilZi^ + T.Tj^DCSKADCSKjCoviZiu^ZiUj)) (3.12) 

t-DCSK '=1 '=1 7=1 

subject to 

1-DCSK,,->ADCSKJ> tfdt<dj, for each i,j = l,...,n, (3.13) 

where a2 is the stationary variance; Cov(Z(u;),Z(uy))and Cov(Z(u,),Z(u0)) are the 

data-to-data covariance and the data-to-estimation point covariance, respectively; and dt 

denotes the distance from the estimation location to the z'-th data point in the string, 

i,j=l,...,n. 

Distance constrained ordinary kriging (DCOK) estimates the value at the location 

of interest u0 as 

n 
Z *DCOK K ) = I V i ( U o ) Z ( U « ) > (3-14) 

( = 1 

where ^DCOK i(uo) =
 ^DCOK t' denotes the DCOK weight of the z'-th sample found by 

minimizing the estimation variance cr2
st 

n n n 
mill all = a2 ~ 2 S ^DCOKjCoviZ^ ), Z(U0 )) + E Z ^DCOKAoCOKjCoviZiu,), Z(U; )) (3.1 5) 

^DCOK !=1 '=1 7=1 

subject to 

^DCOKJ > AJXOKJ > i f d, < dj' f o r e a c h i,j = \---,n, (3.16) 

and 

5>«m,,=l- (3-17) 
i=i 

3.3.2. Implementation 

The distance constrained simple kriging and distance constrained ordinary kriging 

formulations given in Equations (3.11)-(3.13) and (3.14)-(3.17), respectively, can be 

solved by using a non-linear constrained optimization. However, they can also be 
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reformulated in such way that a simple nonlinear unconstrained optimization can be 

applied for solving them. 

Let us consider distance constrained simple kriging first. The minimization 

problem stated in Equations (3.12)-(3.13) is equivalent to the following 

n W , = a2 - 2 j 2 D O T , ^ ) C 0 v ( X , , X ( u ) ) + XE^O T , / (^)^O T ,y(^)Cov(X, . ,X>) 
i t=\ 1=1 7=1 

(3.18) 

where E, is a new parameter vector of size n by 1 with respect to which minimization is 

performed; the DCSK weights XDCSKi(£), i = l,...,n, are as follows 

XDCSK t (£) = [n - kl,+1 ] - th largest element in vector %, (3.19) 

where ki denotes the rank of the distance from the location where we are estimating to 

the /-th data in the string; dt, is a vector of all distancesd = [dl d2 ...dn] sorted in 

ascending order. 

Similarly, we can rewrite the minimization problem stated in Equations (3.15)-

(3.17) for the distance constrained ordinary kriging as follows 

mmal = a2 -l^X^^^CoviX^X^^ + f^^coKM^ocoKA^oviX^Xj) (3.20) 
f 1=1 1=1 j=i 

where g is a new parameter vector of size n by 1 with respect to which minimization is 

performed; the DCOK weights XDCOK,.(^), i = l,...,n, are given by 

[n-k,+l]-ih largest element in vector £ 
^DCOKJ (?) = 7~m 7-—I • (3 -2!) 

sum ot all element m c, 

3.3.2.1. Program 

For solving the distance constrained simple kriging minimization problem (3.18)-(3.19) 

and the distance constrained ordinary kriging minimization problem (3.20)-(3.21), the 

optimization subroutine MINF1 from the Scientific Subroutine Library II (SSL II) can be 

used. This subroutine is designed to perform minimization of a function with several 

variables using the revised quasi-Newton method based on function values only. For 
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convenience this subroutine is incorporated into GSLIB program kt3d (Deutsch and 

Journel, 1998). 

It is worth noting, that minimization problems (318) and (3.19) results in several 

local optimums for £, (n\ to be specific). All these omptimums are permutations of the 

same vector. Therefore, all these solutions correspond to the same unique vector 

^DCOK(£) obtained by transformation (3.19) (for simple kriging) or (3.20) for ordinary 

kriging. 

Also note that due to minimization performed in distance constrained kriging 

program for each location of the study domain, the time required to complete distance 

contrained kriging estimation increases substantially campared to tradional kriging. As a 

starting point in optimization for distance constrained kriging weights, traditional 

(ordinary or simple) kriging weights can be taken. 

3.3.3. Small Examples 

Several small studies compare the kriging weights obtained using the traditional simple 

and ordinary kriging approaches with distance constrained kriging. The weights were 

calculated for four estimation locations, (1, 7), (1.8, 7), (2.8, 7) and (3.8,7), based on the 

string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0). An isotropic 

spherical variogram with a sill of one and range of 20 is considered. This 1-D example 

was chosen small enough to easily visualize the results yet large enough to show realistic 

variations in the results. The conclusions drawn from this example are considered 

reasonably general. 

The weights are shown in Figure 3.6 for simple kriging and distance constrained 

simple kriging. Figure 3.7 shows ordinary kriging and distance constrained ordinary 

kriging. Note how the distance constrained kriging approaches reduce the artificially 

high weights given to the end samples of the string. 
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Figure 3.6: Profiles of the distance constrained simple kriging (solid line) and simple 

kriging (dashed line) weights. Results shown for estimation locations: a) (1, 7); b) (1.8, 

7); c) (2.8, 7); and d) (3.8, 7) are obtained using a spherical variogram model with a range 

of 20 based on a string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), 

respectively. The closest data in a string is denoted by a dark circle. 

45 



OK vs. DCOK: Estimation Location (1 , 7) OK vs. DCOK: Estimation Location (1.8,7) 

f 
0.2 

— DCOK weights 
- • - OK weights 
# closest data in a string 

£ 0.3 

I 
0.2 

— DCOK weights 
- • - OK weights 
• closest data in a string 

3 4 5 
Number of data in a string 

a) 

OK vs. DCOK: Estimation Location (2.8,7) 

H 0.3 

I 
0.2 

\ 
\ \ 
\ \ 

1 

I \ 
t 
i 

* 

— DCOK weights 
- • - OK weights 
• closest data in a string 

r * 

/ 
i 

i 
t 

1 1 a 1————i 1 1 
3 4 5 

Number of data in a string 

3 4 5 6 
Number of data in a string 

b) 
OK vs. DCOK: Estimation Location (3.8, 7) 

1 ' 
• 

* 
\ \ \ \ 

\ \ \ 
* 
\ \ \ \ 

' 

j o 

— DCOK weights 
- • • OK weights 
• closest data in a string 

-

• ' / / 

* / 
/ 

/ / 

-i i i 
2 3 4 5 

Number of data in a string 

c) d) 

Figure 3.7: Profiles of the distance constrained ordinary kriging (solid line) and ordinary 

kriging (dashed line) weights. Results shown for estimation locations: a) (1, 7); b) (1.8, 
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3.3.4. Properties 

As with the traditional simple and ordinary kriging techniques, the distance constrained 

kriging approaches have the following characteristics: 

1 Distance constrained kriging estimators are unbiased. 

2 Distance constrained kriging estimators are exact interpolators, that is, they 

reproduce conditioning data at their locations. 

3 Distance constrained kriging provides estimates for the unsampled value of 

the variable of interest according to its spatial continuity described by the 

covariance function. Distance constrained kriging takes into account the 

redundancy of data in the string and closeness of the data in the string to an 

estimation location. 

The distance constrained kriging estimate are obtained as a linear combination of 

data in string that minimizes estimation variance; however, in the distance constrained 

kriging approach the estimation variance is minimized according to the distance 

constraints, thus, the estimate produced is characterized by the same or higher estimation 

variance than respective kriging estimates, that is, 

^ ^ , (3-22) 

where <yfst and afsf
K are the estimation variance in the traditional kriging and in the 

distance constrained kriging. 

Note also that distance constrained kriging approaches are also characterized by 

the following property. The weights in the distance constrained kriging are assigned to 

the data in the string sorted according to the distance from these data to the estimation 

location. 

Thus, the distance from the data to the estimation location has an affect on the 

resulting estimate; however, unlike the inverse distance technique, this affect is 

additionally corrected by the spatial continuity of the variable under study. 
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3.3.5. Distance Constrained Kriging: Generalization to the Case of 

Multiple Strings 

Let us consider K strings of nk data each at locations uk ,k = \,...,K,i = \,...,nk. Then 

the value of the variable of interest Z at an unsampled location u0 in the distance 

constrained simple kriging approach is given by the following linear combination of the 

data in strings Z(uf ) and the stationary domain mean m 

K nt 

i=l (=1 

Z *DCSK (u0) = Z I > W u o ) Z ( u f ) + 
K n 

k=\ i=l 

1 - Z J X ^ D C ^ , / ( U O ) m, (3.23) 

where Ak
DCSKi(u0)

 = ^DCSKJ denotes the DCSK weight of the r'-th sample in the k-th string, 

i = \,...,nk, k-\,...,K, found by minimizing the estimation variance cr2
e 

.2 
i , est 

min^=^2-2£Z^K)Cov(z(uf),z(u^ 
IDCSK k=l i=l 4=1 1=1 7=1 j'=l 

(3.24) 

subject to 

^DcsK,i > KCSKJ' i f d\ < d'j> f o r e a c h k,l = l,...,K,i = \,...,nk,j = \,...,n! (3.25) 

where a2 is the stationary variance; Cov(Z(uf),Z(u*)) and Cov(Z(uf),Z(u0)) stands 

for the data-to-data covariance and the data-to-estimation point covariance, respectively, 

and d\ denotes the distance from the estimation location to the z'-th data point in the £-th 

string, k,l = \,...,K,i = \,...,nk,j = \,...,n,. 

The distance constrained ordinary kriging (DCOK) estimates the value at the 

Z*DCOK (u0) = £ X 4 c o ^ ( ( U o ) ^ ( u f ) , (3.26) 

location of interest u0 as 

K nk 

YL 
*=i i=i 

where Ak
DCOK ,-(u0) = ^DCOK t denotes the DCOK weight of the z'-th sample in the k-th 

string, i = \,...,nk, k = l,...,K, found by minimizing the estimation variance <j2
est 

min < = °2 - 2 ^ X^CO£/u0)cOv(z(uf ),z(u0))+|;|;x|;4COT/u jAU^(«o)c0v(z(uf ),z(u';)) 
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(3.27) 

subject to 

^DcoK,i>^lDcoK,r if d?<dj, for each k,I = l,...,K, i = \,...,nk, j = \,...,n, (3.28) 

K nk 

and YZ*k
DC0Kj=\, (3.29) 

Note that the four properties for the distance constrained kriging estimators 

outlined for the single string case also hold for the case of multiple strings. 

3.4. Finite Domain Kriging 

While the distance constrained kriging approach, contrary to the many ad-hoc solutions 

(Section 3.2), fixes the string effect without changing the data configuration or the 

covariance function, it introduces many constraints that may lead to suboptimal 

estimation. Other theoretically sound alternatives for correcting the string effect are 

warranted. An alternative, called finite domain kriging, is developed below. 

The traditional (simple or ordinary) kriging technique is performed as many times 

as there are conditioning data, that is, n times. Each time kriging is based on the k closest 

data from the string. Each kriging is optimal, yet with different smoothing and a different 

treatment of data at the end of strings. The kriging weights to be used for finite domain 

estimation are the average of the weights from the n successive kriging runs. These 

weights do not give undue influence to data values at the end of strings. 

3.4.1. Methodology 

Let us consider n adjacent data i = \,...,n, at locations ui,i = \,...,n, aligned in a string. 

Consider now the problem of estimating the value of a variable of interest Z at an 

unsampled location u0 using the finite domain kriging approach. 
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The finite domain simple kriging (FDSK) provides a model of the unsampled 

value Z(u0) at location u0 as the following linear combination of the data in a string 

Z(u( ),i = l,...,n, and the stationary domain mean m 

1 " 
^FDSK ( U 0 ) = ~~ / , £4r,(u0)zf+ i -£4^K) 

(=1 V <=i 
m (3.30) 

where Zk = (Zk ,...,Zk), k = \,...,n, denotes the vector of A: closest data in a string to 

the estimation location u 0 ; "kk£ = (Ak
SKl,...,A

k
SKk)

T, k = \,...,n, denotes the vector of 

the simple kriging weights calculated from the normal system of equations for the 

estimation location u0 based on the k closest data in the string 

fjA
k
SK^Cov(Zk,Zk) = Cov(Z(u0),Z

k), j = l,-,k, (3.31) 

where Cov(Zk,Zk) and Cov(Z(uQ),Zk) denote data-to-data covariance and data-to-

estimation point covariance, respectively, /, j = 1, • • •, k, k = 1,..., n. 

Note that the finite domain kriging estimator defined in Equation (3.30) can be 

rewritten in the following simpler form 

" ( " \ 
ZFDSK*(^) = 2-JXFDSKM^Zi K ) + U - Z X D S ^ O O ) K (3-32) 

where lJFDSK(u0) = (XPDSKtX(u0),...,AFDSKn(u0))
T = (AFDSK1,...,XFDSKn)

T denotes the 

vector of the finite domain simple kriging weights calculated as 

1 " ~ 
^FDSK.i ~ ~ / J ^SK.i' (3.33) 

where 

\Ak
SK m, if / - th data is within k closest data in the string to the estimation location u0; 

^SKA ~ index m denotes the order of data Z;(u0) in the vector Zk; 
0, otherwise. 

The estimation variance at the estimation location u0 for the finite domain simple 

kriging can be easily calculated as follows 
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VIDSK(UO) = v2 -2EXFDSK,iCov(Z(ui),Z(u0)) + ££XFDSKi?iFDSKJCov{Z{n i),Z(u,)) 

(3.34) 

The finite domain ordinary kriging (FDOK) provides a model of the unsampled 

value Z(u0) at the estimation location u0 as the following linear combination of the data 

in a string Z(u, ),i = l,...,n, 

ZFDOK *K) = - E E ^ > o ) Z * (3'35) 
w i = i ;=i 

where Z* = (Z*,...,Z*), k = l,...,n, denotes the vector of £ closest data in a string to 

the estimation location u0 ; X,^ = O^OJCi'• • • >^o*<t)r> & = 1,...,«, denotes the vector of 

the ordinary kriging weights calculated from the normal system of equations for the 

estimation location u0 based on the k closest data in the string 

fjA
k
OKJCov(Z!;.,Z^ + ju = Cov(Z(u0),Z*), j =\,-,k, (3.36) 

/=i 

and 5 X ^ = 1 , (337> 
«=i 

where // is a Lagrange multiplier, and, as before, Cov(Zkj ,Zf) and Cov(Z(u0),Zf) 

denote data-to-data covariance and data-to-estimation point covariance, respectively, 

/ ) / — 1 3 * * ' 3 /C? K = 1 9 . . . ; 77. 

In terms of the finite domain ordinary kriging weights 

A1 FDOK ( U 0 ) ~ \^FDOK,l V U 0 / ' • • • ' ^FDOK.n ( U 0 ) ) ~ \^FDOK,l >•••> ^FDOK,n ) ' 

1 " ~ 
KDOK,I = — Z_j ^OK,i > (3.38) 

«*=1 

where 

0 * _ 

•"-car,* — 

^OA: m' if» - th data is within k closest data in the string to the estimation location u 0 ; 

index m denotes the order of data Z.(u0) in the vector Z ; 
0, otherwise, 

the finite domain ordinary kriging estimator (3.35) can be rewritten as 
n 

ZFDOK * (U0 ) = ZZ AFDOK,i (U0 )Zi O o )• (3 -39) 
;=1 
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The estimation variance at the estimation location u0for the finite domain 

ordinary kriging estimator is given by: 

n n n 

° "™( u o) = °"2 - 2 Z A ™ ^ C o v ( Z ( u , ) , Z ( u 0 ) ) + ]T2^«jif,^FDo^Cov(Z(u,),Z(uy)) 
1=1 1=1 j=\ 

(3.40) 

3.4.2. Small Examples 

To compare the kriging weights obtained using the traditional kriging (simple and 

ordinary) with the finite domain kriging approaches several small studies were 

performed. The weights were calculated for four estimation locations, (1, 7), (1.8, 7), 

(2.8, 7) and (3.8,7), based on the string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), 

(6,0) and (7,0), respectively. An isotropic spherical variogram with a sill of one and 

range of 20 is considered for analysis. The weights are shown in Figure 3.8 for simple 

kriging and finite domain simple kriging. Figure 3.9 shows ordinary kriging and finite 

domain ordinary kriging. Note from Figures 3.8-3.9 how finite domain kriging removes 

the string effect; the artificially higher weights given to the end samples of the string are 

significantly reduced. 

Furthermore, note the smoothness of the finite domain kriging weights compared 

to distance constrained kriging weights (Figures 3.6-3.7). The distance constrained 

correction presented in Section 3.3 resulted in very non-smooth weights. The smoothness 

in the structure of the finite domain kriging weights is a direct result of averaging or 

taking the expected value of the optimal kriging estimators for different search 

neighborhoods, no (distance) constrains that may result in sub-optimal solutions are 

involved. 

Figure 3.10 shows the results with simple kriging weights with respect to the 

number of closest data in a string used for estimation. Figure 3.10 also shows the finite 

domain simple kriging weights resulting from averaging of all simple kriging results for 

the weights. 
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Figure 3.8: Profiles of the finite domain simple kriging (solid line) and simple kriging 

(dashed line) weights. Results shown for estimation locations: a) (1, 7); b) (1.8, 7); c) 

(2.8, 7); and d) (3.8, 7) are obtained using a spherical variogram model with a range of 20 

based on a string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), 

respectively. The closest data in a string is denoted by a dark circle. 
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Figure 3.9: Profiles of the finite domain ordinary kriging (solid line) and ordinary kriging 

(dashed line) weights. Results shown for estimation locations: a) (1, 7); b) (1.8, 7); c) 

(2.8, 7); and d) (3.8, 7) are obtained using a spherical variogram model with a range of 20 

based on a string of 7 data located at (1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), 

respectively. The closest data in a string is denoted by a dark circle. 
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Simple Kriging (1 datum) vs Finite Domain Simple Kriging 
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Figure 3.10: Change in the structure of the simple kriging weights (dashed lines) with 

respect to the number of closest data in a string used for estimation of location (3.8,7). 

Results are shown for: a) 1 data; b) 2 data; c) 4 data; and d) 7 data are obtained using 

spherical variogram model with the range of correlation 20. Finite domain simple kriging 

weights calculated based on all 7 data are shown in solid line. String of 7 data is located 

at (1,0), (2,0), (3,0), (4,0), (5,0), (6,0) and (7,0), respectively. The closest data in a string 

is denoted by a dark circle. 
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3.4.3. Properties 

Finite domain (simple and ordinary) kriging estimators are linear combinations of several 

traditional kriging estimators, each of which is unbiased and exact; therefore, we 

conclude that 

1 Finite domain kriging estimators are unbiased. 

2 Finite domain kriging estimators are exact. 

3 Finite domain kriging estimators provide models for the unsampled value 

of the variable of interest according to its spatial continuity described by 

the covariance function. Finite domain kriging takes into account the 

redundancy of data in the string and closeness of the data in the string to 

an estimation location. 

Moreover, finite domain kriging estimators possess an additional interesting 

property. Consider estimation at a particular location based on a very long string of data 

('infinite'), we can observe that at some point it becomes irrelevant whether you use the 

whole string of data or just a portion of a particular size. That is, finite domain kriging 

weights assigned to the 'infinite' string of data will be virtually the same as assigned to a 

long substring and zero weights for the rest of the data in the string. Mathematically we 

can write this property as follows: 

There exists number I of closest data in the 'infinite' string to the estimation 

location such that the following inequality holds 

~k+l 
2 

"FDK,i 
i=k i<kovi>k+l 
2 J (^FDKJ ~ ^FDK,, ) + ZJAF <e, (3.41) 

where "kT
FDK = {hFDK l, AFDK 2,..., XFDK n ) T is the n by 1 vector of the finite domain kriging 

weights assigned to the 'infinite' string, i<T
FDK = {^FDK A»^FDK k+\•>• • • •>^FDKMI^ *S ine ^ ^ 

1 vector of finite domain kriging weights assigned to the I closest data in the string to the 

estimation location; and e is a very small number, say s = 0.0001. 

Further we will refer to property Equation (3.41) of finite domain kriging as the 

convergence property. To illustrate the convergence property of finite domain kriging, 

the following small case study was conducted. A string of 3000 data located at (1,0), 

56 



(2,0), ..., (3000,0), respectively, was considered for estimation of location (100,7) using 

finite domain kriging techniques based on a spherical variogram model with a range of 

correlation 500. Finite domain kriging was performed using 25, 100, 250, 500, 1000, 

1500 and 3000 closest samples in the string. Figure 3.11 shows the resulting change in 

the structure of the finite domain simple kriging weights with respect to the number of 

closest data. Note that there is virtually no difference in finite domain simple kriging 

weights when performing estimation based on 1500 (half string) or more data or full 

'infinite' string. Specifically, the difference in the left hand side of inequality (3.41) for 

finite domain simple kriging weights calculated based on the full string of 3000 data and 

1500 data is less than 5.1169e-006. Moreover, the result of finite domain simple kriging 

estimation based on 500 or more data and the whole string of 3000 data will be also very 

similar, see Figure 3.11. 

The difference in the left hand side of inequality (3.41) for all cases of finite 

domain simple kriging estimation are given in Table 3.1. 

Table 3.1: The value in the left hand side of inequality (3.41) as a function of the number 

of data used in the finite domain simple kriging estimation. 

25 data 

0.0061 

100 data 

0.0025 

250 data 

0.0023 

500 data 

0.0008 

1000 data 

0.0007 

1500 data 

0.0000 

Figure 3.12 shows the change in the structure of the finite domain ordinary kriging 

weights with respect to the number of closest data. There is virtually no difference in 

finite domain ordinary kriging weights when performing estimation based on 1500 (half 

string) or the full 'infinite' string. Specifically, the difference in the left hand side of 

inequality (3.41) for finite domain ordinary kriging weights calculated based on the full 

string of 3000 data and 1500 data is less than 5.2874e-006. 
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Figure 3.11: Change in the structure of the finite domain simple kriging weights with 

respect to the number of closest data in a string used for estimation of location (100,7). 

Results are obtained using spherical variogram model with the range of correlation 500. 

The string of 3000 data is located at (1,0), (2,0), ..., (3000,0), respectively. 
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Figure 3.12: Change in the structure of the finite domain ordinary kriging weights with 

respect to the number of closest data in a string used for estimation of location (100,7). 

Results are obtained using spherical variogram model with the range of correlation 500. 

The string of 3000 data is located at (1,0), (2,0), ..., (3000,0), respectively. 
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Again note that the result of the finite domain ordinary kriging estimation based on 500 

or more data and the whole string of 3000 data will be very similar, see Figure 3.12. The 

difference in the left hand side of inequality (3.41) for all cases of finite domain ordinary 

kriging estimation are given in the Table 3.2. 

Table 3.2: The value in the left hand side of inequality (3.41) as a function of the number 

of data used in the finite domain ordinary kriging estimation. 

25 data 

0.0062 

100 data 

0.0025 

250 data 

0.0023 

500 data 

0.0008 

1000 data 

0.0007 

1500 data 

0.0000 

Note that the results of finite domain simple kriging and finite domain ordinary 

kriging shown in Figures 3.11-3.12 are very similar; this is because simple kriging and 

ordinary kriging have very similar weights due to the closeness of the estimation location 

to the string in terms of the variogram range of continuity. 

3.4.4. Finite Domain Kriging: Generalization to the Case of Multiple 

Strings 

Let us consider the situation of multiple strings containing possibly different numbers of 

data. Recall that the finite domain kriging estimator in the single string case is an 

average of several traditional kriging (simple or ordinary) estimators obtained using 

different neighborhood search strategies. When there are multiple strings they can be 

considered together at the same time or separately. This leads to two types of finite 

domain kriging. 

Finite domain kriging I performs the traditional kriging as many times as there are 

conditioning data, that is, n. Each time k, k = \,...,n, kriging is performed based on the k 

closest data without considering if they are from different strings or the same string. 

Thus, basically, the procedure of the finite domain kriging I is the same as described for 

the single string case. 

Finite domain kriging II is slightly more complicated. Assume first that each 

string /, / = 1,..., L, contains at least n data. Then, in order to obtain finite domain 
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kriging II estimate, the traditional kriging is performed n times. Each time k, k = l,...,n, 

kriging is performed based on a set of k closest data from each string. If the strings 

contain a different number of data, say string j contains only m (m<n) data, then the 

procedure is almost the same. Except that in order to obtain final finite domain kriging 

II, each time k, k = \,...,m, kriging is performed based on a set of k closest data from 

each string; while each time k, k = m + l,...,n, kriging is performed based on a set of k 

closest data from all strings expect for string j (from string j only m data are selected). 

This procedure could be easily extended to the case with a different number of data in 

each string. 

3.5. Comparison of Distance Constrained Kriging and Finite 

Domain Kriging 

To assess the performance of the distance constrained kriging and finite domain kriging 

in correcting the string effect, a case study of the real data from a petroleum reservoir is 

conducted. In total, there are 180 vertical wells with information on bitumen in the study 

area of 1800 by 2500 by 130 meters. The locations of the wells in the XT plane are shown 

in Figure 3.13. Figure 3.13 also shows the histogram of the data. 

A subset of 90 wells is chosen from 180 wells to evaluate the difference in the 

estimation results produced by ordinary kriging, distance constrained kriging and finite 

domain ordinary kriging, see Figure 3.13. These wells will be used in estimation of the 

study domain as well as in checking the kriging estimates at the validation well (the other 

90 wells) locations. In accordance with standard practice all analysis is conducted in 

normal score units. 

Figure 3.14 shows the experimental variogram and a theoretical fit in the 

horizontal directions of major and minor continuity and the vertical direction. Variograms 

are calculated based on normal score transformed data from the 90 estimation wells. 

Figure 3.15 shows the difference in the estimates obtained in DCOK and OK and 

the difference in the estimates obtained in FDOK and OK for the slice at 265 m with 
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respect to the vertical direction of the 3D model for the normal score transformed 

bitumen. Note that the neigbourhood search for each kriging procedure was specified 

based on the variogram model of the data (that is, maximum seach radii were set to the 

largest variogram ranges in the respective directions); min and max data for kriging was 

set to 10 and 20, respectively. When comparing the maps shown in Figure 3.15 we can 

clearly note that the locations of areas of low and high values are the same. These areas 

indicate the areas affected by the string effect of kriging. Moreover, note that Finite 

Domain Ordinary Kriging seems to result in a stronger correction of the string effect, see 

Figure 3.15. 

The correction of the string effect provided by the two finite domain approaches 

presented in this paper is a local correction. The global mean squared error (MSE) 

obtained in Ordinary Kriging, Finite Domain Ordinary Kriging and Distance Constrained 

Kriging are very close. DCOK and FDOK perform better than OK in terms of MSE by 

4.56% and 1.17%, respectively. However, when we compare local changes where the 

estimates are significantly different, the situation is dramatically different. 

Different estimates are identified when the absolute difference between absolute 

residuals of ordinary kriging and FDOK or DCOK exceeds some cut-off. The value of 

this absolute difference will be denoted by A. Table 3.3 shows results of DCOK vs. OK 

and FDOK vs. OK with respect to the percentage of estimates affected by the strong 

string effect; percentage improvement in MSE for A > 0.1, and A > 0.2. 

Table 3.3: Performance of OK vs. FDOK and DCOK in jackknife. 

Methods 

DCOK vs. OK 

FDOK vs. OK 

A>0.1 

%of 

Estimates 

33.48% 

20.02% 

% Improvement in 

the MSE 

9.99% 

3.31% 

A>0.2 

%of 

Estimates 

13.97% 

5.03% 

% Improvement in 

the MSE 

16.13% 

6.08% 
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Figure 3.13: Locations of 180 wells with data (a) together with bitumen distribution (b). 

Estimation wells are shown in dark circles. 
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major continuity for the normal score transformed bitumen from 90 estimation wells. 
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a) b) 

Figure 3.15: Maps of the differences between OK and DCOK (a) and OK and FDOK (b) 

for the slice at 265 m of the 3D model for the normal score transformed bitumen. 

Note that with an increase in A, the outperformance of the two finite domain 

kriging approaches over ordinary kriging increases, while the percentage of the data 

affected by the strong string effect decreases. Note also that FDOK results in stronger 

correction; however, DCOK performs better in jackknife validation. The situation could 

be different in different areas or with different data. 

3.6. Discussion 

Two new approaches for estimation in a finite domain using strings of data are presented: 

distance constrained kriging and finite domain kriging. Both methods result in linear 

unbiased estimators. Distance constrained kriging is obtained by minimizing the 

estimation variance subject to distance constraints. Finite domain kriging is obtained as 

an average (or expected) value of the optimal kriging estimators for different search 

neighborhoods. Both new methods are applicable when the data at the end of strings of 

data are somehow anomalous, for example, thin deposits with vertical trends. 
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Finite domain kriging and distance constrained kriging were evaluated with a case 

study. Both approaches were shown to provide improved estimates. In this particular 

case study, finite domain kriging was shown to result in stronger correction; however, 

distance constrained kriging performed better in jackknife validation. The situation could 

be different in different areas or with different data sets. 
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CHAPTER 4 

Uncertainty as the Overlap of 

Distributions 

This chapter investigates a new approach for combining local distributions of uncertainty 

obtained from different data sources or interpolation techniques. The proposed approach 

leads to narrower but fair local uncertainty. 

Section 4.1 reviews results of different comparative studies aimed at finding the 

best technique and explains the need for a combined distribution. Section 4.2 presents a 

new approach, referred to as the overlap uncertainty, for combining alternate conditional 

distributions of uncertainty. Application of the overlap uncertainty approach is shown in 

Section 4.3 by combining inverse distance interpolation results with simple kriging. 

Further analysis of the overlap uncertainty approach is conducted in Section 4.4 based on 

a small case study. A brief discussion about the results and the method is presented in 

Section 4.5. 

4.1. Introduction 

An important task in modern geostatistics is the assessment and quantification of resource 

uncertainty. This uncertainty is valuable support information for many management 

decisions. Uncertainty at specific locations and uncertainty in the global resource are of 

interest. There are many different methods/interpolation techniques to build models of 
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uncertainty including kriging, cokriging, inverse distance, etc. Each method leads to 

different results. 

The variety of available interpolation techniques has led to a question about which 

is the best or the most appropriate method (Voltz and Webster, 1990; Laslett, 1994; 

Hosseini et al., 1994; Wollenhaupt et al., 1994; Gotway et al., 1996). The search for the 

optimum interpolation technique has resulted in a large number of comparative studies 

based on realistic or geologically sound visual appearance; resampling with cross 

validation or the jackknife (Isaaks and Srivastava, 1989); robustness; or a measure of 

response variables derived from the interpolated property. Robustness refers to a solution 

that is stable with respect to variations in the input parameters (Falivene et. al., 2007). 

Most of these studies have resulted in diverse conclusions. In some studies, geostatistical 

kriging-based methods performed best (Creutin and Obled, 1982; Tabios and Salas, 1985; 

Rouhani, 1986; Grimm and Lynch, 1991; Laslett and McBratney, 1990; Weber and 

Englund, 1994; Laslett, 1994; Phillips et al , 1997; Borga and Vizzaccaro, 1997; 

Zimmerman et al., 1999; Goovaerts, 2000; Teegavarapu and Chandramouli, 2005), while 

in others, inverse distance weighting or spline methods were as good or better (Weber 

and Englund, 1992; Gallichand and Marcotte, 1993; Boman et al., 1995; Brus et al, 1996; 

Declercq, 1996; Borga and Vizzaccaro, 1997; Dirks et al., 1998; Moyeed and Papritz, 

2002). Moreover, even among kriging estimators it is impossible to select a unique best 

or optimal estimator (Zimmerman, et. al., 1999; Moyeed and Papritz, 2002). 

Martinez-Cob (1996), Caruso and Quarta (1998) and Nalder and Wein (1998) 

established that the differences in the performance among various spatial interpolation 

methods are largely influenced by features of the spatial variable (that is, skewness and 

kurtosis of the data; the coefficient of variation; and whether the data contains extreme 

observations (Schloedar et. al., 2001), spatial configuration of the data and assumptions 

required by the method, rather than the method of spatial interpolation itself. The above-

mentioned effects can not be removed from the results; and, thus, different characteristics 

of the spatial variable may lead to different performance and reliability measures 

(Mardikis et. al., 2005). 

Despite of all the comparative studies and the search for the optimal interpolation 

strategy, little or no attention has been put towards combining the good features of the 
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approaches. Each technique is good in different senses, that is, simplicity, robustness, 

reliability, flexibility, geological realism, statistical accuracy, etc.; while none of these 

techniques, can be regarded as the best one in general (Rana and Katerji, 2000). 

Therefore, a method for combining spatial predictions and associated models is of 

interest. One method for combining local uncertainties is developed below. This method 

is referred to as an overlap uncertainty estimator. The new estimator is obtained as an 

overlap of alternate conditional distributions. 

4.2. Uncertainty as the Overlap of Distributions 

Let us consider n data on a spatial random variable Z at locations ui,i = l,...,n, in the 

domain of interest^. Consider the problem of estimating the value of the variable Z at an 

unsampled location u0 and quantification of the local uncertainty at this location. 

Consider two different techniques available to obtain local uncertainty at the location u 0 . 

Figure 4.1 shows a schematic representation of the results for the local uncertainty at 

location u 0 . Note that the results are different for each estimation technique. To reconcile 

the local uncertainty distributions, we propose to model the local uncertainty of Z at an 

unsampled location u0 as the minimum or overlap of the local uncertainties obtained by 

two different estimation techniques (scaled to 1). The uncertainty model obtained as an 

overlap of the two modeled local uncertainties is often narrow and appears as a 

reasonable result. An assumption is that the probability is the highest that the true value at 

the unsampled location is in the interval common to both estimators. This estimator will 

be referred to as an overlap estimator. Figure 4.1 shows schematic representation of the 

overlap of the two local uncertainty models at location u 0 . 
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Figure 4.1: Schematic representation of the example results for the two local uncertainty 

at location u 0 . Solid and dashed lines represent local uncertainty obtained by two 

different estimation approaches; dark area is an overlap. 

This approach can easily be extended to the case of more than two estimators. In 

particular, simple kriging, ordinary kriging, inverse distance, ckriging, Bayesian udating, 

etc., all can be considered. The overlap estimator can take on any arbitrary shape, see 

schematic examples in Figure 4.2. 

4.3. Example with Inverse Distance and Simple Kriging 

To illustrate the idea of the overlap uncertainty estimator, we limit ourselves to a standard 

normal spatial random variable and two techniques for its estimation, that is, inverse 

distance and simple kriging. A short description of the simple kriging can be found in 

Chapter 2 of this thesis, a short description of the inverse distance interpolation technique 

follows. 
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Figure 4.2: Schematic representation of the two example results for the four local 

uncertainty at location u 0 . Solid dashed, doted and dash-dot lines represent local 

uncertainty obtained by four different estimation approaches; dark area is an overlap. 

4.3.1 Inverse Distance Interpolator 

An inverse distance (ID) weighted estimate of the variable of interest Z at an unsampled 

location u0 is a spatially weighted average of the sample values within a search 

neighborhood (Shepard, 1968; Franke, 1982; Diodato and Ceccarelli, 2005). It is 

calculated as 

Z /DK)=ZAD,Z(U /X (4.1) 
i= i 

where P1D i,i = l,...,n, are the ID weights assigned to each sample: 

' l ^ 

Pmj 
\d? J 

i=\ y^ j 

(4.2) 

where di,i = \,...,n, are the Euclidian distances between estimation location and sample 

points, and exponent p is the power or distance exponent value. Note that the sum of the 

inverse distance is one, that is, 

2A-1. 
;=i 

(4.3) 
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The most common value applied for the power p is 2; then estimator in (4.1)-(4.3) is 

called inverse squared distance (ISD) interpolator. However, any value for p can be 

chosen. As p increases, the interpolated value by inverse distance is assigned the value of 

the nearest sample point, that is, inverse distance estimate becomes the same as estimate 

produced by polygonal method. (Diadato and Ceccarelli, 2005). 

The mean and variance of the inverse distance estimator Z /D(u0) at estimation 

location u0 under an assumption of stationarity and multivariate Gaussianity can be 

derived as follows 

E(ZID(u0)) = E\ JT fimjZ(nt) ] = 2 X , £ ( Z ( u r ) ) = n^fim = m; (4.4) 
Vi=l J i=l i=l 

A n n 
Var(ZID(u0)) = Var 2 > / D , Z ( u , ) =YIlfimjfin>jC°v(Z(ul),Z(!LJ)); (4.5) 

.<=! J '•=1 > 

where m is stationary domain mean and Cov(Z(u,-),Z(u .)) = C(u,-,u •), i,j = \,---,n, 

denotes data-to-data covariance. 

4.3.2. Uncertainty Overlap 

Let us consider 10 simulated data in a domain 20 by 20 units shown in Figure 4.3. The 

data were generated using a zero nugget spherical variogram model with range of 

correlation equal to the size of the domain. The data distribution is also shown in Figure 

4.3. Note that this 2-D example was chosen small enough to easily visualize the results 

yet large enough to show realistic variations in the results. The conclusions drawn from 

this example are considered reasonably general. 

Let us now determine the local uncertainty at the two estimation locations 

^4(18,12) and 5(9,10) using inverse distance interpolation and simple kriging, then 

subsequently calculate the overlap uncertainty estimator as the overlap of the two 

alternate conditional distributions. Figure 4.4 shows results obtained for the two 

estimation locations. 
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Figure 4.3: Location map of 10 data (a) and their distribution (b). Points A and B 

represent two estimation locations of interest. 
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Figure 4.4: (Scaled) overlap uncertainty estimator together with inverse distance and 

simple kriging local uncertainty models for estimation location A (a); and B (b). Dash-

dot, dashed and solid lines represent local uncertainty obtained by simple kriging, inverse 

distance and overlap uncertainty approaches. 
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Looking at Figure 4.4, note that the local uncertainty predicted by the inverse distance 

interpolation and simple kriging for estimation location ^4(18,12) are quite different. As a 

result, when we combine both techniques to obtain the overlap uncertainty estimator for 

unsampled location ^4(18,12), we observe that the local uncertainty by this approach is 

narrower than predicted by either of the two estimation approaches. To quantify the 

change in the local uncertainty at the estimation location A(18,12) more precisely, we 

will use the width of the P10 to PgQ interval. For the inverse distance estimator this 

interval is (-0.59, 1.23); for the simple kriging estimator it is (0.31,1.89) and for the 

overlap uncertainty estimator it is (0.11,1.45). The difference is quite significant. 

On the other hand, the local uncertainty predicted by the inverse distance 

interpolation and simple kriging for estimation location 5(9,10) are similar (see Figure 

4.4). As we combine both techniques to obtain the overlap uncertainty for unsampled 

location 5(9,10), we observe that the local uncertainty by this approach is similar to local 

uncertainty predicted by simple kriging. Specifically, for the inverse distance estimator 

(P10,P90) probability interval for the estimation location 5(9,10) is (-0.90,0.75); for 

simple kriging estimator it is (-0.59,0.37) and for the overlap uncertainty estimator it is (-

0.53,0.44). 

4.4. Case Study 

To illustrate the performance of the overlap uncertainty estimator the well known GSLIB 

(Deutsch and Journel, 1998) data set 'cluster.dat' is selected. The data consists of 100 

data that are sampled on a random stratified grid and 40 data that are clustered in high 

valued areas. We discard the clustered data. The 2-D area of interest is 50 by 50 distance 

units. The distribution of data is approximately lognormal with a mean of 2.5 and a 

standard deviation of 5.0. The spatial continuity of the data in the normal space is 

described by an isotropic spherical variogram model with a range of correlation of 12 and 

nugget effect of 0.3. Figure 4.5 shows the location map of the 100 data and their 

distribution. 
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Figure 4.5: Location map of 100 data from file 'cluster.dat' (a) and their distribution (b). 

The aim of our analysis is to establish local conditional distributions for all 100 

data points in cross validation mode and check the results. Specifically, the fairness and 

accuracy of the local uncertainties will be checked as well as the errors in estimation. For 

simplicity, all analysis is conducted in normal space. 

Figure 4.6 shows accuracy plots (Deutsch, 1996) obtained for inverse distance, 

simple kriging and overlap uncertainty estimator predictions in cross validation of 100 

normal score transformed data of Figure 4.5. From Figure 4.6 we can clearly see that 

overlap uncertainty estimator is both accurate and precise, thus it is a fair estimator of 

uncertainty. Both simple kriging and inverse distance are accurate, but less precise 

estimators of uncertainty. 

Figure 4.7 shows the crossplots between Pw and P90 of simple kriging and Pw 

and Pgo, respectively, of overlap uncertainty estimator and crossplots between P10 and 

Pgo of inverse distance and Pw and P90, respectivey, of overlap uncertainty for 100 

normal score transformed data. Figure 4.8 shows the (P10 ,Pgo) local uncertainty intervals 

for the first 10 data. Note that taking uncertainty as the overlap of the local conditional 

distributions from simple kriging and inverse distance (for example) can lead to 

significant reduction of the probability intervals (see Figure 4.7). Nevertheless, the 

uncertainty is not overly constrained; it is still fair. 
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Figure 4.6: Accuracy plots for inverse distance (a), simple kriging (b), and overlap 

uncertainty estimator (c). Results are obtained in crossvalidation of 100 normal score 

transformed primary data from file 'cluster.dat'. 
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Figure 4.7: Crossplots between: P10 (a) and P90 (b) of the simple kriging and overlap 

uncertainty estimator and crossplots between P10 (c) and Pgo (d) of the inverse distance 

and overlap uncertainty estimator for 100 normal score transformed primary data from 

file 'cluster.dat'. 
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Figure 4.8: (P10,P90) probability intervals obtained for the first 10 data in the 

'cluster.dat' data set based on the simple kriging (dash-dot lines), inverse distance 

interpolation (dashed lines) and overlap uncertainty estimator (solid lines). Medians (P50) 

for each of the three considered approaches are shown by dots. 

To assess how much narrower are local conditional distributions predicted by 

overlap uncertainty versus simple kriging and inverse distance, crossplots between the 

variance of the local conditional distributions (smoothing effect) of the simple kriging, 

inverse distance and overlap uncertainty estimators for the 100 data of the file 

'cluster.dat' are prepared. Figure 4.9 shows the results. We observe that the average 

variance of the local conditional distributions obtained by the simple kriging is 0.706, by 

the inverse distance is 0.772 and by the overlap of the local conditional distributions is 

0.663. Thus, we see that the average variance of the local conditional distributions of the 

overlap uncertainty estimator is, on average, significantly smaller than that of simple 

kriging (more than 6% smaller) and that of inverse distance (more than 16% smaller). 

Figure 4.10 shows the true values versus estimates from cross validation for 

inverse distance, simple kriging and overlap uncertainty estimator for 100 normal score 

transformed 'cluster.dat' data. Looking at Figure 4.10 we can see that all three estimators 

are virtually unbiased; the correlation between true values and estimates are the highest 

for the simple kriging approach, and only slightly lower for the overlap uncertainty 

method. 
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Figure 4.9: Crossplots between the variance of the local conditional distributions 

(smoothing effect) of the: inverse distance and simple kriging (top left); inverse distance 

and overlap uncertainty estimator (top right) and simple kriging and overlap uncertainty 

estimator (bottom) obtained for the 100 data of the file 'cluster.dat'. 
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Figure 4.10: Cross validation results for the inverse distance interpolation (a); simple 

kriging (b); and overlap uncertainty estimator (c) obtained for 100 normal score 

transformed primary data from file 'cluster.dat'. 
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4.5. Discussion 

A flexible approach to combine alternate local conditional distributions to create an 

overlap uncertainty estimator was proposed. This approach was illustrated using overlap 

between simple kriging and inverse distance methods in several case studies. It was 

shown that overlap uncertainty estimator can result in significantly narrower intervals for 

the local uncertainty; while it does not overly constrain uncertainty. Uncertainty obtained 

by overlap uncertainty approach will be fair provided the local distributions obtained by 

the approaches for combine are accurate. Otherwise, accuracy of the local distributions 

obtained using overlap uncertainty approach should not be expected. However, narrower 

(on average) local distributions with the approximate accuracy level as the approaches 

used in overlaping should usually be obtained. 

Note also that the overlap uncertainty approach is only aimed at combing alternate 

local conditional distributions of continuous variables with an infinite support. In should 

not be applied to discrete variables or continuous variables with a finite support. 
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CHAPTER 5 

Intrinsic Collocated Cokriging 

This chapter investigates the sources of variance inflation in collocated cokriging. A new 

approach for cosimulation of dependent random functions without inferring and modeling 

of a full cross-covariance matrix is proposed. The proposed method is shown to remove 

systematic bias in histogram reproduction from the conventional Markov model for 

collocated cokriging. 

Section 5.1 reviews developments in collocated cokriging. Section 5.2 

investigates the theoretical justification for selecting only one auxiliary sample 

(collocated) for cokriging in the case of an intrinsic correlation model. Section 5.3 

explains the reasons for variance inflation in collocated cokriging. Then an intrinsic 

collocated cokriging to solve the variance inflation problem is presented. Example 

applications are given in Section 5.4. Section 5.5 compares intrinsic collocated 

cokriging, collocated cokriging and cokriging with a linear model of coregionalization. 

Comparison is made in terms of the difference in the cokriging weight profiles and results 

of estimation. Section 5.6 presents an approach for improved implementation of 

collocated cokriging in the case of multiple secondary data. The theoretical validity of 

this approach is proven. Section 5.7 extends the proposed approach to intrinsic collocated 

cokriging. Finally, a brief discussion about the results and the methods is presented in 

Section 5.8. 
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5.1. Introduction 

Sequential Gaussian simulation with collocated simple cokriging is a popular method for 

modeling a primary variable based on extensively sampled secondary information (Xu, et 

ah, 1992; Almeida and Journel, 1994; Goovaerts, 1997). It is widely used because it is 

simple; the correlation coefficient between the primary variable being modeled and 

secondary data is the sole additional statistic required to integrate the secondary data. 

A number of researchers have explored variants of the original proposal of 

collocated cokriging (Xu et al, 1992; Almeida and Journel, 1994). Journel explored an 

alternative Markov assumption (Journel, 1999; Shmaryan and Journel, 1999). The so-

called Markov model II or MMII places emphasis on the secondary variable rather than 

the primary. The MMII model has not gained wide usage because of more complex 

parameterization and implementation. A multi-collocated cokriging was proposed by 

Haas et ah (1998) (Rivoirard, 2001). The paper of Rivoirard (2001) investigates the two 

options available for collocated cokriging, that is, collocated simple cokriging and multi-

collocated cokriging. The models in which the simplification resulting from the 

collocated forms does not result in any loss of information are presented by Rivoirard 

(2001). 

Collocated cokriging has a longstanding problem with variance inflation that 

leads to a systematic bias in the mean and variance of the simulated realizations. An ad 

hoc method of variance correction has been proposed for dealing with this problem; 

however, the correction is case dependent and requires manual tuning (Deutsch and 

Journel, 1998). This tuning is often not performed leading to biased resource estimates. 

The aim of this chapter is to explain the theoretical basis for the variance inflation 

and present an alternative approach to cosimulation that is as simple as collocated 

cokriging. An intrinsic model of coregionalization is adopted with secondary data at the 

location being considered and at the locations of the primary data. The resulting 

technique is referred to as intrinsic collocated cokriging (ICCK). 
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5.2. Simple Collocated Cokriging is not an Intrinsic Model 

It is interesting to note that simple cokriging with the intrinsic correlation model does not 

reduce to collocated simple cokriging. Let us review a proof of this fact (see also 

Wackernagel, 2003). 

Assume that Z(u) and 7(u) are intrinsically correlated with unit variances. 

Consider simple cokriging to find the unknown value of the variable of Z at location u0 

based on the neighbor data Z(ua) at n sample locations ua, the corresponding values 

7(11^) at the same locations and the value of the auxiliary variable 7(u) at the 

estimation location u 0 . Then, the value of the variable of Z(u) at location u0 is given 

by the simple cokriging approach as: 

n n 
Z*CSK K ) = wz +AY0(Y(u0)-mY) + J]JlYa(Y(ua)-mY) + YJAz,a(Z(ua)-mz), (5.1) 

a=\ a=l 

where the CSK weights [kT
z l.

T
Y XY 0] rare given by: 

PYZ^I 
T 

V PYZVZ 

PYZ^Z PYZY; 

R, 

1 

f % \ V l 

y^Y,o j 

PYZ*; YZlZ 

PYZ 

(5.2) 

where rz is the vector of spatial correlations p(ua - u 0 ) , and R z is the matrix of spatial 

correlations p(ua - u ^ ) , a,/3 = \,...,n. 

Now note that in order for simple cokriging to be reduced to collocated simple 

cokriging, the vector of weights [kT
z 0

r A,Y0]
r must be the solution of the System 5.2. To 

check this, substitute [kT
z 0

T A.Y0]
T in System 5.2, then we will obtain 

(5.3) 

With respect to the value of pYZ, we can consider now 3 cases: 

1. yOFZ=0, then we have reduction to simple kriging and AY0=0. However, 

' R , 
PYZRZ 

T 

\ PYZVZ 

PYZ^Z 

Rz 
lz 

PYZYZ 
rz 1 J 

M 
0 

K^YfiJ 

= 

( r lz 

PYZYZ 

v PYZ 

AY Q = 0 cannot be a solution of the collocated cokriging; this is because an 
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implicit assumption of the collocated cokriging is that the weight assigned to 

collocated secondary data is not zero (Wackernagel, 2003). 

2. pYZ = ±1. Consider first pYZ = 1, then System 5.3 can be rewritten as 

^z^z + *r,orz = rz 
•lzRz+Ay0rz=rz. (5.4) 

Xzrz + Ayfi = 1 

Looking at System 5.4, it becomes clear that the 1st and 2n equation in this 

System are the same, thus System (5.4) can be reduced to collocated simple 

cokriging system 

rXzRz+^i0rz=rz> ( 5 5 ) 

[ ^ZVZ + Kfi ~ 1 

with solution Xz = 0, Ay0-\. The proof that System 5.3 reduces to the trivial 

collocated simple cokriging System with solution Xz = 0, Xy 0 = - 1 , for 

pYZ = - 1 , can be obtained following the same approach. 

It is worth noting that, in general, when the primary and secondary 

variables are perfectly correlated then the collocated secondary datum (if pYZ = 1) 

or negative value of collocated secondary datum (if pYZ ~-l) is considered as 

primary datum and cokriging reduces to kriging. 

3. pYZ *0,±1, then if we multiply the first equation of matrix 5.3 by pYZ,and 

subtract the result from the second equation in 5.3, we will obtain 

^ZPYZ**-Z
 + ^r,orz —

 PYZ \*-Z*^Z
 +

 ^Y,QPYZYZ ) =
 PYZ^Z ~ PYZYZ > 

or 

/ ' r ,o rz — ^Y,oPYZrz = " • 

Thus, 

\ o ( l - / 4 ) r z = 0 . (5.6) 

Due to the fact that pYZ ^ ±1, and there exists non-zero spatial correlations 

p(ua -Up),a,p = \,...,n, we can conclude that necessarily /lY0 = 0. However, 

XY 0 = 0 cannot be a solution of the collocated cokriging; this is because an 
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implicit assumption of the collocated cokriging is that the weight assigned to 

collocated secondary data is not zero (Wackernagel, 2003). 

Since neither of the values for pYZ yields a reduction of the simple cokriging 

solution to the nontrivial collocated simple cokriging solution, we conclude that simple 

cokriging with intrinsic model cannot be reduced to collocated simple cokriging, thus 

there is no theoretical justification for selecting only one auxiliary sample (collocated) 

for cokriging in the case of an intrinsic correlation model. 

5.3. Sources of Variance Inflation in Collocated Cokriging 

Sequential Gaussian simulation is based on decomposing the multivariate distribution 

into a series of conditional distributions for each location (Isaaks, 1990). Simulation is 

performed by drawing from local conditional distributions defined by collocated 

cokriging. Newly simulated data are used as conditional data in simulation of subsequent 

nodes. Multiple equally-probable realizations of the property of interest are created. 

A problem of variance inflation is observed in simulation based on collocated 

simple cokriging. The aim of this Section is to determine the reason for this variance 

inflation. 

Let us consider estimation of the value of the primary standard normal random 

variable Zat location u0 using two conditioning (original) data Z(iij) and Z(u2), the 

simulated value of the same type at location u3, Z(u3) given by: 

2 

Z(u 3 ) - ^ t 37(u 3 ) + ^ / l Z ) a Z ( u J + ^(u3), (5.7) 
a=\ 

where 7(u3) is collocated value to Z(u3) of standard normal auxiliary variable, the 

collocated simple kriging weights [Az i Xz2 XYi]
T are given by: 

1 Pzz K - « 2 ) A-zOi-Us) 

PzZ ( U 2 - " l ) 1 A-z(U 2 -U 3 ) 

P r z ( u 3 - U i ) P r z ( u 3 - U 2 ) 1 

X 'Z,\ 

X. 'Z,2 

V J'.V 

/?ZZ ( U 1 ~ U 3 ) 

Pzz ( U 2 - U 3 ) 

Prz(0) 

(5.8) 

or, in System format as 

84 



4 , i + J-zaPzz ( u i - u
2 ) + 4 ,o A-z ( u i - u s ) = Pzz ( u i - u s ) 

4,l/?ZZ (U2 - U l ) + 4 , 2 + 4 .0 A z (U2 - " 3 ) = PZZ («2 ~ « 3 ) (5"9) 

4 , i A-z (u3 - "1) + 4 , 2 A z (u3 - "2) + 4 , 3 = PYZ (0) 

and i?(u3) is independent normal random error with mean of zero and variance of 

Var(R(u3)) = 1 - Azxpzz(u, - u 3 ) - Az 2pzz(u2 - u3) - 4;3/?7Z(0). 

The collocated simple cokriging estimate of ZCCSK * (u0) is given by: 

CCSK (u0) = Ar>07(u0) + ^Az aZ(ua) + Az 3Z(u3), (5.10) 
a=l 

where the collocated simple cokriging weights [Azl AZ2 AZ3 A,Y0]
T are given by: 

4 , 1 + 4 , 2 A z ( U l - U
2 ) + 4 , 3 A z ( U l - U 3 > + 4 , o A z ( U l - U o ) = A z ( U l ~ U o ) 

4 , l P z z ( « 2 ~ U l ) + 4 , 2 + 4 , 3 A z ( U 2 - « 3 ) + 4 , < ) A z ( U 2 - U o ) = A z ( U 2 " H f ) ) - C 5 - 1 1 ) 

4 , l A z ( U 3 - U l ) + 4 , 2 A z ( U 3 - U 2 ) + 4 , 3 + 4 , 0 A z ( U 3 ~ U o ) = PzZ ( U 3 ~ U o ) 

4 , l A z ( U 0 - U l ) + 4 , 2 ^ z ( U 0 - « 2 ) + 4 , 3 p 7 z ( U 0 - U
3 ) + 4 , 0 = A z ( 0 ) 

Let us note that for any / =1, 2, where / stands for the number of conditioning (original) 

neighbor data, the following holds: 

Cov(Z(u,),Z 
CCSK (u0)) 

= Cov 4,07(u0) + £ ^Zi0Z(u0 ) + 4F3Z(U3 ), Z(u,) 

= ^ ,0Cov(7(u0), Z(u,.)) + /lz 1Cov(Z(u1), Z(u,)) + AZ2Cov(Z(u2), Z(u,)) + ^ ; 3Cov(Z(u3) , Z(u,)) 

= 4,oPre(u/ - « o ) + 4,iPzz(u i - u , - ) + 4,2/°zz(u2 - « i ) + 4 ,3PzzK - « 3 ) = /7zz(u/ ~»o)-

Thus, the covariance (correlation) between the new estimate and the conditioning 

data values is correct. Note that the last two substitutions in the above derivation 

followed from Systems (5.9) and (5.11), respectively. Moreover, note that 

Cov(Z(u3),Z*CCSK(uQ)) 

Cov Z(u3),AY0Y(u0)) + ^AZaZ(ua) + AZ3Z(u3) 
a=\ 

= AY 0Cov(Z(u3),7(u0)) + Az 1Cov(Z(u3),Z(u1)) + Az 2Cov(Z(u3),Z(u2)) + Az3Var(Z(u3)) 

= i70Cov(Z(u3),F(u0)) + 4 l / 9 z z (u 3 - U l ) + 42yOzz(u3 - u 2 ) + l Z 3 . 
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If Cov(Z(u3),7(u0)) = p r z(u3 - u 0 ) , then the last substitution from System (5.9) would 

result in the correct covariance between the new estimate and the previously calculated 

estimates. However, Cov(Z(u3),7(u0)) cannot be equal to /?rz(u3 - u 0 ) . Let us prove 

this using the method of contradiction. Specifically, let us assume that 

Cov(Z(u3),7(u0)) = /?F Z(u3-u0) , then it follows that the simple cokriging problem 

would be necessarily reduced to the collocated simple cokriging problem (which 

inherently ensures this equality), however, as shown above such reduction is impossible 

in the case of intrinsic correlation model. Therefore Cov(Z(u3),7(u0)) cannot be equal 

to pYZ(u3 - U O ) a nd we can conclude that due to the fact that the collocated cokriging 

System has no reproduction of cross covariance Cov(Z(u3),7(u0)), the correct 

covariance between the new estimate and the previously calculated estimates cannot be 

ensured. When collocated simple cokriging is put into sequential simulation mode, the 

incorrect covariance between simulated data is translated into biasness of newly 

simulated data. This is because simulation is sequential. Previously simulated data are 

used as a conditioning data for calculating new simulated nodes; the simulated data do 

not have the correct covariance between each other, thus, System (5.9) results in incorrect 

weights and biased estimates. And, as a result, variance inflation is often observed. Note 

that variance inflation rather than variance deflation is observed because local conditional 

distributions (from which simulated values are drawn) have larger variances in collocated 

cokriging than in intrinsic collocated cokriging. 

In view of the above analysis, a natural solution for the problem of variance 

inflation in sequential simulation is to consider full simple cokriging based on the 

intrinsic model (intrinsic collocated cokriging) instead of the Markov model. 
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5.4. Intrinsic Collocated Cokriging: Examples 

5.4.1. Example 1 

Let us consider the following linear model of coregionalization (LMC) for the primary 

standard normal random variable Z and secondary standard normal random variable Y: 

yYY (h) = 0.1 • Sph^ (h) + 0.9 • Gaus32 (h) 

yYZ (h) = 0.25 • Sphl6(h) + 0.25 • Gaus32(h) , (5.12) 

yzz (h) = 0.9 • Sph16 (h) + 0.1 • Gaus32 (h) 

where Sphl6 (h), Gausn (h) denote the isotropic Spherical variogram model with the 

range of 16 and isotropic Gaussian variogram model with the practical range of 32 (see 

Chapter 2 for reference on variogram models). Note that System (5.12) is a valid LMC, 

since 

0.1 • 0.9 = 0.09 > 0.25 • 0.25 = 0.0626 and 0.9 • 0.1 = 0.09 > 0.25 • 0.25 = 0.0625. 

The correlation at lag 0 between the primary and secondary random variables is 

pYZ = 0.5. This 2-D example was chosen small enough to easily visualize the results yet 

large enough to show realistic variations in the results. The conclusions drawn from this 

example are considered reasonably general. 

Now let us consider unconditional sequential Gaussian simulation (SGS) based on 

the simple collocated cokriging for the primary variable Z (continuity of Z is given by 

yzz(h) in System 5.12; cross-covariance is build based on Markov model I) using 

exhaustive secondary random variable Y and coefficient of correlation pYZ = 0.5 . The 

exhaustive secondary information for Y was obtained by unconditional sequential 

Gaussian simulation (SGS) with variogram model yYY(h.) given in System 5.12. Figure 

5.1 shows the distributions of the means and variances of the secondary random variable 

for 100 SGS realizations. In sequential simulation for both primary and secondary 

random variables, the maximum number of simulated nodes to use is set to 12 and the 

maximum search radii is set to largest variogram range, that is, 32. 

A summary of the results for the primary random variable Z for 100 SGS 

realizations of the area of 256 by 256 cells is shown in Figure 5.2. 
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Figure 5.1: Distribution of the means of the secondary standard normal random variable 

Y for the 100 sequential Gaussian realizations (a); and distribution of the variances of the 

secondary standard normal random variable Y for the 100 sequential Gaussian 

realizations (b). 

MeanofZ(CCK) 

a 0.20J 

Jl 

Number of Data 100 
mean -0.002 

std. dev. 0.042 

1 ' ' i ' ' ' ' i > ' ' ' i ' • 
-0.40 -0.30 -0.20 -0.10 0.0 0.10 0.20 0.30 0.40 

Mean 

0.25J 

0.20J 

(us.: 

0.10J 

Variance of Z (CCK) 

xt 

Number of Data 100 
mean 1.283 

std. dev. 0.066 

fe 
1.0 1.20 

Variance 

a) b) 

Figure 5.2: Distribution of the means of the primary standard normal random variable Z 

for the 100 sequential Gaussian realizations based on simple collocated cokriging (a); and 

distribution of the variances of the primary standard normal random variable Z for the 

100 sequential Gaussian realizations based on simple collocated cokriging (b). 
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Figure 5.2 shows the distributions of the means and variances of the primary random 

variable Z realizations obtained based on sequential Gaussian simulation with simple 

collocated cokriging. Note that the expected mean of the distribution of the primary 

random variable Z modeled by sequential Gaussian simulation with simple collocated 

cokriging is virtually zero. There is, however, a dramatic deviation from the target 

variance of one. 

The variance of the primary random variable Z modeled by sequential Gaussian 

simulation with simple collocated cokriging is, on average, around 28% higher than 1. 

Note that due to a finite domain size and conditioning data, the target variance 

reproduced by simulation should be even less than 1. This makes the result of 1.28 

obtained in sequential Gaussian simulation with collocated cokriging even worse than it 

appears. One can argue that this strong deviation is a consequence of the mismatch in the 

continuity of the primary and secondary random variable (Markov model is 

inappropriate); however, this is not true. Let us consider modeling of the primary random 

variable Z using sequential Gaussian simulation with intrinsic collocated cokriging 

(ICCK). Intrinsic correlation model is built based on the variogram of the primary 

variable Z, that is, yn (h) = yzz (h); yYZ (h) = 0.5 • yzz (h). 

The ICCK acronym may be slightly confusing. The proposal is to use more than 

the secondary datum at the location being estimated. The notion of "collocated" must be 

extended; secondary data at other locations must be used as well. Then there are two 

options to explore: (1) secondary data collocated with all primary data, and (2) secondary 

data in the local neighborhood of the estimation location. 

Let us explore option 1 first. Secondary information in intrinsic collocated simple 

cokriging is selected at the same locations as the primary data and at the estimation 

location. Note that if the secondary data were selected only at the locations of the 

available primary data, then the simple cokriging with the intrinsic model of 

coregionalization would necessarily reduce to simple kriging. However, this screening 

effect vanishes when a collocated secondary data is added to estimation; the cause of this 

is a "relay effect" with the other secondary data (Chiles and Delfiner, 1999). 

Figure 5.3 shows the distributions of the means and variances of the primary 

random variable Z obtained in this case. 
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Figure 5.3: Distribution of the means of the primary random variable Z for the 100 

sequential Gaussian realizations based on intrinsic collocated cokriging (a); and 

distribution of the variances of the primary random variable Z for the 100 sequential 

Gaussian realizations based on intrinsic collocated cokriging (b). 

Note from Figure 5.3 that both the expected mean and expected variance are virtually the 

same as the target mean of 0 and the target variance of 1. Thus, we can see that the main 

factor which triggers the variance inflation in sequential Gaussian simulation with simple 

collocated cokriging is not simply the assumption of Markov model, but using only one 

collocated data when performing cokriging. 

Figure 5.4 shows the results for the means and variances of the primary random 

variable Z obtained using option 2. That is, sequential Gaussian simulation with intrinsic 

collocated cokriging when the secondary data are selected in the local neighborhood of 

the estimation location according to the following configuration: 

Schematic 1: 
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Figure 5.4: Distribution of the means (first column) and variances (second column) of the 

primary random variable Z for the 100 sequential Gaussian realizations based on intrinsic 

collocated cokriging for the secondary data configuration shown in Schematic 1 with secondary 

data separation distance in X and Y directions: 1 grid cell (a); 2 grid cells (b) and 5 grid cells (c), 

respectively. 
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Clearly, reproduction of the target statistics shown in Figure 5.4 for intrinsic 

collocated cokriging is much better than the respective results of sequential Gaussian 

simulation with simple collocated cokriging. However, it can be also seen from Figure 

5.4 that reproduction of the target statistics depends on the chosen secondary data 

configuration in the local neighborhood of the estimation location. 

Thus, despite that the secondary information in collocated cokriging with ICCK 

do not necessarily need to be taken at the same locations as the primary data; our 

recommendation is to use secondary data at all primary data locations. This is because it 

is theoretically valid and computationally effective to take the secondary data at the same 

primary data locations, and moreover, there is no dependence of the results on the chosen 

secondary data configuration in the local neighborhood of the estimation location. 

Another advantage of using the sequential Gaussian simulation with intrinsic 

collocated cokriging over sequential Gaussian simulation with simple collocated 

cokriging is the slightly improved primary variable variogram reproduction. Figures 5.5-

5.7 show variogram reproduction of the exhaustive secondary random variable Y by the 

unconditional sequential Gaussian simulation; variogram reproduction of the primary 

random variable Z by the unconditional sequential Gaussian simulation with simple 

collocated cokriging; and variogram reproduction of the primary random variable Z by 

the unconditional sequential Gaussian simulation with intrinsic collocated cokriging, 

respectively. 

It is apparent from Figures 5.6 and 5.7 that the mismatch between target 

semivariogram for the primary variable Z is reduced by applying intrinsic collocated 

cokriging. Note that the amount of mismatch could also depend on such parameters as 

maximum number of nodes used in simulation, search radii, etc. However, in the case 

study considered in this paper these parameters were fixed. Note also that if the 

continuity of the primary and secondary random variables are the same, there is no 

mismatch between the target semivariogram and semivariogram reproduced in the 

unconditional sequential Gaussian simulation with intrinsic collocated cokriging. 
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Figure 5.5: Reproduction of the secondary variable Y semivariogram by sequential 

Gaussian simulation. 
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Figure 5.6: Reproduction of the primary variable Z semivariogram by the sequential 

Gaussian simulation with simple collocated cokriging. 
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Figure 5.7: Reproduction of the primary variable Z semivariogram by sequential 

Gaussian simulation with intrinsic collocated cokriging. 

It is also important to note that modeling of the primary variable based on the 

secondary random variable in the intrinsic collocated cokriging framework also ensures 

reproduction of the correlation between primary and secondary random variable. This 

point is illustrated in Figure 5.8. Figure 5.8 shows 100 correlation coefficients obtained 

for each of the 100 SGS realizations with intrinsic collocated cokriging. The observed 

mean correlation coefficient of 0.4640 meets closely the target correlation coefficient of 

0.5 used in simulation. 

5.4.2. Example 2 

The use of real data is problematic due to the cost and confidentiality of seismic data; 

however, synthetic data are fashioned after a number of real case studies where variance 

inflation was noted to be a problem. 

Figure 5.9 shows locations of 20 primary data in a study domain of size 100 by 

100 units. Figure 5.9 also shows the primary data distribution, the crossplot between 

primary data and collocated secondary data and the map of exhaustive secondary data. 

All data are in Gaussian units. 
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n. 0.55 
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Figure 5.8: Reproduction of the correlation between primary and secondary random 

variables for sequential Gaussian simulation with intrinsic collocated cokriging. 

The following linear model of coregionalization describes the joint continuity of 

the primary and secondary data: 

yYY (h) = 0.3 • Expai__l0 (h) + 0.7 • Sphar_2Q (h) 
a2=20 a2=40 

yYZ (h) = 0.45 • ExPai=l0 (h) + 0.35 • Spha^20 (h) , (5.15) 
a, =20 a, =40 

yzz (h) = 0.8 • Expai__w (h) + 0.2 • Sph^20 (h) 
a2=20 a2=40 

Now, let us compare reproduction of the target mean and variance statistics by 

sequential Gaussian simulation (SGS) based on simple collocated cokriging and by 

sequential Gaussian simulation (SGS) based on intrinsic collocated cokriging for the 

primary variable of Figure 5.9. Example realizations obtained by both methods are 

shown in Figure 5.10. Figure 5.10 shows the similarity in the results; however, note that 

the realization obtained with intrinsic collocated cokriging contain less extreme values 

than the realization obtained based on simple collocated cokriging. 

Figure 5.11 shows the results for the mean and variance of 100 SGS realization of 

the primary variable over the area of 100 by 100 units obtained based on simple 

collocated cokriging. Results obtained based with intrinsic collocated cokriging are 

shown in Figure 5.12. 
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Figure 5.9: Locations of the 20 primary data (a) and their distribution (b); the crossplot 

between primary data and collocated secondary data (c) and the map of exhaustive 

secondary data (d). The data are in Gaussian units. 
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Figure 5.10: Example sequential Gaussian realization obtained based on simple 

collocated cokriging (a) and intrinsic collocated cokriging (b). 
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Figure 5.11: Distribution of the means of the primary random variable for the 100 

sequential Gaussian realizations based on simple collocated cokriging (a); and 

distribution of the variances of the primary random variable for the 100 sequential 

Gaussian realizations based on simple collocated cokriging (b). 
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Figure 5.12: Distribution of the means of the primary random variable for the 100 

sequential Gaussian realizations based on intrinsic collocated cokriging (a); and 

distribution of the variances of the primary random variable for the 100 sequential 

Gaussian realizations based on intrinsic collocated cokriging (b). 

Note that intrinsic collocated cokriging used in sequential mode does not result in 

variance inflation. Moreover, from Figure 5.13 we can also note that the target correlation 

of 0.8 is much better reproduced by intrinsic collocated cokriging, compared to SGS with 

simple collocated cokriging. 

5.5. Cokriging versus Collocated Cokriging 

This example compares the results to cokriging with a linear model of coregionalization. 

Let us consider the same as before linear model of coregionalization for the primary 

standard normal random variable Z and secondary standard normal random variable Y 

yYY (h) = 0.1 • Sphl6 (7?) + 0.9 • Gausn (h) 

rrz (/?) = 0.25 • Sphl6 (h) + 0.25 • Gaus32 (h) , (5.16) 

yzz (h) - 0.9 • Sph16 (h) + 0.1- Gaus32 (h) 

where Sphl6(h), Gausn(h) denote the Spherical variogram model with the range of 16 

and Gaussian variogram model with the range of 32. 
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Figure 5.13: Reproduction of the correlation between primary and secondary random 

variables for sequential Gaussian simulation with simple collocated cokriging (a) and 

sequential Gaussian simulation with intrinsic collocated cokriging (b). 

Now let us consider estimation of the domain 50 by 50 units based on the primary 

data and exhaustive secondary data. Figure 5.14 shows locations of 12 primary data and 

their distribution, the crossplot between primary data and collocated secondary data and 

the map of exhaustive secondary data. Three approaches for estimation are considered: 

• simple cokriging with the linear model of corregionalization (5.16); 

• simple cokriging with the intrinsic correlation model. The primary variable 

variogram of System (5.16) is taken as the underlying variogram model for the 

intrinsic model of coregionalization; 

• And, finally, using collocated simple cokriging. 

5.5.1. Difference in the Profiles of Weights 

Let us first perform estimation of the two arbitrary locations in the study domain, say 

(10,10) and (35, 35), based on simple cokriging, collocated simple cokriging and intrinsic 

collocated cokriging and analyze the difference in the profiles of weights. 
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Figure 5.14: Locations of 12 primary data (a) and their distribution (b), the crossplot 

between primary data and collocated secondary data (c) and the map of exhaustive 

secondary data (d). 
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Figures 5.15 and 5.16 show for each of the two locations of interest the estimation 

variances, accumulated weights and the weights profiles. Note that accumulated primary 

and secondary data weights are calculated as a sum of all weights given to all primary 

and all secondary data, respectively. It is interesting to note from Figures 5.15 and 5.16 

that intrinsic collocated cokriging assigns the collocated secondary data weight equal to 

the correlation coefficient between the primary and secondary data; the largest weight 

assigned to the collocated secondary data is obtained in simple cokriging with linear 

model of coregionalization (LMC) and the smallest in the collocated simple cokriging. 

Note, however, that despite the LMC assigns the largest weight to the collocated data, the 

accumulated weight assigned to all secondary data in simple cokriging with linear model 

of coregionalization is the smallest, the largest accumulated weight assigned to secondary 

data, that is one which is collocated, is obtained in collocated simple cokriging. 

The largest accumulated weight assigned to the primary data is obtained in simple 

cokriging with linear model of coregionalization; the smallest is obtained in collocated 

simple cokriging. 

Intrinsic collocated cokriging method provides an intermediate case in-between 

the other two correlation models also in terms of estimation variance. The smallest 

estimation variance is obtained in simple cokriging with LMC. This is, of course, because 

the simple cokriging is theoretically optimal; that is provides estimates with smallest 

estimation variance. The largest estimation variance is obtained in collocated simple 

cokriging. 

5.5.2. Difference in the Results of Estimation 

Now let us consider estimation of the entire domain of study. Figure 5.17 shows the maps 

of the estimates (means of the local conditional distributions) and estimation variances 

(variances of the local conditional distributions) obtained based on simple cokriging with 

LMC, collocated simple cokriging and intrinsic collocated simple cokriging. 
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Figure 5.15: Study domain with conditioning data (circles) and the estimation location 

(10, 10) (asterisk) (a); Primary data weights as a function of the ordered conditioning 

data, ordered according to the closeness to the estimation location (b) and secondary data 

weights as a function of the ordered conditioning data, zero stands for the estimation 

location (c). 
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Figure 5.16: Study domain with conditioning data (circles) and the estimation location 

(35, 35) (asterisk) (a); Primary data weights as a function of the ordered conditioning 

data, ordered according to the closeness to the estimation location (b) and secondary data 

weights as a function of the ordered conditioning data, zero stands for the estimation 

location (c). 
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Figure 5.17: The maps of estimates (a) and estimation variances (b) obtained based on 

collocated simple cokriging (top), simple cokriging with the intrinsic correlation model 

(middle) and simple cokriging with the linear model of corregionalization (bottom). 
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From Figure 5.17 note that collocated simple cokriging and intrinsic collocated cokriging 

are very similar. Simple cokriging with the linear model of corregionalization results in 

less smooth estimates than obtained by the other two approaches and in smaller 

estimation variance. 

To further assess the difference, maps of the difference between collocated simple 

cokriging and intrinsic collocated simple cokriging and the difference between simple 

cokriging with the linear model of corregionalization and intrinsic collocated simple 

cokriging are shown on Figure 5.18. Figure 5.18 shows that collocated simple cokriging 

and intrinsic collocated simple cokriging give similar estimates. The estimation variances 

are also close for these two methods; however, intrinsic collocated simple cokriging has 

the same or slightly smaller estimation variance than that of collocated simple cokriging. 

In particular, the estimation variance obtained with collocated cokriging and intrinsic 

collocated cokriging are the same at the data locations (they are zero) and far from data 

locations (they are both equal to one); otherwise collocated simple cokriging results in 

higher estimation variance than intrinsic collocated simple cokriging. The slight 

reduction in the estimation variance in intrinsic collocated simple cokriging helps remove 

the variance inflation problems characteristic of collocated cokriging in sequential 

simulation. 

From Figure 5.18 we can also note that simple cokriging with the linear model of 

corregionalization results in significantly different estimates than collocated cokriging 

and intrinsic collocated cokriging. Moreover, the estimation variance of simple cokriging 

in this case study for the studied covariance models is always the same or slightly smaller 

than the estimation variance of intrinsic collocated simple cokriging and smaller than that 

of collocated simple cokriging. As a result, the local conditional distributions of 

uncertainty obtained by the simple cokriging with the linear model of corregionalization 

are narrower than the local conditional distributions obtained in intrinsic collocated 

simple cokriging. 
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•0.18 

a) b) 

Figure 5.18: The maps of the difference in means (a) and variances (b) for collocated 

simple cokriging and simple cokriging with the intrinsic correlation model (top) and for 

simple cokriging with the linear model of corregionalization and simple cokriging with 

the intrinsic correlation model (bottom). 
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5.6. The Super Secondary Approach 

5.6.1. Collocated Simple Cokriging with Multiple Secondary Data 

Collocated simple cokriging can be implemented with multiple secondary data. The form 

of the estimator and estimation variance in this case under the multivariate Gaussian 

model are the following (e.g., Xu, et al., 1992) 

Z*CCSK K ) = Z 4 ^ ( u J + £ ^ , o ^ ( u 0 ) , (5.17) 

n "sec 

a=\ fi=l 

where u0 is the estimation location, Xz a and Ay 0 are weights applied to the primary 

and secondary data, respectively; p(ua - u 0 ) are spatial correlations between primary 

data and the primary variable at the location being estimated; pY z are correlation 

coefficients between primary and each secondary variable, a = \,...,n; ju = l,...,nsec. 

The secondary data are taken at the location being estimated and the primary data are 

taken at other locations. The equations to compute the n+nsec collocated simple 

cokriging weights are given below 

(5.19) 

X XZ,aPYg,Z K - U 0 ) + X ArgfiPY;,YM = PYS,Z 0»ff ~ «0 X S = I • • •, «Sec > 

where the different correlation coefficients are computed from the following sources: 

• p(u a - u ^ ) , a,fi = \,...,n, are spatial correlations between primary data; they 

are calculated directly from normal scores variogram / (h) ; 

• p r z ( u / g - u 0 ) , ju = l,...,nsec p = \,...,n, are correlations between primary 

and secondary data; they are calculated from the Markov model 

PTMAufi ~ u o) = PY^Z'P^P - W 0 ) -
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• pY Y , ju,g = l,...,nsec are correlations between secondary data; they are 

calculated directly from the secondary data. 

In order to perform the collocated cokriging we only require the variogram of the primary 

variable, which is used to compute the correlation between the primary data at other 

locations to the location being estimated. The spatial correlation structure of the 

secondary data is not required because the secondary data are only used at the location 

being estimated. The cross spatial correlation between primary data at other locations 

and the secondary data at the location being estimated are estimated through a Markov-

type assumption, that is, the cross variograms are assumed to have the same shape - the 

sill is scaled to the correct cross correlation (Goovaerts, 1997). 

5.6.2. Merging Multiple Secondary Variables (the Super Secondary 

Variable) 

All secondary data can be merged as a linear combination into a single secondary 

variable that can be used in the conventional collocated cokriging as follows 

"sec 

^super = ~ , ( 5 - 2 0 ) 
secondary Auper 

secondary 

where the weights cM are calculated from the well known normal equation of multiple 

linear regression: 

Z W , = ^ ' ^=1"--'"sec- (5-21) 

The left hand side correlations pY Y , g,ju = l,...,nsec, represent the redundancy 

between the secondary data; the right hand side correlations pY z, p = 1 , . . . , nsec, 

represent the relationship between each secondary data and the primary variable being 

predicted. The correlation coefficient of the super secondary variable with the primary 

variable being estimated is based on the cokriging variance: 
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Auper =JLCMPYM,Z- (5-22) 
secondary II ^=\ 

The expression inside the square root is one minus the estimation variance, which is 

precisely the correlation coefficient, when only one data is being used. 

The single super secondary variable is used with the primary data in the well 

known collocated cokriging equations: 

^*cc^(u 0 ) = E ; l z ^ ( i i J + #^super (u0), (5-23) 
a=\ secondary 

n 

0-CCS^(Uo)=l-E;LZ,a^K-Uo)-^-Auper • (5-24) 
a=l secondary 

The results of equations (5.23)-(5.24) are exactly the same as that of equations (5.17)-

(5.18). 

The notion of using a linear combination of attributes was proposed by Myers 

(1983). However, such a notion implies the impractical solution of a cumbersome and 

large system of equations. Collocated cokriging with merged data as developed in this 

paper proposes to avoid the numerical instabilities caused by the classic matrix form of 

cokriging (Myers 1982) which has no industrial use at present. 

5.6.3. Proof of the Super Secondary Approach 

Let us now prove that the two collocated cokriging estimators presented in (5.17)-(5.18) 

and (5.23)-(5.24) are exactly the same. First, let us rewrite both collocated cokriging 

Systems into matrix format. Specifically, the System (5.17)-(5.18) for cokriging with 

multiple secondary data can be rewritten (using Markov model) as 

Z *CCSK (uo) = ^ z ^ + V.oY 5 (5.25) 

accsK (uo ) = 1 _ ^ z r z ~ ^Y,orYZ •> (5 -26) 

where ^ =(Azl,...,AZn)
T and "kT

YQ =(AY 0,...,AY 0)
T are the weights applied in 

' ' ' 1 ' "gee ' 

estimation to the primary Z = (Z(u}),..., Z(u„))r and secondary 

Y = (7J(u0),...,Yn (u0))r data, respectively; rz is the vector of spatial correlations 
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p(ua-u0); rYZ is the vector of correlations pY z between primary and multiple 

collocated secondary data, a = l,...,n; ju = l,...,nsea. The weights ~kT
z =(/l z l , . . . ,AZ M) r 

and ^IQ - (Ay 0,...,Ay 0)
T are given by the following System: 

' 1 ' " s e c ' 

^•Z^Z + rzrYZ^Y,0 = r Z ' , - _ . 

r7zrz kz + tLYhy0 = vYZ, 

where R z is n by n data-to-data covariance matrix for the primary data 

(R z = p ( u a - u ^ ) , a,/3 = \,...,n); and R r is nsec by «sec matrix of correlations between 

multiple secondary data (Ry = pY Y , ju,g-l,...,nsec). 

The System (5.23)-(5.24) for collocated cokriging with one super secondary data 

can be rewritten (using Markov model) as 

Z * C O T K ) = £zZ + £-7super (u0), (5.28) 
secondary 

&CCSK ( » o ) = 1 " ^lrZ ~ £ • Auper ( 5 - 2 9 ) 
secondary 

where XT
Z = (lzl,...,XZnf and B, are the weights applied in estimation to the primary 

and super secondary data, respectively; as before, rz is the vector of spatial correlations 

P(ua ~uo); Auper i s g i v e n ( s e e Equations (5.21)-(5.22)) by 
secondary 

p2^ =rY:zR-lrYZ. (5.30) 
secondaiy 

Note that R7 is the correlation matrix - positive definite, thus, invertible. The weights 

for the primary and super secondary data, XT
Z =(Azl,...,AZn)

T and £,, respectively, are 

found from the following System 

RZX,Z + rzpsuper B, = rz, 
secondary . . . . 

Auper rZ^Z+^ = A u p e r ' 
secondary secondary 

where, as before, R z is n by n data-to-data covariance matrix for the primary data 

(R z = p(ua - u ^ ) , a,P = \,...,n). Usingthe fact that (see Equations (5.20)-(5.22)): 
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W (n0) = —^—(R-Y
lrYZ)TY, (5.32) 

secondary A u p e r 
secondary 

we can rewrite equation for the estimate of the collocated cokriging approach with one 

super secondary data as: 

Z*CCSK (u0) = £zZ + <f — (R"Arz)rY. (5.33) 
Asuper 

secondary 

Looking at Systems (5.25)-(5.27) and (5.28)-(5.33), we can conclude that in order 

to prove that they result in the same outcome; we need to show that the weights received 

by primary and secondary data in both Systems are the same, that is, we need to show 

that the following equalities hold: 

1 )4 , a =4^» oc = l,...,n; 

and 

2) ^ , . o = £ (Rr^yzV fi = l...,nsec. 
A-'super 

secondary 

Proof of1): Let us first consider second matrix equation of System (5.27), that is, 

rYZrzkz + KYkY0 = ryz, 

Multiplying both sides of this matrix equation by r^R^1, we obtain: 

rYZ**-Y \pYZrz**Z "*• "-Y^Yfl J = *"YZ**-Y r K lYZ> 

or, 

( 71 1 \ T1 T1 t 1 \ 7 ^ 1 

ryzRy YYZJYZKZ + ryz(Ry Ry j / , y o = ryzRF rYZ, (5.34) 

Using (5.30) and the fact that Ry*Ry =1, where I is identity matrix of size n by n, 

equation (5.34) reduces to: 
/ C rz*-z+rYZ^Yfi = Plm • (5-35) 

secondary secondary 

Now let us consider second matrix equation of System (5.31), that is, 

A u p e r VZ A'Z + £ ~ A u p e r 
secondary secondary 

Multiplying both sides of this equation by psuper , we obtain 
secondary 
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/> rzK + &Wr =/T (5.36) 
secondary S e c o n d a r y secondary 

Subtracting from Equation (5.35) Equation (5.36), we get 

P^, rz^Z+rYzK,0' 
secondary 

P2^, r z % + # A u p e r 
secondary secondary 

super 
secondary 

P super 
secondary 

or. 

that 

super 
secondary 

rz[kz A.ZJ + rYZ^Y,0 bPi super 
secondary 

(5.37) 

Recall that it follows from the first matrix equations of Systems (5.27) and (5.31) 

rzrYZ*"Y,0 ~ r Z •**-Z '̂Z> 

and 

(5.38) 

Zrsuper 
secondary 

g —rz KZA,Z , (5.39) 

respectively. Thus, after subtracting equation (5.38) from equation (5.39), we obtain 

rzrYZkYS> — rzpsaper g = rz - RzA-z - [rz - RZA,Z], 
secondary 

or, 

rYZ^Y,0 hPi super 
secondary 

--[Rz'kz - R z X z ] (5.40) 

Let us now return to equation (5.37). If we multiply both sides of this equation by 

r z , we obtain 

r z P L r z U z - M + rz super 
secondary 

r r z ^ 7 , o hP% super 
secondary 

= 0. 

Due to (5.40), we can rewrite (5.41) as 

rzA„„ r z \ K -K~\~[RzK -RzM = °> 

(5.41) 

or, 

r z A _ rzRz super 
secondary 

az--kz] = o. (5.42) 
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Thus, it follows from equation (5.42) that "kz = \ z provided that determinant of 

matrix rzp
2 r j - R z is not equal to zero. So, let us examine whether determinant of 

secondary 

matrix rzp
2 r j - R z could be zero. Consider System (5.31) rewritten below, 

secondary 

^ z K + r Z A u p e r # = r Z > 
secondary 

£ = A u p e r [ l - r Z % ] . 
secondary 

(5.43) 

If we substitute expression for £ from second equation of System (5.43) into the first 

matrix equation of this System, we will obtain the following 

Rzlz + rzA
2

uper [1 - rT
zlz ] = rz, 

secondary 

£ = A u p e r [ 1 - r j X j , 
secondary 

or, 

r z A u p e r 'Z 
secondary 

r J -R , **z _ r z 1-A 
2 
super 
secondary 

£ = A u p e r [ 1 - r J ^ z L 
secondary 

(5.44) 

Thus, clearly, if determinant of matrix rzpsuper rz - R z is equal to zero, the System 
secondary 

(5.44) will have either multiple or no solution depending on the vector rz 1-A super 
secondary 

(Cramer's rule). The collocated cokriging System with super secondary variable (5.31) 

(or, equivalently (5.43)) has only one solution for the primary variable weights Xz if and 

only if determinant of matrix rz/?s
2
uper rz - R z is not equal to zero. Similarly, using 

secondary 

simple matrix manipulations, we can show that the collocated cokriging System for the 

weights (5.27) will have unique solution for the primary weights if and only if 

determinant of matrix rz/?s
2
uper rz - R z is not equal to zero. As a result, we can 

secondary 

conclude that provided that the collocated cokriging Systems each have unique solution, 

the weights given by both collocated cokriging Systems (5.25)-(5.27) and (5.28)-(5.33) to 

the primary variable are exactly the same. That is, 
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^Z,a-^Z,a» CC-\,...,n. 

Thus, proof of 1) is completed. 

Proof of 2): Let us now prove that 

Ar.fi =4 (RylYz)/?> P = \,...,nsec. 
r super 

secondary 

It follows from the second matrix equation of System (5.27) for the collocated cokriging 

weights with multiple secondary data that 

is.YkY0 = rYZ — r 7 Z r z kz = rYZ [1 — r z kz J. 

Also, it follows from System (5.44) (rewritten System (5.31)) for the collocated cokriging 

weights with super secondary data that 

<f = Auper [ l - » f t ] . 
secondary 

As result, 

RY kYQ g • (RY rYZ) 
rsuper 

secondary 

: ^ Ar.o ~ ^Y£ 0 * T rrz ) 
r^super 

secondary 

1 _j i 
= RYkY0-<^ ( R 7 R r ) r r z = RYkY0-<^ rYZ (5.45) 

r^super /'super 
secondary secondary 

= rrz C1 - rlK ] - Auper P - r z % 1 rrz 
secondary Auper 

secondary 

= rrzt1 - r z K 1 - [1 - rz^z]»Vz = [1 - rJ^z]»Yz - [1 - r z K l r r z = 0-

Since matrix R y is a positive-definite matrix of correlations between collocated 

secondary data, its determinant is not equal to zero. As result, it follows from (5.45) that 

^r o ~ £ (^Y^YZ)
 = 0- Therefore, we have proved that 

r super 
secondary 

^Y„S>~4 (Rrryz)/?> /? = l>--->"sec-
r super 

secondary 

And, thus, we have shown that the two collocated cokriging estimators and their 

variances presented in (5.25)-(5.27) and (5.28)-(5.33) are exactly the same. 
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5.7. Extension of the Super Secondary Approach to Intrinsic 

Collocated Cokriging 

5.7.1. Intrinsic Collocated Cokriging with Multiple Secondary Data 

Intrinsic collocated simple cokriging can be implemented with multiple secondary data. 

The intrinsic collocated cokriging estimator and its estimation variance under the 

multivariate Gaussian model are given below 

ff "sec "sec N 

^ * / c « K ) = Z 4 , a 2 ' K ) + i;;Lr/„o^(Uo) + S S \ ^ K ) , (5.50) 
a=\ fi=\ pi=\ a=\ 

tt "sec "sec N 

^c^(uo) = l - Z ; l z , « ^ K - u o ) - £ ^ ; o P 7 , ; z - E S ; l r , , ^ , z ( u « - u o ) 5 (5-51) 
a=l fi=l fi-\a=\ 

where u0 is the estimation location, AZa, Ay a and Ay 0 are weights applied to the 

primary, secondary and collocated secondary data, respectively; p(ua - u 0 ) are spatial 

correlations between primary data and the primary variable at the location being 

estimated; pY z are correlation coefficients between primary and each collocated 

secondary variable; pY jZ(u^ - u 0 ) = pY >zP(up _ u o ) a r e spatial correlations between 

secondary data and primary data at the estimation location, a = 1,..., n; ju = l,..., nsec. 

The equations to compute the n + nsec(n + Y) intrinsic collocated simple cokriging 

weights are given below 

H "sec " "sec 

a=\ pi=\ a=\ JI=1 

n ^sec n "sec 

YjXZ,aPY„Z^a ~ «/») + S I ^ A ^ ("« " V + Zl^,.oPrl,,Tc (Ufl ~ Uo) = Pr(,z(.U/> """oX 
«=1 //=let=l fi=\ 

P = \,...,n, g = l,...,nsec, 
n "sec ft "sec 

(5.52) 

where the different correlation coefficients are calculated as 
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• p(ua -Up), a,jB = \,...,n, are spatial correlations between primary data; they 

are calculated directly from normal scores variogram / (h) ; 

• PrM,z(nf3-no) = Prtl,zP(Vfi-"o) and pYfiZ(Up-ua) = pYitZp(Up-ua), 

ju = l,...,nsec a,P = \,...,n, are spatial correlations between primary and 

secondary data. 

• A^(U«-V = ̂ V ^ ( U « - V ' V,$ = h...,nsw, a,p = 0,...,n, are 

correlations between secondary data. 

In order to perform the intrinsic collocated cokriging, we only require the variogram 

of the primary variable and the matrix of the correlation coefficients between multiple 

secondary data and primary and secondary data. 

5.7.2. Intrinsic Collocated Cokriging with Super Secondary Variable 

All secondary data can be merged as a linear combination into a single secondary 

variable using Equations (5.20)-(5.22). Then this super secondary variable can be used 

with the primary data in the single variable intrinsic collocated cokriging System: 

N N 

a=\ secondaiy secondary a=\ secondary secondary 

n N 

vfcCK(Vo) = l - T J
; l Z , a P ( n a - " o ) - \ ^ . oAuper ~ XXpe, ^ ,z(»a ~»o) » (5-54) 

Cc = \ secondary s e c o n d a r y a=l secondary secondary 

where 

Asuper , z K - U o ) = Auper P(»*-Uo) (5-55) 
secondaiy secondary 

The results of equations (5.50)-(5.51) are exactly the same as that of equations 

(5.53)-(5.54). This will be verified with a small example. A full proof would follow the 

logic of Section 5.6.1. 

5.7.3. Example 

Let us consider the following data configuration: 
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M (15.20) 

(10,10) ^ N 

u . 

(13,0) 

U 
2 

where at data locations ut and u2 both primary (yellow circles) and secondary 

information of two different types (red and blue squares) are available, while at the 

estimation location u0 only secondary data values of two different types are given. 

Precise information given in these three locations is summarized below. The data are in 

Gaussian units. 

Secondary I ( Yx) 

Secondary II (72) 

Primary (Z) 

u i 

-2.5 

-1.5 

-2 

u2 

-0.5 

•0.25 

-1 

u0 

-2 

-0.5 

unknown 

Also assume that the primary variable variogram is isotropic spherical with range 

of continuity equal to 10, the correlation between primary and each secondary variable 

and between secondary variables are given below. 

pZYi=0.6; pZY2=QA; pYiYi=0.S. 

Let us now estimate the value of the primary variable at the estimation location 

u0 based on all available information using full intrinsic collocated cokriging (two 

secondary variables are not merged) and intrinsic collocated cokriging with one super 

secondary variable and verify that results are the same. 

Full intrinsic collocated cokriging primary variable estimator and its estimation variance 

at location u0 is given by (see Equations (5.50)-(5.51)) 

2VJ ,K)=E^^K)+X^,O^K)+EZ^,« };K) (5-56> 
a=\ n=\ n=\ a=\ 
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2 2 

^/COfK^l-IXaPK -U0)-2X,o/V " I I ^ , « ^ ^ U « _Uo) (5-57) 

The weights for the above System can be calculated from System (5.52) with n - 2 and 

"sec = 2 -

After solving System (5.52) and substituting resulting weights into equations 

(5.56)-(5.57), we obtain the following full intrinsic collocated cokriging primary variable 

estimate and estimation variance at location u0 

Z*1CCK K ) = -1-444 and crfCCK(n0) = 0-622. (5.58) 

Intrinsic collocated cokriging with super secondary variable. The super secondary 

variable for intrinsic collocated cokriging can be calculated as follows (see Equation 

(5.20)) 

2 

Yc 7 
^super = ~ > (5 -59) 

secondary Psuper 
secondary 

where the weights calculated from System (5.21) are given by 

c, = 0.778 and c2 = -0.222; (5.60) 

and 

Auper = SLc»Pr»,z = VO.778-0.6-0.222-0.4 = 0.615. (5.61) 
secondary U ^=\ 

Thus, the super secondary variable is given by 

7super =1.2657,-0.362^, (5.62) 
secondary 

and the intrinsic collocated cokriging estimator of primary variable and its estimation 

variance at location u0 based on the super secondary approach is given by (see equations 

(5.53)-(5.54)) 

N N 

Z W ( U o ) = I X , a
Z ( 1 0 + \ i p e r ,07super ( U o) + Z ^ „ p e , ,«7super ( U « ) » ( 5 - 6 3 ) 

a=\ secondary secondary a=\ secondaiy secondary 

n N 

C r/CCJf(«o) = l - Z ; L ^ / 7 ( U « - " U o ) - \ u p c r .oAuper ~ 2 X u p O T ,aPl^r ,Z K ~ » o ) • ( 5 - 6 4 ) 
Cc=\ secondaiy secondary CC=\ secondary secondary 
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After calculating the intrinsic collocated cokriging weights and substituting them 

into equations (5.53)-(5.54), we obtain the following intrinsic collocated cokriging 

estimator and its estimation variance at location u0 

Z* / c a c (u 0 ) =-1.444 and afCCK(n0) = 0.622. (5.65) 

The results of the full intrinsic collocated cokriging (5.58) and intrinsic collocated 

cokriging with one super secondary variable (5.65) are exactly the same. 

5.8. Discussion 

Collocated cokriging is widely used in simulation because of its simplicity. The original 

Markov models with a single secondary data are prone to variance inflation leading to 

potential biases in the predictions. An intrinsic model of coregionalization and the use of 

secondary data at all primary data locations is proposed in this chapter to deal with this 

problem of variance inflation. The proposed approach employs full simple cokriging 

based on the intrinsic coregionalization model to calculate local distributions. 

Theoretical results and small examples demonstrate that the new methodology removes 

variance inflation, insures reproduction of the correlation between primary and secondary 

data and improves the reproduction of the variogram even when the primary and 

secondary variables differ significantly in continuity. 

Moreover, another interesting development of this chapter is a super secondary 

approach. Geostatistical modeling is improved when estimation is constrained to all 

available secondary data. Within the proposed super secondary framework the multiple 

secondary data are merged into a merged secondary variable. Then, intrinsic collocated 

cokriging can be used with the one merged variable. Under the Markov coregionalization 

model, this is exactly equivalent to multivariate intrinsic collocated cokriging. 
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CHAPTER 6 

Multiple Univariate SGS Honoring a 

Correlation Matrix 

This chapter investigates multiple univariate sequential Gaussian simulation. A new 

approach for correcting the multiple univariate sequential Gaussian simulation to honor 

the correlation between random variables at lag 0 is proposed. The correction approach is 

shown to perform well in several small examples and a case study. 

Section 6.1 reviews options for multivariate sequential Gaussian simulation. 

Section 6.2 presents a correction to the multiple univariate sequential Gaussian 

simulation to honor the correlation between random variables at lag 0. Section 6.3 and 

Section 6.4 show application of the developed correction technique in several small 

examples and a case study. Section 6.5 presents extension of the multiple univariate 

sequential Gaussian simulation to honor locally correlation between random variables at 

lag distance 0. A brief discussion of the results and a correction method is presented in 

Section 6.6. 

6.1 Multivariate Sequential Gaussian Simulation 

Univariate sequential Gaussian simulation can be easily extended to simultaneous 

modeling of several random variables. Then there are several options to consider. 
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Firstly, if a joint model of the spatial continuity for the N variables is available, 

then sequential Gaussian simulation with simple cokriging can be applied to multivariate 

simulation (see Chapter 2). Another possibility would be to apply sequential simulation 

with either collocated cokriging or intrinsic collocated cokriging (see Chapter 5 for 

details). However, if the secondary data information is not exhaustively sampled or the 

goal of simulation is generating multiple correlated primary variables there is also 

another option equally simple as SGS with intrinsic collocated cokriging. It is based on 

independent modeling of each random variable, but sampling with correlated residuals. 

The data on each individual random variable is used to calculate the mean and variance 

of the local conditional distribution for that variable via simple kriging. Simple kriging is 

performed as many times as there are variables. The variogram models to be used in 

multiple univariate simulation are modeled independently from each other; no inference 

of the joint model for spatial continuity is needed. Note, however, that this approach is a 

practical shortcut, and should not be considered as a replacement of full simple cokriging 

with a linear model of coregionalizetion. 

Before we explain multiple univariate SGS with correlated residuals, let us 

consider independent multiple univariate sequential Gaussian simulation (that is, multiple 

univariate SGS with independent residuals) first. The following algorithm can be devised 

for independent multiple univariate sequential Gaussian simulation: 

1. Transform the N variables into the standard Normal. 

2. Select a random path to visit each location to be simulated. 

3. Visit each location one by one and perform simple kriging for each variable to 

find the mean mSKj(xi) and variance cr^.(.(u) of the local conditional 

distributions for all TV variables. 

4. Draw a vector of independent standard normal random 

valuesR(u)r =[i?1(u),...,i?iV(u)]r. Then, calculate the vector of simulated 

values Z(u) r =[Zl(u),...,ZN(u)f for each of the N random variables at the 

unsampled location u as 

z O ) = msAu) + °SK (u)R(u)> (6-1) 
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where mSK(u)T =[mSKl(u),...,mSKN(u)f is the vector of simple kriging 

means; matrix 0^(11) is given by 

aSAu) 

°k,i(u) ° 
0 'SK,2 00 

0 
0 
0 

(6.2) 

0 0 

where values on the diagonal are equal to the square root of the simple kriging 

variances cr2
SK ;(u) obtained for the N variables in step 3. 

5. Add the simulated values to the database to be used in simulation of 

subsequent nodes. 

6. Repeat steps 3-5 until all locations are populated. 

Multiple equally-probable realizations can be created by changing the random 

number seed, that is, changing a random path and selecting different set of realizations. 

The shape of the conditional distributions is Gaussian ensuring that the simulated 

realizations for all variables will be standard normally distributed. The variogram 

reproduction is ensured by using not only data values in simple kriging but also simulated 

nodes. 

The correlation between the different random variables can be introduced into 

multiple univariate SGS by generating correlated residuals R(u) r =[i?1(u),...,i?JV(u)]r. 

The residuals R(u)? = [ ^ ( u ) , . . . , ^ (u)]r will be independent from location to location, 

that is, 

p(Ri(uk),RJ(ul)) = Cov(Ri(uk),RJ(ul)) = 0, Vi,j =1,...,N, Vk*l; (6.3) 

but correlated at the same location with correlation matrix p, that is, 

p(Ri(uk),Rj(uk)) = Cov(Ri(nk),RJ(uk)) = PiJ, V / J = 1,...,JV, V*. (6.4) 
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6.2. Reproducing the Correlation Matrix between Variables at 

LagO 

The global correlation matrix for the residuals, p , to be used in multiple univariate SGS 

can be found based on the target correlation matrix for the random variables to be 

simulated, ptarget. The procedure is as follows. 

Let us first calculate the correlation between two simulated values for variables 

Z, and Z . , respectively, at arbitrary location u in the study domain, /, J e {[,...,N}. 

These simulated values Z, (u) and Zj (u) in sequential Gaussian simulation are given by 

Z, (u) = mSKi (u) + CTSK >; (u)R, (u), 

Zj (u) = mSKJ (u) + aSKj (u)Rj (u), 

then due to independence between vector of residuals [i?,(u) i?y(u)]rand vector of 

simple kriging means [mSK, (u) mSK . (u)]r , 

p(Zi (u), Zj (U)) = Cov(Zi (u), Zj (U)) 

= Cov(mSKi (u), mSKj (u)) + crSKJ (u)aSKJ (u)Cov(R, (u), R} (u)) (6.6) 

= Cov(msKj (u)» msK j («)) + o'ac,/ (U)<TSKJ (u)Pij • 

Therefore, it follows from (6.6) that the average correlation between variables Z, and Z. 

is equal to 

P(Z, (u), Zj (U)) = Cov(mSKi (u), mSKj (u)) + aSKi (u)aSKJ (u)Pij; 

the average is taken over all locations u in the study domain. 

Then in order for the multiple univariate sequential Gaussian simulation to 

reproduce the target correlation between variables Z; and Zyat lag 0, the following 

equality must hold 

p ^ -p(Z,(u),Z,(u)) = Cov(mSKJ(u),mSKJ(xi)) + aSKj(u)aSKJ(u)PiJ. (6.7) 

Because the simple kriging mean values, mSK, (u) and mSK, (u) at any location of 

the study domain u are calculated based on the conditioning data and previously 

simulated nodes, the covariance between variables Zt and Zj at any location u within 
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study domain is a linear function in the correlation coefficient ptj. Thus, we can rewrite 

Equation (6.7) for the global correlation between random variables Z; and Zj as follows 

where ai} and by, i,j = l,...,N are constants calculated based on the Simple Kriging 

weights (and variances). Note that if the multiple univariate sequential Gaussian 

simulation is unconditional, then constant atj in Equation (6.8) is equal to 0 and 

^=b,Pr (6.9) 

The simplest approach for finding the constants atj and btj, i,j = l,...,N, in 

Equation (6.8) is the following: 

1. Independent (p0= 0, i* j = \,...,N) multiple univariate SGS realizations 

are generated to find atJ 's as the correlations between realizations for 

variables Zj, Zj, i, j = 1,..., N. Due to ergodic fluctuations, we expect a minor 

change in the result for correlations between realizations for different random 

variables. Therefore the value for each atj, {i ̂  j) = l,...,N, is taken as an 

average correlation between realizations for variables Z, and Zj. 

2. Fully dependent (i?;(u) = r, i = l,...,N, where r is a standard normal 

residual value generated for location u) multiple univariate SGS is generated 

to find bjj 's as the average (over all realizations) difference between the 

correlation of random variables Z; and Z. and atJ 's from (1), 

(i*j) = l,...,N. 

Thus, in order for the multiple univariate sequential Gaussian simulation to honor 

the correlation matrix between random variables at lag 0, ptarget, the residuals with the 

following correlation structure need to be generated at each step of the simulation 

<1, V(i*j) = l,...,N; 
V J} (6.10) 

p(Ri(u),Rj(u)) = piJ=-

p(Ri(u),Ri(n)) = p„=\ 

P'J , U , if 
P?*-«v 

h 
1 or - 1 , otherwise; 

V/ = l,...,iV. 
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It is important to note that the correction in Equation (6.10) results only in global 

reproduction of the target collocated correlation matrix, ptarget; this correlation matrix 

may not be reproduced locally due to correlation between variables Z, and Z. at lag 0 

being non-stationary (see Equation (6.6)). 

An unfortunate feature of the correction (6.10) is that the combined matrix of the 

correlations p to be used in the multiple univariate SGS to reproduce the target 

correlation p^86 ' is not necessarily positive definite. This is connected to the fact that the 

correlation between some variables needs to be magnified more (by is smaller) than 

between others. Therefore, if matrix (6.10) is not positive definite, a positive definiteness 

correction to this matrix must be applied. 

6.3. Unconditional Multiple Univariate SGS: Examples 

6.3.1. Example 1 

Let us consider the two standard normal random variables Zx and Z2 with the following 

variograms characterizing their spatial continuity 

yZi (h) = 0.1 • SpJ\6 (h) + 0.9 • Gausn (h) 

yZi (h) = 0.9 • Sp\6 (h) + 0.1 • Gausn (h) ' 

The correlation between the two random variables is assumed to be 0.5. Note the two 

random variables under study have very different spatial continuity. This example was 

specifically chosen to show that multiple univariate SGS can be efficiently used to 

simulate random variables with different continuity structures while reproducing even 

reasonably high correlation between them. The conclusions drawn from this example are 

considered general. 

Let us now apply multiple univariate sequential Gaussian simulation to generate 

100 unconditional realizations of the two random variables on the grid of 256 by 256 
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blocks of size 1 by 1 unit using their respective variogram models, that is, yz (h) and 

yz (h), so that the correlation at lag 0 between Zx and Z2 is 0.5. 

To find the correlation coefficient pu to be used in multiple univariate SGS to 

reproduce the target correlation p^m of 0.5, fully dependent and fully independent 

multiple univariate SGS must be generated first to find coefficients bn and an in (6.8). 

Note, however, because the simulation is unconditional coefficient al2 should be equal to 

0 within acceptable ergodic fluctuation. 

Figure 6.1 shows the histograms of the coefficients bu and an obtained in 100 

fully dependent and fully independent, respectively, multiple univariate SGS realizations. 

It can be seen from Figure 6.1 that coefficient au is virtually zero (-0.006) as expected 

and coefficient bn = 0.746. This implies that a correlation coefficient between residuals 

for generation of Zx and Z2 of 

/7 targe t 0 5 
A2 = ^ - = 7 ^ 7 = 0.670 (6.12) 

bn 0.746 

need to be applied in the multiple univariate SGS in order to reproduce the target 

correlation of 0.5. Figure 6.2 shows the distribution of the correlation coefficients 

between the two random variables under study obtained by multiple univariate Sequential 

Gaussian Simulation with residual's correlation coefficient equal to 0.670. Figure 6.2 also 

shows the distribution of the correlation coefficients between realizations for Zx and Z2 

obtained by multiple univariate SGS with residual's correlation coefficient equal to 0.5 

(target correlation); which is the conventional approach to multiple univariate SGS. 

Figure 6.2 shows that the correction approach works perfectly for this example; 

the target correlation is closely reproduced. The same cannot be said for the conventional 

approach, where the target correlation is set equal to the target correlation between 

variables; multiple univariate SGS in this case resulted in a correlation 0.367, which is 

more than 25% below the target. 

Figure 6.3 shows the variogram reproduction for Zx and Z2 obtained in multiple 

univariate sequential Gaussian simulation with correlation coefficient between residuals 

fixed at 0.670. 
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Figure 6.1: The histogram of the coefficients bn (a) and an (b) obtained in 100 fully 

dependent and fully independent, respectively, multiple univariate SGS. 
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Figure 6.2: Distribution of the correlation coefficients between Zl and Z2 obtained by 

the corrected multiple univariate SGS (a); and distribution of the correlation coefficients 

between Zx and Z2 obtained by conventional approach (b). 
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Figure 6.3: The variogram reproduction for ZY (a) and Z2 (b) obtained in the corrected 

multiple univariate SGS. 

Note that both variograms are closely reproduced within ergodic fluctuation. This is 

expected. The correlation between the residuals has no impact on the variogram structure. 

This is because residuals are independent from location to location. A proof of this is a 

straightforward extension of the proof for covariance reproduction in the univariate SGS 

(Deutsch, 2002). 

It is also interesting to note that the average largest achievable correlation in multiple 

univariate SGS between two random variables Zx and Z2 with spatial continuity 

characterized by yz (h) and yz (h) given by (6.11) is 0.746 (see Figure 6.1). Note that 

the correlation coefficient of 0.746 does not result in a valid LMC. 

6.3.2. Example 2 

Let us now consider five standard normal random variables Z,, i-l,...,5, with the 

following variograms characterizing their spatial continuity 
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yZi (h) = 0.1 • SphttQi) + 0.9 • Gaus32(h) 

yZ2 (h) = 0.5 • Exp20(h) + 0.5 • Sphw(h) 

yZ} (h) = 0.3 • Exp, (h) + 0.7 • Sph^2 (h) , (6.13) 

YZA (h) = 0.9 • Sp\6 (h) + 0.1- Gaus32 (h) 

yZs (h) = 0.5 • Sp^ih) + 0.5 • Gaus32(h) 

The correlation matrix between these variables is given below: 

Now let us consider multiple univariate SGS for simulation of the random 

variables that reproduce the correlation between variables at lag 0 on the grid of 256 by 

256 block of size 1 by 1 unit. The example is divided into 3 parts: 

1. multiple univariate SGS for the variables Z;, i = 1,2,3; 

2. multiple univariate SGS for the variables Zt, i = 1,.. .,4; 

3. multiple univariate SGS for all five variables, Zt, z'~l,...,5. 

The results of the conventional multiple univariate SGS will be compared to the corrected 

multiple univariate SGS proposed in this thesis. 

Note that this 2-D example was chosen small enough to easily analyze the results 

yet large enough to show realistic variations in the results. In particular, the five variables 

under study were specifically chosen to exhibit different spatial continuity structures 

since this is exactly the situation for which proposed correlation correction is developed. 

The limitation of the proposed correction technique in terms of negative-definiteness of 
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the corrected correction matrix is also illustrated. The conclusions drawn from this 

example are considered reasonably general. 

6.3.2.1. Multiple Univariate SGSfor ZX,Z2 and Z3 

To find the correlation coefficients pn, pn and p23 to be used in multiple univariate 

SGS to reproduce the target correlations of 0.7, -0.2 and -0.5, respectively, fully 

dependent and fully independent multiple univariate SGS realizations are generated to 

find the coefficients bn, bn, b23, au, au and a23 in Equation (6.8). Because the 

simulation is unconditional, the coefficients atJ, (i ^ j) -1,...,3, should be equal to 0 

within acceptable ergodic fluctuation. 

Figure 6.4 shows the distributions of coefficients by and ai}, (i ^ j) = 1,...,3, 

obtained by 100 fully dependent and fully independent realizations, respectively. It can 

be noted from Figure 6.4 that coefficients ay 's are, as expected, virtually zero; the 

coefficients by's are given below 

Z)]2 = 0.857; bl3= 0.476; b23= 0.835. (6.14) 

This implies that the following correlation coefficients need to be applied in the multiple 

univariate SGS 

p n = - ^ - = 0.817; 12 0.857 

As = ̂ = - = -0.420; (6.15) 
Hu 0.476 v ' 

/?„ = J 1 ^ - = -0.599. 23 0.835 

Figure 6.5 shows the distribution of the correlation coefficients pl2, pn and p23 

obtained by the corrected multiple univariate SGS. For comparison, Figure 6.5 also 

shows the distribution of the correlation coefficients that would be obtained by the 

conventional approach. The corrected approach results in almost perfect reproduction of 

the target correlations. The largest absolute mismatch in the correlation coefficients is 

0.004. Unfortunately, the same cannot be said about the conventional approach. 

130 



0.80 

0.70J 

0.60 

3" 0.50J 

§• 0.40J 

s 
£ 0.30. 

0.20J 

0.10 

0.0^ 

Perfectly Correlated Residuals: b12 
Number of Data 100 

mean 0.857 
std.dev. 0.013 

0.40 0.60 0.80 ' 1.bo' ' ' 1.2o' 
Correlation between Z1 and Z2 

a) 

Independent Residuals: a12 
Number ol Data 100 

mean -0.006 
std.dev. 0.073 

0.12. 

o 
<B 0.08. 
or 

u. 

0.04. 

0.0- JX 
-0.25 -0.15 -0.05 0.05 0.15 ' 0.25 

Correlation between Z1 and Z2 

b) 

0.50. 

0.40. 

Perfectly Correlated Residuals: b13 

6 0.30J 

0.20. 

0.1 o J 

0.0. 

Number of Data 100 
mean 0.476 

std. dev. 0.026 

0.40 
n 

0.60 0.80 1.00 1.20 
Correlation between Z1 and Z3 

Independent Residuals: a13 
0.30. 

0.20. 

0.10. 

0.0. ^u 

Number of Data 100 
mean -0.001 

std. dev. 0.033 

±L 
-0.25 -0.15 -0.05 0.05 0.15 ' ' 0.25 

Correlation between Z1 and Z3 

C) d) 

0.60. 

0.50. 

0.40. 

0.30. 

0.20 J 

0.10. 

0.0. 

Perfectly Correlated Residuals: b23 
Number of Data 100 

mean 0.835 
std.dev. 0.016 

0.40 0.60 .80 1.00 1.20 
Correlation between 22 and Z3 

0.30-

>. 0.20. 

Independent Resladuals: a23 
Number of Data 100 

mean 0.001 
std.dev. 0.028 

0.10. 

0.0. 
-0.25 -0.15 -0.05 0.05 0.15 0.25 

Correlation between Z2 and Z3 

e) f) 

Figure 6.4: Distributions of coefficients bu (a), bn (c), b23 (e), an (b), au (d), and a23 

(f) obtained by 100 fully dependent and fully independent, respectively, multiple 

univariate SGS. 
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Figure 6.5: Distribution of the correlation coefficients pn, pn and p23 obtained by the 

corrected multiple univariate SGS (a) and by conventional approach (b). 
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The largest absolute mismatch in the correlation coefficients in the conventional 

approach is more than 0.1, which is quite significant. 

Figure 6.6 shows the variogram reproduction for all three variables obtained in 

the multiple univariate SGS with corrected correlation matrix in Equation (6.15). All 

variograms are nicely reproduced within ergodic fluctuation. 

6.3.2.2. Multiple Univariate SGS for ZX,Z2,Z3, and Z4 

To find the correlation coefficients pn, pl3, pu, p23, p24 and p34 to be used in 

corrected multiple univariate SGS, fully dependent and fully independent multiple 

univariate SGS are generated first to find the coefficients bipatj, (i^ j) = 1,...,4, in 

Equation (6.8). Once again, because the simulation is unconditional, the coefficients 

afj, (i *• j) =1,. . .,4, should be equal to 0 within acceptable ergodic fluctuation. 

The following is a summary of the results for coefficients bipaip (i * j) = 1,.. .,4, 

an = -0.005; al3 = -0.002; au = 0.009; a23 = 0.005; a24 = 0.003; a34 = -0.004; 

bn = 0.858; bl3 = 0.478; bu = 0.744; b23 = 0.834; b24 = 0.949; b34 = 0.895; 

This implies that the following correlation coefficients need to be used in multiple 

univariate SGS: 

07 - 0 2 04 
pl2 = - ^ - = 0.816; A 3 =—^=- = -0.420; pu = - ^ - = 0.538; yn 0.858 n 0.476 u 0.744 „ m 

-0.5 n „ n 0.2 -0.01 n f t 1 1 PT, = = -0.600; pJA= = 0.211; p3A = = 0.011. 
23 0.834 24 0.949 M 0.895 

Note that the corrected correlation coefficients corresponding to the correlations between 

the first three random variables are exactly the same. This observation confirms the linear 

relationship in the correlation and independence of the solutions for the correlation 

coefficients. 

Figure 6.7 shows the correlation matrix between variables reproduced by newly 

proposed multiple univariate SGS. For comparison, Figure 6.7 also shows the correlation 

matrix reproduced by the conventional approach. The mismatch in the results for the 

correlation matrix obtained by the two approaches to multiple univariate SGS are shown 

in Figure 6.8. Note that the maximum absolute mismatch in the correlation obtained by 

the corrected approach is 0.005, while in the conventional approach it is 0.105. 
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Figure 6.6: Variogram reproduction for ZX,Z2, and Z3 obtained in the corrected 

multiple univariate SGS. 
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Figure 6.7: Correlation matrix between Zj,Z2,Z3, and Z4 reproduced by the corrected 

multiple univariate SGS (a) and by conventional approach (b). 
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a) b) 

Figure 6.8: The mismatch in the reproduced correlation matrix between Zj,Z2,Z3, and 

Z4 obtained by the corrected multiple univariate SGS (a) and by conventional approach 

(b). 

Figure 6.9 shows the variogram reproduction for all four variables obtained in the 

multiple univariate SGS with the corrected correlation matrix. All variograms, as 

expected, are nicely reproduced within ergodic fluctuation. 

6.3.2.3. Multiple Univariate SGS for All Five Variables 

The same procedure is applied to find the coefficients a^,^, (i ^ j) = 1,...,5, in Equation 

(6.8). The following is a summary of the results for the b^ 's coefficients: 

bu = 0.857; bu = 0.476; bu = 0.742; bl5 = 0.873; b2i = 0.834; 

b24= 0.949; b25 = 0.999; b34 = 0.895; b35 =0.818; b45 = 0.943; 
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Figure 6.9: Variogram reproduction for Zl,Z2,Z3 and Z4 obtained in the corrected 

multiple univariate SGS. 

This implies that the following correlation coefficients: 

07 - 0 2 04 
pl2=-^— = 0.S17; pu=—— = -0.420; pu = -^— = 0.539; 

As = 

Pis = 

0.857 
0.4 

0.873 
-0.2 
0.999 

0.476 
•0.5 

0.742 
0.2 

= 0.458; pn = — = -0.600; p24 =— : — = 0.211 
0.834 0.949 

m -0-01 n n n 0-15 rt1fi, = -0.2; pM = = 0.011; pi5 = = 0.183; 

PAS 

0.895 
0.3 

0.818 

0.943 
0.318. 

(6.19) 

As before, the corrected correlation coefficients corresponding to correlation between 

first four random variables remain unchanged. 

Note, however, that the combined matrix of correlation coefficients is not positive 

definite. The smallest eigenvalue of the corrected correlation matrix is -0.0434. Thus, a 
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correction must be applied. Specifically, to make the correlation matrix positive-semi-

definite, the off-diagonal elements in this matrix should be standardized by (1 - smallest 

eigenvalue + e), where £ is a very small value, e.g., 0.00001. In our case the off-diagonal 

elements are standardized by 1.0434. As a result, the positive-definiteness correction is 

minimal. 

The following matrix shows the input correlation matrix to the multiple univariate 

SGS (the correlation matrix was made positive definite) 

1.0000 

0.7829 

-0.4028 

0.5167 

0.4391 

0.7829 

1.0000 

-0.5748 

0.2020 

-0.1919 

- 0.4028 

-0.5748 

1.0000 

-0.0107 

0.1757 

0.5167 

0.2020 

-0.0107 

1.0000 

0.3048 

0.4391 

-0.1919 

0.1757 

0.3048 

1.0000 

Figure 6.10 shows the correlation matrix between variables reproduced by 

corrected multiple univariate SGS. For comparison, Figure 6.10 also shows the 

correlation matrix from the conventional approach. The mismatch in the results for 

correlation obtained by the two approaches to multiple univariate SGS are shown in 

Figure 6.11. Note that the maximum absolute mismatch in the correlations obtained using 

the corrected approach is 0.028, while in the conventional approach gives a 0.107 

difference. The mismatch in the reproduction of the target correlation coefficients 

obtained via corrected approach is slightly higher than before. This is connected to the 

correction of the input correlation matrix to make it positive definite. 
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6.4. Conditional Multiple Univariate SGS: Example 

Let us consider the same data as in Section 5.5.2. Figure 6.12 shows locations of 20 

primary data in the study domain of size 100 by 100 blocks of size 1 by 1 unit; primary 

data distribution, the crossplot between primary data and collocated secondary data and 

the distribution of the secondary data collocated to primary. All data are in Gaussian 

units. 

The following linear model of coregionalization describes the joint continuity of 

the primary and secondary data: 

y„ (h) = 0.3 • Expai=l0 (h) + 0.7 • Sph^ (h) 
a2=20 a2=40 

^ z ( h ) = 0.45-£xpfli=10 (h) + 0 .35-^ a i = 2 0 (h ) , (6.21) 
a2=20 a2=40 

yzz (h) = 0.8 • ExPai__w (h) + 0.2 • Spha^20 (h) 
a2=20 a2=40 

Now, let us consider simulating the primary and secondary random variables 

using corrected multiple univariate SGS. Figure 6.13 shows the distributions of 

coefficients au and bu obtained using the approach outlined in Section 6.2, 

au = 0.087 and bn = 0.842. 

Thus a correlation coefficient between residuals of 

A ? » -q 1 2 _ 0.8-0.087 
Az - —J^— - ~b^42~- - °-847 (6-22) 

needs to be applied in the multiple univariate SGS in order to reproduce the target 

correlation of 0.8. 

Figure 6.14 shows the distribution of the correlation coefficients between the 

primary and secondary random variables obtained by multiple univariate sequential 

Gaussian simulation with residual's correlation coefficient given in (6.22). Note from 

Figure 6.14 that the target correlation is nicely reproduced. 

Figure 6.15 shows the variogram reproduction for the primary and secondary 

random variables obtained in multiple univariate sequential Gaussian simulation with 

correlation coefficient between residuals fixed at 0.847. 
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Figure 6.12: Locations of the 20 primary data (a) and their distribution (b); the crossplot 

between primary data and collocated secondary data (c) and the distribution of the 

secondary data (d). The data are in Gaussian units. 

140 



bl2 

0.16. 

>. 0.12. 

ff 0.08. 

0.04. 

0.0. 
0.40 0.60 

Number of Data 100 
mean 0.842 

std. dev. 0.084 

0.80 1.00 
b12 

1.20 

al2 

0.16 J 

| M2-J 

I 0.08J 

0.04. 

O.Q. 

Number of Data 100 
mean 0.087 

std. dev. 0.082 

-0.25 -0.15 -0.05 0.05 0.15 0.25 
a12 

a) b) 

Figure 6.13: Distributions of coefficients bu (a) and an (b) obtained in conditional 

multiple univariate SGS example. 
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Figure 6.14: Distribution of the correlation coefficients between primary and secondary 

random variables obtained by the corrected multiple univariate SGS. 
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Figure 6.15: Variogram reproduction in the direction of major and minor continuity for 

primary (a) and secondary (b) random variables obtained in the corrected multiple 

univariate SGS. 

Note that variogram reproduction is acceptable (that is, average variogram reproduced by 

multiple univariate SGS is virtually the same as the target) within ergodic fluctuation. 

Also, it is interesting to note that the cross variogram between variables given in 

Equation (6.21) is well reproduced, see Figure 6.16. 
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Figure 6.16: Cross variogram reproduction in the direction of major and minor 

continuity obtained in the corrected multiple univariate SGS. 

6.5. Local Correlation 

With a reasonable practical effort, the correction proposed for multiple univariate SGS 

can be localized. That is, multiple univariate unconditional SGS with locally varying 

correlated residuals R(u) r =[R1(u),...,RN(u)]T can be developed. The procedure for 

finding the prescribed locally varying correlation matrix p(u) of the residuals to 

reproduce the target correlation-covariance matrix for the random variables to be 

simulated, ptarget, is as follows. 

The residuals R(u) r =[i?1(u),...,i?w(u)]2' are assumed to be independent from 

location to location, that is, 

piRXnk)tRJ{u,)) = CoviRl(?ik)tRJ(ul)) = 0, Vi,j = l,...,N, V** / ; (6.23) 

but correlated at the same location with locally varying correlation-covariance matrix 

p(u), that is, 

p(Ri(uk),RJ(uk))^Cov(Ri(uk),RJ(uk)) = PlJ(u), V/,y =1,...,7V, V*. (6.24) 

Let us now calculate the correlation-covariance between two simulated values for 

variables Z; and Z , respectively, at arbitrary location u in the study domain, 

i i i i i i i ' i ' i i i i i i ' i i ' i i i i • i 
0.0 10.0 20.0 30.0 40.0 50.0 

Distance 
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i,je{l,...,N}. These simulated values Z^u) and Zy(u) in sequential Gaussian 

simulation are given by 

Z, (u) = mSKi (u) + crSKJ (u)Ri (u), 

Zj (u) = mSKJ (u) + crSjf j (u)Rj (u), 

then due to independence between the vector of residuals [Rt (u) Rj (u)]T and the vector 

of Simple Kriging means [mSK t (u) mSK . (u)] r , 

p(Z, (u), Zy (u)) = Cov(Zt (u), Z, (u)) 

= Cov(mSKi (u), /w^. (u)) + aSKJ (u)aSKJ (u)Cov(Ri (u), i?y (u)) (6.26) 

= Cov(mSKi (u), mSKj (u)) + o"SJf,. (u)o"SjC j (u)pv (u). 

Note that 

*?, » (6-27) 

y(u)= ^ / t ^ Z ^ U , ) , 
/=1 

m S 

where Z( (u t ) , £ = 1,...,«,. (u), and Zy (u k ), / = 1,..., n} (u) denote the ni (u) and 

rij (u) closest simulated nodes for variables Z, and Z •, respectively; 

•̂ •sfits A: = 1, ,« ;(u), and XSKl, I = l , . . . ,«.(u), denote the Simple Kriging weights 

obtained for location u when estimating variables Z, and Z . , respectively. 

Because the simulation is unconditional the Simple Kriging means given in (6.27) 

can be rewritten as 

™SK,/(U) = IX*/(U*)» 
£., (6-28) 

wsc>j,(u)= 2]//^ ;(u ;), 

where Rt(uk), k = l,...,Ni(u), and ^ ( u k ) , / = 1,..., JV. (u) denote the Gaussian 

residuals generated for calculation of the ni (u) and nj (u) closest simulated nodes to 

estimation location u for variables Z; and Z . , respectively; /j'k, h = 1,..., JV; (u), and 

fi\, I = 1,..., Nj (u), denote the weights given to these residuals. 
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Then, 

Cov(mSKi(u),mSKJ(u)) = Cov\ 
(N,(u) NJ(U) 

2>I*,(ut), Y.HRM,) 
k=\ l=\ 

= Z Z K ^ C 0 v ( i ? ( . ( u J , i ? y ( u / ) ) = X > 2 / 7 / > , ( u J , 
4=1 1=1 s=l 

(6.29) 

where iV(u) denotes the number of location with residuals common to both random 

variables; JU'S,JU'S denote the residual weights assigned to location with residuals common 

to both random variables; p..(us) denotes the correlation between residuals at location 

with residuals common to both random variables s = 1,...,N(u). 

Moreover, because we aim at 

p(Zi(u),ZJ(u)) = p^et., 

the following equality must hold 

N(u) 

ptarget = £ ~j ~ip_ ( f J ^ } ^ ^ _ (U)CTSKJ (u)PiJ ( u ) . 

(6.30) 

(6.31) 
s=l 

Thus, in order for the multiple univariate unconditional Sequential Gaussian 

Simulation to honor the locally varying correlation matrix between random variables at 

lag 0, ptarset(u), the residuals with the following correlation structure need to be 

generated locally for each simulation location u 

A»H 

W(u) 

s=1 , if 
°V,/OO0VjO) 

N(VL) 

s=\ 

- 1 , otherwise; 

<1, 
(6.32) 

1 or 

A, 00 = 1, v/ = i isr. 

for any (i & j) — l,...,N. 

An unfortunate feature of the correction (6.32) (as is of global correction (6.10)) 

is that combined matrix of the locally varying correlations p(u) to be used in the multiple 

univariate SGS to reproduce the locally varying target correlation ptarget(u) is not 

necessarily positive definite. Therefore if matrix (6.32) is not positive definite, a positive 

definiteness correction to this matrix must be applied first at the location of non-positive-
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definiteness, then it can be used in multiple univariate SGS. The only situation where 

matrix (6.32) is known to be positive definite at any estimation location u is in the case of 

multiple univariate unconditional Gaussian simulation with only two random variables. 

6.6. Discussion 

Multiple univariate sequential Gaussian simulation reproducing correlation between 

variables at lag 0 represents a neat alternative to sequential Gaussian simulation with 

intrinsic collocated cokriging and sequential Gaussian simulation with simple cokriging 

in the case when the secondary data is not exhaustively sampled or simulation is aimed at 

generating multiple primary variables. 

The approach with correlated residuals is simple; it ensures reproduction of the 

mean variance and target direct variograms. Moreover, sometimes even the cross 

variograms between variables are reproduced quite well. The newly proposed approach 

supplements other well founded techniques for reproducing lag 0 correlation matrix such 

as kriging or cokriging of principal components or minmax autocorrelated factors. The 

advantage of the multiple univariate sequential Gaussian simulation reproducing 

correlation between variables at lag 0 over these other techniques is that it ensures 

reproduction of the variogram models and covariances. 

A drawback of the proposed approach is possible non-positive definiteness of the 

correlation matrices for the residuals to be used in multiple univariate Sequential 

Gaussian Simulation to honor correlation between variables at lag 0. 

The global correction for the correlation matrix of residuals is "global" over the 

entire domain under consideration. The correction ought to be different depending on the 

location of nearby conditioning data and the size of the study domain. That is, the a's and 

&'s are calculated in expected value over all locations. This is a practical approach with 

limited consequences. 
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CHAPTER 7 

Discussion and Conclusions 

Despite the widespread used of geostatistical techniques, there are unresolved problems 

with commonly applied geostatistical estimation and simulation methods. These 

problems include variance inflation, biased reproduction of multivariate statistics, biased 

estimation or difficult implementation. This thesis develops theoretically sound and/or 

practical methodologies for improved geostatistical estimation and simulation. Improved 

methodologies have been proposed for the following five important longstanding 

problems in geostatistics: 

1) String effect of kriging; 

2) Variance inflation of collocated simple cokriging; 

3) Accounting for multiple secondary attributes in collocated cokriging; 

4) Obtaining a combined ('best') measure of local uncertainty; and 

5) Correcting multiple univariate sequential Gaussian simulation with correlated 

residuals. 

The main results and conclusions that can be extracted from this research related 

to these problems are summarized below. 
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7.1. Summary 

7.1.1. Correcting the String Effect 

Kriging assigns unreasonably large weights to the end samples in strings of data. Strings 

of data are often observed in mining and petroleum applications where the data are 

collected along drillholes or wells. The weights are theoretically valid and optimal in a 

stationary multivariate Gaussian setting; however, the large weights applied to the 

boundary samples ('string effect') can cause problems in practical estimation and 

simulation especially when the domain under study is non-stationary, that is, when the 

data at the ends of the finite string the data values are higher or lower than in the middle 

of the string. 

A number of ad-hoc solutions have been developed for the string effect of kriging. 

The most accepted are to limit the number of data from a drillhole, wrap the string, or to 

extend the string and discard weights at the end samples. These ad-hoc approaches aim at 

fixing the string effect either by changing the data configuration or the covariance 

function. None of them provides an authomatic constrained solution with a well defined 

measure of optimality. 

Two new approaches for correcting thestring effect are proposed. These methods 

are distance constrained kriging and finite domain kriging. Distance constrained kriging 

method corrects the string effect by constraining the kriging weights to have a certain 

distance influence structure. That is, the weights are ordered with respect to distance from 

the unsampled location: the closest data in the string is constrained to receive the largest 

weight; the second closest data is constrained to receive the second largest weight and so 

on. The data in the string located furthest from the estimation location is assigned the 

smallest weight. The optimal distance constrained kriging estimator is obtained by 

minimizing the estimation variance subject to these distance constraints. 

The distance constrained kriging method for estimation in a finite domain 

possesses several important properties. Distance constrained kriging estimator is linear 

unbiased and exact. Similar to inverse distance interpolation, the distance constrained 

kriging orders weights according to the distance. However, as in both ordinary and 

148 



simple kriging, the magnitude of the weights accounts for the spatial continuity of the 

variable under study through the variogram model. Like traditional kriging, distance 

constrained kriging takes into account the redundancy of data (defined by data-to-data 

covariance) in the string and closeness of the data in the string to the estimation location 

(defined by data-to-estimation point covariance). 

A second method for correcting the string effect of kriging, that is, finite domain 

kriging, is based on kriging with a successively larger number of data. The total number 

of relevant neighbor data (n) are established first, then n kriging matrices are found and n 

kriging systems are solved subsequently to arrive at kriging weights that allow all data in 

the string to be considered end samples. The first kriging matrix has only the closest 

single data value {n-\ weights for the rest of the data are set to zero), the second has the 

two closest data (n-2 weights are set to zero), and so on. The final matrix is computed 

based on all n data. Finite domain kriging estimator is obtained as an average (or 

expected value) of the optimal kriging estimators for different search neighborhoods. 

The finite domain kriging estimator is also unbiased and exact. It has similar 

characteristics to both inverse distance and kriging. However, on the contrary to distance 

constrained kriging, finite domain kriging not only removes large weights assigned for 

end samples (string effect), but also ensures only minimal correction of the kriging 

weights. No constraints on the weights that may lead to suboptimal estimation are 

introduced. Furthermore, the finite domain kriging is convergent. That is, estimation of a 

particular location of interest based on a very long ('infinite') string of data is virtually 

equivalent to estimation of this particular location based on a long portion of this string. 

Both newly proposed methods for correcting the string effect are applicable when 

the data at the end of strings of data are somehow anomalous, for example, with thin 

deposits with vertical trends. A small case study in Chapter 3 shows that finite domain 

kriging and distance constrained kriging provide improved estimates. In this particular 

case study, finite domain kriging was shown to result in stronger correction; however, 

distance constrained kriging performed better in jackknife validation. The situation could 

be different in different areas or with different data sets. Note also that when applying 

"string effect" corrected kriging approaches a special caution must be taken. This is 

because when the sudy domain is stationary and the estimated covariance of the data 
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closely approaches the true covariance model, traditional kriging approaches will provide 

by construction the best estimates. In this case correcting the string problem to account 

for non-stationarity has the consequence of providing sub-optimal weights and estimates. 

7.1.2. Uncertainty as the Overlap of Distributions 

An important task in modern geostatistics is the assessment and quantification of resource 

and reserve uncertainty. This uncertainty is required for risk assessment and decision

making. There are many different methods/interpolation techniques to build models of 

resource uncertainty including kriging, cokriging and inverse distance, etc. Each method 

leads to different results and is good in different senses, e.g., simplicity, robustness, 

reliability, flexibility, geological realism or statistical accuracy. Because there is no 

unique technique that can be regarded as the best one for any area or spatial and temporal 

scale in terms of its accuracy and profitability, researchers need to combine spatial 

predictions and associated models of uncertainty obtained by different models to get a 

best result given available information. There are many different ways to combine local 

estimators of uncertainty. These include combing local uncertainties by a linear weighted 

average or, if there is belief that estimators are in some sort of disagreement, then multi

modal local uncertainties calculated as the maximum of the local uncertainties obtained 

by different estimation techniques can be used. 

In Chapter 4 another interesting approach for combining alternate local 

conditional distributions is proposed. This approach, referred to as overlap uncertainty, 

forces a compromise between different estimators by calculating the local uncertainty as 

the minimum of the local uncertainties obtained by these estimation techniques (scaled to 

1). The overlap uncertainty approach is illustrated using overlap between simple kriging 

and inverse distance methods. Both simulated and real case studies are considered. It is 

shown that overlap uncertainty estimator can result in significantly narrower intervals for 

the local uncertainty. Different local conditional distributions could result in wider, not 

narrower, intervals of uncertainty. This would represent the fact that estimators are in 

significant disagreement at the unsampled location. 
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Moreover, it is noted that the results for the overlap uncertainty estimator are 

sensitive to the estimators used for overlap of uncertainty. Before applying the proposed 

overlap technique, one should always check whether the local distributions are accurate. 

Also it must be noted that the overlap uncertainty approach is only aimed at 

combing alternate local conditional distributions of continuous variables with an infinite 

support. In should not be applied to discrete variables or continuous variables with a 

finite support. 

7.1.3. Intrinsic Collocated Cokriging 

Simulation is a powerful tool for modeling variables that cannot be described 

deterministically due to their inherent complexity. A great number of methods have been 

developed for joint simulation of dependent random variables. One of the most popular 

and simplest methods for modeling primary variable based on extensively sampled 

secondary information is sequential simulation with collocated simple cokriging. The 

method is widely used because of its simplicity; the correlation coefficient between the 

primary variable being modeled and the secondary data is the only statistic required to 

integrate the secondary data in estimation/simulation. The collocated cokriging approach 

is built on a Markov-type hypothesis by which collocated secondary information is 

assumed to screen further away data of the same type. While Collocated Simple 

Cokriging with a Markov model of coregionalization is shown to perform well in 

estimation, an unfortunate feature of this technique when applied in simulation is 

variance inflation. The relatively minor variance inflation compounds in the sequential 

simulation process leading to a serious problem of a lack of histogram reproduction. 

Chapter 5 investigates the sources of variance inflation. As a result of theoretical 

analysis, it is shown that the main reason for variance inflation is not the Markov 

assumption, but using only one collocated data in cokriging. When only one collocated 

data is used, the correct covariance between the new estimate and the previously 

calculated estimates cannot be ensured. When collocated simple cokriging is used in 

sequential simulation mode, the incorrect covariance between simulated data is translated 

into a bias of subsequent locations. This is because previously simulated data are used as 
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conditioning data for subsequent simulated nodes. The simulated values do not have the 

correct covariance between each other. As a result, incorrect weights and biased estimates 

are obtained and variance inflation is observed. 

A solution to the problem of variance inflation in collocated cokriging has been 

developed. Sequential simulation with cokriging based on the intrinsic model (intrinsic 

collocated cokriging) instead of the Markov model is considered. An intrinsic model of 

coregionalization is adopted with secondary data at the location being considered and at 

the locations of the primary data. The proposed cosimulation approach is as simple as 

collocated cokriging, that is, the correlation coefficient between the primary variable 

being modeled and secondary data is the only statistic required to integrate the secondary 

data in estimation/simulation. Through theoretical results and small examples it is 

demonstrated that the new intrinsic collocated cokriging methodology removes variance 

inflation, ensures reproduction of the correlation between primary and secondary data and 

improves the reproduction of the variogram even when the primary and secondary 

variables differ significantly in continuity. 

To further improve practical implementation of the intrinsic collocated cokriging 

in the case of exhaustive multiple secondary data a novel approach to account for 

multiple variables simultaneously is also developed in Chapter 5. This approach is aimed 

at (1) merging all secondary data into a single super secondary variable, then (2) 

implementing intrinsic collocated cokriging with the single variable. The proposed 

technique results in the same results as would be obtained via "full" approach using all 

multiple secondary variables simultaneously. The novel super secondary methodology is 

very important since most commercial software allows using only one secondary data. 

Now users can apply super secondary simplification to obtain a geostatistical model that 

accounts for all multivariate secondary variables simultaneously, not only for one deemed 

most correlated or most relevant. 

7.1.4. Multiple Univariate SGS Honoring a Correlation Matrix 

Multivariate simulation is a longstanding problem in geostatistics. Fitting a model of 

coregionalization to many variables is difficult; however, the matrix of collocated 
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correlation coefficients is often well informed. One option for multivariate simulation 

without a linear model of coregionalization is sequential Gaussian simulation with 

intrinsic collocated cokriging (see Chapter 5). However, this option is only applicable 

when the secondary data are exhaustively sampled. If this is not the case or when we are 

dealing with simulation of several dependent primary random variables another approach 

called sequential Gaussian simulation with correlated residuals is used. This simulation 

approach is based on performing a matrix simulation with LU decomposition of the 

correlation matrix at each step of sequential simulation. Modeling of each random 

variable is performed independently. The data on each individual random variable is used 

to calculate the mean and variance of the local conditional distribution for that variable 

using simple kriging. Simple kriging at each location is performed as many times as there 

are variables. The variogram models for multiple univariate simulation are modeled 

independently from each other. Performing a matrix simulation with LU decomposition 

of the correlation matrix at each step of sequential simulation (that is, multiple univariate 

simulation with correlated residuals) is implemented in some software. This is because 

multiple univariate SGS with correlated residuals has many desirable features including 

reproduction of the target mean and variance as well as target variogram models. The 

target correlation matrix, however, is not reproduced due to conditioning to local data and 

a combination of the variable ordering and the sequential/LU decomposition. 

This thesis investigates the problem of collocated correlation being not 

reproduced. Chapter 6 develops a correction procedure to calculate a modified correlation 

matrix that leads to reproduction of the target correlation matrix. The theoretical and 

practical aspects of this correction are developed. The 'corrected' multiple univariate 

simulation with correlated residuals is shown to ensure reproduction of all target 

statistics, that is, mean variance and target direct variograms in several small examples 

and a case study. It is also noted that potential drawback of the proposed approach is 

possible non- positive definiteness of the correlation matrices for the residuals to be used 

in multiple univariate sequential Gaussian simulation to honor correlation between 

variables at lag 0. 
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7.2. Future Work 

There are a number of other geostatistical problems that were not addressed in this 

research but may be considered in the future. The following are some ideas for future 

research. 

7.2.1. Improving LU/P-field Simulation 

In recent years a multivariate simulation approach relying on the probability field (p-

field) simulation has gained attention due to its convenient implementation (see Chapter 

2). P-field simulation is performed in 2 steps: (1) the local distributions of uncertainty 

are established at each location for each of the random variables, and (2) simulated values 

are drawn from these local distributions of uncertainty with correlated random numbers. 

The correlated random numbers are generated in such way that joint correlation matrix 

between random numbers corresponding to different random variables is the target matrix 

of correlations C. To achieve this an LU approach is frequently employed: (1) 

unconditional sequential Gaussian simulation is generated for each variable with 

respective variable variogram; (2) Cholesky decomposition of the correlation matrix C is 

used to obtain symmetric lower and upper triangular matrices L and U; (3) Lower 

triangular matrix L is multiplied by the matrix of the unconditional Sequential Gaussian 

realizations from (1). 

P-field simulation is attractive for multivariate simulation because it separates the 

construction of the local distributions of uncertainty and the Monte Carlo sampling from 

them. However, there are two well know artifacts of p-field simulation: (1) the local 

conditioning data almost always appear as local minima and maxima and (2) the 

covariance is not reproduced in the presence of conditioning data. The reason for the 

covariance matrix not being reproduced is that in the presence of conditioning data, the 

covariance becomes non-stationary. The covariance values change depending on the 

closeness to conditioning data. Moreover, an LU approach itself suffers from the target 

correlation matrix between variables (matrix Q being not reproduced. 
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A new implementation of the multivariate p-field/LU approach should be 

proposed. A vector correlated sequential Gaussian simulation approach with non-

stationary covariance should be developed to obtain the correlated random numbers to be 

drawn from the local distributions of uncertainty in the p-field simulation. 

7.2.2. Testing for a Multivariate Gaussian Distribution 

The most common simulation approach is Gaussian simulation. Each variable is 

transformed to a Gaussian distribution. This ensures a univariate Gaussian distribution of 

each variable; then, an assumption of multivariate Gaussian distribution is made. Real 

multivariate distributions are not likely multivariate Gaussian and show such non-

Gaussian features as non-linearity and heteroscedasticity. In this case, Gaussian 

simulation may not reproduce important aspects of the spatial variability of the 

phenomenon under study. This could result in biased predictions. Therefore, it would be 

interesting to test how far the data depart from the multivariate Gaussian distribution; the 

decision of stationarity could be reconsidered or a different multivariate distribution 

considered. Tests for multivariate Gaussianity, however, require data independence, 

which is rarely the case in geostatistical modeling. Different techniques should be 

reviewed and a new testing methodology needs to be developed. 

7.2.3. Variogram Upscaling 

Integration of data from multiple sources and/or multiple scales is a common, yet 

challenging aspect of geostatistical modeling. Common approaches to data integration 

are based on a cokriging framework that often assumes the input variogram/covariance 

models of coregionalization are at a scale consistent with the data and the model grid. 

The scaling laws for the variogram have often been applied to ensure consistency of the 

input variogram model; however, these laws are based on a strict assumption of 

invariance of the variogram shape. The theoretically derived approach presented in 

Appendix C makes no such assumption. In fact, the examples show that there is a change 

in the shape of the variogram, specifically a smooth Gaussian structure at short scale can 
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be expected with upscaling to a larger volume. This is consistent with the effects of 

block averaging. 

A practical approach to determine directly upscaled variograms is based on a 

numerical integration that approximates the analytical integral of these variogram 

models. As with average variogram or average covariance calculations, the 

approximation is robust given sufficient discretization. To make this approach practically 

applicable a framework for direct variogram fitting should be developed. Moreover, 

newly developed approach presents numerous other exciting future research prospects. 

One area for further development is a method to downscale the block scale variogram, 

such that fine scale models can be constructed. This is the same objective as the work of 

Kupfersberger et al (1998), but the goal here will be to avoid use of the scaling laws. 

Another possible area of research will be to develop a linear model of coregionalization 

that is consistent at all scales, which could then be used to truly integrate data at different 

supports without any prior compositing required. 

7.2.4. Accounting for the Uncertainty in Mean 

An important goal of geostatistical modeling is to assess output uncertainty after 

processing realizations through a transfer function, in particular, to assess the uncertainty 

in the reserves. The decisions of stationarity and a modeling method are critical for 

obtaining reasonable results. Uncertainty in reserves is affected by the amount of local 

data and uncertainty in the modeling parameters. Oftentimes the uncertainty in the input 

parameters, such as mean, univariate distribution and variogram, to geostatistical model 

is ignored. As result, global uncertainty is underestimated. The understatement of 

uncertainty is especially significant for large reservoirs with sparse well control - local 

fluctuations above and below average cancel out and the realizations imply a very small 

uncertainty. Accounting for uncertainty in the parameters, especially the mean, is very 

important for a realistic assessment of uncertainty. There are several techniques for 

calculating the uncertainty in required input parameters. These include the bootstrap, and 

spatial bootstrap. 
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A standard approach to account for parameter uncertainty is to use different 

reference distributions in sequential simulation. Different reference distributions are 

obtained as direct realizations of a chosen uncertainty assessment technique. It is believed 

that such inclusion of parameter uncertainty and local fluctuations lead to a set of 

realizations that represent the local variations in reservoir parameters and larger scale 

uncertainty. It would be interesting to compare this commonly accepted approach with 

direct incorporation of the uncertainty in mean in simulation. In particular, in sequential 

Gaussian simulation to account for uncertainty in mean, the global mean of 0 can be 

modified according to its uncertainty distribution. 
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APPENDIX A 

Statistical Approach to Inverse 

Distance Interpolation 

Inverse distance interpolation is a robust and widely used estimation technique. Variants 

of kriging are often proposed as statistical techniques with superior mathematical 

properties such as minimum error variance; however, the robustness and simplicity of 

inverse distance interpolation motivate its continued use. This Appendix A presents an 

approach to integrate statistical controls such as minimum error variance into inverse 

distance interpolation. The optimal exponent and number of data may be calculated 

globally or locally. Measures of uncertainty and local smoothness may be derived from 

inverse distance estimates. 

A.l. Introduction 

One of the most important problems in the geo- and environmental sciences is spatial 

prediction. Spatial predictions are required for planning, risk assessment, and decision

making. Typical applications include determining the profitability of mining an orebody, 

management of soil resources, pest management, designing a network of environmental 

monitoring stations, and quantifying the uncertainties inherent in spatial predictions 

(Weisz et al, 1995; Gotway et al., 1996; Moyeed and Papritz, 2002). 
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Spatial prediction techniques, also known as spatial interpolation techniques, 

differ from classical modeling approaches in that they incorporate information on the 

geographic position of the sample data points (Journel and Huijbregts, 1978; Cressie, 

1993). Spatial predictions offer means of describing a variety of responses over different 

spatial scales (Schloeder, et al., 2001). They provide a unique and smooth property 

distribution that reproduces the sample points (conditioning data); spatial prediction 

techniques aim at the local accuracy of resulting uncertainty distributions (Isaaks and 

Srivastava, 1989; Journel et al., 2000). The most common interpolation techniques 

calculate the estimates for a property at any given location by a weighted average of 

nearby data. Weighting is assigned either according to deterministic or statistical (spatial 

covariance) criteria. When a statistical criterion is used, the field is considered as a 

random process and the optimality of the averaging method is determined in terms of 

minimizing the estimation variance. When a deterministic criterion is used, the measures 

of optimality are arbitrarily chosen (Borga and Vizzaccaro, 1997). Among statistical 

methods, geostatistical kriging-based techniques, including Simple and Ordinary Kriging, 

Universal Kriging and Simple Cokriging (see Journel, 1986; Cressie, 1993; Deutsch, 

2002) have been often used for spatial analysis. Among deterministic methods, Inverse 

Distance Weighted interpolation and its modifications (see Franke, 1982; Nader and 

Wein, 1998) are the most often applied. 

In this Appendix A, we expand the applicability of inverse distance methods by 

introducing a statistical formalism. The proposed formalism is based on the assumption 

of stationarity and is aimed at providing the estimation variance at the unsampled 

locations as a measure of accuracy. We propose a general approach to find the optimal 

exponent value and the optimal number of neighboring points to be used in estimation. 

Inverse distance interpolation is very sensitive to the number of data used in interpolation 

and to the exponent value; a significant improvement in estimation precision can be 

achieved by selecting optimal values (Kravchenko et al., 1999). Presently, however, 

there is no exact recommendation about the choice of exponent value and the optimal 

number of neighboring points to be used in the inverse distance estimation. A number of 

researchers approached this problem and their recommendations are contradictory. For 

example, in the case of the inverse distance squared interpolation Morrison (1974), 
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MacDougall (1976), Peucker (1980), and Hodgson (1992) recommended to use 

respectively, 3<k<7,6<k<9, k<6, and 4 < k < 7 data; however, Declercq (1996), 

recommended 4 < k < 8 for "smooth" surfaces and 16 < k < 24 for abruptly changing 

surfaces. There exists also an approach for optimizing inverse distance weighted 

interpolation globally by selecting distance exponent values that minimize cross-

validation (or jackknife) errors of prediction (Muleller et al., 2005; Rojas-Avellaneda and 

Silvan-Cardenas, 2006). The effectiveness of this approach has not been critically 

evaluated. 

In this Appendix A we document the sensitivity of the inverse distance estimation 

to the number of data and the exponent used in estimation. As direct result of the 

sensitivity analysis, a local inverse distance interpolation approach is proposed to create 

estimates with minimum achievable estimation variance for the inverse distance 

interpolation. 

A.2. Background: Kriging versus Inverse Distance 

Interpolation 

Kriging is a well-proven technique that provides the best linear unbiased estimate and its 

variance at the unknown location. It is an exact interpolator in the sense that the 

estimation at a data location returns the original data value. In theory, kriging is a 

statistically optimal interpolator in the sense that it minimizes estimation variance when 

the variogram (measure of spatial continuity of the variable under study) is known and 

under the assumption of stationarity. 

Inverse distance weighting estimates the variable of interest by assigning more 

weight to closer points. It is a simple technique that does not require prior information, 

that is, variogram model, to be applied to spatial prediction. Despite this simplicity, 

inverse-distance estimators are shown (experimentally) to be quite sensitive to the type of 

database or data characteristics (e.g., skewed/unskewed distribution, isotropic/anisotropic 

phenomenon, on regular grid/clustered data, etc.), to the number of neighbors used in the 
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estimate, and to the exponent of distance used in weighting (Weber and Englund, 1994). 

In practical applications, inverse distance weighted interpolation may be preferred over 

kriging-based techniques when there is a problem of making meaningful estimates of the 

field spatial structure from sparse data (Wahba, 1990; Hutchinson, 1993). It is also used 

when a quick visualisation of the variable under study is required (Borga and Vizzaccaro, 

1997). Moreover, a large number of comparative studies among different interpolators 

found that depending upon the situation at hand, inverse distance weighting can be as 

good or better than geostatistical kriging-based techniques (Weber and Englund, 1992; 

Gallichand and Marcotte, 1993; Dingman, 1994; Boman et al , 1995; Brus et. al , 1996; 

Declercq, 1996; Dirks et al., 1998; Moyeed and Papritz, 2002; Kravchenko, 2003; 

Mueller et al., 2004; Brouder et al., 2005). These studies were based on geologically 

sound visual appearance; cross validation and jackknife, which involves consecutively 

removing a data value from the sample data set and interpolating to that site using the 

remaining conditioning data values, then comparing the estimated values against the true 

data (Isaaks and Srivastava, 1989); robustness; or measures of response variables derived 

from the interpolated property. Therefore, it may be important to analyze the inverse 

distance weighted interpolation approach in greater detail with the aim of improving it. 

The main advantages of kriging over inverse distance interpolation are cited as (1) 

robustness of estimates with respect to the number of data used in estimation (four 

nearest neighbors appear to be generally inadequate for kriging; however, change in the 

kriging estimates between 12 and 20 neighbors is minimal), (2) ability to take into 

account the spatial structure of the data points (anisotropy) and (3) availability of the 

estimation variance that yields a measure of the accuracy of any single interpolated value. 

This measure can have a dual role. Firstly, it evaluates the reliability of our estimates. 

Secondly, it can serve as a guideline to identify the most uncertain areas for further 

measurements (Rouhani, 1985). 
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A.3. Inverse Distance Interpolation 

An inverse distance interpolation is one of the simplest and most popular interpolation 

techniques. It combines the proximity concept with the gradual change of the trend 

surface. An inverse distance (ID) weighted interpolation is defined as a spatially 

weighted average of the sample values within a search neighborhood (Shepard, 1968; 

Franke, 1982; Diodato and Ceccarelli, 2005). It is calculated as 

Z*(u) = X4Z(u,), (A.1) 
1=1 

where u is the estimation location, ui,i = l,...,n, are the locations of the sample points 

within the search neighborhood, Z * (u) is the inverse distance estimate at the estimation 

location, n is the number of sample points, Xi,i = \,...,n, are the weights assigned to 

each sample point, and Z(u,-), i = l,...,n, are the conditioning data at sample points. The 

weights are determined as 

1 ^ 

4= .̂ f y
v C^1 '- '")' (A-2> 

i=l KdiJ 

where dt are the Euclidian distances between estimation location and sample points, and 

exponent p is the power or distance exponent value. Note that the sum of the inverse 

distance weights Zi,i = \,...,n, is equal to 1, that is, 

n 

1=1 

The most common value applied for the power p is 2; then estimator in (A.l)-

(A.2) is called inverse squared distance (ISD) interpolator. However, any value for p can 

be chosen. As p increases, the interpolated value by inverse distance is assigned the 

value of the nearest sample point, that is, inverse distance estimate becomes the same as 

estimate produced by polygonal method. (Diadato and Ceccarelli, 2005). Several 

modifications of the inverse distance method are developed including gradient inverse 

distance interpolation (GIDW) (Nalder and Wein, 2000). 
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A.4. Statistical Formalism 

A.4.1 Stationarity 

The uncertainty in the true value at an usampled location z(u)e A can be modeled using 

cumulative probability distribution function of a random variable Z(u), 

F(u;z) = Prob{Z(u)<z}. 

This probability distribution function can be thought of as being a model of the lack of 

knowledge about the value of the variable under study at the usampled location u. 

Repetitive samples are needed to infer any statistic. Unfortunately, in the spatial context 

repetitive samples are not available. A measurement cannot be repeated at the same 

location u to obtain probability distribution of the random variable Z(u). Stationarity is a 

two part decision required for statistical prediction: (1) a decision to pool data for 

common analysis, and (2) a decision of the location-independence of the random function 

probability distribution and all its moments by translation over the domain A. First order 

of stationarity assumes that the mean of the variable of interest is constant throughout the 

domain A; second order of stationarity assumes that the variance of data is constant 

throughout the study domain A (Deutsch, 2002). That is, 

E(Z(u)) = »i, V u e i ; 
(A3) 

Var(Z(u)) = E(Z(u) - m(u))2 =(72, V u e i 

4.2. Mean and Variance of the Inverse Distance Estimator for the 

Stationary Domain 

The mean and variance of the inverse distance estimator Z * (u) at estimation location u 

given by (A.1)-(A.2) can be derived under the assumption of stationarity as follows 

172 



E(z * (n» = E[ j^z^) ] = j ;w« , ) ) = «Z4 =»«; 
7 » \ M » „ w (A-4) 

Var(Z^n)) = V a r | 2 ^ ( i i < ) ] = Z S A . ^ C o v ( Z ( , I i ) ' Z ( , , ; ) ) J 

where Cov(Z(u,.),Z(u.)), i,j = l,---,n, denotes data-to-data covariance function 

calculated under assumption of stationarity though the semivariogram model 2/(h) 

(Journel and Huijbregts, 1978). 

The estimate and variance of the inverse distance estimator at the data location are 

set to the data value at that location and stationary domain variance <J2 , respectively. 

Note, however, that despite neither the IDW estimate and variance at the data location are 

defined; it can be shown that they converge in a limit to the data value at that precise 

location and stationary domain variance <j2, respectively. 

Under stationarity, the variance at each location of the domain should be exactly 

equal to the stationary domain variance a2. However, the map of the inverse distance 

estimates is smooth. The smoothing effect of inverse distance interpolation technique is 

directly related to the IDW variance via this expression 

Smoothing effect = a2 - Var(Z * (u)) = o-2~YJ1t V,Cov(Z(u,) , Z(uy)). (A.5) 
1=1 y=i 

Note that smoothing effect of the inverse distance interpolator in (A.5) can be also 

referred to as the missing variance. This is because by adding the variable with variance 

(A.5) to the inverse distance estimate we will obtain new variable with variance equal to 

the stationary domain variance a2. Note that at the data locations missing variance is 

equal to zero. 

Moreover, note that the estimation (error) variance at the estimation location u for 

the inverse distance estimator can be calculated (under the assumption of stationarity) as 

(Deutsch, 2002) 

o]st =E[Z-Z*(u ) ] 2 =cr2 -22A»Cov(Z(oy),Z(o)) + 5 ; Z ^ C o v ( Z ( u / ) , Z ( n ; ) ) . 
1=1 i=i y=i 

(A.6) 
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A.5. Sensitivity of the Inverse Distance Weighted Interpolation 

to the Number of Data: Example 

A.5.1. Data 

There are a total of 310 samples within a 2D rectangular project area extending 3km in 

the Easting X direction (longitude) and 5km in the Northing Y direction (latitude). The 

samples are in normal score units. The location map of the Gaussian values together with 

their histogram is given in Figure A. 1. The experimental omnidirectional variogram of 

the data together with its fit (isotropic spherical with nugget effect of zero and range of 

correlation 1450 meters) is shown in Figure A.2. To calculate the experimental variogram 

the following parameters were used: number of lags was set to 12; lag separation distance 

and lag tolerance were set to 200m and 100m, respectively; horizontal bandwidth was set 

to 5000m. 

A.5.2. Estimation 

Figure A.3 shows results of the inverse distance interpolation for the mean and variance 

(that is, missing variance given in (A. 5)) of the local conditional distributions obtained 

based on 3 data with several exponent values, that is, p = 1,2,3,9. Figure A.4 shows 

analogous results of the inverse distance interpolation but obtained based on 24 data with 

different exponent values. 

It can be clearly noted from Figures A.3-A.4 that 

• With increase in the number of data and smoothness of the map, the variance of 

the local conditional distributions increases; 

• With increase in the power exponent the variance of the local conditional 

distributions decreases, the variance of the estimated values approaches stationary 

domain variance everywhere except at the boundaries between higher/lower 

values. 
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Data Data Distribution 

Longitude 

Number of Data 310 
mean 0.19 

std. dev. 1.03 
maximum 3.07 

upper quartile 0.88 
median 0.24 

lower quartile -0.50 
minimum -2.96 

.00 1.00 

Value 

a) b) 

Figure A.1: Location map of 310 samples (a) together with their distribution (b). 
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Figure A.2: Experimental omnidirectional variogram (points) together with its variogram 

fit for 310 samples in the study domain. 
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ID: Mean 

Longitude 30mm Longitude 3 0 0 0 m 

ID: Mean (p = 3) ID: Variance (p = 3) 

Longitude 3mm Longitude 3°°°-°° 

ID: Mean 

Longitude *""*> Longitude 30000<1 

a) b) 

Figure A.3: Results of the inverse distance interpolation for the mean (a) and variance 

(b) of the local conditional distributions obtained based on 3 data with exponent value p 

equal to: 1 (top); 3 (middle) and 9 (bottom). 
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Figure A.4: Results of the inverse distance interpolation for the mean (a) and variance 

(b) of the local conditional distributions obtained based on 24 data with exponent value p 

equal to: 1 (top); 3 (middle) and 9 (bottom). 
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A.5.3. Sensitivity 

To analyze results of estimation in greater detail a slice at X = 100 is selected. The 

estimation variances for the inverse distance interpolator with exponent value of 1 (p = 1) 

as a functions of the number of data for the chosen slice is shown in Figure A. 5. 

Looking at Figure A. 5 we can clearly note that with increase in the number of 

data for the inverse distance interpolator there is generally an increase in the estimation 

variance. Note that the increase in the inverse distance estimation variance is quite 

substantial when using 24 data instead of 3. Looking at Figure A. 5 we can also conclude 

that for the slice at slice at X= 100 in order to minimize the estimation variance, a small 

number of values (3 data) should be used for estimation. 

The estimation variances for the inverse distance interpolator obtained based on 3 

and 24 data as functions of the exponent value for the slice at X = 100 are shown in 

Figure A.6. Note that when smaller number of data is used for interpolation, the 

difference in the estimation variance is minimal. Large power exponents (p = 9) produce 

estimates with larger estimation variance. 

On the other hand, when larger number of data is used for interpolation, the 

difference in the estimation variance for different exponent values is more pronounced. 

The inverse distance interpolation with higher exponent value (p = 9) is producing better 

result. 

A.6. Inverse Distance with Locally Varying Parameters: Small 

Example 

The optimal inverse distance weighted interpolation parameters, that is, number of data 

and power exponent, can be chosen by minimizing estimation variance at each location. 

Depending on the estimation location, of course, optimal parameters will be different as 

well as will be different estimation variance. Estimation variance obtained is the 

minimum estimation variance achievable by the inverse distance interpolation technique. 
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Inverse Distance Interpolation (p = 1) 

500 1000 1500 2O00 2500 3000 3500 4000 4500 5000 

Latitude, m 

Figure A.5: The estimation variance for the inverse distance interpolator with exponent 

value of 1 (p = 1) as a function of the number of data for the slice atX= 100. 

Inverse Distance Interpolation (3 data) Inverse Distance Interpolation (24 data) 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Latitude, m 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Latitude, m 

a) b) 

Figure A.6: The estimation variances for the inverse distance interpolator obtained based 

on 3 data (a) and the estimation variances for the inverse distance interpolator obtained 

based on 24 data (b) as a function of the power exponent for the slice atX= 100. 
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Figure A.7 shows the result of the optimal local inverse distance interpolation for 

the mean and variance of the local conditional distributions. The following values for the 

power exponent were considered: p = 0.1 to p = 12 with step 0.1; the following values for 

the number of data were considered: N = 3 to N= 32 with step 1. Figure A.7 also shows 

the map of the optimum number of data and exponent power for all estimation locations 

in the study domain. On average, over the study domain the average number of data used 

in estimation is 5.7 and an average power exponent is 2.06. However, for some locations 

the power exponent was as high as 12 while for others as low as 0.1, the same applies to 

the number of data. 

Table A.l shows results of the cross validation, that is, residual mean square error 

(MSE) for all 310 data in the study domain obtained based on the inverse distance 

interpolation with 3, 6, 12 and 24 data and power exponent/? = 1, 2, 3, 4 and 6. Table 

A.l also shows results of the cross validation, that is, MSE obtained based on the local 

inverse distance interpolation. For comparison it also show residual MSE obtained based 

on simple kriging and ordinary kriging with 16 data. 

Table A.1: Results of the cross validation for all 310 data in the study domain obtained 

based on the inverse distance interpolation with 3, 6, 12 and 24 data and power exponent 

p = 1, 2, 3, 4 and 6 and based on the local inverse distance interpolation with optimal 

parameters. 

Number of Data 

MSE with 3 data 

MSE with 6 data 

MSE with 12 data 

MSE with 24 data 

MSE with opt. parameters 

MSE based on simple kriging with 16 data 

MSE based on ordinary kriging with 16 data 

P = l 

0.1394 

0.1676 

0.1965 

0.2542 

P = 2 

0.1339 

0.1464 

0.1618 

0.1889 

P = 3 

0.1326 

0.1364 

0.1428 

0.1529 

P = 4 

0.1338 

0.1330 

0.1351 

0.1384 

P = 6 

0.1394 

0.1359 

0.1358 

0.1361 

0.1292 

0.1143 

0.1129 
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a) 
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Longitude 3°°°°° 
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Figure A.7: Result of the optimal local inverse distance interpolation for the mean (a) 

and variance (b) of the local conditional distributions; optimal power exponent (c) and 

optimal number of data (d) for all estimation locations in the study domain. 

It is apparent from the considered small example that inverse distance 

interpolation with locally varying parameters can perform better than inverse distance 

with constant (global) parameters. Therefore, it would be interesting to analyze the 

performance of the inverse distance with locally varying parameters in larger number of 

case studies with different data configurations and different types of spatial variation. 

Moreover, it would be interesting to compare the performance of the inverse distance 

with locally varying parameters to simple and ordinary kriging. This analysis will be 

conducted in the next section. 
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A.7. Comparison of the Inverse Distance with Locally Varying 

Parameters with Kriging and Inverse Distance Interpolation 

To analyze the performance of inverse distance with locally varying parameters 

compared to inverse distance interpolation and kriging, the following study was 

conducted. 

Nine exhaustive data sets of 2500 data points each located on 50 by 50 grid with 

lm between grid points were selected for analysis. These exhaustive data sets were 

generated using unconditional LU simulation. Each exhaustive data set exhibits different 

spatial structure. Spatial structures represent weak, medium and strong correlation 

between data. Figure A. 8 shows the standardized omnidirectional variograms and their 

theoretical fits for the nine exhaustive data sets. Table A.2 summarizes the variogram 

models shown in Figure A. 8. 

Table A.2: Variogram model for the omnidirectional variograms of the nine exhaustive 

data sets. 

Exhaustive Data Set 

Data set 1 

Data set 2 

Data set 3 

Data set 4 

Data set 5 

Data set 6 

Data set 7 

Data set 8 

Data set 9 

Variogram Model 

SPK-9M(P) 

SPha=U.s(h) 

SPK=39.SQ*) 

0.29 + 0.7 lSpha^u(h) 

0.33 + 0.67^/?a=215(h) 

0.27 + 0 .73^ f l = 4 0 5 (h) 

0.55 + 0.45$?/2fl=109(h) 

0.62 + 0.3 SSpha=209(h) 

0J2 + 0.28Spha=il7(h) 
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Semivariogram for Exhaustive Data 1 

Y °-

Semivariogram for Exhaustive Data 4 

0.0 5.0 10.0 15.0 20.0 25.0 

Semivariogram for Exhaustive Data 2 

.20 Semivariogram for Exhaustive Data 3 

3.0 15.0 20.0 25.0 

Distance 

Y »• 

•i.2o!Semlvariogram for Exhaustive Data 7 

5.0 10.0 15.0 20.0 25.0 

Distance 

1.20 Semivariogram for Exhaustive Data 5 

Semivariogram for Exhaustive Data 6 

15.0 20.0 

.20 Semivariogram for Exhaustive Data 9 

Y 0.60. 

Figure A.8: Standardized omnidirectional variograms and their theoretical fits for the 

nine exhaustive data sets. 

Then from each simulated data set, a data set of size 100 data points on a regular 

grid (with distance between data of 5m) and a data set of size 100 data points with 

random clustered pattern were selected (see Figure A.9). 

Selected data sets were used for estimation of the study areas of 50 by 50 meters. 

In estimation four different techniques were used, that is, inverse distance interpolation, 

ordinary kriging, simple kriging and inverse distance with locally varying parameters. To 

check the accuracy of the maps produced in estimation all data points except for the 

estimation data points were used. To evaluate accuracy of different estimation 

techniques, the mean square error (MSE) criterion was used. In inverse distance 

interpolation of the study areas of 50 by 50 meters, the following parameters were used: 

exponent value ranged from 1 to 6, the number of closest samples ranged from 3 to 24. 
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a) b) 

Figure A.9. Locations (asterisk) of 100 points in a) data set selected on a regular grid and 

in b) data set selected with random clustered pattern. Dots denote other locations with 

exhaustive data in the study domain of 50 by 50 meters. 

In inverse distance interpolation with locally varying parameters, the optimal exponent 

value was chosen locally from 0.1, 0.2,..., 10 and the optimal number of data was also 

chosen locally from 3, 4,...,24. In kriging of each the test areas, the number of closest 

samples ranged from 3 to 24. The variogram models for kriging and inverse distance with 

locally varying parameters were modeled based on selected estimation data points. 

Example ominidirectional variograms with their fits obtained based on randomly selected 

100 data for data set 1 and 100 data on a regular grid for data set 5 and data set 6 are 

shown in Figure A. 10. 

Note that the variograms calculated for kriging, in particular, the ones shown in 

Figure A. 10, were fitted using varfit program from GSLIB (Deutsch and Journel, 1998). 

Each fit was obtained based on two spherical variogram structures. The automatic fitting 

was preferred to manual to avoid any bias from analyzer's side. 

Tables A.3 and A.4 show results for the mean square error obtained in estimation 

of the nine study areas with exhaustive data based on 100 data on a regular grid and 100 

randomly selected data, respectively. 

0 i — i — • i - i — . , • • • • , . . . , . r — r i - i 

0 5 10 15 20 25 30 35 40 45 50 
Longitude 
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Tables A.3: Mean square error obtained in estimation of the nine study areas with 

exhaustive data based on 100 data on a regular grid. 

100 data 

on regular grid 

MSE for data 1 

MSE for data 2 

MSE for data 3 

MSE for data 4 

MSE for data 5 

MSE for data 6 

MSE for data 7 

MSE for data 8 

MSE for data 9 

Best ID 

0.4195 

0.1376 

0.0612 

0.6650 

0.4547 

0.4041 

0.9470 

0.7427 

0.6995 

Best ID 

parameters 

N=4, p=2 

N=4, p=2 

N=4, p=2 

N=4, p=l 

N=5, p=l 

N=16, p=l 

N=9, p=l 

N=13, p=l 

N=20, p=l 

Worst 

ID 

0.7745 

0.2722 

0.1301 

0.8556 

0.6195 

0.5721 

1.2548 

1.1415 

1.3125 

SK 

0.3907 

0.1327 

0.0595 

0.6413 

0.4485 

0.4492 

1.0143 

0.7771 

0.7347 

OK 

0.3950 

0.1319 

0.0586 

0.6541 

0.4477 

0.4492 

1.0165 

0.7669 

0.7272 

LVID 

0.4188 

0.1353 

0.0599 

0.6590 

0.4476 

0.4506 

1.0099 

0.7730 

0.7271 

Best 

Estimator 

SK 

OK 

OK 

SK 

LVID 

ID 

ID 

ID 

ID 

Worst 

Estimator 

ID 

ID 

ID 

ID 

ID 

LVID 

OK 

SK 

SK 

Tables A.4: Mean square error obtained in estimation of the nine study areas with 

exhaustive data based on 100 randomly selected data. 

100 randomly 

selected data 

MSE for data 1 

MSE for data 2 

MSE for data 3 

MSE for data 4 

MSE for data 5 

MSE for data 6 

MSE for data 7 

MSE for data 8 

MSE for data 9 

Best ID 

0.5930 

0.1812 

0.0765 

0.6844 

0.4592 

0.4081 

0.9290 

0.7545 

0.7155 

Best ID 

parameters 

N=24, p=3 

N=6, p=2 

N=4, p=2 

N=21,p=2 

N=8, p=l 

N=10, p=l 

N=7, p=l 

N=15,p=l 

N=24, p=l 

Worst 

ID 

0.8107 

0.3319 

0.1531 

0.8847 

0.6510 

0.5812 

1.2867 

1.0685 

1.0732 

SK 

0.5041 

0.1628 

0.0638 

0.6758 

0.4433 

0.3996 

0.9826 

0.9305 

0.8294 

OK 

0.5061 

0.1627 

0.0637 

0.6864 

0.4418 

0.3964 

0.9579 

0.7821 

0.7314 

LVID 

0.5675 

0.1769 

0.0713 

0.6689 

0.4549 

0.4051 

0.9575 

0.8067 

0.7272 

Best 

Estimator 

SK 

OK 

OK 

LVID 

OK 

OK 

ID 

ID 

ID 

Worst 

Estimator 

ID 

ID 

ID 

OK 

ID 

ID 

SK 

SK 

SK 

Looking at results of our study, in particular, Tables A.3-A.4, we can conclude the 

following. When the variogram of the phenomenon under study is closely matched by the 

experimental variogram calculated based on 100 data points, ordinary and simple kriging 

outperform both inverse distance interpolation and inverse distance interpolation with 

locally varying parameters. This is, however, no surprise since kriging provides estimates 

with global minimum for estimation variance. It is worth noting also that in this case the 

method proposed in this Appendix A, that is, inverse distance interpolation with locally 
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varying parameters outperforms traditional inverse distance interpolation with any 

constant (global) values for the number of data and exponent value. The situation, 

however, becomes more interesting, when the experimental variogram calculated based 

on sample data differs from the variogram model for the spatial phenomenon under study. 

Then either kriging techniques or newly proposed approach or inverse distance with 

correctly chosen global parameters can perform the best depending on the mismatch of 

the true variogram from the fitted. If the mismatch is significant, inverse distance 

interpolation with correctly chosen global parameters usually performs best; while 

kriging, especially simple kriging performs the worst. In this case inverse distance 

interpolation with locally varying parameters appear to be a very robust technique, that is, 

it is usually not as strongly affected by the variogram mismatch as simple kriging and 

even ordinary kriging. Moreover, note that from Tables A.3-A.4 that despite inverse 

distance interpolation for particularly chosen global parameters in some cases can 

perform better than inverse distance with locally varying parameters (and kriging), it can 

be noted that if the parameters for inverse distance interpolation were badly chosen, the 

results of the inverse distance interpolation with globally chosen parameters could be 

much worse than respective results of other interpolation techniques. Furthermore note 

that depending on the data set under study best inverse distance interpolation result is 

produced by different parameters; no unique value for the number of data and exponent 

value can produce good results for different data sets in inverse distance interpolation. 

A.8. Discussion 

There are several reasons why inverse distance interpolation may be preferred over 

kriging-based techniques. It is simple and applicable to any number of dimensions, it is 

also robust in estimation, does not suffer from the string effect of kriging (Deutsch, 1993 

1994); does not result in negative weights - no screening effect (Deutsch and Journel, 

1998); and does not require solving systems of equations for the weights. Moreover, it 

provides reasonable estimates and is shown in a large number of comparative studies to 

perform better than kriging-based techniques (Weber and Englund, 1992). 
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A statistical formalism is proposed for inverse distance estimation. This 

formalism is based on the assumption of stationarity and a known variogram model. The 

variance of the inverse distance estimates and the variance of the local conditional 

distributions are used as measures of accuracy. A general procedure was developed for 

selecting the optimal number of data and exponent value for the inverse distance 

estimation of each location separately in the study domain. The developed procedure, 

referred to as the local inverse distance interpolation was shown to outperform inverse 

distance interpolation with fixed parameters in the case of closely matched data 

variogram; and to perform much better than kriging in the case of variogram 

misspecification. 
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APPENDIX B 

Direct Upscaling of Variograms and 

Cross Variograms for Scale Consistent 

Geomodeling 

Integration of data from multiple sources and/or multiple scales is a common, yet 

challenging aspect of geostatistical modeling. Common approaches to data integration 

are based on a cokriging framework that often assumes the input variogram/covariance 

models of coregionalization are at a scale consistent with the data and the model grid. 

The scaling laws for the variogram have often been applied to ensure consistency of the 

input variogram model; however, these laws are based on a strict assumption of 

invariance of the variogram shape. 

We propose a direct upscaling approach to the variogram that is theoretically 

derived. The approach (as the scaling laws) is applicable to additive variables. A 

numerical integration approach to determine the upscaled variogram is presented with an 

example showing the difference between this theoretical proxy approach and the scaling 

laws approach. The results show that the shape of the variogram does indeed change with 

scale. Further, the extension to cross variograms is straightforward and an upscaled 

consistent linear model of coregionalization is presented. 
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B.l. Introduction 

Data from well cores are among the finest scale of information available for geostatistical 

inference, and as a result it is often considered to be point scale data with an 

infinitesimally small volume support. Data from log traces represent an incremental 

increase in volume support relative to core data; however, these are also considered to be 

relatively fine scale information. Seismic surveys, if available, generally cover much 

larger lateral extents with shallow depth. These different data at different support sizes 

must then be reconciled to some intermediate modeling volume that is determined based 

on the resolution required and the computational resources available. Integration of these 

data from various sources and at different volume supports is a longstanding challenge in 

geostatistical modeling (Kupfersberger et al 1998). 

In most cases, the smallest size that the fine scale model can be is limited by 

computer storage and professional time. Consequently, even the finest scale model is 

larger than the data support. In the context of estimation, several geostatistical tools exist 

to facilitate data integration. One set of tools considers that secondary data inform a 

trend about the primary data; these techniques include external drift and locally varying 

mean (Marechal 1984; Deutsch and Journel 1998). Another group of methods uses the 

secondary data as additional conditioning information for estimation of the primary 

variable; these methods include collocated cokriging (Xu et al 1992; Almeida and Journel 

1994), Bayesian updating (Doyen 1996; Ren et al 2007) and block cokriging (Goovaerts 

1997). With the exception of block cokriging, most methods assume the primary and all 

other secondary information are at a consistent scale. 

Consistency of scale in the input data and the intended grid can easily be an 

oversight. In the context of geostatistical simulation, the model is constructed based on a 

point-support simulation, the input data is considered at a point support and the input 

variogram corresponds to this same data. This is an acceptably consistent scale model at 

the point support provided the variable is additive (Journel and Kyriakidis 2004). 

However, the model is commonly required at an intermediate block scale and high 

resolution fine scale models are practically infeasible; populating block simulated values 

is desired. 
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Direct sequential simulation (DSS) is one possible approach to simulate at a block 

scale; however, issues with histogram inference and reproduction (Bourgault 1997; Caers 

2000; Oz et al 2003) have limited many applications to univariate modeling. Soares 

(2001) proposed a direct cosimulation approach to handle multivariate problems based on 

a collocated cokriging approach. If the correlation coefficient between primary and 

secondary data are properly scaled to account for any scale differentials between the data, 

then this approach can and will account for different supports. 

An alternative to DSS is to consider a 'point' simulation at a block-consistent grid 

specification, using block averaged data and the block-scale variogram. Once again, the 

premise for this approach is to ensure consistency in the input data and the required 

model. Data compositing is a common practice to upscale available hard data. Using this 

composited data, we can calculate the corresponding composite-support variogram; 

however, compositing reduces the number of available samples for reliable variogram 

inference. In such cases, modelers may calculate and fit the variogram using the original 

support data. This variogram model must then be upscaled for consistency with the 

model grid and composited data. 

Scaling of the variogram model to reflect different volume supports is not new. 

The scaling laws associated with the variogram are well known (Journel and Huijbregts 

1978; Frykman and Deutsch 1999, 2002). They predict how the variogram changes from 

one volume to another, with specific laws linked to the nugget effect, range and the 

variance contributions of each constituent structure. A number of simplifying 

assumptions are made to determine these scaling laws, including volume averaging is 

performed for non-overlapping volumes, the underlying variable averages linearly, and 

the shape of the variogram does not change with scale. In particular, the latter 

assumption of shape invariance of the variogram is a strong and often unrealistic 

assumption. 

This Appendix B proposes to directly upscale the variogram through a numerical 

integration approach. This numerical approach is used as a proxy to a theoretically 

developed expression to analytically upscale the variogram for additive varialbes. A 

review of the variogram scaling laws is provided. The proposed approach to explicitly 

upscale the variogram model is then described. To facilitate data integration, the 
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extension to cross variograms is straightforward; this is presented in a section that 

considers the linear model of coregionalization at the required block support. A small 

example is then used to compare the results of the scaling laws to the direct upscaling 

approach. 

B.2. Regularization 

Very seldom, in practice, point data z(u) is available. Most often, the data at hand is 

defined on a certain support V - V(u) centered on a point u, that is, zF(u). The value of 

zv (u) is the average of the point data z(u) in the volume V, that is, 

z » = -ijz(w)<fcv. (B.l) 

The value zF(u) is called the regularization of the point variable z(w) over the volume 

F(Journel and Huijbregts 1978). 

If the point-regionalized variable z(w) is a realization of a second-order 

stationary random function Z(w), then the regularization of the point random function 

Z(w) over the volume V is also a second-order stationary random function given by: 

Zv(u) = ±lz(w)dw. (B.2) 

B.3. Variogram Scaling Laws 

The variogram model is linked to the volume support of the data. To represent the 

volume support that we are interested in, the variogram models need necessarily be 

scaled. To represent the change in the variogram with the change in the volumetric scale 

the variogram scaling laws are commonly applied (Frykman and Deutsch 1999, 2002). A 

short description of these laws follows. 
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Let us consider a semivariogram model /v(h) at arbitrary scale v (v usually 

represents the small core scale): 

/v(h) = cv°+£c;r;(h), (B.3) 
1=1 

where Cv° is the nugget effect, k is the number of nested variogram structures used to fit 

the experimental variogram of the data, C'v, i = l,...,k, is the variance contribution of 

each nested structure, and r^(h), i = l,...,k, are individual nested variogram structures 

with sill of one. Each nested structure is given by analytical function (e.g., spherical, 

exponential, etc.). 

Then a semivariogram model yv (h) at a larger volume V, where v <z V, is given 

by 

rv(h) = C°v+fjC^n(h), (B.4) 
1=1 

where C° is the nugget effect, C'v, i = \,...,k, is the variance contribution of each 

nested structure, and T^(h), i -\,...,k, are individual nested variogram structures (all 

for the scale V). Derivation of the upscaled variogram parameters are then given by 

(Journel and Huijbregts 1978; Oz and Deutsch 2002): 

1. The shape of each individual nested structure (i.e., exponential, spherical) remains 

invariant when the scale changes. The variogram range of each nested structure 

increases as the size of the volume V increases. In particular, if a'v is the range of 

T^(h), i = l,...,k, for the small scale, then the range a'v of T'v(h), i = l,...,k, 

for the large scale is given by 

a'v=a'v+(\V\-\v\), (B.5) 

where | v | and | V | relate to the size of the volume in a particular direction. 

2. The variance contributions C'v, of each nested structure T^(h), i = l,...,k, 

change from the small scale to the large scale as follows 

C-=C:\-T-^V) (B.6) 
i - r (v,v) 
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where T'(V,V) and r'(v,v) are the average variogram or "gamma-bar" values. 

In particular, T'(V,V) represents the mean variogram T'(h) when one extremity 

of the vector h describes the domain V and the other extremity of this vector 

independently describes the same domain. The values of gamma-bar's are usually 

estimated numerically by volume discretization, that is, 

r(F,F) = ~ J lT(y-y')dydy^--fjfjr(ui -uy), (B.7) 

where n is the number of regular spaced points discretizing the volume V. 

3. The variance of the purely random component, called nugget effect, is inversely 

related to the volume, that is, 

C°r=C°v^ (B.8) 

It should be noted that as scale increases, the range of correlation increases, and the 

variogram sill decreases due to high and low values being averaged out. Moreover, it is 

worth noting also that the scaling laws are established under the following additional 

assumptions (Journel and Huijbregts 1978): 

1. The averaging is performed with non-overlapping volumes. 

2. The variables scale in a linear manner. 

In general, the assumptions underlying scaling laws appear to be very strong and 

limiting. In particular, the assumption of no shape change for the variogram nested 

structures is very unrealistic. It has been observed in many examples that the shape of the 

experimental variograms at volume V is different from the ones predicted from scaling 

laws especially for short lag distances (e.g., Frykman and Deutsch 2002). Therefore, a 

direct approach for exact calculation of the upscaled variograms is of great practical 

interest. 
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B.4. Direct Variogram Upscaling 

If Z(w) is assumed to be a second-order stationary random function with mean m, 

covariance C(h) and variogram 2y(h). Then ZK(u) given by 

Z » = ijZ(wyw 
Vy 

is a second-order stationary random function representing the upscaled point random 

function Z(w) or the regularization of the point random function Z(w) over the volume 

V centered at location u. 

Then, the mean E(Zv(u)), variance Var(Zv (uj) semivariogram yv(h) and 

covariance CF(h) of Zv (u) for the scale V can be calculated based on the mean m, 

covariance C(h) and semivariogram /(h) of Z(u) for the point scale as follows (Journel 

and Huijbregts, 1978): 

E(Zr(u)) = m; 

Var(Zv(u)) = Cv(0) = C(V,V); 

yv(h) = y(V,Vb)-y(V,V); 

Cr(h) = Cv(0)-yv(h) = C(V,Vh); 

where Vh denote the support Vtranslated from Fby the vector h; y(V,Vh) represents the 

average of the point semivariogram ^(h) when one extremity of the vector h describes 

the support V and the other extremity independently describes the translated support Vh, 

that is, 

y(V,VJ=±±\\y(yv-x)chvdx = ±±lly(w-(x + h))dwdx; (B.10) 
" h VVh " " VV 

C(V,Vh) represents the average of covariance C(h) and is given by 

C(V,VJ = ~ \\C(w-x)dwdx = ~ \\C(w-(x + h))dwd%. (B.ll) 

Note that if the semivariogram /(h) of the point-regularized random variable is made up 

of several nested structures, that is, 
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Kh) = C ° + ] T c y ( h ) , (B.12) 
i=\ 

where C° is the nugget effect, k is the number of nested variogram structures, 

C, i = l,...,k, is the variance contribution of each nested structure, and 

/ ' (h) , i = l,...,k, are individual nested variogram structures given by analytical 

function (e.g., spherical, exponential, etc.) with a sill of one. Then, the average of the 

point semivariogram ^(h) can be calculated as 

r(W=i-Ljj| 
hvrh 

k 

c°+£cy((w-x)) 
(=1 

dwdx 

i=\ 

1 1 
w I ir(yv ~^x+h^c/w dx 
vv vv 

= C ° + ] T c y ( F , F h ) . 
i=l 

(B.13) 

And, thus, the semivariogram yv (h) for the scale Fis given by 

yv(h) = y(V,Vb)-y(V,V) = C°+YjC
if(V,Vh)-

i=l 

c°+^c'r(v,v) 
i=\ 

= £c<[f(F,Fh)-f(F,r)] 
(B.14) 

i=i 

It is worth noting that semivariogram /K(h) does not contain any nugget effect. The 

nugget effect vanishes when upscaling to a larger volume V, it does not matter how large 

the nugget effect was in the point scale variogram. 

Similarly, it can be shown that in this case the covariance for the scale V is given 

by 

C » = C(F,Fh) = C(0) c°+£c'f'(W 
i=i 

(B.15) 

Since the variance C(0) at the point scale for semivariogram /(h) is given by 

k 

C(0) = C ° + ^ C ; , (B.16) 

then it follows from Equation (B.15) that covariance for the scale Fcan be calculated as 

c > ) = £c<[i-f(F,rh)]. (B.17) 
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B.5. Linear Model of Coregionalization (LMC) at a Block 

Support 

In the case when multiple interdependent random variables are available, the spatial 

relationship between them must be described in a feasible manner. Let us now derive a 

linear model of coregionalization for N stationary regularizations {Z\,...,ZV
N) of the 

point random functions {Zl,...,ZN} over the volume V based on a linear model of 

coregionalization for {Zl,...,ZN} at a point support. 

Let us consider N stationary point random functions {Zl,...,ZN}. Further let us 

assume that each point support random function Z., / = 1,..., JV, can be expressed as a 

linear combination of ^independent zero mean second-order stationary random functions 

Yk, k = \,...,K, each with covariance function Ck(h) as follows 

Z((n) = t ^ ( i ) + A. (B.18) 

The random functions Yk, k = 1,..., K, are assumed to be unknown. If we group 

the random functions Yk, k = \,...,K, according to distinct direct covariances Ck(h), 

then Equation (B.18) can be rewritten as 

(̂u) = EZ^(«)+f t (B.19) 

with 

[ 0, otherwise; 

where L +1 is the number of groups with distinct direct covariances; and n, is the 

number of random functions with the same covariance C' (h), I -0,...,L. 

Then direct and cross covariances between two random variables Z;(u) and 

Zj (u + h) , / , / = !,..., N, can be calculated as 
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Ctj (h) = Cov(Zi (u), Zj (u + h)) = Cov 
L »/ L «/• 

= Cov 

^ /=o P=\ r=o p'=\ j 

L n, (B.20) 
/'=0 p'=\ J 1=0 p=\ ;'=o p'=i 

£ "I 

/=0 p=l 

If we set 

P=\ 
(B.21) 

then it follows from Equation (B.20): 

C*(h) = I > i C / ( h ) ' / = l,...,iV, y = l iV. (B.22) 
/=o 

Therefore to determine the direct and cross covariances between any two random 

variables Z((u) and Z ;(u + h) , i,j = \,...,N, we need only to determine covariances 

C'(h), l = 0,...,L, and the (L + l)P2 coefficients by. Because a joint matrix of 

covariance functions Cy(h), i,j = l,...,N, must be positive semi-definite; this requires 

the covariance models C(h) , l = 0,...,L, and L+\ matrices of by coefficients to be 

positive semi-definite. In practice the covariance models C' (h), / = 0,..., L, are chosen 

to be known positive semi-definite models such as Spherical, Exponential, Gaussian, etc. 

Model (B.22) is the linear model of coregionalization at a point support. 

Moreover, since 

Zf(u) = -^Jz,(w>/w, (B.23) 

it follows from Equation (B.19) 

r 11 

L n. 

XIX^(w) + A 
1=0 p=\ 

1 r L "' If 

* V 1=0 p=\ V, 
L n, 

1=0 p=l 
- K(w) 

(B.24) 

dw + jur 

Therefore the direct and cross covariances between two regularization random variables 

Zf (u) and Zj(u + h), i,j = \,...,N, are given by 
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C;(h) = Cov(Zf(u),Z;(u + h)) 

L n. 

= Cov 

Cov 

v /=0 p=\ 

f L n, 

\^/=o P=\ 

-\Y'(yv)dw 
v 

L ";• 

/ '=0 /?'=! 

.EZ4 
/'=0 p'=\ 

v 
+ //, 

\Y^(y + h)dy 

L "/ L ", 1 f„, . . . 1 

/=o p=i /'=op'=i v F K / 

/=o p=i ;'=o p'=\ ' y vv 
L n, 1 1 

I4Zal
ipa

l
J--tfc

l(yv-(y + h))dwdy 
1=0 p=l 

L n. 

VV vv 

=YL^l
JPcW,vh). 

1=0 p=l (B.25) 

Note that C!(V,Vh) represents the average of the point covariance C'(h) when one 

extremity of the vector h describes the support V and the other extremity independently 

describes the translated (by vector h) support Vh. 

If we set 

6 £ = 2 X a i ' * = 1->N, j = l,...,N, 
P=\ 

(B.26) 

then it follows from Equation (B.25): 

c;(h) = 5>£c'(F,rh)„ i = \,...,N, j = i,...,N. (B.27) 
1=0 

Therefore to determine the direct and cross covariances between any two random 

variables Zf(u) and Zj(u + h) , i,j = 1,...,N, defined at the block support of size Fwe 

need only to determine average covariances Cl(V,Vh), l = 0,...,L, and the (L + \)P2 

coefficients by. Because a joint matrix of covariance functions Cy(h), i,j-l,...,N, 

must be positive semi-definite; this requires the covariance models C'(h), I = 0,...,L, 

and L+l matrices of b'y coefficients to be positive semi-definite. Note, however, if the 

covariance models C'(h), l = 0,...,L, are chosen to be known positive semi-definite 
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models such as Spherical, Exponential, Gaussian, etc., then the average covariances 

calculated based on this models will be also positive-definite (this is a know property of 

integration). Model (B.27) is the liner model of coregionalization at a block support. 

It is interesting to note that if 

Ci,(h) = X6jC'(h) , i = l,...,tf, j = l,...,N, (B.28) 
i=\ 

is a feasible linear model of coregionalization at a point support then 

C f f » = Z&;c ' (F , r h X, i = U.,N, j = U.,N. (B.29) 

1=1 

is a feasible linear model of coregionalization at a block support and vice versa. This 

establishes an interesting link between point and block linear model of coregionalization. 

B.6. Calculating Average Covariance C(V,vh) and Average 

Variogram y(v,vb) 

Now the only issue remains is to calculate the values of the average covariances 

C (V, Vh) and average variogram values f(V, Vb) . Unfortunately, except for simplistic 

cases (see Journel and Huijbregts 1978), there is no analytical solution for average 

covariances and semivariograms for any of the commonly used variogram models, that is, 

spherical, exponential and Gaussian. Interestingly enough, this fact in itself shows that 

the assumption of invariance of variogram shape to the scale change is unrealistic. 

Therefore, to calculate the average covariances C (V, Vh), giving the covariance 

Cv Qa) for the scale V, numerical discretization of the volumes V and Vh is used. 

Specifically, the average covariances are calculated as 

C(V,Vb) = Cv(h) = ~l\C(w-(y + h))dwdy* 

l\ n n (B.30) 

- - Z Z Q U , -(u, +h)) = C(0)---25>(u, -(*, +h)). 

The average semivariograms are approximated by 
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W,VJ = ̂ \\r(^-(x + h))dWdx«--fjfjr(ui-(nj+h)), (B.31) 
V V v v n n i=l y=i 

then the semivariogram /v (h) for the scale Fis calculated as 

/(h) = Y(v,vj-nvj)*--tJtJr("i-("j+V)---idi,r(vl-Uj)- (B.32) 

B.7. Example: Scaling Laws vs. Direct Variogram Upscaling 

This section is aimed at accentuating the difference between upscaled variograms 

obtained using scaling laws and the ones obtained from theory via direct variogram 

upscaling approach. 

Let us consider a point second-order stationary random function Z(w) with the 

following 3D isotropic semivariogram model characterizing its spatial continuity 
y(h) = 0.7Spha=5 (h) + 0.3Expa__i0 (h); 

and calculate the semivariogram for the regularization ZK(w) of the point random 

function Z(w) over the volume V for different volume sizes V. In particular, we 

consider three different block sizes for volume V. These are cubes with length 2m, 5m, 

and 10m. 

Figure B.l shows comparison of the upscaled variograms obtained using scaling 

laws and direct variogram upscaling approach for the three considered block sizes used 

for averaging. Figure B.l also shows point scale variogram. 

It can be clearly noted from Figure B.l that the shape of the variogram changes 

when changing support of data. With increase in the block size the shape of the block 

support variograms becomes more pronouncedly Gaussian for small lag distances, see 

Figure B.2 for a closer examination of the short scale structures observed in Figure B.l. 
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Figure B.l: Comparison of the upscaled variograms obtained using scaling laws (dashed 

lines) and direct variogram upscaling approach (solid lines) for the block support of 2m, 

5m and 10m. 
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Figure B.2: Comparison of the upscaled variograms obtained using scaling laws (dashed 

lines) and direct variogram upscaling approach (solid lines) for the block support of 2m 

and 5m for lag distances up to 10m. 
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Moreover, the departure between upscaled variogram predicted using scaling laws and 

theoretical upscaled variograms obtained via direct upscaling approach also increase with 

increase in the modeling scale (block volume). Therefore, it is apparent that in order to 

correctly predict the variogram at larger scale using a small scale variogram model a 

direct upscaling approach should be used; not the scaling laws. 

B.8. Discussion 

A fundamental assumption underlying the scaling laws for the variogram is that of shape 

invariance. The theoretically derived approach presented here makes no such 

assumption. In fact, the examples show that there is a change in the shape of the 

variogram, specifically a smooth Gaussian structure at short scale can be expected with 

upscaling to a larger volume. This is consistent with the effects of block averaging. 

A practical approach to determine directly upscaled variograms for additive 

variables is based on a numerical integration that approximates the analytical integral of 

these variogram models. As with average variogram or average covariance calculations, 

the approximation is robust given sufficient discretization. 

Furthermore, this direct upscaling approach is easily extended to cross-

variograms; this facilitates the development of a scale consistent linear model of 

coregionalization which is required for consistent modeling at the block scale. 

This approach presents numerous exciting future research prospects. One area for 

further development is a method to downscale the block scale variogram, such that fine 

scale models can be constructed. This is the same objective as the work of Kupfersberger 

et al (1998), but the goal here will be to avoid use of the scaling laws. Another possible 

area of research will be to develop a linear model of coregionalization that is consistent at 

all scales, which could then be used to truly integrate data at different supports without 

any prior compositing required. 
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APPENDIX C 

Modeling Local Uncertainty 

accounting for the Uncertainty in Data 

Consider the problem of estimation of an unsampled location using surrounding samples, 

see schematic illustration below. 

Standard approach to this problem is kriging. Kriging uses the spatial correlations 

provided by the variogram to calculate the weights of the sample values surrounding an 

unsampled location. The weights obtained from the kriging equations minimize the 

estimation variance and account for the spatial correlation between the surrounding 

samples and the estimation location (that is, closeness to the estimation location) and 

between sample themselves (that is, data redundancy). Kriging results in optimal 

estimation (in the case of a known variogram model) and provides a model for local 

conditional distributions. In the Gaussian framework, kriging estimate and kriging 

estimation variance are exactly the mean and variance of the local conditional Gaussian 

distributions. 
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Oftentimes, however, the exact sample data are not known due to measurement 

errors. In this case simple kriging can not be directly applied to infer the local conditional 

distributions. A theoretical framework for incorporating data uncertainty into calculation 

of the local uncertainty distributions needs to be developed. 

C.l. Simple Kriging 

The simple kriging estimator predicts the value of the variable of interest z(u) at the 

estimation location u as a linear combination of neighboring observations 

z(u,), / = l,...,n(u), (Journel and Huijbregts, 1978): 

«(u) 

**SK:(U) = £ M , 1 M U < ) + 

(=1 

«(u) 

m, (C.l) 

where m denotes the stationary mean, A = (A1 (u),..., ̂ n(u) (u))r denotes the vector of the 

simple kriging weights calculated from the normal system of equations 

" | > , (u)Cov(z(u;.), z(u,)) = Cov(z(u), z(Uj)), j = 1, • • •, «(u), (C.2) 
1=1 

where Cov(z(u;),z(uy)), i,j = 1, • • •, JJ(U), denotes the data-to-data covariance values 

and Cov(z(u),z(uy)), j = l,---,n(u), is the data-to-estimation point covariance values. 

The covariance function is calculated under stationarity through the semivariogram 

model / (h ) . 

Simple kriging is the best linear unbiased estimator, that is, it provides estimates 

with minimum error variance cr^(u) in the least square sense given by 

a\K (u) = C(0) - Y K (u)Cov(z(u), z(u, )), (C.3) 
1=1 

where C(0) is the stationary variance. 

In the Gaussian framework the local conditional distributions are derived by 

simple kriging as follows 

Uncertainty at the estimation location u is Z(u) ~ N(z *SK (u),cr^ (u)). (C.4) 
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C.2. Calculating Mean and Variance of the Local Conditional 

Distributions accounting for the Uncertainty in Data 

Let us assume that each of the observations z(uj),i = l,...,n(u), available for analysis 

was measured with some measurement error. Further assume that the measurement errors 

are distributed according to Gaussian (normal) distribution; thus, uncertainty in each 

observation (random variable) Z(u(), i = 1,..., n (u) can be expressed as follows: 

Z{vLt)~N(jit,a*), i = l,...,«(u), (C.5) 

where jui and of denote the mean and variance of the uncertainty distribution in z'-th 

data. For now let us assume that the observations Z(ui),i = l,...,n(u), represent 

independent random variables, e.g., each data location was measured using different 

measurement tool. 

When the observations are not longer assumed to be known the mean of the local 

conditional distributions is a random variable. The variance of the local conditional 

distributions given in (C.4) is not a random variable, this is because simple kriging 

variance is homoscedastic, that is, data values independent (see (C.3)). Because the mean 

of the local conditional distribution is a random variable the uncertainty at the unsampled 

location u is described by the following hierarchical model 

Z(u) | Z *SK (u) ~ N(Z *SK (u),a2
SK(u)), 

Z*SK (u) ~ N(E[Z *SK (u)],Var[Z *SK (u)]), (C.6) 

where 

Z* s r (u ) = "^A,(n)Z(u l) + 
1=1 

n(u) 

1=1 

m. (C.7) 

Note that distribution of Z *SK (u) is Gaussian because it is a linear combination of 

Gaussian random variables. Furthermore, due to (C.7), the mean and variance of the 

distribution for Z *SK (u) can be calculated as follows: 
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£[ZV(u)] = £ 
n(u) 

£^(u)Z(n,) + 
(=1 

n(u) 

i-2>,oo 
1=1 

w 

= "f/l,(u)£[Z(u;.)] + 
1=1 

«(u) 

1=1 

«(u) 

i=i 

n(u) 

l-Z^(u) 
i=l 

(C.8) 

m = &*„(* («)' 

F«r[Z=V(u)] = Far " ^ ( o ) Z ( n , ) + 
i=i 

n(u) 

1=1 
m 

= Var 
«(u) 

2^(n)Z(u,) 
1=1 

= "f^(u)Kar[Z(u ;)] = " f ^ ( u K 2 = <7^ ( u ) . 
i=l i=l 

(C.9) 

Thus, it follows that the local conditional distributions in the case of data 

uncertainty can be expressed using the following hierarchical model: 

Z(u) | Z V (u) ~ N(Z *SK (u),a2
SK (ii)), 

Z*SK 00 ~ M(pz.w,<r2
z.,u)), (CIO) 

where juz» (u) a n d <T2
Z„ (U) ) are given in (C.8)-(C9). Moreover, note that the mean and 

the variance of local condition distributions is given by 

E[Z(u)] = E[E[Z(u) | Z V (u)]] = E[Z *SK (u)] = Mz,(u); (C.ll) 

(C.12) 
Var[Z(u)] = E[Var[Z(u) | Z V 00]] + Var[E[Z(u) \ Z *SK (u)]] 

= E[a2
SK (u)] + Var[Z *SK (u)] - ^ (u) + a2^(u). 

The shape of the local uncertainty in Z(u) is Gaussian. 

It worth noting that when the observations Z(u ;), / = l,...,ra(u), do not represent 

independent random variables, but are correlated with a prescribed correlation structure, 

the mean and variance of the local conditional distributions can be calculated following 

the same steps as before except variance of Z *SK (u) needs to be calculated as 

Var[Z*SK(u)] = Var 

= Var 

n(a) 

$>»z(iO + 
n(u) 

1-Z400 
1=1 

m 

n(u) 

X4(u)Z(u() 
i=i 

«(n)»(u) 
(C.13) 

= £ £ ^ (u)^.(u)C0v[Z(u,.),Z(uy)] = o ^ ( u ) . 
i=i i= i 

Moreover note that the above derivations heavily rely on the assumption that the 

variogram model for the study domain is known; uncertainty in the data does not impact 

the assumption of the stationary variogram model. 
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C.3. Small Examples 

C.3.1. Example 1 

Let us now consider data configuration shown in Figure C.l. In total, there are 4 

conditioning data available for inference of the local conditional distribution at the 

unsampled location. All conditioning data are known subject to measurement errors; the 

distributions of the conditioning data are Gaussian with different means //, and variances 

of, i = 1,...,4, see Table C.l below. Study domain of size 10 by 10 units is assumed to 

be stationary; stationary mean and variance are 0 and 1, respectively. The variogram of 

the data is a single structured spherical with nugget effect of 0 and range of correlation of 

10 units. 

Table C.l: Data locations and values 

X position 

Y position 

Value 

Datal 

1 

3 

% , f f , 2 ) 

Data 2 

5 

7 

N(ju2,a
2
2) 

Data 3 

9 

8 

N{^,CJI) 

Data 4 

3 

2 

N(^,°l) 

Unsampled 

Location 

5 

5 

? 

We will vary the means and variances of the conditional data distributions to 

assess the impact of data uncertainty on the resulting local uncertainty distribution 

inferred from simple kriging. First, let us fix /j.t 's as follows 

//t = 0.8; / /2=0.2; ju3 - -0.4; / / 4 = - 0 . 1 ; 

and examine the effect of erf 's. Table C.2 show results for five different scenarios for 

erf 's. Note that Table C.2 shows only results for the variance of the local distribution of 

uncertainty accounting for data uncertainty, that is, Var[Z(u)]; this is because the mean 

of the local conditional distribution is independent of erf 's and equal to 0.0884. 
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Figure C.l: Data configuration for Example 1. 

Table C.2: Effect of erf 's on the local uncertainty distribution. 

^ 

°l 
°l 
*i 
Var[Z(u)] 

Case 1 

0 

0 

0 

0 

0.4094 (of r ) 

Case 2 

0.1 

0.2 

0.1 

0.3 

0.5073 

Case 3 

0.3 

0.4 

0.2 

0.4 

0.5871 

Case 4 

0.5 

0.6 

0.2 

0.4 

0.6574 

Case 5 

0.8 

0.9 

0.6 

0.7 

0.7915 

It can be clearly noted from Table C.2 that with increase in the data uncertainty (that is, 

increase in the variance of the conditional data distributions), the variance of the local 

conditional distribution at the unsampled location increases. Moreover, when there is no 

uncertainty in the conditional data; the variance of the local conditional distribution at the 

unsampled location is equal to simple kriging variance. 

On the other hand, if we fix erf's as: 

of = 0.8; of = 0.2; of = 0.3; of = 0.4; 

we can observe that with increase in the mean of the conditional data distributions, the 

mean of the local conditional distribution at the unsampled location increases, see Table 

C.3. 
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Table C.3: Effect of //; 's on the local uncertainty distribution. 

A 

ju2 

M3 

MA 

E[Z(u)] 

Case 1 

-0.8 

-0.2 

-0.4 

-0.1 

-0.1933 

Case 2 

-0.2 

0.2 

0.4 

0.1 

0.1654 

Case 3 

0.2 

0.2 

0.4 

0.1 

0.1765 

Case 4 

1 

1 

1 

1 

0.9780 

Note that Table C.3 shows only results for the mean of the local distribution of 

uncertainty accounting for data uncertainty, that is, £[Z(u)]; this is because the mean of 

the local conditional distribution is independent of jut 's and equal to 0.5176. 

It is worth noting that the results shown in Tables C.2-C.3 were theoretically 

calculated from Equations (C.l 1)-(C12) of Section C.2. There is, however, another much 

more computationally intensive approach based on Monte Carlo simulation to obtain the 

same result. Specifically, in order to calculate the mean and variance of the local 

uncertainty distribution accounting for parameter uncertainty via Monte Carlo simulation 

approach the following steps need to be undertaken: 

1. At each of the conditioning data locations draw a value from the conditioning 

data distribution using Monte Carlo simulation approach; 

2. Apply simple kriging to calculate the mean and variance of the local 

conditional distribution using the conditional data generated in 1; 

3. Draw a value from the local conditional distribution obtained in 2. Add to the 

database; 

4. Repeat steps 1-3 many times, say 20000. 

To show the equivalence of the theoretically derived local conditional 

distributions of uncertainty and the ones obtained using Monte Carlo simulation, let us 

repeat analysis of Table C.2. Results are shown in Tables C.4. 
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Table C.4: Theoretically-derived approach vs. Monte-Carlo simulation: Variance of the 

local uncertainty distribution. 

Var[Z(u)] 

Theory 

Simulation 

Case 1 

0.4094 

0.4071 

Case 2 

0.5073 

0.5078 

Case 3 

0.5871 

0.5884 

Case 4 

0.6574 

0.6545 

Case 5 

0.7915 

0.7974 

The results of theoretically-derived approach vs. Monte-Carlo simulation approach match 

perfectly; the difference between results of both approaches could have been even smaller 

if instead of 20000 drawings in Monte-Carlo approach 100000 or more were used. 

C.3.2. Example 2 

To further understand the influence of the data uncertainty on the local conditional 

distributions at the unsampled locations, let us asses the change in the variance of the 

local conditional distributions (accounting for data uncertainty) over the study domain. 

Let us consider the same data configuration as before; set the means of the conditioning 

data distributions at: 

//j=0.8; / /2=0.2; ju3=-0A; / / 4 = - 0 . 1 ; 

and consider three different cases, that is, case 3, case 4 and case 5, for erf's, see Table 

C.2. In present study let us also consider two different variogram models, both single 

structured spherical with nugget effect of 0, but one with range of correlation equal to 10 

units and the other one with a range of 5 units and let us compare results. 

Figure C.2 shows results obtained in each case. It can be clearly noted from 

Figure C.2 that with increase in the range of continuity, the variance of the local 

conditional distributions decreases. The variance of the local conditional distributions 

usually lies in the interval from 0 to 1. However, it can be also higher than 1, see Table 

C.5. 

211 



7 8 9 10 

a) b) 

Figure C.2: Variance of the local conditional distributions accounting for the uncertainty 

in the data obtained based on a single structured spherical variogram with nugget effect 

of 0 and range of continuity 5 (a) and 10 (b) : case 3 (top), case 4 (middle) and case 5 

(bottom). 

212 



Table C.5: Maximum variance f the local conditional distributions over the study 

domain. 

Maximum Var[Z(u)] 

Range 5 

Range 10 

Case 3 

1 

0.9967 

Case 4 

1 

0.9993 

Case 5 

1.0021 

1.0446 

C.4. Discussion 

In this Appendix C a new interesting framework for incorporation of the data uncertainty 

into geostatistical estimation was approach. The theory behind the methodology was 

developed in detail; theoretical results were compared with practical results obtained via 

direct Monte Carlo simulation. Two small examples illustrating the change in the local 

uncertainty when incorporating data uncertainty were presented. 
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