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Abstract

Reinforcement learning (RL) has moved from toy domains to real-world ap-

plications, while each of these applications has inherent difficulties which are

long-standing challenges in RL, such as: stucking at plateaus, limited training

time, costly exploration and safety considerations. I, with my collaborates [19],

[35] proposed several RL algorithms to improve different aspects of the per-

formance including geometry-aware gradient descent (GNGD), a policy

gradient method (which is also applicable to other non-convex optimizations)

which is powerful in terms of theoretical convergence result; and a family of

Q-learning algorithms enhancing risk-aversion and robustness empirically

in trading market.

Not only in RL, geometry-aware descent methods could also be ap-

plied in any first-order non-uniform optimization and can converge to global

optimality faster than the classical Ω(1/t2) lower bounds.

e.g, for its application to PG and GLM, it can be shown that normaliz-

ing the gradient ascent method can accelerate convergence to O(e−t) while

incurring less overhead than existing algorithms, which significantly improves

the best known results. It can also be shown that the proposed geometry-

aware descent methods escape landscape plateaus faster than standard gradi-

ent descent. Experimental results are used to illustrate and complement the

theoretical findings.

On the empirical side of RL, for the purpose of enhancing robustness and

reducing risk, a family of Q-learning algorithm were proposed by taking char-
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acteristics such as risk-awareness, robustness to perturbations and low learning

variance as building blocks, and they perform well in trading market and bal-

ance theoretical guarantees with practical use.
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Preface

My thesis is mainly composed of the problems discussed in two of my works -

Leveraging Non-uniformity in First-order Non-convex Optimization [35], which

is accepted to the conference ICML 2021, and Robust Risk-Sensitive Rein-

forcement Learning Agents for Trading Markets [19], which is accepted to the

conference workshop ICML 2021 RL4RealLife.

In Chapter 4, I introduce the algorithm geometry aware gradient de-

scent (GNGD), which is co-proposed by Jincheng Mei*, Yue Gao*, Bo

Dai, Csaba Szepesvari and Dale Schuurmans[35]. In this chapter, I present a

categorised discussion of convergence rate of GNGD, where I contributed to

the proof of case (1), case (3) in Section 4.2.1, and I raised & implemented

the example of (1a), (1b), and (2b) of Example 4. In Chapter 5, I present

the application of GNGD on Markov Decision Process, where I observed the

non-uniform smoothness of MDP and proved Lemmas 2 and 3, jointly proved

Theorems 1 and 2 and Lemmas 6 and 7 with Jincheng Mei[35], and imple-

mented GNGD and GD on the one-state MDP. In Chapter 6, I present the

application of GNGD on Generalized Linear Model, where I jointly proved

Lemmas 9 and 10 and Theorem 4, and implemented GNGD and GD on GLM.

In Chapter 7, I present the family of Q-learning algorithms RA2-Q, RA2.1-

Q, RA3-Q and discuss their convergence guarantees, where all of those algo-

rithms are proposed by myself. In Chapter 8, I present the empirical game

theory for risk-averse payoff game, where the theorems and proofs were es-

tablished by me, and checked & revised by my co-authors Kry Yik Chau Lui,

Pablo Hernandez-Leal [19]. In Chapter 9, I present the empirical results of
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my proposed algorithms on trading market, where the experiments are done

by myself.
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What’s past is prologue.

– William Shakespeare, 1611.
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Chapter 1

Introduction

1.1 Aspects in Reinforcement Learning - Con-

vergence Rate & Risk-Awareness

Reinforcement learning (RL) has moved from toy domains to real-world ap-

plications such as games [8], navigation [7], software engineering [4], industrial

design [39], and finance [31]. Each of these applications has inherent difficulties

which are long-standing fundamental challenges in RL, such as: stucking at

plateaus, limited training time, costly exploration and safety considerations,

among others. This work focus on improving different aspects in RL - Accel-

erate convergence rate and escaping plateaus faster for PG methods (tabular

case), and Reducing risk and enhancing robustness for Q learning algorithms

applied in trading market.

Policy gradient (PG) methods is an essential branch in RL, it’s a type

of reinforcement learning techniques that rely upon optimizing parametrized

policies with respect to the expected return. Inspired by Mei et al., Mei et al.,

I would explore the ways to escape plateaus and accelerate convergence rate of

gradient descent. Commonly used techniques to escape plateaus include NGD

[41], RMSProp[24], but each of them has its own shortcomings. As shown in

Chapter 4, NGD does not converge in some cases, and RMSProp does not

accelerate the escape rate significantly when the gradient is extremely close

to zero. Inspired by the non-uniform properties of functions, novel gradient-

based methods that better exploit local structure could be proposed, and the
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convergence rate analysis could be improved. Not only in PG, such methods

could be applied in different scenarios like Generalized Linear Model, non-

convex optimizations and so on.

Q learning is a model-free reinforcement learning method to learn the value

of an action in a particular state. It’s widely used in cases where the states

and actions are limited, a typical example is trading market agents. Trading

markets represent a real-world financial application to deploy reinforcement

learning agents, however, they often meet challenges such as high variance

and costly exploration. Moreover, markets are inherently a multiagent domain

composed of many actors taking actions and changing the environment, thus

requiring the agents to be robust. To tackle these type of scenarios, agents

need to exhibit certain characteristics such as risk-awareness, robustness to

perturbations and low learning variance. In this work, I take those three

characteristics as building blocks and propose a family of three Q learning

algorithms. Those algorithms either theoretically or empirically reduce risk or

enhance robustness. In order to evaluate the performance of the algorithms,

I’ll extend and apply empirical game theory.

1.2 Non-Uniformity in First Order Non-convex

Optimization

While gradient-based algorithms remain the method of choice in machine

learning, the convergence of such algorithms to global minimizers has still

only been established in restrictive settings where one can assert two strong

assumptions about the objective function: (1) that the objective is smooth,

and (2) that the objective satisfies a gradient dominance over sub-optimality

such as the  Lojasiewicz inequality. I, with my collaborators find it beneficial

to recall the definitions of these properties.

In my work, I, together with my collaborators[35], expanded the class of

problems for which gradient-based optimization is globally convergent, de-
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velop novel gradient-based methods that better exploit local structure, and

improve the convergence rate analysis. We achieve these results by first defin-

ing then investigating a new set of non-uniform smoothness and  Lojasiewicz

inequalities, which generalize the classical definitions and allow a refined char-

acterization of the space of objectives. Given these refined notions, we then

proposed novel gradient-based algorithms that improve previous methods for

these new problem classes, and extended the analysis to exploit these new

forms of non-uniformity, achieving significantly stronger convergence rates in

different cases. Importantly, these improvements are achieved in non-convex

optimization problems that arise in relevant machine learning problems.

1.3 Risk and Robustness in Trading Market

RL Algorithms

In finance, there are some examples of RL in stochastic control problems such

as option pricing [32], market making [50], and optimal execution [44]. How-

ever, the most well-known finance application is algorithmic trading, where the

goal is to design algorithms capable of automatically making trading decisions

based on a set of mathematical rules computed by a machine [52].

In algorithmic trading the environment represents the market (and the rest

of the actors). The agent’s task is to take actions related to how and how much

to trade, and the objective is usually to maximize profit while considering risk.

There are diverse challenges in this setting such as partial observability, a large

action space, a hard definition of rewards and learning objectives [52]. In this

work I focus on two properties for learning agents in realistic scenarios: risk

assessment and robustness.

Risk assessment is a cornerstone in financial applications. A well-known

approach is to consider risk while assessing the performance (profit)1 of a trad-

1Even when the usual financial term for profit is return, this could be confused with the
usual definition of return in RL (cumulative sum of discounted rewards).
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ing strategy. Here, risk is a quantity related to variance of the profit and it

is commonly refereed to as “volatility”. In particular, the Sharpe ratio [48]

considers both the generated profit and the risk (variance) associated with a

trading strategy. Note that this objective function (Sharpe ratio) is different

from traditional RL where the goal is to optimize the expected return without

risk considerations. There are existing works that proposed risk-sensitive RL

algorithms [18], [38] and variance reduction techniques [3]. In a similar spirit

my proposed algorithms aim to reduce variance while also having convergence

guarantees and improved robustness via adversarial learning.

Deep RL has been shown to be brittle in many scenarios [22]. Therefore,

improving robustness is essential for deploying agents in realistic scenarios. A

line of work has improved robustness of RL agents via adversarial perturba-

tions [40], [46]. In particular, the framework assumes a learning adversary who

is allowed to take over control at regular intervals. This approach has shown

good experimental results in robotics [45], and my proposed algorithms extend

on this idea.

In trading market, the state & actions are limited, so Q learning method

is a wise choice. First, I contribute with two algorithms that use risk-averse

objective functions and variance reduction techniques. Then, I augment the

framework to multi-agent learning and assume an adversary which can take

over and perturb the learning process. My third algorithm perform well under

this setting and balance theoretical guarantees with practical use.

Since the motivation is to use RL agents in trading markets (which can be

seen as multi-agent interactions) I also evaluate these agents from the perspec-

tive of game theory. However, it may be too difficult to analyze in standard

game theoretic framework since there is no normal form representation (com-

monly used to analyze games). Fortunately, empirical game theory [56], [59]

overcomes this limitation by using the information of several rounds of re-

peated interactions and assuming a higher level of strategies (agents’ policies).
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These modifications have made possible the analysis of multi-agent interac-

tions in complex scenarios such as markets [11], and multi-agent games [53].

However, these works have not studied the interactions under risk-aware met-

rics as my work.
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Chapter 2

Preliminaries

2.1 Single Agent RL Setting - A Tabular Case

For a finite set N , let ∆(N ) denote the set of all probability distributions on

N . A finite MDP M := (S,A,P , r, γ) is determined by a finite state space

S, a finite action space A, a transition function P : S × A → ∆(S), a scalar

reward function r : S ×A → R, and a discount factor γ ∈ [0, 1).

In policy-based RL, an agent interacts with the environment, i.e., the MDP

M, using a policy π : S → ∆(A). Given a state st, the agent takes an

action at ∼ π(·|st), receives a one-step scalar reward r(st, at) and a next-state

st+1 ∼ P(·|st, at). The long-term expected reward, also known as the value

function of π under s, is defined as

V π(s) := E
s0=s,at∼π(·|st),
st+1∼P(·|st,at)

[
∞∑
t=0

γtr(st, at)

]
. (2.1)

The state distribution of π is defined as,

dπs0(s) := (1− γ)
∞∑
t=0

γt Pr(st = s|s0, π,P). (2.2)

Given an initial state distribution ρ ∈ ∆(S), we denote V π(ρ) := Es∼ρ [V π(s)]

and dπρ(s) := Es0∼ρ
[
dπs0(s)

]
. There exists an optimal policy π∗ such that

V π∗(ρ) = supπ:S→∆(A) V
π(ρ). For convenience, we denote V ∗ := V π∗ . Consider

a tabular representation, i.e., θ(s, a) ∈ R for all (s, a), so that the policy πθ

can be parameterized by θ as πθ(·|s) = softmax(θ(s, ·)); that is, for all (s, a),

πθ(a|s) =
exp{θ(s, a)}∑

a′∈A exp{θ(s, a′)}
. (2.3)
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When there is only one state the policy πθ = softmax(θ) is defined as πθ(a) =

exp{θ(a)}/
∑

a′∈A exp{θ(a′). The problem of policy-based RL is then to find

a policy πθ that maximizes the value function, i.e.,

sup
θ:S×A→R

V πθ(ρ). (2.4)

For convenience, and without loss of generality, we assume r(s, a) ∈ [0, 1] for

all (s, a) ∈ S ×A.

2.2 Multi Agent RL Setting

In RL, each agent i aims to maximize its own total expected return, e.g., for

a Markov game with two agents, for a given initial state distribution d0, the

discounted returns are respectively :

J1(d0, π
1, π2) =

∞∑
t=0

γt E
[
r1
t |π1, π2, d0

]
(2.5)

J2(d0, π
1, π2) =

∞∑
t=0

γt E
[
r2
t |π1, π2, d0

]
(2.6)

where γ is a discount factor, r1
t , r

2
t , t = 1, 2, ... are respectively immediate

rewards for agent 1 & 2. And a Nash equilibrium for Markov game (with two

agents) is defined as following

Definition 1. [23] A Nash equilibrium point of game (J1, J2) is a pair of

strategies (π1
∗, π

2
∗) such that for ∀s ∈ S,

J1(s, π1
∗, π

2
∗) ≥ J1(s, π1, π2

∗) ∀π1 (2.7)

J2(s, π1
∗, π

2
∗) ≥ J2(s, π1

∗, π
2) ∀π2 (2.8)

A Markov game for N agents is defined by a set of states S describing the

possible configurations of all agents, a set of actions A1, ...,AN and a set of

observations O1, ...,ON for each agent. To choose actions, each agent i uses a

stochastic policy πθi : Oi×Ai → [0, 1] parameterized by θi, which produces the

next state according to the state transition function P : S×A1×...×AN → S.

Each agent i obtains rewards as a function of the state and agents’ action
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ri : S ×A1× ...×AN → R, and receives a private observation correlated with

the state oi : S → Oi. The initial states are determined by a distribution

d0 : S → [0, 1]|S|. In multi-agent Q learning, the Q tables are defined over

joint actions for each of the agents. Each agent receives rewards according to

its reward function, with transitions dependent on the actions chosen jointly

by the set of agents.

2.3 Empirical Game Theory

The multi-agent behaviours in a trading market could be analyzed using em-

pirical game theory, where a player corresponds to an agent, and a strategy

corresponds to a learning algorithm. Then, in a p-player game, players are in-

volved in a single round strategic interaction. Each player i chooses a strategy

πi from a set of k strategy Si = {πi1, ..., πik} and receives a stochastic payoff

Ri(π1, ..., πp) : S1 × S2 × ... × Sp → R. The underlying game that is usually

studied is ri(πi, ..., πp) = E[Ri(π1, ..., πp)]. In general, we denote the payoff of

player i as µi and x−i as the joint strategy of all players except for player i.

Definition 2. A joint strategy x = (x1, ..., xp) = (xi,x−i) is a Nash equilibrium

if for all i :

Eπ∼x
[
µi(π)

]
= max

πi
Eπ−i∼x−i

[
µi(πi, π−i)

]
(2.9)

Definition 3. A joint strategy x = (x1, ..., xp) = (xi,x−i) is an ε-Nash equi-

librium if for all i:

max
πi

Eπ−i∼x−i
[
µi(πi, π−i)

]
− Eπ∼x

[
µi(π)

]
≤ ε (2.10)

Evolutionary dynamics have been used to analyze multi-agent interactions.

A well-known model is replicator dynamics (RD) [57] which describes how a

population evolves through time under evolutionary pressure (in our analy-

sis, a population is composed by learning algorithms). RD assumes that the

reproductive success is determined by interactions and their outcomes. For

example, the population of a certain type increases if they have a higher fit-

ness (in our case this means the expected return in certain interaction) than

8



the population average; otherwise that population share will decrease.

To view the dominance of different strategies, it is common to plot the

directional field of the payoff tables using the replicator dynamics for a number

of strategy profiles x in the simplex strategy space [53]. In Section 9.1 I’ll

present results in this format evaluating my proposed algorithms.
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Chapter 3

Non-uniform Properties

In this chapter, two core non-uniform properties, Non-uniform Smoothness

(NS) and Non-uniform  Lojasiewicz (N L) inequality are presented, and the key

contribution is to show that the combination of those two non-uniform con-

cepts could be applied to important non-convex objectives in machine learning,

and allows the development of improved algorithms and analysis. The combi-

nation of NS and N L benefits a number of optimization problems in terms of

generality, better convergence results, and practical implications.

3.1 Non-uniform Smoothness

Here’s the definition of uniform smoothness :

Definition 4 (Smoothness). The function f : Θ → R is β-smooth (β > 0) if

it is differentiable and for all θ, θ′ ∈ Θ,∣∣∣f(θ′)− f(θ)−
〈
df(θ)
dθ
, θ′ − θ

〉∣∣∣ ≤ β
2
· ‖θ′ − θ‖2

2. (3.1)

Based on Definition 4, the notion of smoothness can be generalized, where

the non-uniform parameter depends on the function parameters non-uniformly.

Definition 5 (Non-uniform Smoothness (NS)). The function f : Θ → R

satisfies β(θ) non-uniform smoothness if f is differentiable and for all θ, θ′ ∈

Θ, ∣∣∣∣f(θ′)− f(θ)−
〈df(θ)

dθ
, θ′ − θ

〉∣∣∣∣ ≤ β(θ)

2
· ‖θ′ − θ‖2

2,

where β is a positive valued function: β : Θ→ (0,∞).
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Here’s a simple example of non-uniform smooth function :

Example 1. Define the function f : R→ R as

f(θ) = θ4

By Taylor Expansion, we have that∣∣∣f(θ′)− f(θ)−
〈

4 · θ3, θ′ − θ
〉∣∣∣ ≤ 12 · θ2

2
· ‖θ′ − θ‖2

2

When θ ≈ 0, 12·θ2
2
≈ 0; And when θ ≈ ∞, 12·θ2

2
≈ ∞, so unlike in Definition 4,

we cannot use a constant β to denote the smoothness of function f .

In the later context, I’ll refer to β(θ) in Definition 5 as the NS coefficient.

Zhang et al. raised the notion of (L0, L1) smoothness, where β(θ) = L0 +

L1 · ‖∇f(θ)‖2. NS also generalizes the notion of (L0, L1) smoothness.

Wilson et al. proposed the notion of strong smoothness of order p, where

β(θ) = c · ‖∇f(θ)‖
p−2
p−1

2 , NS also reduces to this notion of strong smoothness of

order p.

Finally, with β(θ) = c/ ‖θ‖2
p, NS reduces to a special form of non-uniform

smoothness considered in Mei et al.

I will show later that NS also covers other previously unstudied smoothness

variants.

3.2 Non-uniform  Lojasiewicz Inequality

Here’s the definition of  Lojasiewicz Inequality given by [29], [34], [47]

Definition 6. [29], [34], [47] The differentiable function f : Θ→ R satisfies

the (C, ξ)- Lojasiewicz inequality if for all θ ∈ Θ,∥∥∥df(θ)
dθ

∥∥∥
2
≥ C · (f(θ)− infθ∈Θ f(θ))1−ξ , (3.2)

where C > 0 and ξ ∈ [0, 1].

We leverage a generalized  Lojasiewicz inequality introduced by [37].
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Definition 7. [37] The differentiable function f : Θ→ R satisfies the (C(θ), ξ)

non-uniform  Lojasiewicz inequality if for all θ ∈ Θ,∥∥∥∥df(θ)

dθ

∥∥∥∥
2

≥ C(θ) · |f(θ)− f(θ∗)|1−ξ , (3.3)

where ξ ∈ (−∞, 1], and C(θ) : Θ → R > 0 holds for all θ ∈ Θ. In this

definition, either θ∗ = arg minθ∈Θ f(θ), or f(θ∗) is replaced with infθ f(θ) if

the global optimum is not achieved within the domain Θ.

ξ is the N L degree and C(θ) is the N L coefficient. Generally speaking,

a larger N L degree ξ and N L coefficient C(θ) indicate faster convergence for

gradient based algorithms.

Here’re some examples of remarkable non-convex functions that satisfy the

N L inequality for various ξ and C(θ).

Example 2. Expected reward, softmax parameterization. As shown

in Mei et al., Lemma 3,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)>r. (3.4)

Expected reward, escort parameterization. As shown in Mei et al.,

Lemma 3, ∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ p

‖θ‖p
· πθ(a∗)1−1/p · (π∗ − πθ)>r. (3.5)

Value function, softmax parameterization. As shown in Mei et al.,

Lemma 8, ∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ mins πθ(a
∗(s)|s)√

S ·
∥∥dπ∗ρ /dπθµ ∥∥∞ · [V ∗(ρ)− V πθ(ρ)] . (3.6)

Value function, escort parameterization. As shown in Mei et al.,

Lemma 7,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ p√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

· mins πθ(a
∗(s)|s)1−1/p

maxs ‖θ(s, ·)‖p
· [V ∗(ρ)− V πθ(ρ)] .

(3.7)
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Entropy regularized expected reward, softmax parameterization.

As shown in Mei et al., Proposition 5,∥∥∥∥d{π>θ (r − τ log πθ)}
dθ

∥∥∥∥
2

≥
√

2τ ·min
a
πθ(a) ·

[
π∗τ
> (r − τ log π∗τ )− π>θ (r − τ log πθ)

] 1
2
.

(3.8)

Entropy regularized value function, softmax parameterization.

As shown in Mei et al., Lemma 15,∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

≥
√

2τ√
S
·min

s

√
µ(s) ·min

s,a
πθ(a|s) ·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2
.

(3.9)

Entropy regularized value function, escort parameterization. As

shown in Mei et al., Lemma 12,∥∥∥∥∥∂Ṽ πθ(µ)

∂θ

∥∥∥∥∥
2

≥ p ·
√

2τ√
S
·min

s

√
µ(s) · mins,a πθ(a|s)1−1/p

maxs ‖θ(s, ·)‖p
·

∥∥∥∥∥dπ
∗
τ
ρ

dπθµ

∥∥∥∥∥
− 1

2

∞

·
[
Ṽ π∗τ (ρ)− Ṽ πθ(ρ)

] 1
2
.

(3.10)

Cross entropy, escort parameterization. As shown in Mei et al.,

Lemma 17,∥∥∥∥d{DKL(y‖πθ)}
dθ

∥∥∥∥
2

≥ p

‖θ‖p
·min

a
πθ(a)

1
2
− 1
p ·DKL(y‖πθ)

1
2 . (3.11)

Generalized linear models, sigmoid activation, mean squared

error.

Denote u(θ) := mini {πi · (1− πi)}, and v := mini {π∗i · (1− π∗i )}. We

have, for all i ∈ [N ],

∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

≥ 8 · u(θ) ·min {u(θ), v} ·
√
λφ ·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

. (3.12)

where λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i .
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Proof. Denote π′i := σ(z′i), where z′i := φ>i θ + ζ ·
(
φ>i θ − φ>i θ∗

)
for some ζ ∈ [0, 1]. We have,

(πi − π∗i )
2 = (πi − π∗i ) ·

dσ(z′i)

dz′i
·
(
φ>i θ − φ>i θ∗

)
(by the mean value theorem) (3.13)

= π′i · (1− π′i) · (πi − π∗i ) ·
(
φ>i θ − φ>i θ∗

)
(3.14)

≤ 1

4
· (πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
.

(
x · (1− x) ≤ 1

4
, ∀x ∈ [0, 1]; (πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
≥ 0

)
(3.15)

Therefore we have,

1

N
·
N∑
i=1

(πi − π∗i )
2 ≤ 1

4N
·
N∑
i=1

(πi − π∗i ) ·
(
φ>i θ − φ>i θ∗

)
(by Eq. (A.224)) (3.16)

=
1

4N
·
N∑
i=1

1

πi · (1− πi)
· πi · (1− πi) · (πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
(3.17)

≤ 1

4N
· 1

mini πi · (1− πi)
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) ·
(
φ>i θ − φ>i θ∗

) (
(πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
≥ 0
)

(3.18)

=
1

8
· 1

mini πi · (1− πi)
·

(
2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi

)>
(θ − θ∗ − c · vφ,⊥) (3.19)

=
1

8
· 1

mini πi · (1− πi)
·
(
∂L(θ)

∂θ

)>
(θ − θ∗ − c · vφ,⊥)

(
∂L(θ)

∂θ
=

2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi

)
(3.20)

≤ 1

8
· 1

mini πi · (1− πi)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· ‖θ − θ∗ − c · vφ,⊥‖2 (by Cauchy-Schwarz) (3.21)

=
1

8
· 1

u(θ)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· ‖θ − θ∗ − c · vφ,⊥‖2 ,
(
u(θ) := min

i
{πi · (1− πi)}

)
(3.22)

where vφ,⊥ is orthogonal to the space Span {φ1, φ2, . . . , φN}, and θ − θ∗ − c · vφ,⊥ refers to the vector
after cutting off all the components vφ,⊥ from θ− θ∗, such that θ− θ∗− c · vφ,⊥ ∈ Span {φ1, φ2, . . . , φN}.
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Next, we have,

1

N
·
N∑
i=1

(πi − π∗i )
2 =

1

N
·
N∑
i=1

(
dσ(z′i)

dz′i

)2

·
(
φ>i θ − φ>i θ∗

)2
(by the mean value theorem) (3.23)

=
1

N
·
N∑
i=1

(π′i)
2 · (1− π′i)

2 ·
(
φ>i θ − φ>i θ∗

)2
(by Eq. (A.224)) (3.24)

≥ min
i

{
(π′i)

2 · (1− π′i)
2
}
· 1

N
·
N∑
i=1

(
φ>i θ − φ>i θ∗

)2
(3.25)

= min
i

{
(π′i)

2 · (1− π′i)
2
}
· (θ − θ∗)>

(
1

N
·
N∑
i=1

φiφ
>
i

)
(θ − θ∗) (3.26)

= min
i

{
(π′i)

2 · (1− π′i)
2
}
· (θ − θ∗ − c · vφ,⊥)>

(
1

N
·
N∑
i=1

φiφ
>
i

)
(θ − θ∗ − c · vφ,⊥) (3.27)

≥ min
{
u(θ)2, v2

}
· (θ − θ∗ − c · vφ,⊥)>

(
1

N
·
N∑
i=1

φiφ
>
i

)
(θ − θ∗ − c · vφ,⊥)

(
v := min

i
{π∗i · (1− π∗i )}

)
(3.28)

≥ min
{
u(θ)2, v2

}
· λφ · ‖θ − θ∗ − c · vφ,⊥‖2

2 , (3.29)

where λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i . Therefore, we have,

1

N
·
N∑
i=1

(πi − π∗i )
2 ≤ 1

8
· 1

u(θ)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· ‖θ − θ∗ − c · vφ,⊥‖2 (by Eq. (A.228)) (3.30)

≤ 1

8
· 1

u(θ)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· 1

min {u(θ), v}
· 1√

λφ
·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

, (by Eq. (A.237)) (3.31)

which implies, ∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

≥ 8 · u(θ) ·min {u(θ), v} ·
√
λφ ·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

.
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Chapter 4

Geometry Normalized Gradient
Descent (GNGD)

In optimization, gradient descent (GD) is a commonly used first-order iterative

algorithm.

Definition 8 (Gradient Descent (GD)).

θt+1 ← θt − η · ∇f(θt). (4.1)

The key challenge with deploying GD is choosing the step size η; if η is

too large, instability ensues, if too small, progress becomes slow. Especially,

GD can take arbitrarily long to escape from plateaus. There’re many meth-

ods accelerating escaping plateaus, including RMSProp, normalized gradient

descent, etc.

Definition 9 (Normalized Gradient Descent (NGD)).

θt+1 ← θt − η · ∇f(θt)
/
‖∇f(θt)‖ . (4.2)

Although NGD can help escaping plateaus faster, in many cases, NGD

looses the convergence guarantee.
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Example 3. Define the function f : R→ R as

f(θ) = θ4

then the gradient of f is

∇f(θ) = 4 · θ3

Hence the NGD iteration rule is

θt+1 ← θt − η. (4.3)

By setting η = 0.1, at θt0 = 0.05, Eq. (4.3) yields θt0+1 = −0.05, and in the

following t ≥ t0, θt oscillate among 0.05 and -0.05.

In the presence of non-uniform smoothness β(θ) given in NS, the step-

size should be adapted to 1/β(θ). This leads to a new variant of normalized

gradient descent - Geometry-aware Normalized GD (GNGD).

4.1 GNGD Algorithm

Definition 10 (Geometry-aware Normalized GD (GNGD)).

θt+1 ← θt − η ·
∇f(θt)

β(θt)
. (4.4)

For function f , if there’s an efficient way to compute β(θ), GNGD is prac-

tical.

4.2 Convergence Rate of GD and GNGD in

Different Function Classes

4.2.1 Convergence Rate of Functions

Here’s an analysis for GD and GNGD based on non-uniform smoothness and

non-uniform N L.

For function f s.t. inf
θ
f(θ) > −∞ (for minimizing problem), it can be

classified into different categories according to two non-uniform properties :
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non-uniform smoothness and non-uniform N L.

Let β(θ) denote the non-uniform smoothness parameter, δ(θ) := f(θ) −

f(θ∗) be the sub-optimality gap, (C(θ), ξ) denote the non-uniform N L param-

eter. Note that we assume inf
t≥1

C(θt) > 0. Then the functions can be classified

into the following categories and GD & GNGD respectively achieves conver-

gence rates as stated below :

(1a) If β(θ) ≤ c · δ(θ)1−2ξ with ξ ∈ (−∞, 1/2), then GD with η ∈ O(1)

achieves δ(θt) ∈ Θ(1/t
1

1−2ξ ), and GNGD achieves δ(θt) ∈ O(e−t);

(1b) If β(θ) ≤ c · ‖∇f(θ)‖
1−2ξ
1−ξ

2 with ξ ∈ (−∞, 1/2), then GD with η ∈ O(1)

achieves δ(θt) ∈ Θ(1/t
1

1−2ξ ), and GNGD achieves δ(θt) ∈ O(e−t).

(2a) if β(θ) ≤ L0 + L1 · ‖∇f(θ)‖2, then GD and GNGD both achieve δ(θt) ∈

O(1/t
1

1−2ξ ) when ξ ∈ (−∞, 1/2), and O(e−t) when ξ = 1/2. GNGD has

strictly better constant than GD (1 ≥ C ≥ C2).

(2b) if β(θ) ≤ L0 · ‖∇f(θ)‖2
δ(θ)2−2ξ +L1 · ‖∇f(θ)‖2, then GD and GNGD both achieve

δ(θt) ∈ O(1/t
1

1−2ξ ) when ξ ∈ (−∞, 1/2), and O(e−t) when ξ = 1/2.

GNGD has strictly better constant than GD (1 ≥ C ≥ C2).

(3a) if β(θ)≤ c·‖∇f(θ)‖
1−2ξ
1−ξ

2 with ξ ∈ (1/2, 1), then GD with η ∈ Θ(1) does

not converge, while GNGD achieves δ(θt) ∈ O(e−t);

(3b) if β(θ) ≤ c · δ(θ)1−2ξ with ξ ∈ (1/2, 1), then GD with η ∈ Θ(1) does not

converge, while GNGD achieves δ(θt) ∈ O(e−t).

For the detailed proof of those convergence rates, please check Mei et al.,

Appendix A.1.

Remark 1. The above cases cover all possibilities of the non-uniform smooth-

ness parameter β(θ∗), where θ∗ is the global minimum. Since ∇2f(θ∗) is posi-

tive semi-definite if it exists.

Here’re examples of functions satisfying those non-uniform properties re-

spectively, and experimental results are used to illustrate and complement the

theoretical findings :
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Example 4. (1a) The convex function f : x 7→ |x|p with p > 1 satisfies the

N L inequality with ξ = 1/p and the NS property with β(x) ≤ c1 ·δ(x)1−2ξ.

For p > 1, f is differentiable, and we have,

|f ′(x)| =
∣∣p · |x|p−1 · sign{x}

∣∣ = p · (|x|p)
p−1
p = p · (f(x)− f(0))1− 1

p ,
(4.5)

which means f satisfies N L inequality with ξ = 1/p. On the other hand,

the Hessian of f is,

|f ′′(x)| =
∣∣p · (p− 1) · |x|p−2

∣∣ = p·(p−1)·(|x|p)
p−2
p = p·(p−1)·(f(x)−f(0))1− 2

p .

Hence for p > 2, the function f : x 7→ |x|p with p > 2 satisfies the

conditions in (1a). Here in Fig. 4.1 is the simulation result of GD and

GNGD on the function f : x 7→ |x|4.
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Figure 4.1: GD and GNGD on f : x 7→ |x|p, p = 4.

Subfigure (c) shows that the standard GD with constant learning rate

η = 0.01 achieves sublinear rate about O(1/t2), while subfigure (b) shows

that GNGD with η = 0.01 enjoys linear rate O(e−c·t), verifying the result

in (1a).

(1b) Consider maximizing the expected reward,

f(θ) = π>θ r, (4.6)

where πθ = softmax(θ) and θ ∈ RK. According to Lemma 1, we have,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)>r, (4.7)

which means f satisfies N L inequality with ξ = 0. As shown in Lemma 2,

we have β(θζ) = 3 ·
∥∥∥dπ>θζ rdθζ

∥∥∥
2
. Therefore, β(θ) ≤ 3 · ‖∇f(θ)‖

1−2ξ
1−ξ

2 .
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(2a) Consider minimizing the function f : R→ R,

f(θ) =

{
2 · (πθ − πθ∗)2 , if |πθ − πθ∗| ≤ 0.2,

25 · (πθ − πθ∗)4 + 0.04, otherwise
(4.8)

where θ ∈ R, θ∗ = 0, and πθ is defined as,

πθ = σ(θ) =
1

1 + e−θ
, (4.9)

where σ : R→ (0, 1) is the sigmoid activation. Fig. 4.2 shows the image

of f , indicating that f is a non-convex function. Since θ∗ = 0, we have

Figure 4.2: The image of f .

πθ∗ = 1/2, and for all |πθ − πθ∗| > 0.2,∣∣∣∣df(θ)

dθ

∣∣∣∣ =

∣∣∣∣dπθdθ · df(θ)

dπθ

∣∣∣∣ (4.10)

=
∣∣πθ · (1− πθ) · 100 · (πθ − πθ∗)3

∣∣ (4.11)

= 100 · πθ · (1− πθ) ·
[
(πθ − πθ∗)4] 3

4 (4.12)

= 100 · πθ · (1− πθ) · [f(θ)− f(θ∗)]1−
1
4 , (4.13)

which means f satisfies N L inequality with ξ = 1/4 < 1/2. For all

|πθ − πθ∗| ≤ 1, the Hessian of f is,∣∣∣∣d2f(θ)

dθ2

∣∣∣∣ =

∣∣∣∣ ddθ {100 · πθ · (1− πθ) · (πθ − πθ∗)}
∣∣∣∣ (4.14)

=
∣∣100 · πθ · (1− πθ) · (πθ − πθ∗) · (1− 2πθ) + 100 · π2

θ · (1− πθ)
2
∣∣

(4.15)

≤ |100 · πθ · (1− πθ) · (πθ − πθ∗) · (1− 2πθ)|+
25

4
(4.16)

≤
∣∣∣∣df(θ)

dθ

∣∣∣∣+
25

4
. (4.17)
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(2b) GLM with mean-squared-error L(θ) satisfies β(θ) NS with

β(θ) = L1 ·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+ L0 ·

(∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
.

and (C, ξ) N L where ξ = 1
2
. For detail, please check Chapter 6.

(3a, 3b) Similar to (1a), for function f : x 7→ |x|1.5 satisfies the N L in-

equality with ξ = 2
3

and the NS property with β(x) ≤ c1 · δ(x)1−2ξ. Also,

since |f ′(x)| = 1.5 · x0.5 and |f ′′(x)| = 1.5 · 0.5 · x−0.5, f also satisfies the

condition in (3a).

The function f is differentiable, and the Hessian |f ′′(x)| = 1.5 · (1.5 −

1) · |x|1.5−2 → ∞, as x → 0, which indicates GD with η ∈ Θ(1) does

not converge. Fig. 4.3(a) shows the image of f : x 7→ |x|1.5. As shown
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Figure 4.3: GD and GNGD on f : x 7→ |x|p, p = 1.5.

in subfigure (b), the gradient of f exists at x = 0, and the Hessian

|f ′′(x)| → ∞ as x → 0. The results of GD with η = 0.005 and GNGD

are presented in subfigure (c). The sub-optimality of GD update decreased

for some time, and then it increased later. This is due to the Hessian is

unbounded near x = 0, and thus constant learning rates cannot guarantee

monotonic progresses for GD. On the other hand, GNGD with η = 0.01

enjoys O(e−c·t) convergence rate, verifying the results in the case (3a,3b).

4.2.2 Ω(1/t2) Lower Bound for Convexity-Smootheness

Note that GNGD satisfies xt+1 = x1−
∑t

i=1
η

β(xi)
· ∇f(xi) ∈ Span {x1,∇f(x1), . . . ,∇f(xt)},

which is a first-order oracle Nesterov. Thus there exists a worst-case objective

in the convex-smooth class that forces δ(xt) ∈ Ω(1/t2) for t ∈ O(n), where n

21



is the parameter dimension [13], [42], [43]. This is not a contradiction, since

the lower bound is established by constructing a convex smooth function with

a constant β > 0 [13], and β(x)→ β > 0 as x, x′ → x∗, e.g., Example 4 (2a).

Hence, the Ω(1/t2) result covers some functions.

Meanwhile, as shown in Example 4 (1a), convex functions f : x 7→ |x|p with

p > 2 (β(x) → β = 0 as x, x′ → x∗) achieves linear convergence rate using

GNGD, which implies that the standard convex-smooth class consists of two

subclasses. One subclass admits first-order sub-linear lower bounds, while the

other allows linear convergence using first-order methods. Here, note that the

NS property is also divided into two sub classes, β(x)→ β > 0 as x, x′ → x∗;

β(x) → β = 0 as x, x′ → x∗. This partition also inspires geometry-aware

gradient descent.

4.2.3 Ω(1/
√
t) lower bound for (L0, L1)-smoothness.

For (2a) in Section 4.2.1, i.e., β(θ) = L0 + L1 · ‖∇f(θ)‖2 with L0, L1 ≥ 1,

standard normalized GD is subject to a Ω(1/
√
t) lower bound (Zhang et al.)

However, in Chapter 5, we will show that normalized policy gradient (PG)

method achieves a linear rate of O(e−c·t).

Again, this is not a contradiction for similar reasons, the lower bound is

a worst-case, and we can also construct some objective function such that

GNGD meets the lower bound. With L0 ≥ 1, β(θ) → L0 > 0 as θ, θ′ → θ∗,

the Ω(1/
√
t) lower bound will hold for some functions in (2a) in Example 4

(where ξ = −1
2
). While in Chapter 5 the objective satisfies L0 = 0 and L1 > 0,

hence it’s not in the case discussed in Zhang et al. This implies that a similar

separation NS conditions lead to separation of convergence rates for first-order

methods. Note that we’re not sure whether GNGD achieves optimal worst-case

convergence rate.
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Chapter 5

GNGD Applied to Markov
Decision Process - Geometry
Aware Normalized Policy
Gradient Method

As mentioned in Section 4.2.3, it can be shown that the expected return objec-

tive considered in direct policy optimization in RL achieves linear convergence

rate using GNPG, and GNPG escapes plateaus faster than PG. In this chap-

ter, the PG problem is classified into two categories - one-state MDP PG and

multi-state MDP PG, and the convergence rates are shown respectively. Note

that in this chapter, it can be shown that geometry-aware normalized PG is

equivalent to normalized PG. For the proofs of Lemmas & Theorems in this

section, please refer to Section A.1.

5.1 One-State MDP

In this section, some key insights for one-state MDPs with K actions and

γ = 0 are illustrated (The problem is equivalent to K-arm bandit). The value

function Eq. (2.1) reduces to expected reward π>θ r, where r ∈ [0, 1]K , θ ∈ RK ,

and πθ = softmax(θ). Mei et al. have shown that even though maxθ π
>
θ r is a

non-concave maximization, global convergence can be achieved with a O(1/t)

rate using uniform smoothness and the N L inequality:

Lemma 1 (N L, Mei et al., Lemma 3). Let a∗ be the optimal action. Denote
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π∗ = arg maxπ∈∆ π
>r. Then,∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

≥ πθ(a
∗) · (π∗ − πθ)>r. (5.1)

Note that Lemma 1 is not improvable in terms of the coefficients C(θ) =

πθ(a
∗) and ξ = 0 (Mei et al., Remark 1 and Lemma 17).

However, the O(1/t) convergence result is based on only using a uniform

smoothness coefficient β = 5/2 (Mei et al., Lemma 2), which can be signifi-

cantly refined by our uniform smoothness Definition 5. Empirically, Mei et al.

showed that it takes a long time for PG to escaping plateaus. To illustrate, a

standard policy gradient (PG) on a 3-action one-state MDP is executed.
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Figure 5.1: PG results on r = (1.0, 0.8, 0.1)>.

As shown in Fig. 5.1(a), PG first goes through a long suboptimal plateau,

and then eventually escapes to approach π∗. Fig. 5.1(b) presents the spectral

radius of the Hessian and the PG norm 3 ·
∥∥∥dπ>θtrdθt

∥∥∥
2

as functions of time t.

Fig. 5.1(b) indicates that the smoothness parameter is non-uniform: it is

close to zero at the suboptimal plateau and near π∗, highly aligned with the

PG norm. Hence, instead of universal constant β, the PG norm characterizes

the non-uniform landscape information far more precisely. This observation is

formalized by proving the following key result:

Lemma 2 (NS). Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. For any

r ∈ [0, 1]K, θ 7→ π>θ r satisfies β(θξ) non-uniform smoothness with β(θζ) =

3 ·
∥∥∥dπ>θζ rdθζ

∥∥∥
2
.
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Note that Lemma 2 satisfies the condition (1b) in Section 4.2.1, the N L

parameter ξ = 0, and GNGD requires normalizing β(θζ), which is the PG

norm of θζ . However, ζ is unknown. Fortunately, it can be shown that, if we

normalize the PG norm of θ in each iteration, the β(θζ) in Lemma 2 can be

upper bounded by
∥∥∥dπ>θ rdθ

∥∥∥
2
, given the learning rate η is small enough:

Lemma 3. Let θ′ = θ + η · dπ
>
θ r

dθ

/∥∥∥dπ>θ rdθ

∥∥∥
2
. Denote θζ := θ + ζ · (θ′ − θ) with

some ζ ∈ [0, 1]. We have, for all η ∈ (0, 1/3),∥∥∥∥dπ>θζrdθζ

∥∥∥∥
2

≤ 1

1− 3η
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (5.2)

To finish building the convergence guarantee, it’s also necessary to show

that the N L coefficient πθ(a
∗) is bounded away from 0, which provides con-

stants in the convergence rate results.

Lemma 4 (Non-vanishing N L coefficient). Using normalized policy gradient

method, we have inft≥1 πθt(a
∗) > 0.

Hence, the non-concave function π>θ r satisfies the requirements (1b) in

Section 4.2.1 with ξ = 0 in each iteration of normalized PG1:

Lemmas 2 and 3 show that in each iteration of normalized PG, the NS

coefficient β(θζt) ≤ c1 ·
∥∥∥dπ>θtrdθt

∥∥∥
2
, while Lemmas 1 and 4 guarantee

∥∥∥dπ>θtrdθt

∥∥∥
2
≥

c2 · (π∗−πθt)>r. Combining Lemmas 1 to 4, the global linear convergence rate

O(e−c·t) of normalized PG could be shown.

Theorem 1. Using normalized PG updates : θt+1 = θt + η · dπ
>
θt
r

dθt

/∥∥∥dπ>θtrdθt

∥∥∥
2
,

with η = 1/6, for all t ≥ 1, we have,

(π∗ − πθt)>r ≤ e−
c·(t−1)

12 · (π∗ − πθ1)
> r, (5.3)

where c = inft≥1 πθt(a
∗) > 0 is from Lemma 4, and c is a constant that depends

on r and θ1, but not on the time t.

1This essentially means we prove that a uniform  Lojasiewicz inequality holds for the
entire sequence {θt}t≥1, but this does not imply that the N L condition is unnecessary. As
shown in (Mei et al., Remark 1),  Lojasiewicz-type inequalities with constant C > 0 cannot
hold. It can only become uniform after specifying an initialization θ1 and an algorithm (in
this case, PG). Otherwise, uniform  Lojasiewicz cannot hold since initialization can make
the N L coefficient πθ(a

∗) arbitrarily close to 0.
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Figure 5.2: PG and GNPG on r = (1.0, 0.8, 0.1)>.

PG and GNPG are compared on the one-state MDP problem as shown in

Fig. 5.2. Fig. 5.2(a) shows that GNPG escapes from the sub-optimal plateau

significantly faster than PG, while Fig. 5.2(b) shows that GNPG follows linear

convergence O(e−c·t) of sub-optmality, verifying the theoretical results.

5.2 Geometry-aware Normalized PG (GNPG)

GNPG could be generalized from one-state to finite MDPs on value function,

and it can be shown that GNPG is equivalent to NPG in this case.2 Here’s

the algorithm :

Algorithm 1 Geometry-aware Normalized Policy Gradient
Input: Learning rate η > 0.
Initialize parameter θ1(s, a) for all (s, a).
while t ≥ 1 do

θt+1 ← θt + η · ∂V
πθt (µ)
∂θt

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2
.

end while

5.3 Multi-State MDP

For general finite MDPs, “sufficient exploration” for the initial state distribu-

tion µ is a widely used assumption which is also adapted in literature [Agarwal

et al., Mei et al.].

2We use GNPG as the name of Algorithm 1, since NPG is usually used to refer to the
natural PG algorithm in RL literature.
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Assumption 1 (Sufficient exploration). The initial state distribution satisfies

mins µ(s) > 0.

Given Assumption 1, Agarwal et al. proved asymptotic global convergence

for PG on the non-concave maxθ V
πθ(ρ) problem, while Mei et al. improved

this to a O(1/t) rate using a combination of uniform smoothness and the

following N L inequality that generalizes Lemma 1.

Lemma 5 (N L, Mei et al., Lemma 8). Denote S := |S| as the total number

of states. We have, ∀ θ ∈ RS×A,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ mins πθ(a
∗(s)|s)√

S ·
∥∥dπ∗ρ /dπθµ ∥∥∞ · (V ∗(ρ)− V πθ(ρ)) ,

where a∗(s) is the action that π∗ selects in state s.

Note that here the N L degree ξ = 0 is not improvable [Mei et al., Lemma

28], but the convergence rate could still be improved from the non-uniform

smoothness side.

In one-state MDPs with S = 1, Lemma 5 recovers Lemma 1 with the same

N L coefficient C(θ) = πθ(a
∗), indicating that C(θ) in Lemma 5 might also

be unimprovable. On the other hand, the uniform smoothness considered in

[Agarwal et al., Mei et al.] β = 8/(1 − γ)3 is too conservative, particularly

when γ is close to 1. It can also be shown that for multi-state MDP, Lemma 2

could be generalized, i.e., the policy value also satisfies a stronger NS property,

with the NS coefficient being the PG norm.

Lemma 6 (NS). Let Assumption 1 hold and denote θζ := θ + ζ · (θ′ − θ) with

some ζ ∈ [0, 1]. θ 7→ V πθ(µ) satisfies β(θζ) non-uniform smoothness with

β(θζ) =

[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

,

where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞ ≤ 1
mins µ(s)

<∞.

In one-state MDPs with γ = 0 and S = 1, we have C∞ = 1 − γ. Thus

Lemma 6 reduces to Lemma 2 with the same NS coefficient β(θζ) = 3·
∥∥∥dπ>θζ rdθζ

∥∥∥
2
.

Similar to Lemma 3, if we use Algorithm 1 with small enough learning rate,

then β(θζ) in Lemma 6 is upper bounded by the PG norm of θ:
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Lemma 7. Let η = (1−γ)·γ
6·(1−γ)·γ+4·(C∞−(1−γ))

· 1√
S

and θ′ = θ+η·∂V
πθ (µ)
∂θ

/∥∥∥∂V πθ (µ)
∂θ

∥∥∥
2
.

Denote θζ := θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. We have,∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

≤ 2 ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

. (5.4)

Similar to Lemma 4, it can also be shown that the N L coefficient mins πθ(a
∗(s)|s)

in Lemma 5 is lower bounded away from 0:

Lemma 8 (Non-vanishing N L coefficient). Let Assumption 1 hold. We have,

c := infs∈S,t≥1 πθt(a
∗(s)|s) > 0, where {θt}t≥1 is generated by Algorithm 1.

Note that the non-concave function V πθ(ρ) satisfies requirements (1b) in

Section 4.2.1 with ξ = 0 in each iteration of Algorithm 1. Therefore, combining

Lemmas 5 to 8, the global linear convergence rate O(e−c·t) of Algorithm 1 could

be shown.

Theorem 2. Let Assumption 1 hold and let {θt}t≥1 be generated using Algo-

rithm 1 with η = (1−γ)·γ
6·(1−γ)·γ+4·(C∞−(1−γ))

· 1√
S

, where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞. Denote

C ′∞ := maxπ

∥∥∥dπρµ ∥∥∥∞. Let c be the positive constant from Lemma 8. We have,

for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ (V ∗(µ)− V πθ1 (µ)) · C ′∞
1− γ

· e−C·(t−1),

where C = (1−γ)2·γ·c
12·(1−γ)·γ+8·(C∞−(1−γ))

· 1
S
·
∥∥∥dπ∗µµ ∥∥∥−1

∞
.

Not only the O(e−c·t) rate in Theorem 2 is faster than O(1/t) for standard

PG without normalization, but also the constant is better than the standard

PG as shown in [Mei et al., Theorem 4]. The strictly better dependence c

(� c2 in PG) is related to faster escaping plateaus as shown later (Mei et al.).

Standard softmax PG with bounded learning rate satisfies Ω(1/t) lower

bound (Mei et al.), which is consistent with case (1) in Section 4.2.1. Our

proposed Algorithm 1 achieves linear convergence rates, indicating that the

adaptive update stepsize η/ ‖∇V πθt (ρ)‖2 is asymptotically unbounded, since

‖∇V πθt (ρ)‖2 → 0 as t→∞.
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PG and GNPG are compared on the multi-state MDP. The environment

is a synthetic tree with height h and branching factor `. The total number of

states is

S =
h−1∑
i=0

`i. (5.5)

The discount factor γ = 0.99, µ = ρ, where ρ(s0) = 1 for the root state s0.

Fig. 5.3 (a) and (b) show the results for h = ` = 4, and S = 85. The

learning rate is η = 0.02 for PG and GNPG. Subfigures (c) and (d) show the

results for h = 5 and ` = 4, and S = 341. The learning rate is η = 0.05 for

both PG and GNPG. Subfigures (a) and (c) show that GNPG escapes from

the sub-optimal plateau significantly faster than PG; While subfigures (b)

and (d) show that GNPG follows linear convergence O(e−c·t) of sub-optmality,

verifying the theoretical results.
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Figure 5.3: Results for PG and GNPG on tree MDPs. In (a) and (b), S = 85.
In (c) and (d), S = 341.

Note that the conclusion of GNPG escapes plateaus faster than PG (c �

c2) arises from upper bounds (Theorem 2 and [Mei et al., Theorem 4]), and is

also supported by empirical evidence as shown in Figs. 5.2 and 5.3. In fact,

there exists a lower bound that shows c cannot be removed for PG [Mei et al.,

Theorem 1] under one-state MDP settings. For finite MDPs, Li et al. show

that for softmax PG (without normalization), c can be very small in terms of

the number of states. It remains open to consider whether the lower bound of

c is reasonably large for GNPG.
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To the best of my knowledge, existing PG variants can achieve linear con-

vergence O(e−c·t) only if at least one of the following techniques is used : (a)

regularization; Mei et al. prove that entropy regularized PG enjoys O(e−c·t)

convergence toward the regularized optimal policy. (b) natural gradient;

Cen et al. prove that entropy regularized natural PG achieves linear con-

vergence. (c) exact line-search; Bhandari and Russo prove that without

parameterization, PG variants with exact line-search achieve linear rates by

approximating policy iteration.

Among the above techniques, regularization changes the problem to regu-

larized MDPs, so this technique is not a direct one for solving the problem.

Natural PG and line-search require solving expensive optimization problems to

do updates, since each update is an arg max. On the contrary, Algorithm 1 en-

joys global O(e−c·t) rate while preserving those two superiorities : (i) without

using regularization, since Algorithm 1 directly works on the original MDPs;

(ii) without solving optimization problems in each iteration, and the normal-

ized PG update is cheap.
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Chapter 6

GNGD Applied to Generalized
Linear Model

In this section, generalized linear model (GLM) with quasi-maximum likeli-

hood estimate (quasi-MLE), which applied widely in supervised learning is

investigated. It can be shown that the mean squared error (MSE) of GLM

(Hazan et al.) satisfies the case (2) in Section 4.2.1 with ξ = 1/2. Hence, both

GD and GNGD achieve global linear convergence rates O(e−c·t), significantly

improving the best existing results of O(1/
√
t) (Hazan et al.), experimental

results verify the result. And GNGD escapes plateaus faster than GD. In this

section, new understandings of using normalization in GLM based on non-

uniform analysis is provided.

6.1 Settings and Convergence Rate of NGD

Given a training data set D = {(xi, yi)}i∈[N ] of size N , there is a feature

map xi 7→ φ(xi) ∈ Rd for each pair (xi, yi) ∈ D. Denote φi := φ(xi) for

conciseness. For each data point xi, correspondingly, yi ∈ [0, 1] is the ground

truth likelihood. Following Hazan et al., the model is parameterized by a

weight vector θ ∈ Rd as ,

πi = σ(φ>i θ) =
1

1 + exp{−φ>i θ}
, (6.1)
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where σ : R → (0, 1) is the sigmoid activation. The problem is to minimize

the mean squared error (MSE),

min
θ
L(θ) = min

θ∈Rd

1

N
·
N∑
i=1

(πi − yi)2. (6.2)

Assume yi = π∗i := σ(φ>i θ
∗), where θ∗ ∈ Rd, and ‖θ∗‖2 < ∞, which means

the target yi is realizable and non-deterministic. According to Hazan et al.,

the MSE in Eq. (6.2) is not quasi-convex (thus not convex). But Hazan et al.

show that Eq. (6.2) satisfies a weaker Strictly-Locally-Quasi-Convex (SLQC)

property.

Figure 6.1: MSE Landscape in GLM

Fig. 6.1 visualizes the mean squared error (MSE) of a generalized linear

model, which is non-convex and highly non-uniform.

Based on the SlQC property, Hazan et al. prove the following convergence

result for NGD:
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Theorem 3 (Hazan et al.). With diminishing learning rate ηt ∈ Θ(1/
√
t), the

normalized gradient descent (NGD) update θt+1 ← θt − ηt · ∂L(θt)
∂θt

/∥∥∥∂L(θt)
∂θt

∥∥∥
2

satisfies,

δ(θt) := L(θt)− L(θ∗) ∈ O(1/
√
t), (6.3)

where θ∗ := arg minθ L(θ) is the global optimal solution.

Based on the O(1/
√
t) rate for NGD in Theorem 3, Hazan et al. propose

to normalize gradient norm in MSE minimization. However, there is no lower

bound for other methods including GD on GLM, and thus it is not clear if

there exists a faster rate for GLM optimization.

6.2 Non-uniform Analysis

By non-uniform analysis of NS and N L, it can be shown that both GD and

GNGD actually achieve much faster rates of O(e−c·t).

Firstly, it can be shown that the MSE in GLM satisfies a new N L inequality

with ξ = 1/2:

Lemma 9 (N L). Denote u(θ) := mini∈[N ] {πi · (1− πi)}, and v := mini∈[N ] {π∗i · (1− π∗i )}.

We have,

∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

≥ C(θ, φ) ·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

, (6.4)

holds for all θ ∈ Rd, where

C(θ, φ) = 8 · u(θ) ·min {u(θ), v} ·
√
λφ, (6.5)

and λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i .

Note that this N L lemma is for GLM with realizable and non-deterministic

target. It is not clear if results similar to Lemma 9 hold without assuming: (i)

realizable optimal prediction yi = π∗i := σ(φ>i θ
∗); (ii) non-deterministic opti-

mal prediction ‖θ∗‖2 <∞. It’s still an open question to study non-uniformity
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of GLM without the above assumptions.

In Lemma 9, λφ is determined by the feature φ. By Eq. (6.5) and definition

of u(θ), when πi is near deterministic, the gradient is vanishing, which is

consistent with the fact that the sigmoid saturates and provides uninformative

gradient as the parameter magnitude becomes large.
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Figure 6.2: Experiments on GLM using GD.

Experiments are done by running GD on one GLM model with N = 10

and d = 2. As shown in Fig. 6.2, the gradient norm ‖∇L(θt)‖2 is close to zero

at plateaus and near optimum. However, unlike the PG, the spectral radius

of the Hessian ∇2L(θt) is only close to zero at plateaus, while it approaches

positive constant near optimum. This indicates that unlike Lemmas 2 and 6,

the spectral radius of Hessian of GLM is not simply bounded by the gradient

norm. With some calculations, the following NS results can be shown:

Lemma 10 (Smoothness and NS). L(θ) satisfies β smoothness with

β =
3

8
·max
i∈[N ]
‖φi‖2

2, (6.6)

and β(θ) NS with

β(θ) = L1 ·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+ L0 ·

(∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
.
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The non-uniform smoothness of GLM satisfies the case (2) in Section 4.2.1

with ξ = 1/2. Combining Lemmas 9 and 10, the global linear convergence

result can be shown:

Theorem 4. With η = 1/β, GD update satisfies for all t ≥ 1, L(θt) ≤

L(θ1) ·e−C2·(t−1). With η ∈ Θ(1), GNGD update satisfies for all t ≥ 1, L(θt) ≤

L(θ1) · e−C·(t−1), where C ∈ (0, 1), i.e., GNGD is strictly faster than GD.

In Theorem 4, C = inft≥1C(θt, φ) is very close to zero if πi is near deter-

ministic, and GD suffers sub-optimality plateaus as shown in Fig. 6.1. GNGD

has strictly (orders of magnitudes) better constant dependence C � C2, and

escapes plateaus significantly faster than GD. Intuitively, for the GLM in

Fig. 6.1, C is lower bounded reasonably if θ1 is initialized within some fi-

nite distance of the central valley containing θ∗.

By non-uniform analysis of the N L and NS properties (Lemmas 9 and 10),

there’s a new understanding of using normalization in GLM: (i) First, using

standard NGD (Hazan et al.) for all t ≥ 1 is not a good choice. By examining

the asymptotic behaviour as θ → θ∗, it’s obvious that β(θ)→ β > 0. However,

the normalization of gradient norm in standard NGD gives incremental up-

dates with adaptive stepsize→∞, which implies that NGD does not converge.

To guarantee convergence, it is necessary to use ηt → 0, which counteracts nor-

malization and slows down the learning, since it could be not easy to find a

suitable learning rate scheme. This is consistent with the O(e−c·t) result for

GD with η > 0 and without normalization in Theorem 4. (ii) Second, using

geometry-aware normalization β(θt) is a better choice than normalizing the

gradient norm ‖∇L(θt)‖2. Later in this section, both the asymptotic and the

early-stage behaviours are investigated using NS-N L. Since β(θt) → β > 0

asymptotically, GNGD is approaching GD as θt → θ∗, which makes GNGD

enjoy the same O(e−c·t) rate. On the other hand, when θt is far from θ∗, the

NS parameter is of similar scale as gradient norm, i.e., β(θt) ≤ c ·
∥∥∥∂L(θt)

∂θt

∥∥∥
2
,

hence by normalizing β(θt), GNGD accelerates the optimization a lot. Then

GNGD is close to NGD, but guarantees strictly better progresses than GD.
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This is because of the progress of GNGD in each iteration at this time is

of scale ‖∇L(θt)‖2, while the progress of GD is of scale ‖∇L(θt)‖2
2, and on

plateaus, GNGD escapes plateaus faster. Using N L of Lemma 9, GNGD will

have strictly better constant dependence C than C2 in GD.

GD, NGD (Hazan et al.), and GNGD on GLM are compared by experi-

ment. The performances are as shown in Fig. 6.3.

Figure 6.3: Convergence rates for GD, NGD, and GNGD on GLM.

Subfigure (a) presents the convergence rate of GD with η = 0.09 and GNGD

with η = 0.09. As shown in the figure, both GD and GNGD achieve linear

O(e−c·t) rates, verifying Theorem 4. GD stuck at the plateaus at the early-

stage optimization, which verifies the explanations after Theorem 4. On the

other hand, the slopes indicate that GNGD converges strictly faster than GD,

which verifies the constant dependences (C ≥ C2) in Theorem 4. Subfigure (b)

shows that standard NGD (Hazan et al.) with constant learning rate η = 0.09

does not converge. The NGD update keeps oscillating, indicating that using

standard normalization for all t ≥ 1 is not a good idea. Subfigure (c) presents

the NGD using adaptive learning rate ηt = 0.09√
t

, which has faster convergence

than NGD with constant η. However, GNGD with constant learning rate

η = 0.09 still significantly outperforms NGD with ηt = 0.09√
t

, verifying the

O(e−c·t) in Theorem 4 and O(1/
√
t) in Theorem 3.
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Chapter 7

Robust Risk Averse
Reinforcement Learning

This chapter is mainly situated in the broad area of safe RL [20]. In partic-

ular, a subgroup of works aims to improve robustness of learned policies by

assuming two opposing learning processes: one that aims to disturb the most

and another one that tries to control the perturbations [40]. This approach

has been recently adapted to work with neural networks in the context of deep

RL [46]. Moreover, Risk-Averse Robust Adversarial Reinforcement Learning

(RARL) [45] extended this idea by combining with Averaged DQN [3], an

algorithm that proposes averaging the previous k estimates to stabilize the

training process. RARL trains two agents – protagonist and adversary in par-

allel, and the goal for those two agents are respectively to maximize/minimize

the expected return as well as minimize/maximize the variance of expected

return. RARL showed good experimental results in self-driving car simula-

tions on the variance reduction and robustness. Multi-agent Q-learning [23] is

useful for finding the optimal strategy when there exists a unique Nash equi-

librium in general sum stochastic games, and this approach could also be used

in adversarial RL.

Wainwright (2019) proposed a variance reduction Q-learning algorithm (V-

QL) which can be seen as a variant of the SVRG algorithm in stochastic op-

timization [25]. Given an algorithm that converges to Q∗, one of its iterates

Q̄ could be used as a proxy for Q∗, and then recenter the ordinary Q-learning
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updates by a quantity −T̂k(Q̄) + T (Q̄), where T̂k is an empirical Bellman op-

erator, T is the population Bellman operator, which is not computable, but

an unbiased approximation of it could be used instead. This algorithm is

theoretically shown to be convergent and enjoys minimax optimality up to a

logarithmic factor.

Lastly, another group of works proposed the use of risk-averse objective

functions [38] with the Q-learning algorithm. These ideas are highly related

to the novel proposed algorithms in this chapter.

7.1 Risk Averse Q Learning

Shen et al. (2014) proposed a Q learning algorithm (Algorithm 2) that is theo-

retically shown to converge to the optimal of a risk-sensitive objective function,

the training scheme is the same as Q learning, except that in each iteration, a

utility function is applied to a TD-error. [54] showed how exponential utility

function and normally distributed consumption give rise to a mean variance

utility function where the agent’s expected utility is a linear function of his

mean return and the variance of his return.

Algorithm 2 Risk-Averse Q-Learning (RAQL) [49]
1: For ∀(s, a), initialize Q(s, a) = 0; N(s, a) = 0.
2: for t = 1 to T do
3: At state st, choose action according to the ε-greedy strategy.
4: Observe st, at, rt, st+1

5: N(st, at) = N(st, at) + 1
6: Set learning rate αt = 1

N(st,at)

7: Update Q :

Qt+1(st, at) = Qt(st, at) + αt(st, at) ·
[
u
(
rt + γ ·max

a
Qt(st+1, a)−Qt(st, at)

)
− x0

]
(7.1)

where u is a utility function, here we use u(x) = −eβx where −1 < β < 0; x0 = −1
8: end for
9: Return Q.

Since the goal is to optimize the expected return as well as minimizing the

variance of the expected return, an expected utility of the return could be used
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as the objective function instead [16]:

J̃π =
1

β
logEπ

[
exp

(
β

∞∑
t=0

γtrt

)]
. (7.2)

By a straightforward Taylor expansion, Eq. (7.2) yields

1

β
logEπ

[
exp

(
β
∞∑
t=0

γtrt

)]

≈ 1

β
log

1 + Eπ

β ∞∑
t=0

γtrt +
1

2

(
β

∞∑
t=0

γtrt

)2


≈ 1

β

Eπ

β ∞∑
t=0

γtrt +
1

2

(
β
∞∑
t=0

γtrt

)2
− 1

2

Eπ

β ∞∑
t=0

γtrt +
1

2

(
β
∞∑
t=0

γtrt

)2
2

= E
π

[
∞∑
t=0

γtrt] +
β

2
E
π

( ∞∑
t=0

γtrt

)2
− 1

2β

(
E
π

[
β
∞∑
t=0

γtrt +O(β2)

])2

= E
π

[
∞∑
t=0

γtrt] +
β

2
E
π

( ∞∑
t=0

γtrt

)2
− β

2

(
E
π

[
∞∑
t=0

γtrt]

)2

+O(β2) +O(β3) (−1 < β < 0)

= E
π

[
∞∑
t=0

γtrt] +
β

2
Var[

∞∑
t=0

γtrt] +O(β2)

where when β < 0 the objective function is risk-averse, when β = 0 the

objective function is risk-neutral, and when β > 0 the objective function is

risk-seeking.

Shen et al. (2014) proved that by applying a monotonically increasing con-

cave utility function u(x) = −exp(βx) where β < 0 to the TD error, Algo-

rithm 2 converges to the optimal point of Eq. (7.2). Hence, it can be shown

that:

Theorem 5. (Theorem 3.2, Shen et al. 2014) Running Algorithm 2 from an

initial Q table, Q→ Q∗ w.p. 1, where Q∗ is the unique solution to

E
s′

[
u
(
r(s, a) + γ ·max

a
Q∗(s′, a)−Q∗(s, a)

)]
− x0 = 0

∀(s, a). Where s′ is sampled from T [·|s, a]. And the corresponding policy π∗

of Q∗ satisfies J̃π∗ ≥ J̃π ∀π.
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Figure 7.1: Building Blocks of Proposed Algorithms

7.2 Proposed Algorithms

In this section I’ll describe my proposed algorithms continuing the results

discussed in the previous sections.The two single agent algorithms RA2-Q and

RA2.1-Q use a risk-averse utility function and reduce variance by training

multiple Q tables in parallel. The last proposal, RA3-Q, keeps the adversarial

component to improve robustness while relaxing the strong assumptions. The

building blocks of those algorithms are as shown in Fig. 7.1. As a summary,

Table 7.1 presents closely related works and the comparison with the novel

proposed algorithms.

7.2.1 RA2-Q

Although it’s already shown that RAQL converges to the optimal of risk-

sensitive objective function with probability 1, the proof assumes visiting every

state infinitely many times whereas the actual training time is finite. The main

idea here is that we can reduce the training variance further by choosing more

risk-averse actions during the finite training process.

Averaged DQN [3] reduces training variance by averaging multiple Q tables

in the update. In a similar spirit, the proposed RA2-Q also trains multiple

Q tables in parallel. RA2-Q trains k Q tables in parallel using Eq. (7.4) as

update rule. To select more stable actions, RA2-Q uses the sample variance
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Algorithm 3 Risk-Averse Averaged Q-Learning (RA2-Q)
Input : Training steps T ; Exploration rate ε; Number of models k; risk control parameter λP ; Utility
function parameter β.

1: Initialize Qi = 0, N i = 0, αi = 1 for ∀i = 1, ..., k.
2: Initialize Replay Buffer RB = ∅; Randomly sample action choosing head integers H ∈ [1, k]
3: for t = 1 to T do
4: Q = QH

5: Compute Q̂ by

Q̂(s, a) = Q(s, a)− λP ·
∑k
i=1(Qi(s, a)− Q̄(s, a))2

k − 1
(7.3)

where λP > 0 is a constant; Q̄(s, a) = 1
k

∑k
i=1Q

i(s, a)

6: Select action at according to Q̂ by applying ε-greedy strategy.
7: Execute actions and get (st, at, rt, st+1), append to the replay buffer RB = RB ∪{(st, at, rt, st+1)}
8: Generate mask M ∈ Rk ∼ Poisson(1)
9: for i = 1, ..., k do
10: if Mi = 1 then
11: Update Qi by

Qi(st, at) = Qi(st, at) + αi(st, at) ·
[
u
(
r(st, at) + γ ·max

a
Qi(st+1, a)−Qi(st, at)

)
− x0

]
(7.4)

where u is a utility function, here we use u(x) = −eβx where −1 < β < 0; x0 = −1
12: N i(st, at) = N i(st, at) + 1; Update learning rate αi(st, at) = 1

Ni(st,at)
.

13: end if
14: end for
15: Update H by randomly sampling integers from 1 to k.
16: end for
17: Return 1

k

∑k
i=1Q

i

of k Q tables as an approximation to the true variance and then compute a

risk-averse Q̂ table and select actions according to it. A detailed description

is presented in Algorithm 3.

The objective function here is also Eq. (7.2), and it can be shown that

Algorithm 3 also converges to the optimal.

Theorem 6. Running Algorithm 3 for an initial Q table, then for all i ∈

{1, ..., k}, Qi → Q∗ w.p. 1, hence the returned table 1
k

∑k
i=1Q

i → Q∗ w.p. 1,

where Q∗ is the unique solution to

E
s′

[
u
(
r(s, a) + γ ·max

a
Q∗(s′, a)−Q∗(s, a)

)]
− x0 = 0

for all (s, a). Where s′ is sampled from T [·|s, a]. And the corresponding policy

π∗ of Q∗ satisfies J̃π∗ ≥ J̃π ∀π.

Theorem 6 follows directly from Theorem 5 (see Section A.4 for the detailed

proof).
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7.2.2 Variance Reduced Risk-Averse Q-Learning (RA2.1-
Q)

Wainwright (2019) proposed Variance Reduced Q-learning which trains mul-

tiple Q tables in parallel and uses the averaged Q table in the update rule.

It is shown that it guarantees a convergence rate which is minimax optimal.

Inspired by that work, we propose our RA2.1-Q (Algorithm 4) which applies

a utility function to the TD error during Q updates for the purpose of further

reducing variance. To select more stable actions during training, we use the

sample variance of k Q tables as an approximation to the true variance and

then compute a risk-averse Q̂ table and select actions according to it.

It’s still not clear whether Algorithm 4 (RA2.1-Q) has a convergence guar-

antee, however, it obtained good empirical results (better than RAQL and

RA2-Q as presented in Section 9.1). Furthermore, it could be interesting to

study whether it also enjoys minimax optimality convergence rate up to a

logarithmic factor as in [55].

7.2.3 Risk-Averse Adversarial Averaged Q-Learning (RA3-
Q)

In complex scenarios such as financial markets, learned RL policies can be

brittle. To improve robustness, algorithms could adapt ideas from adversarial

learning to a multi-agent learning problem similar to [23].

In the adversarial setting, we can assume there are two learning processes

happening simultaneously, a main protagonist (P) and an adversary (A): the

goal of protagonist is to maximize the total return as well as minimize the

variance; the goal of adversary is to minimize the total return of protagonist

as well as maximizing the variance. Here, we assume that each agent can ob-

serve its opposite’s immediate reward. The process is as presented in Fig. 7.2.

Let rPt be the immediate reward received by protagonist at step t, and let
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Algorithm 4 Variance Reduced Risk-Averse Q-Learning (RA2.1-Q)
Input : Training epochs T ; Exploration rate ε; Number of models k; Epoch length K; Recentering sample
size N ; Utility function parameter β < 0;

1: Initialize Q̄0 = 0; m = 1; RB = ∅.
2: for m = 1 to T do
3: Select action according to Q̄m−1 by applying ε−greedy strategy
4: Execute action and get (s, a, r(s, a), s′) and update the replay buffer RB = RB ∪ (s, a, r(s, a), s′).
5: for i = 1, ..., N do
6: Define the empirical Bellman operator T̈i as

T̈i(Q)(s, a) = u

(
r(s, a) + γ ·max

a′
Q(si, a

′)

)
− x0

where si is randomly sampled from T [·|s, a]; u is the utility function, and u(x) = −eβx, β < 0
and x0 = −1

7: end for
8: Define T̃N (Q̄m−1) = 1

N

∑
i∈DN

T̈i(Q̄m−1), where DN is a collection of N i.i.d. samples (i.e., matrices

with samples for each state-action pair (s, a) from RB).
9: Define Q1 = Q̄m−1.
10: for k = 1, ...,K do
11: Compute stepsize λk = 1

1+(1−γ)k
12:

Qk+1 = (1− λk) ·Qk + λk ·
[
T̈k(Qk)− T̈k(Q̄m−1) + T̃N (Q̄m−1)

]
. (7.5)

where T̈k is empirical Bellman operator constructed using a sample not in DN , thus the random
operators T̈k and T̃N are independent

13: end for
14: Q̄m = QK+1; m = m+ 1
15: end for
16: Return Q̄m

rAt be the immediate reward received by adversary at step t. Then we choose

the objective functions as follows:

The objective function for the protagonist is,

J̃Pπ =
1

βP
logE

π

[
exp

(
βP

∞∑
t=0

γt · rPt

)]
βP < 0 (7.6)

by a Taylor expansion, Eq. (7.6) yields,

J̃Pπ = E

[∑
t=0

γt · rPt

]
+
βP

2
Var

[∑
t=0

γt · rPt

]
+O((βP )2).

Similarly, the objective function for the adversary is,

J̃Aπ =
1

βA
logE

π

[
exp

(
βA

∞∑
t=0

γtrAt

)]
βA > 0 (7.7)

and by Taylor expansion, Eq. (7.7) yields,

J̃Aπ =E

[∑
t=0

γt · rAt

]
+
βA

2
Var

[∑
t=0

γt · rAt

]
+O((βA)2).
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Figure 7.2: Protagonist V.S. Adversary Process in RA3-Q

Starting from the objective functions for the protagonist - Eq. (7.6), and ad-

versary - Eq. (7.7), In order to optimize J̃P and J̃A, we apply utility functions

to TD errors when updating Q tables, and combining the idea of training mul-

tiple Q tables in parallel as Algorithm 3 to select actions with low variance,

we get a novel Algorithm 5.
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Algorithm 5 Risk-Averse Adversarial Averaged Q-Learning (RA3-Q)
Input : Training steps T ; Exploration rate ε; Number of models k; Risk control parameters λP , λA; Utility function
parameters βP < 0;βA > 0.

1: Initialize QiP (s, aP , aA) = 0; QiA(s, aP , aA) = 0 for ∀i = 1, ..., k and (s, aA, aP ); N = 0 ∈ R|S|×|A|×|A|;
2: Randomly sample action choosing head integers HP , HA ∈ {1, ..., k}.
3: for t = 1 to T do
4: QP = QHP

P

5: Compute Q̂P by

Q̂P (s, aP , aA) = QP (s, aP , aA)− λP ·
∑k
i=1(QiP (s, aP , aA)− Q̄P (s, aP , aA))2

k − 1
λP > 0 (7.8)

where Q̄P (s, aP , aA) = 1
k

∑k
i=1Q

i
P (s, aP , aA)

6: QA = QHA

A

7: Compute Q̂A by

Q̂A(s, aP , aA) = QA(s, aP , aA) + λA ·
∑k
i=1(QiA(s, aP , aA)− Q̄A(s, aP , aA))2

k − 1
λA > 0 (7.9)

where Q̄A(s, aP , aA) = 1
k

∑k
i=1Q

i
A(s, aP , aA)

8: The optimal actions (a′P , a
′
A) are defined as

Q̂P (st, a
′
P , a

0
A) = max

aP ,aA
Q̂P (st, aP , aA) for some a0A (7.10)

Q̂A(st, a
0
P , a

′
A) = max

aP ,aA
Q̂A(st, aP , aA) for some a0P (7.11)

9: Select actions aP , aA according to Q̂P , Q̂A by applying ε-greedy strategy.
10: Two agents respectively execute actions aP , aA and observe (st, aP , aA, r

A
t , r

P
t , st+1)

11: Generate mask M ∈ Rk ∼ Poisson(1)
12: N(st, aP , aA) = N(st, aP , aA) + 1
13: α(st, aP , aA) = 1

N(st,aP ,aA)

14: for i = 1, ..., k do
15: if Mi = 1 then
16: Update QiP by

QiP (st, aP , aA) = QiP (st, aP , aA) + α(st, aP , aA) ·
[
uP
(
rPt + γ · max

aP ,aA
QiP (st+1, aP , aA)−QiP (st, aP , aA)

)
− x0

]
(7.12)

where uP is a utility function, here we use uP (x) = −eβP x where −1 < βP < 0; x0 = −1
17: end if
18: end for
19: for i = 1, ..., k do
20: if Mi = 1 then
21: Update QiA by

QiA(st, aP , aA) = QiA(st, aP , aA) + α(st, aP , aA) ·
[
uA
(
rAt + γ · max

aP ,aA
QiA(st+1, aP , aA)−QiA(st, aP , aA)

)
− x1

]
(7.13)

where uA is a utility function, here we use u(x) = eβ
A·x where 0 < βA < 1; x1 = 1

22: end if
23: end for
24: Update HP and HA by randomly sampling integers from 1 to k
25: end for
26: Return 1

k

∑k
i=1Q

i
P ; 1

k

∑k
i=1Q

i
A
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Note that RA3-Q combines (i) risk-averse using utility functions (ii) vari-
ance reduction by training multiple Q tables and (iii) robustness by adversar-
ial learning. Intuitively, as the adversary is getting stronger, the protagonist
experiences harder challenges, thus enhancing robustness. Note that in the
multi-agent learning scenario (when protagonist and adversary are learning si-
multaneously), RA3-Q does not have a convergence guarantee, however, it has
several practical advantages including computational efficiency, simplicity (no
strong assumptions) and more stable actions during training. For its empirical
superiority, see Chapter 9. In Section A.4, I’ll present a related result showing
that Eq. (7.12) or Eq. (7.13) converge to optimal assuming the policy for the
adversary (or protagonist) is fixed (thus, it is no longer a multi-agent learning
setting).

7.3 Summarize of Risk Averse Algorithms

Table 7.1: Comparison of related algorithms. Our proposed algorithms are
marked with bold and are described in Sections 7.2.1 to 7.2.3
Algorithm Description Guarantees
Risk averse Q-Learning [49] Q-Learning with a utility function ap-

plied to TD Error in Q update
Convergence to optimal of a risk-averse
objective function

Variance reduced Q-
learning [55]

Use average estimation of multiple Q
tables in Q-table updates to reduce
variance

Convergent to optimal of expected re-
turn. Convergence rate is minimax op-
timal up to a logarithmic factor.

Nash Q-learning [23] Two-agent Q-Learning in multi-agent
MDP setting

Convergence to Nash equilibrium of
the two-agent game (if exists)

Risk-Averse Robust Adver-
sarial Reinforcement Learning
(RARL) [45]

Q-Learning with risk-averse/risk-
seeking behaviors of protago-
nist/adversary with multiple Q
tables

No convergence guarantee

Risk-Averse Averaged Q-
Learning (RA2-Q)

Q-Learning with a utility function + a
more stable choice of actions with mul-
tiple Q tables

Convergence to optimal of a risk-averse
objective function and reduced train-
ing variance.

Variance Reduced Risk-
Averse Q-Learning
(RA2.1-Q)

Use average estimation of multiple Q
tables in Q updates; Apply utility
function in Q updates

No convergence guarantee

Risk-Averse Multiagent Q-
learning (RAM-Q)

Multi-agent Nash Q-Learning
with a utility function + a risk-
averse/risk-seeking behaviors of
protagonist/adversary + multiple Q
tables

Convergence to Nash equilibrium (if
exists) of the two-agent game (with
Risk-Averse/Seeking payoffs respec-
tively)

Risk-Averse Adversar-
ial Averaged Q-Learning
(RA3-Q)

Multi-agent Q-Learning with a utility
function + a risk-averse/risk-seeking
behaviors of protagonist/adversary +
multiple Q tables

No convergence guarantee
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Chapter 8

Empirical Game Theory
Analysis on Risk Sensitive
Measurements

When the environment is populated by many learning agents, a way to evalu-

ate their performance is a necessity. Empirical Game Theory (EGT) is used to

address this question. In EGT, each agent is considered as a player involved

in rounds of strategic interaction (games). By meta-game analysis, the supe-

riority of each strategy could be analyzed. In this section, my contribution

is to theoretically prove that the Nash-Equilibrium of risk averse meta-game

is an approximation of the Nash-Equilibrium of the population game, to my

knowledge, this is the first work doing this type of risk-averse analysis.

8.1 Replicator dynamics

In EGT, the dominance of strategies could be visualized by plotting the meta-

game payoff tables together with the replicator dynamics. A meta game payoff

table could be seen as a combination of two matrices (N |R), where each row

Ni contains a discrete distribution of p players over k strategies, and each row

yields a discrete profile (nπ1 , ..., nπk) indicating exactly how many players play

each strategy with
∑

j nπj = p. A strategy profile u =
(
nπ1
p
, ...,

nπk
p

)
. And

each row Ri captures the rewards corresponding to the rows in N .

For example, for a game A with 2 players, and 3 strategies {π1, π2, π3} to
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choose from, the meta game payoff table could be constructed as follows : In

the left side of the table, we list all of the possible combinations of strategies. If

there are p players and k strategies, then there are
(
p+k−1
p

)
rows, hence in game

A, there are 6 rows. See the tables & figures below for some concrete examples.

Once we have a meta-game payoff table and the replicator dynamics, a

directional field plot is computed where arrows in the strategy space indi-

cates the direction of flow, or change, of the population composition over the

strategies. In Section 9.1, trading market experiments and results based on

meta-game analysis with the performance of RAQL, RA2-Q and RA2.1-Q will

be presented.

Table 8.1: Payoff Table of Rock-Paper-Scissors
NRock NPaper NScissors RRock RPaper RScissors

2 0 0 0 0 0
1 1 0 -1 1 0
0 2 0 0 0 0
1 0 1 1 0 -1
0 0 2 0 0 0
0 1 1 0 -1 1

(a) (b)

Figure 8.1: Directional Field and Trajectory Plot of Rock-Paper-Scissors

The payoff table of a well-known game rock-scissors-papers is as shown

in Table 8.1, its corresponding directional field and its trajectory plot are as

shown in Fig. 8.1. It can be observed from Fig. 8.1 that the equilibrium of

Rock-Paper-Scissors is the centroid of the strategies simplex.
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Table 8.2: An example of a meta game payoff table of 2 players, 3 strategies.
Ni1 Ni2 Ni3 Ri1 Ri2 Ri3
2 0 0 0.5 0 0
1 1 0 0.3 0.7 0
0 2 0 0 0.9 0
1 0 1 0.35 0 0.45
0 0 2 0 0 0.6
0 1 1 0 0.66 0.38

(a) (b)

Figure 8.2: Directional Field and Trajectory Plot of Table 8.2

8.2 Nash Equilibrium with risk neutral payoff

Previously, Tuyls et al. (2020) showed that for a game ri(πi, ..., πp) = E[Ri(π1, ..., πp)],

with a meta-payoff (empirical payoff) r̂i(πi, ..., πp), the Nash Equilibrium of r̂

is an approximation of Nash Equilibrium of r.

Lemma 11. [53] If x is a Nash Equilibrium for the game r̂i(π1, ..., πp), then

it is a 2ε-Nash equilibrium for the game ri(π1, ..., πp), where ε = sup
π,i
|r̂i(π)−

ri(π)|.

Lemma 11 implies that if for each player, we can bound the estimation

error of empirical payoff, then we can use the Nash Equilibrium of meta game

as an approximation of Nash Equilibrium of the game.
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8.3 Risk averse payoff EGT

Recall that the objective in this chapter is to consider risk averse payoff to

evaluate strategies. Hence, instead of letting

ri(π1, ..., πp) = E[Ri(π1, ..., πp)],

I choose

hi(π1, ..., πp) = E[Ri(π1, ..., πp)]− β · Var[Ri(π1, ..., πp)]

(where β > 0) as the game payoff. Moreover, I use

ĥi(πi, ..., πp) = R̄i − β ·

[
1

n− 1

n∑
j=1

(
Ri
j − R̄i

)2

]
(8.1)

as meta-game payoff, where R̄i = 1
n

∑n
j=1 R

i
j and Ri

j is the stochastic payoff of

player i in j−th experiment. To my knowledge, there is no previous work on

empirical game theory analysis with risk sensitive payoff. Below in this section,

I give the first theoretical analysis showing that for the risk-averse payoff game,

the Nash Equilibrium could also be approximated by meta game.

Theorem 7. Under Assumption 4, for a Normal Form Game with p players,

and each player i chooses a strategy πi from a set of strategies Si = {πi1, ..., πik}

and receives a meta payoff hi(π1, ..., πp) (Eq. (8.1)). If x is a Nash Equilib-

rium for the game ĥi(π1, ..., πp), then it is a 2ε-Nash equilibrium for the game

hi(π1, ..., πp) with probability 1− δ if we play the game for n times, where

n ≥ max
{8R2

ε2
log
|S1| × ...× |Sp| × p

δ
;

128R4β2

ε2n
log
|S1| × ...× |Sp| × p

δ

}
(8.2)

For the proof of Theorem 7, please check Section A.5.
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Chapter 9

Empirical Results on Trading
Market

In this section, experiments are done using the open-sourced ABIDES [15]

market simulator in a simplified setting. The environment is generated by

replaying publicly available real trading data for a single stock ticker.1 The

setting is composed of one non-learning agent that replays the market de-

terministically [6] and learning agents. The learning agents considered are:

RAQL, RA2-Q, RA2.1-Q, and RA3-Q.

The experimental setting follows a similar setting to existing implementa-

tions in ABIDES2 where the state space is defined by two features: current

holdings and volume imbalance. Agents take one action at every time step

(every second) selecting among: buy/sell with limit price base + i ·K, where

i ∈ {1, 2, .., 6} or do nothing. The immediate reward is defined by the change

in the value of our portfolio (mark-to-market) and comparing against the pre-

vious time step. Our comparisons are in terms of Eq. (8.1), where β is carefully

adjusted.
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Table 9.1: Meta-payoff of 2 players, 3 strategies, respectively RAQL [49],
RA2-Q and RA2.1-Q over 80 simulations.

Ni1 Ni2 Ni3 Ri1 Ri2 Ri3
2 0 0 0.9130 0 0
1 1 0 0.7311 0.7970 0
0 2 0 0 1.0298 0
1 0 1 0.6791 0 1.0786
0 0 2 0 0 2.2177
0 1 1 0 0.7766 1.4386

(a) (b)

Figure 9.1: (a) Directional field plot and (b) Trajectory plot of the simplex
of 3 strategies based on the meta-game payoff from Table 9.1. It can be seen
that RA2.1-Q (top) is the the strongest attractor. White circles represent
equilibria.
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9.1 Single-agent Algorithms Comparison Us-

ing EGT

Table 9.1 shows the meta-payoff table of a two player-game among three strate-

gies: RAQL, RA2-Q and RA2.1-Q. The results show that our two proposed

algorithms RA2-Q and RA2.1-Q obtained better results than RAQL. With

those payoffs I obtained the directional and trajectory plots shown in Fig. 9.1,

where black solid circles denote globally-stable equilibria, and the white circles

denote unstable equilibria (saddle-points), in (a) the plot is colored according

to the speed at which the strategy mix is changing at each point; in (b) the

lines show trajectories for some points over the simplex.

9.2 Robustness

Table 9.2: Comparison of two types of perturbations: The trained adversary
from RA3-Q is used in testing time. Zero-intelligence agents are added to the
simulation to perturb the market. RA3-Q obtains better results in both cases
due to its enhanced robustness.

Algorithm/Setting Adversarial Perturbation ZI Agents Perturbation
RA2-Q 0.5269 0.9538
RA3-Q 0.9347 1.0692

The last experiment compares RA2-Q and RA3-Q in terms of robustness.

In this setting I trained both agents under the same conditions as a first step.

Then in testing phase I added two types of perturbations, one adversarial

agent (trained within RA3-Q) or adding noise (aka. zero-intelligence) agents

in the environment. In both cases, the agents will act in a perturbed environ-

ment. The results are presented in Table 9.2 using cross validation with 80

simulations.

9.3 Summarize of Algorithms

In summary, I proposed 3 different Q-learning style algorithms that augment

1https://lobsterdata.com/info/DataSamples.php
2https://github.com/abides-sim/abides/blob/

master/agent/examples/QLearningAgent.py
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reinforcement learning agents with risk-awareness, variance reduction, and ro-

bustness. RA2-Q and RA2.1-Q are risk-averse but use slightly different tech-

niques to reduce variance. RA3-Q is a proposal that extend by adding an

adversarial learning layer which is expected to improve its robustness. On the

one side, theoretical results show convergence results for RA2-Q, on the other

side, in empirical results RA2.1-Q and RA3-Q obtained better results in a

simplified trading scenario.
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Chapter 10

Conclusion and Future Work

One of the main contributions of this work concern a general characterization

and analysis based on non-uniform properties, which can be applied in policy

gradient methods, GLM and other machine learning cases that involve non-

convex optimization problems. Also, they significantly improve convergence

rates over previous work and even over classical lower bounds. A valuable open

question regarding this is to incorporate stochastic gradient (Karimi et al.) and

other adaptive gradient-based methods (Kingma and Ba) in the analysis, e.g.,

what convergence guarantees does stochastic geometry-aware gradient descent

have for different functions? Another interesting question would be to push

the analysis to other domains with more complex function approximators, in-

cluding neural networks (Allen-Zhu et al.).

For the later half of this work, I have proposed 3 different Q-learning style

algorithms that augment reinforcement learning agents with risk-awareness,

variance reduction, and robustness. RA2-Q and RA2.1-Q are risk-averse but

use slightly different techniques to reduce variance. RA3-Q is a proposal that

extend by adding an adversarial learning layer which is expected to improve its

robustness. On the one side, my theoretical results show convergence results

for RA2-Q, on the other side, in the empirical results RA2.1-Q and RA3-Q

obtained better results in a simplified trading scenario. Lastly, I contributed

with risk-averse analysis of those algorithms using empirical game theory. As

future work I want to perform a more extensive set of experiments to evaluate
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the algorithms under different conditions. Also, it’s an interesting open ques-

tion whether RA2.1-Q also enjoys minimax optimality convergence rate up to

a logarithmic factor as in [55]. On the side of EGT analysis, previous works

used average as payoff [53] and my work considers a risk-averse measure based

on variance (second moment), studying higher moments and other measures

is one interesting open question.
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Appendix A

Appendix

The appendix is organized as follows.

• Section A.1: proofs of policy gradient in Chapter 5.

– Section A.1.1: proofs of one-state MDPs.

– Section A.1.2: proofs of general MDPs.

• Section A.2: proofs of generalized linear model in Chapter 6.

• Section A.4: discuss of convergence guarantees of risk-averse RL algo-

rithms.

• Section A.5: proofs of Theorem 7.

• Miscellaneous extra supporting results those are not mentioned in the

main paper.

A.1 Proofs for Chapter 5

A.1.1 One-state MDP

Lemma 2 (NS) . Let πθ = softmax(θ) and πθ′ = softmax(θ′). Denote θζ :=

θ + ζ · (θ′ − θ) with some ζ ∈ [0, 1]. For any r ∈ [0, 1]K , θ 7→ π>θ r is β(θζ)

non-uniform smooth with β(θζ) = 3 ·
∥∥∥dπ>θζ rdθζ

∥∥∥
2
.

Proof. Let S := S(r, θ) ∈ RK×K be the second derivative of the value map

θ 7→ π>θ r. By Taylor’s theorem, it suffices to show that the spectral radius
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of S is upper bounded. Denote H(πθ) := diag(πθ) − πθπ>θ as the Jacobian of

θ 7→ softmax(θ). Now, by its definition we have

S =
d

dθ

{
dπ>θ r

dθ

}
(A.1)

=
d

dθ
{H(πθ)r} (A.2)

=
d

dθ

{
(diag(πθ)− πθπ>θ )r

}
. (A.3)

Continuing with our calculation fix i, j ∈ [K]. Then,

S(i,j) =
d{πθ(i) · (r(i)− π>θ r)}

dθ(j)
(A.4)

=
dπθ(i)

dθ(j)
· (r(i)− π>θ r) + πθ(i) ·

d{r(i)− π>θ r}
dθ(j)

(A.5)

= (δijπθ(j)− πθ(i)πθ(j)) · (r(i)− π>θ r)− πθ(i) · (πθ(j)r(j)− πθ(j)π>θ r)
(A.6)

= δijπθ(j) · (r(i)− π>θ r)− πθ(i)πθ(j) · (r(i)− π>θ r)− πθ(i)πθ(j) · (r(j)− π>θ r),
(A.7)

where

δij =

{
1, if i = j,

0, otherwise
(A.8)

is Kronecker’s δ-function. To show the bound on the spectral radius of S, pick

y ∈ RK . Then,

∣∣y>Sy∣∣ =

∣∣∣∣∣
K∑
i=1

K∑
j=1

S(i,j) · y(i) · y(j)

∣∣∣∣∣ (A.9)

=

∣∣∣∣∣∑
i

πθ(i)(r(i)− π>θ r)y(i)2 − 2
∑
i

πθ(i)(r(i)− π>θ r)y(i)
∑
j

πθ(j)y(j)

∣∣∣∣∣
(A.10)

=
∣∣∣(H(πθ)r)

> (y � y)− 2 · (H(πθ)r)
> y ·

(
π>θ y

)∣∣∣ (A.11)

≤ ‖H(πθ)r‖∞ · ‖y � y‖1 + 2 · ‖H(πθ)r‖2 · ‖y‖2 · ‖πθ‖1 · ‖y‖∞ (A.12)

≤ 3 · ‖H(πθ)r‖2 · ‖y‖
2
2 . (A.13)

63



According to Taylor’s theorem, ∀θ, θ′,∣∣∣∣(πθ′ − πθ)>r − 〈dπ>θ rdθ
, θ′ − θ

〉∣∣∣∣ =
1

2
·
∣∣∣(θ′ − θ)> S(r, θζ) (θ′ − θ)

∣∣∣ (A.14)

≤ 3

2
·
∥∥H(πθζ)r

∥∥
2
· ‖θ′ − θ‖2

2 (by Eq. (A.9))

(A.15)

=
3

2
·
∥∥∥∥dπ>θζrdθζ

∥∥∥∥
2

· ‖θ′ − θ‖2
2. (by Lemma 17)

Lemma 3. Let

θ′ = θ + η · dπ
>
θ r

dθ

/∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (A.16)

Denote θζ := θ+ ζ · (θ′− θ) with some ζ ∈ [0, 1]. We have, for all η ∈ (0, 1/3),∥∥∥∥dπ>θζrdθζ

∥∥∥∥
2

≤ 1

1− 3η
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (A.17)

Proof. Denote ζ1 := ζ. Also denote θζ2 := θ+ζ2 ·(θζ1−θ) with some ζ2 ∈ [0, 1].

We have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1
− dπ>θ r

dθ

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ 1

0

〈d2{π>θζ2r}
dθ2

ζ2

, θζ1 − θ
〉
dζ2

∥∥∥∥∥
2

(A.18)

≤
∫ 1

0

∥∥∥∥∥d
2{π>θζ2r}
dθ2

ζ2

∥∥∥∥∥
2

· ‖θζ1 − θ‖2 dζ2 (A.19)

≤
∫ 1

0

3 ·

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

· ζ1 · ‖θ′ − θ‖2 dζ2 (by Eq. (A.9)) (A.20)

≤
∫ 1

0

3 ·

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

· η dζ2,

(
ζ1 ∈ [0, 1], using θ′ = θ + η · dπ

>
θ r

dθ

/∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

)
(A.21)

where the second last inequality is because of the Hessian is symmetric, and

its operator norm is equal to its spectral radius. Therefore we have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+

∥∥∥∥∥dπ
>
θζ1
r

dθζ1
− dπ>θ r

dθ

∥∥∥∥∥
2

(by triangle inequality)

(A.22)

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+ 3η ·
∫ 1

0

∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

dζ2. (by Eq. (A.18)) (A.23)
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Denote θζ3 := θ + ζ3 · (θζ2 − θ) with some ζ3 ∈ [0, 1]. Using similar calculation

as in Eq. (A.18), we have,∥∥∥∥∥dπ
>
θζ2
r

dθζ2

∥∥∥∥∥
2

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+

∥∥∥∥∥dπ
>
θζ2
r

dθζ2
− dπ>θ r

dθ

∥∥∥∥∥
2

(A.24)

≤
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+ 3η ·
∫ 1

0

∥∥∥∥∥dπ
>
θζ3
r

dθζ3

∥∥∥∥∥
2

dζ3. (A.25)

Combining Eqs. (A.22) and (A.24), we have,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤ (1 + 3η) ·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

+ (3η)2 ·
∫ 1

0

∫ 1

0

∥∥∥∥∥dπ
>
θζ3
r

dθζ3

∥∥∥∥∥
2

dζ3dζ2, (A.26)

which implies,∥∥∥∥∥dπ
>
θζ1
r

dθζ1

∥∥∥∥∥
2

≤

[
∞∑
i=0

(3η)i

]
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

(A.27)

=
1

1− 3η
·
∥∥∥∥dπ>θ rdθ

∥∥∥∥
2

. (η ∈ (0, 1/3))

Lemma 4 (Non-vanishing N L coefficient) . Using normalized policy gra-

dient method, we have inft≥1 πθt(a
∗) > 0.

Proof. The proof is similar to [Mei et al., Lemma 5]. Let

c =
K

2∆
·
(

1− ∆

K

)
(A.28)

and

∆ = r(a∗)−max
a6=a∗

r(a) > 0 (A.29)

denote the reward gap of r. We will prove that inft≥1 πθt(a
∗) = min1≤t≤t0 πθt(a

∗),

where t0 = min{t : πθt(a
∗) ≥ c

c+1
}. Note that t0 depends only on θ1 and c,

and c depends only on the problem. Define the following regions,

R1 =

{
θ :

dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)
, ∀a 6= a∗

}
, (A.30)

R2 = {θ : πθ(a
∗) ≥ πθ(a), ∀a 6= a∗} , (A.31)

Nc =

{
θ : πθ(a

∗) ≥ c

c+ 1

}
. (A.32)

We make the following three-part claim.
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Claim 1. The following hold :

a) Following a NPG update θt+1 = θt + η · dπ
>
θt
r

dθt

/∥∥∥dπ>θtrdθt

∥∥∥
2
, if θt ∈ R1, then (i)

θt+1 ∈ R1 and (ii) πθt+1(a
∗) ≥ πθt(a

∗).

b) We have R2 ⊂ R1 and Nc ⊂ R1.

c) For η = 1/6, there exists a finite time t0 ≥ 1, such that θt0 ∈ Nc, and thus

θt0 ∈ R1, which implies that inft≥1 πθt(a
∗) = min1≤t≤t0 πθt(a

∗)..

Claim a) Part (i): We want to show that if θt ∈ R1, then θt+1 ∈ R1. Let

R1(a) =

{
θ :

dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)

}
. (A.33)

Note that R1 = ∩a6=a∗R1(a). Pick a 6= a∗. Clearly, it suffices to show that

if θt ∈ R1(a) then θt+1 ∈ R1(a). Hence, suppose that θt ∈ R1(a). We consider

two cases.

Case (a): πθt(a
∗) ≥ πθt(a). Since πθt(a

∗) ≥ πθt(a), we also have θt(a
∗) ≥ θt(a).

After an update of the parameters,

θt+1(a∗) = θt(a
∗) +

η∥∥∥dπ>θtrdθt

∥∥∥
2

·
dπ>θtr

dθt(a∗)
(A.34)

≥ θt(a) +
η∥∥∥dπ>θtrdθt

∥∥∥
2

·
dπ>θtr

dθt(a)
(A.35)

= θt+1(a), (A.36)

which implies that πθt+1(a
∗) ≥ πθt+1(a). Since r(a∗) − π>θt+1

r > 0 and r(a∗) >

r(a),

πθt+1(a
∗) ·
(
r(a∗)− π>θt+1

r
)
≥ πθt+1(a) ·

(
r(a)− π>θt+1

r
)
, (A.37)

which is equivalent to
dπ>θt+1

r

dθt+1(a∗)
≥

dπ>θt+1
r

dθt+1(a)
, i.e., θt+1 ∈ R1(a).

Case (b): Suppose now that πθt(a
∗) < πθt(a). First note that for any θ and

a 6= a∗, θ ∈ R1(a) holds if and only if

r(a∗)− r(a) ≥
(

1− πθ(a
∗)

πθ(a)

)
·
(
r(a∗)− π>θ r

)
. (A.38)
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Indeed, from the condition
dπ>θ r

dθ(a∗)
≥ dπ>θ r

dθ(a)
, we get

πθ(a
∗) ·
(
r(a∗)− π>θ r

)
≥ πθ(a) ·

(
r(a)− π>θ r

)
(A.39)

= πθ(a) ·
(
r(a∗)− π>θ r

)
− πθ(a) · (r(a∗)− r(a)) ,

(A.40)

which, after rearranging, is equivalent to Eq. (A.38). Hence, it suffices to

show that Eq. (A.38) holds for θt+1 provided it holds for θt. From the latter

condition, we get

r(a∗)− r(a) ≥ (1− exp {θt(a∗)− θt(a)}) ·
(
r(a∗)− π>θtr

)
. (A.41)

After an update of the parameters, according to Lemma 13 (or Eq. (A.56)

below), π>θt+1
r ≥ π>θtr, i.e.,

0 < r(a∗)− π>θt+1
r ≤ r(a∗)− π>θtr . (A.42)

On the other hand,

θt+1(a∗)− θt+1(a) = θt(a
∗) +

η∥∥∥dπ>θtrdθt

∥∥∥
2

·
dπ>θtr

dθt(a∗)
− θt(a)− η∥∥∥dπ>θtrdθt

∥∥∥
2

·
dπ>θtr

dθt(a)

(A.43)

≥ θt(a
∗)− θt(a) (A.44)

which implies that

1− exp {θt+1(a∗)− θt+1(a)} ≤ 1− exp {θt(a∗)− θt(a)} . (A.45)

Furthermore, by our assumption that πθt(a
∗) < πθt(a), we have 1−exp {θt(a∗)− θt(a)} =

1− πθt (a
∗)

πθt (a)
> 0. Putting things together, we get

(1− exp {θt+1(a∗)− θt+1(a)}) ·
(
r(a∗)− π>θt+1

r
)
≤ (1− exp {θt(a∗)− θt(a)}) ·

(
r(a∗)− π>θtr

)
(A.46)

≤ r(a∗)− r(a), (A.47)

which is equivalent to(
1−

πθt+1(a
∗)

πθt+1(a)

)
·
(
r(a∗)− π>θt+1

r
)
≤ r(a∗)− r(a), (A.48)
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and thus by our previous remark, θt+1 ∈ R1(a), thus, finishing the proof of

part (i).

Part (ii): Assume again that θt ∈ R1. We want to show that πθt+1(a
∗) ≥

πθt(a
∗). Since θt ∈ R1, we have

dπ>θt
r

dθt(a∗)
≥ dπ>θt

r

dθt(a)
, ∀a 6= a∗. Hence,

πθt+1(a
∗) =

exp {θt+1(a∗)}∑
a exp {θt+1(a)}

(A.49)

=

exp

{
θt(a

∗) + η · dπ>θt
r

dθt(a∗)

/∥∥∥dπ>θtrdθt

∥∥∥
2

}
∑

a exp

{
θt(a) + η · dπ

>
θt
r

dθt(a)

/∥∥∥dπ>θtrdθt

∥∥∥
2

} (A.50)

≥
exp

{
θt(a

∗) + η · dπ>θt
r

dθt(a∗)

/∥∥∥dπ>θtrdθt

∥∥∥
2

}
∑

a exp

{
θt(a) + η · dπ>θt

r

dθt(a∗)

/∥∥∥dπ>θtrdθt

∥∥∥
2

} (
using

dπ>θtr

dθt(a∗)
≥

dπ>θtr

dθt(a)

)
(A.51)

=
exp {θt(a∗)}∑
a exp {θt(a)}

= πθt(a
∗). (A.52)

Claim b); Claim c) The proof of those claims are exactly the same as [Mei

et al., Lemma 5], since they do not involve the update rule.

Theorem 1. Using NPG θt+1 = θt + η · dπ
>
θt
r

dθt

/∥∥∥dπ>θtrdθt

∥∥∥
2
, with η = 1/6, for

all t ≥ 1, we have,

(π∗ − πθt)>r ≤ e−
c·(t−1)

12 · (π∗ − πθ1)
> r, (A.53)

where c = inft≥1 πθt(a
∗) > 0 is from Lemma 4, and c is a constant that

depends on r and θ1, but not on the time t.

Proof. Denote θζt := θt + ζt · (θt+1 − θt) with some ζt ∈ [0, 1]. According to

Lemma 2,∣∣∣∣(πθt+1 − πθt)>r −
〈dπ>θtr
dθt

, θt+1 − θt
〉∣∣∣∣ ≤ 3

2
·
∥∥∥∥dπ>θζtrdθζt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2 (A.54)

≤ 3

2
· 1

1− 3η
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2, (η = 1/6, by Lemma 3)

(A.55)
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which implies,

π>θtr − π
>
θt+1

r ≤ −
〈dπ>θtr
dθt

, θt+1 − θt
〉

+
3

2 · (1− 3η)
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2

(A.56)

= −η ·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

+
3 · η2

2 · (1− 3η)
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

(
using θt+1 = θt + η ·

dπ>θtr

dθt

/∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

)
(A.57)

= − 1

12
·
∥∥∥∥dπ>θtrdθt

∥∥∥∥
2

(using η = 1/6) (A.58)

≤ − 1

12
· πθt(a∗) · (π∗ − πθt)>r (by Lemma 1) (A.59)

≤ − 1

12
· inf
t≥1

πθt(a
∗) · (π∗ − πθt)>r. (A.60)

According to Eq. (A.56), we have,

(π∗ − πθt)
> r ≤

(
1− c

12

)
·
(
π∗ − πθt−1

)>
r

(
c := inf

t≥1
πθt(a

∗) > 0

)
(A.61)

≤ exp {−c/12} ·
(
π∗ − πθt−1

)>
r (A.62)

≤ exp {−(t− 1) · c/12} · (π∗ − πθ1)
> r.

A.1.2 Multi-state MDP

Lemma 5 (N L) . Denote S := |S| as the total number of states. We have,

for all θ ∈ RS×A,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ mins πθ(a
∗(s)|s)√

S ·
∥∥dπ∗ρ /dπθµ ∥∥∞ · (V ∗(ρ)− V πθ(ρ)) , (A.63)

where a∗(s) is the action that π∗ selects in state s.

Proof. See the proof in [Mei et al., Lemma 8]. We include a proof for com-

69



pleteness. We have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

=

[∑
s,a

(
∂V πθ(µ)

∂θ(s, a)

)2
] 1

2

(A.64)

≥

[∑
s

(
∂V πθ(µ)

∂θ(s, a∗(s))

)2
] 1

2

(A.65)

≥ 1√
S

∑
s

∣∣∣∣ ∂V πθ(µ)

∂θ(s, a∗(s))

∣∣∣∣ (by Cauchy-Schwarz, ‖x‖1 = |〈1, |x|〉| ≤ ‖1‖2 · ‖x‖2)

(A.66)

=
1

1− γ
· 1√

S

∑
s

∣∣dπθµ (s) · πθ(a∗(s)|s) · Aπθ(s, a∗(s))
∣∣ (by Lemma 16)

(A.67)

=
1

1− γ
· 1√

S

∑
s

dπθµ (s) · πθ(a∗(s)|s) · |Aπθ(s, a∗(s))| . (A.68)(
because dπθµ (s) ≥ 0 and πθ(a

∗(s)|s) ≥ 0
)

(A.69)

Define the distribution mismatch coefficient as

∥∥∥∥dπ∗ρdπθµ
∥∥∥∥
∞

= maxs
dπ
∗
ρ (s)

d
πθ
µ (s)

. We

have,∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

≥ 1

1− γ
· 1√

S

∑
s

dπθµ (s)

dπ∗ρ (s)
· dπ∗ρ (s) · πθ(a∗(s)|s) · |Aπθ(s, a∗(s))|

(A.70)

≥ 1

1− γ
· 1√

S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) ·
∑
s

dπ
∗

ρ (s) · |Aπθ(s, a∗(s))|

(A.71)

≥ 1

1− γ
· 1√

S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) ·
∑
s

dπ
∗

ρ (s) · Aπθ(s, a∗(s))

(A.72)

=
1√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) · 1

1− γ
∑
s

dπ
∗

ρ (s)
∑
a

π∗(a|s) · Aπθ(s, a)

(A.73)

=
1√
S
·

∥∥∥∥∥dπ
∗
ρ

dπθµ

∥∥∥∥∥
−1

∞

·min
s
πθ(a

∗(s)|s) · [V ∗(ρ)− V πθ(ρ)] , (A.74)

where the one but last equality used that π∗ is deterministic and in state s

chooses a∗(s) with probability one, and the last equality uses the performance

difference formula (Lemma 18).
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Lemma 6 (NS) . Let Assumption 1 hold and denote θζ := θ + ζ · (θ′ − θ)

with some ζ ∈ [0, 1]. θ 7→ V πθ(µ) satisfies β(θζ) non-uniform smoothness with

β(θζ) =

[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

, (A.75)

where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞ ≤ 1
mins µ(s)

<∞.

Proof. The main part is to prove that for all y ∈ RSA and θ,∣∣∣∣y>∂2V πθ(µ)

∂θ2
y

∣∣∣∣ ≤ [3 +
2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖y‖2
2.

(A.76)

We first calculate the second order derivative of V πθ(µ) w.r.t. θ.

Denote θα = θ + αu, where α ∈ R and u ∈ RSA. For any (s, a) ∈ S ×A,

∂πθα(a|s)
∂α

∣∣∣
α=0

=
〈∂πθα(a|s)

∂θα

∣∣∣
α=0

,
∂θα
∂α

〉
(A.77)

=
〈∂πθ(a|s)

∂θ
, u
〉

(A.78)

=
〈∂πθ(a|s)
∂θ(s, ·)

, u(s, ·)
〉 (

∂πθ(a|s)
∂θ(s′, ·)

= 0, ∀s′ 6= s

)
(A.79)

Similarly, for any (s, a) ∈ S ×A,

∂2πθα(a|s)
∂α2

∣∣∣
α=0

=
〈 ∂

∂θα

{
∂πθα(a|s)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉
(A.80)

=
〈∂2πθα(a|s)

∂θ2
α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉
(A.81)

=
〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉
. (A.82)

Define Π(α) ∈ RS×SA as follows,

Π(α) :=


πθα(·|1)> 0> · · · 0>

0> πθα(·|2)> · · · 0>

...
...

. . .
...

0> 0> · · · πθα(·|S)>

 . (A.83)

Denote P ∈ RSA×S such that,

P(sa,s′) := P(s′|s, a). (A.84)
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Define P (α) := Π(α)P ∈ RS×S, where ∀(s, s′),

[P (α)](s,s′) =
∑
a

πθα(a|s) · P(s′|s, a). (A.85)

The derivative w.r.t. α is

∂P (α)

∂α
=
∂Π(α)P
∂α

=
∂Π(α)

∂α
P . (A.86)

And ∀(s, s′), we have,[
∂P (α)

∂α

∣∣∣
α=0

]
(s,s′)

=
∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a). (A.87)

Next, consider the state value function of πθα ,

V πθα (s) =
∑
a

πθα(a|s) · r(s, a) + γ
∑
a

πθα(a|s)
∑
s′

P(s′|s, a) · V πθα (s′),

(A.88)

which implies,

V πθα (s) = e>sM(α)rθα (A.89)

V πθα (µ) = µ>M(α)rθα , (A.90)

where

M(α) = (Id− γP (α))−1 , (A.91)

and rθα ∈ RS is given by

rθα = Π(α)r, (A.92)

where r ∈ RSA. Taking derivative w.r.t. α in Eq. (A.90),

∂V πθα (µ)

∂α
= γ · µ>M(α)

∂P (α)

∂α
M(α)rθα + µ>M(α)

∂rθα
∂α

(A.93)

= µ>M(α)

[
γ · ∂P (α)

∂α
M(α)rθα +

∂rθα
∂α

]
(A.94)

= µ>M(α)

[
γ · ∂Π(α)

∂α
PM(α)rθα +

∂Π(α)

∂α
r

]
(by Eqs. (A.86) and (A.92))

(A.95)

= µ>M(α)
∂Π(α)

∂α
Qπθα , (A.96)
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where Qπθα ∈ RSA is the state-action value and it satisfies,

Qπθα = r + γ · PM(α)rθα (A.97)

= r + γ · PV πθα (by Eq. (A.89)) (A.98)

Similarly, taking second derivative w.r.t. α,

∂2V πθα (µ)

∂α2
= 2γ2 · µ>M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)rθα + γ · µ>M(α)

∂2P (α)

∂α2
M(α)rθα

(A.99)

+ 2γ · µ>M(α)
∂P (α)

∂α
M(α)

∂rθα
∂α

+ µ>M(α)
∂2rθα
∂α2

(A.100)

= 2γ · µ>M(α)
∂P (α)

∂α
M(α)

∂Π(α)

∂α
(γ · PM(α)rθα + r) + (A.101)

µ>M(α)
∂2Π(α)

∂α2
(γ · PM(α)rθα + r) (A.102)

= 2γ · µ>M(α)
∂P (α)

∂α
M(α)

∂Π(α)

∂α
Qπθα + µ>M(α)

∂2Π(α)

∂α2
Qπθα

(A.103)

For the last term, we have,[
∂2Π(α)

∂α2
Qπθα

∣∣∣
α=0

]
(s)

=
∑
a

∂2πθα(a|s)
∂α2

∣∣∣
α=0
·Qπθ(s, a) (A.104)

=
∑
a

〈∂2πθ(a|s)
∂θ2(s, ·)

u(s, ·), u(s, ·)
〉
·Qπθ(s, a) (by Eq. (A.80))

(A.105)

= u(s, ·)>
[∑

a

∂2πθ(a|s)
∂θ2(s, ·)

·Qπθ(s, a)

]
u(s, ·) (A.106)

Let S(a, θ) = ∂2πθ(a|s)
∂θ2(s,·) ∈ RA×A. ∀i, j ∈ [A], the value of S(a, θ) is,

S(i,j) =
∂{δiaπθ(a|s)− πθ(a|s)πθ(i|s)}

∂θ(s, j)
(A.107)

= δia · [δjaπθ(a|s)− πθ(a|s)πθ(j|s)]− πθ(a|s) · [δijπθ(j|s) (A.108)

−πθ(i|s)πθ(j|s)]− πθ(i|s) · [δjaπθ(a|s)− πθ(a|s)πθ(j|s)] , (A.109)

where the δ notation is as defined in Eq. (A.8). Then we have,[∑
a

∂2πθ(a|s)
∂θ2(s, ·)

·Qπθ(s, a)

]
(i,j)

=
∑
a

S(i,j) ·Qπθ(s, a) (A.110)

= δij · πθ(i|s) · [Qπθ(s, i)− V πθ(s)] (A.111)

− πθ(i|s) · πθ(j|s) · [Qπθ(s, i)− V πθ(s)]− πθ(i|s) · πθ(j|s) · [Qπθ(s, j)− V πθ(s)] .
(A.112)
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Therefore we have,[
∂2Π(α)

∂α2
Qπθα

∣∣∣
α=0

]
(s)

=
A∑
i=1

A∑
j=1

u(s, i) · u(s, j) ·

[∑
a

∂2πθ(a|s)
∂θ2(s, ·)

·Qπθ(s, a)

]
(i,j)

(A.113)

= (H(πθ(·|s))Qπθ(s, ·))> (u(s, ·)� u(s, ·)) (A.114)

− 2 ·
[
(H(πθ(·|s))Qπθ(s, ·))> u(s, ·)

]
·
(
πθ(·|s)>u(s, ·)

)
, (A.115)

where H(π) := diag(π)− ππ>. Combining the above results with Eq. (A.99),

we have,∣∣∣∣µ>M(α)
∂2Π(α)

∂α2
Qπθα

∣∣∣
α=0

∣∣∣∣ ≤ 1

1− γ
·
∑
s

dπθµ (s) ·

∣∣∣∣∣
[
∂2Π(α)

∂α2
Qπθα

∣∣∣
α=0

]
(s)

∣∣∣∣∣
(A.116)

≤ 1

1− γ
·
∑
s

dπθµ (s) · 3 · ‖H(πθ(·|s))Qπθ(s, ·)‖2 · ‖u‖
2
2 (by Hölder’s inequality)

(A.117)

≤ 3 ·
√
S

1− γ
·

[∑
s

dπθµ (s)2 · ‖H(πθ(·|s))Qπθ(s, ·)‖2
2

] 1
2

· ‖u‖2
2 (by Cauchy-Schwarz)

(A.118)

= 3 ·
√
S ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖u‖2
2 . (by Lemma 17) (A.119)

For the first term in Eq. (A.99), we have,

µ>M(α)
∂P (α)

∂α
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

=
∑
s′

[
µ>M(α)

∂P (α)

∂α

∣∣∣
α=0

]
(s′)

·

(A.120)[
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

]
(s′)

,

(A.121)

since,(
µ>M(α)

∂P (α)

∂α

)>
∈ RS, and M(α)

∂Π(α)

∂α
Qπθα ∈ RS. (A.122)

74



Next we have,[
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

]
(s′)

=
1

1− γ
·
∑
s

dπθs′ (s) ·
[
∂Π(α)

∂α
Qπθα

∣∣∣
α=0

]
(s)

(A.123)

=
1

1− γ
·
∑
s

dπθs′ (s) ·
∑
a

∂πθα(a|s)
∂α

∣∣∣
α=0
·Qπθ(s, a) (A.124)

=
1

1− γ
·
∑
s

dπθs′ (s) ·
∑
a

〈∂πθ(a|s)
∂θ(s, ·)

, u(s, ·)
〉
·Qπθ(s, a) (by Eq. (A.77))

(A.125)

=
1

1− γ
·
∑
s

dπθs′ (s) ·
〈∑

a

∂πθ(a|s)
∂θ(s, ·)

·Qπθ(s, a), u(s, ·)
〉

(A.126)

=
1

1− γ
·
∑
s

dπθs′ (s) · (H(πθ(·|s))Qπθ(s, ·))> u(s, ·), (A.127)

(H(πθ) is the Jacobian of θ 7→ softmax(θ)) (A.128)

which implies,∣∣∣∣∣
[
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

]
(s′)

∣∣∣∣∣ ≤ 1

1− γ
·
∑
s

dπθs′ (s) · ‖H(πθ(·|s))Qπθ(s, ·)‖2 · ‖u(s, ·)‖2

(A.129)

≤ ‖u‖2

1− γ
·
∑
s

dπθs′ (s) · ‖H(πθ(·|s))Qπθ(s, ·)‖2.

(A.130)

On the other hand,[
µ>M(α)

∂P (α)

∂α

∣∣∣
α=0

]
(s′)

=
1

1− γ
·
∑
s

dπθµ (s) ·
[
∂P (α)

∂α

∣∣∣
α=0

]
(s,s′)

(
∂P (α)

∂α
∈ RS×S

)
(A.131)

=
1

1− γ
·
∑
s

dπθµ (s) ·
∑
a

[
∂πθα(a|s)

∂α

∣∣∣
α=0

]
· P(s′|s, a) (by Eq. (A.87))

(A.132)

=
1

1− γ
·
∑
s

dπθµ (s) ·
∑
a

〈∂πθ(a|s)
∂θ(s, ·)

, u(s, ·)
〉
· P(s′|s, a) (by Eq. (A.77))

(A.133)

=
1

1− γ
·
∑
s

dπθµ (s) ·
∑
a

πθ(a|s) · P(s′|s, a) ·
[
u(s, a)− πθ(·|s)>u(s, ·)

]
,

(A.134)
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which implies,∣∣∣∣∣
[
µ>M(α)

∂P (α)

∂α

∣∣∣
α=0

]
(s′)

∣∣∣∣∣ ≤ 1

1− γ
·
∑
s

dπθµ (s) ·
∑
a

πθ(a|s) · P(s′|s, a) · 2 · ‖u(s, ·)‖∞

(A.135)

≤ 2 · ‖u‖2

1− γ
·
∑
s

dπθµ (s) ·
∑
a

πθ(a|s) · P(s′|s, a).

(A.136)

According to

dπθµ (s′) = (1− γ) · µ(s′) + γ ·
∑
s

dπθµ (s) ·
∑
a

πθ(a|s) · P(s′|s, a), ∀s′ ∈ S

(A.137)

we have,∣∣∣∣∣
[
µ>M(α)

∂P (α)

∂α

∣∣∣
α=0

]
(s′)

∣∣∣∣∣ ≤ 2 · ‖u‖2

(1− γ) · γ
·
[
dπθµ (s′)− (1− γ) · µ(s′)

]
(A.138)

=
2 · ‖u‖2

(1− γ) · γ
·
[
dπθµ (s′)

µ(s′)
· µ(s′)− (1− γ) · µ(s′)

]
(A.139)

≤ 2 · ‖u‖2

(1− γ) · γ
· (C∞ − (1− γ)) · µ(s′).

(
C∞ := max

π

∥∥∥∥dπµµ
∥∥∥∥
∞
<

∥∥∥∥ 1

µ

∥∥∥∥
∞
<∞

)
(A.140)

Combining Eqs. (A.120), (A.129) and (A.138), we have,∣∣∣∣µ>M(α)
∂P (α)

∂α
M(α)

∂Π(α)

∂α
Qπθα

∣∣∣
α=0

∣∣∣∣ (A.141)

≤
∑
s′

2 · ‖u‖2

(1− γ) · γ
· (C∞ − (1− γ)) · µ(s′) · ‖u‖2

1− γ
·
∑
s

dπθs′ (s) · ‖H(πθ(·|s))Qπθ(s, ·)‖2

(A.142)

=
2 · (C∞ − (1− γ))

(1− γ)2 · γ
·
∑
s

dπθµ (s) · ‖H(πθ(·|s))Qπθ(s, ·)‖2 · ‖u‖
2
2 (A.143)

≤ 2 · (C∞ − (1− γ)) ·
√
S

(1− γ)2 · γ
·

[∑
s

dπθµ (s)2 · ‖H(πθ(·|s))Qπθ(s, ·)‖2
2

] 1
2

· ‖u‖2
2

(A.144)

(by Cauchy-Schwarz) (A.145)

=
2 · (C∞ − (1− γ)) ·

√
S

(1− γ) · γ
·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖u‖2
2 . (by Lemma 17)

(A.146)
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Combining Eqs. (A.99), (A.116) and (A.141),∣∣∣∣∂2V πθα (µ)

∂α2

∣∣∣
α=0

∣∣∣∣ ≤ [3 +
2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖u‖2
2 ,

(A.147)

which implies for all y ∈ RSA and θ,∣∣∣∣y>∂2V πθ(µ)

∂θ2
y

∣∣∣∣ =

∣∣∣∣∣
(

y

‖y‖2

)>
∂2V πθ(µ)

∂θ2

(
y

‖y‖2

)∣∣∣∣∣ · ‖y‖2
2 (A.148)

≤ max
‖u‖2=1

∣∣∣∣〈∂2V πθ(µ)

∂θ2
u, u
〉∣∣∣∣ · ‖y‖2

2 (A.149)

= max
‖u‖2=1

∣∣∣∣〈∂2V πθα (µ)

∂θ2
α

∣∣∣
α=0

∂θα
∂α

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (A.150)

= max
‖u‖2=1

∣∣∣∣〈 ∂

∂θα

{
∂V πθα (µ)

∂α

} ∣∣∣
α=0

,
∂θα
∂α

〉∣∣∣∣ · ‖y‖2
2 (A.151)

= max
‖u‖2=1

∣∣∣∣∂2V πθα (µ)

∂α2

∣∣∣
α=0

∣∣∣∣ · ‖y‖2
2 (A.152)

≤
[
3 +

2 · (C∞ − (1− γ))

(1− γ) · γ

]
·
√
S ·
∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

· ‖y‖2
2. (by Eq. (A.147))

(A.153)

Denote θζ = θ+ ζ(θ′− θ), where ζ ∈ [0, 1]. According to Taylor’s theorem, ∀s,

∀θ, θ′,∣∣∣∣V πθ′ (µ)− V πθ(µ)−
〈∂V πθ(µ)

∂θ
, θ′ − θ

〉∣∣∣∣ =
1

2
·

∣∣∣∣∣(θ′ − θ)> ∂2V πθζ (µ)

∂θ2
ζ

(θ′ − θ)

∣∣∣∣∣
(A.154)

≤ 3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

2 · (1− γ) · γ
·
√
S ·
∥∥∥∥∂V πθζ (µ)

∂θζ

∥∥∥∥
2

· ‖θ′ − θ‖2
2.

(A.155)

(by Eq. (A.148))

Lemma 8 (Non-vanishing N L coefficient) . Let Assumption 1 hold. We

have, c := infs∈S,t≥1 πθt(a
∗(s)|s) > 0, where {θt}t≥1 is generated by Algo-

rithm 1.

Proof. The proof is similar to [Mei et al., Lemma 9] and is an extension of the

proof for Lemma 4. Denote ∆∗(s) = Q∗(s, a∗(s))−maxa6=a∗(s) Q
∗(s, a) > 0 as

the optimal value gap of state s, where a∗(s) is the action that the optimal
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policy selects under state s, and ∆∗ = mins∈S ∆∗(s) > 0 as the optimal value

gap of the MDP. For each state s ∈ S, define the following sets:

R1(s) =

{
θ :

∂V πθ(µ)

∂θ(s, a∗(s))
≥ ∂V πθ(µ)

∂θ(s, a)
, ∀a 6= a∗

}
, (A.156)

R2(s) = {θ : Qπθ(s, a∗(s)) ≥ Q∗(s, a∗(s))−∆∗(s)/2} , (A.157)

R3(s) = {θt : V πθt (s) ≥ Qπθt (s, a∗(s))−∆∗(s)/2, for all t ≥ 1 large enough} ,
(A.158)

Nc(s) =

{
θ : πθ(a

∗(s)|s) ≥ c(s)

c(s) + 1

}
, where c(s) =

A

(1− γ) ·∆∗(s)
− 1.

(A.159)

Similarly to the previous proof, we have the following claims:

Claim I. R1(s)∩R2(s)∩R3(s) is a “nice” region, in the sense that, following

a gradient update, (i) if θt ∈ R1(s)∩R2(s)∩R3(s), then θt+1 ∈ R1(s)∩

R2(s) ∩R3(s); while we also have (ii) πθt+1(a
∗(s)|s) ≥ πθt(a

∗(s)|s).

Claim II. Nc(s) ∩R2(s) ∩R3(s) ⊂ R1(s) ∩R2(s) ∩R3(s).

Claim III. There exists a finite time t0(s) ≥ 1, such that θt0(s) ∈ Nc(s) ∩

R2(s) ∩ R3(s), and thus θt0(s) ∈ R1(s) ∩ R2(s) ∩ R3(s), which implies

inft≥1 πθt(a
∗(s)|s) = min1≤t≤t0(s) πθt(a

∗(s)|s).

Claim IV. Define t0 = maxs t0(s). Then, we have infs∈S,t≥1 πθt(a
∗(s)|s) =

min1≤t≤t0 mins πθt(a
∗(s)|s).

Clearly, claim IV suffices to prove the lemma since for any θ, mins,a πθ(a|s) > 0.

In what follows we provide the proofs of these four claims.

Claim I. First we prove part (i) of the claim. If θt ∈ R1(s)∩R2(s)∩R3(s),

then θt+1 ∈ R1(s) ∩ R2(s) ∩ R3(s). Suppose θt ∈ R1(s) ∩ R2(s) ∩ R3(s). We

have θt+1 ∈ R3(s) by the definition of R3(s). We have,

Qπθt (s, a∗(s)) ≥ Q∗(s, a∗(s))−∆∗(s)/2. (A.160)
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According to monotonic improvement of Eq. (A.213), we have V πθt+1 (s′) ≥

V πθt (s′), and

Qπθt+1 (s, a∗(s)) = Qπθt (s, a∗(s)) +Qπθt+1 (s, a∗(s))−Qπθt (s, a∗(s)) (A.161)

= Qπθt (s, a∗(s)) + γ
∑
s′

P(s′|s, a∗(s)) · [V πθt+1 (s′)− V πθt (s′)]

(A.162)

≥ Qπθt (s, a∗(s)) + 0 (A.163)

≥ Q∗(s, a∗(s))−∆∗(s)/2, (A.164)

which means θt+1 ∈ R2(s). Next we prove θt+1 ∈ R1(s). Note that ∀a 6= a∗(s),

Qπθt (s, a∗(s))−Qπθt (s, a) = Qπθt (s, a∗(s))−Q∗(s, a∗(s)) +Q∗(s, a∗(s))−Qπθt (s, a)

(A.165)

≥ −∆∗(s)/2 +Q∗(s, a∗(s))−Q∗(s, a) +Q∗(s, a)−Qπθt (s, a) (A.166)

≥ −∆∗(s)/2 +Q∗(s, a∗(s))− max
a6=a∗(s)

Q∗(s, a) +Q∗(s, a)−Qπθt (s, a) (A.167)

= −∆∗(s)/2 + ∆∗(s) + γ
∑
s′

P(s′|s, a) · [V ∗(s′)− V πθt (s′)] (A.168)

≥ −∆∗(s)/2 + ∆∗(s) + 0 (A.169)

= ∆∗(s)/2. (A.170)

Using similar arguments we also have Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a) ≥ ∆∗(s)/2.

According to Lemma 16,

∂V πθt (µ)

∂θt(s, a)
=

1

1− γ
· dπθtµ (s) · πθt(a|s) · Aπθt (s, a) (A.171)

=
1

1− γ
· dπθtµ (s) · πθt(a|s) · [Qπθt (s, a)− V πθt (s)] . (A.172)

Furthermore, since ∂V
πθt (µ)

∂θt(s,a∗(s))
≥ ∂V

πθt (µ)
∂θt(s,a)

, we have

πθt(a
∗(s)|s) · [Qπθt (s, a∗(s))− V πθt (s)] ≥ πθt(a|s) · [Qπθt (s, a)− V πθt (s)] .

(A.173)

Similarly to the first part in the proof for Lemma 4. There are two cases. Case

(a): If πθt(a
∗(s)|s) ≥ πθt(a|s), then θt(s, a

∗(s)) ≥ θt(s, a). After an update of
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the parameters,

θt+1(s, a∗(s)) = θt(s, a
∗(s)) + η · ∂V πθt (µ)

∂θt(s, a∗(s))

/∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

(A.174)

≥ θt(s, a) + η · ∂V
πθt (µ)

∂θt(s, a)

/∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

= θt+1(s, a), (A.175)

which implies πθt+1(a
∗(s)|s) ≥ πθt+1(a|s). Since Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a) ≥

∆∗(s)/2 ≥ 0, ∀a, we have Qπθt+1 (s, a∗(s)) − V πθt+1 (s) = Qπθt+1 (s, a∗(s)) −∑
a πθt+1(a|s) ·Q

πθt+1 (s, a) ≥ 0, and

πθt+1(a
∗(s)|s) · [Qπθt+1 (s, a∗(s))− V πθt+1 (s)] ≥ πθt+1(a|s) · [Q

πθt+1 (s, a)− V πθt+1 (s)] ,
(A.176)

which is equivalent to ∂V
πθt+1 (µ)

∂θt+1(s,a∗(s))
≥ ∂V

πθt+1 (µ)
∂θt+1(s,a)

, i.e., θt+1 ∈ R1(s).

Case (b): If πθt(a
∗(s)|s) < πθt(a|s), then by ∂V

πθt (µ)
∂θt(s,a∗(s))

≥ ∂V
πθt (µ)

∂θt(s,a)
,

πθt(a
∗(s)|s) · [Qπθt (s, a∗(s))− V πθt (s)] ≥ πθt(a|s) · [Qπθt (s, a)− V πθt (s)]

(A.177)

= πθt(a|s) · [Qπθt (s, a∗(s))− V πθt (s) +Qπθt (s, a)−Qπθt (s, a∗(s))] ,
(A.178)

which, after rearranging, is equivalent to

Qπθt (s, a∗(s))−Qπθt (s, a) ≥
(

1− πθt(a
∗(s)|s)

πθt(a|s)

)
· [Qπθt (s, a∗(s))− V πθt (s)]

(A.179)

= (1− exp {θt(s, a∗(s))− θt(s, a)}) · [Qπθt (s, a∗(s))− V πθt (s)] .
(A.180)

Since θt+1 ∈ R3(s), we have,

Qπθt+1 (s, a∗(s))− V πθt+1 (s) ≤ ∆∗(s)/2 ≤ Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a).
(A.181)

On the other hand,

θt+1(s, a∗(s))− θt+1(s, a) (A.182)

= θt(s, a
∗(s)) + η · ∂V πθt (µ)

∂θt(s, a∗(s))

/∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

− θt(s, a)− η · ∂V
πθt (µ)

∂θt(s, a)

/∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

(A.183)

≥ θt(s, a
∗(s))− θt(s, a), (A.184)

80



which implies

1− exp {θt+1(s, a∗(s))− θt+1(s, a)} ≤ 1− exp {θt(s, a∗(s))− θt(s, a)} .
(A.185)

Furthermore, since 1− exp {θt(s, a∗(s))− θt(s, a)} = 1− πθt (a
∗(s)|s)

πθt (a|s)
> 0 (in this

case πθt(a
∗(s)|s) < πθt(a|s)),

(1− exp {θt+1(s, a∗(s))− θt+1(s, a)}) · [Qπθt+1 (s, a∗(s))− V πθt+1 (s)] (A.186)

≤ Qπθt+1 (s, a∗(s))−Qπθt+1 (s, a), (A.187)

which after rearranging is equivalent to

πθt+1(a
∗(s)|s) · [Qπθt+1 (s, a∗(s))− V πθt+1 (s)] ≥ πθt+1(a|s) · [Q

πθt+1 (s, a)− V πθt+1 (s)] ,
(A.188)

which means ∂V
πθt+1 (µ)

∂θt+1(s,a∗(s))
≥ ∂V

πθt+1 (µ)
∂θt+1(s,a)

i.e., θt+1 ∈ R1(s). Now we have (i) if

θt ∈ R1(s) ∩R2(s) ∩R3(s), then θt+1 ∈ R1(s) ∩R2(s) ∩R3(s).

Let us now turn to proving part (ii). We have πθt+1(a
∗(s)|s) ≥ πθt(a

∗(s)|s).

If θt ∈ R1(s) ∩ R2(s) ∩ R3(s), then ∂V
πθt (µ)

∂θt(s,a∗(s))
≥ ∂V

πθt (µ)
∂θt(s,a)

, ∀a 6= a∗. After an

update of the parameters,

πθt+1(a
∗(s)|s) =

exp {θt+1(s, a∗(s))}∑
a exp {θt+1(s, a)}

(A.189)

=
exp

{
θt(s, a

∗(s)) + η · ∂V
πθt (µ)

∂θt(s,a∗(s))

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2

}
∑

a exp
{
θt(s, a) + η · ∂V

πθt (µ)
∂θt(s,a)

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2

} (A.190)

≥
exp

{
θt(s, a

∗(s)) + η · ∂V
πθt (µ)

∂θt(s,a∗(s))

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2

}
∑

a exp
{
θt(s, a) + η · ∂V

πθt (µ)
∂θt(s,a∗(s))

/∥∥∥∂V πθt (µ)
∂θt

∥∥∥
2

} (A.191)

(
because

∂V πθt (µ)

∂θt(s, a∗(s))
≥ ∂V πθt (µ)

∂θt(s, a)

)
(A.192)

=
exp {θt(s, a∗(s))}∑

a exp {θt(s, a)}
= πθt(a

∗(s)|s). (A.193)

Claim II, Claim III, Claim IV. The proof of those claims are exactly the

same as [Mei et al., Lemma 9], since they do not involve the update rule.
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Theorem 2. Let Assumption 1 hold and let {θt}t≥1 be generated using

Algorithm 1 with

η =
(1− γ) · γ

6 · (1− γ) · γ + 4 · (C∞ − (1− γ))
· 1√

S
, (A.194)

where C∞ := maxπ

∥∥∥dπµµ ∥∥∥∞ < ∞. Denote C ′∞ := maxπ

∥∥∥dπρµ ∥∥∥∞. Let c be the

positive constant from Lemma 8. We have, for all t ≥ 1,

V ∗(ρ)− V πθt (ρ) ≤ (V ∗(µ)− V πθ1 (µ)) · C ′∞
1− γ

· e−C·(t−1), (A.195)

where

C =
(1− γ)2 · γ · c

12 · (1− γ) · γ + 8 · (C∞ − (1− γ))
· 1

S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

. (A.196)

Proof. First note that for any θ and µ,

dπθµ (s) = E
s0∼µ

[
dπθµ (s)

]
(A.197)

= E
s0∼µ

[
(1− γ) ·

∞∑
t=0

γt Pr(st = s|s0, πθ,P)

]
(A.198)

≥ E
s0∼µ

[(1− γ) · Pr(s0 = s|s0)] (A.199)

= (1− γ) · µ(s). (A.200)
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Next, according to Lemma 19, we have,

V ∗(ρ)− V πθ(ρ) =
1

1− γ
∑
s

dπθρ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (A.201)

=
1

1− γ
∑
s

dπθρ (s)

dπθµ (s)
· dπθµ (s)

∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (A.202)

≤ 1

1− γ
·
∥∥∥∥dπθρdπθµ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (A.203)(
Note that

∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) ≥ 0

)
(A.204)

≤ 1

(1− γ)2
·
∥∥∥∥dπθρµ

∥∥∥∥
∞

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a)

(A.205)(
by Eq. (A.197) and min

s
µ(s) > 0

)
(A.206)

≤ 1

(1− γ)2
· C ′∞ ·

∑
s

dπθµ (s)
∑
a

(π∗(a|s)− πθ(a|s)) ·Q∗(s, a) (A.207)

=
1

1− γ
· C ′∞ · [V ∗(µ)− V πθ(µ)] . (by Lemma 19) (A.208)

Denote θζt := θt + ζt · (θt+1 − θt) with some ζt ∈ [0, 1]. And note η =
(1−γ)·γ

6·(1−γ)·γ+4·(C∞−(1−γ))
· 1√

S
. According to Lemma 6, we have,∣∣∣∣V πθt+1 (µ)− V πθt (µ)−
〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉∣∣∣∣ (A.209)

≤ 3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

2 · (1− γ) · γ
·
√
S ·
∥∥∥∥∂V πθζt (µ)

∂θζt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2

(A.210)

≤ 3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

(1− γ) · γ
·
√
S ·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2.

(A.211)

(by Lemma 7) (A.212)
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Denote δt = V ∗(µ)− V πθt (µ). We have,

δt+1 − δt = V πθt (µ)− V πθt+1 (µ) (A.213)

≤ −
〈∂V πθt (µ)

∂θt
, θt+1 − θt

〉
+ (A.214)

3 · (1− γ) · γ + 2 · (C∞ − (1− γ))

(1− γ) · γ
·
√
S ·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

· ‖θt+1 − θt‖2
2

(A.215)

= − (1− γ) · γ
12 · (1− γ) · γ + 8 · (C∞ − (1− γ))

· 1√
S
·
∥∥∥∥∂V πθt (µ)

∂θt

∥∥∥∥
2

(using the value of η)

(A.216)

≤ − (1− γ) · γ
12 · (1− γ) · γ + 8 · (C∞ − (1− γ))

· 1√
S
· mins πθt(a

∗(s)|s)√
S ·
∥∥dπ∗µ /dπθtµ

∥∥
∞

· δt (by Lemma 5)

(A.217)

≤ − (1− γ)2 · γ
12 · (1− γ) · γ + 8 · (C∞ − (1− γ))

· 1

S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

· inf
s∈S,t≥1

πθt(a
∗(s)|s) · δt,

(A.218)

where the last inequality is by d
πθt
µ (s) ≥ (1 − γ) · µ(s) (cf. Eq. (A.197)).

According to Lemma 8, c = infs∈S,t≥1 πθt(a
∗(s)|s) > 0. Therefore we have,

V ∗(µ)− V πθt (µ) ≤ (V ∗(µ)− V πθ1 (µ)) · (A.219)

exp

− (1− γ)2 · γ · c · (t− 1)

12 · (1− γ) · γ + 8 · (C∞ − (1− γ))
· 1

S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

 ,

(A.220)

which leads to the final result,

V ∗(ρ)− V πθt (ρ) ≤ (V ∗(µ)− V πθ1 (µ)) · C ′∞
1− γ

· (A.221)

exp

− (1− γ)2 · γ · c · (t− 1)

12 · (1− γ) · γ + 8 · (C∞ − (1− γ))
· 1

S
·

∥∥∥∥∥dπ
∗
µ

µ

∥∥∥∥∥
−1

∞

 ,

(A.222)

thus, finishing the proof of convergence rate.
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A.2 Proofs for Chapter 6

Lemma 9 (N L) . Denote u(θ) := mini {πi · (1− πi)}, and v := mini {π∗i · (1− π∗i )}.

We have, for all i ∈ [N ],

∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

≥ 8 · u(θ) ·min {u(θ), v} ·
√
λφ ·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

, (A.223)

where λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i .

Proof. Denote π′i := σ(z′i), where z′i := φ>i θ + ζ ·
(
φ>i θ − φ>i θ∗

)
for some ζ ∈

[0, 1]. We have,

(πi − π∗i )
2 = (πi − π∗i ) ·

dσ(z′i)

dz′i
·
(
φ>i θ − φ>i θ∗

)
(by the mean value theorem)

(A.224)

= π′i · (1− π′i) · (πi − π∗i ) ·
(
φ>i θ − φ>i θ∗

)
(A.225)

≤ 1

4
· (πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
. (A.226)(

Since x · (1− x) ≤ 1

4
, ∀x ∈ [0, 1]; (πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
≥ 0

)
(A.227)
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Therefore we have,

1

N
·
N∑
i=1

(πi − π∗i )
2 ≤ 1

4N
·
N∑
i=1

(πi − π∗i ) ·
(
φ>i θ − φ>i θ∗

)
(by Eq. (A.224))

(A.228)

=
1

4N
·
N∑
i=1

1

πi · (1− πi)
· πi · (1− πi) · (πi − π∗i ) ·

(
φ>i θ − φ>i θ∗

)
(A.229)

≤ 1

4N
· 1

mini πi · (1− πi)
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) ·
(
φ>i θ − φ>i θ∗

)
(A.230)(

Note that (πi − π∗i ) ·
(
φ>i θ − φ>i θ∗

)
≥ 0
)

(A.231)

=
1

8
· 1

mini πi · (1− πi)
·

(
2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi

)>
(θ − θ∗ − c · vφ,⊥)

(A.232)

=
1

8
· 1

mini πi · (1− πi)
·
(
∂L(θ)

∂θ

)>
(θ − θ∗ − c · vφ,⊥) (A.233)(

where
∂L(θ)

∂θ
=

2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi

)
(A.234)

≤ 1

8
· 1

mini πi · (1− πi)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· ‖θ − θ∗ − c · vφ,⊥‖2 (by Cauchy-Schwarz)

(A.235)

=
1

8
· 1

u(θ)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· ‖θ − θ∗ − c · vφ,⊥‖2 ,
(
u(θ) := min

i
{πi · (1− πi)}

)
(A.236)

where vφ,⊥ is orthogonal to the space Span {φ1, φ2, . . . , φN}, and θ−θ∗−c ·vφ,⊥
refers to the vector after cutting off all the components vφ,⊥ from θ− θ∗, such
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that θ − θ∗ − c · vφ,⊥ ∈ Span {φ1, φ2, . . . , φN}. Next, we have,

1

N
·
N∑
i=1

(πi − π∗i )
2 =

1

N
·
N∑
i=1

(
dσ(z′i)

dz′i

)2

·
(
φ>i θ − φ>i θ∗

)2
(by the mean value theorem)

(A.237)

=
1

N
·
N∑
i=1

(π′i)
2 · (1− π′i)

2 ·
(
φ>i θ − φ>i θ∗

)2
(by Eq. (A.224))

(A.238)

≥ min
i

{
(π′i)

2 · (1− π′i)
2
}
· 1

N
·
N∑
i=1

(
φ>i θ − φ>i θ∗

)2
(A.239)

= min
i

{
(π′i)

2 · (1− π′i)
2
}
· (θ − θ∗)>

(
1

N
·
N∑
i=1

φiφ
>
i

)
(θ − θ∗) (A.240)

= min
i

{
(π′i)

2 · (1− π′i)
2
}
· (θ − θ∗ − c · vφ,⊥)>

(
1

N
·
N∑
i=1

φiφ
>
i

)
(θ − θ∗ − c · vφ,⊥)

(A.241)

≥ min
{
u(θ)2, v2

}
· (θ − θ∗ − c · vφ,⊥)>

(
1

N
·
N∑
i=1

φiφ
>
i

)
(θ − θ∗ − c · vφ,⊥)

(A.242)(
Note v := min

i
{π∗i · (1− π∗i )}

)
(A.243)

≥ min
{
u(θ)2, v2

}
· λφ · ‖θ − θ∗ − c · vφ,⊥‖2

2 , (A.244)

where λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i . Therefore, we

have,

1

N
·
N∑
i=1

(πi − π∗i )
2 ≤ 1

8
· 1

u(θ)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· ‖θ − θ∗ − c · vφ,⊥‖2 (by Eq. (A.228))

(A.245)

≤ 1

8
· 1

u(θ)
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

· 1

min {u(θ), v}
· 1√

λφ
·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

,

(A.246)

(by Eq. (A.237)) (A.247)

which implies,

∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

≥ 8 · u(θ) ·min {u(θ), v} ·
√
λφ ·

[
1

N
·
N∑
i=1

(πi − π∗i )
2

] 1
2

.
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Lemma 10. Denote u(θ) := mini {πi · (1− πi)}, v := mini {π∗i · (1− π∗i )},

and λφ is the smallest positive eigenvalue of 1
N
·
∑N

i=1 φiφ
>
i . We have, L(θ)

satisfies β smoothness with

β =
3

8
·max
i∈[N ]
‖φi‖2

2, (A.248)

and β(θ) NS with

β(θ) = L1 ·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+ L0 ·

(∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
. (A.249)

where

L1 =
maxi ‖φi‖2

2

32 · (min{u(θ), v} ·
√
λφ)3/2

, and L0 =
17 ·maxi ‖φi‖2

2

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
.

(A.250)

Proof. Note that the gradient of L(θ) is,

∂L(θ)

∂θ
=

2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi ∈ Rd. (A.251)

Denote the second order derivative (Hessian) of L(θ) as,

S(θ) :=
∂

∂θ

{
∂L(θ)

∂θ

}
∈ Rd×d. (A.252)

For all j, k ∈ [d], we calculate the corresponding component value of S(θ)

matrix as follows,

S(j,k) =
d

dθ(k)

{
2

N
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · φi(j)

}
(A.253)

=
2

N
·
N∑
i=1

d {πi · (1− πi) · (πi − π∗i )}
dθ(k)

· φi(j) (A.254)

=
2

N
·
N∑
i=1

d {πi · (1− πi) · (πi − π∗i )}
d
{
φ>i θ

} ·
d
{
φ>i θ

}
dθ(k)

· φi(j) (A.255)

=
2

N
·
N∑
i=1

[
πi · (1− πi)2 · (πi − π∗i )− π2

i · (1− πi) · (πi − π∗i ) + π2
i · (1− πi)

2] · φi(k) · φi(j)

(A.256)

=
2

N
·
N∑
i=1

[
πi · (1− πi) · (1− 2πi) · (πi − π∗i ) + π2

i · (1− πi)
2] · φi(k) · φi(j).

(A.257)
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To calculate the smoothness coefficient, take a vector z ∈ Rd. We have,

∣∣z>S(θ)z
∣∣ =

∣∣∣∣∣
d∑
j=1

d∑
k=1

S(j,k) · z(j) · z(k)

∣∣∣∣∣ (A.258)

=

∣∣∣∣∣ 2

N
·
N∑
i=1

[
πi · (1− πi) · (1− 2πi) · (πi − π∗i ) + π2

i · (1− πi)
2] · (φ>i z)2

∣∣∣∣∣
(A.259)

(by Eq. (A.253)) (A.260)

≤ 2

N
·max

i

(
φ>i z

)2 ·
N∑
i=1

∣∣πi · (1− πi) · (1− 2πi) · (πi − π∗i ) + π2
i · (1− πi)

2
∣∣

(A.261)

(by Hölder’s inequality) (A.262)

≤ 2

N
·max

i

(
φ>i z

)2 ·
N∑
i=1

[
πi · (1− πi) · |1− 2πi| · |πi − π∗i |+ π2

i · (1− πi)
2]

(A.263)

(by triangle inequality) (A.264)

≤ 2

N
·max

i

(
φ>i z

)2 ·
N∑
i=1

[
1

8
+

1

16

]
(A.265)

(Note thatx · (1− x) ≤ 1/4, and x · (1− x) · |1− 2x| ≤ 1/8, ∀x ∈ [0, 1])
(A.266)

=
3

8
·max

i

[
φ>i

(
z

‖z‖2

)]2

· ‖z‖2
2 (A.267)

≤ 3

8
·max

i
‖φi‖2

2 · ‖z‖
2
2 . (A.268)

Therefore, L(θ) satisfies β (uniform) smoothness with β = 3
8
·maxi ‖φi‖2

2. Next,

we calculate the NS. We have,

N∑
i=1

π2
i · (1− πi)2 · L(θ) =

N∑
i=1

π2
i · (1− πi)2 · 1

N
·
N∑
j=1

(πj − π∗j )2 (A.269)

≤ N

16
· 1

N
·
N∑
j=1

(πj − π∗j )2 (A.270)

≤ N

16
· 1

64 · u(θ)2 ·min {u(θ)2, v2} · λφ
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

, (by Lemma 9)

(A.271)
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which implies,

N∑
i=1

π2
i · (1− πi)2 ≤ N

2
· 1

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ).

(A.272)

According to Eq. (A.237), we have

N∑
i=1

(πi − π∗i )2√
L(θ) · ‖θ − θ∗ − c · vφ,⊥‖3/2

2

≥
N∑
i=1

(πi − π∗i )2√
L(θ)

· (min{u(θ)2, v2} · λφ)3/4 · 1

L(θ)3/4

(A.273)

= (min{u(θ)2, v2} · λφ)3/4 ·
N∑
i=1

(πi − π∗i )2

L(θ)5/4

(A.274)

= N · (min{u(θ)2, v2} · λφ)3/4 · L(θ)

L(θ)5/4

(A.275)

≥ N · (min{u(θ), v} ·
√
λφ)3/2. (L(θ) ∈ (0, 1])

(A.276)
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Therefore we have,

N∑
i=1

πi · (1− πi) · |1− 2πi| · |πi − π∗i | ≤
N∑
i=1

πi · (1− πi) · |πi − π∗i | (A.277)

≤

(
N∑
i=1

πi · (1− πi) · |πi − π∗i |

)
·

(
N∑
i=1

(πi − π∗i )2√
L(θ) · ‖θ − θ∗ − c · vφ,⊥‖3/2

2

)
·
(

(A.278)

1

N · (min{u(θ), v} ·
√
λφ)3/2

)
(A.279)

=
1

N · (min{u(θ), v} ·
√
λφ)3/2

·

(
N∑
i=1

πi · (1− πi) · |πi − π∗i |√
‖θ − θ∗ − c · vφ,⊥‖2

)
· (A.280)(

N∑
i=1

(πi − π∗i )2√
L(θ) · ‖θ − θ∗ − c · vφ,⊥‖2

)
(A.281)

≤ 1

(min{u(θ), v} ·
√
λφ)3/2

·

(
N∑
i=1

π2
i · (1− πi)2 · (πi − π∗i )2

2 · ‖θ − θ∗ − c · vφ,⊥‖2

+ (A.282)

(πi − π∗i )4

2 · L(θ) · ‖θ − θ∗ − c · vφ,⊥‖2
2

)
(A.283)

≤ 1

(min{u(θ), v} ·
√
λφ)3/2

·

(
1

32
·
N∑
i=1

πi · (1− πi) · (πi − π∗i ) · (φ>i θ − φ>i θ∗)
‖θ − θ∗ − c · vφ,⊥‖2

)
(A.284)

+
1

(min{u(θ), v} ·
√
λφ)3/2

·
(

1

32 · u(θ)2
· (A.285)

N∑
i=1

π2
i · (1− πi)2 · (πi − π∗i )2 · (φ>i θ − φ>i θ∗)2

L(θ) · ‖θ − θ∗ − c · vφ,⊥‖2

)
(A.286)

≤ N

64 · (min{u(θ), v} ·
√
λφ)3/2

·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+ (A.287)

N

64 · u(θ)2 · (min{u(θ), v} ·
√
λφ)3/2

·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ), (A.288)

where the second inequality is according to,(
N∑
i=1

ai

)
·

(
N∑
i=1

bi

)
=

N∑
i=1

N∑
j=1

ai · bj ≤
1

2
·
N∑
i=1

N∑
j=1

(
a2
i + b2

j

)
=
N

2
·
N∑
i=1

(
a2
i + b2

i

)
,

(A.289)

and the last inequality is from the intermediate results in Eq. (A.228). Com-
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bining Eqs. (A.258), (A.272) and (A.277), we have

∣∣z>S(θ)z
∣∣ ≤ 2

N
·max

i

(
φ>i z

)2 ·

[
N∑
i=1

πi · (1− πi) · |πi − π∗i |+
N∑
i=1

π2
i · (1− πi)2

]
(A.290)

≤ max
i

(
φ>i z

)2 ·

(
1

32 · (min{u(θ), v} ·
√
λφ)3/2

·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+ (A.291)

17

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
(A.292)

≤ max
i
‖φi‖2

2 · ‖z‖
2
2 ·

(
1

32 · (min{u(θ), v} ·
√
λφ)3/2

·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+

(A.293)

17

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
. (A.294)

Therefore, L(θ) satisfies β(θ) NS with

β(θ) = L1 ·
∥∥∥∥∂L(θ)

∂θ

∥∥∥∥
2

+ L0 ·

(∥∥∥∥∂L(θ)

∂θ

∥∥∥∥2

2

/
L(θ)

)
, (A.295)

where

L1 =
maxi ‖φi‖2

2

32 · (min{u(θ), v} ·
√
λφ)3/2

, and L0 =
17 ·maxi ‖φi‖2

2

512 · u(θ)2 ·min {u(θ)2, v2} · λφ
.

Theorem 4. With η = 1/β, GD update satisfies for all t ≥ 1, L(θt) ≤

L(θ1) · e−C2·(t−1). With η ∈ Θ(1), GNGD update satisfies for all t ≥ 1, L(θt) ≤

L(θ1) · e−C·(t−1), where C ∈ (0, 1), i.e., GNGD is strictly faster than GD.

Proof. Combining Lemmas 9 and 10, and the second part of (2b) in Sec-

tion 4.2.1, we have the results for GD. Using the fourth part of (2b) in Sec-

tion 4.2.1, we have the results for GNGD.

A.3 Miscellaneous Extra Supporting Results

Lemma 12 (Descent lemma for smooth function). Let f : Rd → R be a β-

smooth function, θ ∈ Rd and θ′ = θ− η · ∂f(θ)
∂θ

. We have, for any 0 < η < 2/β,

f(θ′) ≤ f(θ). (A.296)
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In particular, for η = 1
β

, we have,

f(θ′) ≤ f(θ)− 1

2β
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

. (A.297)

Proof. According to Definition 4, we have,∣∣∣∣f(θ′)− f(θ)−
〈∂f(θ)

∂θ
, θ′ − θ

〉∣∣∣∣ ≤ β

2
· ‖θ′ − θ‖2

2, (A.298)

which implies,

f(θ′)− f(θ) ≤
〈∂f(θ)

∂θ
, θ′ − θ

〉
+
β

2
· ‖θ′ − θ‖2

2 (A.299)

= η ·
(
−1 +

β

2
· η
)
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

(
θ′ = θ − η · ∂f(θ)

∂θ

)
(A.300)

≤ 0

(
0 < η <

2

β

)
. (A.301)

Let η = 1
β

in Eq. (A.300), we have Eq. (A.297).

Lemma 13 (Descent lemma for NS function). Let f : Rd → R be a function

that satisfies NS with β(θ) > 0, for all θ ∈ Rd and θ′ = θ − 1
β(θ)
· ∂f(θ)

∂θ
. We

have,

f(θ′) ≤ f(θ)− 1

2 · β(θ)
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

. (A.302)

Proof. According to Definition 5, we have,

f(θ′)− f(θ) ≤
〈∂f(θ)

∂θ
, θ′ − θ

〉
+
β(θ)

2
· ‖θ′ − θ‖2

2 (A.303)

= − 1

β(θ)
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

+
1

2 · β(θ)
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

(
θ′ = θ − 1

β(θ)
· ∂f(θ)

∂θ

)
(A.304)

= − 1

2 · β(θ)
·
∥∥∥∥∂f(θ)

∂θ

∥∥∥∥2

2

.

Lemma 14. Given any α > 0, we have, for all x ∈ [0, 1],

1

α
· (1− xα) ≥ xα · (1− x) . (A.305)
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Proof. Define f : x 7→ 1
α
· (1 − xα) − xα · (1− x). We show that f(x) ≥ 0 for

all x ∈ [0, 1]. Note that,

f(0) =
1

α
> 0, and f(1) = 0. (A.306)

On the other hand,

f ′(x) = −xα−1 − α · xα−1 · (1− x) + xα (A.307)

= −xα−1 · [1 + α · (1− x)− x] (A.308)

= −xα−1 · (1 + α) · (1− x) (A.309)

≤ 0, (α > 0, and x ∈ [0, 1]) (A.310)

which means f is monotonically decreasing over [0, 1]. Therefore f(x) ≥ 0 for

all x ∈ [0, 1], finishing the proof.

Lemma 15. Given any α > 0, we have, for all x ∈
[

2α+1
2α+2

, 1
]
,

1

2α
· (1− xα) ≤ xα · (1− x) . (A.311)

Proof. Define g : x 7→ xα · (1− x)− 1
2α
· (1− xα). The derivative of g is,

g′(x) = α · xα−1 · (1− x)− xα + (1/2) · xα−1 (A.312)

= xα−1 · [α · (1− x)− x+ 1/2] (A.313)

= xα−1 · [(1 + α) · (1− x)− 1/2] . (A.314)

Then we have,

g′(x) > 0 for all x ∈ [0, (2α + 1)/(2α + 2)) , and (A.315)

g′(x) ≤ 0 for all x ∈ [(2α + 1)/(2α + 2), 1] , (A.316)

which means g is monotonically increasing over [0, (2α + 1)/(2α + 2)) and de-
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creasing over [(2α + 1)/(2α + 2), 1]. On the other hand,

g((2α + 1)/(2α + 2)) =

(
2α + 1

2α + 2

)α
·
(

1− 2α + 1

2α + 2

)
− 1

2α
·
[
1−

(
2α + 1

2α + 2

)α]
(A.317)

=
1

2α
·
[(

2α + 1

2α + 2

)α
· 2α + 1

α + 1
− 1

]
(A.318)

=
1

2α
·
[
exp

{
log

(
2α + 1

α + 1

)
− α · log

(
1 +

1

2α + 1

)}
− 1

]
(A.319)

≥ 1

2α
·
[
exp

{
log

(
2α + 1

α + 1

)
− α

2α + 1

}
− 1

]
(1 + x ≤ ex)

(A.320)

≥ 1

2α
·
[
exp

{
α

2α + 1
− α

2α + 1

}
− 1

]
(log(x) ≥ 1− 1/x for x > 0)

(A.321)

= 0. (A.322)

Also note that g(1) = 0. Therefore we have g(x) ≥ 0 for all x ∈ [(2α + 1)/(2α + 2), 1],

finishing the proof.

Lemma 16. Denote H(π) := diag(π)− ππ>. Softmax policy gradient w.r.t. θ

is

∂V πθ(µ)

∂θ(s, ·)
=

1

1− γ
· dπθµ (s) ·H(πθ(·|s))Qπθ(s, ·), ∀s ∈ S. (A.323)

Proof. See the proof in [Mei et al., Lemma 1]. Here’s the proof for complete-

ness.

According to the policy gradient theorem (Sutton et al.),

∂V πθ(µ)

∂θ
=

1

1− γ
E

s′∼dπθµ

[∑
a

∂πθ(a|s′)
∂θ

·Qπθ(s′, a)

]
. (A.324)

For s′ 6= s, ∂πθ(a|s′)
∂θ(s,·) = 0 since πθ(a|s′) does not depend on θ(s, ·). Therefore,
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we have,

∂V πθ(µ)

∂θ(s, ·)
=

1

1− γ
∑
s′

dπθµ (s′) ·

[∑
a

∂πθ(a|s′)
∂θ(s, ·)

·Qπθ(s′, a)

]
(A.325)

=
1

1− γ
· dπθµ (s) ·

[∑
a

∂πθ(a|s)
∂θ(s, ·)

·Qπθ(s, a)

] (
∂πθ(a|s′)
∂θ(s, ·)

= 0, ∀s′ 6= s

)
(A.326)

=
1

1− γ
· dπθµ (s) ·

(
dπ(·|s)
dθ(s, ·)

)>
Qπθ(s, ·) (A.327)

=
1

1− γ
· dπθµ (s) ·H(πθ(·|s))Qπθ(s, ·). (H(πθ) is the Jacobian of θ 7→ softmax(θ))

(A.328)

Note that in one-state MDPs, we have,

dπ>θ r

dθ
=

(
dπθ
dθ

)>
r = H(πθ)r.

Lemma 17. Softmax policy gradient norm is

∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

=
1

1− γ
·

[∑
s

dπθµ (s)2 · ‖H(πθ(·|s))Qπθ(s, ·)‖2
2

] 1
2

. (A.329)

Proof. We have,

∥∥∥∥∂V πθ(µ)

∂θ

∥∥∥∥
2

=

[∑
s,a

(
∂V πθ(µ)

∂θ(s, a)

)2
] 1

2

(A.330)

=

[∑
s

∥∥∥∥∂V πθ(µ)

∂θ(s, ·)

∥∥∥∥2

2

] 1
2

(A.331)

=
1

1− γ
·

[∑
s

dπθµ (s)2 · ‖H(πθ(·|s))Qπθ(s, ·)‖2
2

] 1
2

. (by Lemma 16)

Lemma 18 (Performance difference lemma [Kakade and Langford). ] For

any policies π and π′,

V π′(ρ)− V π(ρ) =
1

1− γ
∑
s

dπ
′

ρ (s)
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a) (A.332)

=
1

1− γ
∑
s

dπ
′

ρ (s)
∑
a

π′(a|s) · Aπ(s, a). (A.333)
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Proof. According to the definition of value function,

V π′(s)− V π(s) =
∑
a

π′(a|s) ·Qπ′(s, a)−
∑
a

π(a|s) ·Qπ(s, a) (A.334)

=
∑
a

π′(a|s) ·
(
Qπ′(s, a)−Qπ(s, a)

)
+
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a)

(A.335)

=
∑
a

(π′(a|s)− π(a|s)) ·Qπ(s, a)+ (A.336)

γ
∑
a

π′(a|s)
∑
s′

P(s′|s, a) ·
[
V π′(s′)− V π(s′)

]
(A.337)

=
1

1− γ
∑
s′

dπ
′

s (s′)
∑
a′

(π′(a′|s′)− π(a′|s′)) ·Qπ(s′, a′)

(A.338)

=
1

1− γ
∑
s′

dπ
′

s (s′)
∑
a′

π′(a′|s′) · (Qπ(s′, a′)− V π(s′))

(A.339)

=
1

1− γ
∑
s′

dπ
′

s (s′)
∑
a′

π′(a′|s′) · Aπ(s′, a′).

Lemma 19 (Value sub-optimality lemma). For any policy π,

V ∗(ρ)− V π(ρ) =
1

1− γ
∑
s

dπρ(s)
∑
a

(π∗(a|s)− π(a|s)) ·Q∗(s, a). (A.340)

Proof. See the proof in [Mei et al., Lemma 21]. We include a proof for com-

pleteness.

We denote V ∗(s) := V π∗(s) and Q∗(s, a) := Qπ∗(s, a) for conciseness. We

have, for any policy π,

V ∗(s)− V π(s) =
∑
a

π∗(a|s) ·Q∗(s, a)−
∑
a

π(a|s) ·Qπ(s, a) (A.341)

=
∑
a

(π∗(a|s)− π(a|s)) ·Q∗(s, a) +
∑
a

π(a|s) · (Q∗(s, a)−Qπ(s, a))

(A.342)

=
∑
a

(π∗(a|s)− π(a|s)) ·Q∗(s, a)+ (A.343)

γ
∑
a

π(a|s)
∑
s′

P(s′|s, a) ·
[
V π∗(s′)− V π(s′)

]
(A.344)

=
1

1− γ
∑
s′

dπs (s′)
∑
a′

(π∗(a′|s′)− π(a′|s′)) ·Q∗(s′, a′).
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A.4 Proof of Convergence of Algorithms

Proof of Theorem 5

This proof is originally proved by [49], but I describe it here in detail because

it will be useful for later proofs for the proposed algorithms. First, show the

following Lemma :

Lemma 20. For the iterative procedure

Qt+1(st, at) = Qt(st, at) + αt(st, at)
[
u
(
rt + γ ·max

a
Qt(st+1, a)−Qt(st, at)

)
− x0

]
(A.345)

where αt ≥ 0 satisfy that for any (s, a),
∑∞

t=0 αt(s, a) =∞; and
∑∞

t=0 α
2
t (s, a) <

∞, then Qt → Q∗, where Q∗ is the solution of the Bellman equation

(HAQ∗)(s, a) = α · E
s,a

[
ũ
(
rt + γ ·max

a
Q∗(st+1, a)−Q∗(s, a)

)]
+Q∗(s, a) = Q∗(s, a)

(A.346)

∀(s, a) (A.347)

If Lemma 20 holds, then it’s shown in [49] that the corresponding policy

optimizes the objective function Eq. (7.2).

Before proving the convergence, consider a more general update rule

qt+1(i) = (1− αt(i))qt(i) + αt(i) [(Hqt)(i) + wt(i)] (A.348)

where i is the independent variable (e.g., in single agent Q learning, it’s the

state-action pair (s, a)), qt ∈ Rd, H : Rd → Rd is an operator, wt denotes

some random noise term and αt is learning rate with the understanding that

αt(i) = 0 if q(i) is not updated at time t. Denote by Ft the history of the

algorithm up to time t,

Ft = {q0(i), ..., qt(i), w0(i), ..., wt(i), α0(i), ..., αt(i)} (A.349)

Recall the following essential proposition :

Proposition 1. [9] Let qt be the sequence generated by the iteration Eq. (A.348),

if assuming the following hold :
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(a) The Learning rates αt(i) satisfy :

αt(i) ≥ 0;
∞∑
t=0

αt(i) =∞;
∞∑
t=0

α2
t (i) <∞; ∀i (A.350)

(b) The noise terms wt(i) satisfy

(i) E[wt(i)|Ft] = 0 for all i and t;

(ii) There exist constants A and B such that E[w2
t (i)|Ft] ≤ A+B ‖qt‖2

for some norm ‖·‖ on Rd.

(c) The mapping H is a contraction under sup-norm.

Then qt converges to the unique solution q∗ of the equation Hq∗ = q∗ with

probability 1.

In order to apply Proposition 1, reformulate the update rule Eq. (7.4) by

letting

qt+1(s, a) =

(
1− αt(s, a)

α

)
qt(s, a) +

αt(s, a)

α
[α · u(dt)− α · x0 + qt(s, a)]

(A.351)

where ũ(x) := u(x)− x0; dt := rt + γ ·max
a
qt(st+1, a)− qt(s, a). And we set

(Hqt)(s, a) = α · E
s,a

[
ũ
(
rt + γ ·max

a
qt(st+1, a)− qt(s, a)

)]
+ qt(s, a) (A.352)

wt(s, a) = α · ũ(dt)− α · E
s,a

[
ũ(rt + γ ·max

a
qt(s

′, a)− qt(s, a))
]

(A.353)

where s′ is sampled from T [·|s, a].

More explicitly, Hq is defined as

(Hq)(s, a) = α ·
∑
s′

T [s′|s, a] · ũ
(
r(s, a) + γ ·max

a′
q(s′, a′)− q(s, a)

)
+ q(s, a)

(A.354)

Next, show that H is a contraction under sup-norm.

Note that here it’s assumed that the utility function satisfy :

Assumption 2. (i) The utility function u is strictly increasing and there

exists some y0 ∈ R such that u(y0) = x0.
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(ii) There exist positive constants ε, L such that 0 < ε ≤ u(x)−u(y)
x−y ≤ L for all

x 6= y ∈ R.

Note that Assumption 2 seems to exclude several important types of util-

ity functions like the exponential function u(x) = exp(c · x) since it does not

satisfy the global Lipschitz. But this can be solved by a truncation when x

is very large and by an approximation when x is very close to 0. For more

details see Shen et al. (2014).

And it’s also assumed that the immediate reward rt always satisfy a sub-

Gaussian tail assumption. This allows the reward to be unbounded, which is

closer to practical settings with tail events, for example, in financial markets.

:

Assumption 3. rt is uniformly sub-Gaussian over t with variance proxy σ2,

i.e.,

E[rt] = 0 (A.355)

E[exp(c · rt)] ≤ exp

(
σ2c2

2

)
∀c ∈ R (A.356)

The above uniform sub-Gaussian assumption is equivalent to the following

form, commonly seen in statistics and machine learning: there exists C > 0, α

such that for every K > 0 and every rt, we have:

P(|rt| > K) ≤ Ce−αK
2

(A.357)

Proposition 2. Suppose that Assumption 2 and Assumption 3 hold and 0 <

α < min(L−1, 1). Then there exists a real number ᾱ ∈ [0, 1) such that for all

q, q′ ∈ Rd, ‖Hq −Hq′‖∞ ≤ ᾱ ‖q − q′‖∞.

Proof. Define v(s) := max
a

q(s, a) and v′(s) := max
a

q′(s, a). Thus,

|v(s)− v′(s)| ≤ max
s,a
|q(s, a)− q′(s, a)| = ‖q − q′‖∞ (A.358)
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By Assumption 2, and the monotonicity of ũ, there exists a ξ(x,y) ∈ [ε, L] such

that ũ(x)− ũ(y) = ξ(x,y) · (x− y). Then we can obtain

(Hq)(s, a)− (Hq′)(s, a) (A.359)

=
∑
s′

T [s′|s, a] ·
{
αξ(s,a,s′,q,q′) · [γv(s′)− γv′(s′)− q(s, a) + q′(s, a)] + (q(s, a)− q′(s, a))

}
(A.360)

≤

(
1− α(1− γ)

∑
s′

T [s′|s, a] · ξ(s,a,s′,q,q′)

)
‖q − q′‖∞ (A.361)

≤ (1− α(1− γ)ε) ‖q − q′‖∞ (A.362)

Hence, ᾱ = 1− α(1− γ)ε is the required constant.

Now that it’s already shown that the requirements (a) and (c) of Proposi-

tion 1 hold, it remains to check (b). By Eq. (A.352), E[wt(s, a)|Ft] = 0. Next,

prove (b)(ii).

E[w2
t (s, a)|Ft] = α2 E[(ũ(dt))

2|Ft]− α2(E[ũ(dt)|Ft])2 (A.363)

≤ α2 E[(ũ(dt))
2|Ft] (A.364)

By Assumption 3, E |rt| < (2σ)
1
2 Γ(1

2
), where Γ(·) is the Gamma function (see

[14] for details). Denote the upper bound for E[|rt|] as R1. Then E[|dt|] ≤

R1 + 2 ‖qt‖∞, due to Assumption 2, it implies that

E [|ũ(dt)− ũ(0)|] ≤ E [L · dt] ≤ L(R1 + 2 ‖qt‖∞) (A.365)

Hence by triangle inequality,

E[|ũ(dt)|] ≤ ũ(0) + LR1 + 2L ‖qt‖∞ (A.366)

And since

(a+ b)2 ≤ 2a2 + 2b2 ∀a, b ∈ R (A.367)

, we have

(|ũ(0)|+ LR1 + 2L ‖qt‖∞)2 ≤ 2(|ũ(0)|+ LR1)2 + 8L2 ‖qt‖2
∞ (A.368)
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And since

E
[
(ũ(dt)− ũ(0))2 |Ft

]
≤ E

[
L · d2

t

]
(A.369)

= E
[
L ·
(
rt + γ ·max

a
qt(s

′, a)− qt(s, a)
)2
]

(A.370)

= E
[
L ·
(
r2
t + 2rt · (γ ·max

a
qt(s

′, a)− qt(s, a))+

(A.371)

(γ ·max
a
qt(s

′, a)− qt(s, a))2
)]

(A.372)

= LR2 + 2LR1(1− γ) · ‖qt‖∞ + L(1− γ)2 · ‖qt‖2
∞

(A.373)

where R2 is the upper bound for E[r2
t ] due to Assumption 3 (E[r2

t ] ≤ 4σ2 ·Γ(1)

[14]). Note that here ũ(0) = 0, hence we have

α2 E[(ũ(dt))
2|Ft] ≤ α2 ·

(
LR2 + 2LR1(1− γ) · ‖qt‖∞ + L(1− γ)2 · ‖qt‖2

∞
)

(A.374)

Hence,

E[w2
t (s, a)|Ft] ≤ 2α2 ·

(
LR2 + 2LR1(1− γ) · ‖qt‖∞ + L(1− γ)2 · ‖qt‖2

∞
)

(A.375)

if ‖qt‖∞ ≤ 1, then

E[w2
t (s, a)|Ft] ≤ 2α2 ·

(
LR2 + 2LR1(1− γ) + L(1− γ)2 · ‖qt‖2

∞
)

(A.376)

if ‖qt‖∞ > 1, then

E[w2
t (s, a)|Ft] ≤ 2α2 ·

(
LR2 + (2LR1(1− γ) + L(1− γ)2) · ‖qt‖2

∞
)

(A.377)

Then it’s shown that qt satisfy all of the requirements in Proposition 1, then

qt → q∗ with probability 1.

A.4.1 Proof of Theorem 6

Poisson masksM ∼ Poisson(1) provides parallel learning sinceBinomial(T, 1
T

)→

Poisson(1) as T →∞, so each Q table Qi is trained in parallel. The proof of

convergence of Qi for all i ∈ {1, ..., k} is exactly same as Section A.4. Hence

1
k

∑k
i=1Q

i → Q∗ w.p. 1.
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A.4.2 Discussion of RA3-Q

In this section, I’ll discuss convergence issues on RA3-Q. First I’ll discuss a

simplified setting where I show that if the adversary’s policy is a fixed pol-

icy πA0 , the update rule for protagonist Eq. (7.12) converges to the optimal

of JP (s, :, πA0 ). Similarly, if the protagonist’s policy is a fixed policy πP0 , the

update rule for adversary Eq. (7.13) converges to the optimal of JA(s, πP0 , :).

Poisson masksM ∼ Poisson(1) provides parallel learning sinceBinomial(T, 1
T

)→

Poisson(1) as T →∞, so each Q table of protagonist/adversary, Qi
P , Qi

A, are

trained in parallel respectively.

Similar to Section A.4, I need to prove the convergence of the iterative

procedure. Take agent protagonist as an example, and the proof for adversary

is similar.

Fix the policy for adversary, then according to [[49] Proposition 3.1], for

any random variable X, the following statements are equivalent

(i)
1

βP
logE

µ

[
exp

(
βP ·X

)]
= m∗

(ii) E
µ

[
uP (X −m∗)

]
= x0

I’ll use this proposition in the following context to show that the convergent

point is the optimal of the objective function J̃P (s, :, πA0 ).

Compared to Algorithm 2 (RAQL), RA3-Q uses multi-agent extension of

MDP (where the transition function is P : S ×A×A → RS . We reformulate

the update rule Eq. (7.12) by letting

qPt+1(s, aP , aA) =

(
1− αt(s, aP , aA)

α

)
qPt (s, aP , aA)+ (A.378)

αt(s, aP , aA)

α
·
[
α · u(dt)− x0 + qPt (s, aP , aA)

]
(A.379)

where dt := rPt + γ · max
aP ,aA

qPt (s′, aP , aA)− qPt (s, aP , aA) x0 = −1 α ∈ (0,min(L−1, 1)]

(A.380)
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And we set

(HP qPt )(s, aP , aA) = α · E
s,aP ,aA

[
ũ

(
rPt + γ · max

aP ,aA
qPt (s′, aP , aA)− qPt (s, aP , aA)

)]
+

(A.381)

qPt (s, aP , aA) (A.382)

wt(s, aP , aA) = α · ũ(dt)− α · E
s,aP ,aA

[
ũ

(
rPt + γ · max

aP ,aA
qPt (s′, aP , aA)− qPt (s, aP , aA)

)]
(A.383)

ũ(x) = u(x)− x0 (A.384)

Next, show that HP is a (1− α(1− γ)ε)-contractor under Assumption 2:

For any two q tables q, q′, define vP (s) := max
aP ,aA

q(s, aP , aA) and vP
′
(s) :=

max
aP ,aA

q′(s, aP , aA). Thus,

|vP (s)− vP ′(s)| ≤ max
s,aP ,aA

|q(s, aP , aA)− q′(s, aP , aA)| = ‖q − q′‖∞ (A.385)

By Assumption 2 and monotonicity of ũ, for given x, y ∈ R, there exists

ξ(x,y) ∈ [ε, L] such that

ũ(x)− ũ(y) = ξ(x,y) · (x− y).

Then it can be obtained that

(HP q)(s, aP , aA)− (HP q′)(s, aP , aA) (A.386)

=
∑
s′

P [s′|s, aP , aA] ·
{
αξ(s,aP ,aA,s′,q,q′) · [γ · vP (s′)− γ · vP ′(s′)− (A.387)

q(s, aP , aA) + q′(s, aP , aA)] + (q(s, aP , aA)− q′(s, aP , aA))
}

(A.388)

≤

(
1− α(1− γ)

∑
s′

P [s′|s, aP , aA] · ξ(s,aP ,aA,s′,q,q′)

)
‖q − q′‖∞ (A.389)

≤ (1− α(1− γ)ε) ‖q − q′‖∞ (A.390)

Hence HP is a contractor.

By Eq. (A.383), E [wt(s, aP , aA)|Ft] = 0. Hence it remains to prove b(ii) in

Proposition 1.

E
[
w2
t (s, aP , aA)|Ft

]
= α2 · E

[
(ũ(dt))

2|Ft
]
− α2(E [ũ(dt)|Ft])2 ≤ α2 · E

[
(ũ(dt))

2|Ft
]

(A.391)
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Following from the same procedures as Section A.4, condition b(ii) of Propo-

sition 1 also holds in this case. And recall that the learning rate satisfies

condition a, hence by Proposition 1, q → q∗, where q∗ is the solution to the

Bellman equation

E
s,aP ,aA

[
uP
(
rPt + γ · max

aP ,aA
q(s′, aP , aA)− q(s, aP , aA)

)]
= x0 πA0 is fixed

(A.392)

for ∀(s, aP , aA). Where s′ is sampled from P [·|s, aP , aA]. Similarly, it can be

shown that for a fixed policy for protagonist, the update rule Eq. (7.13) will

guarantee that qA → q∗A, where q∗A is the solution to the Bellman equation

E
s,aP ,aA

[
uA
(
rAt + γ · max

aP ,aA
q(s′, aP , aA)− q(s, aP , aA)

)]
= x1 πP0 is fixed

(A.393)

for ∀(s, aP , aA). Where s′ is sampled from P [·|s, aP , aA].

Note that this does not imply a convergence guarantee of RA3-Q because

of the protagonist/adversary’s policy is fixed assumption. Only if one of the

agents (say protagonist) stops learning (and its policy becomes fixed) at some

point, then the other agent (adversary) will also converge. Note that in the

general multi-agent learning case this is always a challenge and it is often hard

to a balance between theoretical algorithms (with convergence guarantees) and

practical algorithms (loosing guarantees but with good empirical results), see

the experimental results in Section 9.1 and related literature [12], [33], [58].

A.5 Proof of Theorem 7

Theorem 7 For a Normal Form Game with p players, and each player i

chooses a strategy πi from a set of strategies Si = {πi1, ..., πik} and receives a

risk averse payoff hi(π1, ..., πp) : S1 × ... × Sp → R satisfying Assumption 4.

If x is a Nash Equilibrium for the game ĥi(π1, ..., πp), then it is a 2ε-Nash

equilibrium for the game hi(π1, ..., πp) with probability 1 − δ if we play the
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game for n times, where

n ≥ max
{8R2

ε2
log
|S1| × ...× |Sp| × p

δ
;

128R4β2

ε2n
log
|S1| × ...× |Sp| × p

δ

}
(A.394)

Assumption 4. The stochastic return h (for each player and each strategy)

for each simulation has a sub-Gaussian tail. i,e, there exists ω > 0 s.t.

E [exp (c · (h− E[h]))] ≤ exp

(
ω2c2

2

)
∀c ∈ R (A.395)

And we also select R > 0 s.t. h ∈ [−R,R] almost surely.

Proof. Note that we have the following relation:

Eπ∼x
[
hi(π)

]
= Eπ∼x

[
ĥi(π)

]
+ Eπ∼x

[
hi(π)− ĥi(π)

]
(A.396)

Then

Eπ−i∼x−i
[
hi(πi, π−i)

]
= Eπ−i∼x−i

[
ĥi(πi, π−i)

]
+ Eπ−i∼x−i

[
hi(πi, π−i)− ĥi(πi, π−i)

]
(A.397)

max
πi

Eπ−i∼x−i
[
hi(πi, π−i)

]
≤ max

πi
Eπ−i∼x−i

[
ĥi(πi, π−i)

]
+ (A.398)

max
πi

Eπ−i∼x−i
[
hi(πi, π−i)− ĥi(πi, π−i)

]
(A.399)

Hence,

max
πi

Eπ−i∼x−i
[
hi(πi, π−i)

]
− Eπ∼x

[
hi(π)

]
(A.400)

≤max
πi

Eπ−i∼x−i
[
ĥi(πi, π−i)

]
− Eπ∼x

[
ĥi(π)

]
︸ ︷︷ ︸

=0 since x is a Nash Equilibrium for ĥi

+ max
πi

Eπ−i∼x−i
[
hi(πi, π−i)− ĥi(πi, π−i)

]
︸ ︷︷ ︸

≤ε

+

(A.401)

Eπ∼x
[
ĥi(π)− hi(π)

]
︸ ︷︷ ︸

≤ε

(A.402)

Hence, if we can control the difference between |hi(π) − ĥi(π)| uniformly

over players and actions, then an equilibrium for the empirical game is almost

an equilibrium for the game defined by the reward function. Hence the question

is how many samples n do we need to assess that a Nash equilibrium for ĥ is

a 2ε-Nash equilibrium for h for a fixed confidence δ and a fixed ε.

106



In the following, in short, we fix player i and the joint strategy π =

(π1, ..., πp) for p players and and in short, denote hi = hi(π), ĥi = ĥi(π).

By Hoeffding inequality,

P
[∣∣R̄i − E[Ri]

∣∣ ≥ ε

2

]
≤ 2 · exp

(
− ε

2n

8R2

)
(A.403)

Now, it remains to give a batch scenario for the unbiased estimator of

variance penalty term. Denote V 2
n = 1

n−1

∑n
j=1

(
Ri
j − R̄i

)2
, then E[V 2

n ] =

Var[Ri] = σ2, i.e., it’s an unbiased estimator of the game variance.

By McDiarmid’s inequality [5],

P
[∣∣V 2

n − Var[Ri]
∣∣ ≥ ε

2β

]
≤ 2 · exp

(
−n(ε/2β)2

32R4

)
= 2 · exp

(
− ε2n

128R4β2

)
(A.404)

By triangle inequality,

P
[∣∣∣hi − ĥi∣∣∣ ≥ ε

]
≤ P

[∣∣E[Ri]− R̄i
∣∣+ β ·

∣∣V 2
n − Var[Ri]

∣∣ ≥ ε
]

(A.405)

≤ P
[∣∣E[Ri]− R̄i

∣∣ ≥ ε

2
or β ·

∣∣V 2
n − Var[Ri]

∣∣ ≥ ε

2

]
(A.406)

≤ P
[∣∣E[Ri]− R̄i

∣∣ ≥ ε

2

]
+ P

[∣∣V 2
n − Var[Ri]

∣∣ ≥ ε

2β

]
(A.407)

≤ 2 · exp
(
− ε

2n

8R2

)
+ 2 · exp

(
− ε2n

128R4β2

)
(A.408)

= f(n, ε). (A.409)

Hence, for per joint strategies π and per player i, we have the following bound

:

P
[
sup
π,i

∣∣∣hi(π)− ĥi(π)
∣∣∣ ≥ ε

]
≤
∑
π,i

P
[∣∣∣hi − ĥi∣∣∣ ≥ ε

]
By union bound

(A.410)

≤ |S1| × ...× |Sp| × p× f(n, ε) (A.411)

Hence for

f(n, ε) ≤ δ

|S1| × ...× |Sp| × p
(A.412)
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we have P
[
sup
π,i

∣∣∣hi(π)− ĥi(π)
∣∣∣ ≥ ε

]
≤ δ Hence, for

n ≥ max
{8R2

ε2
log
|S1| × ...× |Sp| × p

δ
;

128R4β2

ε2n
log
|S1| × ...× |Sp| × p

δ

}
(A.413)

we have P
[
sup
π,i

∣∣∣hi(π)− ĥi(π)
∣∣∣ < ε

]
≥ 1− δ.

Plugging the result into Eq. (A.400), we have

max
πi

Eπ−i∼x−i
[
hi(πi, π−i)

]
− Eπ∼x

[
hi(π)

]
≤ 2ε (A.414)
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