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Abstract

- Performance assessment and process monitoring are two active rescarch arcas over the last
decade. In this thesis, some practical approaches and algorithms are presented.

First, an improved algorithm for calculation of the interactor matrix is developed, the
FCOR. algorithm is presented and the subspace approach is described. Three Matlab
functions are programmed for these three algorithms, respectively. All of them have been
tested on simulation examples as well as applied to industrial case studies.

Second, the basic concepts of Markov chains are briefly reviewed. The applications of
Markov chains to two industrial plants are elaborated.

Last, a practical process monitoring method is presented. This method incorporates
wavelet transform, symbolic representation and Hidden Markov model (HMM) together.
Simulation examples and industrial case studies have shown the value of this method. As

a future use of this method, an oscillation detection approach is developed.
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Introduction

With the development of computer technology, distributed control system (DCS) has been
widely used. Meanwhile, as a result of improvement of measurement and manufactory
technology, the processes are heavily equipped with sensors. With these developments,
data is easily collected and advanced control algorithms can be implemented. To gain a
competitive edge in the market place, on the other hand, every company is trying to run
their plants as safe and economic as possible. Therefore, the adoption of more sophisticated
control technologies is in demand and also possible. Among these new technologies, two
of them are of more interests. The first one is the performance assessment of controllers,

and the second is the process monitoring,.

1.1 Performance Assessment

Undoubtedly, the controller is the heart of a control system. There are hundreds of control
loops in a typical plant. Unfortunately, it is impossible for process control engineers to
routinely evaluate the performance of the controllers one by one. Moreover, the behav-
iors of processes are changing. Even the parameters of a controller are tuned very well
today, it can not be promised that this controller will work well tomorrow. Therefore, a
computer-aided method which can assess the performance of the controllers automatically

and routinely is needed.
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Chapter 1. Introduction 2

In performance assessment field, the minimum variance control (MVC) benchmark has
been widely used since the work of Harris (1989). With this benchmark, the performance
index (PI) of a single-input single-output (SISO) system can be calculated as the ratio of
the output variance under minimum variance control and the practical output variance.
For the multi-input multi~-output (MIMO) system, it is the ratio of the traces of output
covariance. Since only under minimum variance control does the variance or covariance
reach the lowest bound, the value of PI lies between 1 and 0. Higher the value, better the
performance.

Although the minimum variance control is hardly applied in practice because of its ag-
gressive activity, as a benchmark, it can provide useful information about the performance
of control systems. The economic performance, for example, is usually measured by the
deviation from set-point, thus lower variance means better economic performance. If the
PI indicates poor performance, the reduction of variance can be achieved by controller
parameters tuning or control algorithm re-design. If the PI indicates good performance,
on the other hand, but further reduction of variance is still needed, the tuning or re-design
would not be helpful anymore. In this case, change of control structure or process, such
as, feedforward control or relocation of sensors, may be necessary. Moreover, MVC bench-
mark is the only performance measure that can be evaluated without complete knowledge
of the process model so far (Ko and Edgar 2001).

A comprehensive review paper about performance assessment using MVC as bench-
mark is presented by Harris et al. (1999). That of single-loop feedback control and
feedforward control is studied by Harris (1989) and Desborough and Harris (1993). The
cascade case is explored by Ko and Edgar (2000). For the multivariable feedback controls
systems, Harris et al. (1996), Huang et al. (1997b) are two important papers. Harris
et al. (1996) extended the MVC performance benchmark from SISO system to MIMO
system by multivariate spectral factorization. Huang et al. (1997b) generalized the fil-
tering and correlation (FCOR) algorithm to MIMO system for performance assessment.
Ko and Edgar (2001) directly evaluated the performance as a function related to the first
few Markov parameters of the plant. Huang and Shah (1998) addressed practical issues
in performance assessment of multivariable feedback control systems, such as, nonmini-
mum phasc systems. Horch and Isaksson (1999) developed a modified MVC index, which

uses either control design guidelines or additionally available process knowledge. Grimble
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Figure 1.1: Model based process monitoring

(2004) presented an integrated minimum variance criterion to assess the performance of
controllers, which takes the integral action of PID controller into account. Thornhill et al.
(1999) summarized some practical experiences with the control loop performance assess-
ment in a refinery-wide setting. Paulonis and Cox (2003) illustrated a large-scale controller
performance assessment system developed by Eastman Chemical Company, which spans

over 14,000 PID controllers in 40 plants at 9 sites worldwide.

1.2 Process Monitoring

The principle of model based process monitoring is depicted in Figure 1.1 (Smyth 1994).
The first step is parameter estimation of process models through collected input/output
data. The next step is to detect whether there is change of parameters. If so, the process
probably has abnormal behavior and a warning information should be given.

Basically, process monitoring methods can be divided into threc categories: data-
driven, analytical and knowledge-based (Chiang et al. 2001).

The data-driven approach, for example, principal component analysis (PCA), fisher
discriminant analysis (FDA), partial least squares (PLS) and canonical variate analysis

(CVA), directly works on input/output process data. This is the reason why these ap-
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Chapter 1. Introduction 4

proaches are called data-driven. These approaches transform the high dimensional data
into a lower dimension and then capture some important information which is hard to
observe in the original space.

The analytical approach is based on mathematical models which are usually con-
structed from first principles. Thus, it can bring some valuable insights about the process.
However, it is often difficult and expensive to obtain the first principle models, especially
for large scale and complex processes.

The knowledge-based approach, such as, causal analysis, expert systems and patiern
recognition, uses qualitative and semi-quantitative information to monitor the process.
The process monitoring method presented in Chapter 4 of this thesis is a pattern recog-
nition method.

At the end of this section, it should be emphasized that all the process monitoring
methods have their advantages and disadvantages. Compared with other methods, one
method is more sensitive to one kind of fault and less sensitive to another kind of fault.

Therefore, the best way is to incorporate several methods together.

1.3 Thesis Outline

The organization of this thesis is as follows. In Chapter 2, an improved algorithm for cal-
culation of the interactor matrix is developed, a MIMO system performance assessment
algorithm with the knowledge of interactor matrix is presented and the other without
a prior knowledge of interactor matrix is also described. Three Matlab functions are
programmed for these three algorithms, respectively. All of them have been tested on
simulation examples as well as applied to industrial case studies. In Chapter 3, the theory
of Markov chains is briefly reviewed and applied to industrial plants. In Chapter 4, a
practical process monitoring method is presented. This method integrates wavelet trans-
form, symbolic representation and Hidden Markov model (HMM) together. Simulation
examples and industrial case studies show the value of this method. Based on this process
monitoring method, an oscillation detection approach is presented. In Chapter 5, the

works of this thesis are summarized and the future extensions are given.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1. Introduction 5

1.4 Thesis Contributions

The contributions of this thesis are summarized as follow:
e An improved algorithm for calculation of the interactor matrix is developed.

o The theory of Markov chain is employed for industrial data analysis. Two indices are

defined, one is out of control index (OCI) and the other transition tendency index

(TTI).

e A practical process monitoring method is developed. This method converts the ba-
sic trend of monitored variable into qualitative and semi-quantitative information
and then classifies them into normal and abnormal status by hidden Markov model
(HMM). This method has been used to analyze industrial data sets. As an illus-
trative example of the future use of this method, an oscillation detection method is

presented.

o All approaches and algorithms introduced in this thesis have been programmed in
Matlab environment and integrated into the Performance Analytical Toolbox (PAT).
They have been tested on simulation examples as well as applied to industrial case

studies.
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Algorithms Development for Performance
Assessment,

Recently, two sets of software package have been developed by Huang and the project team
at the University of Alberta: one is named as LMIPA (Lincar Matrix Inequality Perfor-
mance Analysis), which calculates the potential of economic performance improvement for
model predictive control (MPC) and also provides the tuning guidelines on how to achieve
this potential, and the other named as PAT (Performance Analytical Toolbox), which cal-
culates the dynamic performance of MPC. All the algorithms and functions introduced in

this chapter have been integrated into PAT.

2.1 Interactor Matrix

Interactor matrix, D, introduced by Wolovich and Falb (1976), Wolovich and Elliott
(1983), as well as Goodwin and Sin (1984), is a generalization of the SISO time delay
for the MIMO case. Introduction of the concept of interactor matrix has made it possible
to extend many advanced control strategies, for example, adaptive control and minimum
variance control, to multivariate systems. It is also a very important prerequisite to

performance assessment of multivariate systems based on MVC benchmark.
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Chapter 2. Algorithms Development for Performance Assessment 7

2.1.1 Algorithms

Nilpotent interactor matrix

Rogozinski et al. (1987) introduced the concept of nilpotent interactor matrix.
Definition 1. For every n x m proper, full rank, rational polynomial transfer function

matriz T, any n X n polynomial matriz D, having the properties

lim DT = lim T=K (2.1)
g—1-0 g-1-0
and
ID|=q" (2.2)

will be called a nilpotent interactor matriz for the system defined by T'. K 1is a full rank
constant matriz, the integer r is defined as the number of infinite zeros of T, and T is
the delay-free transfer function (factor) matriz of T, which contains only finite zeros. The

matriz D can be written as
D = Dog* + D1g* ' 4+ + Dy_1q (2.3)

where d, the mazimum power of q in D, is denoted as the order of the interactor matriz
and is unique for a given transfer function matriz. D;, i = 0,.-- ,d — 1, are coefficient
matrices.

Rogozinski et al. (1987) proposed an algorithm to evaluate a non-unique nilpotent

interactor matrix operating on the coeflicients of the numerator of the right matrix

fraction (RMF) description of a system.

Definition 2. A transfer function matriz T'(q) can be (nonuniquely) factored as
T(g) = N(9)E~(q), (2.4)
in which the denominator of the RMF description,
E(q)=I+Eq~ '+ -+ Enq™, (2.5)
is a monic polynomial matriz and the numerator is assumed to be a polynomial matriz

N(g) = No+Nig~ !+ 4+ Npg™, (2.6)
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Chapter 2. Algorithms Development for Performance Assessment 8

which can be represented by a block coefficients matriz

No
N=| (2.7)
Nn
where n is the degree of the denominator polynomial in the RMF description. Usually,
N; is not a full-rank malriz and, in particular, the leading coefficients Ny, N1,--- can be
zero.

Definition 3. The n x n first degree polynomial matriz U(q) will be called a row shift

polynomial matriz (r.s.p.m.) of order k;, where

U(g) = Upg + U1 = ( q?k‘ {)T ) (2.8)

1

The matrices Uy and Uy are defined through the matriz of coefficients:

Ui 0
U= ( 0 ) = I, =1+ kg, (29)
0 Ok,

in which, Up, Uy are of dimension n x n, I, is the n x n identity matriz, and 0, is a r-row
matriz of zeros.

Operating on the numerator of the RMF given in the form of block coefficients matrix
N, the algorithm proposed by Rogozinski et al. (1987) can estimate a nilpotent interactor

matrix consisting of ¢ factors through finite recursive calculation:
D(g) = 59(q)S*"V(q)--- 5W(q), (2.10)
where every factor is the product of two matrices:
S@(q) = UD ()@Y, (2.11)

in which U()(q) is a r.s.p.m. of order k; and Q@ is a nonsingular n x n real matrix.
The algorithm proposed by Rogozinski et al. (1987) is introduced as follow.
Algorithm 1.
Initialization : Set i =0, N (q) = N, and D%4g) = I,.
Iteration : Consider the ith iteration in the evaluation of D(g).
Step 1: If r; = rank Néi—l) = min(n,m), the algorithm terminates and the nilpotent

interactor matrix is D(q) = D¥=1(q). If r; < min(n, m), factorize Néi'l) into

i-1 i)y~ 0; . ) ar(i=1) 0;
N >=(Q<>)J(Ngg),z.e.,cngvo =( % (212

(
0D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Algorithms Development for Performance Assessment 9

where Q) is a n x n nonsingular (usually unitary) matrix, 0; is a k;-row zero matrix and
k,’ =n-7r;.
Step 2: Premultiply N¢=1(q) by matrix Q(®

N(g) = QUING=D(g). (2.13)
Step 3: Premultiply N(g) by the r.s.p.m. of order k;
N¥(g) = UD(g)N(q). (2.14)

This multiplication shifts the coefficients matrix of N(q) upwards by k; rows of zeros.

Update the matrix
Di(g) = SO (g)DE1(g). (2.15)

This ends the ith iteration. W
This algorithm can be applied to any n x m proper, full rank transfer function matrix

T, no matter n > m or n < m.

Unitary interactor matrix

Peng and Kinnaert (1992) introduced the concept of unitary interactor matrix. In
fact, a unitary interactor matrix is a special case of nilpotent interactor matrix. The use
of unitary interactor matrix will simplify some linear quadratic (LQ) and MVC problems.

Definition 3. If an interactor matriz satisfies
DT(¢7")D(g) =1, (2.16)

then this interactor matriz is denoted as a unitary interactor matriz.

Peng and Kinnaert (1992) proved that in Algorithm 1, at step 1 of each iteration,
if the factorization of Néi_l) is calculated by the normalized QR factorization, Q) is
a unitary matrix. Moreover, U()(q) is also a unitary polynomial matrix as it satisfies
UT(g~1)U(q) = I,,. Since the product of unitary matrices must itself be unitary, D(q) is
a unitary interactor matrix.

Peng and Kinnaert (1992) limited their algorithm to square transfer function matri-
ces. However, this is not necessary because the algorithm can be extended to non-square

transfer function matrices easily without any further assumptions.
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Chapter 2. Algorithms Development for Performance Assessment 10

Calculate interactor matrix using Markov parameters

No matter nilpotent interactor matrix or unitary interactor matrix, so far, the requirement
of priori knowledge of interactor matrix is tantamount to almost complete knowledge of
the system transfer matrix. Shah et al. (1987) suggested factoring an interactor matrix

directly from Markov parameters of a process.

Considering a transfer function matrix T using a Markov parameter representation
o0
T=Y Gg™ (2.17)
=0

it follows from the definition of an interactor matrix that

li‘mo[Doqd +D1g*" 4+ + Dy1g)[Gog ™! + Grg 72 + -]
q_ —p!
= DoGy-1 + D1Ggg + -+ Dy_1Gg = K. (2.18)

Examination of the above equation results in the following set of linear, algebraic equations

for computing Dg, D1,-++ ,Dg_1:

DyGy =0,
D1Go + DoGy =0,

Dy 1Go+ -+ +D1Gyn+ DoGy_1 = K. (2.19)

The order of the interactor matrix, d, is the fewest linear combinations of the rows of
Markov parameters or matrices, G;’s, required such that the set of simultaneous linear
algebraic equations hold.

Following this idea, Huang et al. (1997) developed a method for calculation of the
interactor matrix. First, the order of the interactor matrix is determined by using singu-
lar value decomposition (SVD) to the above set of equations. Second, because Markov

parameter is a special case of numerator coefficients matrix of the RMF of the transfer

function matrix:

[ ]
T=>) Gig™ = N(q)E™(g) (2.20)
i=0
where N(q) = Go + G1q7 ! + Gog~2 +- -+, and E(g) = I, a unitary interactor matrix can

be factorized using the Algorithm 1 operating on the first few (not smaller than interactor
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matrix order d) Markov parameters instead of the numerator coefficients of the RMF
description of the system.

Huang et al. (1997) also pointed out that even without the knowledge of the interac-
tor matrix order d, the interactor matrix can be factored provided that enough Markov
parameters are given. Thus, based on this result, an improved algorithm is derived, which
is simple in the sense of concept.

Algorithm 2

A n x m proper, full rank transfer function matrix 7' can be expressed by its Markov
parameter representation as T = Go+ G1g~ ! +++-+Gig~t +---. Stack the first i Markov
parameters as a block matrix

Go
G = . (2.21)
Gy

Initialization : Since Gp, the first Markov parameter matrix of a causal MIMO system,
is always zero, the iteration starts directly from i=1.

Iteration : For every given G, a unitary matrix D can be calculated by Algorithm 1.
If this unitary matrix satisfies the first condition of a nilpotent interactor matrix

Jm DT= lim T =K, (2.22)
it is an interactor matrix for the given transfer function matrix T because the second
condition

|D|=q" (2.23)
will be satisfied explicitly. Otherwise, increase 7 to expand the block matrix G, calculate
a unitary matrix for this new block matrix and check whether the result satisfies the

Equation (2.22). Repeat this iterative process until an interactor matrix is calculated.

2.1.2 Matlab Function

One Matlab function, interactor, is programmed for Algorithm 2. The input of this
function can be a discrete or continuous transfer function matrix 7" or state-space matrices

A, B,C, D. The output is a unitary interactor matrix D.

e For a discrete transfer function matrix T, use command [D] = interactor(T, ‘dis’).
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e For a continues transfer function matrix 7', usc command [D] = interactor(T, ‘con’,
Ts, Method). The meaning of input parameters T's and Method is the same as that
of Matlab function “c2d”. The default value of T's is 1 and the default value of

Method is ‘zoh’ whenever they are omitted.
e For a discrete state-space model, use command /D] = interactor(A, B, C, D, ‘dis’).

e For a continuous state-space model, use command /D] = interactor(A, B, C, D,

‘con’, T's, Method).

o The ‘con’ or ‘dis’ parameter can NOT be omitted.

2.1.3 Examples

The interactor function has been tested on lots of examples. Three of them are given in
this part to show the correctness of this function.

Example 1. For the example illustrated on Page 21 of Huang and Shah (1999)

q72 0.5¢g=3
b M } ,
1-;-3q" 14-4q~
a unitary interactor matrix is evaluated as

10 g
b= [ ¢’ 0 ] ’

which is different from the result presented in Huang and Shah (1999)

290
D=1 ]
[Oq

T =

We can show that like D/, D is also a unitary interactor matrix for the given system

T because
2 e 05 1
lim DT =| " Ghh =[i OJ
a0 TF T Te2q

is full rank and

DT(q"l)D(q)=[q91 q(;?Hqu g]=“ (1)J

This example shows that, for a given transfer matrix T', the unitary interactor matrix

is non-unique.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Algorithms Development for Performance Assessment 13

Example 2. For another example on the same page of Huang and Shah (1999)

-1 -1
r-| ]

1+3¢~1  T144¢—7

one interactor matrix is calculated as

D= 0.5¢2 +0.5¢ —0.5¢ +0.5¢
| 0.5¢° —0.5¢° —0.5¢° — 0.5¢% |-

Compared with the result in Huang and Shah (1999)

0.5¢2 +0.5¢g —0.5¢% +0.5¢g
D= 3 2 3 2 |
—0.5¢° + 0.5¢* 0.5¢° + 0.5¢

we can see that these two matrices only have difference in the signs of the elements of the
second row. This difference does not have any effect on the calculation of an interactor
matrix.

Example 3. Gao et al. (2003) presented two performance assessment case stud-
ies of industrial multivariate MPC based controllers at Mitsubishi chemical complex in

Mizushima, Japan. The open-loop process model of a para-xylene distillation unit is

g~} 0 0 0 0 0
~0,088089™ ! ~0.14089 =2 —0.00038¢~ % 40.2498¢~2  .~0.02414¢~1 —0.266¢2 0 =0.1207¢~ ) 40.4256¢~ 2 0
1-0.2845¢~ 1 —0.6740q— 2 1-1.69¢— 1 +0.6978q~ 1-0.8188¢— 1 0,163~ 2 1-1.3019~ 1 40,3160¢— 2
T = | =0.02498¢7}+0.039309~3 0.1692¢9~ 1 -0.16519~2 001148971 +0.01026¢ 7% 0 =0.0408¢~ " —0.008103g~ 2 0
1-1.868q— 1 +0.8704¢™ 1-1.873¢~ 1 +0.87069— 2 1--1.8769— 1 40.8823¢™ 1-1.8149— 1 +0.8236q 2
-1
0 0 o =B:1968¢"
0 1~0.98g- 1 0
—0.14649=2 0.349—2 0 ~1.308¢~2 -0.49119~ 2 3.7889=2
1-0.09¢g— T 1-0.99¢— 1 1-0.00g—1 1-0.00g—71 T-0.00¢~ 1

The estimated unitary interactor matrix is

[ -0.05025 —-0.7234g —0dg  05507¢ O 0
0.006448¢  0.425¢  —0.9003¢ ~-0.09344¢ 0O 0
p— | —0.02357¢ —0.3104¢ -0.09754g —0.4733¢ 0 0.8183¢
0.03355¢  0.4418¢  0.1388¢ 0.6738q 0 0.5748¢ |’
—0.9974¢ 0.06791g 0.02491q 0 0 0
| 0 0 0 0 ~q? 0o |

which is the same as that published in Gao et al. (2003) except the difference in the signs

of the third row elements.

2.2 FCOR Algorithm

Once the interactor matrix is known, the performance benchmark based on minimum

variance control can be extended to multivariable control systems. Harris et al. (1996)
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developed a method which requires the spectral factorization of the interactor matrix.
Compared with it, the FCOR algorithm presented in Huang and Shah (1997b) is simpler.
It is truly an extension of SISO FCOR. algorithm to MIMO case.

2.2.1 Algorithm

A MIMO process can be modeled as

},t = TUg + Nat, (224)

where T and N are proper, rational transfer function matrices for the plant and noise,
respectively; Y; is an output vector and U, an input vector. For stochastic systems, a;
represents a white noise vector with zero mean and covariance matrix X,.

Furthermore, if T is a proper, full rank transfer function matrix, a unitary interactor
matrix D can be evaluated and DT = T', where T is the delay-free transfer function matrix

of T. Therefore, Equation (2.24) can be cxpressed as
Y; = TU; + Nay = D7'TU; + Na,. (2.25)

Premultiplying both sides of Equation (2.25) by ¢~¢D, where d is the order of interactor

matrix D as defined before, gives
¢ %DY, = q~%TU, + ¢ ¢DNa,. (2.26)
Let ¥; = ¢~%DY; and N = ¢—2DN, Equation(2.26) becomes
Y, = q~TU, + Na,. (2.27)

Huang and Shah (1997b) showed that since D is a unitary interactor matrix, the
minimum variance control law which minimizes the objective function of the interactor-
filtered variable ¥;, J; = E(YTY,), also minimizes the objective function of the original
variable Y;, Jp = E(Y,TY;), and J; = Jz, which means that E(Y,TY,) = E(Y,TY,).

Under feedback control law U; = —QY;, where Q is the transfer function matrix of a

controller, the closed-loop transfer function can be expressed as
Y, = —q79TQY, + Na,. (2.28)
Using Diophantine identity, N can be decomposed into two parts:

N=F+q¢ %R (2.29)
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where F = Fy + Fig~! + -+ + F3_1¢~"1) and R is the remaining proper and rational
transfer function matrix. Substituting Equation (2.29) into Equation (2.28) yields

Y = (g% + TQ)'¢*(F + ¢~%R)a,. (2.30)
Simplifying this equation, finally we get
Y; = Fay + La;_q, (2.31)

where
L=R-T(I+q¢%QT) QN (2.32)

is a proper rational transfer function matrix,

Since F is independent of the controller @, the two terms on the right hand side of

Equation (2.31) are independent. Therefore, the following two equations hold

Var(V;) > Var(Fa,)
E[Y"Y)] > tr(Var(Fay)) (2.33)

and the equality holds only under minimum variance control law, which lets L = 0. As
a result, the process output under minimum variance control, Fa;, is feedback controller-
invariant.

Through time series analysis performed on a set of closed-loop routine operating data,

we can get the estimation of the noise model N. Filter N by ¢~¢D and express N as
N=¢'DN =F+Fig” +--+ + Fyo1g7V + Rg™, (2:34)

then, we can have the estimation values of F: Fy, Fy,- -, Fy_1. Putting these values into

Equation (2.33),

E[Y Y |mve = tr(Var(Fa,)) = tr(FoSeF§ + - + Fa-15aFy ). (2.35)
minimum  covariance _ B[V Yi)|muc
Therefore, the performanc actual covariance EY,'Y,] expressed as

_ E[)}t’r?t”mvc _ tr(Var(Fay))

mini = ! -
Tt o BV r(BIYY])
_ B[V Ve _ tr(Var(Fay) 0
EYY] ir(E[Y,TYY)) -
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and the performance index of every individual output is defined as

_ d'iag(YtTYt)lmvc
nﬂ - d?ag(),tT}/t) ) (2-37)

where 7, is a n x 1 vector and n is the output number.
Because under minimum control law,
diag(Y"Y,) # diag(V"Y;) (2.38)
even though
tr(YY)) = tr(V['V)), (2.39)

we should find a way to compute the value of diag(Y,”Y:)|mue-

Since
Y, =q¢7DY; = Y, = ¢"D"'Y,

and from the definition of unitary interactor matrix,

DT(¢™Y)D(q) =I = D7'(q) = DT(g™?)

D7'= (Do +++ 4 Dy-19) ' = Dfq~%+ -+ + DI _1q7! (2.40)
we can get
Vi = ¢DFq ¢+ + DI g V)(Fo+ -+ Fy_1g7@ g,
é Eat
= (BEp+Ewq '+ + Eg_1g7@¢ Vg, (2.41)
[ F/v R -+ Fyq]
F F ...
A . .
(Eo, B,y Bqa) = (DE,DT,... DI | : . (2.42)
P Fy
L Fu-1 i
Thus,

E[YtTYtH,m,c = tr(Var(Fa,)) = tr(EOZaEg + o+ Ey EaEg_l)
diag (Y, Y1) lmue = diag(Var(Ea;)) = diag(E¢S.EY + -+ + Eq1S.ES ). (2.43)

Substituting Equation (2.43) into Equation (2.37), finally, the performance index of every

individual output is calculated as
_ diag(YTY)|mwe _ diag(BoZeEf + - + E415.E]_,)
™= T diag(VTY,) diag(Y,"Ys) '

(2.44)
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2.2.2 Matlab Function

One Matlab function, feor, is programmed for this algorithm.
[Eta, Eta,) = fcor(OutputData, Interactor Matriz)

The input and output parameters are explained as follow:

OutputData : A set of routine operating output data used for performance assess-
ment.
InteractorMatriz : A unitary interactor matrix of the given system calculated

by interactor function introduced in Section 2.1 or estimated by other methods.
FEta : Performance index of the overall system.

Eta, : Performance index of individual output loop, a n x 1 vector.

2.2.3 Simulation Example

One of the simulation examples designed for the test of fcor function is illustrated in this

part, which is on Page 90 of Huang and Shah (1999).

g} Kg=2
_ 1-0.4¢9-17 1-0.1g~7T
T= 0.3g“1 -2
1-0.1g-! 1-0.8¢-!
1 -0.6
— 1-0.5¢g-1! 1-0.5¢-*
N = 0.5q I.Oq
1-0.5¢-! 1-0.5q-1
0.5-0.20g~! 0
Q . 1-0.5¢-1
= 0 0.25-0.200g"*
(1-0.5¢=')(1+0.5¢~1

Tis a 2 x 2 MIMO process, Q is the controller and N is the disturbance transfer function
matrix, The white noise excitation, a;, is a two-dimensional normally-distributed white
noise sequence with X, = I.

By the interactor function, the interactor matrix of T is calculated as

p - [ ~0-9578g —0.2873¢
T | 0.2873¢2 0.9578¢2

From the interactor matrix D and the noise model N, the theoretical values of the
performance index can be calculated. For the detailed calculation procedure, readers are
refer to Huang and Shah (1999). The parameter K in the transfer function matrix of

T increases from 0 to 10. A set of closed-loop data is simulated for every K. With the
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Figure 2.1: Performance assessment result by the FCOR algorithm

interactor matrix and simulated closed-loop data, the performance index of the overall
MIMO system and that of two output loops, ¥'1 and Y2, are estimated. The performance
assessment results are shown in Figure 2.1. From this figure, we can sce that the theoretical
values and the estimation values match well for different K, which show that both the

theory and function of the fcor function are correct.

2.3 Subspace Method

So far, the interactor matrix can be estimated from the first few Markov parameters
of a process by the algorithm presented in section 2.1. When the interactor matrix is
known a prior, the performance index can be estimated from a set of closed-loop routine
operating data. Although the interactor matrix is a meaningful generation of time delay
term in the SISO case to MIMO case, its concept and calculation is an obstacle, especially,
for industrial users. Therefore, next challenge for the performance assessment of MIMO
system is the calculation of performance index without the knowledge of interactor matrix.

Ko and Edgar (2001) developed a simple method which integrates the calculation of
interactor matrix and the estimation of performance index together and simplifies them

to an explicit “one-shot” solution. Huang et al. (2004) presented a subspace method to
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calculate the performance index directly from input/output data without the knowledge
of interactor matrix.

The subspace method of identification (SMI) has been an active research area since
the beginning of 1990s. Compared with the traditional identification method, such as,
the prediction error method (PEM), the advantages of SMI are numerical reliability and

computational simplicity.

2.3.1 Algorithm

This section is cited from Huang et al. (2004).
If we describe a linear time-invariant system with [-inputs, m-outputs and n-states

using the innovations state space representation as

Tip1 = Az + Buy+ Key
y = Cxite (2.45)

where the dimensions of system state space matrices A, B,C and K arenxn,nxl,mxn
and n x m, respectively. K is the Kalman filter gain and e; is an unknown innovation or
white-noise sequence with covariance matrix S.

Stack the input u; into two block Hankel matrices,

U uz cee Uj UN41  UN42 UN+j

U2 us s Uj+1 UN42 UN43 o UN4j5+1
Up = ) . and Uy = . . )

UN TN+l *° UN4j-1 Uy  UaN41 ' UN 451

where p denotes the past and f denotes the future. Similarly, the output y; and the white

noise e; are stacked into two block Hankel matrices, respectively,

[y oy oy ] YN+1 UN42 0 UN4§ ]
Y,, _ 3/.2 y.a yj.+1 and Yf - yN.+2 yN'+3 yN-f.-j+1 ,

L YN YUN+1 ' YN+4j-1 ] YaN  YeN+1 0 Y2N4j-1

[ €1 €2 €5 ] EN+1 EN42 EN+j ]
B, = 6:2 6:3 ej:+1 and Ej = 8N.+2 61~{+3 ) eNfﬂl

L EN EN41 ' EN4j-1 J €2N  €2N41 ‘' EaN4j-1 |
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The past and future state sequences are defined as
Xp=[ ry g - Z; ] and Xf—": [ IN+4+1 IN42 -TN+j ]

Notice that, each block element in the above matrices is a column vector, i.e.

1 1 1 1
ué y5 eg a:g
Uy Yi ) h
Ug = . YUYt = . y €t = . y Tt =
) m \m n
U Yi ¢y Ly

Through recursive substitution of Equation (2.45), three important equations in SMI

are achieved:

Y, = InXp+HyUp+ HYE, (2.46)
Y; = TnXy+ HyUp+ HyEf (2.47)
Xy = AVXp+ ANU, + AYE, (2.48)
where,
c
cA
In = .
CA.N_I

is the extended observability matrix,

0 0 ) I, 0 e 0

CB 0 e 0 CK I, e 0

Hy = ) ) .. and Hf = } . . .
CAN-2B cAN-%B ... ¢ CAN-2K CAN-3K ... I,

are the lower triangular Toeplitz matrices containing the Markov parameters correspond-

ing to the deterministic input v and the unknown stochastic input e, respectively,

Ay=[AN-1B AN-?B ... B] and A% =] AN"'K AN?K ... K]

are reversed extended controllability matrices. In subspace identification literature, the

).

following short-hand notation is often used:

Y,

T~
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Subspace method of identification always has two steps. The first step is the projection
of cortain subspace generated from the data in order to get the estimation of subspace
matrices I'y and Hy and/or Xy, The second step is the estimation of system state space
matrices A, B,C and K from I'y and Hy or X ;. The method introduced in this section
only needs the estimation of subspace matrices, without the knowledge of system state
space matrices, so it is also a model-free method.

Ko and Edgar (2001) showed that, under minimum variance control, the behavior of
tlic outputs under infinite horizon is the same as that under a finite horizon if the rank
of the plant transfer function T'(g™') is cqual to the number of outputs for almost all q.

Moreover, it can be expressed as
-1
Yihnve =Y Fieri, (2.49)
=

in which
I

= (I — HyHY)H .
Fn-l

HZ, 1 is the first block column of HY,. Thus, the MVC benchmark can be written as
e = (] = Uy H) 1S (SHE (= v HE)T (2.50)

From above equation, we can see that the MVC benchimark can be caleulated divectly
from Hy and Hj, which arc comprised of first few Markov parameters of the plant and
noise model, respectively. The algorithin developed by Huang et al. (2004) is based on
subspace wmethod, by which Hy can be estimated from a set of open loop experimental
data and My, can be estimated from a set of closed-loop routine operating data. The

detailed procedure is explained as follow.,

Estimation of Hy

To get the estimation of Hy, Equation (2.47) can be rewriten as

Yy - UnXyp=HyUs+ Hy By (2.51)
Multiply above equation with U'fT(U i f)",
Yy = INXUF WU = HyUUFUpUF) ™ + 13 2 UF (U, UF) (2.52)
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Because Uy and Ej are independent under open loop condition, Equation (2.52) can be
simplified as
Hy = (Y7 = "N N)UT(UUF) ™ = (v = Dy XU, (2.53)
where “t" means the psendo inverse,
In subspace literature, two projections are frequently used. One of them is oblique

projection and the other is orthogonal projection.
Definition 4. The oblique projection of the row space of A € RP*J along the row space
of B € R on the row space of C € R are defined as A/ gpC' and can be caleulated vin

. 1T .
ApC=A(G) (1inC (2.54)
N T
where (3,1 : 1) denotes the extraction of the matriz product resulted from A ( (é ) from

Jirst column Lo the vth column.

For the oblique projection, two properties are important:

AJAC =0 (2.55)
A/pA = A (2.56)

Definition 5. The orthogonal projection of the row space of A onto the row space of
B is denoted by A/B and can be calculated through AJ/B = AB'B.

Performing an oblique projection of Equation (2.47) results
Yi/u,Wp =TNXs/u,Wp+ HNUs /iy, Wy + HYEy/u, W) (2.57)

The second item of right hand side of the above equation is zero due to the property of
oblique projection A/4C = 0 and the last item is also zero since Ey, Uy and W), are

independent under open loop. Therefore Equation (2.57) becomes
Yi/u, Wy =DnXy/u, W (2.58)
From Equation (2.46), E, can be express as
E, = (Hy)™'Y, — (HY) 'Tw X, — (Hy) ' HaU, (2.59)
and substituting Equation (2.59) into Equation (2.48) results

X; = AVX, 4+ ANU, + ARE) 1Y, — AVHE) T 'On X, — AN(HY) LHNU,
= (AN = ARUTL)TITNN, 4+ (A () AN = AN () T HNW,. (2.60)
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Then, perform an oblique projection of Equation (2.60) on to W, through Uy,

Xelu, Wy = (AN — AY(ITR)7'TN) X, /0, W
+AYNHP) AN = AN HN] Wy, Wy (2.61)

where Xy /i, W), defined as Xf, is an optimal prediction of the state by a Kalman filter

with X, /¢, W), as intial state. Now, Equation (2.58) can be rewritten as
Yi/u, Wy = Tn X, (2.62)
and substituting into Equation (2.53), finally, the estimation of Hy is
Ay = (Yp =Tn XU} = (V) = Y /u, W)U (2.63)
From above equation, we can see that Hx can be estimated directly by a set, of open loop
experiment data.
Estimation of H3},

Since the noise model under open loop condition is different from the model in closed-
loop condition, we should use the close-loop data to get the estimation of H. Like the
Equation (2.47) for the open loop case, we can write one {for the close-loop condition and
let Uy = 0,

Vil =T X{ + HY EY (2.64)
where I'¢: and Hf\lﬁ" are the same as 'y and H3, in Equation (2.47) but the superscript cl
stands for close-loop condition.

Performing an orthogonal projection of Equation (2.64) onto Ylj’l results
YRV = TOXE 1Y + HEEG /v (2.65)

Since the future noise 5% and past ontput Y, are independent even under closed-loop
) p

condition, the last item of right hand side of above cquation equals zero and
dpyel el el gyl el el vrelyrelyodl
Y Y= TRXGF/ v = TR = Yy, (2.66)
The Lemma 2 of Huang et al. (2004) proved that, under an arbitrary stable control,

|

HEY = Lydiag(®Ts7%, ... o7'g73) (2.67)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Algorithms Development for Performance Assessment 24

where ® is a unitary matrix and L) is a lower triangular matrix resulted from a QR

decomposition according to the following equation:

LiQ = —=(Yf - T X¢) (2.68)

1
(Y
Vi
where () is a unitary matrix.

Substituting Equation (2.66) into Equation (2.68), the estimation of Ly, is

T 1 g ¢l e 1 e 7 f d
LaQ = = (Vj' = TRXF) = (07 - Yy (2.69)

Sl

Estimation of J,,,. and performance index

Now, the output variance under minimum variance control can be written as

Jmve = t7'(l ~ H; ’I'I;V)}I:’?\[':QIS(I{;&;Q] )T(] - ‘HNI-I}TV)T
= tr(I - HyH{)L) 9757 3SS 7 ®L] (I — HyHL)"
= tr(I — HyHY) Ly LY (1 - HvHE)T (2.70)

where Hf\',*[ is the first block column of HR’,‘”‘ and Ly is the first block column of .

Substituting the estimation of Hy and L,

Hy = (Yy = Y} /u, W)U} (2.71)
. 1 g
Ly = .(Ynl _ Y(:ly;:lfy::l)@’] (272)
v Vi f A

into Equation (2.70),
. ot NE . FT 7ot T .
e = tr(d ~ H'NHN)L/L']L,M(I - IINI]N) . (2.75)

The overall MIMO performance index using minimum variance control as benchmark

can be expressed as

~

J777'1)C
o e 2.74
1= BT (2.74)

For every individual output loop, the performance index can be calculated as

diag[V,'Y;
= L0 il (2.75)
diag[Y, Y1

Since (I - H NI{L)L/L‘ IL,I, I-H NHJTV)T is a Nm x Nm block matrix in which every block
is a m x m matrix, the [Y,," 'Y,,]m,,n can be calculated as the summation of main diagonal

block matrices of (I - IA]NI-A];’V)[AJIL’II:;’,:](I - ]AIN]-A]JV)T.
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2.3.2 Matlab Function

One Matlab function, pass, is programmed for this subspace method. Pass stands for
Performance Assessment by SubSpace method.

The outputs of this function are performance indices of overall system, 7, and that of
individual output loop, #,. Three kinds of performance index can be caleulated by this

function: estimation value, theoretical value and mixed value.

Estimation value

As introduced in last part, the performance index can be estimated directly from a set
of open loop experimental data and a set of closed-loop routine operating data by this
subspace method. Therefore, this performance index is named as estimation value.

For the estimation value, use command
[Et“'y Etan] = 77(135(Ur1pcm Yopnny Yetose, ‘CSt’)-

The input parameters Uypep, and Y,e, are a set of open loop experimental input/output

data and Yeee 5 a set of closed-loop routine operating output data.

Theoretical value

On the other hand, if the models of plant, controller and noise are available, the theoretical
value of Hy and H IC\[,S are known because they are comprised of Markov parameter of plant
and closed-loop system, respectively. Then, the theoretical value of Jp,,. can be calculated
as
g roorrl s prels oy prels T o taT a 7p
Imve = tr(I = HNH )Y HRAS(HRY) (T - HyHy)' (2.76)
For the theoretical value, use command

[Fta, Etay,) = pass(plant, controller, noise, 8. ‘the’).

The input parameters plant, controller, noise are models of plant, controller and noise,
respectively, expressed in transfer funetion matrix and S is the intensity matrix of square

root of covariance matrix of white noise.
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Mixed value

If only the plant model is available, “mixed value” of J,,e can be calculated as

7 e e IRY A T ~
Jwwe = tr(I = HvHG) Dy BT (1 = HeH)T, (2.77)
where Hy is calculated from plant model and Ly, is estimated from a set of closed-loop
data.

For the mixed value, use command
[Eta, Etan] = pass(plant, Yejpse, ‘mix’).

Implementation Issues

o After get the estimation of Hy, we need to perform data cleaning. Becanse Hy
consists of Markov parameter of the plant, for a causal system, the elements located
in the upper block triangular of A should be zeros theoretically. However, they are
some small muubers due to the effect of noise. The existence of these small numbers
will affect the result of this subspace method significantly and sometimes this method
may fail. Thus, first we need to set all the upper block triangular elements to zero
and calculate statistical data, such as, mean value and confidence intervals, from
these elements. Next, those clements located in the lower block triangnlar of I:AIN

are processed based on these statistical data.

e For SMI, one key point is the selection of appropriate N for the data Hankel matrices
Up,Ug, Y, and Yy, If N is too small, the accuracy is poor. If N is too large, on the
other hand, the computational speed becomes extreme slow, In this algorithm, the
rank of (71— HyH T,) will not change when N increages to a certain number. Examples
about this will be shown in the following example part. Using this property, the
algorithim can automatically find a suitable NV for given data. The initial value of N
is set to 2. In the iterative process, for every N, the rank of (I Hyx H ;f\,) is calculated
for three consecutive numbers, such as, N, N -++1 and N + 2. If these three ranks are
same, current N is a appropriate value for the given data. Otherwise, increase N
and the incremental step is 5. In the case that the rank of (7 — Hy H)LV) still changes
when N is a quite large number, such as 100, the algorithm will stop automatically

and an error massage is given,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Algorithims Development for Performance Assessment 27

2.3.3 Simulation Example

In this part, the example that has been employed to illustrate the FCOR. algorithm is

used to test this subspace performance assessment method.

gt Kq-?
~ 1-04g v 1-0dg !
T= 0.3q7 ! q-?
1-0.1g ¥ 1-0.8q !
1 —0.6
— 1-0.5g 1 1-0.5g !}
N = ().51 ].()q
1--0.5¢" 1-0.5q !
0.5-0.20¢"! 0
O = 1-05¢ 1
¢ = 0 0.25-0.200g " !

(I-0.5¢"T)(A+0.5¢~1

Four kinds of performance index are shown in Figure 2.2, The theoretical ‘and csti-
mation values of FCOR algorithm are the same as those shown in Figure 2.1. For the
subspace method, the theoretical and estimation values are calculated by the function
pass. As we can see, they all match well. Both theoretical values are exactly same, which
shows match of the two methods in theory. Compared with the FCOR, algorithm, more-
over, this subspace method has obvious advantage. No concept and computation, such as,
interactor matrix, is needed. We can directly estimate the performance index from data,
a set of open loop experiment data and a set of closed-loop routine operating data. This
is the reason that this method is called an “one-shot” data-driven approach.

The next step is to demonstrate the property that the rank of (I — /A Nﬁj\,) will not
change when N increase to a certain number. Set K = 1 and the dimension of (- Ax H f\,)
is Nm x Nm.

When N equals 2,

10 0 0
T 0 0
T-HyHy =104 o 00957 -0.2042

0 0 —0.2042 0.9043

rank(I — HyAL) = 3,
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Figure 2.2: Performance assessment results by the FCOR. algorithm and subspace method

When N increases to 3,

(10 0 0 00
01 0 0 00
Caoat_ |0 0 009238 -02805 0 0
T=HNHy =10 o _02895 00077 0 0
00 0 0 00
(00 0 0 00

rank(l - H NH,TV) = J and notice that all new elements are zeros.

When N increases to 4,

1 0 0 0 0 0 0 07
1 0 0 0 000
0 0 00923 -028%5 0 0 0 0O

f—ﬁj\'m _ 10 0 ~-028% 09077 0 0 00

00 0 0 0000
0 0 0 0 0000
00 0 0 0000
00 0 0 000 0

rank(l — HNH}V) =3
Therefore, N = 2 is a appropriate selection for this process to stack the data Hankel

matrices.
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Figure 2.3: Gas oil hydrotreater unit

2.4 Industrial Case Study

The purpose of this section is to apply the performance assessment algorithms introduced
in above sections to a real industrial process - the gas oil hydrotreater unit (GOHTU)
of Syncrude Canada Ltd. at Ft. McMurray, Alberta. The objective is to use minimum
variance control benchmark to assess the performance of process controllers, This will
identify the potential for further improvement in terms of variability reduction and this
reduction of variability can directly he transferred to economic benefits and environmental

impacts.
2.4.1 Process Overview

The product of GOHTU is high quality treated gas oil and the byproduct is partially
treated naphtha. The schematic diagram of the GOHTU is shown in Figure 2.3.
The main parts of the GOHTU are feed section, reactor section, reactor effluent section

and fractionator section. In the feed section, the raw gas oil is filtered in feed flters to
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remove particulate matter and flows into the surge drum, from where it is pumped to

the reactor section. In the reactor section, the raw gas oil is preheated and combined

with treat gas before it is sent to the reactors. The treat gas is composed of recycle

gas and fresh makeup hydrogen. The hydrogenation reactions oceur in the reactors with

catalyst. The reactor effluent is then cooled and separated into a liquid stream and a vapor

stream in the hot high pressure separator. The liquid stream is sent to the fractionator

section. The recycle gas is compressed after the removal of light oils, N Hz and HyS. In the

fractionator section, the liquid stream from the reactor section is fractionated into product.

gas oil (fractionator hottoms) and the partially treated naphtha(fractionator overhead).

The main operating variables in the GOHTU are reactor equivalent isothermal tem-

peratures, hydrogen partial pressure, catalyst activity and fractionation.

Syncrude has applied advanced control technology to optimize hydrogen treating unit

operations, including the control, optimization and coordination of the naphtha hydrotreaters,

the gas oil hydrotreaters and the light gas oil hydrotreater. The control and optimization

of the GOHTU is part of the whole project.

The reactor section has 41 Controlled Variables (CVs) and 15 Manipulated Variables

(MVs).
Table 2.1: MV list of the reactor section
MV | DESCRIPTION MV | DESCRIPTION
1 | TIA: A Reactor Bed 1 Inlet Temp 2 | T1B: B Reactor Bed 1 Inlet Temp
3 | T2A: A Reactor Bed 2 Inlet Temp 4 | T2B: B Reactor Bed 2 Inlet Temp
5 | TSA: A Reactor Bed 3 Inlet Temp 6 | T8B: B Reactor Bed 3 Inlet Temp
7 | T9A: A Reactor Bed 4 Inlet Temp 8 | T9B: B Reactor Bed < Inlet Temp
9 | FM5A: A Reactor Treat Gas Ratio | 10 | FM5B: B Reactor Treat Gas Ratio
11 | FR195A: Cell A Air-to-Fuel Ratio 12 | FR195B: Cell B Air-to-Fuel Ratio
13 | S309: K-1 Compressor Speed 14 | FD34: Feed Bias Between A and B Reactor
15 | NM13: Recycle Gas Purity

2.4.2 Case Study Results

In addition to closed-loop routine operating data, the transfer function model of reactor

section is also available.

It is a 41 x 15 matrix.

The interactor matrix for this reactor
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Table 2.2: CV list of the reactor section

CV | DESCRIPTION CV | DESCRIPTION

1 | AC910, Gas Oil Nitrogen Content 2 | AC911, Gas Qil Sulphur Content

3 | PCI903, A Reactor Hy Partial Pres 4 | PCY04, B Reactor Hy Partial Pres
5 | TC1A, Delta Qutlet Temp Between 6 | TC1B, Delta Outlet, Temp Between

Beds 3 and 4 in A Reactor Beds 3 and 4 in B Reactor
7 | TC2, Diff Between A Reactor WABT
and B Reactor WABT

8 | TK1A, A Reactor Bed 1 Hot Spot. 9 | TK1B, B Reactor Bed 1 Hot Spot
10 | TIK2A, A Reactor Bed 2 Hot Spot 11 | TK2B, B Reactor Bed 2 Hot Spot
12 | TK3A, A Reactor Bed 3 Hot Spot 13 | TK3B, B Reactor Bed 3 Hot Spot
14 { TK4A, A Reactor Bed 4 Hot Spot 15 [ TK4B, B Reactor Bed 4 Hot Spot
16 | F5A.0P, A Rx Treat Gas Valve Output | 17 | F5B.0OP, B Rx Treat Gas Valve Qutput
18 | 'I'2A.0P, A Reactor Bed 2 Quench 19 | T2B.0OP, B Reactor Bed 2 Quench
20 | T8A.OP, A Reactor Bed 3 Quench 21 1 T8B.0OP, B Reactor Bed 3 Quench
22 | TOA.OP, A Reactor Bed 4 Quench 23 | T9B.0OP, B Reactor Bed 4 Quench
24 | PC22A, A Reactor Bed 3 DP 25 | PC22B, B Reactor Bed 3 DP

26 | PC23A, A Reactor Bed 4 DP 27 | PC23B, B Reactor Bed 4 DP

28 | PC5A, C2A DP 29 | PC5B, ¢28B DP

30 | Y112, Compressor Anti-Surge Valve 31 | P190, K-1 Discharge Pressure

32 1 A23A, F-1A Excess Oy 33 | A23DB, F-1B Excess O»

34 | T300, F-1A COT 35 | T301, F-1B COT

36 | P117B, F-1A Fuel Gas Pres 37 | P1198, F-1B Fuel Gas Pres

38 | TK5A, F-1A Radiant TMT Hi-Sel 39 | TK5B, F-1B Radiant TMT Hi-Sel
40 | TKGA, F-1A Convection TMTs Hi-Sel 41 | TK6B, F-1B Convection TMTs Hi-Sel

section model is calculated by interactor function.

0 00
000

0
0

LS B e e
(== R I

0

0
0
0

The result is a 41 x 41 matrix.

0
0
0
0

o

The reason that this interactor matrix has a simple format is that the second block of

plant Markov parameters, (/y, is of full rank. Thus the algorithm terminates only after

one time iteration.

Because the reactor section has considerable size, the time series analysis algorithm

fails and thus the FCOR algorithm can not proceed the calculation. The noise model can

not be estimated correctly from the closed-loop data through time-series analysis because

of the high dimension of the process.
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Figure 2.4: Performance assessment result by the subspace method

However, the subspace method works for this process, which shows the robustness of
this subspace method. Since we have plant model and closed-loop routine operating data,
the mixed value of performance index can be calculated. For one typical data set, the
overall performance index is 0.01 and the individual performance index of every output
loop is showed in Figure 2.4, from which we can see that this controller has potential to

improve.

2.5 Conclusions

In this chapter, an improved algorithm for calculation of the interactor matrix is developed.
The FCOR. algorithm is described. If the interactor matrix is known, the performance
index of a MIMO system can be cstimated from a set of closed-loop data by this FCOR
algorithm. A subspace method without a prior knowledge of the interactor matrix is
also presented. This method simplifies the calculation of performance index and gives an
explicit "one-shot” solution. The performance can be assessed from a set of open loop
experimental data and a set of closed-loop routine operating data.

Three Matlab functions are programmed for these three algorithms, respectively. These

functions have been tested on simulation examples and integrated into the software package
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PAT. One industrial case study is presented, which revealed that the real process has

potential to improve in terms of varinbility reduction.
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Markov Chains

The basic concepts of Markov chains were introduced by A. A. Markov in 1907. They are
the simplest mathematical models for random phenomena evolving in time. Their simple
structure makes it possible to say a great deal about their behavior. At the same time, the
class of Markov chains is rich enough to serve in many applications. This makes Markov
chains the first and most important examples of random processes.

Compared with other methods, the advantage of Markov chains analysis is that it can
provide considerable insight about the behavior of the control system. However, it does
not weaken the merits of other methods. On the contrary, these methods can provide
us complementary information about the performance of the control system, which will

enable us to achieve better and deeper understanding.
3.1 Basic Concepts of Markov Chains

Markov Chains

If a process has no memory of where it has been in the past, this means that only the
current state of the process can influcnce where it goes next, we called it a Markov process.
When it has only a finite or countable set of states, it is usually referred as a Markov chain.
(Kemeny and Snell 1976)

A Markov chain is observed to transit from one state to another state frequently.

34
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Suppose a Markov chain has q states, which means there are ¢ possible outcomes at each
point in time. The set of ¢ possible outcomes is denoted as S, state space. The ith
element of S is 85,7 = 1,2,--- ,q. We also denote the sequence of n observations of a
Markov process by X;,t =0,1,2,-.- ,n.

State-holding time 7} is defined as the average time interval in which the S(?(,]ll()l'l(‘,(:"
spends in state S; before transiting to another state. Occupation time C; is defined as the

number of times that the sequence is observed to be in a particular state Sj.
Initial distribution 7y and transition probability matrix P

The probability of being in any one of these ¢ states at time ¢ can be described by a vector

7. That means, (m); = Probability(X; = S;). The elements of 7; always sum to one,
q
d(m)i=1. (3.1)
i=1

mo is known as the initial distribution.

Another important concept about Markov chain is the transition probability matrix
P. F; denotes the transition probability from state ¢ to state j in one step. Obviously,
pij = 0 for all ¢ and j and each row of P sums to one.

Given an initial distribution 7y and a transition probability matrix P, a Markov chain

can be uniquely determined, since

o= mP
= 7l P
7 = m_P=x]P" (3.2)

The transition probability matrix P can be estimated by
Ci;
A iJ 09«
p)] ey _V‘ s (5-03)

1
where Cj; is defined as the number of occurrences of transition from state i to state j in

the sequence X, and C; is the oceupation time,
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Types of Markov chains

The states of a Markov chain can be divided into transient and ergodic sets. The former,
once left, are never again entered; while the latter, once entered, are never again left.

We can divide the Markov chains into two types: ergodic Markov chains and absorbing
Markov chains. If a state is the only element of an ergodic set, then it is called an absorbing
state. For such a state s;, the entry p; must be 1, and hence all other entries in this row
of the transition matrix are (0. A chain, all of whose non-transient states are absorbing, is
called an absorbing chain.,

An ergodic Markov chain is one that has no transient sets, and has a single ergodic
set. A Markov chain was ergodic if and only il it is possible to be in any state after some
number N of steps, no matter what the starting state. An ergodic Markov chain must he
either regular or cyclic.

Equilibrium distribution

If P is a regular transition matrix, then the powers P* approach a probability matrix A
as n tends to infinity. Bach row of A is the same probability vector a = {ay, a2, -+ ,ap}.
A is named as limiting matrix and « limiting vector or equilibrium distribution.

For a given transition probability matrix P, the equilibrium distribution « is unique
such that aP = a. We cannot get an unique solution through above equation since the
surnmation of every row’s elements equals to one, P does not have full rank. However,

the summation of all elements in o equals to one. Put them together,

al =q (3.4)
ar+ar+-4a, =1
With this constraint, we can get an unique solution of .
For any initial distribution vector mg, moP™ also approaches the vector « as n tends to
infinity, which means that the initial distribution has no cffect on the equilibrium.
Passage Time

For a regular Markov chain, the passage time [ is a function whose value is the number

of steps before entering sy, for the first thne after the initial position.
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The mean passage time matrix is denoted as A7. Entry my;; is the mean passage time

from state s; to s;. The mean passage matrix Af is given by
M= (I~Z+ EZy)D, (3.5)

where 7 is an identity matrix, Z = (I - (P~ 4))~! is called the fundamental matrix for a
regular Markov chain, Zy, denotes the diagonal elements of the fundamental matrix, E is

a matrix with all entries 1, and D is the diagonal matrix with diagonal elements d;; = ;"—
;

Passage details

So far, we can get the mean passage time from state s; to state s;. By changing the
process from a regular Markov process to an absorbing process, we can get more detailed
information, such as the mean numbers of times that it will be in cach of the other states
before reaching s; for the fivst time. To do this, what we need to do is to change state s; to
an absorbing state, then the process will be an absorbing process with a single absorbing
state. By using the absorbing Markov chain theory, we can get some information which
cannot be observed from the obscrvation about regular Markov chain.

The question is whether it is reasonable to apply the theory of absorbing Markov chain
to a regular Markov chain. The answer is positive. What we need to do is just change
one or more states to absorbing states, and the behaviors of the original regular process
and the observed absorbing process are exactly the same as before reaching the absorbing
states. Hence we can translate all of the information about our original chain.

For an absorbing Markov chain, it is convenient to express the transition probability

= (90 o
po(50) 5

where the submatrix S is the transition probability matrix of all absorbing states and @

matrix P in the following way

is that of all transient states. The fundamental matrix of an absorbing Markov chain is
denoted as N and every elements of N, n;j, is the number of times that the process is
in transient state s; after it leaves the initial state s; and before it reaches an absorbing
state. NV is calculated as

N=(T-qQ)". (3.7)
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3.2 Industrial Case Studies

Harris and Yu (2003) defined a variable, degree of freedom (DOY), and demonstrated how
the Markov chains can be used to analyze the industrial data. In this section, the theory

of Markov chains is used to analyze the data collected from two industrial plants,

3.2.1 Case Study 1 - GOHTU

As the first case study, a sct of industrial data collected from the Syncrude’s GOHTU
plant is analyzed. This plant has 41 CVs and 15 MVs. There is detailed information

about this plant in Chapter 2. The data sample time is 15 seconds.

Control stability

In addition to the values of these CVs and MVs, this set of data also recorded some
parameters of CVs and MVs, such as the control low and high limit. These parameters
are set by the process control engincers and used by the advanced control algorithms.

If the value of a CV exceeds its high or low limit, it means that this variable is out of
control. Based on it, we define a discrete variable:

Out of Control Index (OCI) = number of out of controlled CVs.

For this data set, the range of this variable is from 1 to 7. 1 means that the process
is in the normal state and no CV is out of control. On the other hand, 7 means that the
process is in the worst condition of this data set and there are 6 CVs which are out of
control simultaneously. Larger the number, more out of control the process.

Transition probability matrix

For this set of data, the estimated transition probability matrix is shown in Table 3.1,

Table 3.1: Transition probability matrix

P State 1 | State 2 | State 3 | State 4 | State 5 | State 6 | State 7
State 1 0.86 0.13 .01 0 0 0 0
State 2 0.26 0.63 0.10 0.01 0 0 0
State 3 0.04 0.28 0.57 0.10 0.01 0 0
State 4 0 0.07 0.36 0.48 0.09 0 0
State 5 0 0.01 0.07 0.27 0.58 0.06 0.01
State 6 0 0 0 0 0.22 0.72 0.06
State 7 0 0 0 0 0.67 0 0.33
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Figure 3.1: Transition probability v.s. state-holding time

In Table 3.1, the main diagonal elements are much larger than others. It means that
every state will stay at itself for certain time before transiting to another state. This is
easy to understand because the sample time is fast. Morcover, these diagonal elements
are proportional to the state-holding times of these states, as shown in Figure 3.1. The
larger the probability is, the longer the state-holding time is.

We notice that p;;_1) > Piis1),4 = 2,3,...,6. This means that every state has higher
probability to transit to in-control states than to out-control state. The other feature that
we notice is that p;; is almost zero when j > i+ 1 or j < i — 1. The interpretation is that
when the state changes, it most likely changes to a neighboring state. As a result, we can
say that the process has no dramatic changes in CVs.

In Figure 3.2 (a), for every state, the left bar is the summation of probabilities to all
previous, more in-control states and the right bar is to all next, more out-control states.
Obviously, every state has higher tendency to transfer to more in-control states than

out-control statc. We can define a transition tendency index (TTI) as

Y‘i—l s — S
7“7"[] — 2.1 Piy ZH‘] Pij .
I - pii

The TTT is an index of magnitude ~1 < TTT < 1, where 1 indicates the best in terms
of tendency toward in-control states, while -1 indicates the worst. Thus it is an index
about the transition tendency to normal states. From Figure 3.2 (b), we can see that TTI

has an obvious increase with the inerease of out of controlled CV numbers. Thus we can
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conclude that this process is in stable control.

Equilibrium distribution

Equilibrium distribution provides us with a prediction about the future. For this set

of data, the equilibrium distribution is calculated as

a=[04537 03340 0.1321 0.0477 0.0195 0.0097 0.0028 0.0005 ]

From Figure 3.3, we can see that at equilibrium process spends more time at less out-

control states. In fact, for 55% time, the process is completely within control state and for

29% time, the process just has one CV out of controll. The percent time spent at three

worst states, in which the process has more than 3 out of controlled CVs, is less than 5%.
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As a conclusion, we can say that this process is in stable operation.

Passage time

For our example, the mean passage time matrix M is calculated in Table 3.2.

Table 3.2: Mean passage time

State 1 | State 2 | State 3 | State 4 | State 5 | State G | State 7
State 1 1.81 7.31 27.86 81.62 309 1530 3469
State 2 5.48 3.44 22.25 75.62 303 1525 3463
State 3 8.72 4.95 9.16 09.51 285 1507 3446
State 4 | 11.11 7.20 6.62 29.50 240 1459 3398
State 5 | 13.93 9.98 9.45 18.45 89.75 1271 3185
State 6 | 17.83 13.88 13.35 22.35 3.9 354 2551
State 7 | 15.43 11.48 10.95 19.95 1.5 1272 2124

The first column data in the Table 3.2 is shown in Figure 3.4. They are the average
times the process needed to return to the complete in-control state s;. If the process starts
from s7, for example, the average time before it veturns to sy is about 15 sample time. In
Table 3.2, we also notice that Mi;(i < j) is much larger than Mj;. For instance, it will
take about 3469 sample time for the process to reach s7 from s1; however, just 15 sample
time from sy to s;. This means that the process has less tendency to the warse state and

more tendency to better in-control state. Again, it is proved that the process is in stable

control.

Passage detail
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For our example, we are interested in the mean numbers of times that the process is
in each of the other states before reaching the two extreme states, the normal state and
the worst state.

For the normal state sy, first we need to change $; iuto an absorbing state. Then the

transition probability matrix becomes

10 0 0 0 0 0 ]
026 063 010 001 0 0 0
004 028 0.57 010 001 0 0
P=| 0 007 036 048 000 0 0
0 001 007 027 058 0.06 0.01
0 0 0 0 022 072 0.06
0 0 0 0 067 0 033

For an absorbing Markov chain, it is convenient to express the transition probability

matrix P according to Equation 3.6. Thus, in this example,
S =11,

R=[026 004 0 0 0 0],

[063 010 001 0 0 0
028 057 010 001 0 0
1007 036 048 0.09 0 0
@=1 001 007 027 058 0.06 001
0 0 0 022 072 006
L 0 0 0 067 0 0.33]

Cable 3.3 shows N calculated according to Equation 3.7.

Table 3.3: Passage details when s; as an absorbing state
State 2 | State 3 | State 4 | State 5 | State G | State 7
State 2 | 3.72 1.21 0.39 0.13 0.03 0.01
State 3 | 3.22 3.99 1.05 0.36 0.09 0.01
State 4 | 3.26 3.53 3.14 0.90 0.23 0.04
State 5 | 3.27 3.63 2.61 3.60 0.77 0.14
State 6 | 3.27 3.53 2.61 3.60 4.37 0.44
State 7 J 3.27 3.53 2.61 3.60 0.77 1.64

From the mean passage time matrix, we have known how much time is needed for the
process to reach state s; from state s;. For example, it takes about 15 sample times from

s7 to 81, From the matrix N, we can get more detailed information about what happened
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Figure 3.5: Transition process from s7 to s;

during this transition. It will stay at s about 3.27 samples times, at s3 about 3.53 sample
times, at sq about 2.61 sample times, and so on.

The detailed passage process from state s7 to s; is shown in Figure 3.5, from which we
can see that even during the passage process from the most out of controlled state s7 to
normal state sy, the process spent more time to stay at in-control zone than at out-control
zone. This means that the process can quickly and antomatically back to in-control status
under the control of the current.

In same way, we can change state s7 to an absorbing state and observe how the process

behaves during the passage to state s7.

Table 3.4: Passage details when s7 as an absorbing state

State 1 | State 2 | State 3 | State 4 | State 5 | State 6
State 1 | 1923 1010 377 116 35 9.07
State 2 | 1917 1010 377 116 35 9.07
State 3 | 1905 1004 377 115 35 9.07
State 4 | 1878 989 371 116 35 9.07
State 5 | 1758 926 348 108 35 9.00
State 6 | 1407 741 278 86 28 10.80

Compared with the data by treating s) as an absorbing state, these numbers in Table
3.4 are quite large. The interpretation is that it will take much longer time for every state,

especially those more in-control states, to reach state sy. It verifies our conclusion that
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Figure 3.6: Economic index J

this process is in stable control.
Economic analysis

The economic optimizer has been used to control and optimize the GOHTU. The opti-
mization objective is to maximum CV1, CV2, CV3, CV4, MV1, MV2, MV3, MV4, MVY,
MV10 (linear objective) and to minimize CV18, CV19, CV32, CV33, MV13, MV15 (lin-
ear objective), CV5, CV6, CV7, MV14 (quadratic ohjective), all subjoct to constraints.
Therefore, the economic index J is calculated according following optimization objective

function for the same data set analyzed above:

J o= = (=10l ~ 5ev2 ~ cv3 — evd + (ev5) 4 (cv6)? + (ev7)? + 0.50v18
+0.5¢v19 + 0.5¢v32 + 0.5¢v33 — Smel - bmv2 - mv3 — mud

—0.6mv9 — 0.6mvl0 + 0.4mvl3 + 0.05(mvld)? + 10mwvls).

Then, the cconomic index is discretized into eight states. State s; means the process is in
the best economic state and sg means that in the worst economic state. The original data
and the discrete sequence of J are shown in Figure 3.6.

For this scquence of the economic index, the estimated transition probability matrix
is shown in Table 3.5. This matrix is almost an identity matrix, which means that this
process is almost an absorbing process and every state is near absorbing state. The reason

is that the state-holding time of every state, as shown in Fig 3.7 (a), is pretty large and
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there are few transitions during the whole sample process.

Table 3.5: Transition probability matrix

P State 1 | State 2 | State 3 | State 4 | State 5 | State 6 | State 7 | State 8
State 1 | 0.985 0.015 0 0] 0 0 0 0
State 2 [ 0.005 0.975 0.02 0 0 0 0] 0
State 3 0 0.003 0.989 0.008 0 ( 0 0
State 4 0 0 0.008 0.983 0.09 0 0 0
State 5 0 0 0 0.01 0.98 0.001 0 0
State 6 0 0 0 0 0.004 0.986 0.01 0
State 7 0 0 0 0 0 0.003 0.996 0.001
State 8 0 0 0 0 0 0 0.025 0.975

The equilibrium distribution is calculated as
o= [ 0.01 003 0.15 012 010 014 043 0.02 |

and shown in Figure 3.7 (b), from which we can see that the process stays at less economic
states for most of time.

Table 3.6 shows the mean passage time matrix M. We notice that, compared with
other elements, the diagonal elements are quite small. This means that the process has
very strong tendency to stay at the original state.

The passage details when treat s and s3 as an absorbing state are shown in Table 3.7
and Table 3.8, respectively. In these tables, we noticed that, during every transition from

one state to sy or sg, the process stays at less economic states for most of time,
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Table 3.6: Mean passage time

State 1 | State 2 | State 3 | State 4 | State 5 | State 6 | State 7 | State 8

State 1 97 65 131 292 538 1070 1346 3408
State 2 6243 32 66 227 473 1005 1281 3343
State 3 7754 1511 7 161 407 939 1215 3277
State 4 | 8269 2026 741 8 246 778 1054 3116
State 5 | 8602 2359 1267 655 10 532 808 2870
State 6 8939 2696 1893 1475 1045 7 276 2338
State 7 | 8953 2710 2004 1649 1295 425 2 2062
State 8 | 8994 2751 2045 1690 1336 466 41 52

Table 3.7: Passage details when s; as an absorhing state

State 2 | State 3 | State 4 | State 5 | State 6 | State 7 | State 8
State 2 200 925 761 650 887 2698 122
State 3 | 200 1156 951 813 1109 3373 153
State 4 | 200 1123 1033 882 1204 3662 166
State 5 200 1095 994 942 1285 3909 177
State 6 | 200 1052 936 869 1407 4281 194
State 7 | 200 1038 916 845 1350 4405 200
State 8 200 1038 916 845 1350 4405 240

In the control stability analysis, all the results support the conclusion that the process
is in stable control; however, the cconomic analysis states that the process is in less
economic status most of time. Therefore, this controller may be tuned to achieve further

economic profits.

3.2.2 Case Study 2 - PSV

This part has been removed due to the consideration of proprietary.

3.3 Conclusions

In this chapter, the theory of Markov chain is first reviewed. The basic concepts, such as
transition probability matrix, equilibrium distribution, etc. are introduced.

The Markov chain theory has been applied to industrial plants. Two indices are
defined, one is out of control index (OCI) and the other transition tendency index (TTT).

All the analysis results performed on the GOHTU, including the OCI and TTI indices,
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Table 3.8: Passage details when sg as an absorbing state

State 1 | State 2 | State 3 | State 4 | State 5 | State 6 | State 7
State 1 128 193 780 580 433 394 899
State 2 63 193 780 580 433 394 899
State 3 47 143 780 580 433 394 899
State 4 40 122 648 580 433 394 899
State 5 34 103 535 471 433 394 899
State 6 25 76 365 308 271 394 3899
State 7 22 67 308 254 217 296 899

support the conclusion that this plant was in stable control.

however, revealed that this plant is not optimized.
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A Practical Process Monitoring Method

The traditional approach of process monitoring is based on limit sensing(Chiang et al2001).
High and/or low threshold is predefined for some critical variables. For the most critical
variables, extreme high and/or extreme low threshold are also predefined. If the measured
value of one variable exceeds its high or low threshold, an alarm is triggered. The process
operators need to figure out what has happened to this variable and take some necessary
actions, sometimes with the help of process control engineers and technicians, If this
variable continues to deviate from normal value and reaches the extreme high or extreme
low threshold, the emergency shutdown (ESD) system has to put into effect and part of,
even whole, process may shutdown immediately.

The limit sensing approach has two disadvantages. On one hand, it works on the
present measured values of the monitored variables, without taking the trends into account.
Sometimes, just a short peak of the measured value will result in serious consequences. On
the other hand, it neglects the relations between variables. Inn some cases, the deviation of
one variable from normal value does not mean the whole process is in abnormal situation.
Therefore, a ideal process monitoring method should not only monitor the trend of a

variable, but also consider the relations between trends of several related variables,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4. A Practical Process Monitoring Method 49

V/J——-——‘“—‘—-——- . RN
L T - T
-
Process 7 Wavelet Triangiiar j
Data Transformn Episodes
e /'/
\‘"mwmw.,m—’”“' \"‘M.w*‘“"
Ciassification

Representation

Figure 4.1: Architecture of this process monitoring method

4.1 Methodology

This process monitoring method consists of two parts: representation and classification.
In the representation part, the process data is filtered by wavelet transform and then de-
scribed by a sequence of triangular episodes. By the triangular description, the original
data is converted into gqualitative and semi-quantitative information. Then this informa-

tion is input into one or more hidden Markov models (HMM) for classification.

4.1.1 Wavelet Analysis

Since the 90’s of the last century, wavelets have been widely used as an important tool for
signal analysis. The concept is not new to mathematicians and physicists; however, their
applications to signal processing have experienced increasing popularity since the work of
J.Morlet et al. (1984), Mallat(1989, 1991) and Daubechies (1990).

A family of wavelets is derived from the translations and dilations of a single function,

as showed in Figure 4.2 and Figure 4.3.
Definition 6 If y(x) is the starting function, to be called o wavelet, the members of
the family are given by :

:/];—(:7/} (%‘ﬁ) for (e,u) € R? (4.1)
in which the scale parameter e indicates the dilation and the translation parameter u
indicates the shifting of the mother wavelet ().

The continuous wavelet transform (CWT) is the projection of a function F(x) € L3(r)

el s —
W IFF(z) = / F(x) {\—}—;7/‘ (x p u) } da. (4.2)

on a wavelet, i.c.
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The original function F(z) can be reconstructed from the wavelet transforms by:

+o0 ptoo 1 T - U
F(x) = / / W F(x) {%z/) ( . ) } dedu. (4.3)

For the discrete wavelet transform (DW'T), the scale parameter e, and the translation

parameter, u, have to be discretized. Usually, the scale parameter is sampled along the
dyadic sequence.
e=2" m=0,12,-..-,LeZ (4.4)

The scale m = 0 represents the finest scale, which is the original measured data and m = L
represents the coarsest scale. As the scale parameter e is increased, high frequencies of
signal are removed. Thus, we can think the wavelet as a band-bass filter.

There are two approaches for the discretization of the translation paramecter. The first

one is to sample « uniformly over dyadic intervals:
w= a2k, (k) e 2% (4.5)

where « is the sampling interval. Another approach involves uniform sampling of the
signal at all scales, i.e.

w=n such that n=12Z (4.6)
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In the first, approach, the sample interval between adjacent wavelets doubles as the scale
increases and it does not change with scale in the second approach.

Mallat (1989) developed an efficient way to implement the discrete wavelet transform,
whicli in fact is a vary practical filtering algorithm. As illustrated in Figure 4.4, the
original signal, s, passes through two complementary filters and emerges as two signals:
A, which stands for the approximation, is the low-{requency component of the signal and
D, which stands for the detail, is the high-frequency component. The detail, D, is the
wavelet transform of the original signal. It is the difference between the original signal and
the approximation. This process is called decomposition in wavelet and can be performed
iteratively.

If we implement filtering in this way, unfortunately, the total data number of A and
D will be twice as much as that of the original signal, Thus, downsampling has to be
integrated into this algorithm to keep the total number of data constant. In the Figure

4.6, cA and ¢D are the coefficients of the approximation and the detail after downsampling,
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respectively.

Reconstruction performs in a reverse way, as shown in Fig 4.7. Combining upsampled
approximation and detail coefficients, it is possible to reconstruct the original signal.
Using zeros instead of detail coefficients, approximation is reconstructed, which has the
same length as the original signal but high-frequency information is filtered out.

Figure 4.8 shows an electrical consumption measured over the course of 3 days. Like
most, signals collected from the real world, noise is introduced into this signal as the
measurements were being made.

The wavelet decomposition of this signal is shown in Figure 4.9. The raw data (im = 0)
is decomposed into the approximation and the detail at m = 1. This process is continued
until desired level is reached. The details are the high frequency noisy signals filtered from
the upper layer approximation signals. The approximations keep the basic trend of the

original data.
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4.1.2 Triangular Representation

By the wavelet transform, the basic trend is extracted from the noisy data. The next step
is to represent this trend in an efficient way.

A great deal of effort hias been focused on using local extrema as descriptive primitives
to analyze one or two dimensional signal because these extrema usually have direct se-
mantic interpretations. The extraction of these features can help to characterize a signal
and separate it from others. Witkin (1983) suggested the use of zero-crossings because,
compared with extrema, zero-crossings are more convenient for implementation.

The nth order zero-crossings in a signal, F'(¢), are the points that satisfy

o Iy (n+1)F
OF 49 £ 0. (4.7)

atn T gin+1)

Therefore, an extremum. is a first order zero-crossing and an inflecion point is a second
order zero-crossing,

The series of paper by Stephanopoulos (1990a, 1990h, 1994) developed a method - tri-
angular representation - to describe qualitative and quantitative information in a process
trend. A signal is first smoothed by wavelet for the extraction of basic trend, and then,
according to the extrema and inflexion points, it is divided into episodes. An episode
consists of an extremun and a neighbored inflexion point. Formally speaking, an episode
is a part of signal whose first and second derivative have constant signs. These definitions

are illustrated in Figure 4.10.
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Figure 4.12: Definition of triangles

Using this method, every episode can be described by a triangle. As shown in Figure
4.11, one side of the triangle is constructed by drawing a line between the two end points
of the episode. The remaining two sides are drawn by connecting the tangents of these
end points, up to the point where the slope intersects.

There are seven kinds of triangle defined in Bakshi and Stephanopoulos (1994), named
as A, B, C, D, E, Fand G. Their shapes and definitions are showed in Figure 4.12 (Wong
et al. 1998). In fact, type E, F and G arc three kinds of line: linear increasing, linear
decreasing and constant, It is hardly to observe these three kinds of line in a smoothed
trend. Therefore, they are not adopted in this work. Then, this triangular representation
method is simplified to contain four kinds of triangle: A, B, C and D.

The type of triangle determines the qualitative information of an episode. In addition
to the type, some semi-quantitative information are also used to characterize and classify
an episode, such as duration and magnitude. The duration of a triangle is defined as the
time interval between two end points of an episode. The magnitude of a triangle is the
vertical difference between these two end points.

There are three kinds of magnitude: large, medium and small. There are three kinds
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Figure 4.14: Segment of the triangular description of the electrical consumption

of duration: long, middle and short. Then, for every type of triangle, say, “A”, there
are nine possible outcomes, as shown in Figure 4.13. For example, “ImA” stands for a
large magnitude, middle duration, type “A” triangular. The same definition holds for
the triangles “B" to “D". The triangular description of a segment of the basic trend of
electrical consumption is shown in Fig 4.14, from which we can sce that the basic trend has
been accurately divided into episodes according to extrema and inflexion points. Therefore,
this triangular representation method gives the qualitative as well as semi-quantitative
characteristics of a trend,

Finally, using this triangular representation method, a signal is converted into a se-
quence of symbols, which has 36 symbolic character alphabet.

As Bakshi and Stephanopoulos (1994) pointed out, this method “is complete, correct

and robust, and allows caplicit description of the important information of a trend” The
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advantage of this method is that it converts a signal into a symbolic sequence, which
captures the most important qualitative and quantitative information contained in the
signal. Compared with filtered process data, this symbolic formn is convenient as the input
of a following classifying system such as HMM.

The drawback of this method is that it is sensitive to noisy data. Therefore, some

filtering procedures, such as the wavelet transform, have to be implemented first.

4.1.3 Hidden Markov Model

Like the Markov chain introduced in the last chapter, neither the theory of hidden Markov
model nor its applications is new. It has been successfully used in some applications,
such as speech recognition. Smyth (1993) presented a particularly effective method for
fault detection, which uses HMM to classify the process status into a normal state, an
intermittent state or a “hard-fault” state. This method has been applied to a real-world
antenna fault diagnosis system. Based on the work of this paper, Wong et al. (1998, 2001)
adopted HMM method to classify the process trends, which are first filtered by the wavelet
transform and then described by the triangular representation method. Some illustrative
examples about HMM can be found in Rabiner (1989) and the Matlab Statistic toolbox
manual.

There is an important ditference between Markov chain and HMM. In a Markov chain,
the output of process is a set of states where each state corresponds to an observable
event. In HMM, however, the observation is a probabilistic function of the state and the
underlying set of states is not, observable, but can only be indirectly observed through the
sequence of observations.

A Markov chain can be uniquely determined by an initial distribution, m, and a
transition probability matrix, /2. For HMM, the situation becomes more complicated
because it has two stochastic processes, one of which is hidden and the other observable.
Thus, in addition to the transition probability matrix, there is another probability matrix
~ the observation probability matrix, B. Every element of B, B;;, gives the probability of
jth observation symbol observed at state i, where 1 <7é < Nand 1 < j < M. N is the
number of states and A is the number of distinet observation symbols per state.

Rabiner (1989) summarized that there are three basic problems of interest for an HMM

application:
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e Given the observation scquence and a model, how do we efficiently compute the

probability of this observed sequence?

e Given the observation sequence and the model, how do we choose a corresponding

state sequence which is optimal in some meaningful sense?

e How do we adjust the model parameters so as to best account for the observed

sequence?

For the method proposed in this chapter, the first and last problems are of interests.
The last one is a training problems - given an observation sequence, how do we optimize
the model parameters to create the best model? Similar to other model based process
monitoring and fault detection methods, this problem is diflicult and the solution to this
problem is crucial. The solution to the first problem is used for classification. Given a
model and any observation sequence, how do we compute the probability that the observed
sequence was produced by this model? Auvother case of classification is that, given several
models and one sequence of observation, how do we determine the model which best
matches this observation?

The HMM-based classification method introduced in this chapter is implemented using
the Matlab Statistics toolbox, which includes five functions designed for HMM analysis.
The function hmmirain caleulates the maximum likelihood estimate of HMM parameters.
The default algorithm of this function uses an iterative algorithm - Baum-Welch method.
Detailed explanation about this algorithm can be found in Rabiner (1989).

The function hmmdecode calculates the probability of an observation sequence heing
generated by a model. The algorithm of this function is explained as follow.

Givent a hidden Markov model A, let O = 010y - - - o7 denote an obscrvation sequence,
@ = q1q2 - - g7 denotes a state sequence. The probability of this state sequence can be
calculated as

P(Q,’\) = 7]-([11)111(121)(12113 e I)‘I’l'—-lll'l‘ (48)

in which, m,, is the probability that the initial state is ¢; and P, is the transition
probability from state ¢; to state ¢». The probability that this observation sequence is

generated by this state sequence is given by

P(O|Q,\) = By,o, - Bgyo, - Byronr (4.9)
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Put Equation 4.8 and Equation 4.9 together, given model A and state sequence ), the

joint probability of ohservation sequence O is
PO.QIY) = POIQNP@QIN

= T Baro Ponga Bazo: +* Par 10 Byror- (4.10)

il

Then, the probability that an observation sequence, O, is generated from given model,

A, is obtained by summing the joint probability in Equation (4.10) over all possible state

sequences
POIY) =} P(OIQ,N)P(@QI})
all@)
= Z T B‘I:C’rplhfn Bq:o: e Pll'r-lf]'r Bl]’l'o’l“ (411)

.
This calculation method is straightforward, but the complexity is in the order of O(27T-
NT). Even for small values of N and T, the computation load will be very large! A more
cfficient algorithm is called the forward-backward algorithni.
Following is the forward-backward algorithm introduced in Rabiner (1989): The for-

ward variable (%) is defined as
ay(i) = Po1og - or, qt = Si|\)

which is the probability of the partial observation sequence, 0102 - - - 0, (until time t) and

state S; at time ¢, given the model . Inductively, a(7) can be solved as 1)Initialization:

a1(i) =mBy, 1<i<N. (4.12)
- 2)Induction:
N
aer1(f) = [Z ()P | Bjors 1<t<T -1
‘ i=1

1<j<N. (4.13)

3) Termination:

P(O|)) = Z (i) (4.14)

i=1
The complexity of this inductive algorithm decreases to O(N?T"), which is much smaller
than the O(2T-NT) of the straightforward method. The backward procedure is conducted

in a similar manner.
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It can be seen that in Equation 4.13, a4 () will starts to head toward zero exponentially
as ¢ becomes large since every item in transition probability matrix P and observation
probability matrix O is usually less than 1. For most applications in which ¢ is sufficiently
large, such as several hundreds or even thousands, the dynamic range of the a;(j) com-
putation will exceed the precision range of any computer. Thus, to perform the above
forward-backward algorithin, a scaling procedure is needed to incorporate into it.

The basic idea of scaling is to multiply o¢(j) by a scaling coefficient to keep the
computation within a rcasonable range. The scaling coefficient should just depend on
time ¢ not on the state number N.

One choice for scaling coeflicient is the summation of all forward variables at the same

time t,
1
Ct= —nv— - (415)
Z;Z: 1% (7)

Then, the scaled forward variable becomes

Ny y (j)

&(f) = =x——— (4.16)

iy ()

At the Termination step of the forward-backward algorithm, the final probability
P(O|X) will have some changes accordingly becanse all the items &;(j) have been scaled.
Finally, the probability P(O|A) is given by

T
log[P(OIN)] = =) logey. (4.17)
=1

The Matlab function hmmdecode is programmed based on the above scaled forward-
backward algorithm. One disadvantage of this function is that it does not check whether
the value of Zfi 1 v () is equal to zero before divide it and take log of it. In some cases, for
example, where the model is not well trained, Z‘f\;l ay(#) will be zero. Any computation
trying to divide or log it will result in an error message. This function is re-programmed
for this application and the output parameter logpseq, logarithin of probability, will set

to zero instead of giving an error message in this case.

4.2 Implementation Issues
4.2.1 Why is Wavelet?

In this application, the wavelet: analysis is used to extract significant temporal features

contained in a record of measured data, Then, first question is why is wavelet, not the
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Figure 4.15: Four signal analysis methods

commonly used Gaussian filter or Fourier transform?

Witkin (1983) presented a time-frequency representation of trends via Gaussian filter-
ing. Because the Fourier transform of a Gaussian still looks like a Gaussian, the Gaussian
is localized in both the time and frequency domains. This property makes it an opti-
mal filter. The disadvantages of Gaussian filtering are obvious, such as the difficulty of
selecting suitable parameters of Gaussian filter, and so on.

The Fourier analysis perhaps is the most well-known method for signal analysis. It
transforms a signal from the time-amplitude view to the frequency-amplitude view, and
the magnitude in the frequency domain corresponds to the energy of the signal. The
serious drawback of Fourier transform is that no time localization information is available,
which means it is impossible to determine when a special event occurred.

The windowed Fourier transform, sometimes called Short-Time Fourier Transform
(STET), is an improvement over Fourier transform in order to correct this deficiency.
It can provide some temporal location information; however, it still has some drawbacks;
for example, the limit precision of the temporal location information determined by the
fixed window size.

Compared with Gaussian filtering and Fourier analysis, the wavelet analysis possesses
excellent time-frequency localization propertics since it uses a time-scale region, Thercfore,
using wavelet analysis, we can get multi scale description of trends and extract features,

which enable us to analyze the data efficiently.
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Figure 4.16: Cubic spline wavelet and scaling function

4.2.2 Selection of Wavelet Type

There are different type of wavelet families, such as Haar wavelet and Daubechies wavelets.
Depends on the application property, we can select appropriate wavelet,.

In this process monitoring method, the wavelet is used to not only smooth the raw data,
but also detect the extreme and inflexion points. At the image processing and machine
vision field, the Laplacian (second derivative) of a Gaussian is widely used to filter a signal
and extract the inflexion point. Along similar lines, Mallat and Zhong (1992) suggested
the use of a wavelet which is the first derivative of a scaling function ¢(x). The scaling
function has the effect of simoothing. The wavelet, () is the first derivative of ¢(z):

P(x) = M

da
The wavelet and scaling function used by Mallat and Zhong (1992) is given in Figure
4.16 (Bakshi and Stephanopoulos 1994). This wavelet is a cubic spline of the derivative of
the Gaussian function, while the scaling function is the Gaussian function itself. In this
application, what we used is biro3.1, which is selected from biorthogonal wavelets family

of Matlab wavelet toolbox. It is similar to the wallet Mallat and Zhong (1992) suggested.

4.2.3 Selection of Wavelet Level

Using wavelet decomposition, we can get approximations and details at different scales.
At lower scale, the detail consists of high frequency noise signal and the approximation
keeps the dynamic behavior of data. On the other hand, at higher scale, the basic trend

of data is extracted and the detail shows the low frequency noise. In this application, the
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wavelet is used for the noise filtering and the feature extraction; therefore, high scale is
more suitable. However, if the selected scale is beyond certain level, the most important
information contained in a signal, which can help to differentiate it from others, will lost.
Therefore, the sclection of an appropriate level is the first and the most crucial step of
this process monitoring method.

Wong et al. (1998) suggested the use of signal to noise ratio (SNR). The disadvantage
of this method is that, in order to calculate the SNR, the noise free signal is needed.
For most industrial cases, this condition is impossible to satisficd, thus this method is
impractical for industrial applications.

So far, there is no way of automatically selecting an appropriate wavelet level for any
given data. All the results presented in this chapter have to hase on visualization and

experience.
4.2.4 Approximate Derivative Calculation

The extraction of extrema and inflexion points from a trend is based on the calculation of

first and second derivative. The simplest way to perforin derivative calculation is numerical

differentiation:
(i) = &1)—_[(_‘”_"_1) (4.18)
H RN 2 |

For discrete data, the sample interval usually is even and equal to one, then Equation

4.18 can be simplified to

Flr) = fla) = f(ziz1). (4.19)
Similarly, the second derivative can be calculated as
() = 1) = (i) (4.20)

This numerical differentiation method is direct and casy to implement. However, its
drawback is also obvious: it is too sensitive to noise and the first derivative data must be
smoothed by certain filter before the calculation of the second derivative . An approximate
derivative calculation method proposed by Leung (1998) has a major advantage that
differentiation and smooth can be carried out in the same calculation.

In this method, the approximate first derivative is calculated as the difference between

two scale coefficients at the first resolution level:

) = C1,p,0 — C1,0; (4.21)
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where Djg and Dy denote the sixteenth and second order of Daubechies family wavelets,
respectively. Using the first derivative data as the inpul to the wavelet transform, the
second derivative calculation can be achieved.

The disadvantage of this approximate derivative method is that the number of data
points gets halved after each derivative order computation (Nie ¢t al. 2002). The decreas-
ing of data points makes it difficult to exactly find the location of extrema and inflexion
points of smoothed trend. For example, as mentioned before, inflexion points in a sig-
nal appear as extrema in first derivative data, and zero-order zero crossings in second
derivative data. Because the number of data points becomes halved and quartered, the
maximum bias of data location on the smoothed trend will increase to four points. Thus,
this method is only reconumended to use for cases in which the smoothed data trend still

looks noisy.

4.2.5 Selection of HMM Parameters

For any HMM application, the selection of hidden state number N is important. Un-
fortunately, there is no simple, theoretically precise way of making such choice. In this
application, the observation symbol number M is equal to 36. Different state numbers
have been tried for simulation examples and industrial case studies. For most cases, state
numbers, ranging from 6 to 9, work well and all the results about HMM presented in this
chapter are based on the selection that N is equal to 6.

For the estimation of the transition probability matrix P and the observation prob-
ability matrix B, the iterative algorithm is a maximum likelihood estimation procedure
and will lead to local maxima. Therefore, the initial estimation is crucial. In Smyth
(1994), these matrices are estimated by a database of trouble reports, for example, the
mean time between failure (MTBF) data, which are routinely collected from a real-world
system. For our application, unfortunately, this kind of database is not available because
of limited data type and size. Therefore, the initial values of matrices PP and B have to

been randomly selected and then regulated to stochastic matrices according the following
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equations:

]\I
Y Pj=1 1<i<N
=1

M
Y By=1 1<i<N (4.22)
=1

4.3 Simulation Examples

In this section, two simulation examples are given to illustrate that this process monitoring

mecthod can pick up the different behaviors of a process.

4.3.1 Example 1

In this example, the normal and abnormal behaviors of a process are modelled as follow:

T 001
£ Normal = IW

TAbnormaI, = -‘""9'_1““‘

1-0.9q"!
~ Two sets of estimation data are simulated from the normal model and the abnormal
model, respectively, as shown in Figure 4.17. The data length is 10,000 points. The
obvious difference between the normal and the abnormal behaviors of the process can be
seen just at a glance in Figure 4.17. As we introduced in the above sections of this chapter,
the original data is filtered by the wavelet transform. Figure 4.18 shows the filtered normal
and abnormal data. Comparing Figure 4.18 with Figure 4.17, we can see that the filtered
data keeps the basic trend of the original data and high frequency noise has been removed.
The next step is the triangular representation, by which the filtered data is represented

by triangles. Every episode is described by one type of the triangle: A, B,C or D.

Therefore, 10,000 points of normal and abnormal data are converted into 1,604 and
1,747 triangles, respectively. The magnitudes and durations of these triangles are collected
and divided into three zones ; large, middle, small or long, medium, short. Because every
episode corresponds to one of 36 types of triangles, the basic trend of data is converted
into a discrete sequence, which has 36 states. Part of normal and abnormal sequences are

shown in Figure 4.19, from which the difference between the normal and the abnormal
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(b) Abnormal data
(h) Abnormal data

Figure 4.17: Original data

Figure 4.18: Basic trends of the original data
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(b) Abnormal data

Figure 4.19: State sequences of the original data

(a) Normal data
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behavior can still be observed. As the last step of estimation, a normal HMM, HAM My
and an abnormal HMM, HAM M 4, have been estimated from these sequences,

Then, two sets of normal and abnormal data with length of 1,000 points are simulated
as validation data. They are filtered, triangully described and finally converted into dis-
crete sequences, same as what have been done for the estimation data. The only diflerence
is that the division of triangles into subtype is based on the magnitude and duration dis-
tributions of the estimation data. The validation data of normal behavior, Sy, consists of
165 triangles and that of abnormal, 54, 177 triangles. Both sequences are input into the

normal HMM and the abnormal HMM, individually.

Table 4.1; Simulation result,
Triangle # | P(Sy|HMMy) | P(SA|HMMy) | P(SN|HMM4) | P(SA|HM M 4)
20 14.82% 0.02% 0% 10.07%
30 14.86% 0.16% 0% 10.58%
40 14.81% 0.47% 0% 12.38%
50 15.51% 0.81% 0% 12.56%
GO 14.18% 1.42% 0% 13.97%
70 14.17% 0.31% 0% 12.82%
80 14.40% 0.53% 0% 13.97%

The simulation result is shown in Table 4.1. The data in the first column of table
is the length of validation data in triangle numbers. Different length of validation data
has been tried to see whether the results are consistent, The second column data are
the probabilities that the validation data of normal behavior is generated by the normal
HMM. The third is that of validation data of abnormal behavior generated by the normal
HMM. The fourth one is the normal data by the ahnormal HMM and the last one, the
abnormal data by the abnormal HMM.

In Table 4.1, we notice that, compared with the probability that the normal data
is generated by the normal HMM, the probability of the abnormal data generated by
the normal HMM is much smaller. Similar conclusion holds for the abnormal HMM,
This means that either normal HMM or abnormal HMM can distinguish the normal and
the abnormal data. We also notice that the results are consistent for different length of
validation data.

Therefore, this process monitoring method can detect the behavior change of the

process.
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T %

Figure 4.20: Schematic of a blending process

4.3.2 Example 2

The second example is from Huang (2001). It is a blending tank as shown in Figure 4.20

(Huang 2001). The mass balance of this process is
Q1 + g2 = (1~ c)gs, (4.23)

where ¢ is the recycling rate with a nominal value ¢y = 0.37. The measurements of ¢y, q2

and ¢z are corrupted by measurement noise and can be written as

gm1 = kigy + 1
Qmy = kogo + vo
Gm3 = kaqs -+ v3 (4.24)

where kp, ke and k3 are the gains of the flow rate sensors with nominal values 1, vy, 1
and vy are white noises. In the simulation, q; and g9 arc random signals with uniform
distribution and magnitude varying between -1 and +1.

Three kinds of fault are simulated in this example. They are 10% increase of the sensor
gain of g1, the sensor gain of ¢ and the recycle rate, respectively, as shown in Table 4.2.

The simulation results are given in Table 4.3 and Table 4.4. In Table 4.3, the standard
deviation of white noise is 0.1. For every fault scenario, a set of 10,000 points of normal
data is simulated and used for HMM model training. This data set is filtered by wavelet

and then described by a series of triangles. The figures in the second column of Table 4.3
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Table 4.2: Three types of simulated fault

Source of fault | Sensor 1 gain | Sensor 2 gain | Recycle rate
no fault 1 1 0.37
sensor 1 1.1 1 0.37
sensor 2 I 1.1 0.37
recycle 1 1 0.407

are the triangle numbers. 1,000 points of normal data are simulated and used for model
validation. The number of triangles of this validation data set is given in the third column
of Table 4.3. The probability that this data set is generated by corresponding HMM is
caleulated, as shown in the fourth colunm of Table 4.3. T'his probability can be thought
as a benchmark. Another set of 1,000 points of data is simulated in every fault scenario.
The number of triangle and the probability that this fault data is gencrated by the normal

HMM are given in the last two columns of Table 4.3.

Table 4.3: Noise standard deviation of 0.1

Source Model Normal Abnormal
of Estimation | Validation | P(Sy|HMMpy) | Testing | P(Sa|HMMy)
fault Data Data Data
sensor 1 934 87 22.40% 95 0%
sensor 2 905 95 20.29% 104 0%
recycle 920 89 19.78% 104 0%

Compared with the probability that the normal data is generated by the normal HMM,
the probability of fault data is quite different. They are zeroes. This means this method
can effectively tell the difference between normal and faulty data.

The simulation results with standard deviation of 0.3 are given in Table 4.4, from

which we can see that this method does not deteriorate with the increase of noise standard

deviation.
Table 4.4; Noise standard deviation of 0.3
Source Model Normal Abnormal
of Estimation | Validation | P(Sy|HMAMpy) | Testing | P(Sa|HMAMy)
fault Data Data Data
sensor 1 907 90 19.54% 89 0%
sensor 2 931 91 19.14% 98 0%
recycle 897 87 17.46% 97 0%
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Figure 4.21: GOHTU data analysis result

4.4 Industrial Case Studies

In this section, this process monitoring method is applied to both GOHTU and PSV plant.

The useful information achieved show the effectiveness of this method.

4.4.1 Case Study 1 - GOHTU

As an Hlustrative example, two sets of real data are analyzed by this method. One of them
is collected at May 22th, 2004 and the other at Nov 11, 2004. For every output loop, one
HMM is trained by the first data set and the probabilities that these two sets of data are
generated by this model are given in Figure 4.21.

What kind of information we can get from this figure? For every output loop, if those
two probabilities are close, that means the behaviors of this output loop at these two
different days are similar. For example, the 36t output, as shown in Figure 4.22.

If the probabilitics are quite different, on the other hand, it warns that the behavior
of this output loop has changed. One example , 6t output, is shown in Figure 4.23.

Therefore, this process monitoring method can monitor a process efficiently, especially

for a large process like this GOHTU plant which has considerable inputs and outputs.
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(a) Original signal (b) Triangular presentation {c) State sequence

Figure 4.24: Sine wave

4.4.2 Case Study 2 - PSV

This part has been removed due to the consideration of proprietary.

4.5 Oscillation Detection

With different HMM, this process monitoring method can be used to detect different
process behaviors. In this section, as a simple illustrative example, we will introduce how

to apply this method for oscillation detection.

4.5.1 Methodology

The most obvious characteristic that differentiate the oscillated signal from other signals
is the periodic increase and decrease of the oscillated signal at certain frequency and
magnitude. As the sine wave shown in Figure 4.24 (a), every cycle of the oscillation
consists of four monotonic parts: concave downward increase, concave downward decrease,
concave upward decrease and concave upward increase. As introduced before, each part
corresponds to one type of triangle. With the triangular representation, the oscillation
can be described by a regularly repeated character string: A, B,C,D,A,B,C,D,A, B, -,
as shown in Figure 4.24 (b). Because the magnitude and duration of the triangles are
neglected, this method can detect the oscillation with changing magnitude and frequency.
Every character corresponds to one state, thus the oscillation is converted into a cyclic
sequence, which has four states. Figure 4.24 (c) shows the cyclic sequence.

Therefore, the oscillation can be described as a cyclic Markov chain and modeled as
a simple HMM, in which there are just four states and every statc corresponds to one

observation. The transition probability matrix P and observation probability matrix B
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are
0100
P = 0 010
0001
1 0 00
and
1 0 00
01 00
B = 0 0610
0 6 01
respectively.

From P we can see that the process will certainly transit from state 1 .to state 2,
from state 2 to state 3, and so on. Thus, it generates a cyclic Markov chain in ascendant
order. The matrix B is an identity matrix, which means that at every state, one type of
observation will be certainly observed. In this ease, the types of triangle A, B, C and D
correspond to state 1, 2, 3 and 4, respectively.

In fact, the transition probability matrix and observation probability matrix are esti-

mated as

0 1 0 0
- 006 0 094 0
P’oo 0 1
1 0 0 0
1 00
- 0100
3“0010
0001

through a simulated sine wave.

4.5.2 Simulation Example
This HMM can distinguish the oscillated signal from other kinds of signals. As an example,
same length of noisy sine wave and white noise signal are compared. The data length is
1,000 points.

First, a noisy sine wave is simulated. The magnitude and the frequency of this sine
wave are 1 and 0.1, individually. This sine wave is corrupted by a white noise signal with

standard deviation of 0.1. The noisy sine wave is filtered by the wavelet transform. Figure
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Figure 4.25: Sine wave
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Figure 4.26: White noise with standard deviation 0.1

- 4.25 shows the noisy and filtered sine wave. Then the filtered sine wave is converted into
a discrete state sequence, which is input to HMM. The probability that this noisy sine
wave is oscillatory is as high as 94.32%.

Second, the white noise signal that corrupts above sine wave is analyzed in same way.
The original and filtered signals are shown in Figure 4.26. The probability that it is an

oscillation signal is just 6.45%.
4.5.3 Industrial Case Study

A set of industrial data collected at the Eastman Chemical Company, Kingsport, Tennessee
is analyzed by this method. The sampling interval was 20s.

The probabilities of the signals shown in Figure 4.27 are higher than 90%. On the other
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Figure 4.28: Signals detected as having no oscillation
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hand, Figure 4.28 shows some signals whose probabilities are almost zero. Compared these

two figures, we can say that this method can effectively detect the oscillation.

4.6 Conclusions

In this chapter, a practical process monitoring method is presented. The basic concepts
of its three parts: wavelet transform, symbolic representation and HMM are introduced.

This method is verified by two simulation examples, which shows that this method can
effectively detect the behavior change of the mouitored variable. The potential use of this
method is illustrated by industrial case studies. For example, this method can be used as
tool for data analysis.

Moreover, an oscillation detection approach is presented as an illustrative example of
the application of this process monitoring method. The simulation example and industrial
case study show that this method can effective detect the oscillation. It will be useful when
we are facing a large amount of data and variables, where it is impossible to visualize the

trend of each individual variable.
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Conclusions and Future Extensions

5.1 Conclusions

In this thesis, new developments for the multivariate process and control monitoring are

presented.

o The interactor matrix used to be an obstacle of the performance assessment, of MIMO
systems. In Chapter 2, an improved algorithin for calculation of the interactor matrix
is presented. If the interactor matrix is known, the performance index of a MIMO
system can be estimated from a set of closed-loop data by the FCOR. algorithm.
The subspace method simplifies the caleulation of performance index and gives an
explicit “onc-shot” solution. The performance can be assessed from a set of open
loop experimental data and a set of closed-loop routine operating data. No concept

and calculation of the interactor matrix is needed any more.

e A mathematical model can bring some invaluable insight about the process. If the
behavior of a process can be modeled by different types of models and all these mod-
els are meaningful, and it means that we have the opportunity to observe something
from different angles.

- The Markov chain introduced in Chapter 3 is another angle from which we ob-

serve the behavior of a process. The transition probability matrix reveals how the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5. Conclusions and Future Ertensions 78

process evolves; the equilibrium distribution predicts how the process will be in the
future; the passage time and passage details elaborate how the process behaves in a
¥

transition, etc.

e When we try to evaluate something in the real world, we are not just considering
its present behavior. We will search our memory and put some historical records
into account because one behavior has different interpretations under different back-
grounds, The same principle holds for the process monitoring.

The process monitoring method presented in Chapter 4 monitors the basic trend
of variables, not the isolated, present measured value. Thus it can cffective detect
the behavior change of a process. The potential use of this method includes the

oscillation detection.

e The above algorithms and methods have been programined in Matlab environnent.
All of them have heen integrated into a performance analytical toolbox. Moreover,

the bugs of two Matlab functions have been found and corrected.

e All the methods introduced in this thesis have been applied to industrial appli-
cations. These applications helped the engineers and managers to achieve better
understanding about the processes, for example, the GOHTU plant. The perfor-
mance assessment of the advanced controller of this plant identificd the potential
for further improvement in term of variability. The Markov chain analysis revealed
that this plant was in less economic status although it was in stable control at the
same time.

On the other hand, the industrial applications also reveal some limitations of these
methods that need further improvement. Such as, the time series analysis part of

the FCOR . algorithm is not robust enough to a large dimensional process.

5.2 Future Extensions

Although the achievements presented in this thesis are obvious, there are some issues

which can be further improved.

e A miore robust time scries analysis algorithm is needed for the FCOR algorithm.
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e A method should be developed, which can automatically select an appropriate

wavelet level for any given data.

e The process monitoring method introduced in Chapter 4 can extend to multivariate

variables.

e The processes in this thesis are assumed to be first-order Markov chains and ho-
mogenous. Anderson and Goodman (1956) discussed the methods which can be
used to test the hypotheses that the process is a nth order Markov chain, that
several samples are from the same Markov chain of a given order, etc. The test
methods of similar hypotheses about HMM can provide useful information, such as

the confidence region, for the process monitoring method introduced in Chapter 4.
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Undoubtedly, Matlab is a very successful computing language and commercial software.
However, unfortunately and inevitably, there are still some bugs in some Matlab functions.
For instance, when compute the product of two transfer functions or transfer function
matrices using the Matlab function “*7 , sometimes, some cocfficients of the result that
should be zero will be actually very small numbers.

For instance, for a 2 x 2 MIMO system

gt g
1 =1
T = H—_qI ]+2_q‘

a4
I+3¢-T  T44g-T
one unitary interactor matrix is
D 0.5¢> +0.5g —0.5¢% + 0 5(1
~ | 0.5¢° —0.5¢2 —0.5¢% - 0.5¢
and the product of D x T should be
24-2q ! 2+3¢ !

1+4q- ‘;—3{1“’2 1+6g~ 1+t~q
144q-14-3¢—* 1—*—0q"+811“2

However, if we do this multiplication using Matlab function *“*”, the result is

24+2¢ ¢ 24-3¢¢
1+4dqg - ‘+d(‘ I+6q '+8¢ 2
—2.22¢16¢° - -3

1+4q l+.:S(1 T I+6g '+8¢ 2

Comparing these two results, we can find a very small and strange number: —2.22¢~16,

This kind of problem is very common when using a computer to do floating-point,
computation. For Matlab, we can use the command “eps” to get the Hoating-point relative
accuracy. It is 2.2204e7'%, almost sanic as that small number found in above example.
Usually, this kind of small number can be omitted. In some cases, however, it will result
in absolutely different solutions.

At the iteration step of algorithm 2, for example, when calculate the limit of D x T as

g~ ! — 0, the result for the correct product is

242¢! 2+3¢~! 9 9
Iilm DT = lijlll 1+4q‘~‘éi‘3q‘2 1+6q- 1?—8(]' — [ 5 4 }
q=1—0 gt =0 T#dq-T+3¢-2 T+06g T+& 3 - -
and for the second product is
"+2 g 243¢7 ! 0 o
H H -1 ] -2 & “~
lim DT = hlm 1 .,.,p }W’& 1+6¢ _3+3'7 = [ 3 J )
¢ =0 (el s E= e ‘+3q T+6q T+8¢ 2 o0
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The difference between these two results is that the first one is full-rank constant matrix
which means D is a unitary interactor maftrix for the given T and the second one, however,
is non-causal. This example shows that the correct answer probably will be missed when
using Matlab multiplication function **” in above algorithm.

Moreover, in the case of high order transfer function multiplication, this kind of strange
number will be quite large and, sometime, it is difficult to tell them from other normal
coefficients. Therefore, this problem will seriously affect the computing accuracy.

Thus, the multiplication of two transfer function (matrices) has to be programmed
explicitly in the new algorithm instead of directly using the Matlab multiplication function
Wk .

First step is to find out where this kind of small, strange numbers come from. The
number in above example appeared at the first item of the second row and it is the result of
“D(2,1)*T(1,1)+ D(2,2)«T(2,1)". Just calculate this equation in Matlaly environment,
%‘;_gf—i}%%}(f:qd—l, which shows that either multiplication of transfer function

matrices or that of transfer functions will result in this kind of problem.

the answer is

Next, let “a = (0.5¢> — 0.5q) * (1 + 3¢~1)”, the answer is “0.5¢% + ¢ — 1.5” and lot
“p = (-0.5¢> — 0.5¢) * (1 +¢~1)", the answer is “~0.5¢% — ¢ — 0.5”. All look fine so far.

When adding them together, that strange number is coming,

a+b=-222"16,2_29

It should just be 2!

The problem is arose from the addition. The reason is, sometimes, we can not get
the exact zero because of the floating-point accuracy. In the above example, for instance,
when add 0.5¢% and —0.5¢° together, the answer is —2.22¢~'%¢2 instead of 0. Moreover,
this kind of small number will be accumulated to a quite large number with the repeat of
addition. In order to overcome this problem, we should keep everything happened during

computation under our control. The key issues are

o For transfer function computation, just use vector multiplication and vector addition
and do not use any computation operating on transfer function or transfer function

matrix;

o After every single vector addition operation, check whether all the coefficients are in
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a reasonable range. Set those coefficients which have same magnitude order as eps
to zero, so as to keep the result as accurate as possible and protect these munbers

from accumulation;
¢ Do not use the vector division operation, since it will call the addition operation
automatically and results in the accumulation of those strange, small coeflicients.
For example, the multiplication of two transfer function matrices, D and 7', is caleu-
lated in following way:

Let m x m matrix D expressed as

D(1,1) D(,2) --- D(,m)
D(2,1) D(2,2) - D(2.m)
D(mn,1) D(m,2) --- D(m,m)

and m x n matrix T as

['N(m) N2 N(Um) ]

EA,) ELY) - Fam
N(2,1) N(2,2 . N(2,n)
E(1 1 B ZeED)
NGn,d)  NOGn2)  N(mm)
L E(m,1) E@m?2) F(mymn)

in which, D(i, j), N(i,j) and E(i, j) are vectors used to express transfer functions. Simi-

larly, the product DT, a m X n matrix, is expressed as

Dr(,1) Dr(1,2) --- DT(1,n)
DT(2,1) DT(2,2) --- DT(2,n)
DT(m,1) DT(m,2) --- DT(m,n)
Every element, of DT' can he calculated as
Drig) = D1 x )y MDD L gy « D)

E, 5) E(2.9) Bm, 1) ‘
DG DN DE®R, ) - B, §) + DE2NE@, DEQ, NEG ) - Blmeg) 4+ 4+ D, mINGn ) EQL§) - Blan = 1, §)
B, DER) ... E(m.j)

By this way, finally, the nmltiplication of two transfer function matrices is caleulated
by just using vector multiplication and vector addition. Moreover, after every vector
addition, the cocfficients of the resulting vector are checked and are set to zero if they
have same magnitude order as eps. Therefore, the problem that sometimes there are some

strange, small coeflicients in the product of two transfer function {(matrices) is resolved.
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