
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and continuing 

from left to right in equal sections with small overlaps.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



NOTE TO USERS

This reproduction is the best copy available.

__ «)

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



U n iv e rs ity  o f  A lb e r ta

M u l t iv a r ia t e  P r o c e s s  a n d  C o n t r o l  M o n i t o r i n g  -  P r a c t i c a l  A p p r o a c h e s

a n d  A l g o r it h m s

by

S ien  L u

A thesis subm itted  to the  Faculty of G raduate Studies and Research in partia l 
fulfillment of the requirements for the  degree of M a s te r  o f  S c ien ce

m

Process Control

D epartm ent of Chemical and M aterials Engineering

Edmonton, A lberta 
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1*1 Library and  
A rchives C anad a

Published  H eritage  
Branch

B ibliotheque et 
A rch ives C anada

Direction du 
Patrim oine d e  E d ition

0-494-09229-7

395 Wellington Street 
Ottawa ONK1AON4 
Canada

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN:
Our file Notre reference 
ISBN:

NOTICE:
The author has granted a non­
exclusive license alloWing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L’auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i + i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To the memory of my mother and my father...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Perform ance assessment and process m onitoring arc two active research areas over the last 

decade. In  this thesis, some practical approaches and algorithm s are presented.

F irst, an improved algorithm  for calculation of the interactor m atrix  is developed, the 

FC O R  algorithm  is presented and the subspace approach is described. T hree M atlab 

functions are program med for these three algorithms, respectively. All of them  have been 

tested on sim ulation examples as well as applied to industrial case studies.

Second, the basic concepts of Markov chains are briefly reviewed. T he applications of 

Markov chains to  two industrial plants are elaborated.

Last, a practical process m onitoring m ethod is presented. This m ethod incorporates 

wavelet transform , symbolic representation and Hidden Markov model (HMM) together. 

Sim ulation examples and industrial case studies have shown the value of this method. As 

a  fu ture use of this method, an oscillation detection approach is developed.
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Introduction

W ith the development of com puter technology, d istributed control system  (DCS) has been 

widely used. Meanwhile, as a result of improvement of m easurem ent and m anufactory 

technology, the processes are heavily equipped w ith sensors. W ith  these developments, 

d a ta  is easily collected and advanced control algorithms can be im plemented. To gain a 

com petitive edge in the m arket place, on the other hand, every company is trying to run 

their plants as safe and economic as possible. Therefore, the adoption of more sophisticated 

control technologies is in dem and and also possible. Among these new technologies, two 

of them  are of more interests. T he first one is the perform ance assessment of controllers, 

and the second is the process monitoring.

1.1 Perform ance A ssessm ent

Undoubtedly, the controller is the heart of a  control system. T here are hundreds of control 

loops in a typical plant. Unfortunately, it is impossible for process control engineers to 

routinely evaluate the performance of the controllers one by one. Moreover, the behav­

iors of processes are changing. Even the param eters of a  controller are tuned very well 

today, it can not be promised th a t this controller will work well tomorrow. Therefore, a 

com puter-aided m ethod which can assess the performance of the  controllers autom atically 

and routinely is needed.

1
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Chapter 1. Introduction 2

In perform ance assessment field, the minimum variance control (MVC) benchm ark has 

been widely used since the work of Harris (1989). W ith this benchm ark, the performance 

index (PI) of a  single-input single-output (SISO) system can be calculated as the ratio of 

the o u tpu t variance under minimum variance control and the practical o u tpu t variance. 

For the m ulti-input m ulti-output (MIMO) system, it is the ratio  of the traces of ou tput 

covariance. Since only under m inim um  variance control does the  variance or covariance 

reach the lowest bound, the value of P I lies between 1 and 0. Higher the value, be tte r the 

performance.

A lthough the minimum variance control is hardly applied in practice because of its ag­

gressive activity, as a benchmark, it can provide useful inform ation abou t the performance 

of control systems. The economic performance, for example, is usually measured by the 

deviation from set-point, thus lower variance means be tte r economic performance. If the 

P I indicates poor performance, the reduction of variance can be achieved by controller 

param eters tuning or control algorithm  re-design. If the PI indicates good performance, 

on the other hand, bu t further reduction of variance is still needed, the tuning or re-design 

would not be helpful anymore. In this case, change of control s tructu re  or process, such 

as, feedforward control or relocation of sensors, may be necessary. Moreover, MVC bench­

m ark is the  only performance m easure th a t can be evaluated w ithout complete knowledge 

of the process model so far (Ko and Edgar 2001).

A comprehensive review paper about perform ance assessment using MVC as bench­

m ark is presented by Harris et al. (1999). T h a t of single-loop feedback control and 

feedforward control is studied by Harris (1989) and Desborough and Harris (1993). The 

cascade case is explored by Ko and  Edgar (2000). For the m ultivariable feedback controls 

systems, Harris et al. (1996), Huang et al. (1997b) are two im portan t papers. Harris 

et al. (1996) extended the MVC perform ance benchm ark from SISO system to MIMO 

system  by m ultivariate spectral factorization. H uang et al. (1997b) generalized the fil­

tering and correlation (FCOR) algorithm  to MIMO system for perform ance assessment. 

Ko and Edgar (2001) directly evaluated the perform ance as a  function related to the first 

few Markov param eters of the plant. Huang and Shah (1998) addressed practical issues 

in perform ance assessment of m ultivariable feedback control systems, such as, nonmini­

mum phase systems. Horch and Isaksson (1999) developed a modified MVC index, which 

uses either control design guidelines or additionally available process knowledge. Grimble
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Chapter 1. Introduction 3

V (t)
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Figure 1.1: Model based process m onitoring

(2004) presented an integrated minimum variance criterion to assess the perform ance of 

controllers, which takes the integral action of PID  controller into account. Thornhill et al. 

(1999) summarized some practical experiences w ith the control loop perform ance assess­

m ent in a refinery-wide setting. Paulonis and Cox (2003) illustrated a large-scale controller 

perform ance assessment system developed by E astm an Chemical Company, which spans 

over 14,000 PID  controllers in 40 plants a t 9 sites worldwide.

1.2 Process M onitoring

T he principle of model based process m onitoring is depicted in Figure 1.1 (Sm yth 1994), 

T he first step is param eter estim ation of process models through collected in p u t/o u tp u t 

data. T he next step is to  detect w hether there is change of param eters. If so, the process 

probably has abnorm al behavior and a warning inform ation should be given.

Basically, process monitoring m ethods can be divided into three categories: data- 

driven, analytical and knowledge-based (Chiang et al. 2001).

T he data-driven approach, for example, principal com ponent analysis (PCA ), fisher 

discrim inant analysis (FDA), partia l least squares (PLS) and canonical variate analysis 

(CVA), directly works on in p u t/o u tp u t process data. This is the reason why these ap­
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Chapter 1. Introduction 4

proaches are called data-driven. These approaches transform  the high dimensional da ta  

into a  lower dimension and then capture some im portant inform ation which is hard to 

observe in the original space.

The analytical approach is based on m athem atical models which are usually con­

structed  from first principles. Thus, it can bring some valuable insights about the process. 

However, it is often difficult and expensive to  obtain the first principle models, especially 

for large scale and complex processes.

The knowledge-based approach, such as, causal analysis, expert systems and pattern  

recognition, uses qualitative and sem i-quantitative information to  m onitor the process. 

The process m onitoring m ethod presented in C hapter 4 of this thesis is a p a tte rn  recog­

nition method.

At the end of this section, it should be emphasized th a t all the process monitoring 

m ethods have their advantages and disadvantages. Com pared w ith other m ethods, one 

m ethod is more sensitive to one kind of fault and less sensitive to  another kind of fault. 

Therefore, the best way is to  incorporate several m ethods together.

1.3 Thesis Outline

The organization of this thesis is as follows, In C hapter 2, an improved algorithm  for cal­

culation of the interactor m atrix  is developed, a  MIMO system perform ance assessment 

algorithm  w ith the knowledge of interactor m atrix  is presented and the other w ithout 

a  prior knowledge of interactor m atrix  is also described. Three M atlab functions are 

program m ed for these three algorithms, respectively. All of them  have been tested on 

sim ulation examples as well as applied to  industrial case studies. In C hapter 3, the theory 

of Markov chains is briefly reviewed and applied to  industrial plants. In C hapter 4, a 

practical process m onitoring m ethod is presented. This m ethod integrates wavelet trans­

form, symbolic representation and Hidden Markov model (HMM) together. Simulation 

examples and industrial case studies show the value of this m ethod. Based on this process 

m onitoring method, an oscillation detection approach is presented. In C hapter 5, the 

works of this thesis are sum m arized and the future extensions are given.
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Chapter 1. Introduction 5

1.4 Thesis C ontributions

T he contributions of this thesis are summarized as follow:

•  An improved algorithm  for calculation of the interactor m atrix  is developed.

•  T he theory of Markov chain is employed for industrial d a ta  analysis. Two indices are 

defined, one is out of control index (OCI) and the  other transition  tendency index 

(TTI).

•  A practical process m onitoring m ethod is developed. This m ethod converts the ba­

sic trend  of m onitored variable into qualitative and sem i-quantitative information 

and then  classifies them  into norm al and abnorm al status by hidden Markov model 

(HMM). This m ethod has been used to analyze industrial d a ta  sets. As an illus­

trative example of the future use of this m ethod, an oscillation detection m ethod is 

presented.

•  All approaches and algorithm s introduced in this thesis have been program med in 

M atlab environm ent and integrated into the Performance Analytical Toolbox (PAT). 

T hey have been tested on simulation examples as well as applied to industrial case 

studies.
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Algorithms Development for Performance 
Assessment

Recently, two sets of software package have been developed by Huang and the project team 

a t the University of Alberta: one is nam ed as LMIPA (Linear M atrix  Inequality Perfor­

mance Analysis), which calculates the potential of economic perform ance improvement for 

model predictive control (M PC) and also provides the tuning guidelines on how to achieve 

this potential, and the other nam ed as PAT(Perform ance Analytical Toolbox), which cal­

culates the dynam ic perform ance of M PC. All the algorithm s and functions introduced in 

this chapter have been integrated into PAT.

2.1 Interactor M atrix

Interactor m atrix, D, introduced by Wolovich and Falb (1976), Wolovich and Elliott 

(1983), as well as Goodwin and Sin (1984), is a generalization of the SISO tim e delay 

for the  MIMO case. In troduction of the concept of interactor m atrix  has m ade it possible 

to  extend m any advanced control strategies, for example, adaptive control and minimum 

variance control, to  m ultivariate systems. I t is also a very im portant prerequisite to 

perform ance assessment of m ultivariate systems based on MVC benchmark.

6
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Chapter 2. Algorithms Development fo r  Performance Assessm ent 7

2 .1 .1  A lg o r ith m s  

N ilp oten t interactor m atrix

Rogozinski et al. (1987) introduced the concept of nilpotent interactor m atrix.

D efin ition  1 . For every n x m  proper, fu ll rank, rational polynomial transfer function  

m atrix T , any n  x  n  polynomial m atrix D , having the properties

lira D T =  lim T  = K  (2.1)
<7- 1 —*0 9 _ 1 —*0

and.

\D \= q T (2 .2)

will be called a nilpotent interactor m atrix fo r  the system defined by T .  K  is a fu ll rank 

constant matrix, the integer r is defined as the number o f infinite zeros o f T , and T  is 

the delay-free transfer function (factor) m atrix o f T ,  which contains only fin ite zeros. The 

m atrix D  can be w ritten as

D — Doqd +  D \qd 1 -f • • • +  D ^-iq  (2.3)

where d, the m axim um  power o f q in D , is denoted as the order o f the interactor m atrix  

and is unique fo r  a given transfer function matrix. D i, i — 0 , • • • ,d  -  1, are coefficient 

matrices.

Rogozinski et al. (1987) proposed an algorithm  to evaluate a non-unique nilpotent 

interactor m atrix  operating on the coefficients of the num erator of the right m atrix  

fraction (RM F) description of a system.

D efin ition  2. A transfer function  m atrix T (q) can be (nonuniquely) factored as

T(q) = N (q )E ~ 1(q), (2.4)

in  which the denom inator o f the R M F  description,

E(q) = I  +  E xq~l +  • • • +  E nq~nt (2.5)

is a monic polynomial m atrix and the numerator is assumed to be a polynomial m atrix

N(q)  = No + N i q ~ 1 + - ' -  + N nq - ’\  (2.6)
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Chapter 2. Algorithms Development fo r  Performance Assessm ent 8

which can be represented by a block coefficients matrix

(  N 0
N  — (2.7)

V N n

where n  is the degree o f the denom inator polynomial in the R M F  description. Usually, 

Ni is not a full-rank m atrix and, in  particular, the leading coefficients No, N \,  • • • can be 

zero.

D e fin it io n  3. The n x n  first degree polynomial m atrix U(q) will be called a row shift 

polynomial m atrix (r.s.p .m .) o f order hi, where

in  which, Uo, U\ are of dimension n x n ,  I n is the n x n  identity matrix, and 0r is a r-row  

m atrix o f zeros.

O perating on the  num erator of the RM F given in the form of block coefficients m atrix 

N ,  the algorithm  proposed by Rogozinski et al. (1987) can estim ate a  nilpotent interactor 

m atrix  consisting of t factors through finite recursive calculation:

(2 .8 )

The matrices Uo and U\ are defined through the m atrix o f coefficients:

(2.9)

(2 . 10)

where every factor is the product of two matrices:

5 % )  =  U® (q)Q® ( 2 . 11 )

in which U ^ ( q )  is a r.s.p.m . of order &,• and Q W is a nonsingular n x n  real m atrix.

T he algorithm  proposed by Rogozinski et al. (1987) is introduced as follow. 

A lg o r i th m  1 .

Initialization : Set i  =  0, N ^ ( q )  = N ,  and D°(q) =  I n .

Iteration  : Consider the ith  iteration in the evaluation of D{q).

Step 1: If r j =  rank N $ ~ X̂ — m in (n ,m ), the algorithm term inates and the  nilpotent

interactor m atrix  is D(q) = D ^(tf)' If n  < m in(n ,m ), factorize N q ^  into

(2 . 12)
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where Q W is a n  x n  nonsingular (usually unitary) m atrix, 0* is a fcj-row zero m atrix  and 

ki = n  — r{.

Step 2: Prem ultiply by m atrix  Q W

N{q) = Q ^ N ^ i q ) .  (2.13)

Step 3: Prem ultiply N(q)  by the r.s.p.m . of order ki

N 'iq )  =  UW(q)N(q) .  (2.14)

T his m ultiplication shifts the  coefficients m atrix  of N(q)  upwards by ki rows of zeros. 

U pdate the m atrix

D i ( q ) = S ^ ( q ) D ^ ( q ) .  (2.15)

This ends the ith  iteration. ■

This algorithm  can be applied to any n x m  proper, full rank transfer function m atrix 

T,  no m atter n  >  rri or n < m .

U n i ta r y  in te r a c to r  m a tr ix

Peng and K innaert (1992) introduced the concept of u n i t a r y  in te r a c to r  m a tr ix .  In 

fact, a un itary  interactor m atrix  is a special case of nilpotent interactor m atrix. T he use 

of un itary  interactor m atrix will simplify some linear quadratic (LQ) and MVC problems. 

D e f in it io n  3. I f  an interactor matrix satisfies

D T ( q - 1)D(q) = I,  (2.16)

then this interactor m atrix is denoted as a unitary interactor matrix.

Peng and K innaert (1992) proved th a t in Algorithm 1, a t step 1 of each iteration, 

if the factorization of is calculated by the normalized QR factorization, Q W is

a un itary  m atrix. Moreover, U ^ \q )  is also a unitary  polynomial m atrix  as it satisfies 

UT (q~l )U(q) =  /„ , Since the product of un itary  m atrices m ust itself be unitary, D(q)  is 

a  un itary  interactor matrix.

Peng and K innaert (1992) limited their algorithm  to square transfer function m atri­

ces. However, this is not necessary because the algorithm  can be extended to non-square 

transfer function m atrices easily w ithout any further assumptions.
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C alculate interactor m atrix using M arkov param eters

No m atter nilpotent interactor m atrix  or un itary  interactor m atrix, so far, the requirem ent 

of priori knowledge of interactor m atrix  is tan tam ount to almost complete knowledge of 

the system transfer m atrix. Shah et al. (1987) suggested factoring an interactor m atrix 

directly from Markov param eters of a  process.

Considering a  transfer function m atrix  T  using a Markov param eter representation
OO

T  = Y ^ G iq~i , (2.17)
<=o

it follows from the  definition of an interactor m atrix  th a t

lim [Doqd + D \ q d 1 +  • • • +  Dd-iqWGoq 1 +  Giq  2 +  • • • ]
<7_ l—*o
=  D qG,i - \  +  D\Gd-2  +  • • • +  Dd-iGo  — K.  (2.18)

Exam ination of the  above equation results in the following set of linear, algebraic equations 

for com puting Do, D \ ,  ■ • ■ , Dd-i'-

D qGq =  0 ,

D\Go  •+■ D qG\  = 0 ,

Dd-\Go  +  • • • +  D\Gd-2  +  A )G d -i =  K.  (2.19)

T he order of the  interactor m atrix, d, is the fewest linear combinations of the rows of 

M arkov param eters or matrices, G j’s, required such th a t the set of simultaneous linear 

algebraic equations hold.

Following this idea, Huang et al. (1997) developed a m ethod for calculation of the 

interactor m atrix. F irst, the order of the interactor m atrix  is determ ined by using singu­

lar value decomposition (SVD) to the above set of equations. Second, because Markov 

param eter is a special case of num erator coefficients m atrix  of the RM F of the transfer 

function matrix:

OO

T  = Y , G iq ' i = N { q ) E ~ \ q )  (2.20)
i=0

where N{q)  =  Go +  G \q~ l +  G29-2  -I , and E(q) — I,  a un itary  interactor m atrix  can

be factorized using the Algorithm 1 operating on the first few (not smaller than  interactor
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m atrix  order d) Markov param eters instead of the  num erator coefficients of the RM F 

description of the system.

Huang et al. (1997) also pointed ou t th a t  even w ithout the knowledge of the  interac­

to r m atrix  order d, the interactor m atrix  can be factored provided th a t enough Markov 

param eters are given. Thus, based on this result, an improved algorithm  is derived, which 

is simple in the sense of concept.

A lgorithm  2
A n  x m  proper, full rank transfer function m atrix  T  can be expressed by its Markov

param eter representation as T  = Go +  G \q ~ l -) b Giq~{ -I . Stack the first i Markov

param eters as a  block m atrix

G = (2 .21 )

\ G i J

Initialization : Since Go, the first Markov param eter m atrix  of a causal MIMO system, 

is always zero, the iteration sta rts  directly from i —1.

Iteration  : For every given G, a un itary  m atrix  D  can be calculated by Algorithm 1.

If this un itary  m atrix  satisfies the  first condition of a  nilpotent interactor m atrix

lim D T  =  lim T  =  K,  (2.22)
g_1—>0 9-1—*0

it is an interactor m atrix  for the  given transfer function m atrix  T  because the second 

condition

\D\ = qr (2.23)

will be satisfied explicitly. Otherwise, increase i to  expand the block m atrix  G, calculate 

a un itary  m atrix  for this new block m atrix  and check whether the result satisfies the 

E quation (2.22). R epeat this iterative process until an interactor m atrix  is calculated.■

2 .1 .2  M a tla b  F u n ctio n

One M atlab function, interactor, is program m ed for A lgorithm 2 . T he input of this 

function can be a discrete or continuous transfer function m atrix  T  or state-space m atrices 

A, B,  G, D.  T he o u tp u t is a un itary  interactor m atrix  D.

•  For a discrete transfer function m atrix  T,  use com m and [D] = interactor(T, ‘d is’).
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•  For a  continues transfer function m atrix  T, use command [D] = interactor(T, ‘con’, 

Ts, Method).  T he meaning of input param eters T s  and M eth od  is the same as th a t

of M atlab function “c2d” . The default value of T s  is 1 and the default value of

M eth od  is ‘zoh’ whenever they are omitted.

•  For a  discrete state-space model, use command [D] = interactor(A, B, C, D, ‘d is’).

•  For a continuous state-space model, use command [D] = interactor(A, B, C, D, 

‘con’, Ts, Method).

•  T he ‘con’ or ‘dis’ param eter can NOT be om itted.

2 .1 .3  E x a m p les

The interactor function has been tested on lots of examples. Three of them  are given in

this p a rt to show the correctness of this function.

E x a m p le  1. For the example illustrated on Page 21 of Huang and Shah (1999)

"-2 o.5g~3
T  = i+<rT 1+20-1 

0.5Q-1 q 
L 1+3<J-1 l+4q~1

a un itary  interactor m atrix  is evaluated as

D = 0 q 
q2 0

which is different from the result presented in Huang and Shah (1999)

D'  = q2 0 
0 q

We can show th a t  like D', D  is also a unitary interactor m atrix  for the  given system 

T  because

lim D T  ■
0.5 1

1+q-1 l+4q~l 
1 0.5q 1

_ 1+(/"' l+2q- T

is full rank and

D T (q 1)D(q)  = 0 q
r 1 0

' 0.5 1 '
1 0 _

q ' 1 0 '
0 0 1

This example shows that, for a  given transfer m atrix  T,  the unitary  in teractor m atrix 

is non-unique.
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E x a m p le  2 . For another example on the same page of Huang and Shah (1999)

-i
_ s_

T  = 1+7" 1 
_2_

L 1+3?"

- L —T 

1+49-1

one interactor m atrix  is calculated as

D = 0.5 q2 +  0.5? 
0.5?3 -  0.5?2

-0 .5 ?2 +  0.5? 
-0.5?3 -  0.5q2

Com pared with the result in Huang and Shah (1999) 

D  = 0.5?2 +  0.5? -0 .5 ?2 +  0.5?
—0.5?3 +  0 .5<72 0.5?3 +  0.5 q2

we can see th a t these two m atrices only have difference in th e  signs of the  elements of the 

second row. This difference does not have any effect on the  calculation of an  interactor 

m atrix.

E x a m p le  3. Gao et al. (2003) presented two perform ance assessment case stud­

ies of industrial m ultivariate M PC based controllers a t M itsubishi chemical complex in 

M izushima, Japan. The open-loop process model of a  para-xylene distillation un it is

- 0 . 0 0 8 0 P q ~ ‘  — 0 . 1 4 0 8 q ~
J - 0 . 2 8 4 6 q -  1 - 0 . 0 7 4 0 q ~ ?  

- 0 . 0 2 4 0 8 < 7 ~ * • f 0 . 0 3 9 3 0 q " 2 
l - l . B C B q " 1 + 0 . 8 7 ( J 4 q ~ 2

— 0 . 1 4f l4 q~l-0.09q“

- O .U 0 0 3 8 q ~ 1 + 0 .2 4 0 8 ( 7 " 2
l - l . G 9 q - l + 0 . G a 7 B « j - 2

0 . 1 0 9 2 o ~  1  —0 . 1 6 6 1 q * ~ 2 
l - 1 . 8 7 3 q ~ l + l l . 8 7 » 0 q - 2

0
0 . 3 4 u ~ ' 2 

l - 0 . 0 9 q "  1

0
- 0 . 0 2 4 1 4 q ~ 1 —0 . 2 0 0 q  ”  2 
l - C l . i l i e q - l  - O . l R S q "7 2  

0 . 0 1 1 4 8 g ~ 1 4 - 0 . 0 1 0 2 6 o ~ 2 
l - 1 . 8 7 0 q "  1 + 0 . 8 8 2 3 q " 2

0
- 1 . 3 9 9 0

1 - O . Q O q -

— 0 . 1 2 9 7 9 ** 1 - f - 0 . 4 2 5 0 q ~  2 
l - 1 . 3 0 1 q " ^  + 0 . 3 1 5 9 q - ^  

- 0 . 0 4 0 8 ( 7 "  1 - 0 . 0 0 8 1 0 3 q ~ 2 
l - 1 . 8 1 4 q - l + n . 8 2 3 6 q ” 2 

- 0 . 1 9 6 8 ( 7 "  1 
l-O.OPq"”1- 
- 0 , 4 9 1 1 a " 2
1 - 0 . 9 0 V

T he estim ated unitary  interactor m atrix  is

D  =

-0.05925<7
0.006448?
-0.02357?
0.03355?
-0 .9974?

0

-0 .7234?
0.425?

-0 .3104?
0.4418?

0.06791?
0

-0 .4 ?
-0.9003?

-0.09754?
0.1388?

0.02491?
0

0.5597?
-0.09344?
-0 .4733?
0.6738?

0
0

0
0
0
0
0

0
0

0.8183?
0.5748?

0
0

which is the  same as th a t published in Gao et al. (2003) except th e  difference in the  signs 

of the  th ird  row elements.

3 7 B 0 a ~  2 
1 - 0 . D O ? "  J

2.2 FCO R A lgorithm

Once the interactor m atrix is known, the perform ance benchm ark based 011 m inimum 

variance control can be extended to multivariable control systems. Harris et al. (1996)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Algorithms Development fo r  Performance Assessm ent 14

developed a m ethod which requires the spectral factorization of the interactor matrix. 

Com pared with it, the FCO R algorithm  presented in Huang and Shah (1997b) is simpler. 

I t is tru ly  an extension of SISO FCO R algorithm  to MIMO case.

2 .2 .1  A lg o r ith m

A MIMO process can be modeled as

Yt = T U t + N a t , (2.24)

where T  and N  are proper, rational transfer function matrices for the p lant and noise, 

respectively; Yt is an ou tpu t vector and Ut an  input vector. For stochastic systems, at 

represents a  white noise vector w ith zero mean and covariance m atrix  E a.

Furtherm ore, if T  is a proper, full rank transfer function m atrix, a un itary  interactor

m atrix  D  can be evaluated and D T  = T,  where T  is the delay-free transfer function m atrix

of T.  Therefore, Equation (2.24) can be expressed as

Yt =  T U t + N a t = D - ' T U t  +  N a t . (2.25)

Prem ultiplying both  sides of E quation (2.25) by q~dD,  where d is the order of interactor

m atrix  D  as defined before, gives

q~dD Y t =  q~df U t +  q - dD N a t . (2.26)

Let Yt — q~dD Y t and N  = q~dD N ,  Equation(2.26) becomes

Yt = q~df U t + Nat-  (2.27)

Huang and Shah (1997b) showed th a t since D  is a  un itary  interactor m atrix, the 

minimum variance control law which minimizes the objective function of the interactor- 

filtered variable Yt, J\  =  E { Y ^ Y t), also minimizes the objective function of the original 

variable Yt , J-i =  E ( Y f Y t), and Jy =  Ji ,  which means th a t E { Y ^ Y t) = E ( Y tTYt).

Under feedback control law Ut =  —QYt,  where Q is the transfer function m atrix  of a 

controller, the closed-loop transfer function can be expressed as

Yt = —q~dT Q Y t +  N a t . (2.28)

Using Diophantine identity, N  can be decomposed into two parts:

N  = F  + q~dR  (2.29)
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where F  — Fq + Fxq 1 +  • • • +  F d_i<7 (d ^  and R  is the remaining proper and rational

transfer function m atrix. Substitu ting  Equation (2.29) into Equation (2.28) yields

is a proper rational transfer function matrix.

Since F  is independent of the controller Q, the two term s on the right hand side of 

Equation (2.31) are independent. Therefore, the following two equations hold

and the equality holds only under minimum variance control law, which lets L  — 0. As 

a  result, the  process ou tpu t under minimum variance control, F a t , is feedback controller- 

invariant.

T hrough tim e series analysis performed on a  set of closed-loop routine operating data, 

we can get the estim ation of the  noise model N .  F ilter N  by q~dD  and express N  sis

then, we can have the estim ation values of F: Fq, F \ , • • • , F a -1. P u ttin g  these values into 

Equation (2.33),

Yt =  (qdI  +  f Q ) ~ l qd{F  +  q~dR ) a t . (2.30)

Simplifying this equation, finally we get

Yt — Fat  ■P Dat—d (2.31)

where

L  = R - T ( I  + q ' dQ T ) ~ l Q N (2.32)

VarfYt ) >  Var (Fat )  

E[YtT Yt} > t r ( V a r (F a t)) (2.33)

IV =  q~dD N  = F0 + Fxq~l + ■ ■ • +  +  R q ~ d (2.34)

E\Y?Yt\\mvc  =  t r ( V a r ( F a t)) =  t r (F0X aF f  +  . • • +  Fd^ E aF j _ }). (2.35)I mvc

Therefore, the performance index of overall MIMO system  can be expressed as

m i n i m u m  covariance _  ElY^Yt]  |mvc 
actual covariance E \ Y ^ Y t]

E[Y?'Yt\\mvc =  t r ( V a r ( F a t )) 
EiY^Vt] L r ( E W Y t}) 

(2.36)
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and the perform ance index of every individual ou tpu t is defined as

_  diag(YtT Yt)\mvc

77,1 diag(YtTYt) 

where ?jft is a  n  x 1 vector and n  is the o u tpu t number.

Because under minimum control law,

diag(YtT Yt) £  diag(YtT Yt )

even though

t r (YtTYt) =  t r (YtTYt),

we should find a way to  com pute the value of diag(Y^r Yt)\mvc.

Since

Yt = q~dD Y t =>Yt = qdD ~ 1Yt 

and from the definition of un itary  interactor m atrix,

D T ( q - 1) D ( q ) = I ^ D - 1(q) = D T ( q - 1)

D ~ l = (D0qd +  • •■ 4- D d - i q )~ 1 =  D ^ q ~ d +  • • • +  S j - i ? -1

we can get

Yt = qd(DQq d +  • ■ • +  D%_iq 1)(Fo 4- • • • +  Fd- \ q  d̂ ^ )at 

= E a t

= (E0 +  E iq~ l +  • • • +  E d- iq - l d-V )a t

[S o ,E u --- E a - d  =  [ £ # , ,  • • • ,

50 Si
51 S 2

Fd- 1

Fd-
Fd- 1

Thus,

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

E \ Y ? Y t]\mvc -  t r ( V a r ( E a t)) = t r (E 0E aE 0T +  ■■■+ E d- 1Ea£%'-i) 

diag(Ytr Yt)\mvc =  d iag (V ar(E a t)) =  d iag(E 0E aEo 4-----4- E d^ iE aE j_ 1). (2.43)

Substitu ting  Equation (2.43) into Equation (2.37), finally, the perform ance index of every 

individual o u tp u t is calculated as

diag(YtTYt)lmvc diag(E0EaE^'  4 E d- \ E aE j _ x)
V n  = diag(YtTYt) diag(YtT Yt)

(2.44)
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2 .2 .2  M a tla b  F u n ction

One M atlab function, fcor, is program m ed for this algorithm.

[Eta, E t a n] = f  cor (OutputData,  In te r  actor M a t r i x )

T he input and o u tp u t param eters are explained as follow:

OutputData  : A set of routine operating o u tp u t d a ta  used for perform ance assess­

ment.

In te r  actor M a t r i x  : A un itary  interactor m atrix  of the given system calculated

by interactor  function introduced in Section 2.1 or estim ated by other methods.

Eta  : Performance index of the overall system.

E t a n : Perform ance index of individual ou tpu t loop, a n  x 1 vector.

2 .2 .3  S im u la tio n  E x a m p le

One of the sim ulation examples designed for the test of fcor  function is illustrated in this 

part, which is on Page 90 of H uang and Shah (1999).

T  is a 2 x 2 MIMO process, Q  is the controller and N  is the disturbance transfer function 

m atrix. The white noise excitation, at, is a two-dimensional norm ally-distributed white 

noise sequence w ith E a =  I.

By the interactor  function, the interactor m atrix  of T  is calculated as

From the interactor m atrix  D  and the noise model N ,  the theoretical values of the 

performance index can be calculated. For the detailed calculation procedure, readers are 

refer to Huang and Shah (1999). The param eter K  in the transfer function m atrix  of 

T  increases from 0 to  10. A set of closed-loop d a ta  is sim ulated for every K .  W ith  the

U.(J
1—0.5?-*

r 0.5-0.2017-1
1-0 .5?-*

L.\J
1 -0 .5  ?-*

0
0.25—0.200?-*

(1—0 .5 ? -* )(l+ 0 .5 ? -‘

-0 .95789 -0.28739 
0.287392 0.957892
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0 1  2 3 4 5 6 7 8 9  10
K

Figure 2.1: Perform ance assessment result by the  FC O R  algorithm

interactor m atrix  and sim ulated closed-loop data, the perform ance index of the overall 

MIMO system  and th a t of two o u tp u t loops, Y 1 and F 2 , are estim ated. The performance 

assessment results are shown in F igure 2.1. From this figure, we can sec th a t the theoretical 

values and th e  estim ation values m atch well for different K ,  which show th a t bo th  the 

theory  and function of the fcor  function are correct.

2.3 Subspace M ethod

So far, the in teractor m atrix  can be estim ated from the first few Markov param eters 

of a  process by the  algorithm  presented in  section 2.1. W hen the inter actor m atrix  is 

known a prior , the  perform ance index can be estim ated from a  set of closed-loop routine 

operating data. A lthough the interactor m atrix  is a meaningful generation of tim e delay 

term  in the SISO case to  MIMO case, its concept and calculation is an obstacle, especially, 

for industrial users. Therefore, next challenge for the perform ance assessment of MIMO 

system  is the calculation of perform ance index w ithout the knowledge of interactor matrix.

Ko and Edgar (2001) developed a simple m ethod which integrates the calculation of 

interactor m atrix  and the estim ation of perform ance index together and simplifies them  

to an explicit “one-shot” solution. Huang et al. (2004) presented a subspace m ethod to

0. 9 ■ 

0.8 ■ 

0. 7 • 

0.6  • 

0. 5 ■ 

0. 4 ■ 

0. 3 • 

0.2  • 

0.1  • 

0

Y1
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a

a
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calculate the perform ance index directly from in p u t/o u tp u t d a ta  w ithout the  knowledge 

of inter actor m atrix.

T he subspace m ethod of identification (SMI) has been an active research area since 

the beginning of 1990s. Com pared w ith the traditional identification m ethod, such as, 

the prediction error m ethod (PEM ), the advantages of SMI are num erical reliability and 

com putational simplicity.

2 .3 .1  A lg o r ith m

This section is cited from Huang et al. (2004).

If we describe a  linear tim e-invariant system  w ith 1-inputs, m -ou tpu ts  and n-states 

using the innovations state space representation as

x t +1 =  A x t +  B u t + K e t

y t -  C x t +  et (2.45)

where the dimensions of system state  space m atrices A, B , C  and K  are n  x  n , n  x l , m  x n

and n x  m,  respectively. K  is the Kalm an filter gain and e*, is an unknown innovation or

white-noise sequence with covariance m atrix S.

Stack the inpu t u t into two block Hankel matrices,

" U! U2 Uj UN+1 UN+2 ■ UN+j
U2 u 3 uj +1

and Uf =
UN+2 uyv+3 • uN+j+1

. UN UN+1 ' • UN+i- 1 _ U2 N U2N+1 ' • U2N+j-l

where p  denotes the  past and /  denotes the future. Similarly, the o u tp u t yt and the white 

noise et are stacked into two block Hankel matrices, respectively,

"  2/i 2/2 Vj 2/yv+i UN+2 • 2/N+j

Yr =
2/2 2/3 2/j+i

and Y f  =
2//V+2 2/W+3 • • 2 /w +j+ i

. 2IN TJN+l ■ ' VN+j-l . 2/2 N 2/2W+1 ' • 2/2W+J-1

ei e2 ei ew+i ZN+2 ' CAT+j

Ep =
e2 e3 ej+1

and E j  =
ew+2 6A/+3 ' • eN+j+1

. cn ew+i • • CN+j-l . C2N C2/V+1 - • C2N+j-l
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T he past and future sta te  sequences are defined as

[ 2q 2̂ 2 1 * * 2/j ] and X j  — ( :nw-ri :z:̂ _|_2 * * ’ ]*

Notice th a t, each block element in the above matrices is a column vector, i.e.

' ut " 5?

i

£

u2 iit *?e II •

IIs

j

II<5* H II J

1
■ "sf 1 ' i

_
_i

11
T hrough recursive substitu tion of Equation (2.45), three im portan t equations in SMI 

are achieved:

Yp = T n X p +  H NUP +  H 3NE P 

Yf  = T NX f  + H N Uf  + H 3NE f  

A N X p +  A p/Up +  A %Ep

(2.46)

(2.47)

(2.48)

where,

r N  =

c
C A

C A N~l

is the extended observability m atrix,

0 0 • 0 ' Im 0 • 0

h n  =
C B 0 • 0

and H t f  =
C K •Im • 0

_ C A n ~2B C A N~'i B  •• • 0 _ C A N ~2K C A n ~3K  ■ ■ Im .

are the lower triangular Toeplitz m atrices containing the Markov param eters correspond­

ing to  the determ inistic input u and the unknown stochastic inpu t e^, respectively,

A n  = [ A n ~ 1B  A n ~2B  ■■ B and A°n  =  f A N ~l K  A n ~2K  • • • K

are reversed extended controllability matrices. In subspace identification literature, the 

following short-hand notation is often used:

" • - u
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jspaec m ethod of identification always has two steps. The first step is the projection 

of certain subspace generated from the d a ta  in order to  get, the estim ation of subspace 

m atrices and I I n  and /o r X f .  The second step is the estim ation of system  sta te  space 

m atrices A , B , C  and K  from T n  and I I n  or X f .  The m ethod introduced in this section 

only needs the estimation of subspace matrices, w ithout the knowledge of system  state  

space m atrices, so it is also a model-free method.

Ko and Edgar (200.1) showed that, under minimum variance control, the behavior of 

the ou tpu ts under infinite horizon is the same as th a t under a  finite horizon if the rank 

of the p lan t transfer function T(r/- ’) is equal to the number of ou tpu ts for alm ost all q. 

Moreover, it can be expressed as

N - 1

Vt\mvc =  ^   ̂ Fiet-i,  (2.49)
;-o

in which

I  F° )

\  /'A '-l J
H f j  i is the first block column of H SN . Thus, the MVC benchm ark can be w ritten  as

Jmvc =  / • '• ( /  -  I lNl l{ , ) I I 'hAS H f tl(I -  I I NI l l , f  (2.50)

From above equation, we can see th a t the MVC benchmark can be calculated directly 

from I I n  and II*N which are comprised of first, few Markov parameter's of the plant and 

noise model, respectively. The algorithm  developed by Huang et al. (2004) is based on 

subspace m ethod, by which I I ^  can be; estim ated from a set of open loop experim ental 

d a ta  and Il'f, can be estim ated from a set of closed-loop routine operating data. The 

detailed procedure is explained as follow.

E s t im a tio n  o f

To get the estim ation of II n , Equation (2.47) can be rewriten as

Y j - r N X f  = U N Uf  + H*NE s . (2.51)

M ultiply above equation with Uj  ( U f U j ) ~ l ,

(Yf  -  r N X f )U}'(Uf U j ) - 1 =  I INUf U j \ U f U j y ] -I- H % E f U j { U f U j ) ~ i . (2.52)
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Because Uj  and E j  are independent under open loop condition, Equation (2.52) can be 

simplified as

H n  =  (V) -  r N x f ) u J (U f U j r 1 =  ( Y f  -  r N X f ) u j ,  (2.53)

where “f" means the pseudo inverse.

In ,subspace literature, two projections are frequently used. One of them  is oblique

projection and the other is orthogonal projection.
D e fin itio n  4. The oblique projection of  the row space of  A G 7 F XJ along the row space

of  B  G RT*3 on the row space of  C  G R r*3 are defined as A / r C  and can be calculated via

A / b C = a (  g ) t ( : , l : r ) C  (2.54)

\ t
q  1 f rom

first column to the rth column.

For the oblique projection, two properties are im portant:

A / AC  =  0 (2.55)

A / r A = A. (2.56)

D e fin itio n  5. The orthogonal projection of  the row space of  A onto the row space of  

B  is denoted by A / B  and can be calculated through A / B  =  A B ^ B .

Perform ing an oblique projection of Equation (2.47) results

y f / u , W p =  T N X f / u , W p + H n Uj / ujW p + H f t E f l u j W p .  (2.57)

T he second item of right hand side of the  above equation is zero due to  the property  of

oblique projection A / , \ C  — 0 and the last item is also zero since E / ,  Uj  and W p are

independent under open loop. Therefore Equation (2.57) becomes

Y} / u s Wv = Y NX s / UsWp. (2.58)

From Equation (2.46), Ep can be express as

e p = {h *n) - 1y p - { h *n) - ' t n x p - { h *n) - xh n v p (2.59)

and substitu ting  Equation (2.59) into Equation (2.48) results

X f  = A NX p +  A N UP + A 1 Yp -  A % (B i , )  -lV NX p -  A%(fPN ) ' 1H N Up 

=  (/1A' -  A%(ITf i)~lr N ) X p + [A%(JJfj)~l |Ajv -  A%(H"N) - ' H N]WP. (2.60)
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Then, perform  an oblique projection of Equation (2.60) on to W p through Up,

X f / u , W p = {AN

+[A%(H%)-1\A N -  A%(IJaN r l H N\Wp/ UfWp (2 .61)

where X f / v , Wp, defined as X f ,  is an  optimal prediction of the s ta te  by a  Kalm an filter

with X p/ u t Wp as intial state. Now, Equation (2.58) can be rew ritten as

Y f / u f Wp ^ r N X f  (2.62)

and substitu ting  into Equation (2.53), finally, the estim ation of H u  is

H N = ( Y f - r N X f )u}  = {Yf - Y f / u , W p)u} .  (2.63)

From above equation, we can see th a t / / A> can be estim ated directly by a set of open loop 

experim ent data.

E s t im a tio n  o f  H SN

Since the  noise model under open loop condition is different from the model in closed- 

loop condition, we should use the close-loop data  to get the estim ation of H f , . Like the 

Equation (2.47) for the open loop case, we can write one for the close-loop condition and 

let Uf  =  0,

Y f  =  T % X r]  +  H f f E ?  (2.64)

where Fjy and H f  are the same as Fjy and HhN in Equation (2.47) b u t the superscript cl 

stands for close-loop condition.

Perform ing an orthogonal projection of Equation (2.64) onto Y f 1 results

y f / Y p  =  r & X ' f / Y f  +  H f E f / Y , f .  (2.65)

Since the future noise F/f and past ou tpu t Yf* arc independent even under closed-loop 

condition, the last item of right hand side of above equation equals zero and

Y f / Y f  - v %x ‘/ / y ;;< = r f x f  = y ? y * y *. (2 .66)

T he Lemma 2 of Huang et al. (2004) proved that, under an arb itra ry  stable control, 

U f  =  L, ,diag(^r S~  *, • • • , $ T S ~ l>) (2.67)
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where 'I> is a unitary  m atrix  and L\x is a lower triangular m atrix resulted from a QR. 

decomposition according to the following equation:

L h.Q = - ~ ( Y f  - T i r X ? )  (2.68)

where Q is a unitary mat rix.

Substitu ting  Equation (2.66) into Equation (2.68), the estimation of £,/, is

L hQ =  - ^ ( Y ?  -  r * X f )  =  ~ ( Y f  -  Y f Y f Y ; 1) (2.69)

E s t i m a t i o n  o f  J mvc  a n d  p e r f o r m a n c e  i n d e x

Now, the o u tpu t variance under minimum variance control can be w ritten as

Jm vc =  t r { I  -  H N H l , ) H f A S ( i r ^ f { l  -

= tr{I  -  H NH \ i )L K i$ TS - ± S S - H L l A{I -  H N H'N )T 

=  t r { I - H Nr fN )LhtlL l A( I - H NH \ i )T (2.70)

where H$*{ is the first block column of and is the first block column of L/,. 

S ubstitu ting the estim ation of and L),

H N = (Yf - Y f / U{Wp)U} (2.71)

L h = ^ { Y f - Y f Y ^ y ; ; l)Qr  (2 .72)

into Equation (2.70),

Jm vc = t r { I - H NH ^ ) L hAL l tl{ I - H NH \ J)r . (2.73)

T he overall MIMO perform ance index using minimum variance control as benchmark 

can be expressed as

( 2 ' 7 4 )

For every individual ou tpu t loop, the performance index can be calculated as

m i \ Y tT Y,}
vn =  (2.75)

Since ( I -  H n Ĥ n )L iu\ L ' 1 \ ( I -- H^, )1 is a Nrn  x N m  block m atrix  in which every block

is a  m  x m  m atrix, the \Y,r Yi)nwr. can be calcidated as the sum m ation of main diagonal 

block matrices of ( /  -  JJ^flVN )Lilt\ L r[ tl(I -  / / ^ / / j ^ ) 7’.
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2 .3 .2  M a tla b  F u n ction

One M atlab function, pass , is programmed for this subspace m ethod. Pass  stands for 

Perform ance Assessment by SubSpace method.

T he outputs of this function are performance indices of overall system, 7 7 , and th a t of 

individual ou tpu t loop. //„. T hree kinds of performance index can be calculated by this 

function: estim ation value, theoretical value and mixed value.

E stim ation  value

As introduced in hist part, the performance index can be estim ated directly from a set 

of open loop experim ental d a ta  and a set of closed-loop routine operating d a ta  by this 

subspacc m ethod. Therefore, this performance index is named as estim ation value.

For the estim ation value, use command

T he inpu t param eters U0Jtfm and YnpPn are a set of open loop experim ental in p u t/o u tp u t 

d a ta  and Yaoae is a set of closed-loop routine operating ou tpu t data.

T heoretical value

On the  o ther hand, if the models of plant, controller and noise are available, the theoretical 

value of H n  and Hfj s are known because they are comprised of Markov param eter of plant 

and closed-loop system, respectively. Then, the theoretical value of Jmuc can be calculated 

as

T he inpu t param eters plant,  controller, noise  are models of plant, controller and noise, 

respectively, expressed in transfer function m atrix and S  is the intensity m atrix of square 

roo t of covariance m atrix of white noise.

\k/ ta,Eta ,nj —pass(Ur,peJi.AnpCn,Y (:ioll,,, e s t ).

(2.76)

For th e  theoretical value, use command

[Eta, Eta«n\ — pass(plant,  controller, noise, S, 'the').
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M ixed value

If only the plant model is available, “mixed value” of J mvc  can be calculated as

Jmvc  =  lr (J -  -  H NH ]N )T , (2.77)

where H n  is. calculated from plant model and A/, is estim ated from a set of closed-loop

data.

For the mixed value, use command

\Eta, E t a n\ — pass(plant , Yc[osc, ‘"mix').

Im plem entation  Issues

•  After get the estimation of H n , we need to  perform data  cleaning. Because I I  

consists of Markov param eter of the plant, for a causal system, the elements located 

in the upper block triangular of 77,v should be zeros theoretically. However, they are 

some small num bers due to the effect of noise. The existence of these small num bers 

will affect the result of this subspace m ethod significantly and sometimes this m ethod 

may fail. Thus, first we need to set all the upper block triangular elements to zero 

and calculate statistical data , such as, mean value and confidence intervals, from 

these elements. Next, those elements located in the lower block triangular of II  ̂  

are processed based on these statistical data.

•  For SMI, one key point is the selection of appropriate N  for the d ata  Hankel matrices 

Up, U j , Y p and Yj.  If N  is too  small, the accuracy is poor. If N  is too  large, on the  

other hand, the com putational speed becomes extreme slow. In this algorithm, the 

rank of ( I - H H ^ )  will not change when N  increases to a certain number. Examples 

about this will be shown in the following example part. Using this property, the 

algorithm  can autom atically find a suitable Ar for given data. The initial value of Ar 

is set to 2. In the iterative; process, for every AT, the rank of ( / - H h I I ^ )  is calculated 

for three consecutive numbers, such as, N, N  + 1 and N  +  2. If these three ranks are 

same, current N  is a appropriate value for the given data. Otherwise;, increase; N  

and the incremental step is 5. In the case th a t the rank of ( I  — 11^11^) still changes 

when N  is a quite large number, such as 100, the algorithm  will stop autom atically 

and an error massage is given.
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2 .3 .3  S im u la tio n  E x a m p le

In this p a rt, the example th a t has been employed to illustrate the FCO R  algorithm  is 

used to  test this subspace perform ance assessment m ethod.

T  =

N  —

Q =

r q' K q  2
1- 0.-I q 1 1- 0.17 1

0 .3 (7 "1 q - 2
L i-o. a/ 1 I-O.87 1

1 — 0.0
1- 0.57 1 1- 0.57 '0.5 1.0
1 —0.57“1 1- 0.57"'

r 0.5- 0.207" 
1- 0.57 1

1

0
0

0 .2 5  - 0 . 2 0 0 /  1
0 — ) ( 1+U. 5<j - '

Four kinds of performance index are shown in Figure 2.2. T he theoretical and esti­

m ation values of FCO R algorithm  are the same as those shown in Figure 2.1. For the 

subspace method, the theoretical and estimation values are calculated by the function 

pass.  As we can see, they all m atch well. Both theoretical values are exactly same, which 

shows m atch of the two m ethods in theory. Compared with the FCOR, algorithm , more­

over, this subspace method has obvious advantage. No concept and com putation, such a.s, 

in teractor m atrix, is needed. We can directly estim ate the perform ance index from data, 

a  set of open loop experiment d a ta  and a set of closed-loop routine operating data . This 

is the reason th a t this method is called an “one-shot” data-driven approach.

T he next step is to dem onstrate the property th a t the rank of ( I  will not

change when N  increase to a certain number. Set K  — 1 and the dimension of ( / —H jvĤ N) 

is N m  x N m .

W hen N  equals 2,

1 -  =

1 0 
0 1 
0 0 
0 0

0
0

0.0957
-0.2942

0
0

-0.2942
0.9043

r a n k { I  -  H n H n Y =  3.
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Figure 2.2: Performance assessment results by the FCO R algorithm  and subspace m ethod

W hen Ar increases to 3,

T -  H NH ]N =

1 0 
0 1 
o', o 
0 0 
0 0 
0 0

0
0

0.0923
-0.2895

0
0

0 0 0
0 0 0

-0 .2895 0 0
0.9077 0 0

0 0 0
0 0 0

r a n k f l  -  H n H\,)  =  3 and notice th a t all new elements are zeros. 

W hen N  increases to  4,

I  -  H n H ]n  =

'  1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0.0923 -0.2895 0 0 0 0
0 0 -0.2895 0.9077 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 o  J

r a n k f l  -  H n h {,) =  3.

Therefore, N  =  2 is a appropriate selection for this process to stack the d a ta  Hankel 

matrices.
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Figure 2.3: Gas oil hydrotrcatcr unit

2.4 Industrial Case Study

T he purpo.se of this section is to apply the performance assessment algorithm s introduced 

in above sections to a real industrial process -  the gas oil hydrotreater un it (GO IITU ) 

of Syncrude C anada Ltd. a t F t. McMurray, Alberta. The objective is to  use minimum 

variance control benchm ark to  assess the performance of process controllers. This will 

identify the potential for further improvement in term s of variability reduction and this 

reduction of variability can directly be transferred to economic benefits and environmental 

impacts.

2 .4 .1  P r o c e ss  O verv iew

T he p roduct of G O IiT U  is high quality treated gas oil and the byproduct is partially  

treated  naphtha. The schematic diagram of the GOIITU is shown in Figure 2.3.

The m ain parts of the GO IITU are feed section, reactor section, reactor effluent section 

and fractionator section. In the feed section, the raw gas oil is filtered in feed filters to
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remove particulate m atter and flows into the surge drum , from where it is pum ped to 

the reactor section. In the reactor section, the raw gas oil is preheated and combined 

w ith trea t gas before it is sent to the reactors. The trea t gas is composed of recycle 

gas and fresh makeup hydrogen. The hydrogenation reactions occur in the reactors with 

catalyst. The reactor efllucnf is then cooled and separated into a liquid stream  arid a vapor 

stream  in the hot. high pressure separator. The liquid stream  is sent to the fractionator 

section. The recycle gas is compressed after the removal of light oils, N H$  and H^S.  In  the 

fractionator section, the liquid stream  from the reactor section is fractionated into product, 

gas oil (fractionator bottoms) and the partially  treated  naphtha(fractionator overhead).

The main operating variables in the GOHTU are reactor equivalent isotherm al tem ­

peratures, hydrogen partial pressure, catalyst activity and fractionation.

Syncrude has applied advanced control technology to  optimize hydrogen treating unit 

operations, including the control, optimization and coordination of the naph tha hydrotreaters, 

the gas oil hydrotreaters and the  light gas oil hydrotreater. Tire control and optim ization 

of the GOHTU is p a rt of the whole project.

T he reactor section has 41 Controlled Variables (CVs) and 15 M anipulated Variables 

(MVs).

Table 2.1: MV list jf  the reactor section
MV DESCRIPTIO N MV D ESCRIPTIO N

1 T1A: A Reactor Bed 1 Inlet Temp o TIB : B Reactor Bed 1 Inlet Temp
3 T2A: A Reactor Bed 2 Inlet Temp 4 T2B: B Reactor Bed 2 Inlet Temp
5 T8A: A Reactor Bed 3 Inlet Temp 6 T8B: B Reactor Bed 3 Inlet Temp
7 T9A: A Reactor Bed 4 Inlet Temp 8 T9B: B Reactor Bed 4 Inlet Temp
9 FM5A: A Reactor Treat Gas Ratio 10 FM5B: B Reactor Treat Gas Ratio

11 FR195A: Cell A Air-to-Fuel Ratio 12 FR195B: Cell B Air-to-Fuel Ratio
13 S309: K -l Compressor Speed 14 FD34: Feed Bias Between A and B Reactor
15 NM13: Recycle Gas Purity

2 .4 .2  C ase  S tu d y  R esu lts

In addition to closed-loop routine operating data, the transfer function model of reactor 

section is also available. I t is a 41 x 15 m atrix. T he interactor m atrix for this reactor
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Table 2.2: CV list of the reactor section
CV DESCRIPTIO N CV DESCRIPTIO N

1 AC910, Cas Oil Nitrogen Content 2 AC911, Gas Oil Sulphur Content
3 PC903, A Reactor Partial Pres 4 PC904, B Reactor H? P artia l Pres
5 TC1A, Delta O utlet Temp Between 

Beds 3 and 4 in A Reactor
6 TC1B, D elta O utlet Temp Between 

Beds 3 and 4 in B Reactor
7 TC2, D id Between A Reactor WABT 

and B Reactor WABT
8 TK1A, A Reactor Bed 1 Hot Spot 9 TK1B, B Reactor Bed 1 Hot Spot
10 TK2A. A Reactor Bed 2 Hot Spot 11 TK2B, B Reactor Bed 2 Hot Spot.
12 TK3A, A Reactor Bed 3 Hot Spot 13 TK3B, B Reactor Bed 3 Hot Spot
14 TK4A, A Reactor Bed 4 Hot Spot 15 TK4B, B Reactor Bed 4 Hot Spot
16 F5A.OP, A Rx Treat Gas Valve O utput 17 F5B.OP, B Rx Treat Gas Valve O u tpu t
18 T2A.OP, A Reactor Bed 2 Quench 19 T2B.OP, B Reactor Bed 2 Quench
20 T8A.OP, A Reactor Bed 3 Quench 21 T8B.OP, B Reactor Bed 3 Quench
22 T9A.OP, A Reactor Bed 4 Quench 23 T9B.OP, B Reactor Bed 4 Quench
24 PC22A, A Reactor Bed 3 DP 25 PC22B, B Reactor Bed 3 DP
26 PC23A, A Reactor Bed 4 DP 27 PC23B, B Reactor Bed 4 DP
28 PC5A, C2A DP 29 PC5B, C2B DP
30 Y112, Compressor Anti-Surge Valve 31 P190, K -l Discharge Pressure
32 A23A, F-1A Excess O2 33 A23B, F-1B Excess ()>
34 T300, F -lA  COT 35 T301, F-113 COT
36 P117B, F -lA  Fuel Gas Pres 37 P119B, F-1B Fuel Gas Pres
38 TK5A, F -lA  Radiant T M T  Hi-Sel 39 TK5B, F-1B R adiant T M T  Hi-Sel
40 TK6A, F -lA  Convection TM Ts Hi-Sel 41 TK6B, F-1B Convection T M Ts Hi-Sel

section model is calculated by interactor  function. T he result is a 41 x 41 m atrix.

' 0 0 0 . . .  0 rr

(1 0 0 0

0 0 •> . . .  0 0
0 z 0 . . .  0 0
rr 0 0 . . .  0 "I

0

T he reason th a t this interactor m atrix has a simple format is th a t the second block of 

p lant Markov param eters, G\,  is of full rank. Thus the algorithm  term inates only after 

one time iteration.

Because the reactor section has considerable size, the tim e series analysis algorithm 

fails and thus the FCO R algorithm can not proceed the calculation. T he noise model can 

not be estim ated correctly from the closed-loop d a ta  through time-series analysis because 

of the high dimension of the process.
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Output #

Figure 2.4: Performance assessment; result, by the subspacc method

However, the subspacc m ethod works for this process, which shows the robustness of 

this subspace method. Since we have plant model and closed-loop routine operating data, 

the mixed value of performance index can be calculated. For one typical d a ta  set, the 

overall performance index is 0.01 and the individual performance index of every o u tp u t 

loop is showed in Figure 2.4, from which we can see th a t this controller has potential to 

improve.

2.5 Conclusions

In this chapter, an improved algorithm  for calculation of the interactor m atrix  is developed. 

T he FCOR. algorithm  is described. If the interactor m atrix is known, the performance 

index of a MIMO system can be estim ated from a set of closed-loop d a ta  by this FCO R 

algorithm. A subspace m ethod w ithout a prior knowledge of the interactor m atrix  is 

also presented. This m ethod simplifies the calculation of performance index and gives an 

explicit ”one-shot” solution. T he performance can be assessed from a set of open loop 

experim ental data  and a set of closed-loop routine operating data.

Three M atlab functions are program m ed for these three algorithms, respectively. These 

functions have been tested on sim ulation examples and integrated into the software package
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PAT. One industrial case study  is presented, which revealed th a t the real process has 

po tential to  improve in term s of variability reduction.
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Markov Chains

T he basic concepts of Markov chains were introduced by A. A. Markov in 1907. They are 

the simplest m athem atical models for random  phenom ena evolving in time. Their simple 

structu re  makes it possible to say a great deal about their behavior. At the same time, the 

class of Markov chains is rich enough to serve in many applications. This makes Markov 

chains the first and most im portant examples of random processes.

Compared w ith other methods, the advantage of Markov chains analysis is th a t it can 

provide considerable insight about the behavior of the control system. However, it does 

not weaken the m erits of other methods. On the contrary, these m ethods can provide 

us complementary inform ation about the performance of the control system, which will 

enable us to achieve better and deeper understanding.

3.1 Basic C oncepts o f Markov Chains

M arkov Chains

If a. process has no memory of where it has been in the past, this means th a t only the 

current s ta te  of the process can influence where it goes next, we called it a Markov process. 

W hen it has only a finite or countable set of st ates, it is usually referred as a M aikov chain. 

(Kerneny and Snell 197(i)

A Markov chain is observed to transit from one state  to another s ta te  frequently.

34
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Suppose a Markov chain has q states, which means there are q possible outcomes a t each 

point in time. The set of q possible outcomes is denoted as S\  s ta te  space. T he ith  

element of S  is 6 ',,/ =  1,2, ••• .q. We also denote the sequence of n  observations of a 

Markov process by X t , t — 0 ,1 ,2 , • • • , n.

spends in s ta te  Si  before transiting to another state. Occupation time 6',- is defined as the 

num ber of times th a t the sequence is observed to  be in a particular s ta te  5';.

I n i t ia l  d i s t r ib u t io n  7To a n d  t r a n s i t io n  p ro b a b il i ty  m a tr ix  P

T he probability of being in any one of these q states a t time t can be described by a  vector 

tTt . T h a t means, (tp)* =  Prol>a.bility(Xt =  S i ) .  The elements of irt always sum to one,

7To is known as the initial distribution.

A nother im portan t concept about Markov chain is the transition probability m atrix  

P.  Pjj denotes the transition probability from state  / to  state  j  in one step. Obviously, 

Pij P 0 for all / and j  and each row of P  sums to one.

Given an initial distribution ttq and a transition probability m atrix P. a Markov chain 

can be uniquely determ ined, since

where Gy is defined as the num ber of occurrences of transition from sta te  i to s ta te  j  in 

th e  sequence Xt  and C; is the occupation time.

State-holding tim e 1) is defined as the average time interval in which the sequence

(3.1)
1 =  1

** =  * L i P  =  ^ r n- (3.2)

T he transition probability m atrix P  can be estim ated by
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T yp es o f M arkov chains

T he states of a Markov chain can be divided into transient and ergodic sets. The former, 

once left, are never again entered; while the latter, once entered, are never again left.

We can divide the Markov chains into two types: ergodic Markov chains and absorbing 

Markov chains. If a sta te  is the only element, of an ergodic set, then it is called an absorbing 

state . For such a  s ta te  .sy, the entry pa m ust be 1, and hence all other entries in this row 

of the transition m atrix  are 0. A chain, all of whose non-transient states are absorbing, is 

called an absorbing chain.

An ergodic Markov chain is one that, has no transient sets, and has a single ergodic 

set. A Markov chain was ergodic if and only if it is possible to be in any state  after some 

num ber N  of steps, no m atter w hat the starting  state. An ergodic Markov chain m ust be 

either regular or cyclic.

Equilibrium  distribution

If P  is a  regular transition m atrix, then the powers P n approach a probability m atrix  A  

as n  tends to infinity. Each row of A is the same probability vector a  — { « j,a 2< • • • ,a n }. 

A  is nam ed as limiting m atrix and a  limiting vector or equilibrium distribution.

For a given transition probability m atrix P, the equilibrium distribution a  is unique 

such th a t a P  =  a.  We cannot get an unique solution through above equation since the 

sum m ation of every row’s elements equals to one, P  does not have full rank. However, 

the sum m ation of all elements in n equals to  one. P u t them  together,

a P  =  a  (3.4)

+  no +  •••-)- an =  1

W ith this constraint, we can get an unique solution of a.

For any initial distribution vector kq, iraP n also approaches the  vector a  as n  tends to 

infinity, which means that the initial distribution has no effect on the equilibrium.

Passage T im e

For a regular Markov chain, the passage time is a function whose value is the number 

of steps before entering s*. for the  first tim e after the initial position.
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T he mean passage time m atrix is denoted as M .  Entry  niij is the mean passage tim e 

from sta te  Si to Sj. The mean passage m atrix M  is given by

where I  is an identity matrix, Z  = ( I  -  (P  -  ,4))“ ' is called the fundam ental m atrix  for a 

regular Markov chain, Z,ig denotes the diagonal elements of the fundam ental m atrix, E  is 

a  m atrix  w ith all entries 1, and D  is the diagonal m atrix  with diagonal elements da =  d-.

Passage details

So far, we can get, the  mean passage tim e from state  ,s;- to s ta te  .y.  By changing the  

process from a regular Markov process to  an absorbing process, we can get more detailed 

inform ation, such as the mean num bers of times th a t it will be in each of the o ther states 

before reaching y  for the first, time. To do this, what we need to do is to change s ta te  y  to 

an absorbing state, then the process will be an absorbing process with a single absorbing 

state . By using the absorbing Markov chain theory, we can get some inform ation which 

cannot, be observed from the observation about regular Markov chain.

The question is whether it is reasonable to apply the theory of absorbing Markov chain 

to  a  regular Markov chain. T he answer is positive. W hat we need to  do is ju s t change 

one or more states to  absorbing states, and the behaviors of the original regular process 

and the observed absorbing process are exactly the same as before reaching the absorbing 

states. Hence we can translate all of the information about our original chain.

For an absorbing Markov chain, it is convenient to express the transition probability 

m atrix  P  in the following way

where the subm atrix S' is the transition probability m atrix of all absorbing states and Q 

is that, of all transient states. The fundamental m atrix of an absorbing Markov chain is 

denoted as N  and every elements of Ar, n y ,  is the number of times th a t the process is 

in transient s ta te  Sj after it leaves the initial state  ,sy and before it reaches an absorbing 

state. N  is calculated as

M  = { I - Z  + E Z dlJ)D , (3.5)

(3.6)
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3.2 Industrial Case Studies

Harris and Yu (2003) defined a variable, degree of freedom (DOF), and dem onstrated how 

the Markov chains can be used to analyze the industrial data. In this section, the theory 

of Markov chains is used to analyze the data collected from two industrial plants.

3 .2 .1  C ase  S tu d y  1 -  G O H T U

As the first case study, a set of industrial da ta  collected from the Syncrude’s GOHTU 

plant is analyzed. This plant has 41 CVs and 15 MVs. There is detailed inform ation 

abou t this p lant in C hapter 2 . T he d a ta  sample time is 15 seconds.

C o n tro l  s ta b i l i ty

In addition to  the values of these CVs and MVs, this set of d a ta  also recorded some 

param eters of CVs and MVs, such as the control low and high limit. These param eters 

are set by the process control engineers and used by the advanced control algorithm s.

If the value of a CV exceeds its high or low limit, it means th a t  this variable is out of 

control. Based on it, we define a  discrete variable:

O ut of Control Index (OCI) =  number of out of controlled CVs.

For this d a ta  set, the range of this variable is from 1 to 7. 1 m eans th a t  the  process 

is in the normal state  and no CV is out of control. On the o ther hand, 7 m eans th a t  the  

process is in the worst condition of this da ta  set and there are 6 CVs which are out of 

control simultaneously. Larger the number, more out of control the process.

T ra n s it io n  p ro b a b il i ty  m a tr ix

For this set of data, the estim ated transition probability m atrix  is shown in Table 3.1.

Table 3.1: Transition probabi
p State 1 State 2 State 3 State 4 S tate 5 S tate  6 S ta te  7
S tate 1 0.86 0.13 0.01 0 0 0 0
S tate 2 0 .2G 0.63 0.10 0.01 0 0 0
S tate 3 0.04 0/28 0.57 0.10 0.01 0 0
S tate  4 0 0.07 0.3G 0.48 0.09 0 0
State 5 0 0.01 0.07 0.27 0.58 0.0G 0.01
State  G 0 0 0 0 0.22 0.72 0.06
S tate  7 0 0 0 0 0.G7 0 0.33

ity m atrix
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Figure 3.1: Transition probability v.s. state-holding time

In  Table 3.1, the main diagonal elements are much larger than  others. I t  means th a t 

every sta te  will stay a t itself for certain time before transiting  to another state. This is 

easy to  understand because the sample time is fast. Moreover, these diagonal elements 

are proportional to the state-holding times of these states, as shown in Figure 3.1. T he 

larger the probability is, the longer the state-holding tim e is.

We notice th a t > &(,•+!), i =  2 ,3 ,..., 6 . This means th a t every s ta te  has higher

probability to  transit to in-control states than  to out-control state. The other feature th a t 

we notice is th a t  pjj is almost zero when j  > i +  1 or j  < i -  1. The interpretation is th a t 

when the state  changes, it most likely changes to a neighboring state. As a result, we can 

say th a t the process has no dram atic changes in CVs.

In Figure 3.2 (a), for every state, the left bar is the sum m ation of probabilities to  all 
\

previous, more in-control states and the right bar is to  all next, more out-control states. 

Obviously, every state  has higher tendency to transfer to  more in-control states than 

out-control state. We can define a transition tendency index (TTI) as

The T T I is an index of m agnitude - 1  <  T T I  < 1, where 1 indicates the  best in term s 

of tendency toward in-control states, while -1 indicates the worst. Thus it is an index 

abou t the transition tendency to normal states. From Figure; 3.2 (b), we can see th a t T T I 

has an obvious increase with the increase of out of controlled CV numbers. Thus we can
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Figure 3.3: Equilibrium  distribution

conclude th a t this process is in stable control.

Equilibrium  distribution

Equilibrium  distribution provides us with a prediction about the future. For this set 

of data , the equilibrium distribution is calculated as

a  -  [ 0.4537 0.3340 0.1321 0.0477 0.0195 0.0097 0.0028 0.0005 ] .

From Figure 3.3, we can see th a t a t equilibrium process spends more tim e a t less out- 

control states. In fact, for 55% time, the process is completely within control s ta te  and for 

29% time, the process ju s t has one CV out of controll. The percent tim e spent a t three 

worst states, in which the process has more th an  3 out of controlled CVs, is less than 5%.
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Figure 3.4: Passage time to .sj

As a conclusion, we can say th a t this process is in stable operation.

Passage tim e

For our example, the mean passage time m atrix M  is calculated in Table 3.2.

Table 3.2: Mean passage time
State 1 S tate  2 State 3 S tate 4 State 5 S tate 6 S tate 7

S tate  1 1.81 7.31 27.8G 81.62 309 1530 3469
S tate 2 5.48 3.44 22.25 75.62 303 1525 3463
State 3 8.72 4,95 9.1(1 59.51 285 1507 3446
State 4 11.11 7.20 6.G2 29.50 240 1459 3398
State 5 13.93 9.98 9.45 18.45 89.75 1271 3185
S tate 6 17.83 13.88 13.35 22.35 3.9 354 2551
S tate 7 15.43 11.48 10.95 19.95 1.5 1272 2124

The first column data  in the Table 3.2 is shown in Figure 3.4. They are the average 

times the process needed to re tu rn  to the complete in-control s tate  s j. If the process sta rts  

from .<?7, for example, the average time before it re turns to  .sj is about 15 sample time. In 

Table 3.2, we also notice th a t A/y(f < j)  is much larger than A7j,\ For instance, it will 

take about 3469 sample time for the process to reach .sy from si; however, ju s t 15 sample 

time from sy to  s j. This means th a t the process has less tendency to the worse sta te  and 

more tendency to better in-control state. Again, it is proved th a t the process is in stable 

control.

Passage detail
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For our example, we are interested in the mean numbers of times th a t the process is 

in each of the other states before reaching the two extreme states, the norm al sta te  and 

the worst state.

For the normal state  s j, first we need to change si into an absorbing state. T hen the 

transition probability m atrix becomes

■ 1 0 0 0 0 0 0 •
0.26 0.63 0.10 0.01 0 0 0
0.04 0.28 0.57 0.10 0.01 0 0

p  = 0 0.07 0.36 0.48 0.09 0 0
0 0.01 0.07 0.27 0.58 0.06 0.01
0 0 0 0 0.22 0.72 0.06
0 0 0 0 0.67 0 0.33

For an absorbing Markov chain, it is convenient to express the transition probability 

m atrix  P  according to Equation 3.6. Thus, in this example,

S =  [l],

Q =

R  =  [ 0.26 0.04 0 0 0 O f

0.63 0.10 0.01 0 0
0.28 0.57 0.10 0.01 0
0.07 0.36 0.48 0.09 0

0
0 
0

0.01 0.07 0.27 0.58 0.06 0.01
0 0 0 0.22 0.72 0.06
0 0 0 0.67 0 0.33

Table 3.3 shows N  calculated according to  Equation 3.7.

Tab o 3.3: Passage details when sj as an absorbing state
State 2 State 3 State 4 S tate 5 S tate 6 State 7

S tate 2 3.72 1.21 0.39 0.13 0.03 0.01
S tate 3 3.22 3.99 1.05 0.36 0.09 0.01
State 4 3.26 3.53 3.14 0.90 0.23 0.04
State 5 3.27 3.53 2.61 3.60 0.77 0.14
State 6 3.27 3.53 2.61 3.60 4.37 0.44
State 7 3.27 3.53 2.61 3.60 0.77 1.64

From the mean passage time m atrix, we have known how much tim e is needed for the 

process to  reach sta te  sj from sta te  s,-. For example!, it  takes about 15 sample times from 

»7 to .sj. From the m atrix  N ,  we can get more detailed information about w hat happened
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Figure .3.5: Transition process from s7 to .<?]

during this transition. It will stay a t s2 about. 3.27 samples times, a t s 3 about 3.53 sample 

times, a t .sq abou t 2.61 sample times, and so on.

T he detailed passage process from sta te  s 7 to sj is shown in Figure 3.5, from which we 

can see th a t even during the passage process from the most out of controlled sta te  sy to 

norm al s ta te  s j , the process spent more time to  stay a t in-control zone th an  at out-control 

zone. This m eans th a t  the  process can quickly and autom atically back to  in-control s ta tu s 

under the control of the current.

In same way, we can change s ta te  s7 to an absorbing sta te  and observe how the process 

behaves during the  passage to s ta te  .sy.

Tab e 3.4: Passage details when <7 as an a jsorbing sta te
S tate 1 S ta te  2 State 3 S tate  4 S tate 5 S tate  6

S ta te  1 1923 1010 377 116 35 9.07
S tate  2 1917 1010 377 116 35 9.07
S tate  3 1905 1004 377 115 35 9.07
S tate  4 1878 989 371 116 35 9.07
S ta te  5 1758 926 348 108 35 9.00
S tate  6 1407 741 278 86 28 10.80

Com pared w ith the da ta  by treating  sq as an absorbing state, these num bers in Table 

3.4 are quite large. T he interpretation is th a t it will take much longer tim e for every state, 

especially those more in-control states, to reach state  sy. It verifies our conclusion th a t
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Figure 3.6: Economic index J

this process is in stable control.

Econom ic analysis

T he economic optimizer has been used to control and optimize the GOHTU. T he opti­

mization objective is to maximum CV1, CV2, CV3, CV4, MV1, MV2. MV3, MV4, MV9, 

MV10 (linear objective) and to minimize CV18, CV19, CV32, CV33, MV13, MV15 (lin­

ear objective), CV5, CV6, CV7, MV14 (quadratic objective), all subject to constraints. 

Therefore, the economic index J  is calculated according following optim ization objective 

function for the same data, set analyzed above:

J  =  - (  —10n;l — 5ri/2 — r:a3 -- r.vA 4- (rn5)2 +  (cu6)2 +  (c.v7)“ +  0.5r?/18 

+0.5cul9 +  0.5ce32 +  0.5cu33 — om ul — 5??iu2 -  m v 3 — m t4  

-0 .6m u9 -  0.6ma 10 +  0.4m.ul3 +  0.05(mi;14)" +  10m.ul5).

Then, the economic index is discretized into eight states. S tate ,S| means the process is in 

the best economic state  and .<sg means th a t in the worst economic state. The original d a ta  

and the discrete sequence of ./ are shown in Figure 3.6.

For this sequence of the economic index, the estim ated transition probability m atrix  

is shown in Table 3.5. This m atrix  is almost an identity m atrix, which means th a t this 

process is almost an absorbing process and every s ta te  is near absorbing state. T he reason 

is th a t the state-holding time of every state, as shown in Fig 3.7 (a), is p re tty  large and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3. Markov Chains 45

Jllillll
1 2 3 * 5 6 7 8

M o re -e c o n o m ic  <  S t a t e  ► L e s s -e c o n o m ic

(u) S la te -h o ld in g  tim e

More-economic

■psuiei 
m i  Sute2

EDstairt 
| j status 

| .  /  ' j StatcS 

f "  1 Stato7

r — is«—■

Loss-oconomic

9%

9%

53%

16%

(b ) E quilibrium  d istr ib u tion  

Figure 3.7: Economic analysis

there are few transitions during the whole sample process.

Table 3.5: Transition probability m atrix
p State  1 S tate 2 S tate  3 State 4 S tate 5 S tate  6 S tate 7 S tate 8
S tate  1 0.985 0.015 0 0 0 0 0 0
S tate  2 0.005 0.975 0.02 0 0 0 0 0
S tate  3 0 0.003 0.989 0.008 0 0 0 0
S tate  4 0 0 o.oos 0.983 0.09 0 0 0
S tate 5 0 0 0 0.01 0.98 0.001 0 0
S tate  6 0 0 0 0 0.004 0.986 0.01 0
State 7 0 0 0 0 0 0.003 0.996 0.001
S tate  8 0 0 0 0 0 0 0.025 0.975

T he equilibrium  distribution is calculated as

a  = [ 0.01 0.03 0.15 0.12 0.10 0.14 0.43 0.02 ]

and shown in Figure 3.7 (b), from which we can see th a t the process stays a t less economic 

states for most of time.

Table 3.6 shows the mean passage time m atrix  M .  We notice that, compared with 

other elements, the  diagonal elements are quite small. This means th a t the process has 

very strong tendency to  stay a t the original state.

T he passage details when trea t ,$i and s» as an absorbing s ta te  are shown in Table 3.7 

and Table 3.8, respectively. In these tables, we noticed th a t, during every transition from 

one sta te  to  s\ or the process stays a t less economic states for most of time.
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Table 3.6: M ean passage tim e
S tate 1 State 2 State 3 S tate 4 State 5 S tate  6 State 7 State 8

S tate 1 97 65 131 292 538 1070 1346 3408
State 2 6243 32 66 227 473 1005 1281 3343
S tate 3 7754 1511 7 161 407 939 1215 3277
State 4 8269 2026 741 8 246 778 1054 3116
State 5 8602 2359 1267 655 10 532 808 2870
State 6 8939 2696 1893 1475 1045 7 276 2338
State 7 8953 2710 2004 1649 1295 425 2 2062
S tate 8 8994 2751 2045 1690 1336 466 41 52

Table 3.7: Passage details when .si as an absorbing state
State 2 State 3 State 4 S tate 5 S tate 6 S tate 7 S tate 8

S tate 2 200 925 761 650 887 2698 122
State 3 200 1156 951 813 1109 3373 153
State  4 200 1123 1033 882 1204 3662 166
S tate  5 200 1095 994 942 1285 3909 177
S tate  6 200 1052 936 869 1407 4281 194
S tate 7 200 1038 916 845 1350 4405 200
State 8 200 1038 916 845 1350 4405 240

In the control stability analysis, all the  results support the conclusion th a t the process 

is in stable control; however, the economic analysis states th a t the process is in less 

economic sta tu s most of time. Therefore, this controller may be tuned to achieve further 

economic profits.

3 .2 .2  C ase  S tu d y  2 -  P S V

T h i s  p a r t  h a s  b e e n  r e m o v e d  d u e  t o  t h e  c o n s i d e r a t i o n  o f  p r o p r i e t a r y .

3.3 Conclusions

In this chapter, the theory of Markov chain is first reviewed. T he basic concepts, such as 

transition probability matrix, equilibrium distribution, etc. are introduced.

The Markov chain theory has been applied to industrial plants. Two indices are 

defined, one is out of control index (OCI) and the other transition tendency index (TTI). 

All the analysis results performed on the GOHTU, including the OCI and T T I indices,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3. Markov Chains 47

Table 3.8: Passage details when ss as an absorbing state
S tate 1 S tate  2 S tate 3 State 4 S tate 5 State 6 S ta te  7

State 1 128 193 780 580 433 394 899
State 2 63 193 780 580 433 394 899
State 3 47 143 780 580 433 394 899
State 4 40 122 648 580 433 394 899
State 5 34 103 535 471 433 394 899
State 6 25 76 365 308 271 394 899
State 7 22 07 308 254 217 290 899

support the conclusion th a t this plant was in stable control. T he economic analysis, 

however, revealed th a t this p lant is not optimized.
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A Practical Process Monitoring Method

T he traditional approach of process m onitoring is based on limit sensing(Chiang et «/2001). 

High an d /o r low threshold is predefined for some critical variables. For the most critical 

variables, extrem e high and /o r extrem e low threshold are also predefined. If the measured 

value of one variable exceeds its high or low threshold, an alarm  is triggered. T he process 

operators need to figure out what; lias happened to this variable and take some necessary 

actions, sometimes with the help of process control engineers and technicians. If this 

variable continues to deviate from normal value and reaches the extrem e high or extrem e 

low threshold, the emergency shutdown (ESD) system has to pu t into effect and p a rt of, 

even whole, process may shutdown immediately.

T he limit sensing approach has two disadvantages. On one hand, it works 011 the 

present measured values of the m onitored valuables, w ithout taking the trends into account. 

Sometimes, ju s t a short peak of the measured value will result in serious consequences. On 

the o ther hand, it neglects the relations between variables. In some cases, the deviation of 

one variable from normal value does not m ean the whole process is in abnorm al situation. 

Therefore, a ideal process m onitoring m ethod should not only monitor the trend of a 

variable, bu t also consider the relations between trends of several related variables.

48
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Figure 4.1: A rchitecture of this process m onitoring m ethod

4.1 M ethodology

This process monitoring method consists of two parts: representation and classification. 

In the representation part, the process d a ta  is filtered by wavelet transform  and then de­

scribed by a sequence of triangular episodes. By the triangular description, the original 

d a ta  is converted into qualitative and sem i-quantitative information. Then this informa­

tion is input into one or more hidden Markov models (I4MM) for classification.

4 .1 .1  W a v e le t A n a lysis

Since the 90’s of the last century, wavelets have been widely used as an im portant tool for 

signal analysis. The concept is no t new to m athem aticians and physicists; however, their 

applications to signal processing have experienced increasing popularity  since the work of

A family of wavelets is derived from the translations and dilations of a  single function,

as showed in Figure 4.2 and Figure 4.3.
D e f in itio n  6 //V 'fa ) is the starting function, to he called a w a v e le t, the members of  

the family are given by :

in which the scale parameter e indicates the dilation and, the translation parameter u  

indicates the shifting of the mother wavelet V’O'i')-

T he continuous wavelet transform  (CW T) is the projection of a function F (x )  € L 2(r) 

on a  wavelet, i.e.

J.M orlet et al  (1984), Mallat(1989, 1991) and Daubechies (1990).

(4.1)

(4.2)
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Figure 4.2: Dilation of a  function
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Figure 4.3: Translation of a function

T he original function F (x)  can be reconstructed from the wavelet transform s by:

F (x )  = J +°° f +°° W cuF{x)  |  } dedu. (4.3)

For the discrete wavelet transform  (DW T), the scale param eter e, and the translation 

param eter, u, have to be discretized. Usually, the scale param eter is sam pled along the 

dyadic sequence.

e =  2 " \ rn =  0 ,1 ,2 , • • • , L g Z  (4.4)

The scale m  =  0 represents the fittest scale, which is the original measured d a ta  and m. — L  

represents the coarsest scale. As the scale param eter e is increased, high frequencies of 

signal are removed. Thus, we can think the wavelet as a band-bass filter.

There are two approaches for the discretization of the translation  param eter. T he first 

one is to sam ple a uniformly over dyadic intervals:

u = a2mk, (■m . , k ) e Z 2, (4.5)

where a  is the sam pling interval. A nother approach involves uniform sam pling of the 

signal a t all scales, i.e.

u = n  such that n  — Z  (4.6)
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Figure 4.4: DW T decomposition

Figure 4.5: DW T multi-decomposition

In the first approach, the sample interval between adjacent, wavelets doubles as the scale 

increases and it does not change with scale in the second approach.

M allat (1989) developed an efficient way to implement the discrete wavelet transform , 

which in fact is a vary practical liltering algorithm. As illustrated in Figure 4.4, the 

original signal, s, passes through two complementary filters and emerges as two signals: 

A , which stands for the approximation, is the low-frequency component of the signal and 

D, which stands tor the detail, is the high-frequency component. The detail, D. is the 

wavelet transform  of the original signal. I t is the difference between the original signal and 

the approxim ation. This process is called decomposition in wavelet and can lie performed 

iteratively.

If we im plement filtering in this way, unfortunately, the total data number of A  and 

D  will be twice as much as th a t  of the  original signal. Thus, downsampling has to  l)e 

integrated into this algorithm to keep the to tal number of data constant. In the Figure 

4.6, cA  and cD  are the  coefficients of the approximation and the detail after downsampling,

1 Filters
1 , r —

high-pass

\
D
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Figure 4.7: DW T reconstruction

respectively.

Reconstruction perforins in a reverse way, as shown in Fig 4.7. Combining upsam pled 

approxim ation and detail coefficients, it is possible to reconstruct the original signal. 

Using zeros instead of detail coefficients, approximation is reconstructed, which has the 

same length as the original signal bu t high-frequency information is filtered out.

Figure 4.8 shows an electrical consumption measured over the  course of 3 days. Like 

m ost signals collected from the real world, noise is introduced into this signal as the 

m easurements were being made.

T he wavelet decomposition of this signal is shown in Figure 4.9. T he raw d a ta  (m  =  0) 

is decomposed into the approxim ation and the detail a t in =  1. This process is continued 

until desired level is reached. T he details are the high frequency noisy signals filtered from 

the upper layer approxim ation signals. The approximations keep the basic trend  of the 

original data.
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Figure 4.9: Wavelet decomposition of the electrical consum ption
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Figure 4.10: Illustration of detinitions for describing process trends 

4 .1 .2  T riangular R ep resen ta tio n

By the  wavelet transform , the basic trend  is extracted from the noisy data. T he next step 

is to represent, this trend in an efficient way.

A great deal of effort lias been focused on using local extrem a as descriptive primitives 

to  analyze one or two dimensional signal because these extrem a usually have direct se­

m antic interpretations. The extraction of these features can help to characterize a signal 

and separate it from others. W ithin (1083) suggested the use of zero-crossings because, 

compared w ith extrema, zero-crossings are more convenient for im plementation.

The ?ith order zero-crossings in a signal, F(t),  are the points th a t satisfy

0 " F  cffo+b/a
■ S F - ' - S f i z r ' *  (4' 7)

Therefore, an extremum  is a first order zero-crossing and an inflexion point, is a second 

order zero-crossing.

T he series of paper by Stephanopoulos (1990a, 1990b, 1994) developed a m ethod tr i­

angular representation -  to describe qualitative and quantitative inform ation in a  process 

trend. A signal is first smoothed by wavelet for the extraction of basic trend, and then, 

according to  the extrem a and inflexion points, it is divided into episodes. An episode 

consists of an extremum and a neighbored inflexion point. Formally speaking, an episode 

is a  p art of signal whose first and second derivative have constant signs. These definitions 

are illustrated in Figure 4.10.
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Figure 4.12: Definition of triangles

Using this method, every episode can be described by a triangle. As shown in Figure 

4.11, one side of the triangle is constructed by drawing a line between the two end points 

of the episode. T he remaining two sides are drawn by connecting the tangents of these 

end points, up to the point where the slope intersects.

T here are seven kinds of triangle defined in Bakshi and Stephanopoulos (1994), named 

as A, D, C, D, E , F  and G. T heir shapes and definitions are showed in Figure 4.12 (Wong 

et al. 1998). In fact, type E, F  and G  are three kinds of line: linear increasing, linear 

decreasing and constant. It is hardly to observe these three kinds of line in a sm oothed 

trend. Therefore, they are not adopted in this work. Then, this triangular representation 

m ethod is simplified to contain four kinds of triangle: A, B, C  and D.

T he type of triangle determ ines the qualitative information of an  episode. In addition 

to  the type, some sem i-quantitative information axe also used to characterize and classify 

an episode, such as duration and magnitude. The duration of a triangle is defined as the 

tim e interval between two end points of an episode. The m agnitude of a. triangle is the 

vertical difference between these two end points.

T here are th ree kinds of m agnitude: large, medium and small. T here are three kinds
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Figure 4.14: Segment of the triangular description of the electrical consum ption

of duration: long, m iddle and short. Then, for every type of triangle, say, “.4” , there 

are nine possible outcomes, as shown in Figure 4.13. For example, ‘d m A ” stands for a 

large m agnitude, middle duration, type “A” triangular. The same definition holds for 

the triangles “Z?” to "D ”. The triangular description of a segment of the basic trend of 

electrical consum ption is shown in Fig 4.14, from which we can see th a t  the basic trend  has 

been accurately divided into episodes according to  extrem a and inflexion points. Therefore, 

this triangular representation m ethod gives the qualitative as well as sem i-quantitative 

characteristics of a trend.

Finally, using this triangular representation method, a signal is converted into a se­

quence of symbols, which lias 36 symbolic character alphabet.

As Bakshi and Steplumopoulos (1994) pointed out, this method ‘'is complete, correct 

and robust, and allows explicit description of the impoiiant information of a trend.” T he
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advantage of this m ethod is th a t  it converts a signal into a symbolic sequence, which 

captures the most im portant qualitative and quantitative information contained in the 

signal. Compared with filtered process data, this symbolic form is convenient as the input 

of a following classifying system such as HMM.

The drawback of this m ethod is th a t it is sensitive to noisy data. Therefore, some 

filtering procedures, such as the wavelet transform, have to be implemented first.

4 .1 .3  H id d en  M arkov M od el

Like the Markov chain introduced in the last chapter, neither the theory of hidden Markov 

model nor its applications is new. I t has been successfully used in some applications, 

such as speech recognition. Smyth (1993) presented a particularly  effective m ethod for 

fault detection, which uses HMM to classify the process s ta tu s  into a norm al state, an 

in term itten t s ta te  or a, “hard-fault” state. This method lias been applied to  a real-world 

antenna, fault diagnosis system. Based on the work of this paper, Wong et al. (1998, 2001) 

adopted HMM method to  classify the process trends, which are first filtered by the wavelet 

transform  and then described by the triangular representation m ethod. Some illustrative 

examples about HMM can be found in Rabiner (1989) and the M atlab S tatistic  toolbox 

manual.

There is an im portant difference between Markov chain and HMM. In  a Markov chain, 

the o u tpu t of process is a set of states where each state  corresponds to an observable 

event. In HMM, however, the observation is a probabilistic function of the s ta te  and the 

underlying set of states is not observable, but, can only be indirectly observed through the 

sequence of observations.

A Markov chain can be uniquely determ ined by an initial distribution, 7ro, and a 

transition probability m atrix, P. For HMM, the situation becomes more complicated 

because it has two stochastic processes, one of which is hidden and the o ther observable. 

Thus, in addition to the transition probability m atrix, there is another probability m atrix 

-  the observation probability m atrix, B. Every element of B, Bij, gives the probability of 

jtlx observation symbol observed at state  i, where 1 < i < N  and 1 <  j  <  M . N  is the 

num ber of states and A/ is the num ber of distinct observation symbols per state.

R abiner (1989) summarized th a t there are three basic problems of interest for an HMM 

application:
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•  Given the observation sequence and a model, how do we efficiently com pute the 

probability of this observed sequence?

•  Given the observation sequence and the model, how do we choose a corresponding 

sta te  sequence which is optimal in some meaningful sense?

•  How do we adjust the model param eters so as to best account for the observed 

sequence?

For the m ethod proposed in this chapter, the first and last problems are of interests. 

T he hist one is a training problems -  given an observation sequence, how do we optimize 

the model param eters to create the best model? Similar to other model based process 

m onitoring and fault defection m ethods, this problem is difficult and the solution to  this 

problem is crucial. The solution to the first problem is used for classification. Given a 

model and any observation sequence, how do we com pute the probability th a t the observed 

sequence was produced by this model? Another case of classification is th a t, given several 

models and one sequence of observation, how do we determ ine the model which best 

m atches this observation?

The IIMM-basod classification m ethod introduced in this chapter is implemented using 

the M atlab Statistics toolbox, which includes five functions designed for IIMM analysis. 

T he function hmmtrain  calculates the maximum likelihood estim ate of HMM param eters. 

T he default algorithm of this function uses an iterative algorithm  -  Baum-Welch method. 

Detailed explanation about this algorithm can be found in R abiner (1989).

T he function hrnmdecode calculates the probability of an observation sequence being 

generated by a model. The algorithm of this function is explained as follow.

Given a hidden Markov model A, let, O — o\02  ■ • ■ or  denote an observation sequence, 

Q = <i\ Q2 ' '  • <]T denotes a state sequence. The probability of this s ta te  sequence can be 

calculated as

P(Q |A) =  ■ • • PqT_ (4.8)

in which, nQl is the probability th a t the initial state  is q\ and P,hq2 is the transition 

probability from sta te  q\ to s ta te  q2. T he probability th a t this observation sequence is 

generated by this s ta te  sequence is given by

P ( 0 \ Q , \ )  = B qi0l- B q202. ' - B nr0r (4.9)
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P u t Equation 4.8 and Equal,ion 4.9 together, given model A and s la te  sequence Q. the 

jo in t probability of observation sequence O is

P (O .Q \ \ )  = P ( 0 \Q t X)P(Q\X)

=  7r«/i ^<?1 OiPqxqiBqiOn ' ' '  P qr  ,qT P q r or • (4.10)

Then, the probability th a t an observation sequence, O, is generated from given model, 

A, is obtained by summing the jo in t probability in Equation (4.10) over all possible state  

sequences

P (0 |A ) =  Y,p(° I 3 ’A)P(Q|A)
allQ

=  ^  P t l i q i B q . , 0 2  • • • P ( / r - i ( l i B q r O r -  ( 4 - H )
,q-r

This calculation m ethod is straightforward, bu t the complexity is in the order of 0 (2 T -  

TV7’). Even for small values of N  and T, the com putation load will be very large! A more 

efficient algorithm is called the forward-backward algorithm.

Following is the forward-backward algorithm introduced in R abiner (1989): T he for­

ward variable ay (?) is defined as

a t (i) =  P (o ]02 ■•■ot ,qi =  S/|A)

which is the probability of the partial observation sequence, o \0 2  ■ ■ ■ ot, (until tim e t) and 

s ta te  Si a t time t , given the model A. Inductively, ay(z) can be solved as 1 in itia liza tio n :

a\{i) = TTiBiu, 1 <  i < N .  (4.12)

2)Induction:

« 't+ i(j) =
Ar

. 1=1

l < j <  N.  (4.13)

3)Termination:
N

P ( 0 \ \ )  = Y , ‘* r d )  (4.14)
t=l

T he complexity of this inductive algorithm decreases to 0 (N '2T),  which is much smaller 

th an  the 0 { 2 T - N r ) of the straigh itforward method. T he backward procedure is conducted 

in a similar manner.
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It can be seen th a t in Equation 4.13, 07 (j) will s ta rts  to head toward zero exponentially 

as /■ becomes large since every item  in transition  probability m atrix P  and observation 

probability m atrix  O is usually less than  1. For m ost applications in which t is sufficiently 

large, such as several hundreds or even thousands, the dynam ic range of the Q/(j) com­

putation  will exceed the precision range of any com puter. Thus, to  perform the above 

forward-backward algorithm, a  scaling procedure is needed to incorporate into it.

T he basic idea of scaling is to m ultiply a / (j)  by a scaling coefficient to  keep the 

com putation w ithin a reasonable range. The scaling coefficient should ju st depend 011 

tim e t not 011 the sta te  number N .

One choice for scaling coefficient is the sum m ation of all forward variables a t the same 

tim e f,
1

->N 
•‘3 =

Then, the scaled forward variable becomes

c, =  - p  — . (4.15)

&i(j) =  (4.16)
Q7.0 ’)

Z h M i )
At the Term ination step of the forward-backward algorithm, the final probability 

P (0 |A ) will have some changes accordingly because all the items an,{j) have been scaled. 

Finally, the probability P (0 |A ) is given by
T

log[P{0\\)} =  (4 1 7 )
/=i

T he M atlab function hmmdecode  is program m ed based 011 the above scaled forward- 

backward algorithm . One disadvantage of this function is th a t it does not check whether 

the value of Y X i L i  n tX ‘>) is equal to  zero before divide it and take log of it. In some cases, for 

example, where the model is not well trained, a t(J) will be zero. Any com putation 

trying to  divide or log it will resu lt in an error message. This function is re-program med 

for this application and the o u tp u t param eter logpseq , logarithm  of probability, will set 

to  zero instead of giving an error message in this case.

4.2 Im plem entation Issues

4 .2 .1  W h y  is W avelet?

In this application, the wavelet analysis is used to ex tract significant tem poral features 

contained in a record of measured data. Then, first question is why is wavelet, not the
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Figure 4.15: 1'our signal analysis methods

commonly used Gaussian filter or Fourier transform ?

W itkin (1983) presented a time-frequency representation of trends via Gaussian filter­

ing. Because the Fourier transform  of a Gaussian still looks like a Gaussian, the Gaussian 

is localized in bo th  the time and frequency domains. This property makes it an opti­

mal filter. T he disadvantages of Gaussian filtering are obvious, such as the difficulty of 

selecting suitable param eters of Gaussian filter, and so on.

The Fourier analysis perhaps is the most well-known method for signal analysis. It 

transform s a signal from the tim e-am plitude view to the frequency-amplitude view, and 

the  m agnitude in the frequency domain corresponds to the energy of the signal. The 

serious drawback of Fourier transform  is th a t no time localization information is available, 

which means it is impossible to determ ine when a special event occurred.

T he windowed Fourier transform , sometimes called Short-Tim e Fourier Transform 

(STFT), is an improvement over Fourier transform  in order to correct this deficiency. 

It can provide some tem poral location information; however, it still has some drawbacks; 

for example, the lim it precision of the tem poral location information determ ined by the 

fixed window size.

Com pared with Gaussian filtering and Fourier analysis, the wavelet analysis possesses 

excellent time-frequency localization properties since it uses a time-scale region. Therefore, 

using wavelet analysis, we can get multi scale description of trends and extract features, 

which enable us to analyze the d a ta  efficiently.
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Figure 4.16: Cubic spline wavelet and scaling function 

4 .2 .2  S e le c t io n  o f  W a v e le t  T y p e

There arc different type of wavelet families, such as H aar wavelet and Daubechies wavelets. 

Depends on the application property, we can select appropriate wavelet.

In this process monitoring method, the wavelet is used to  not only sm ooth the  raw data, 

bu t also detect the extrem e and inflexion points. At the image processing and machine 

vision field, the L apladan (second derivative) of a Gaussian is widely used to filter a  signal 

and extract the inflexion point. Along similar lines, M allat and Zhong (1992) suggested 

the use of a wavelet which is the first derivative of a  scaling function The scaling

function has the effect; of smoothing. The wavelet, ip(x) is the first derivative of (p(x):

T he wavelet and scaling function used by Mallat and Zhong (1992) is given in Figure 

4.16 (Bakshi and Stephanopoulos 1994). This wavelet is a cubic spline of the derivative of 

th e  Gaussian function, while the scaling function is the Gaussian function itself. In this 

application, w hat we used is /«ro3.1, which is selected from biorthogonal wavelets family 

of M atlab wavelet toolbox. It is similar to the wallet M allat and Zhong (1992) suggested.

4 .2 .3  S e le c t io n  o f  W a v e le t  L e v e l

Using wavelet decomposition, we can get approximations and details a t different scales. 

At lower scale, the detail consists of high frequency noise signal and the  approxim ation 

keeps the dynamic behavior of data. On the other hand, a t higher scale, the basic trend 

of d a ta  is extracted and the detail shows the low frequency noise. In this application, the
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wavelet, is used for the noise filtering and the feature extraction; therefore, high scale is 

more suitable. However, if the selected scale is beyond certain level, the most im portant 

information contained in a signal, which can help to differentiate it from others, will lost. 

Therefore, the selection of an appropriate level is the first and the most crucial step of 

this process monitoring method.

Wong et al. (1998) suggested the use of signal to noise ratio  (SNR). T he disadvantage 

of th is method is th a t, in order to calculate the SNR, the  noise tree signal is needed. 

For most industrial cases, this condition is impossible to  satisfied, thus this m ethod is 

im practical for industrial applications.

So far, there is no way of autom atically selecting an appropriate wavelet level for any 

given data. All the results presented in this chapter have to  base 011 visualization and 

experience.

4 .2 .4  A p p ro x im a te  D er iv a tiv e  C alcu lation

The extraction of extrem a and inflexion points from a trend  is based on the calculation of 

first and second derivative. The simplest way to perforin derivative calculation is numerical 

differentiation:
Jl{ =  / f e W C b l1. (4.18)

Vi "  *1—1
For discrete data, the sample interval usually is even and equal to one, then Equation 

4.18 can be simplified to

f X x i )  =  f ( v i )  ~  f ( x i - 1). (4.19)

Similarly, the second derivative can be calculated as

/"(•'«:<) =  f '( x i )  -  f '( .x i- i) .  (4.20)

This numerical differentiation m ethod is direct and easy to implement. However, its 

drawback is also obvious: it is too sensitive to noise and the first derivative d a ta  m ust be

sm oothed by certain filter before the calculation of the second derivative . A11 approxim ate

derivative calculation method proposed by Leung (1998) lias a m ajor advantage th a t 

differentiation and smooth can be carried out in the same calculation.

In this method, the approxim ate first, derivative is calculated as the difference between 

two scale coefficients at the first resolution level:

f ’(x) = C i,Dia- C 1,D2 (4.21)
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where D\q and D 2 denote the sixteenth and second order of Daubechies family wavelets, 

respectively. Using the first derivative d ata  as the input, to the wavelet transform , the 

second derivative calculation can be achieved.

T he disadvantage of this approxim ate derivative m ethod is th a t the num ber of d a ta  

points gets halved after each derivative order com putation (Nie ct a,I. 2002). T he decreas­

ing of d a ta  points makes it difficult to exactly find the location of extrem a and inflexion 

points of smoothed trend. For example, as mentioned before, inflexion points in a sig­

nal appear as extrem a in first derivative data, and zero-order zero crossings in second 

derivative data. Because the number of data points becomes halved and quartered, the 

maximum bias of data  location on the smoothed trend will increase to four points. Thus, 

this m ethod is only recommended to use for cases 111 which the smoothed d a ta  trend still 

looks noisy.

4 .2 .5  S e lec tio n  o f  H M M  P aram eters

For any HMM application, the selection of hidden sta te  number N is im portant. Un­

fortunately, there is 110 simple, theoretically precise way of making such choice. In this 

application, the observation symbol number M is equal to  36. Different s ta te  num bers 

have been tried for simulation examples and industrial case studies. For most cases, s ta te  

numbers, ranging from 6 to 9, work well and all the results about HMM presented in this 

chapter are based 011 the selection th a t N is equal to 6 .

For the estim ation of the transition probability m atrix P  and the observation prob­

ability m atrix /?, the iterative algorithm  is a maximum likelihood estim ation procedure 

and will lead to  local maxima. Therefore, the initial estim ation is crucial. In Smyth 

(1994), these m atrices are estim ated by a database of trouble reports, for example, the 

mean tim e between failure (M TBF) data, which are routinely collected from a real-world 

system. For our application, unfortunately, this kind of database is not available because 

of limited d a ta  type and size. Therefore, the initial values of matrices P  and B  have to 

been randomly selected and then regulated to stochastic m atrices according the following
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equations:

N
=  1 < i < N

i= i
M

Y ^ B ij = l, l < i < N  (4.22)
i=1

4.3 Sim ulation Exam ples

In this section, two simulation examples are given to illustrate th a t this process m onitoring 

m ethod can pick up the different behaviors of a  process.

4 .3 .1  E x a m p le  1

In  th is example, the  norm al and abnormal behaviors of a process are modelled as follow:

0.01
1 N orm al i  -  0 .9 9 7 -1 

0.1
-* Abnormal. —  J  _  Q  Q q ~ l

Two sets of estim ation d a ta  are sim ulated from the norm al model and the abnorm al 

model, respectively, tis shown in Figure 4.17. The d a ta  length is 10,000 points. The 

obvious difference between the norm al and the abnormal behaviors of the process can be 

seen ju s t a t a glance in Figure 4.17. As we introduced in the above sections of th is chapter, 

the original d a ta  is filtered by the wavelet transform. Figure 4.18 shows the filtered normal 

and abnorm al data. Com paring Figure 4.18 with Figure 4.17, we can see th a t the filtered 

d a ta  keeps the basic trend  of the original data and high frequency noise has been removed. 

The next step  is the triangular representation, by which the filtered da ta  is represented 

by triangles. Every episode is described by one type of the triangle: A, B yC  or D.

Therefore, 10,000 points of norm al and abnormal d a ta  are converted into 1,604 and 

1,747 triangles, respectively. T he m agnitudes and durations of these triangles are collected 

and divided into th ree zones : large, m iddle, sm all or long, m edium , short. Because every 

episode corresponds to one of 36 types of triangles, the basic trend of d a ta  is converted 

into a discrete sequence, which has 36 states. P a rt of norm al and abnorm al sequences are 

shown in Figure 4.19, from which the difference between the  normal and the abnorm al
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(a ) N orm al d a ta  (b ) A bnorm al d a ta

Figure 4.17: Original da ta

(a ) N orm al d a ta  (b) A b n orm al d a ta

Figure 4 .IS: Basic trends of the original d ata

(a) N orm al d a ta  (b) A b n orm al d a ta

Figure 4.19: S tate sequences of the  original d a ta
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behavior can still be observed. As the last step of estim ation, a normal HMM, H M M m 

and an abnorm al HMM, H A IM  a , have been estim ated from these sequences.

Then, two sets of normal and abnormal d a ta  with length of 1,000 points are sim ulated 

as validation data. They are filtered, triangully described and finally converted into dis­

crete sequences, same as what have been done for the estimation data. The only difference 

is th a t the division of triangles into subtype is based on the m agnitude and duration  dis­

tribu tions of the estimation data. T he validation da ta  of normal behavior, S'k , consists of 

105 triangles and th a t of abnormal, S a , 177 triangles. Both sequences are inpu t into the 

norm al HMM and the abnorm al HMM, individually.

Table 4.1: Simulation result
Triangle # P (S N \H M M N ) P (S a \H M M n ) P {SN \H M M A) P (S a \H M M a )

20 14.82% 0 .02% 0% 10.07%.
30 14.86% 0.16% 0% 10.58%
40 14,81% 0.47% 0% 12.38%
50 15.51% 0.81% 0% 12.56%
60 14.18% 1.42% 0% 13.97%
70 14.17% 0.31% 0% 12.82%
80 14.40% 0.53% 0% 13.97%

T he simulation result is shown in Table 4.1. The data in the first column of table 

is the length of validation d a ta  in triangle numbers. Different length of validation d a ta  

has been tried to see whether the results are consistent. The second column d a ta  are 

the  probabilities th a t the validation d a ta  of normal behavior is generated by the norm al 

HMM. T he th ird  is th a t of validation d a ta  of abnormal behavior generated by the norm al 

HMM. T he fourth one is the normal d a ta  by the abnorm al HMM and the last, one, the 

abnorm al da ta  by the abnormal HMM.

In Table 4.1, we notice th a t, compared with the probability tha t the norm al da ta  

is generated by the normal HMM’, the probability of the abnormal d a ta  generated by 

the norm al HMM is much smaller. Similar conclusion holds for the abnorm al HMM. 

This means that, either normal HMM or abnormal HMM can distinguish the norm al and 

the abnorm al data. We also notice th a t the results are consistent for different length of 

validation data.

Therefore, this process m onitoring m ethod can detect the behavior change of the 

process.
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Figure 4.20: Schematic of a blending process

4 .3 .2  E x a m p le  2

T he second example is from Huang (2001). I t is a blending tank  as shown in Figure 4.20 

(Huang 2001). T he mass balance of this process is

<71 +  <72 =  ( 1  -  c )< 7 3 , (4.23)

where c is the recycling rate with a nominal value co =  0.37. The m easurem ents of q\ , 72 

and (73 are corrupted by measurement noise and can be w ritten as

<7m i =  h\q\ +  H i 

</m2 =  ^272 + V2 

<7m3 =  h  <73 +  <; 3 (4.24)

where k i , k i  and are the gains of the flow rate sensors with nominal values 1, V],v2 

and i>3 are white noises. In the simulation, q\ and q2 are random  signals with uniform 

d istribu tion  and magnitude varying between -1 and + 1.

Three kinds of fault are simulated in this example. They are 10% increase of the sensor 

gain of 71, the sensor gain of q2 and the recycle rate, respectively, as shown in Table 4.2.

T he simulation results are given in Table 4.3 and Table 4.4. In Table 4.3, the standard  

deviation of white noise is 0.1. For every fault scenario, a set of 10,000 points of normal 

d a ta  is simulated and used for HMM model training. This d a ta  set is filtered by wavelet 

and then described by a series of triangles. The figures in the second column of Table 4.3
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Table 4.2: Three types of simulated fault
Source of fault Sensor 1 gain Sensor 2 gain Recycle ra te

no fault 1 1 0.37
sensor 1 1.1 1 0.37
sensor 2 1 1.1 0.37
recycle 1 1 0.407

are the triangle numbers. 1,000 points of normal d a ta  are sim ulated and used for model 

validation. The number of triangles of this validation d a ta  set is given in the th ird  column 

of Table 4.3. The probability th a t this da ta  set is generated by corresponding HMM is 

calculated, as shown in the fourth column of Table 4.3. This probability can be thought 

as a benchmark. Another set of 1,000 points of d a ta  is sim ulated in every fault scenario. 

T he num ber of triangle and the probability th a t this fault data is generated by the norm al 

HMM are given in the last two columns of Table 4.3.

Table 4.3: Noise standard  deviation of 0.1
Source

of
fault

Model
Estim ation

D ata

Normal
Validation

D ata
P (S n \H M M n )

Abnormal
Testing

D ata
P {Sa \H M M n )

sensor 1 934 87 22.40% 95 0%
sensor 2 905 95 20.29% 104 0%
recycle 920 89 19.78% 104 0%

Com pared with the probability th a t the normal d ata  is generated by the norm al HMM, 

the probability of fault data  is quite different. They arc zeroes. This means this m ethod 

can effectively tell the difference between normal and faulty data.

T he simulation results w ith standard deviation of 0.3 are given in Table 4.4, from 

which we can see th a t this method does not deteriorate with the increase of noise standard  

deviation.

Table 4.4: Noise standard  deviation of 0.3
Source

of
fault

Model
Estim ation

D ata

Normal
Validation

Data
? { S n \I IM M n )

Abnormal
Testing

D ata
P {S a \H M M n )

sensor 1 907 90 19.54% 89 0%
sensor 2 931 9.1 19.14% 98 0%
recycle 897 87 17.40% 97 0%
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Figure 4.21: GOHTU d a ta  analysis result

4.4 Industrial Case Studies

In this section, this process m onitoring m ethod is applied to  both  GOHTU and PSV  plant. 

T he useful inform ation achieved show the effectiveness of this method.

4 .4 .1  C ase  S tu d y  1 -  G O H T U

As an illustrative example, two sets of real d ata  are analyzed by this m ethod. One of them  

is collected a t May 22th, 2004 and the other at Nov 11, 2004. For every ou tpu t loop, one 

HMM is trained by the first data  set. and the probabilities th a t these two sets of data  are 

generated by this model are given in Figure 4.21.

W hat kind of information we can get from this figure? For every ou tpu t loop, if those 

two probabilities are close, th a t means the behaviors of this ou tpu t loop a t these two 

different days are similar. For example, the 36<ft ou tput, as shown in Figure 4.22.

If the probabilities are quite different, on the other hand, it warns th a t the behavior 

of this o u tpu t loop has changed. One example , 6Ul ou tput, is shown in Figure 4.23.

Therefore, this process m onitoring m ethod can m onitor a process efficiently, especially 

for a  large process like this GOHTU plant which has considerable inputs and outputs.
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(a ) M ay 22, 200-1 (b) N ov U ,  2001

Figure 4.22: The 36,/' ou tput
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(a ) M ay 22, 2001 (b) N ov  11,2001

Figure 4.23: The 6th ou tpu t
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Figure 4.24: Sine wave

4 .4 .2  C ase  S tu d y  2 -  P S V

T h i s  p a r t  h a s  b e e n  r e m o v e d  d u e  t o  t h e  c o n s i d e r a t i o n  o f  p r o p r i e t a r y .

4.5 O scillation D etection

W ith different HMM, this process m onitoring m ethod can be used to  detect different 

process behaviors. In  th is section, as a  simple illustrative example, we will introduce how 

to apply this m ethod for oscillation detection.

4 .5 .1  M e th o d o lo g y

T he m ost obvious characteristic th a t  differentiate the  oscillated signal from other signals 

is the periodic increase and decrease of the oscillated signal a t certain  frequency and 

m agnitude. As the  sine wave shown in Figure 4.24 (a), every cycle of the oscillation 

consists of four monotonic parts: concave downward increase, concave downward decrease, 

concave upward decrease and concave upward increase. As introduced before, each part 

corresponds to  one type of triangle. W ith the triangular representation, the oscillation 

can be described by a  regularly repeated character string: A, B , C, D, A, B , C, D, A, B , ■ ■ ■ , 

as shown in Figure 4.24 (b). Because the m agnitude and duration of the triangles are 

neglected, this m ethod can detect the oscillation with changing m agnitude and frequency. 

Every character corresponds to one state, thus the oscillation is converted into a cyclic 

sequence, which has four states. Figure 4.24 (c) shows the cyclic sequence.

Therefore, the oscillation can be described as a cyclic Markov chain and modeled as 

a simple HMM, in which there are ju s t four states and every sta te  corresponds to one 

observation. T he transition probability m atrix  P  and observation probability m atrix  B
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are

' 0 1 0 0 '
0 0 1 0  
0 0 0 1 
1 0 0 0

and
' 1 0 0 0 ■

j  0 1 0 0
0 0 1 0 ’

_ 0 0 0 1 _

respectively.

From P  we can see th a t the process will certainly transit from s ta te  1 to sta te  2, 

from sta te  2 to s ta te  3, and so on. Thus, it generates a cyclic Markov chain in ascendant 

order. T he m atrix B  is an identity m atrix, which means th a t a t every state, one type of 

observation will be certainly observed. In this case, the types of triangle .4, B , C  and D  

correspond to  s ta te  1, 2, 3 and 4, respectively.

In  fact, the transition probability m atrix  and observation probability m atrix  are esti­

m ated as

0 1 0
0.06 0 0.94

0 0 0
1 0 0

' 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

through a sim ulated sine wave.

4 .5 .2  S im u la tio n  E xam p le

T his HMM can distinguish the oscillated signal from other kinds of signals. As an example, 

same length of noisy sine wave and white noise signal are compared. T he d a ta  length is 

1,000 points.

F irst, a noisy sine wave is simulated. T he m agnitude and the frequency of this sine 

wave are 1 and 0.1, individually. This sine wave is corrupted by a white noise signal with 

standard  deviation of 0.1. The noisy sine wave is filtered by the wavelet transform . Figure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter J,. A Practical Process Monitoring Method 74

H
!

I

I ! !  [Il. '
i f  ! Ji j

\ i ! /' M r li i
1 1 1 ! 

ji!!!
M i  ! i

I i !

(a) N o isy  signal (b ) F iltered  signal

Figure 4.25: Sine wave
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Figure 4.26: W hite noise with standard  deviation 0.1

4.25 shows the noisy and filtered sine wave. Then the filtered sine wave is converted into 

a  discrete s ta te  sequence, which is input to  HMM. T he probability th a t this noisy sine 

wave is oscillatory is as high as 94.32%.

Second, the white noise signal th a t corrupts above sine wave is analyzed in same way. 

The original and filtered signals arc shown in Figure 4.26. The probability th a t it is an 

oscillation signal is ju st 6.45%.

4 .5 .3  In d u str ia l C ase S tu d y

, Tennessee

is analyzed by this method. The sampling interval was 20s.

T he probabilities of the signals shown in Figure 4.27 are higher than  90%. On the  other
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Figure 4.27: Signals detected as oscillatory
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Figure 4.28: Signals detected as having no oscillation
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hand, Figure 4.28 shows some signals whose probabilities are almost zero. Com pared these 

two figures, we can say that this met,hod can effectively detect, the oscillation.

4.6 Conclusions

In this chapter, a  practical process m onitoring m ethod is presented. The basic concepts 

of its three parts: wavelet transform , symbolic representation and HMM are introduced.

This m ethod is verified by two simulation examples, which shows th a t this m ethod can 

effectively detect, the behavior change of the monitored variable. T he potential use of this 

m ethod is illustrated by industrial case studies. For example, th is m ethod can be used as 

tool for data analysis.

Moreover, an oscillation detection approach is presented as an illustrative example of 

the application of this process m onitoring method. T he simulation example and industrial 

case study show th a t this m ethod can effective detect the oscillation. It will be useful when 

we are facing a large am ount of d a ta  and variables, where it is impossible to  visualize the 

trend  of each individual variable.
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Conclusions and Future Extensions

5.1 Conclusions

In th is thesis, new developments for the m ultivariate process and control m onitoring are 

presented.

•  T he interactor m atrix used to  be an obstacle of the perform ance assessment of MIMO 

systems. In C hapter 2, an improved algorithm for calculation of the interactor m atrix  

is presented. If the interactor m atrix  is known, the performance index of a MIMO 

system can be estim ated from a set of closed-loop d a ta  by the FCOR. algorithm. 

T he subspace m ethod simplifies the calculation of perform ance index and gives an

' explicit “one-shot" solution. T he performance can be assessed from a set of open 

loop experim ental data and a set of closed-loop routine operating data. No concept 

and calculation of the interactor m atrix  is needed any more.

•  A m athem atical model can bring some invaluable insight about the process. If the 

behavior of a process can be modeled by different types of models and all these m od­

els are meaningful, and it means th a t we have the opportunity  to observe som ething 

from different angles.

T he Markov chain introduced in C hapter 3 is another angle from which we ob­

serve the behavior of a process. The transition probability m atrix  reveals how the

77
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process evolves; the equilibrium distribution predicts how the process will be in the 

future; the passage time and passage details elaborate how the process behaves in a 

transition, etc.

•  W hen we try  to evaluate something in the real world, we are not ju st considering 

its present behavior. We will search our memory and pu t some historical records 

into account because one behavior has different interpretations under different back­

grounds. The same principle holds for the process monitoring.

The process m onitoring m ethod presented in C hapter 4 monitors the basic trend 

of variables, not the isolated, present measured value. Thus it can effective detect 

the behavior change of a process. The potential use of this m ethod includes the 

oscillation detection.

• The above algorithms and m ethods have been programmed in M atlab environment. 

All of them  have been integrated into a performance analytical toolbox. Moreover, 

the bugs of two M atlab functions have been found and corrected.

•  All the m ethods introduced in this thesis have been applied to industrial appli­

cations. These applications helped the engineers and managers to achieve better 

understanding about the  processes, for example, the GOHTU plant. T he perfor­

mance assessment of the advanced controller of this plant identified the potential 

for further improvement in term  of variability. The Markov chain analysis revealed 

th a t this plant was in less economic status although it was in stable control a t the 

same time.

On the other hand, the industrial applications also reveal some limitations of these 

m ethods th a t need further improvement. Such as, the tim e series analysis p a rt of 

the FCOR algorithm  is not robust enough to  a large dimensional process.

5.2 Future Extensions

Although the achievements presented in this thesis are obvious, there are some issues 

which can be further improved.

• A more robust tim e series analysis algorithm  is needed for the FCOR. algorithm.
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•  A m ethod should be developed, which can autom atically select an appropriate 

wavelet level for any given data.

•  T he process monitoring m ethod introduced in C hapter 4 can extend to m ultivariate 

variables.

•  T he processes in this thesis arc assumed to be first-order Markov chains and ho­

mogenous. Anderson and Goodm an (1956) discussed the m ethods which can Ire 

used to test the hypotheses th a t the process is a ?i,th order Markov chain, th a t 

several samples are from the same Markov chain of a given order, etc. T he test 

m ethods of similar hypotheses about HMM can provide useful information, such as 

the  confidence region, for the process monitoring m ethod introduced in C hapter 4.
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Undoubtedly, M atlab is a  very successful com puting language and commercial software. 

However, unfortunately and inevitably, there are still some bugs in some M atlab functions. 

For instance, when com pute the  product of two transfer functions or transfer function 

m atrices using the M atlab function , sometimes, some coefficients of the result th a t 

should be zero will be actually very small numbers.

For instance, for a  2 x 2 MIMO system

T  = i+?r?
L 1+3?-

1 + 2  ? " >  

1+4?-'

one un itary  in teractor m atrix is

D = 0.5g2 +  0.5? 
0.5g3 — 0.5<72

-0.5c/2 +  0.59 
-0.5</3 -  0.5f/2

2+3? 1

and the p roduct of D x T  should be

2+ 2? 1 
1 -Hi ( / 14-3(7"2
14-4(7“ 14-3(7'"" l4-(3(7_ 14 '8 (/-2

However, if we do this m ultiplication using M atlab function , the result is

1+ 6? " ‘ + 8?  -

2 + 2? " 2+3?~
1+4? ‘+3? 2 1+6? '+8? 2

—2.22c~ll5? —2 -3
1+4? ‘+3? 2 1+fi? l+8? 2

C om paring these two results, we can find a very small and strange number: -2 .2 2 c -16.

T his kind of problem is very common when using a com puter to do floating-point 

com putation. For M atlab, we can use the command “eps” to get the floating-point relative 

accuracy. I t is 2.2204c-1(>, almost same as th a t small number found in above example. 

Usually, this kind of small num ber can be om itted. In some cases, however, it will result 

in absolutely different solutions.

At the  iteration  step of algorithm 2, for example, when calculate the lim it of D  x T  as
■,-1 0, the result for the correct product is

lim D T  
? - > — ()

: lim 
? - ■ - * < )

and for the second product is

lim D T  =  lim 
? ‘->0 ? (-*o

r 2+2?-1 2+3?-1 1

C<J
(N 

,
1_ 

1

2
- 3

l+4?-1+3?-2-2 1+6?"‘+8?-2 =
l+4?-*+3?-2 l+6?-i+8?-2

2+2?' 1 2+3?"1
1+4? ''+3? ' 2 

—2.22c 'V  —2
1+6?- '+S?-2 

-3 =
00 - 31+4?- >+3?- 2 1+6?"1+S?"2
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The difference between these two results is th a t the first one is full-rank constant m atrix 

which means D  is a unitary intcractor m atrix  for the given T  and the second one, however, 

is non-causal. This example shows th a t the correct answer probably will be missed when 

using M atlab multiplication function in above algorithm.

Moreover, in the case of high order transfer function m ultiplication, this kind of strange 

num ber will be quite large and, sometime, it is difficult to tell them  from other normal 

coefficients. Therefore, this problem  will seriously affect the com puting accuracy.

Thus, the multiplication of two transfer function (matrices) has to be programmed 

explicitly in the new algorithm instead of directly using the M atlab m ultiplication function

F irst step is to find out where this kind of small, strange numbers come from. The 

num ber in above example appeared a t the first item of the second row and it is the result of 

“D (2 ,1 )* T (1 ,1) +  D (2,2) * T (2 ,1)” . .fust calculate this equation in M atlab environment, 

the answer is , which shows th a t cither m ultiplication of transfer function

matrices or th a t of transfer functions will result in this kind of problem.

Next, let “a =  (0.5q2 — O.oq) * (1 +  3qr—1)” , the, answer is “O.Txy2 +  g -  1.5” and let 

“h =  (-0.5<72 -- 0.5q) * (1 +  the answer is “-0 .5r/2 — q -  0.5” . All look fine so far.

W hen adding them  together, th a t strange num ber is coming.

a  +  b =  - 2 . 2 2 e ~ JV - 2 .

I t  should ju s t be -2 !

T he problem is arose from the  addition. T he reason is, sometimes, we can not get 

the exact zero because of the floating-point accuracy. In the above example, for instance, 

when add 0.5r/2 and -0 .5 q2 together, the answer is —2.22e- ,0 r/2 instead of 0. Moreover, 

this kind of small number will be accum ulated to a quite large number with the repeat of 

addition. In order to  overcome th is problem, we should keep everything happened during 

com putation under our control. T he key issues are

•  For transfer function com putation, ju s t use vector multiplication and vector addition 

and do not use any com putation operating on transfer function or transfer function 

matrix;

• After every single vector addition operation, check whether all the coefficients are in
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a  reasonable range. Set those, coefficients which have, same m agnitude order as eps 

to  zero, so as to keep the  result as accurate as possible and protect, these num bers 

from accumulation;

• Do not use the vector division operation, since it will call the addition operation 

autom atically and results in the accumulation of those strange, small coefficients.

For example, the m ultiplication of two transfer function matrices, D and T , is calcu­

lated in following way:

Let m  x m  m atrix  D  expressed as

“ D ( l , l )  D (l,2 )  ••• D { l,m )
D( 2,1) D(2,2)

D (tn, 1) D (m , 2)

D (2 ,m )  

D(rn , in)

and rri x n  m atrix  T  as

£ (1 ,1 ) £ (1 ,2) AT(l.n)
£(1,2) £ ( l ,n )

A'(2,J) £(2 ,2) £(2,70
£(2,1) £(2,2) E(2,n)

£ (  in.,2) N(rn,n)
b’(m, 2)

in which, D ( i , j ) , N ( i , j )  and E { i , j )  are vectors used to express transfer functions. Simi­

larly, the product D T, a m  x n m atrix, is expressed as

“ D T (1 ,1) DT(L,2)  ••• D T ( l , n )
D T (  2,1) DT{  2,2) ••• DT(2 , n )

_ D T ( m ,  1) DT{rn, 2) 

Every element of D T  can be calculated as

DT(rn, n)

D T ( i . j )  = D(i ,  1 )  x +  DU, 2 )  X £ } M  +  . . .  + DU, m )  xfc(U,7) e(2.j) du»,.i)
DU,  1)N(U j)E(2, j)  • ■ ■ BUn. j )  +  D(i.2)N(2, • • ■ E(m,  j )  +  ■■■ +  DU,  •

By this way, finally, the m ultiplication of two transfer function matrices is calculated 

by ju s t using vector m ultiplication and vector addition. Moreover, after every vector 

addition, the coefficients of the resulting vector are checked and are set to zero if they 

have same m agnitude order as c.ps. Therefore, the problem th a t sometimes there are some 

strange, small coefficients in the product of two transfer function (matrices) is resolved.

D(m  -  1,])
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