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ABSTRACT

This thesis introduces three new stopping criteria in conjunction with error detection techniques
for turbo decoding. The approaches are based on monitoring the mean of the absolute values of
the log-likelihood ratio of the decoded bits over a frame. From simulation, it is found that this
mean value increases as the number of errors in a frame decreases. The simple mean estimate
(ME) criterion has been established to determine if the iterative decoding process is to be stopped.
In addition, the mean-sign-change (MSC) criterion and MSC-CRC criterion, in which MSC is
concatenated with an external short cyclic redundancy check (CRC), are proposed to improve the
performance of early stopping and error detection further. The proposed approaches offer good

performance and can be easily implemented in a practical turbo decoder.

The thesis begins with an overview of error control coding, highlighting turbo codes, which
mark one of the most important develcpments in coding theory. Details of turbo coding are then
presented. Following an introduction to challenges with iterative decoding and discussions of
several early stopping criteria, new approaches for combining early stopping and error detection
are proposed and analyzed. These results show that the proposed schemes provide simple and
efficient methods to stop the iterative decoding process without appreciably degrading
performance and to check for errors in the decoded frames without introducing redundancy or

very little redundancy.
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CHAPTER1

INTRODUCTION

Error control codes are used in a wide variety of digital communication systems to increase the
reliability of communication. In 1993, Berrou, Glavieux and Thitimajshima proposed a new class
of error control codes called turbo codes [1] whose performance on the additive white Gaussian
noise (AWGN) channel has been shown to perform within a few tenths of a dB of the capacity
limit. The key principles of turbo codes are (i) encoding using parallel concatenated recursive
systematic convolutional (RSC) constituent codes separated with an interleaver, and (ii) decoding
using iterative maximum a posteriori (MAP) decoders employing soft information. Since turbo
decoding proceeds in an iterative fashion, once iterations fail to improve the accuracy of
decoding, the iterative process should be terminated by a stopping criterion. This will reduce
decoding delay. Also, when turbo codes are used for data transmission, the decoded sequence

must be examined to determine whether or not errors remain in the decoded frames.

This thesis introduces new stopping criteria in conjunction with error detection techniques for

turbo decoding. The approaches are based on monitoring M,,,, the mean of the absolute values of

the component decoder log-likelihood ratio (LLR) over a frame. From simulation, it is found that

M, increases as the number of errors in a frame decreases. By observing successive values
of M|,,, simple methods have been established to determine if all errors have been corrected or if

errors remain in the frame.

1.1 Error Control Coding, Turbo Coding and Objective of This Thesis

Compared to analog communication systems, digital systems have many advantages [2]:
e Digital signals are easy to regenerate
e Digital circuits are less subject to interference
¢ Digital circuits are more reliable and can be produced at lower cost

e Signal processing functions are a natural fit with digital techniques

A communication system is a means of transporting information from a source to a sink. A
system is “digital” if it uses a sequence of symbols from a finite alphabet to represent the

information. The transmission of data in digital form allows for the use of a number of powerful



signal processing techniques, including error control coding. Figure 1.1 shows a block diagram of
a basic digital communication system [3]. The upper blocks indicate the signal transformations
from the source to the transmitter. The lower blocks indicate the signal transformations from the
receiver to the sink; these essentially reverse the signal processing steps performed by the upper
blocks. The data source may represent any of a number of sources of information. The modulator
maps the information symbols onto signals that can be efficiently transmitted over the physical

channel. The physical channel distorts the transmitted signal and introduces noise.

Between the data source and modulator, three distinct types of encoding procedures can be
implemented. A source encoder performs analog-to-digital (A/D) conversion (for an analog
source) and removes redundant or unneeded information. Encryption generates secrecy codes that
prevent unauthorized users from understanding messages and from injecting false messages into
the system. The channel encoder adds structured redundancy to the sequence that allows for the
detection and/or correction of errors at the receiver. This type of coding, called error control

coding, is the subject of this thesis.

Data | Source o [Encryption o Channel Modulator »| Transmitter
Source | Encoder v Encoder l
Physical
Channel
Data Source - Channel -
<« -« < d <
Sink *“—| Decoder Decryption Decoder ¢ Demodulator |« Receiver

Figure 1.1: Basic digital communication system.

Using powerful error control coding is a very helpful approach to obtaining sufficient quality
of transmission in digital communication systems. A fundamental theorem of information theory,
originally proved by Claude Shannon, states that any channel’s capacity is a function of the type
of channel and the per-bit signal-to-noise ratio (SNR). According to Shannon’s theorem,
essentially error-free transmission can be achieved if, and only if, the information rate is less than
the channel capacity. Shannon’s theorem sets a lower bound on the amount of redundancy
required for errorless communication, or a limit to system accuracy under other system
constraints, but does not state how to approach this limit in practical communication systems. It

does, however, suggest that data bits should be encoded as groups instead of as individual bits.



The goal of coding theory has always been to approach the Shannon limit with tolerable
encoding and decoding complexity. The results achieved so far show that it is relatively easy to

operate at signal-to-noise ratios of E, /N, up to the cutoff rate limit, a few dB short of the
capacity limit. The cutoff rate R, provides a simpler way to obtain the word error bound. For
source words of length k, and code words of length n,, the code rate is R=k,/n,, and the word

error probability is bounded from above by the quantity 27*®’ for R less than the channel

capacity C . The function E(R), which only depends on the code rate, is called the reliability
function of the channel. E(R) is a concave (U ), decreasing, nonnegative function of R for
0< R<C. The cutoff rate R, is the rate at which the tangent to E(R) of slope ~1 intercepts the
R axis [4], so that for R<R,, E(R)2ZR,—R, and hence word error probability

P,(e) <27 "RmR)

1. Binary antipodal modulation,
4 r : unquantized AWGN channel

a
s 3 \, 3
<
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Figure 1.2: The required signal-to-noise ratio based on cutoff rate for binary antipodal

modulation over AWGN channel (curve 1), and the minimum required signal-
to-noise ratio vs. code rate for unconstrained AWGN channel (curve 2).

Figure 1.2 shows the gap between the cutoff rate limit and the channel capacity limit. The
curves show, for a given code rate R, the possible value (curve 1, previously thought to be the
practical limit) and the minimum possible value (curve 2, in theory) of E, /N, for which the
word error probability can still be driven to zero. For a rate 1/2 code and unquantized
demodulation on a binary input additive white Gaussian noise (AWGN) channel, the cutoff rate

limit is 2.5 dB, as opposed the capacity limit which is 0 dB. Generally the task becomes very

complex to achieve reliable communication between these two values [5]. But Berrou, Glavieux,



and Thitimajshima developed a simple approach to design and implement a code to reach the

region between the cutoff rate limit and capacity limit.

The most important development in coding theory since Ungerboeck introduced treilis codes
in 1982 [6] has been the announcement of “turbo codes.” Turbo codes can achieve very low error
rates while operating at less than 1 dB above the capacity limit. In contrast, most current systems
using conventional codes operate at 3 to 6 dB away from this bound. Uncoded systems are
typically 10 dB or more away. The performance of turbo codes is so good that the initial reaction
to the coding and decoding method was skepticism, but in 1994 Robertson [7] and in 1995
Divsalar and Pollara [8] were able to reproduce Berrou’s results. The introduction of turbo codes
has lead to a new way of constructing good codes and decoding them with low complexity, and

has permanently changed the way that error control codes are looked at.

Concatenation is an attractive scheme to obtain high coding gains with moderate decoding
complexity. Classically, concatenation is used for cascading a block code (the outer code,
typically a Reed-Solomon code) and a convolutional code (the inner code) in a serial scheme. The
novel encoder of turbo codes consists of the parallel concatenation of RSC codes with pseudo-

random interleavers.

Turbo decoding proceeds in an iterative fashion. Generally, the iterative decoding process is
automatically stopped when a specified maximum number of iterations is reached. However,
simulations show that different frames need a different number of iterations to converge under the
same channel conditions. Once the iterative process has converged, additional iterations are not
helpful and iteration should be stopped. This “early stopping” will reduce the average decoding
time. In addition, in data transmission systems, it is common to check for errors after decoding. In
practice, this could be implemented by using a powerful cyciic redundancy check (CRC) to
determine whether a frame of data has been completely corrected. But the using a powerful CRC
adds additional redundancy and reduces the code rate. The objective of this thesis is to design
new and efficient techniques to combine early stopping and error detection without introducing

redundancy or introducing less redundancy than standard CRC techniques.
1.2 Organization of Thesis
This thesis is structured as follows. Further details of turbo coding are presented in Chapter 2.

After introducing the BCJR algorithm that is the basis for turbo decoding, this chapter describes

modifications to this algorithm. These include the modifications that are necessary to decode RSC



codes, Berrou’s turbo coding scheme, and the improved decoding structure first described by
Robertson. The concepts of weight and distance of codes, which are relevant to the performance
of codes and interleaver design, are introduced. Interleavers and termination of trellises, which
are important issues in the design of turbo codes, are also discussed in this chapter. Finally a
simulation platform for turbo coding is described.

Following an introduction to challenges with iterative decoding, several early stopping
criteria are overviewed in Chapter 3. In Chapter 4, new approaches for combining early stopping
and error detection are proposed and analyzed. The performance of the new approaches is
reported in Chapter 5. The bit error rate (BER), average number of iterations, frame error rate
(FER), missed detection rate (MDR) and false alarm rate (FAR) are compared with corresponding
values for other approaches. These results show that the proposed schemes provide simple and
efficient methods to stop the iterative decoding process without appreciably degrading
performance and to check for errors without introducing redundancy or introducing a minimal
amount of redundancy. Chapter 6 concludes the thesis by summarizing the concepts, algorithms
and performance of the new approaches of early stopping and error detection for turbo decoding

and providing suggestions for further research.

1.3 Notation

The following symbol representations and measures of performance are used throughout this

thesis. Other notation is introduced where required.

R: Code rate; R =k, /n,. In general, a convolutional encoder with %, inputs and ~,

outputs is said to have code rate k,/n,.

K: Constraint length of convolutional codes.
v: Memory of convolutional encoder; v=K ~1.
N,: Frame length of source sequence corresponding to convolutional codes (including

RSC codes) with termination; frame length for turbo codes with single

termination.

N,: Frame length of source sequence corresponding to joint termination in turbo
codes.

N: Frame length of encoded sequence after inserting terminating bits in source

sequence. N =N, +v or N =N, +2v depending on the terminating scheme.



u:
M :

m :

G(g1.82):

G(g,82:8.):

E,/N,:
E,/N,:

The source information frame; & = (i, u,,---, 1, ,--*) -

The total number of encoder states. M =2%" .

Encoder states, where m =0,1,...,M ~—1 in decimal.

Generators for a rate 1/2 convolutional encoder, where g, and g, denotes
two feedforward connection patterns associated with the generation of parity
bits. Generally g, and g, are octal numbers (e.g. G(7,5)). For an RSC
encoder, g, denotes the feedback generator and g, denotes the feed-forward
generator.

g, and g, have the same meaning as those of G(g,.g,); g. is the generator
for a cyclic redundancy code (CRC) check.

Ratio of bit energy to noise power spectral density.
Ratio of channel symbol energy to noise power spectral density.

E,IN,=RE,/N,.



CHAPTER 2

TURBO CODING

Turbo codes are a new class of error control codes, originally based on the use of two RSC codes
in parallel [1]. The novelty of turbo codes was tﬁe use of RSC codes, a random interleaver and
iterative decoding using soft information. In 1996, Divsalar and Pollara developed multiple turbo
codes, which consist of more than two RSC codes and more than one interleaver [11]. Because
turbo codes are parallel concatenated convolutional codes, they are also called PCCCs. Using the
same functional blocks, namely convolutional encoders and interleavers, serially concatenated
convolutional codes (SCCCs) were proposed in 1996 [12]. In this thesis, only PCCCs with two

component RSC codes and an interleaver are considered.

Elias first introduced convolutional codes in 1955 [13]. In this thesis, the term “convolutional
codes” is used to denote conventional non-recursive convolutional codes, not including RSC
codes. Since 1955, several decoding algorithms have been developed for convolutional codes;
four algorithms are highlighted here. The earliest decoding technique for convolutional codes was
the sequential decoding algorithm, originally proposed by Wozencraft in 1957 [14], and
subsequently modified by Fano[15] and Jelinek [16, 17]. This algorithm provides fast but
suboptimal performance. In 1963 Massey [18] presented the threshold decoding algorithm for
both block and convolutional codes, which is generally less powerful than the sequential

algorithm for convolutional codes, although it is optimal for several classes of block codes.

In 1967, a third decoding approach, the Viterbi decoding algorithm, was proposed and
analyzed by Viterbi [19]. The Viterbi algorithm (VA) essentially performs maximum likelihood
sequence decoding and limits decoding computational complexity by taking advantage of the
special structure of the code trellis diagram. The VA has achieved widespread use, and is still the

technique used in most practical systems.

The VA is an optimal decoding approach that minimizes probability of sequence error for
convolutional codes. But the VA is not able to directly evaluate the a posteriori probability (APP)
for each decoded bit. The APP is used to make the optimum decision in a digital communication
system. For a digital communication system in which the events X, i=0,1,...,n, represent the
possible transmitted messages in a given time interval, Pr(X,) represents their a priori

probabilities (which consist of transmitted message probabilities), and Y represents the received



signal (which consists of transmitted message corrupted by noise), Pr(X;[Y) is called the a
posteriori probability of X, conditioned on having observed the received signal Y. An

algorithm, which generates the APP information, was proposed by Bahl, Cocke, Jelinek and
Raviv in 1974 and is now called the BCJR algorithm [20]. This algorithm minimizes the bit error
rate (BER) in decoding linear block and convolutional codes and produces the APP for each
decoded bit. Since it minimizes BER, the BCJR algorithm theoretically should result in better
performance than the VA algorithm. The BCJR algorithm implements a MAP decoding which is
optimum, while the VA algorithm performs maximum likelihood (ML) decoding. Generally,
there is no knowledge available about the a-priori probabilities. The a-priori probabilities are
usually assumed to be equal. The ML decoding and the MAP decoding are equivalent with this
assumption [2, p.739]. Thus, in most applications of interest, the performance of the BCIR
algorithm and the VA algorithm for decoding convolutional codes is effectively identical. As a
result of its higher complexity, the BCJR algorithm did not attract much attention until the

invention of turbo codes by Berrou et al. in 1993.

In this chapter, several issues are discussed that are relevant to turbo coding, including the
encoder, encoder trellis termination, interleavers, estimation of symbol energy and noise variance,
the decoder and decoding algorithms. The simulation platform used for evaluating the
performance of the whole system is also described. This chapter commences with a detailed

description of the BCJR algorithm for decoding convolutional codes.

2.1 BCJR Algorithm

The BCIJR algorithm performs two basic recursions on the sequence of received channel outputs.
From the results of these recursions, it computes the transitions in the code trellis and the
probability of the encoded data. It can be used to decode convolutional codes and block codes. A
block encoder is equivalent to a time-varying Markov source whereas a convolutional encoder
can be modelled as a stationary Markov source. In subsection 2.1.1, the general BCJR algorithm

is introduced, and then in subsection 2.1.2 the BCJR algorithm is applied to convolutional codes.

2.1.1 General BCJR Algorithm

The notation in Figure 2.1 will be used to describe a transmission system that uses channel coding

to correct errors, in particular, a system that uses the BCJR decoding algorithm.
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Figure 2.1: Schematic diagram of transmission system.

A. Encoding

The source generates a random binary bit sequence {U, } (the index k will always refer to time

throughout this thesis). The encoder is assumed to be a discrete-time finite-state Markov process
(Markov chain). The encoder has M distinct states and generates the encoded code sequence
{ X, } where the symbols are drawn from a finite discrete alphabet X . The encoder divides the
continuous input sequence into frames of size N . Figure 2.2 shows the state transition from state

m’ to m with probability ¢,(X |m’,m) and output X . The following notation will be used when

describing the encoder:

S, : State of the encoder at time &

X, Output of the encoder at time &

Sk Sequence of states from time k to k’ , where Sf =(S,, S S
X5 Output sequence corresponding to Sf , where X[ =(X,.X,_,--.X,.)
Pr(-1-): Conditional probability

p.(mlm’): The state transition probability of the encoder, where
p(mim)=Pr{S, =mlS,_ =m'}.
g, (X |m’,m): Output probability, where gq,(X Im’,m)=Pr{X, =X1S5,,=m’;S, =m}.

X
R
q, (X 1m',m)
Figure 2.2: State transition diagram.

B. Channel

Assume the encoder starts in the initial state S, =0, and produces an output sequence X,' ending
in the terminal state S, =0. Let the sequence XV =(X,,X,,....Xy) be the input to a discrete

memoryless channel (DMC) whose output is the sequence Y;" =(¥.Y,,....Yy). Define the



transition probabilities of the DMC as R(Y; 1 X ;) =Pr{{; | X j} where 1< <N, so that for all

1<k <N the conditional probability of the received sequence is:

k
Prf X =R, 1X)). (2.1)

j=t

C. Decoding

The following probability formulas and Markov properties are used frequently in the derivation of
the BCJR algorithm.

o Conditional probability:
Pr(A1B) =Pr(AB)/Pr(B) or Pr(AB)=Pr(Al|B)Pr(B), (2.2)
Pr(ABIC)=Pr(AIBC)Pr(BIC). 2.3)

e Introduction of a new random variable §:

Pr{A}= i Pr{A;S =m}. 2.4)

m=l

e Markov chain [21, p. 137]:

Consider a stochastic process {S,, k =0,1,2,...} that takes on finite number of possible
values. If S, =m, then the process is said to be in state m at time k. Suppose that
whenever the process is in state m’, there is a fixed probability p,(mim’) that it will
next be in state m . That is, suppose that:

Pr{S, =miS, , =m’,...S, =m,,S, =my}=Pr{S, =m|S, , =m'}y=p,(mim’) (2.5)
for all states my,m,,....m’,m and all k=0. Such a stochastic process is known as

Markov chain. The distinctive property of a Markov chain is that the conditional

distribution of any future state S,, given the past states S,,S,,...,5,_, and the present
state S,_, , is independent of the past states and depends only on the present state S, _; .

e The output of the Markov chain, or the combination of output and process state, is called

an event. A Markov property is that if S,_, is known, the events after time k—1 do not

depend on the output of the chain from times up to and including time k —1.

To decode the received symbol sequence, the decoder examines a frame of received data ¥, v,
and estimates the a posteriori probabilities (APP) of the encoder states, Pr{S, =mlY," }, given

the frame of observed channel outputs:

10



Pr{S, =mlY,” }=Pt{S,=m;¥," ¥ Pr{¥" }, k=12,..N. (2.6)

The decoder is trying to maximize Pr{S, =ml¥;" } .In (2.6), since Pr{¥," } is easily obtained and
fixed given the received data Yl” (see relation (2.17)), the goal becomes to maximize
Pr{S, =m;Y¥," }. In the following, this joint probability is derived first:

A, (m)=Pr{S,=mY"}, k=12,..N. @7

To assist in the calculation of A, (m), the following probability functions are defined:

a,(m)=Pr{S, =m;¥;*}, k=1,2,.,N, (2.8)
Bi(m)y=Pr¥N 1S, =m}, k=12,..,N-1, 2.9
¥, (m’,m)=Pr{¥,;S, =m|S, , =m’}, k=12,..N. (2.10)

As shown in relation (A1l.1) of Appendix 1, the values ¥, (m’,m) are dependent on state transition
probabilities p, (m|m’), probabilities ¢, (X Im’,m) that indicate if paths between states m’ and

m exist, and the block transition probabilities R(Y, | X) from the channel.

A,(m) can be obtained by the formula Pr{AB}=Pr{A|B}Pr{B} and the Markov property
that if S, is known, events after time k are not dependent on Yr.
A, (m)=Pr{S,=m;¥," }

=Pr{(S, =m Y)Y}

=Pr{S, =m;¥*}-Pr& 7, 1(S, =m;Y,")}

=Pr{S, =m; Y} }-Pr{¥, 1S, =m}

=a,(m)-Bi(m), k=L2,.,N. (2.11)
Probabilities ¢ (m)and B;(m) can be recursively calculated from the probability ¥, (m',m) . For

these calculations, relevant expressions are given below. For the detailed derivation, please refer

to Appendix 1.

M-l
al: = Z a;—l(m,) Yk (m',m), k= L2,...,N, (2.12)
m'=0

M-l '
Bi(m) =Y Biy(m) ¥ (mm), k=N-1..21, (2.13)
m'=0

where the boundary conditions are:

a’',(0)=1,and qz(m)=0,forall m=0,

11



By (0)=1,and B;,(m)=0,forall m#0. 2.14)

These boundary conditions are derived from the assumption that the process starts and ends in the

zero state.

Given these expressions, the general BCJIR decoding algorithm can be mechanized in the

following three-step procedure:
(1) Initialize @y(m)and By (m), m=0,1,...M —1.
(2) Assoon as Y, is received, compute y,(m’,m) and ¢, (m) . Store the &, (m) values for all
k and m for subsequent calculation of 4, (m).
(3) After the complete sequence Y,¥ has been received, calculate B{(m) in reverse order
starting from time N . Once f/(m) has been computed, evaluate 4, (m) . Given values of

A, (m), decode the most probable state S, =m by choosing the largest A4,(m) value,

m=0,1,....M -1.
2.1.2 BCJR Algorithm for Convolutional Codes

In this subsection, the application of the BCJR algorithm to the decoding of convolutional codes

is discussed. The convolutional codes considered are binary codes with rate k,/n,, and overall

memory k,v . The encoded sequence is assumed to pass through a DMC.
A. Encoding

For convenience of notation, define:
u: An input bit
x: An encoded bit
U, =&t » Uy ¥y ) - Input word to encoder at time k
X, =(X 41Xy 4reer X, ) ¢ Output word of encoder at time &
S =S SasxresSrwi) TUeUpaedUppid) - State value denoted by input bit sequence

at time k.

The input to the encoder is assumed to consist of equally likely and independent symbols (an

assumption used throughout all analysis in this thesis). The encoder is ensured to start from the

12



zero state by clearing the encoding registers prior to accepting the input data sequence. It is

terminated in the zero state at time N by padding k,v zeros to end of the length N, =N —k,v
input data sequence.

Figure 2.3 shows a shift-register based encoder structure for a rate 1/2 convolutional code
with memory v =2, and generator G(7,5) in octal. A trellis diagram is shown in Figure 2.4 with
N, =6 and N =8. In this figure, solid lines correspond to paths taken when input bit is a 0, and

the dashed lines correspond to paths taken when the input bit is a 1. State values are determined

by the contents of the encoding shift register.

- 6=N 7 -
m State k=0 ! 2 3 4 5 1 =NV
0 0
i 01
2 10

Figure 2.4: Trellis diagram for rate 1/2 convolutional code with generator G (7,5).
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B. Channel

Assume that the channel is a DMC. Define symbol transition probabilities to be r(y;, lx;,).

Because the memoryless property of the channel, the block transition probability is:

)
R AX)=T[r(yulx) s J=12nq. (2.15)

j=l
C. Decoding with BCJR

The computation of ¥,(m’.m) is critical for decoding convolutional codes with the BCJR

algorithm. Where a path does not exist between states, the state transition probability is zero.
Where paths do exist between states, the state transition probabilities are divided into two cases.
First, for k£ =0,1,...,N, —1, the state transition probability, p,(mim’), is determined by the input
statistics. Since all input sequences are assumed to be equally likely, and there are 2% possible
transitions out of each state, p, (m|m’)=2"% for each of these transitions. For example, in Figure
2.4, because k, =1, there are two possible transitions out of each state that is connected, and
hence p,(m!m’)=0.5 for each point of these states for k=0,1,..,N,—1. For k=N,,...N -1,

since there is only one transition out of each state, p, (m|m’) =1 for each connected pair of states.

The value of g, (X |m’,m) expresses the probability of output X given the state m" and m.
According to the trellis diagram, ¢, (X |m’,m)=0 if a transition does not exist between state m’
and m, and q, (X |m’,m)=#0 if a transition exists between state m’ and m, where X denotes

the branch values on the trellis diagram and can take 2™ different values. For example, in Figure

2.4, because n,=2, there are four branch values (X = 00,01,10,11). In relation (Al.1) of
appendix 1, for the calculation of ,(m’,m), given state m and m’, there is a summation over all

possible output symbols X . If there is more than one transition and output value, given state m’

and m, g, (X |m’,m)=1. But in convolutional codes, because X is a deterministic function of

the state transition, when m and m’ are given, only one X symbol is true. Therefore

g, (X m',m)=1 for one symbol value X if the transition does exist, and no summation is

needed in evaluation of y, (m’,m) for convolutional codes.

14



Consider now the application of the BCJR algorithm to decoding the received symbol

sequence. First, note that:
S =051 ,sz.,‘,...,s,,cv.,‘)
=U, "Uk-l ""'Uk-v+l)
= (U g Uy govemes Mg 5 Uy gy By g vomes By kys oo By kyat o B gyt voems g kvt -
Decoding the state values is equivalent to decoding the input bit sequence according to:

Six =i J=L2,kg. (2.16)

J

Using this relationship, evaluation of A, (m) is sufficient to obtain an estimate of the input

information bits, as shown by the following:
Pr{u,, =01Y,Y)=Pr{u,, =0;¥,¥)/Pr(Y "))

=Pr{s,, =0;¥;" ¥/ Pr(t;")

1
= - Pr{S, =mY"}
Pr{x“h.zr,, £

1
- PI'{YlN }:,EZA,) ,lk (m)

where A, is the set of states S, such that s;, =0 . For a given Y. Pr{l,"} is a constant and is
equal to 4, (0) since:
Ay (0)=Pr{S, =0;¥," }
=Pr{S, = O}-Pr{YlN }
=1.Prt}"}

=Pry,"}. 2.17)

Since A ,(0) is evaluated as part of the BCJR algorithm, it is straightforward to evaluate:

Priu;, =0I%," }=- 1(0) ZA: A, (m) (2.18)
N Sk €A,

and decode u,, =0 if Pr{ux;, =01Y"}>0.5, and otherwise decode u;,, =1. Note that the
probability Pr{u;, =0l Y," } is the APP for the input bit «, . Note also that Pr{u;, =0l YV'}isa

soft value (a real number). This is an important characteristic required for iterative decoding.
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To demonstrate summation of A4,(m) in formula (2.18), consider the two examples given
below. Consider first the case with k, =1 and v=3. The number of states is 2° =8 (Note that

when k, =1, u, is used instead of y,, for simplicity.)

State

m (U U,y U y)

0 000

1 001 -

5 010 Sum A, (m) for these states when decoding u, .
3 011

4 100

5 101

6 110

7 111

For 1/n, convolutional codes, the final step in decoding can always be performed by summing

the probabilities A, (m) of the upper M /2 states:

M,
Prix =01%"y=— 1(0) S 2,0m) (2.19)
N m=0

When k, =2 and v =2, the number of states is 2%Y =16:

State

m (b g bg patly g grlip )

0 0000

1 0001

2 0010

3 001l -
4 0100 { Sumfor i,

S 0101

6 0110 Sum for &, ; .
7 0111 )

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

16



When k, >1, the first input bit can always be decoded by adding the values of A, (m) for the

upper M /2 states, but for the other input bits, the A, (m) values must be selected by determining

the states whose associated input bits have value zero.

The BCJR decoding process for convolutional codes is now summarized using matrix

notation for values of «; (m), B;(m) and ¥, (m',m):

¢

(2

3)

Initialize @g(m) = [@],, =[100,...,0], and B (m)— [B 1y, =[100,...,0" , where T

denotes matrix transpose.

As soon as Y, is received, compute ¥, (m’,m)—> [7,], , and e (m)— [e(] ,, using

1M

lai ], =leia],, [y, with initial conditions [a;] . . Store the [e;] , in a two-

dimension matrix denoted by [ay, ], ..., - Thatis, [ ], o, = [[a’0 [ ]T] .The
shape of this matrix matches the distribution of states in the trellis diagram.

After the complete sequence Y," has been received, calculate B;(m)—[B/],  using

xI

(B s =[7eet Lignss [ Bt )y, With initial conditions [y ], . in the reverse time order. If
the [yk ]M « values were not stored in step 2, they must be recalculated, also in the

reverse time order. When [4;],  is available, [a;] , values can be recalled from

[@ns )iy, 20d A, (m) can be obtained from A, (m)=a;(m)- B, (m), where this

multiplication is component-by-component multiplication. After A4, (m)is obtained, use

relation (2.19) to obtain the APP of the input bits. If the APP is larger than or equal to
0.5, the decoded bit is judged to be 0, otherwise the decoded bit is judged to be 1. Note

that although A, (m) is available for k=0,1,....N, A,(m) cannot be used for decoding

since a,(m) has no relationship to the input bit values.

To confirm the validity of the BCIR algorithm as outlined above, Figure 2.5 shows BER

performance against signal to noise ratio for the VA and BCJR algorithms. Clearly, the

performance of these algorithms is, for practical purposes, identical. The BCJR algorithm is more

complicated than the VA. However it generates APP values that are used for the decoding of

turbo codes.
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Figure 2.5: BER performance vs. E,/N, for VA and BCJR algorithm.

Determination of the ¥,(m’,m) values is very important to the BCIJR decoding process. The

following example details the calculation of ¥, (m’,m) when k =3. Let the system parameters be:

Input: Binary bit sequences.
Convolutional encoder: k, =1,n, =2,v=2,M =4 and G(7,5).

Channel: Gaussian symmetric DMC.

Demodulation: Four quantization levels with symbol transition probabilities as given in

Table 2.1.

Table 2.1: Symbol transition probability r(y;,[x;,)

Yjuk
X 0 1 2 3
0 0.5 0.3 0.15 0.05
1 0.05 0.15 0.3 0.5
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Received symbols: (1,2)

m  State

I 01
2 10
3 11

Figure 2.6: Trellis diagram for example calculation of #;(m’,m).

Consider calculation of ¥,(m’,m) values when the received symbols in this interval are (1,2). In

matrix form, these values comprise the matrix [#;] Some entries of this matrix can

4xa "
immediately be set to zero by observing the states in the trellis diagram between which transitions

do not exist:

(o}

0 0

[73 Lx4 = lo 0

With knowledge of the received symbols, the coded symbol values (also called branch values) on

the trellis diagram, and the symbol transition probabilities in Table 2.1, the non-zero values for

matrix [7;], . can be calculated. For example, consider the branch with coded symbols (0,0) . If

4x4
the received symbols are (1,2), 7,(0,0)=%,(1,2)=0.5-r(110)-r(210)=0.5-0.3-0.15 =0.0225,
where 0.5 is the value of p,(mlm’) since there are two possible transitions out of each state for
k<N,. For the branch with coded symbols (0,1), »(2,3)=7; G,1)=05-r@10)-r2110H

=0.5-0.3-0.3=0.045 . Similarly, the other non-zero entries for matrix [, ], , can be obtained:
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0.0225 0 0.0225 0

_|0.0225 0 0.0225 0
7)o = 0 001125 © 0.045
0 0.045 0  0.01125

Note that the number of different non-zero values is determined by the number of coded symbols.

Although eight non-zero values appear in the matrix [7,] 4 » actually only four calculations are

required since there are only four different coded symbols (00, 01, 10, 11).

2.2 Modified BCJR Algorithm (M-BCJR)

For conventional convolutional codes, the BCJR algorithm and the VA can be used to decode the
received bit sequences; for recursive systematic convolutional codes, the VA can be dirzsctly
applied, but the BCIR algorithm has to be modified. The reason for the modification is that the
relationship between the states and input bits cannot be constructed directly. This section first
introduces the structure of RSC codes and then presents the modified BCIR algorithm [1] in

detail.
2.2.1 Recursive Systematic Convolutional Codes

It is well known that the BER performance of a conventional systematic convolutional (SC) code
is worse than that of a conventional non-systematic convolutional (NSC) code with the same
constraint length at large signal to noise ratios (SNR’s) [1]. But at low SNR’s, the performance of
SC codes is slightly better. The BER performance of an RSC code that integrates the properties of
NSC and SC codes can be better than the equivalent NSC code for code rates greater than or
equal to 2/3 [20]. Figure 2.7 shows BER performance for SC, RSC and NSC codes with
constraint length 3 and rate 1/2. From this figure, it can be seen that the performance of the RSC

code is slightly worse than that of the NSC code from medium to high SNR’s for code rate 1/2.

Figure 2.8 compares BER performance for RSC and NSC codes with different constraint
lengths and rate 1/2. From this figure, it can be seen that the performance of the two codes

becomes closer when the constraint length is larger.
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Figure 2.7: BER performance vs. E,/N, for SC, RSC and NSC codes with constraint
length K=3.
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Figure 2.8: BER performance vs. E,/N, for RSC and NSC codes with different constraint
length K.

A binary RSC code can be obtained from an NSC code by using a feedback loop and setting
one of the two outputs equal to the input bit. Figure 2.9 shows a rate 1/2 NSC encoder and Figure

2.10 illuminates the corresponding RSC encoder, which has two output bits x,, and x,,, where
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x,, 1s the systematic bit that is equal to 4, , and x,, is the parity bit. Note that the minimum free

5.

distance of these two codes is identical in the trellis diagram, but the mapping from input bit
sequence to encoded symbol sequence differs. The states of the RSC encoder are dependent on

a, , and not directly on u, , therefore when summing the values of A, (m) in the BCJR algorithm,
only a, can be estimated. What is needed, however, is the estimation of «, . This is the reason
that the BCJR algorithm has to be modified: to accommodate the mapping from u, to a,. The

modified BCJR algorithm (M-BCJR) can be used to decode the values of the input bits.

e
> X

> Xy

Figure 2.9: Non-systematic convolutional code encoder with code rate 1/2 and generator G(37,21).

w —p—2E{EH BB+

4 a,
y
‘EB—-—:» Xpk
x:.k

Figure 2.10: Recursive systematic convolutional code encoder with code rate 1/2 and generator G(37,21).

2.2.2 M-BCJR Algorithm for RSC Codes

Note that the derivation of the relationships below is limited to rate 1/n, RSC codes for

simplicity, because rate 1/n, RSC codes are the component codes used for turbo codes. If a high

rate code is desired, the parity bits can be punctured.

A. Encoding

Define the symbols:

u, : Input to encoder at time k.

22



X = (X, pXyp 5o Xny —1ype) - Output attime k.
S, = (Sip+Sapre-nSyy) =(ac.a,_y,...a,_,,,): State attime k.
S, =0: Initial state at time 0.

Sy =0 : Final state at time V.

The RSC encoder is terminated at time N. Since the encoder is recursive, it is not sufficient
to set the last v information bits to zeros in order to drive the encoder to the zero state; setting the
last v bits of a, to zeros will drive the encoder to return to the zero state. The last v input
information bits u, required to ensure that the bits a, are zeros can be calculated from the
contents of the registers. Figure 2.11 shows a trellis termination structure for a rate 1/2 RSC code
[8]. For the first N, bits, the switch is in position 1, and x,, =u,, k=1,2,....N,. Then the switch
is moved to position 2, and x,,, k=N, +1,...N, are obtained from the feedback path of the

registers. During this period, a, is always zero and this drives the state of encoder to zero at

time N .
2
v
P Ny 1
, —>—'I B—=>1>1D] D] D D
4 a,
>259 xp.k
xs.lr
Figure 2.11: RSC encoder with trellis termination.
B. Channel

Assume that the channel is the additive white Gaussian noise (AWGN) memoryless channel. If
the received signal is not quantized, the channel is called the discrete-input continuous-output
Gaussian memoryless channel and if the received signal is quantized, the channel is called the
discrete-input discrete-output Gaussian memoryless channel. For the discrete-input discrete-
output Gaussian memoryless channel, define:

e Symbol transition probability r(y;,lx;,).

o
e Block transition probability R(Y, | X, )= Hr(yj',‘ bx; ).

=
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C. Decoding with M-BCIR

The decoder examines Y;" and generates the APP associated with binary information bit «, from
the probability A (m) defined by:
Ai(m)=Pr{u, =i,S,=ml¥"}, i=0,1 and m=0,1,....M —1, (2.20)
and thus, the APP of the decoded information bit «, is:
M-l M-l
Priu, =il¥"}=) Pr{u, =i.S, =mi¥¥}=2 A(m). (2.21)
m=0 m=0

The logarithm of the likelihood ratio (LLR) associated with the decoded bit u, is equal to:

M-l
L(u,)=log Pr{u, =11Y") =l°g_,,§9_'1"_(_”2. 2.22)
k Pr{u, =0I1Y,") bfzf(m)
=0

Given this LLR value, the decoder can make the decision:
a4, =1,if L(u)=0,
4, =0,if L(u,)<O0. (2.23)

In order to calculate the probability A/ (m), the probability functions , (m), &, (m), B,(m),
¥.(m',m) and y,(m’,m) must be defined. The definitions of these probabilities are somewhat

different from those in the BCJR algorithm, the major difference being augmentation with the

variable u, . Define:

ai(m)=Pr{u, =i;S, =m|Y"} (2.24)
o, (m) = Zl al(m)=Pr{S, =ml Y} (2.25)

i=0
_Pr(yli1S, =m} 56
A = e ) (2:20)
Yi(m’,m)=Pr{u, =i;Y,;S, =m|S,_ =m’} .27

1

Ye(m',m)=Y" yi(m';m) =Pr{¥,;S, =mlS, , =m'} (2.28)

=0

From these definitions, the following relationships can be constructed:

24



2 r

Y,
& (m) = {0-'{:-; (m”) }: Cl-u«%nnel trafl'sition probability
¥ (m',m) Initial condition for ¢, (m)
| Trellis diagram
i, = L(u,) < A (m) <A Y,
o, (m') Channel transition probability

B.(m) <=1 7, (m’,m) < 4 Initial condition for S, (m)
B (m) Trellis diagram

| Stored values of ¢, (m)

Computation of these terms is outlined below. To streamline the presentation, some detailed

derivations are deferred to Appendix 2.

(1) A4 (m)
A (m)=Pr{u, =i;S, =m|Y,"}

_ Pr{u, =i;S, =m;¥,"}
Pr{r"}

_Pr{( =58, =m; Y ); ¥}
Pr{¥5;Y N}

— Pr{u, =i, =m; Y} Pr{Y] lu, =i;S, =m; Y}

Pr(AB)=Pr(A)Pr(BIA)=
Pr{¥;* ) Pr{,7, 1%}

Simplify the second term in the numerator

by Markov property such that after time k

Priu, =i;S, =m: Y }Pr{Y X IS, =m
events are dependent on state Sy only. = = { k k p 1 }N { ": Lt !
Pr{Y }Pr(Y,}, 1Y}

_Pri{y, =485, =m;¥*} Pr{¥ 1S, =m]}
Pr{¥} Pr{Y}, 1¥*}

Pr{¥} 1S, =m}
Pr{¥, |1}

=Pr{u, =i;S, =mlY}}

From (2.24) and (2.26) = =a,(m)- B, (m). (2.29)
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) %(m',m)

Evaluation of the branch transition probability y;(m’,m) is critical to calculation of the other

quantities. As derived in Appendix 2:

yi(m',m)=Pr{Y, lu, =i;S, =m;S,_, =m'}-q,(u, |m’,m)- p,(mIm’),

(2.30)

and thus ¥, (m’,m) is determined by the channel distribution and the encoder trellis diagram.

3) a,(m) and B, (m)

Probabilities or,';(m) and f,(m) can be recursively calculated from the probability yi(m’,m).

Please see Appendix 2 for the complete derivation.

(4) L(w)

M-l
Z ., (m’)- 72 (m’,m)

2} () = ez ,
(27" (ml) ° }’;; (m', m)
=0

o

m=0 m'=

@, (m) -y, (m’,m)

ak—l (m,) " },k (m’v m)
m=0 m'=0

S By -V (m,m)
% i=0

]
Zak (m)- %, ,(m,m’)

Consider calculation of the LLR L(x, ). From relation (2.22):

L(u,)=log

Pr{u, =11Y,")
“Pr{u, =01Y,")
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M-l
D A(m)
=log, 717

DA m)

m=0

M-i

Z @, (m)- 3, (m)
A (m)=aj(m)- B, (m)=> =log, ==2 e

> o (m)- B, (m)

m=0

In (2.31), the denominator has the
same value when i=1 or i=0.

Let A denote this value. =

Mol ak l(m) }’,i(m ,m)

m’=0
m=0 A ﬂk(m)
M-l ak[(m) }’O(m m)

m’=0
; ~ - B, (m)

> " 0, (m") - 7L(m',m)- B, (m)
m=0 m'=0 (2.35)

aL  (m’) - 70(’" m)- 3, (m)

=log, ak () -y (m' m)- B, (m)

M-l M-

~log, a,_ (m)-y(m',m)- B, (m) (2.36)

=0 m'=0

5

Comparing the calculation of L(x,) using relation (2.22) and (2.35), it is noticed that memory
can be saved by use of relation (2.35), because only values of «, (/) are stored, not ;(m) and

o, (m), and it is not necessary to introduce the parameter A;(m). In addition, relation (2.22)

involves multiplication of probabilities with very small values, so use of relation (2.36) is highly

recommended for avoiding floating point calculation errors.
The process of decoding RSC codes using the M-BCJR algorithm is now summarized:
(1) Initialize a,(m) and B, (m), m=0,1,...M ~1.
(2) As soon as Y, is received, calculate ¥,(m’,m) and ¢, (m). For all k and m, store the

values of ¢, (m) for subsequent calculation of B, (m) and L(w,).
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(3) After the complete sequence Y," has been received, in the reverse time order from time
N, calculate ;/,;(m';m) and S, (m), obtain L(x,), and make a decision based on the sign

of L(u,).
Now the decoding process is illuminated using matrix expressions.

A. Forward Process

(1) Initialize a,(m)— [ao]w =[100,...,0] .
(2) After obtaining the demodulator output at time k£ (k =1,2,...,N) starting from time k=1,

calculate y,(m’,m) — [7.] using the demodulator output values, trellis diagram and

M <M
symbol transition probabilities if the received signals are quantized, or channel

distribution function if the received signals are not quantized.

(3) Calculate &, (m)— [e,],,, using [@,],,, =[] [7edp - (@) = (@l -
where S, = summation over all entries of matrix [&,,],, -

(4) Store the [, ]  toatwo-dimensional matrix [e,, |

IxM

(@t oy =[] [ e

Mx(N+1)’

B. Backward process

After finishing the calculation of [a,, ] in the inverse time order starting from time N,

MxN
}'i(m',m) , B.(m) and L(u,)are calculated, and a decision regarding the value of the information

symbol can be made immediately.
(1) Initialize B, (m)— [B,],,., =[100,....0] .

(2) Fetch demodulator output values for time k& (k=1,2,...,N) starting from time k=N,

and then calculate  y(m,m)—>[y]| ~~ with i=0 and 1, and

[% ], =[72 :IMxM +[7’i ]MxM'
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3) Caleulate f,(m)—[B,],. with [B], =——[Bul,, for time k (k=1..,N—1)

S

&

starting from time k=N -1, where S, is the summation over all entries of matrix
[ak,] Ly With I:akﬂ] =[], [7enl,,, bY recalling (2], from [a,],. .., 2¢0d

[ﬂkh]Mxl =[yk+l]MxM [ﬂk-ﬂ ]Mxl -
(4) Calculate L(x,) for time k (k=L2,.,N) starting from time k=N, using

L(u,)=log,[e,_] [7,1 :]Mm Ly —log (@], [7” ]qu [8.],, and make a
decision based on the sign of L(x,).
Due to its importance in the decoding process, an example for calculation of ¥} (m’,m) is now
given. Consider the following system parameters:

e Encoder input: binary bit sequences with equal probabilities.

Encoder: RSC code with k, =1,n, =2,v=2, M =4,G(1,5).

e  Channel: memoryless AWGN channel.

e E/N,=4dB.

e BPSK modulation: logic one — +1, logic zero — -1.

e Demodulator output: unquantized.

e Decoding algorithm: M-BCIJR.

e Decoder input at time k=3: ¥, =(y,;,5,;)=(1.2,-0.5).

Consider calculation of }é(m',m)—)[}g"]u , - First set to zero entries of matrix 7]
x4 >4

[7;’ ]4 ,and [}g']“, which correspond to states between which there are no transitions.
X X

According to the trellis diagram given in Figure 2.12:

0 0 0 0O 00 0
0 0 00 0 0 00
[}’3]4x4= 0 0 ? [}’:?]«4: 0 0O ’ [n‘]"’“‘: 0 0 0 '
0 0 0 00 000
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When k=3, demodulator output is (1.2,-0.5).

m  Sae k=0 1 2 3 4 5 6=y 7 8=N
ak-1,0k-2 00 00 00 00 00 00

3 11

Figure 2.12: Trellis diagram for example calculation of ¥;(m’,m) using the M-BCJR algorithm.

Now, use the demodulator output values and different branch values on the trellis diagram at time
k=3 to obtain the non-zero values for these matrices. The channel variance c*or N,, the
single-sided power spectral density of white noise, is required for the calculation of the
probability density function.

Since E, /N, =4 dB, the code rate R=k,/n,=1/2 (note that strictly speaking, with

terminating bits, the code rate is slightly less than 1/2, however the value of 1/2 is used because
the reduction of the code rate is small for larger frame size and smaller memory of code

generators, which are common in turbo codes), and the average symbol energy is assumed to be

E =1.0:
E IN,=R-E, /N,

4
E,/N,=10" =2.512,

—
o

-2.512=> N, =0.796 = ¢* =% 0.398.

1
2

Z|

Now relation (A2.5) is used to compute the probability Pr{Y, lu, =i;S, =m;S,  =m’}

1
N,

(¥, =b,(,m’\m))* +(y, ,—b,(i,m’\m))*)
=e Consider evaluation of [}’?]m. Since [}é’] =

x4
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0 0 0
090 0 . .
00 0 , calculation of only 4 non-zero values is needed. These values correspond to the
0 00
branches whose corresponding input bit is zero. The first such branch is from state O to state 0
whose encoded output is two logic zeros. Since logic zeros are transmitted as —1’s, and since the

demodulated values were 1.2 and -0.5:

I FIWIRISEIN 2
Pr{Y, lu, =05, =0;5, =0} =e 0% " 2000167 .

Since yi(m',m)=Pr{Y, lu, =i;S, =m;S,_, =m’}-q,(u, | m’,m)- p,(mim’), then:

75(0,0) =0.00167 * 1.0+ 0.5 = 0.000835 .

Consider now the transition from state 2 to state 3, whose encoded output is logic zero and logic

one. Since these symbols are transmitted as —1 and +1 respectively:

1 () + 2
Pr{Y, lu, =08, =35, =2} =e 0% 120000135,

72(2,3)=0.000135*1.0*0.5=0.000068 .

Similarly, 77(1,2)=0.000835 and ; (3,1) =0.000068 . Therefore:

0.000835 0 0 0

(2] - 0 0 0.000835 o |

L3 Jaxe 0 0 0 0.000068
0 0.000068 0 0

To calculate , focus on the branches whose corresponding input bit is one. Doing so
3 p g np g

according to the above procedure yields:

0 0 0.028155 0
_| 0.028155 0 0 0
[7;]“4_ 0 0.347334 0 0
0 0 0 0.347334
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Finally, summing [72 ]m and [7;:] ., yields:

4.

0.000835 0 0028155 O
] = 0.028155 0 0000835 O
Bl =) 0347334 0 0.000068

0 0.000068 0 0.347334

It is possible to obtain [7,],., directly, not from the summation of [}f]MxM and [:7’:]:]

xM MxM

However, for the decision purpose when [ﬁk ]Mx is calculated, it is necessary to first obtain

(7 L 204 [72 ]

Also, note that for the given decoder considered above, although there are eight non-zero

1

values in [¥,] only four different values are obtained because there are only four branch

MxM’
values. Similarly, there are only two different non-zero values for I:y,? :]qu or [}/,i]w , » because
o X

there are only two different branch values corresponding to the given input bit. For instance,

given the input bit 0, the branch values must be Ox, where x is either O or 1. Therefore only two
different branch values are produced for [}’f ]qu , although four non-zero values are needed to
be determined. If this feature is used, half of the calculations can be saved for the computation of

(%], and [}'};]MW . Generally, for k, =1, there are 2'-2" =2""' =2% branches, and there are

2% different branch values. If K >n, =2, the number of computations required during
2

evaluation of [7,], ., can be reduced by up to 1-—:2—,(—=1— 27K-%) Table 2.2 shows the reduced

computation load of [#,],,,,, for k, =1, n, =2 using this feature.

Table 2.2: Saved computation load for k, =1,n, =2

K Reduced computation load
3 50%

4 75%

5 87.5%
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2.3 Berrou’s Turbo Coding

The amazing performance of turbo codes is a result of the encoder using parallel concatenation of
RSC codes with random interleaving, and the associated decoder using iterative decoding. In this

section, the encoder structure is introduced, and the decoder structure is described in detail.

2.3.1 Turbo Encoder

Figure 2.13 shows the block diagram of the turbo encoder, which consists of two identical RSC
encoders with a random interleaver. The output of the two RSC encoders can be either punctured

or not punctured. The RSC codes are of rate 1/2.

xx.&

e | RSC [ %o | Puncturing
! "] ENC1 g Xex
Random and
interleaver | | L

| u, RSC | Br Multiplexing
ENC2

X

>
—»Multiplexing | —»
—>

Figure 2.13: Block diagram of turbo code encoder with punctured or non-punctured outputs.

The input of the first RSC encoder is the bit sequence & =(u,,...,u,,....,,) . The interleaver
permutes this sequence to form the sequence &', which is the input sequence of the second RSC
encoder. Attime &, x,, is the systematic component of the turbo encoder, x,,, is the parity bit
generated by the first RSC encoder, and x,,, is the parity bit generated by the second RSC

encoder. The parity bits can be punctured according to a desired puncturing matrix to obtain a

higher code rate. No puncturing yields a rate 1/3 turbo code, where

Xyp ={Xppi}= {x:.k’xlp.k’x‘.’p.k }= (G T P TI W XipurXapurXon1Xip v Xop ) - If parity

1
bits are punctured according to the typical puncturing matrix P=|1 0| with the puncturing
i

o — =

period 2, the result is a rate 1/2 wrbo code. In Figure 2.13, X, ={X,,}={x,,.X,, or x,,,}
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=(xs

X Es Xy 0s By X 50ee) = (X, 10X 15X, 20 %05 20 X 39 X1 530 X5 49 X2 p g s---) » Where the E”s mark the
locations of deleted bits.

A detailed turbo encoder structure is shown in Figure 2.14. Both RSC constituent encoders
are assumed to start from the all zero state. The upper constituent encoder is forced to terminate,

but the lower one is not terminated. These different operations will affect the initialization of

B, (m) in the decoding algorithm. Because of the interleaver, the encoder is frame-oriented. For

example, if the frame length is N =65536 and RSC code memory is v =4, the length of the

information bit sequence & will be N, =65532 (N =N, +v) per frame. For time 1<k <N, the
switch is in position 1 to accept the user data. For N, <k < N , the switch is in position 2, so that
the x,, is obtained according to the contents of the shift register, not &, so the upper constituent
encoder will be properly terminated. After the whole X, sequence of one frame is obtained, this

sequence is passed through the interleaver to obtain X, the permuted version of X, .

T e
e 2 v
S—R>—&>olBH- {1 {BH{p
by a Y
0.4
El S "4
xs.k
xx.k
xlp.k Multi- KogeGpreKezvXapaene
- Xipu ! Xs :
Xapk le(i) Yo s B plexing Rate 1/ 2 turbo codes
>,< -P3 ] ture’?
X
X 5.k
5.k N .
- \(; x:"k Multi- X, 1o Xypye Xpgsene
andom _@ XiparX2pk | plexi >
—>@ — ——-{:l— k> 2p, exing
Interleaver yr E m > P & |Rate 1/ 3 turbo codes

Note: Only first RSC encoder is terminated.
Figure 2.14: Turbo encoder structure with generator G(37,21) .

The systematic component of the second RSC encoder is not transmitted, because the turbo
decoder will use the same interleaver as the one that is used by the encoder to recover this

information.

Assume that the channel is AWGN with zero mean and variance o°, and that BPSK

modulation is used.
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2.3.2. Turbo Decoder

A. General structure

It is the feedback structure of the iterative turbo decoder, shown in Figure 2.15, which resembles
the turbo engine principle that gives turbo-codes their name. This figure shows the decoding
structure originally proposed by Berrou et al. in 1993. After the encoder output is transmitted

through the noisy channel, the receiver receives the disturbed signal Y, =(,,, ¥4 Y2,,) at time
k. If the parity bits are punctured, zeros are inserted into the punctured positions.

The iterative turbo decoder consists of two MAP decoders using Berrou’s M-BCJR
algorithm, an interleaver (the same as the one used for the turbo encoder), a corresponding
deinterleaver, and the estimation and normalization blocks. In general, the greater the number of
iterations, the fewer the number of decoded bits in error. After finishing a specified number of
iterations, the decision block makes hard decisions to output an estimate of the information bits.

Note that the two constituent decoders in Figure 2.15 are not identical. Decoder 1 has three inputs
(Z,4+ Yok Yipu) » and decoder 2 has only two inputs (L (4}),y,,,), Where z,, and L'(4) are
generated in the decoding process. In the decoding scheme developed by Robertson, discussed in

the next section, these two decoders are identical, each has three inputs, and the M-BCJR

decoding algorithm is slightly different from Berrou’s.

Ly (u) Estimation L. (u)
and
Zu =L () Feedback loop Normalization

o D) [Sub]

el ; N PN, T I
Yex | MAP Lu) Li(u,) | Estimation |4 () Ly (u,) MAP Ly(u,) L,(u;)
S| DECI >[subf—| and »{in | »| pECa—*{Delnt ] ?
1p.k 2 Normalization y
_"zr k H?I'd
T Yapu Decision

Int.: Interleaver
Delnt.: Deinterleaver
Sub.: Subtraction

-~

u,

Figure 2.15: Block diagram of Berrou’s iterative turbo decoder.

In Berrou’s turbo decoder the output (L, (»,) or L,(u,)) of each constituent decoder includes
two components: one is the information (z,, or L (#,)) generated by the previous decoder, and

the other is the information (L (u,) or L, (,)) generated by the decoder itself, which is passed
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to the next decoder. Random variables L (x,) and L, (x,) have soft values, and the distributions

of them can be assumed to be Gaussian distributed. However, the mean values of them are
generally not 1 (say #20) (see relations (2.46-2.49)). It is necessary to normalize these two

random variables to be used with the channel outputs (y,,, ¥\, - Y.,x) for turbo decoding.

B. Extrinsic information from the MAP decoder

In the following the extrinsic information is derived from the LLR L(u,). For purposes of

generality, assume the MAP decoder has input Y,(y,,,y,,) and output LLR L(x, ). From
relation (2.35), the LLR L(u,) is:

M-1M-1

Z Z & (m")- ¥, (m’,m) - B, (m)
m=0 m’=0

L(uk)=log,M AT
D> (m)-yim' ,m)- ﬂk<m>

m=0 m'=0

Since the encoder is systematic (x,, =u,), in the expression for ¥;(m’,m) (i =0,1) the transition
probability Pr{y,, lu, =i;S, =m;S,_, =m’} is independent of state values S, and S, .

Therefore:

vi(m',m) =Pr{Y, lu, =i;S, =m;S,_ =m’}-q,(u, |m’,m)- p,(mIm’)
=Pr{y, Vu, =65, =m; S, =m'}-Prly,, lu, =65, =m;S,_ | =m'}

g, (u, tm’,m)- p,(mlm’)

=Pr{y,, lu, =i}-Pr{y, \u, =i;S, =m;S,_, =m’} -q,(u, |m’,m)- p,(m|m’)
=Pr{y,, lu, =i} (¥, m’m) .

In the following derivation, note that the “log.” denotes the natural logarithm, i.e., base e, so:

M-1M-1

> X @, (m)- 7 (m'm)- B (m)

L(u,)=log, 2=0m=0

Z Z & (m)- 72 (m’,m)- B, (m)

m=0 m'=0

t

1 M-
Pr{y:.lc I u, =1} Z Z ., (m') . }’li(yp.kv'n,,'n) . ﬂk (m)
m=0m

=log

—-0

e M—1M
Pr{y,lu, =0} ZZ 1 (M) - V2 (Y, pom'sm) - B, (m)

m=0m
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M-1M-1

Pr(y, I =1} 2. 2 @ (M) 1 (3 iom’sm) - B ()

=l o m=0 m’=0 2.37
o Pr{y,,lu, =0} =T ¢ )

S > o (n)- Ry, mim)- ,61<m)

m=0 m’=0

The channel is assumed to be AWGN with zero mean and variance o, and that BPSK
modulation is used. In order to calculate the first component in relation (2.37), consider

integrating the probability density function f{-1-) over a very small range £ of integration.

Pr{y.\',k Iuk =1} =Iog f(y:.k Iuk :1)'8
“Pr{y,;lu, =0} T f(yalu,=0)¢

f(y:.l: luk =1)
‘ S (Yox lu, =0)

_l(y.,—b,m):
1 .2t o

V2ro

=log

=lo
Be _L(y,—b(m)
e 2
1 y,-1Y
e‘z( o)
=1
og,. ‘1()!4’1)
e 20 O

==Yk (2"38)

Introducing relation (2.38) to (2.37) yields:

M-1M-l

5 & (M) - Y (¥, om’sm) - B (m)
L(w,)= pc: — V.. tlog, :;_(: ’:f=(l)

YD o () H (Y, pm s m) - B (m)

m=0 m'=0

=2y L), 2.39)
=
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M-1M-1

Z Z a,., (m)- 7’; (}’,,_k ,m’,m)- ﬂk (m)
L,(u,)=L)l,  .,=log, m=Qm'=0 ) (2.40)

M-1M-1

DD (m) - (Y, om'm) - B (m)

m=0m'=0

L, (u,) is called extrinsic information and it is a function of the parity introduced by the encoder.
It is also a soft estimate of «,. L(x,) is a better soft estimate of u,, but it includes information
that has been used by the constituent decoder itself. It is not proper to transfer L(z,) to next

decoder. In turbo decoding, due to the presence of the interleaving between decoder | and
decoder 2, the extrinsic information generated by decoder 2 is only weakly correlated with the
inputs of decoder 1, so after normalization, it can be fed back to the decoder 1 to help the

decoding of decoder 1. As shown in Figure 2.15, the normalized extrinsic information is denoted

ZS.k ¢

The interface between the two constituent decoders, and the decoding algorithm is described

in the following subsection in detail.
2.3.3 Interface between Two MAP Decoders and Berrou’s Decoding Algorithm

A. MAP decoder 1
Interface
e Input:
= YeusYipirZsu (For the first iteration, z,, =0.).

- o?, variance of the AWGN channel.

- o2, variance of the meta-channel corresponding to z,,.

Encoding information.

e Output: L (z,).

Decoding algorithm

e Use the M-BCJR algorithm but since z_, is a feedback component, the algorithm must
be modified slightly.
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e Assume that z,, is a Gaussian variable with variance o? =0, where ¢ is the channel
variance of the AWGN.

e The calculation of the branch transition probability ¥,(m’,m) for the two decoders is
different, because of the different number of inputs. In decoder 1, data input is

Y, = (¥, Y1pxr 252 ) » SO i ¥, (m’,m), the probability Pr{Y, lu, =i;S, =m;S,_, =m'} is:

. ~(¥,4=b, (m'm)} 126° (3, =h, (.m.m) 1207
Pr{Y, lu, =i;S, =m;S,_ =m’} = 575" m) @~ Oipa=hp imm
—(z,,~b (i,m"m))’ 12072
-e (zu=b( » s (241

Note that the calculation corresponding to z,, in relation (2.41) will use the same bipolar

branch values as the calculation for the systematic part, but also uses a variance other
than the channel variance.
e The LLR L;(x;) generated by decoder 1 is equal to:

M-l M-

Z &, (m')- ¥, (m',m)- B, (m)
=0

L (u) =log, 75353 (2.42)
> > o (m) -y (M, m)- B,(m)
m=0 m'=0
M-1M-1
) 4 ak—l(m’) ’ 7’1:()’ sk ’ylp.k’m,7m) - B.(m)
= P z,, +log, }T_? Mo : (2.43)
z z Zak-;('n')'ﬁ)(}’,,k ’ylp,k’m,’m)'ﬂk(m)
m=0m'=0

In this instance, &, (m) and B, (m) are initialized as follows, because the first encoder is

terminated.

,(0)=1, oy(m)=0 Vm=0
By =1, By(m)=0 VYm=0 (2.44)

B. Process after decoder 1 and before decoder 2

e The first component in relation (2.43) is discarded in order to avoid the z,, generated by

decoder 2 in the previous iteration being fed back to decoder 2. Subtracting this

component yields:

- 2
L) =L -5z, (2.45)
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¢ Assuming that [-.,N (u,) , the normalized version of [-,,(u,‘), is the output of the meta-
channel, where the meta-channel consists of the serial concatenation of the AWGN

channel and constituent decoders, the decrement of the variance of the meta-channel O’z,

compared to the variance of the channel shows the gain of decoding. The following

estimation formulas [22] can be used to obtain L) («,) and the associated variance of the

meta-channel:

_1 N
-~ leq(uk)l (2.46)
TN £

b 1 Y 3

o, = Fgllm)l —(mz,)? (2.47)

LY () =Lw)/m;, (2.48)

0’2., ll.ll /mlu (2'49)

e Obtain I¥(u/), the interleaved version of L (u,), by using the same interleaver as the
one used by the encoder. Note that the variance of the meta-channel corresponding to

l-.,” (u;) is equal to that corresponding to l-.f' (u,).
C. MAP decoder 2
Interface

¢ Input:

rN s
- L () Yapu-
- o7, variance of channel.

- 0'2,., , variance of the meta-channel! corresponding to L' (u) .

— Encoding information.

e Output: L, ().

Decoding algorithm

e Use the M-BCIJR for decoding, but note that two different variances are used.

e For the calculation of branch transition probability y(m’,m) with ¥, = (L (), 1,.).

the probability Pr{Y, lu, =i;S, =m;S,_, =m’} is calculated by:
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(& alr-b, (im'm)) 1267y o b i m) 1267
. —( ¥ pp—b, (i.m’, 120~
Pr{Y, lu, =i;S, =m;S,_,=m}=e &g FzpaThpllmm) .

e TheLLR L,(x;) generated by decoder 2 is equal to:
M-1M-1 , i ,
PIDICCIRACHOWACH

Ly (uy) =log, £2528

33 a (m)-yiim'sm)- B, (m)

m=0 m'=0
M-1M-1 , ,
2 ;ﬂ;ﬁj}ak_x(m ) i Yapirm’sm)- B, (m)
= p L (u) +log, g ) )
Y 3> a () -V (yapm’sm)- B (m)
m=0 m'=0
2 N I r I
==L () +L,(u,) (2.50)
0'1.1,,

e o, (m) and p,(m) are initialized as follows. Because the second encoder is not

terminated, it is assumed that the encoding process can stop at any state with equal
probability.
o,(0)=1, (m)=0 Vm=0.

By(my=1/M ¥m, where M denotes the number of states. (2.51)
D. Process after decoder 2 and before decoder 1

e Obtain L,(x,), the deinterleaved version of L,(u;):

Lu)= 022 B )+ 1, ) 2.52)

Liv

e If iteration is complete, the decision can be made for this frame by:
u, =1, if L,(u,)20
a4,=0, if L,(u)<O. (2.53)
e If iteration is not complete, l:l(u,‘) can be obtained by subtracting the term
corresponding I («,) by:
2

L) =L(u)-—-LY (). (2.54)
O'I;,,

Let L, (u)=L,(u,), where L, (u,) denotes the extrinsic information generated by
decoder 2. Note that L (x,) cannot be called extrinsic information, because L)

includes the systematic component y, ,.
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e Also assuming that z_, =L (u,) is the normalized version of L, (x,) and therefore is
the output of the meta-channel, z,, and the variance of the meta-channel with output

zZ,, can then be obtained:

1 N
=—- x
’nll,:,l N ; [LQ( (llk )
2 1 o 2 2
O =—- 2L, ()P =(m,_))
N k=1
Zo, =L, () my (2.55)
ol =0, ,/(m,)? (2.56)

The whole decoding process is now summarized in Figure 2.16. Before commencing decoding,

obtain ¥, =(¥,,, ¥, Y2px)» channel information, and turbo encoding information, and then

follow the procedures outlined in the block diagram of Figure 2.16.

Encoding
information
"]
Yia
' L) [Subtra| L)  [Estima-] ™in%i
y . D > ‘ _ =N N 7
:. DEC! |[——» cting ting Nf)r_ma- L) o Inter- L » To DEC2
3 | lizing leaving
Z,.kT TO’; ;;:Z,.A 0’,‘3.
(iteration>1) To DEC2
Encoding
information
717
Ew) L) [Dei 8
—_— =) | Deinter- Iteration P !
.| DEC2 > leaving e, | Decision |——»

N
_ |Subtra-| L.(#,) |Estima- et Ot Moy
> cting > Ling > Norma- L:r(“k) =
& ———
| lizing To DEC!
pA— ;
o L) l"?
To DECI1

Figure 2.16: Implementation of turbo decoding by Berrou’s algorithm.
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Figure 2.17: BER for transmission through AWGN channel with code rate 1/2, G(37.21), Berrou’s
interleaver, N = 65536, terminating 1% encoder, and using Berrou’s decoding algorithm.
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Figure 2.18: BER for transmission through AWGN channel with code rate 1/3, G(37.21), Berrou’s
interleaver, N = 65536, terminating 1% encoder, and using Berrou's decoding algorithm.

Figure 2.17, Figure 2.18 and Figure 2.19 show simulation results of BER performance
obtained using Berrou’s turbo decoding algorithm and Berrou’s interleaver discussed in section
2.7. These simulations are for G(37,21), with a frame length N =65536 and with code rates 1/2

and 1/3. Clearly, in general, the performance improves as the number of iterations increases.
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However, it should be noted that at very low E,/N,, performance becomes worse with more

iterations.
1 —
101
102
x 103
23]
oo}
10
105 :
106 ' !
0 0.5 1 1.5 2 2.5 3 3.5 4 45
E/N, (dB)

Figure 2.19: Comparison of the for BER for rate 1/2 and 1/3 turbo codes using Berrou's decoding
algorithm with G(37,21), Berrou’s interleaver, N = 65536, and terminating 1% encoder.

2.4 Robertson’s Turbo Decoding

As discussed in the previous section, Berrou’s turbo decoding algorithm requires an additional

variable z,,, which is an independent observation of x,, . Also, the first MAP decoder has three

data inputs while the second one has two, and it is necessary to normalize the LLR output or

extrinsic information, which requires estimation of the mean and variance.

Robertson’s turbo decoding algorithm avoids some of these difficulties. In Robertson’s turbo
decoding, there is same number of data inputs to each constituent MAP decoder, and it is not
necessary to estimate the mean and variance of the LLR values from the decoders. Extrinsic
information can be obtained directly from the LLR output of the constituent decoders, and
converted to a-priori probabilities to be used by the other constituent decoder [7]{23]. Figure 2.20
shows the block diagram of Robertson’s iterative turbo decoder. It is clear from this figure that

the two constituent decoders now are identical.
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Figure 2.20: Block diagram of Robertson’s iterative turbo decoder.

2.4.1 The Key Points of Robertson’s Decoding Algorithm

Let the turbo encoder structure and channel model be the same as those described in Section 2.3.

The following formulas then apply:
M-l
D & (m)- ¥, (m',m)

o
a,(m) =25

Z Z a,_ (m')-y,(m'.m)

m=0m'=0

M-l 1

Z B (m)- 7/1;4-[ (m,m")

_ _m'=0i=0
'Bk (m) = A’ln—lM'-l

1
a,(m) -y, (m,m’)
m=0m'=0 i=0

M-l M-I

3 Y @, () Fi(m'm) - B, (m)
m=0 m'=0
M-t M-l

D> e (m)-yi(m'\m) - B (m)

m=0m’=0

L(x,)=log,

A. y(m',m)

In Robertson’s decoding algorithm the calculation of the branch transition probabilities y,; (m’,m)

is different from Berrou’s calculation. For convenience, the relation for ¥, (m’,m) is again given

below.

Yo (m',m)=Pr{¥, lu, =i;S, =m;S,_, =m’}-q,(u, |m’,m) - p, (m\m’)

qk(uk Im',m) =Pr{uk =l'|Sk =m;,Sk_l =m’}

45



p(mlm’)y=Pr{S, =mlS,_ =m'}

The difference in the calculation of ¥,(m’,m) stems from the method to handle the term
p.(m|m’) . In Berrou’s method, the probability p,(m|m’) are governed by the input sequence
statistics. For the binary input case, if all input sequences are equally likely for 1<k <N,, then
since there are 2% possible transitions out of each state, p,(mim’)=2" for each of the
transitions. For example, for 1/n, codes, p,(mim’)=0.5, 1<k<N,. For N <k<N, the
termination period, p,(mim")=1.0 for the one path that is known to exist out of each state.
Therefore, in Berrou’s method, this component is fixed. In Robertson’s method, however, for
1<k < N, this component is updated according to the extrinsic information.

The probability p, (mim’) depends directly on the a-priori probability of the information bit
u, . In turbo decoding, at the first iteration for decoder 1, p,(m|m’) can be set to 1/2 (Assuming
k, =1, there are two transitions out of each state, one associated the input bit 0" and the other
associated one input bit “1”. It is straightforward to extend this assumption for k, >1.), because

decoder 1 has no information regarding the likelihood of the input bit being 0" or “1”. After
obtaining the LLR output of decoder 1, decoder 2 will have some information regarding which
probability is larger at time k. As the number of iterations increases, both decoders will have a

better sense of which probability is larger.

By taking the natural logarithm of the likelihood ratio of the a-priori probability of

information bit «, [5]:

Bl Pr(u = I) "
L =1 —_—t - 2.57
(uk) og:[Pr(uk -_—’O)} ( )
and considering:
Pr(u, =1)+Pr(y, =0)=1 (2.58)

the following results can be obtained:

eL("‘) - Pr(uk =1) = P!‘(uk =1) (2'59)
Pr(u, =0) 1-Pr(x, =1)
. e"(""
Pr(uk =1) '—‘m (2.60)
et 1
Pr(uk=0)=1—1+el-(u,) =1+eL("‘) . (261)
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The a priori probabilities of information bit #, given by the previous decoder are used in:

Pr(x, =1), if Pr{u, =115, =m;S,_, =m’}=L
Pr(s, =mlS,  =my=q 4 =D X o =lIS, =m S, =m? (2.62)
Pr(u, =0), if Pr{y, =01S, =m:S, =m'}=1.

Note that the extrinsic information L,(x,), where L, (x,) denotes either L, («,) from constituent
decoder 1 or L, («,) from constituent decoder 2, is also the soft estimate of the information bit
u, . To develop the iterative decoding algorithm, it is better to use L (x,) than L(,) to obtain

the estimate of the a priori probability. Relation (2.62) above and relation (A2.1) in Appendix 2

yield:
ple i)
| Tr el if g (lm,m)=1
D (m tm )= (2'63)
Tooie i g.(0lm’,m)=1.

Because the two constituent decoders are identical, in the following only the detailed

calculation of L, (»,) associated with decoder 1 is given.

B. L(u,)
M-l M-l
S o, () -0 sm) - B, (m)
L (u,) =log, 25322 (2.64)
Z Z ak-[ (m’) * Yf(m" m) ° ﬁk (m)
m=0m'=0
where

Y (m',m) =y, (m’,m)

uy =i=l
=Pr{y, ;> Yipu 8y =1;S, =m; S, =m'}-q,(LIm"\m)- p, (m|m’)

Ly (u)
=Pr{y,, lu, =1}-Pr{y,,, 1w, =1;S, =m; S, =m'}-q,(LIm",m) T

Ly ()
e ’ ’
=Pr{y,, 14, =1}--1Te—m-[Pr{ylp_k lu, =1;S, =m;S,_, =m}-q, 11 m’,m)]
ebzc("n) ,
= Pr{y,_k luk = 1}-1—4’—6;7“'—)-. ;/Z(y!p.k‘m 'm) (2'65)

Similarly:
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, 1 ,
e (m'\m) =Pr{y,; lu, = m'm’ Ve Yrpurmt'sm) (2.66)

Now, introducing relations (2.65) and (2.66) to (2.64) yields:

M-1M-1 Lv £ Qg )
Z Zak—l(m,).[Pr{y:.k _1} L. () ﬁ(y[p kvm m)] ﬂk(m)
L (u,)=log, 4555

, 1 y
Z Z @, (m')-[Pr{y,, lu, =0}‘W' 7f(y1p,k,m ym)]- B (m)

m=0 m'=0

L () M-1M-1

e —— ’
Pridus e =13 1+e”='(“" Zo Zoa"‘l(m,) 7!1: ()’lp.kvm ,m) 'ﬁk (m)
= los. e
Pr{y:,k —'0} Lz (&) ZO Zoak l(m) Yk (ylpk'm m) ﬂk (m)
M-1M-1
Pr{y.rk U = =1} Ly Ga) Z -l(m)?’:‘((y-,,k,m m)- ,Bk(m)
IO By, T =0y BT B
T y:k uk z Zak_l(m')-}’,?(ylp.k,m',m)-ﬂk(m)
m=0 m'=0
M-1M-1

2 Z Z -, (m’) 711 (ylp.k ,m’,m)- ,Bk (m)
=7 Vs +L,, (u,) +log, 2=m=p

Z Z &, (m’)- 7’2(}’1,:.1: Jm',m)- B, (m)

m=0 m'=0

=+ L)+ L) .67

where
M-l M-l
Z Z &, (M) Y, (Pipucr m’,m)- B, (m)
L, () =log, F35=

Z Z & (m)- yg()ﬁp.k ,m’,m)- B, (m)

m=0 m'=0

In relation (2.67), the first component is the systematic term (AWGN channel is assumed), the

second one is the a priori term previously generated by constituent decoder 2, and the last one is

the new extrinsic information called L, (x,), just generated by the decoder 1.

C. L,(x)

Since the structure of constituent decoder 2 is identical to that of constituent decoder 1, and since

the systematic input to decoder 2 is interleaved, the following result is obtained:
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2
L, (u;) ‘—‘;}’ik +L, () + Ly, (),

where

M-1M-1

Z Z a"-l (m’) ';’Il: (y2p.k ’ m,v m) . Bk (m)
L, () =log, F=2== : (2.68)

M-1M-l

Z Z a,_ (m')- 72(}'2;:.1: ;m',m)- B, (m)

m=0 m'=0

After deinterleaving
2
Ly(u,) =}Ty:.k +L, () + L, (n). (2.69)

Next the interface between the two constituent decoders and Robertson’s turbo decoding

algorithm is outlined in detail.
2.4.2 Interface between Two MAP Decoders and Robertson’s Decoding Algorithm

A. MAP decoder 1
Interface
e Input:
=~ YexrYipurLae () . (For the first iteration, L, (x,) =0).

- o, variance of channel.

— Encoding information.
e Output: L(u,).

Decoding algorithm

e Use the M-BCJR algorithm to calculate ¢, (m) and B,(m). Assuming that the first
encoder is terminated, these values are initialized as: .
a,(0)=1, ,(m)=0 Vm=0,
B.(0)=1, By(m)=0 Vm=0.
e The branch transition probability ¥,(m’,m) can be obtained by

Yim',m)=Pr{ lu, =S, =m; S, =m'}-q,(u, | m’,m) - p,(m|m’), where:
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1
——((y,,=b,(i.m" m)) +(y,,, ~b, (i.m"m)))
- Prlluy =i;S =m; Sy =m'}=e 20 ’ ’

-  q,(u, 1m’,m) is either O or 1 depending on the trellis diagram.

elﬂr(“l)
W if qlm',m)y=1;
- Pk("Ilm')=
Tram & q,01m’,m)=1.

When iteration = 1, L, (x,)=0,s0 p,(mlm’)=0.5 for either input bit value.

M-l M- M-1M-1
e L(x)=log, Z Z a,_,(m')- 7’: (m’,m)- B, (m)—log, Z Z @, (m’)- 72 (m’,m)- B, (m).
m=0 m'=0 m=0 m'=0

B. Process after decoder 1 and before decoder 2
e Subtract the appropriate quantities from L, (x,) to obtain the extrinsic information:
2
Lle(uk) =l’l(uk) —[;2—}’:.15 +L2e(uk)] .
e Let L (x,) pass through the interleaver to generate input L, (x,) for decoder 2.

C. Process before decoder 2

e Let y_, passthrough the interleaver to obtain y! . . Note that this term does not appear in

Berrou’s decoding algorithm.

D. MAP decoder 2
Interface

e Input:
- J’:I.k v Y2pk L, (u,{ )
- ©?, variance of channel.
— Encoding information to set up the trellis diagram.

e Output: L,(%).
Decoding algorithm

e Use the M-BCJR algorithm to calculate a,(m) and S, ,(m) which, assuming that the
second encoder is not terminated, are initialized as follows.

a,(0)=1, ay(m)=0 Vm=0
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By(m)=1/M Vm.
Note that Robertson’s original algorithm did not initialize S, () as outlined above

[7]. Instead, these values were initialized by the last fomrward recursion step:

By(m)=a,(m).

e The branch transition probability ¥, (m’,m) can be obtained by

Yi(m' ,m)=Pr{, lu, =i;S, =m;S,_, =m'}-q,(u, \m’,m)- p,(mIm”™), where:
1
- Pr{{luy =08 =m; Sy =m'}=e 20°

(., =b,Em'\m)Y +(y,, ,—E5, (i.m'\m))*)

- q,(u,1m’,m) is either 0 or 1 dependent on the trellis diagram.

e[‘lr(“g)
W ' l:f qk(“m"m) =1;
- D (m ! m’) = e o oy .
Tooo » & @ @lm'm=1.
e Obtain L,(x;)
M-1M-I e
[1(u£ ) =log, Z Z a,_ (m')- }’i (m’,m)- B, (m)~log, Z Z o (). yg(m,’m) om.
m=0 m’=0 22

E. Process after decoder 2 and before decoder 1

e Obtain L,(x,), the deinterleaved version of L, (x;).

e If the required iterations are finished, a decision can be made for- data bit values in this
. 2

frame. If not, L, (x,) can be obtained by L,,(x,) =L, (u,) ~[—-»,, +L,.(»,.)], and the
o

entire process can be repeated.

Figure 2.21 illuminates the entire decoding process according to Robertson’s decoding
method. It can be seen that Robertson’s decoding algorithm is simpler tham Berrou’s. Figure 2.22,
Figure 2.23 and Figure 2.24 show simulated BER performance using Robertson’s decoding
algorithm. The simulation conditions are G(37,21), single termination, Bermou’s interleaver, frame
length N = 65536 with code rates 1/2 and 1/3. From comparison of these curves with the results
for Berrou’s algorithm, it can be seen that at very low signal to noise ratio-s the performance does
not become worse with more iterations. This indicates that Robertson’s decoding algorithm is

superior to Berrou’s algorithm at low signal to noise ratios.
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Figure 2.21: Implementation of turbo decoding with Robertson’s algorithm.
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Figure 2.22: BER for transmission through AWGN channel with code rate 1/2, G(37,21), Berrou’s
interleaver, N = 65536, terminating 1 encoder, and using Robertson’s decoding algorithm.
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Figure 2.23: BER for transmission through AWGN channel with code rate 1/3, G(37,21), Berrou’s
interleaver, N = 65536, terminating 1% encoder, and using Robertson's decoding algorithm.
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Figure 2.24: Comparison of the BER for rate 1/2 and 1/3 turbo codes using Robertson’s decoding
algorithm with G(37,21), Berrou’s interleaver, N = 65536, and terminating 1* encoder.

The BER performance of turbo codes changes with code parameters including encoding
generators, memory of shift registers, code rate, interleaver type, and interleaver size. Note that in
the decoding algorithm, the channel variance has to be estimated. In the next section, practical

methods to estimate symbol energy and the variance of the AWGN channel are introduced.
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2.5 Estimating Symbol Energy and Noise Variance

Assume that transmission is with binary phase-shift-keying (BPSK) over an additive white
Gaussian noise (AWGN) channel and that coherent demodulation is used. During the k-th symbol

interval the received data can be represented as:
¥y, =%, /E, +n,
where E, is the received symbol energy and n, is a Gaussian random variable having zero mean

and variance 0> = N, /2, where N, /2 is the two-sided noise spectral density of the channel. The

MAP decoding algorithm used during decoding of turbo codes requires knowledge of both
received symbol energy and noise variance. The performance of turbo decoding will degrade with

poor estimation of signal energy and noise variance [24].

If the energy of the received symbols is known, only estimation of noise variance or E /N, is

required. However, this is rarely the case, even in systems that include an automatic gain control
(AGC) at the front-end of the demodulator to compensate for signal attenuation through the
channel. The AGC maintains the output (signal plus noise) at a constant level, and the output of

the demodulator can be written:

Yea =AFaJE ; +n) =i\/—Es._A RO
where a and A denote the channel attenuation and the gain of the AGC respectively, E ; is the
energy with which each symbol is transmitted and therefore is known, and the variance of n, , is
02 =A%0".Both a and A are unknown but are assumed to be constant over the duration of a

frame. In this instance, the turbo decoder requires the knowledge of ,/EL , and o;. Even though

the mean value of ly,,| is controlled by these systems, determination of JE, . is not
straightforward.

Simple methods for estimating both the received symbol energy and noise variance are

proposed in this section. For convenience, these quantities are denoted as E, and o, where it is
understood they represent E,, and o in systems with AGC. Summers and Wilson [24] have
reported a technique to estimate the signal-to-noise ratio (SNR), E,/N,. Their approach can be

extended to estimate both E. and o over a frame of received data. Following the introduction
5 o
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of the conventional noise variance estimate, the method for estimating SNR is reviewed, and the

new methods for estimating E, and o are then discussed.

2.5.1 Conventional Noise Variance Estimate

The variance of a random variable w can be written:
Var(w) = E[w*]— (E[w])’. (2.70)

The distribution of y, is the sum of two Gaussian distributions with means -*_-\/—E: and variance
o?, scaled by the factor one-half. Note that because the distribution of y, is symmetrical about
zero, the mean of y, is zero and the variance of y, is E, +0~ (see relation (2.78)). Due to the
fact that symbols in the demodulated sequence have mean values iJE , the simplest method of
estimating the channel variance is by considering the absolute value of y, . This yields a channel

model that approximates a Gaussian channel with mean ,/E and variance ¢”. From Figure

A2.1, it can be seen that if the variance of the AWGN channel is very small, the overlap of the
two Gaussian curves is small, and therefore this approximation is acceptable. However, with

larger channel variance, the error introduced by this approximation is large.

This approximation can be expressed as:
o =Var(ly, )= E[y:]-(Ell y, 1])". (2.71)

To develop an estimate for Var(l y, [), the expectations are replaced with time averages, denoted

by {-), over the sequence length N , where N'= N /R . This yields:

2 1 N 2 1 & ’ 2 2
*=Var(ly, )= N,‘Z:[y;—[prglyk ') =y )y =y D" (2.72)

In [22], Berrou used this approach to estimate the variance of the meta-channel (see relations 2.46
and 2.47).

Reed [25] also investigated this approach and improved it by assuming that the channel is
stationary, and by incorporating the previously estimated values into the calculation. In his

approach, for the f-th frame of data {y, ,} provided at the turbo decoder, the mean of Iy, 1Iis

estimated by its time average:
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';lf =(l Yi.s . (2.73)
The variance of the AWGN channel for the f~th frame of data is also estimated as:
67 =(ye)—rig. (2.74)

For the subsequent frame of data, the variance is calculated frame-wise as in relation (2.74) and

then averaged using the single pole auto-recursive formula:
Grn =867, +(1-8)67 (2.75)

where 0 <& <1. The value of £ determines the memory of the variances of the previous frames.

If £ is 1, the estimator is self-contained on a frame level. The mean is also averaged using:

gy, =&m,, +(1=E)im, . (2.76)
For subsequent frames, this method provides a less variable estimate if the frame size is very
short. For example, if & is fixed for each frame, the variance for the 4-th frame is
G2 =E62 +EQ -8B +E(1—-E) 67 +(1-¢&)° 87 . Also in this example, let £=0.2, and then
62 =0.262 +0.1667 +0.12867 +0.51267. Note that when ¢ is fixed for each frame, the

coefficients (i.e. 0.2, 0.16, 0.128, 0.516) that weight the estimated variance of each frame are not
identical. It can be shown that the following modified single pole auto-recursive formula provides

identical coefficients:

6, =¢,67+(1-8,)67,

é‘,=i, =2 .77)
f
where f is the frame number. Relation (2.77) yields:
1 .. 1., 1 _, .
=2, 65==06;+=6, ==(6;+6;
s 27 27! 2( 2 +07)
o 1o 2.0 1 oo oo oo
f=3 0'32='§ 3'*'5 2=§(3+ ; +07)
a2 _ Lo 3 .0 1 5 0 .a 22
f=4, 6; =Z 4+Z 3=:"-(o:‘+0'3+c)'2+0',)

Therefore, in order to obtain the average over several variances, only the variance from the

previous frame is stored. Note that the frame number has to be counted for this modified method.
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2.5.2 SNR Estimate [24]

Summers and Wilson proposed an approach for estimating E,/N, using a second-order
polynomial approximation. Consider the mean of the absolute value of y,. It is not difficult to

show that (see Appendix 3 for a complete derivation):

Ely}]=E, +o>. (2.78)

2 £t fE,
Elly, |]=0'\/;e (E, 12 )+\/E|:erf( = H 2.79)

where erf(x):l——z'— r e du is the error function. From relations (2.78) and (2.79), the

N

following ratio can then be constructed:

Ely;l _ E +0°
(E[l Ve l])z \/? -(E, 120%) E 2
O\ ZE +\[E, erf['/w'l)
1+E‘

2

T

= q[ E ) — q(r) = f(r(dB))
g

E, 2E, 2RE,
where r=—=—2==
o N, N,

, r(dB)=10log,, r. Note that in g(r), r is not in dB, but in

f(r(dB)), r is in dB. Define the variable z to replace the ratio of the expectations:

2

z=E[y;1/(Ell y, )

Thus, z= f(r(dB)) provides a means to estimate r(dB). However, the complexity of the

function f(r(dB)) precludes a closed-form solution for r(dB)= f ~(z). This difficulty may be

alleviated by first evaluating the function on a point-wise basis over the range of interest for

r(dB), and then using a simple polynomial function to approximate the relationship between

r(dB) and z.
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For E,/N, =0 through 6 dB, and code rates 1/2 and 1/3, Summers and Wilson obtained a

simple second-order polynomial to approximate the function r(dB)= f'(z):

r(dB) =—34.0516z* + 65.9548z —23.6184 . (2.80)

To develop an estimate for z, expectations are replaced by the corresponding time average based

on one frame of data:
2=y D 2.81)

Therefore, to obtain an estimate of E, /N, from each frame, calculate z using (2.81), compute

r(dB) using (2.80), and finally obtain the estimate of SNR from:

E, 1
~2-(dB) =10log 5 —+r (dB). (2.82)

0

Summers and Wilson focus attention on estimating E, /N, . Their approach can also be used

to estimate the channel variance, if E, is known. From r(dB), r is obtained by:

r(dB)

r=10 10 (2.83)

- - -~ E
and then the channel variance can be estimated as &~ =—
-

. However, if E_ is known, using

relation (2.78) to estimate the channel variance is simpler.

If E, is unknown, the approach of Summers and Wilson can also be extended to estimate the

symbol energy and channel variance as described in the next subsection.

2.5.3 New Approaches for Estimating Symbol Energy and Noise Variance

To obtain estimates for ,/E, and o, equations (2.78) and (2.79) should be considered together.
Due to the complexity of equation (2.79), it appears that a simple direct solution for these two

values does not exist. However, JE, and o® can be estimated by applying Summers and

Wilson’s result that E, =r in either equation (2.78) or equation (2.79).
(o2

2
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(1) Approach 1

Combini

2
ot =$%) (2.84)
r+1

JE. = ¢y (2.85)
V r+1

where E[y?] in equation (2.78) is replaced by the time average (y;). Therefore, to obtain

estimates of JE: and o for each frame, calculate z using (2.81), compute r(dB) using (2.80),

obtain r using (2.83), and then determine these two values using (2.84) and (2.85).
(2) Approach 2

Equation (2.79) yields:

Efl y, 11 __9 3 ~(E,120%) o orf E,
JE, JE N~z 20°
\J ( -(E,/Nq) +erf E
N,
= 1 e—(E,IN°)+erf E:
E, N,
T

2

- 1 e—(rll)_*_erf(\/Z)
2

T—

~

[\

= h(-;-) = g (r(dB)) (2.86)

Because g(r(dB)) is somewhat complicated, another fitting function can be used to simplify
the calculation. It is found that the relationship between g(r(dB)) and r(dB) can be closely
approximated by an exponential function. Assume that the range of interest for E,/N, is 0

through 6 dB, and consider code rates with 1/2 and 1/3. The range of 2E /N, is dependent on
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the range of E, /N, and the code rate. Given E, /N, of O to 6 dB, since 2E /N, =2RE, / N,, for
the code rate 1/2, 2E /N, is O to 6 dB, and for the code rate 1/3, 2E_/N, is —1.77 to 4.23 dB.
Considering these two ranges for 2E, /N, together, the range for 2E /N, of —2 through 6 dB is

considered here. As shown in Figure 2.25, the following exponential function f,(r(dB)) is
found to closely approximate the function g(r(dB)):

fo (r(dB)) =1+0.3048¢ 035 (4B)+2)

Using this fitting function instead of g(r(dB)) in relation (2.87) yields

\/E:_ Ay D (2.87)

£, (r(dB))
where r(dB) is obtained from (2.80). The noise variance can then be estimated from relation
(2.78) as:
& =) -E,. (2.88)

Therefore, for each frame of received data, calculate z based on (2.81), estimate r(dB) using

(2.80), and then compute the estimated values of the symbol energy and the variance o” using

relations (2.87) and (2.88).

1.35 g (r(dB))
——f, (r(dB))
13 b
1.25

2 -15 -1 05 0 05 10 LS 2 25 3 35 4 45 5 55 6
r (dB)

Figure 2.25: Relationship between ratio E[l y, 1]/ ,/Ex and r(dB) using the true relationship
g(r(dB)) and the exponential approximation fg (r(dB)).
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Figure 2.26 shows simulation results for estimated values of «/E, and o’ versus SNR with a
frame size of 1024 and code rate 1/3. The estimation results were averaged over 10 000 frames. In
this figure, curves of the true ,/E, and true ¢’ are also given for purpose of comparison.

Clearly, the estimation is very accurate for both approaches, and on average, approach 2 is

slightly more accurate than approach 1. Also it was found that these results were consistent from

one frame to the next. The standard deviations for the simulation results were 0.034 for ,/Ex and

0.051 for &2 (approach 1), and 0.035 for /E, and 0.053 for &* (approach 2).

1.8

Square root of symbol cnergy
or noise variance

0 l 2 3 4 5 6

EJN, (dB)

Figure 2.26: True and estimated values, square root of symbol energy and noise variance.

(i) Square root of symbol energy with fixed noise variance 1.0
(ii) Noise variance with fixed symbol energy 1.0

x true values

& estimated values with approach 1

O estimated values with approach 2

Figure 2.27 compares the performance of the conventional approach and approach 2 for

variance estimate. The estimated results are obtained from a single frame of received data where
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the frame size is 65536 and the code rate is 1/2. With fixed symbol energy E, =1, E /N, is
varied from O dB to 6 dB, and the variance changes accordingly. For the conventional method, §
is set to one. Clearly, the performance using approach 2 is very good for this large frame, while
the variance is underestimated by the conventional method over the range of interest of E, /N, .
At low E,/N,, the error in estimation is especially large. However, as E,/N,>5dB, the

conventional method provides an estimate that is close to the true variance.

Note that Berrou used the conventional method to estimate the variance of meta-channel. The
simulation results plotted in Figure 2.17 and Figure 2.18 show that at very low E,/N,, the BER
increases as the number of iterations increases using Berrou’s decoding algorithm. To solve this
problem, Berrou suggested that the extrinsic information z, be divided by a value larger than
one. Doing this, equivalently, forces the estimated variance to become larger, closer to the true

variance.

| —»— true values
[ s —=— estimated values with approach 2 4
—a&— estimated values with conventional approach

0.8

0.6

04

True variance or estimated variances

0 1 2 3 4 s 6
E,/N, (dB)

Figure 2.27: The estimated variances or true variances vs. E/N, for a single frame of size 65536.
Approach 2 has very good performance for estimating the symbol energy and variance of the

AWGN channel and it is simple to implement in practical turbo decoding as well as other

applications. Therefore, it is an attractive approach for estimating these two values.
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2.6 Average Performance of Turbo Codes

Not all error patterns can be corrected by a decoder. The error correction capability of a code
depends on its geometry. The minimum distance and weight distribution of a code are used to

estimate its performance.

2.6.1 Weight and Distance of Binary Vectors

The Hamming distance between two binary code vectors & and v, denoted d(«,V), is defined to

be the number of bits in which they differ. For example, if # =10001000 and v =10101010,

d(u,v)=2. In all linear codes, the element-wise modulo-2 sum of vectors iwand v yields

another code vector. In this example, 7 =u +Vv =00100010 whose weight is two. Therefore, the
Hamming distance between two code vectors is equal to the Hamming weight of their sum, where

the Hamming weight w(Z) of a vector 7 is defined to be the number of ones in the vector. Also,

the Hamming weight of a code vector is equal to its Hamming distance from the all-zero vector.

The minimum distance, d between all pairs of code vectors provides a measure of the

min *
code’s minimum capability for error correction. Because of the relationship between the distance
and weight of the code, it is convenient to examine the weight of each code vector (excluding the
all-zero vector) in the code subspace instead of the distance between code vectors; the minimum

weight corresponds to the minimum distance. Equivalently, 4_. corresponds to the minimum

min
distance between the all-zero code vector and all other code vectors.

The term minimum distance is from the world of block coding. In convolutional coding,

because the codes are also linear, there is no loss in generality in defining 4, to be the minimum

n
distance between each of the codeword sequences and the all-zero sequence. In these codes, the
Viterbi or MAP decoders use the entire received codeword to decode a single bit. Assuming that
the all-zero input sequence is transmitted, paths of interest are paths of any length that diverge
from and remerge onto the zero state and do not return to the zero state anywhere in between.
Sequences corresponding to these paths, called self-terminating sequences, can be regarded as
error events. The number of ones in the sequence denotes the number of errors in that error event.
If information about the weight distribution of these sequences is available, a bound on the

performance of a code can be estimated.
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For convolutional codes, the term minimum free distance, denoted d,,,, is usually used

instead of minimum distance. The minimum free distance is the distance between all code vectors
in the set of all arbitrarily long paths that diverge from and remerge onto the all-zero sequence.

To obtain d,,,, the minimum weight of valid code sequences other than the all-zero sequernce

must be evaluated.

2.6.2 Performance Evaluation Based on Weight Enumerating Function

The weight distribution of an (n,,k,) block code C is a series of coefficients B, B,,...,B;,....B, ,
where B, is the number of code words in C of weight i [3, pp. 90]. The weight distribution
(B,,B,,...,B,,....B, ) for a code is often written as a polynomial:
no -
B°(H)=) BH'. (2.89)
i=0
This representation is often called the weight enumerating function (WEF).

The performance analysis of turbo codes introduced here is limited to turbo encoder
structures with two identical constituent codes at rate 1/2, terminating both constituent encoders,
and overall code rate 1/3 [9]. For the more general case, refer to [29]. A turbo code can be
regarded as a long block code. For N much larger than the memory of the constituent -codes, the

performance of a turbo code is almost identical to that of the equivalent parallel concatenated

block code (PCBC) Cp [9]. For constituent codes of memory v, frame size N, and joint
termination, the size of equivalent block code is BN ,N —2v).

The random interleaver in turbo codes causes difficulty in analyzing the performance of these
codes. Benedetto and Montorsi evaluated the average performance of turbo codes by separating

weight contributions from the input bits and parity check bits, and introducing an abstract

interleaver of length N called the uniform interleaver, defined as a probabilistic device that maps

a given input sequence of length N and weight w into all distinct (ﬁ’,) permutations of it with
equal probability 1/({5) [91, [26] - [29].

For turbo codes, the two sequences that enter the two encoders have the same weight, because
the interleaver only changes the order of input sequence, but does not change the weight of the

input sequence. As with other error correcting codes, the WEF of turbo codes is needed to
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evaluate decoding performance. Define a special weight enumerating function of the constituent

codes called the input redundancy weight enumerating function IRWEF) 271:

ASTW.,Z2)= Z ATWiZ! (2.90)

where A,C; denotes the number of codewords generated by an input information word of weight i
whose parity check bits have weight j, so that the overall weight is i+ ;. In this definition,
i=0,1,2,..., but j and A,.":,’. are dependent on i. The IRWEF explicitly separates the weight
contributions from the information bits and the parity check bits.

Consider the conditional weight enumnerating function AS*(Z) of the equivalent PCBC where

parity check bits have weight j corresponding to the input sequence of weight w. From the

IRWETF, it is straightforward to obtain:

N N 3" A W,2Z)|
AT @D =2 ANZ =

j * |w =0

Based on this result, A (W,Z) can also be written as:

A W,Z)=Y W"A(Z). (291)

The A7 (Z) can be used with the union bound to compute an upper bound to the bit error

probability P, (e) for ML soft decoding of the code over a channel with AWGN in the form [9]:

BE@<Y VAT @) (2.92)
w=l W =Z=e "5 M0

Let AS(Z) denote the conditional weight enumerating function of the two
(2N,N —v)constituent codes. It is straightforward to evaluate the conditional weight
enumerating functions of the equivalent PCBC using these constituent codes if the uniform
interleaver is also used. In this instance, the conditional weight enumerating functions are the
product, suitably normalized, of the two conditional weight enumerating functions of the
constituent codes. The relationship between these two terms is:

2
Al(Z) = [—A"f(—zj)—l- (2.93)

(v

65



where AS(Z) can be derived from the standard transfer function of the convolutional codes [28].

Note that the codewords of the constituent codes are concatenations of error events. Let

A,, (Z)=ZA,VI.,,Z / denote the parity check enumerating function of the sequences of the
i

convolutional code generated by concatenating n events with total information weight w. A, is
the number of codewords with parity check weight j and the number of concatenated error
events n given the information bit weight w. For N > v, the AS(Z) can be approximated by

[9]:

A2=3 (M@ @94

n=l

where n_, , the largest number of error events generated by a weight w information sequence, is

a function of w which depends on the geometry of the encoder.

For large N, inserting (2.94) into (2.93) and using the asymptotic approximation for the

n

binomial coefficient (nN) = yields [9]:

n!

w!

(g 1)?

A (Z) =~ N4, @] 2.95)

Inserting (2.95) into (2.92), the following asymptotic (in N ) bound for the bit error probability is

obtained:

- & ! '
Pb(e)s Z “I._—w——-—.

(Mo ?

Nt fa,, @] (2.96)

W =Z = REs' 0
W=Won

where the sum for w starts from w,_, , which denotes the minimum information weight in the

error events of the constituent code.

For non-recursive convolutional constituent encoders, using w,, =1, n,  =w and

A,.(Z)=(A,(2))" 9] in (2.96) yields:

N w—1 .
B@ZY W [a@]

. 97
m (w=1! 2.97)

W=Z=e—k£gz.\'o
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From (2.97), it can be seen that, in the most likely error event (w=1), the bit error probability is

independent of N, so that no interleaver gain is obtained in this case.

On the other hand, in the case of a recursive constituent code, w,, =2 and n_, =|w/2],
where LxJ denotes the integer part of x. By considering the terms in the sum in (2.96) with odd

and even w separately, it can be shown that the terms with odd w dependon N as N -2, and the

terms with even w depend on N as N7, so that the terms with odd w are negligible [9]. Also

Z %= . .
—» where z, is the minimum weight of

-

note that when w=2, n_, =1 and AZJ(Z)=1 Z
the parity check bits in error events generated by information sequences with w=2 [9]. Using
these results in (2.96) yields the following asymptotic expression of the upper bound:

[N72] 2422, \k
2k) N (H )

P Y 2k- ( AT
’ ; k A—H>="2)%| o,

(2.98)

where w=2k and W=Z=H .

Relation (2.98) leads to two important conclusions. First, the interleaver gain for the bit error
rate probability of turbo codes employing recursive constituent codes is 1/N . Second, z,, of a
constituent code influences the performance of turbo codes. It can be seen that increasing Zz,
can decrease F,(e).

Define the lowest exponent of H in the numerator in (2.98) as the effective free distance of

the turbo codes:

d,,. =2+2z,, - (2.99)

free.eff

This is the minimum weight of coded sequences generated by input sequences of weight 2. It
plays a role similar to that of the free distance for convolutional codes [9]. From the above

discussions, it can be seen that the RSC codes should be chosen to maximize z,, and, hence,
d 4,y - FOr rate 1/2 RSC constituent codes with memory Vv, let its feedback polynomial be
d(D) and its feed forward polynomial be n(D). It is has been suggested to choose d(D) as a
primitive polynomial [9]. An irreducible polynomial p(D) e GF (2)[D] of degree m is said to be

primitive if the smallest positive integer g for which p(D) divides D?+1 is g=2"-1 [3, p.
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40]. If d(D) is any primitive polynomial of degree v and n(D) is any monic polynomial of

degree v except d(D), the following value for z,, can be obtained [9]:

=242, (2.100)

Zl'm'n
The above results are obtained based on the uniform interleaver. For practical interleaver
design, one of the considerations is to avoid generating low weight output sequences

simultaneously for both constituent encoders with weight 2 input sequences. For turbo codes

where the feedback polynomial d(D) is chosen to be a primitive polynomial of degree v, d(D)

divides the weight 2 input sequence D> ™' +1. Moreover, d(D) also divides D** ™ +1 [9],
where k is a positive integer. For example, the feedback polynomial d(D)=D*+D+1 (v=2)

divides the weight 2 input sequence i(D)= D> +1.

Polynomials are often represented as binary sequences (e.g., D®+1«31001). Let
[=k(2" —~1) where [ denotes the distance that separates the two 1s of weight 2 input sequences.

The weight 2 sequences with these characteristics are self-terminating and generate low weight
codewords. It would be advantageous to design an interleaver to destroy these patterns and
increase the weight of the encoded sequences as much as possible. The self-terminating weight-2
input sequences tend to dominate the performance characteristics of the turbo codes for a

moderate bit to high signal-to-noise ratio as the random interleaver size N becomes large [30].

2.7 Interleaver Choices

Interleaving is used during both encoding and decoding of turbo codes, and plays a key role in the
pseudo-random nature and consequently the high performance of turbo codes. Thus the study and
design of interleavers has become a subject of high priority in this area. The majority of these
efforts have been directed at ensuring good randomness, spread-correlation, or free distance
properties, while ensuring that the interleaver is simple to generate quickly. Next, descriptions for
the following interleavers are presented: Berrou’s interleaver, the prime interleaver (PIL), and

spread-random (SR) interleaver.
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2.7.1 Berrou’s Interleaver Scheme [22]

A.. Interleaver

In the original proposal for turbo codes, the interleaver consists of a square matrix with N=LXxL
entries, where N is the frame length and L must be a power of 2. The input sequence is written
to the square matrix row by row, and the output sequence is read out diagonally. This non-
uniform interleaving can be described by

i, =(L/2+1)-(¢,+j,) mod L

E=(,+7J,) mod 8 (2.101)

J.=P&-,+D~-1 mod L

where

e i, and j, are the addresses of the rows and columns for writing, and i,and j, are the

w

addresses of the rows and columns for reading.
e “mod” denotes modular calculation.
e P(&) is a number, relatively prime with L, which is a function of the line address

(i, +j,) mod 8. P(£)=(17,37,19,29,41,23,13,7),£ =0,1,...,7.

Note that a multiplying factor (L/2+1) is used to prevent neighbouring data written on two

consecutive rows from remaining neighbours after reading. Note also that reading is performed
diagonally in order to avoid possible relationships between L and the period of puncturing, if

any. Next an example is given to show how reading is performed.
Consider the following conditions:
e Frame length N =64=4".
o L[=8=2°

e Input sequence = {0,1,2,...,63}. Note that integers instead of binary digits (*0” or “1”)

are used in order to clearly demonstrate how the interleaver works.

i,.J.I, and j_ take the values from O to 7. The input sequence is written in one 8 by 8 matrix

[A]=[A;_ , ] row by row. It can be observed that there are totally 15 left diagonals. For easy

observation, matrix [A’] is introduced, which denotes the results obtained after interleaving,
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where [A] =[A,.’_ j'] . The position of the original input sequence in this matrix is demonstrated

below. The output sequence is read out from [A’] row by row.

0 57 50 43 36 29 22 15]
62 5 12 19 26 33 40 55
2 45 16 59 38 9 52
14 21 28 35 42 49 56
32 25 18 11 4 61 54
44 1 30 51 8 37 58
20 41 6 27 [48] 13 34
60 17 46 3 24 53 10 39|

, after interleaving, [4']=

IR

It can be seen that digits on the 0% and 8" left diagonal in [A] are moved to the O® row in [A’].

Also it can be seen that neighbouring data on two consecutive rows are separated by a significant

distance by this interleaver.
B. Interleaving and deinterleaving implementation

It is not necessary to use a two dimensional matrix for the interleaving operation. A row matrix
can be used. The following steps show how to move a digit at position &, denoted by symbol

“+7, to its correct position 2 in the output sequence.

. 0,1,2,...,k,...
inputfk] =[..., ..., + ...]

w

s | =[-’£—J and j =kmodL.

e Calculate (i,,j,) from (i, J,.).
° n=i -L+j,;
. 0,1.2,...,....n1n,...
outputin] ={..., ..., ..., +...].
So after interleaving:

0,1,....4,... k=>{i,.j.}={i,.j.}>n 0.1,..cream,...
input(k]=[...,....+,.-.] output[n]=[...,...,....4,...]

x
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There does not appear to be a simple calculation for determining addresses in the deinterleaving
process as there is in the interleaving process. However, deinterleaving can be implemented using
a mapping address row matrix that can be generated by the interleaving process.
0.1, ...,n,...
MappingAddress[n} =[ ..., ..., k,...1.

The mapping address row matrix stores the original position of symbol “+” of the input sequence,
so that when the output sequence and mapping address matrix are known, the symbol “+” can be
moved back to its original position in the input sequence, allowing the deinterleaving process to

be performed.

2.7.2 Prime Interleaver [31]

Shibutani, Suda and Adachi proposed the prime interleaver (PIL) in 1999. PIL is currently
proposed for the WUMTS-3GPP channel coding standard (UMTS: Universal Mobile
Telecommunications System, and 3GPP: 3™ Generation Partnership Project). The key futures of
PIL are low complexity, good pseudo-random pattern, and a wide range of interleaving sizes N,
from 240 to 8200.

PIL is based on the construction of a rectangular mother interleaver with L, rows and L,

columns, and pruning this mother interleaver if it is larger than the required size. The input
sequence is written into the buffer row by row. Permutations are performed on an intra-row and

then inter-row basis, and after interleaving the output sequence is read out column by column.

Let i, j,..i, and j denote the same quantities as in the discussion of Berrou’s interleaver

r

above. Also let n=L_ - j, +i (read column by column) and k=L, -i_ + j, (write row by row).

What is required is the mapping address MappingAddress[n] = k. The mapping process in PIL

consists of three stages. The three stages are now discussed in detail.

(1) First, the input sequence is written into one L by L_, buffer memory row by row.

col

e L iseither 10 or 20. L =10 for interleaver size N from 481 to 530 (case 1), and
L, =20 for every other N (case2).
e L, is chosen based on the minimum prime number P larger than or equal to N/L, .

The minimum P is selected because of the limitation of slight pruning. Heavy pruning

can be detrimental to the performance of the interleaver, so only mild pruning is used.
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The Table 2.3 shows the allowed primes P and associated primitive roots g, (see stage

2).

Table 2.3: Table of P allowed and associated primitive root g,

P 8o P 8o P Lo P &o P 8o
13 2 73 5 151 6 233 3 317 2
17 3 79 3 157 5 239 7 331 3
19 2 83 2 163 2 241 7 337 10
23 5 89 3 167 5 251 6 347 2
29 2 97 5 173 2 257 3 349 2
31 3 101 2 179 2 263 5 353 3
37 2 103 5 181 2 269 2 359 7
41 6 107 2 191 19 271 6 367 6
43 3 109 6 193 5 277 5 373 2
47 5 113 3 197 2 281 3 379 2
53 2 127 3 199 3 283 3 383 5
59 2 131 2 211 2 293 2 389 2
61 2 137 3 223 3 307 5 397 5
67 2 139 2 227 2 31t 17 401 3
71 7 149 2 229 6 313 10 409 21

1) Incasel(L,, =10),L, =P, N/L, <P (minimum prime available).
2) Incase 2 (L, =20), L., is chosen to be either a prime number or adjacent to a
prime number according to the following figure.

NIL,.
L, V/ Y,‘:Pﬂ
L. =P
i 1 1 1 >
Po P-1 P P+l

In this figure, P, and P are two consecutive primes. The value of L, is given by:

- L,=P-1,if Bb<N/L, <P-1.
- L, ,=P,if P-1<N/L,<P.
- L,=P+1,if P<N/L, SP+1.

(2) In the second stage, intra-row permutation is performed as follows:

e Select the primitive root g, from Table 2.3. g, is the smallest positive integer available
such that g/ mod P does not generate repetitive values, where /=0,1,2...P —-2. Note
that gmod P =1, and gf™ mod P=1(if g, <P), so i is limited to P—2. Also note

that g; mod P#0 forall /.
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Construct the base mapping sequence c(i) for intra-row permutation. c(i) is obtained by
c(i)=(g,-ci—1)mod P, where i=0,1,2,..P—2, and c(0)=1. Here the recursion
calculation is actually gj mod P. The benefit of performing the recursion calculation is

to avoid g, being too large to be handled by the program. An advantage of generating

the base mapping sequence first is a savings in calculations. The base mapping sequence
is actually a permutation of the sequence (1,2,..., P-1).

Select the integer set {q, }({, =1,2,...,L,,, —1) such that gcd. {g; ,P—-1}=1, where
g.c.d. is the greatest common divisor and g, 1s set to 1. An easy way to form the set
{g; } is to choose the minimum prime set such that gcd. {g, ,P—1}=1 where g, >6
and g; >gq;_, . Furthermore, the set {q; } is permuted to form a new set {p, } according

to the inter-row permutation pattern defined in the third stage. Primes 2, 3, and 5 are not

selected because they ofen result in g.c.d. {g, ,P—1}#1. For example, consider g, =2.

From Table 2.3, it can be seen that 13<P <409, so P-1 is an even number and

g.c.d.{2,P—1}=2. Although primes larger than 6 can be chosen, depending on the value
of P, some prime cannot be selected. For example, let N =1280, so L =20,

1280/20=64. Then P=67and P-1=66. Therefore prime 11 cannot be chosen.
Therefore {g, } ={1, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

83}. As discussed below, the corresponding permutation pattern in the third stage is
PIP,(i)=i,={19,9, 14, 4,0, 2, 5, 7, 12, 18, 10, 8, 13, 17, 3, 1, 16, 6, 15, 11} and
{p_}=1{19,67,23,61,17,29,73,31,47,7,43, 83, 37,53, 13, 79, 71, 59, 41, 1}.

Perform the i,-th row intra-row permutation. Let ¢, (j,) be the input bit position of the
,~th output after permutation of the i,-th row. Given i, , obtain p, , and use the relation
je=c_(,)=c((J,- p;) mod (P—1)) to obtain the input bit position ¢, (j,) for j, =0,
1, 2,..., P2 . To perform this evaluation, it is easier to first calculate ((J,-p, ) mod
(P-1)), and then obtain the value of ¢ (j,) from the base mapping sequence.

Depending on the value of L

col *

the calculation of ¢, (j,) is modified as follows.
1) If L, =P, avalue for ¢, (P—1) is required. Set ¢, (P—1)=0. This is reasonable

because the base mapping sequence only stores the values for j, =0, 1, 2,..., P-2 and
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none of these values equal zero. For L, =P, the sequence {c, (j,)} is actually a
permutation of the sequence (0, 1, 2,..., P-1).

2) If L, =P+1, values for c. (P-1) and ¢, (P) are required. Set c. (P-1)=0 and
set ¢, (P)= P . These assignments are reasonable because the base mapping sequence
does not include these values and these are the only values available. For
L =P+1, the sequence {c,.' (J.)} is actually a permutation of sequence (0, 1, 2,...,
P-1, P).

3) If L, =P-1, the sequence {c, ( J,)} can be obtained, and is actually a permutation
of sequence (1, 2,..., P-1). However, j, = 0, 1, 2,..., P-2. The simplest solution to
resolving this difference is to substract 1 from every entry of the sequence such that
c,." (J)=c_( J,)—1. The resulting sequence {c;_ (7,)} is a permutation of sequence

©, 1, 2,..., P-2) as required.

(3) In the third stage, inter-row permutation is performed and then the buffer is read out column

by column. The inter-row permutation is based on the following PIP(i ) patterns, where the

value of PIP(i.) denotes the original row position of the i,-th permuted row. There are three

types of PIP(i ) patterns based on the size of the interleaver.

e Case A: use PIP, for all values of N except the values for case B and case C.
PIP, ={19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11} .

e Case B: use PIP, for N=2281 +to 2480, and 3161 to 3210.
PIP, ={19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10} .

e Case C:use PIP. for N =481 to 530. PIF. ={9,8,7,6,5,4,3,2,1,0}.

If the mother interleaver is larger than the required size, the unneeded positions are pruned. In
Figure 2.28, the flowchart illustrates the process to generate the MappingAddress[n] = k. When
the conditions k < N and n < N cannot be satisfied at the same time, the value k is not saved and

the value n does not increase. In this way, the value k is pruned.
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jr=0
=0
k=0
n=0
at
. N
Jr<Lcol °
v
Yes | ( End )
j=i+ 1] 2o
ii=0
Yes

mbaﬁn iyand j.

| k= Leot iw +iu_|

!

No ——
_.|1,=z,+ 1'

Yes

MappingAddress[n] = &

n=n+1

Figure 2.28: The flowchart to show the process of generating mapping address for PIL interleaver.

An example is now given to illustrate the process of generating the PIL interleaver for the

case when N =365.

(1) From the value of N, it follows that L _, =20 and N/L, , =365/20=18.25. Select
P, =17, P =19. Because (19-1)<18.25<19, L, =P =19. Therefore the input sequence is
written into the buffer memory of size L __xL_, =20x19 row by row. Because the mother

interleaver size is 20x19 =380 which is greater than N =365, this interleaver needs to be
pruned. Denote the positions of the input sequence as input[k] =k, k=0, 1,2 ,..., 364, which
are written into the buffer shown as below. Note that the permutation is actually the

permutation of the positions.



jw— ~18§ ——»
i,=0~19 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,... 37,

361,362,363,364. | 15 empty positions |

(2) Intra-row permutation is performed.

e Since P = 19, from Table 2.3 the value g, =2 is obtained. Construct the base mapping
sequence c(i). c(i)={1,2,4,8,16,13,7,14,9,18,17,15,11,3,6,12,5,10} for i = O, I,...,17.
Note that P—-2=17.

s Select the integer set {qg, }, and then obtain {p._}-
{g, }=1{1,7,11,13,17,19,23,29,31,37,41, 43,47,53,59,61,67,71,73,79}, i, =0,1,...,19. By
using the permutation P/P, ={19,9,14,4,0,2,5,7,12,18,10,8,13,17,3,1,16,6,15,11}, {p, }
can be evaluated yielding {p;, }=(17,61,19,59,13,23,71,29,43,7,41,79,31,47,11,73,
67,53,37,1} .

e Perform the i,-th row intra-row permutation using the formula ¢, (j,)=c((/J,-p; ) mod
(P-1)). Because L, =P =19, set ¢, (P-1)=¢,_ (1 8)=0. Table 2.4 below shows the
process clearly.

(3) Inter-row permutation is implemented. Since N =365, select pattern PIP, for the inter-row
permutation. Table 2.5 shows the result after this permutation, where the straight line marks
the positions for pruning. The size of the mother interleaver is 380, however the size of the

required interleaver is 365. There are 15 positions are pruned to satisfy this requirement in
Table 2.5. Note that reading is performed column by column starting from j, =0. To see the
process shown in Figure 2.28 clearly, define variables n, and k, to generate
MappingAddress[n_,] = k, for the mother interleaver. For the required interleaver,
MappingAddress(n] = k is needed. Let np denote the number of positions pruned during the
process. For generating the required interleaver, n=n, —-np, and k =k, if k, <N . Now the

inteleaver required is generated using the relationships n, =20j, +i, and k, =19i +j,

where i,,j,i, and j, are given in Table 2.5. Some of these values are listed below. In this
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list the underline indicates the pruned positions. The first pruned position is j, =4 and i ,=0

r

corresponding to i, =19 and j, =4. Because k, =365 which is not less than N =365, itis

pruned.

(£, 7.):

(i, Ju):

n

k

m -

m e

np:

0.0, (1,0), (2,0), 3,0), (4,0),..., (Q.2), (1,2),... (19,2), (0.3), (1.,3),...
(19,1), 9,1), (14,1), (4,1), (0.1),...,(09.4), (9,6).... ,(11,6), (19.8), (9,8).. .-

0,

362,

0,
0,
362,

1,
172,
0,
1,
172,

2,

3,

4, ..., 40,
1,...,365,
0,.... 1,
4, ..., 40,
Lo,

41,..
177,..
L ...
40, ...
177,

ceey

59, 60,
215, 369,
I, 2,
58, 59,
215, _,

61,...

160,...

2,...

59,...
59,...

MappingAddress[n]=(362,172,267,77,1,...,19,304,114,285,209), n =0,1,2,...,364. Note that

in Table 2.5 for i, =0, the value of i  is 19, which is the largest. Therefore, the 15 pruned

positions are at this row when j, is greater than 3. Also note that for program

implementation, it is not necessary to introduce variables n_,,k,, and np (see Figure 2.28).

Table 2.4: Obtain j, from ( p,_,i,, j,) in the intra-row process

Jr
P, Jw 0 I 2 3 4 5 6 7 8 9 o[ | 121131141516 ] 17 ] 18
- P
17 0 1 10 5 12 6 3 11 15117118 9 14 | 7 I3 116 8 4 2 V]
61 1 1 14 6 8 17 ] 10 7 3 4 18 5 13 111 2 9 12116 15 0
19 2 1 2 4 8 16 | 13 7 14 9 18 | 17 }J Is | It 3 6 12 5 10 0
59 3 1 3171121 4 14 | 11 10 | 16 | 18 6 2 7 ) 5 8 9 3 0
13 4 1 3 9 8 5 15 7 2 6 18 |16} 104 11 14 4 12117 ] 13 0
23 5 1 3117|127 4 14 | 11 } 10 | 16 | I8 6 2 7 Is} 5 8 9 3 0
71 6 1 10} 5 1216 3 I {15} 17 ] 18 9 141 7 13116 8 4 2 0
29 7 1 Isj16] 12 9 2 i1 13 5 18 4 3 7 10 | 17 8 6 14 0
43 8 1 141 6 8 17110 7 3 4 18 5 13 (11 2 9 12116 15] 0
7 9 1 141 6 8 17 11043 7 3 4 118 5 13 [ 11 2 9 12116 15] 0
41 10 1 13 (1712 4 14 1 11 10| 16 | 18 6 2 7 15 5 8 9 3 0
79 11 1 141 6 8 17 |10} 7 3 4 18] 5 13 | 11 2 9 211615} 0
31 12 1 3 9 8 5 151 7 2 6 18116 | 10|11 | 14] 4 121171131 0
47 13 1 ISj16})12] 9 2 |11} 134 5Ss 181 4 3 7 10 117 | 8 6 141 0
Il 14 1 15§16 ] 12 9 2 i1 13 5 18 4 3 7 10 17 8 6 14 0
73 15 1 2 4 8 16 | 13 7 i4 9 18 1 17 15| 11 3 6 12 b 10 0
67 16 1 3 9 8 5 15 7 2 6 18 | 16 § 10| 11 14 | 4 12117 )13 0
53 17 1 10| 5 121 6 3 It | 15|17} 18 9 14} 7 13716 8 4 i 0
37 18 1 2 4 8 16 | 13| 7 14| 9 18 | 17 § IS | 11 3 6 121 5 10| 0
1 19 1 2 4 8 16 § 13 7 14 9 18 | 17 | 15| 11 3 6 121 5 10 0
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Table 2.5: Inter-row permutation

l-

0 1 2 3 4 5 6 7 91011 1213 14¢15])16]17]18

PIP,(i,)

19 0 1 2 g & o34 3—1+—F g 5 81— —rTitH 3 | T 1T1TF 8 | 0
9 1 1 14 ] 6 8 171104} 7 3 4 18] 5 13 | 11 2 9 1216|150
14 2 1 Isjl6e |12 ]| 9 2 1§ 13 5 18| 4 3 7 10 | 17 8 6 1410
4 3 i 3 9 8 5 15| 7 2 6 18116 { 10 | 11 | 14| 4 12117131 0
0 4 1 10} s 121 6 3 Inii1s| 177118879 141 7 13 | 16 8 4 2 0
2 5 1 2 4 8 16 { 13 | 7 14 9 1811711 15| 11 3 6 121 5 10 O
5 6 1 13117112 4 14 (1L ] 10} 16 18| 6 2 7 15 5 8 9 3 0
7 7 1 Is|i6} 12} 9 2 It | i3 5 181 4 3 7 10 | 17 6 14| 0
12 8 1 3 9 8 5 15| 7 2 6 1816|1011 |14} 4 12 1171131 0
18 9 1 2 4 8 16 | 13} 7 14 9 18117 | 15| 11 3 6 1241 5 10} 0
10 10 1 13{17]12] 4 i4 | 11 {10 | 16 | 18 | 6 2 7 15 5 8 9 3 0
8 11 1 141 6 8 17110 7 3 4 181 s 13 | 11 2 9 1211615710
13 12 1 Istie)12]| 9 2 11 | 13 5 18 | 4 3 7 10 | 17 8 6 141 0
17 13 1 10 ] 5 12 ] 6 3 It )15} 17 j 18 | 9 14 | 7 13 |1 16 8 4 2 0
3 14 1 13117112 4 14 (11 )10} 16 | 18| 6 2 7 15 5 8 9 3 0
i 15 1 14 | 6 8 17110} 7 3 4 I8 5 13 | 11 2 9 12 16 |1s| 0
16 16 1 3 9 8 5 151 7 2 6 18116101114} 4 12117 113}1 0
6 17 1 104§ 5 12} 6 3 I IS 174118] 9 14 | 7 13 ] 16 8 4 2 0
15 18 1 2 4 8 16 | 131 7 4 9 18 [ 17 1 15 | 11 3 6 215 101 0
11 19 i 14| 6 8 1710 7 3 4 18] 5 13 | 11 2 9 12116 }115] 0

2.7.3 Spread Random Interleaver

The spread random inteleaver is based on the random generation of N integers from 1 to N with

an S-parameter constraint [8][30]. When a random integer is generated, it is compared to the S,
most recently selected integers. If the currently generated integer is within a distance of §, from
at least one of previous S, integers, it is rejected and a new integer is produced again until the

previous condition is satisfied. This process is repeated until all N integers have been extracted.

The search time for this algorithm increases with S, and S,, and it is not guaranteed to obtain an

interleaver successfully. It is suggested that if the two constituent codes are equal, selecting

S=§,=5, <L\/N / 2_] =LO.707W J usually produces a solution in a reasonable time. For

example, if N=512=2°, S=+N/2=16. Note that for a square block interleaver that is a

nonrandom interleaver, S=+/N 1, and for a purely random interleaver S =1.
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2.8 Termination Methods

In practice, there are two approaches for implementing convolutional code encoding and
decoding: continuous and frame-oriented coding. Continuous encoding is used to enccde the
entire information data sequence without stopping; frame-oriented encoding breaks the encoded
sequence into independent frames so that it is possible to build parallel decoders that work on
different received frames. In frame-oriented convolutional codes, forcing the trellis into a2 known
state periodically makes the encoder appear like a block encoder in that it allows the decoder to

operate on each individual frame independently.

Techniques for state enforcement include trellis truncation, trellis termination and tail biting.

e  Trellis truncation: The starting state for each frame is reset to zero, and no operation is
performed at the end of a frame so that the trellis is left unterminated. The code rate of
the equivalent encoder is the same as that of continuous convolutional codes, but the
decoder has poorer performance near the end of each decoded sequence.

e Trellis termination: The starting state for each frame is reset to zero, and by inserting
additional input terminating bits to the frame (note that termination positions depend on
the specific termination schemes), the ending state is driven back to zero. For
conventional convolutional codes, the state is terminated to zero by appending v zeros to
the end of each frame. Trellis termination improves decoding performance near the end
of trellis, but reduces the code rate. When the frame length is long, the code rate
reduction is small.

e Tail biting: In this technique, the starting and ending encoder states of each frame are
constrained to be identical; that is, each frame of the encoded sequence starts from the
state at which it will eventually end. The advantages of this technique are no performance
degradation over trellis truncation and no code rate reduction compared to trellis
termination. The disadvantage is that the decoding process is more complex. A full

explanation of tail biting is given by Ma and Wolf [32].

A turbo encoder, being based on two constituent RSC encoders, is inherently a type of
convolutional encoder. In addition, the presence of the block random interleaver forces the
general turbo encoder to be frame-oriented. Therefore, the three techniques for trellis state
enforcement described above are used in turbo codes. In this subsection, general trellis
termination methods for turbo codes, including tail termination and joint termination, are

discussed.
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2.8.1 Tail Termination Scheme

Two additional problems exist for the trellis termination of turbo codes as compared to the case of
conventional convolutional codes. Firstly, since the constituent encoders are recursive, it is not
sufficient to append v zeros to the information bit sequence to flush the encoder to zero state.
Secondly, due to the interleaving between the constituent encoders, the bits for terminating the
first encoder do not terminate the second constituent encoder. Solutions to these problems are as

follows.

To terminate an RSC encoder, terminating bits whose values are determined by the encoder
structure and information bit sequence can be inserted into the termination positions. A simple
way to obtain the termination bits for an RSC encoder is reported by Divsalar and Pollara [8], and
was depicted earlier in Figure 2.11. Their method is called tail termination. Based on this method,

three schemes have been developed for the trellis termination of turbo codes:

e  Single termination: Only the first constituent encoder is terminated, and the terminating
bits are also passed into the interleaver, which makes a slightly longer interleaver length

N . The resulting code rate is R =I—V3—§,1 <§ . All sequences for decoding have the same

length N which resuits in a simple decoding process, but because the second encoder is
left open, all initial values for backward recursion of S, (m) in the M-BCIR algorithm
for the second decoder are set to 1/M since all states are assumed to have the same
possibility of being the ending state.

e Dual termination with one individual tail: The two constituent encoders are terminated
individually, but the terminating bits for the second RSC encoder are not transmitted. The

-V

resulting code rate is R, = =R, . The interleaver has a shorter length N —v . When

decoding, the L, (), L, (u;) and y,, have shorter effective data lengths N -v,

because the last v values for them have to be set to zeros.
e Dual termination with two individual tails: The two constituent encoders are terminated
individually, and the terminating bits for both encoders are transmitted. The resulting
N-v

code rate is R, =3N—+_< R,. When decoding, the extrinsic information, L, («,) and
v

L, (u}) have shorter effective lengths N —v.
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2.8.2 Joint Termination Scheme

When no restrictions are imposed on the interleaver design, it is impossible to drive both
constituent encoders to the zero state by only using v terminating bits. But if 2v terminating bits
are used, it is possible to terminate both constituent encoders in the zero state (assuming that two
constituent encoders have same memory v ). This scheme is called joint termination [33]{34].
The basic idea is that by inserting appropriate termination bits, which are evaluated from the
source bit values, into 2v independent positions, both final states of the two constituent encoders

can be driven to zero.

Both constituent encoders are terminated and all terminating bits are transmitted in schemes
of the joint termination and dual termination with two individual tails. The comparison of two
schemes is provided in Table 2.6. In this table, the complexity of encoder and decoder caused by

the termination schemes is evaluated.

Table 2.6: Comparison of the joint termination and dual termination with two individual tails

Termination Scheme Code Rate Int. Size|ENC Complexity | DEC Complexity
Joint termination (N -2v)/3N N High Low
Dual termination with two individual tails{ (¥ —v)/3N +v) | N-v Low High

A. Generator matrix for final states

Because RSC codes are linear, the generator matrix for final states of the turbo encoder, denoted
by F , can be constructed by the base input sequences that contain only a single one. F isan N
by 2v matrix, in which the first v columns of the i-th row stores the final state of the base input

sequence {x,} (k=0,1,...,N —1) that contains a single one at position /, and the last v columns

“stores the final state of input sequence {u} that is the interleaved version of {u,}. The

generation of F is illustrated below.

Final states Final states
corresponding  corresponding
sequence{x, } sequence{u; }

w={u}:
(1,0,0,0,...0) (<> <>
(0,1,0,0,...0) E
. F,
(0,0,0,....0.1) i 5 Jow
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The final states for turbo encoding of any input source sequence can be obtained by multiplying

the input sequence with F .

Note that every single one causes a periodic infinite state transition sequence in an RSC
encoder. For example, in Figure 2.12, if the base input sequence is 1,0,0,0, ..., the state sequence
is 10,11,01,10,11,01,.... This figure shows the trellis diagram for the RSC codes with generator
G(7,5) , v=2. Since this encoder has M =4 states, there are M —1=3 states other than the zero
state to construct the state transition sequence. Also in F , the first v columns show the final
states with period M —1, so if the first M —1 final states are known, it is simple to obtain the
other state vectors. However, the states stored in the last v columns of F are not periodic
because of the interleaver. Although the length of the base input sequence is very long, the
number of states is relatively small. To determine the final states, define the effective length of

the base input sequence as N, = N —N,, where N, is the number of zeros before the single one
in the base input sequence, and also define M —1 effective base input sequences u, as 1, 10,
100,.... Let ry_,_, denote the remainder of N /(M -1). If ry_,_, is not zero, u, is a
sequence with a single one followed by ry_,_, —1 zeros. If ry,ma is zero, u, Is a sequence

with a single one followed by M —2 zeros. The following table can be constructed. Note that the
final states are not given in the table because they are dependent on the generator of the RSC

encoder.

Table 2.7: Determination of the final states

Final State

TNy .M-1 o

1 1

2 10
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Based on Table 2.7, it is straightforward to obtain matrix F . For example, consider N =10,

M =4, G(7,5), %,=0,010,000,000, and «] =1,000,000,000. For u,, N =8, r,_, =2,

u =10, and the final state is 11. For ul, Ng =10, ry 4. =1, 4y =1, and the final state is 10.

B. Independent positions

The rows of matrix F are directly related to positions in the input sequence with length N .
Choose 2v rows from F to construct a square matrix F_. If these 2v row vectors are linearly

independent, the cormresponding positions are called independent positions. These positions have
to be determined by search techniques because of the interleaver. There are many independent

positions; the effort choosing different independent positions is still unknown.

F, is a 2v by 2v square matrix. The following statements are equivalent [35, pp 207]:

L

¢ The row vectors of n are linearly independent.

e F_hasrank 2v.

e F_ isinvertible.

5

e F,_ is row equivalent to /,,, where [,, denotes a 2v by 2v identity matrix.

s
Matrices that can be obtained from one another by a finite sequence of elementary
row operations are said to be row equivalent.

To determine if the row vectors of F, are linearly independent, the rank of F, is calculated. In

order to obtain the rank of any m by n matrix A, the following definitions, theorems and

procedures are described [35].

(1) The common dimension of the row space and column space of a matrix A is called the rank

of A and is denoted by rank(A).

(2) The row space and column space of A have the same dimension.

(3) The subspace spanned by the row vectors of A is called the row space of A, and the

subspace spanned by the column vectors is called the column space.

(4) The nonzero row vectors in any row-echelon form of a matrix A form a basis for the row

space, and the number of these nonzero row vectors is the dimension of the row space.
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(5) Elementary row operations include: (i) multiplying a row through by a nonzero constant, (ii)

interchanging two rows, and (iii) adding a multiple of one row to another row.

(6) The procedure that produces a row-echelon form of a matrix using elementary row operations
is called Gaussian elimination. To be of this form, a matrix must have the properties: (i) if a
row does not consist entirely of zeros, then the first non zero number in the row is a 1, called
a leading 1, (ii) if there are any rows that consist entirely of zeros, then they are grouped
together at the bottom of the matrix, (iii) in any two successive rows that do not consist

entirely of zeros, the leading 1 in the lower row occurs father to the right than the leading 1 in

11 29
. . 2 4 - .
the higher row. For example, the row-echelon form of matrix A= 3 6 2 é is
4 8 -6 2
11 2 9
o1 -2 -1 . .
oo 1 3l The rank of A is 3, because there are three nonzero row vectors in the row-
00 0 O

echelon form of the matrix A.

Therefore, in order to calculate the rank of F_, reduce it to its row-echelon form and count the
number of the nonzero vectors. Note that F, consists of binary numbers and that the elementary
row operations are done using modulo-2 addition. If the rank of F, is not 2v, choose another
row from F to replace a row of the original F, to construct a new F_, and calculate the rank
again. Repeat this process until the rank of F, is 2v. The corresponding positions are then

independent.

C. Termination bits

To simplify notation, define:

e Input sequence %, ={u,,}, k=0,1,.,N -1, that consists of the source sequence with
zeros inserted into 2v independent positions.

e Input sequence &, ={uy,}, k=0,1,..,N —1, that consists of terminating bits inserted
into 2v independent positions with the values of bits in all other positions set to zero.

e Input sequence &, =1, + &, , that is the sequence put to the turbo encoder that results in

an encoded sequence where both constituent encoders are terminated in the zero state.

e Vector @, =(4,4,....4, 5,;) » Which contains 2v terminating bits.
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e Square matrix F, , which is constructed by choosing 2v independent rows of F .
e Final state vector 5, ={s,4,...57,_1+5/+---Sf 2,1 } COrespondingto &, .

e Final state vector 5, ={s; g....5; , 1+ s---S; 3, } COrresponding to i .

The final state after encoding sequence % can be forced to zero, if the final states for the
sequences #,, and %, are identical, because in GF(2), these state values are canceled by modulo-
2 addition. The final state can then be written as follows:

5, =u,F
= (@ o + B, )F
= F +u, F
=u, F +uF,
=5, +uF,.

Imposings, =0 yields:

F! (2.102)
where all arithmetic is from GF(2).

The terminating positions are independent of the source sequence, so these positions can be
determined during system design. Generally the termination bits need to be distributed through
the frame somewhat, but it is possible to adjust the interleaver design slightly to make the last 2v

positions be terminating positions. If so, it is easy for practical implementation to discard the

terminating bits after decoding.
The following outlines the procedure for implementing joint termination in practice:

e Pre-compute and store the set of terminating positions and the matrix F,’.

e Insert the source information sequence into the non-terminating positions to construct
U, .

e Obtain 5, by passing &, to the first constituent encoder and the interleaved version of
u,, to the second constituent encoder.

e Calculate the vector of terminating bits %, using relation 2.102.

e Obtain the sequence #, by inserting the terminating bits into the terminating positions in

the sequence «,, .
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e Apply the sequence i« to the turbo encoder to generate the encoded sequence.

As an example of joint termination, consider the case when the turbo encoder consists of two

identical constituent encoders with generator G(7,5), N =10, and the permutation table is

_[0123456789

. In this table, the first row denotes the position k& before permutation, and the
2104935768

second row denotes the permuted position n. For example, by permutation, position 0 is moved to
position 2, position 1 stays at position 1, the last position 9 is moved to position 4 etc. This

permutation table can be translated into the mapping address, MappingAddress(k] ={n}
=(2,1,0,4,9,3,5,7,6,8) or MappingAddress(n] ={k}=(2,1,0,5,3,6,8,7,9,4) . Table 2.8 shows the

generation of F.

Table 2.8: The generation of F

Uninterleaved | Uninterleaved | The final state | The final state Interleaved Interleaved
bit po'sition base sequence of 1¥ encoder | of 2* encoder base se_quclznce bit position
k u, u, =u; n
0 1000000000 10 11 0010000000 2
1 0100000000 01 01 0100000000 1
2 0010000000 11 10 1000000000 0
3 0001000000 9 01 0000100000 4
4 0000100000 ot 10 0000000001 9
5 0000010000 11 10 0001000000 3
6 0000001000 10 11 0000010000 5
7 0000000100 01 01 0000000100 7
8 0000000010 3] 10 0000001000 6
9 0000000001 0 i 0000000010 8

From this table, it cab be seen that the sequence of final states of the first constituent encoder has

period 3. From Table 2.8, it is straightforward to obtain the matrix F:

101 1
010 1
1 110
100 1
011 0
F={ 110
101 1
010 1
1 110
101 1]
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Let 7, (k=0,1,2,...,9) denote the rows of F, and k =3,4,8,9 rows are chosen to check if they

are linearly independent vectors. If yes, these rows will be chosen to construct F .

1001=r
0110=r,
1110=r
101 1=7

It is straightforward to show that these vectors are linearly independent by the fact that all
length-4 weight-1 vectors can be constructed as follows using elementary row operations:
1000=r+71;
0100=rR+r,+7,

0010=F+%
000 1=F+F%+%

This shows that F, is row equivalent to the identity matrix /,. Also reducing F, to its row-
1001

echelon form g g demonstrates that the rank of F, is 4.
Lo

So F, and F_’ are obtained:

(o BN
Q = ~ O

1

1 0 0 1] 0110
o1 10| . 1101

Fo=l1 11 0].Fv=|1 0 0 1}
1 01 1 1110

Let the source data sequence be ¥ =100100, and the terminating positions be 3, 4, 8 and 9 as

determined from above. Then, #,, = 1000010000, where the underline marks the terminating

positions, 5, = &,F =0101, &, = §,F;'=0011, @,= 1000010011, and §, = #F = 0000.

4 k14
Therefore, by the joint termination method, the final states of both encoders are forced to the zero

state. Note that in practice, 5, is obtained by passing sequence #, to the first constituent

encoder, and %, to the second constituent encoder. The positions of termination bits are fixed

during the design phase, and the values of the termination bits are determined from the source

sequence.

A comparison of the BER and FER for turbo codes using single termination (terminating only
the 1% encoder) and joint termination is shown in Figure 2.25 and Figure 2.30. The interleaver is
spread random and the size is not large, only 256. The simulation results show that terminating
the entire trellis rather than just the first trellis does not significantly enhance performance for low
values of SNR.
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Figure 2.29: Comparison of FER and BER performance for single termination and
joint termination with 6 iterations, spread random interleaver N = 256,
R = 1/3, G(7.5), and terminating positions 213, 234, 244 and 252 for

joint termination.
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Figure 2.30: Comparison of FER and BER performance for single termination and
joint termination with 10 iterations, spread random interleaver N = 256,
R = 1/3, G(1,5), and terminating positions 213, 234, 244 and 252 for

joint termination.
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2.9 Simulation Platform for Turbo Coding

Simulation of turbo codes and new techniques of early stopping and error detection for turbo
decoding has provided validation of analysis and provided performance results for these
techniques. All simulation and analysis was performed under the Borland C++ Builder 3
environment (professional version) [36] on the IBM PC family of computers.

C++ Builder 3 is Borland’s rapid application development (RAD) product for writing C++
applications. With C++ Builder 3, C++ Win32 console applications or Win32 graphical user
interface (GUI) programs can be created easily. For simulation of turbo codes, all programs were
created as console applications. A Win32 console application is a 32-bit program that runs in a
DOS box under Windows 95, 98, 2000 or Windows NT.

2.9.1 Simulation Structure and Projects Groups

There are two ways to construct programs for simulation of an entire communication link. First, a
complex program could be written to simulate all operations between data source and data sink
with specified configurations and channel parameters. This program implemention operates like a
real time simulation. The source generates a frame of data, and passes it to encoder, channel and
finally to the decoder, and then repeats. The program could be controlled by the number of errors
collected (say 100). If the specified number of errors is collected, the program could stop or
continue by moving to another channel parameter. Alternatively, a number of short programs
could be written with each simulating only a part of the transmission system. Information could
be transferred between these programs through a series of data files. Encoder and channel
parameters could be varied easily without the necessity of generating source data again. Code
performance could be examined at any point of the transmission link by recording the appropriate
information. Due to its flexibility, simplicity of expansion, and ease of use, the second structure

was implemented for simulations in this research.

In addition, the second structure is easy to use by creating what is known as a project group
within C++ Builder 3. A project is a collection of files that work together to create a standalone
executable file, and a project group is a collection of projects. A project group is used to manage
a group of projects that work together to form a complete simulatiom system. For example, a
source project was created to yield random binary source data. The source project named
“Source” consists of many files, but only three files are of interest here, including “source.cpp”

which is a C++ program, “source.dat” which is the random binary sequence data generated by
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“source.cpp’’, and “seed.dat” which is a random integer to guarantee randomness of the source

data.

For simulating the overall transmission link, several projects need to be created. Generally, a
project group consists of the projects to simulate portions of the transmission link including the
data source, encoder, channel, and decoder. In this thesis, the projects for source and channel do
not vary significantly. However, the projects for encoder and decoder have more variation
depending on the different codes and techniques used in the decoder. After the projects were
compiled successfully, the final executable files were made. Then, the appropriate program was

run by activating the specified project.

2.9.2 Project and Project Groups for Turbo Codes

To simulate and compare the performance of turbo codes and other encoding and decoding
schemes, separate projects were created and several project groups of special interest were
constructed. The projects are listed in Table 2.9. Appendix 4 gives the program specifics for the
simulation. Note that project names listed in Table 2.9 are more readable versions of the file
names than those given in Appendix 4. For example, the program “NSCCodes” discussed in

Appendix 4 is listed as “NSC codes” in Table 2.9.

Table 2.9: The projects for evaluating turbo codes

Portions of transmission link Projects

Data Source Source
NSC codes
RSC codes
Turbo codes
Turbo with CRC codes
Channel AWGN channel
VA
BCIJR algorithm
M-BCIJR algorithm

Berrou's decoding algorithm

Encoder

Decoder ; :
Robertson’s decoding algorithm

Algorithm with early stopping

Algorithm with early stopping and error detection

Algorithm with early stopping error detection and CRC check
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Based on the projects listed in Table 2.9, the project groups listed in Table 2.10 were

constructed.

Table 2.10: Project groups and the constituent projects for evaluating turbo codes

Project groups Constituent projects
NSC1 Source —» NSC codes - AWGN channel - VA
NSC2 Source — NSC codes — AWGN channel — BCJR algorithm
RSC1 Source — RSC codes —» AWGN channel 5>VA
RSC?2 Source = RSC codes - AWGN channel -+ M-BCJR algorithm
Turbo codes 1 Source — Turbo codes — AWGN channel — Berrou’s decoding algorithm
Turbo codes 2 Source —Turbo codes — AWGN channe! — Robertson’s decoding algorithm
Early stopping Source — Turbo codes - AWGN channel — Algorithm with early stopping
Early stopping and | Source — Turbo codes — AWGN channel — Algorithm with early stopping and
error detection error detection.
Stopping, error Source — Turbo with CRC codes — AWGN channel — Algorithm with early
detection and CRC | stopping , error detection and CRC check.
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CHAPTER 3

APPROACHES FOR EARLY STOPPING

Because the turbo decoder works in an iterative fashion, excellent performance is obtained at the
cost of delay. Once iterations fail to improve the accuracy of decoding, the iterative process
should be terminated by a stopping criterion. This will reduce decoding delay. In this chapter,
following introduction of the challenges associated with iterative decoding, several stopping
criteria are briefly described. In general, stopping criteria can be applied after each half iteration
or each full iteration (see Figure 3.1). It is convention to report the average number of iterations

for a stopping criterion. Let i denote the iteration number and let i, be the value used for the
calculation of average number of iterations. If the stopping criterion is applied after decoder 1,

i, =i—0.5, otherwise i, =i.

L L, i L,
5 MAP DECI _;-,_"’ MAP DEC2
s —g—p with = 5 s with
3, Early Stopping | _ Early Stopping |
1p }Y'.’p — [’2 Z;
v
Hard - Hard |__, =
Decision > Decision “

Figure 3.1: Structure of turbo decoder with early stopping

3.1 Challenges with Iterative Decoding

From the BER curves for turbo codes, it can be seen that with each iteration, the required E, /N,
to obtain a specified BER decreases. But it can also be observed that the improvement in E, /N,

becomes smaller with each iteration. For example, when the turbo code BER curves in Figure

2.32 are examined at BER = 107, it is found that the required E,/N, decreases 1.65 dB from

iteration 1 to 2, but from iterations 6 to 10, it decreases only an additional 0.2 dB. This is because

with each iteration the extrinsic sequences L, and L, become more correlated, and this

correlation decreases the improvement in performance [37].
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The question then arises as to how to determine when additional iterations will provide little
or no increase in BER performance. Techniques of doing so have been called early stopping
criteria, and several attempts have been made at designing good early stopping criteria to
terminate the decoding process without significantly impacting the performance of the turbo
decoder [51[7][31][38]. In addition, the computational complexity of turbo decoding can be high.
Decoding with early stopping criteria leads to iterative decoders that are more computationally

efficient than fixed-complexity iterative decoders.

70 i T
Frame 1, error-free, fast convergence
Frame 2, error-free, slow convergence
60 | Frame 3, few errors ]
Frame 4, many errors
g Frame 5, oscillatory error output
RS EANTZ LS :
3 3
a.
5
5 4 ¢ Berrou’s interleaver ]
s frame 256 ]
3] i AWGN, E/N,:0.5dB | ]
£ 0 G(37.21), rate 173,
2 terminating 1* encoder
20
10 |
: >
S S 3
0 e—o—Ba—a—8—8—8—=a
0 7 8 9 10

Iterations

Figure 3.2: Typical turbo decoding performance

Figure 3.2 shows turbo decoding performance in terms of number of output errors as a
function of the number of iterations for five typical frames under the same channel conditions.
Based on the investigation of 2,000 frames, five general classes regarding the number of output
errors with iterations are obtained. The five frames in Figure 3.2 are typical representatives of
these classes. Note that the number of iterations is assumed to be large enough for the
investigation. For the selection of the frame size of 256, first, the low frame error rate is relatively
easier to be simulated using a shorter frame size within a reasonable period of time; second, in
CDMA2000 high rate packet data air interface specification (HDR standard proposed by
QUALCOMM), frame size of 256 is one of the five reverse traffic channel payload sizes (i.e.
256, 512, 1024, 2048 and 4096) [39, p. 11-4].

These five curves in Figure 3.2 illustrate that large differences exist in the convergence and

error performance of different frames. In Frame 1, the errors are corrected quickly. Correction of
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all errors in Frame 2 requires more iterations, but after 8 iterations all errors are corrected. With a
maximum of ten iterations, errors in Frames 3 and 4 are not corrected, nor does it appear that
additional iterations would help in these instances. Frame 5 exhibits oscillation in the decoding
performance. Although all errors are corrected after the first few iterations, errors appear again
after a number of additional iterations. The most probable reason for this situation is the
accumulation of numerical errors in the decoding algorithm if iterative decoding continues too
long. Clearly, the best performance can be obtained if the decoding process can be stopped at the
proper time. In this thesis it is demonstrated that it is possible to design good stopping criteria to
achieve this performance, using less time and complexity than fixed-complexity iterative

decoding.
3.2 Early Stopping Criteria

In this section, several previously published stopping criteria are introduced, including variance
estimate (VE) [7], cross entropy (CE) [S], sign-change-ratio (SCR) and hard-decision-aided
(HDA) [38], and turbo-CRC [31].

3.2.1 Variance Estimate

In Berrou’s original turbo decoding algorithm, the turbo decoder used received values from the
AWGN channel and values from the meta-channel (i.e. [} («,) and z,,), where the meta-channel

consists of the concatenation of the AWGN channel and constituent decoder. That is, the
constituent decoders are looked upon as a part of the meta-channel. In order to use the values
from the meta-channel, the variance of the meta-channel has to be estimated. The variance of the
meta-channel changes with each half iteration. Robertson improved the turbo decoding algorithm,
so that it was not necessary to estimate the meta-channel. But Robertson suggested that the
variance of the meta-channel could still be calculated in order to decide whether or not the
iterative process should be carried on. If the variance of the meta-channel is low, further iterations
are likely to have no effect on decreasing the number of errors in that frame. This scheme is
called variance estimate, and is the first early stopping criterion prbposed for turbo decoding [7].

In this subsection, VE is described in detail.

Assume the channel model of the meta-channel is AWGN with zero mean and variance o,

where xe {—1,+1} is transmitted and z is the received value. During turbo decoding, the LLR
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L(x), the conditional LLR of x given observation z, is available after each constituent decoder.

It is straightforward to show that if x assumes values *1 with equal probability, then:

_ Pr{x=+1!z}
L) =log. o =1
—log, Pr{zlx=+1}
Pr{zlx=-1}
—log, flzlx=+1)
flzlx=-1)

-2, (3.1)

o,

m

Therefore, there exists a linear relationship between LLR L(x) and the associated meta-channel

observation z:

2=Zm . [ (x) (3.2)
2
where f(-|-) denotes the conditional probability density function (PDF). The PDF of x is:
f.(B)=0.58b~-1)+0.56(b+1), betl 3.3)

where &() is the unit impulse function and the random variable (RV) x takes on the values of

b . By assuming that the noise of the meta-channel n is normally distributed:

1 -5 2
e b’ 120n

fn(b)=:/——-—2;[—o_—'

Because z=x+n,and x and n are independent, the PDF of z is the convolution of the PDF of
x and the PDF of n[21, p. 54]:

—o<bhb<oo | (3.4

e—(b—l)‘ /20,

R GO e N A (3.5

1 1
h)=———
f=(6) 2\/50',,1(

From relation (3.5), it can be observed that the distribution of z is the superposition of two

normal distributions. An important fact about normal random variables is that if w is normally

distributed with mean x4 and variance o’, then the RV v=aw, where « is a constant, is

normally distributed with mean ox and variance o*c® {21, p. 35]. Then, by the relations (3.1),

(3.5) and af=-—22— , the PDF of L(x) can be obtained as:
(o}

m
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1 1 —(b-a) 12a°07 | —(b+a)'[2a°0
(b)=— (e { -~ te =), —o<b<oo. (3.6)
1 22zao,,

Now consider the second moment of RV L(x), denoted m ;. If the RV w is normally distributed

with mean # and variance o then the second moment of w is [21, p. 62]:
m . =EW*)=u* +0?, 3.7

where “ E ” denotes the expectation of a RV. From relation (3.6) and (3.7), m. is:

m, =—;-(ar2 +a*ol) +%((—ar)2 +a*o?)
=a*(1+0})

=£4—(1+oﬁ).

m

Rearranging this expression yields a quadratic equation in o, as m.(0.)’ —40, —4=0, with

the positive solution:

2+Lﬁ+m1
ol=——— =, (3.8)
m,

Therefore, to estimate o, an estimation of m,. is required. The following formula can be used

to estimate m,; of L(x) in a frame [24.]. Note that L, (x) is the value of L(x) at time & :

N
mp =—1-Z L (x) (3.9)
N k=1

In turbo decoding, L, (x) is the LLR output of a constituent decoder. If m is very large,

ol =2/, /mL: . Figure 3.3 shows the variance estimate of the meta-channel based on the second

moment of the LLR output of each constituent decoder for the five frames, where error

characteristics were previously shown in Figure 3.2.
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Figure 3.3: Variance estimate of meta-channel based on the second moment of the LLR for
five typical frames (see Figure 3.2 for the corresponding number of errors).

Now for each iteration, an estimate of the overall accuracy of the decoded bit sequence is

available. Assuming that E, is normalized to 1 and a correlator is employed at the receiver, the
relationship between the variance o7 and E,/N, for AWGN channel is:

E,/N,=1/N,=1/20%. (3.10)
For example, a variance of 0.055 is equivalent to an E,/N, of 9.59 dB. The probability of bit
error is [2, pp. 87]:

-~

£
Pa=1{,, e 2du=Q(/o,) (3.11)

~2r

where Q(:) is the complementary error function. For o’ =0.055, B, =1 0x107°.

It has been recommended that the threshold to stop iterations be chosen for an equivalent
channel SNR of either 10 dB or 12.5 dB depending on the BER range of interest [7]. Therefore,

to implement VE for early stopping, specify the threshold of o> and the maximum number of

iterations. During the iterative process, after each constituent decoder, estimate m, using

relation (3.9), calculate o;_i using relation (3.8), and determine if the threshold has been met. If

so, stop the iterative process. If not, continue the iterative process. The iterative process will stop

after the maximum number of iterations for those frames that never satisfy the threshold.
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3.2.2 Cross Entropy

Cross entropy is a useful criterion for stopping an iterative decoder [5]. The cross entropy of two

P, (&)
A@@)

probability distributions FA(@) and PA(&) is defined as E, [log, } where

# = (u,,U,,...,ity) and E, denotes the expectation over the distribution P, . Cross entropy is a
measure of the closeness of two probability distributions. Assuming statistical independence of

N
u,,u,,....uy with identical distribution p,, then F (&) =H p,(u,) . Similarly, it is assumed that
k=1

N
P)= H p,(u,) . Therefore:

k=1
P, (@) i ¥ p, () ]
E, | log, =E, |log | | =~
"-[ } i Hp.(uo_

N

=YE, [loge p—’-(ﬁl} : (3.12)

k=1 p ()

For the i-th iteration of the turbo decoder at time & :
[,‘li)(uk)zlg:‘)(uk)*'%ys.k+L(li)(“k)’ i21, 3.13)
i i 2 i -

I’(.’)(uk)zl‘(le)(uk)-*_-o—_z.y:.k+[’(.'¢)(uk)’ (21, (3.14)
AL ()= L (u, ) = L0 () = L9 () - L) (), i21, (3.15)
ALY (10,) = L2 (u ) - L () = LP () - L5 (), i22, (3.16)

and if a decision is made from L{(x,), then:
uy’ =sign(Ly (u,)) -

The probability distribution at the output of the m-th constituent decoder, where m=1 or 2, is
given by:
L3 ()

) — —_
P (uk _+1) 1+eL2)("")
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1

(O] -1 =
Pm (uk - 1) 1+el-g)(“z) -

3.17
For the CE stopping criterion at the i-th iteration, the closeness of P and A" must be

N N
evaluated, where B =] p{"(«,) and P =TT 5’ (%) . To do so, first consider calculation of
k=1 k=1

E, flog, 2284y
pw,)

Py (%) Py (u, =+1) py (u, ==1)
Ep(,-, [Ioge o il Lo B T4y P p(')(uk =+1) loge_%)_.L__ (l)(u -1 Ioge(.)—k—
: p (u k) pl (llk=+1) Dy ( k—_l)
el.‘;"(u.) eté”(m el{"(u,)
N 1+e& @ (og, 1+ @) ~log. 1+e4”(“‘))
1 1 1
e—————— O — —
+1+e'i~”‘"" (log. 1+ ) tog. 1+e"m(""))
L () LM (uy) L' (uy)
e’ H 1+ 1 l+e
=——— (AL (u,) +log )+ ~—(log -—)
1+ o ‘ TR PP ALY ‘14l
els ) PR

(O]
=—-——Al u, )+ —_—
1+el'(;)(u") e( k) loce1+e,_(:-)(uk)

: 1
—_— )
Alq,(uk)——1+elg,(“‘) +l°g‘—_+e-t‘n_”<u.> : (3.18)

When the decisions regarding input bit values no longer change, ie.,

ul =sign(L” (u,)) =sign(I¥’(«,)) , u” can be introduced to relation (3.18) to obtain:

pe () 1 4
k71— (l) P
Ep(:,,[loce (:)( k)] (l"‘)l_*_eu‘,"ll‘n."(uk i +log. 1+e—u1"ll—‘;’(u. N
If u” =+1, then:

0 =1 (g

P (M) ard l+e
Epi"[loge (i) 1=—u; A['-:‘ (u") 1 ug ) +log. 1 (3.19)
: p () +e= I+

If «{” =—1, noting that | L$ (u,) 1 =1 L” () I= u" AL} (e, ) results in:

[ 4B

1+ B B e

py ()

E . [log, =
AT P ()

] = _Al'(_:: (uk)
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1 (e )le-u.‘;"(u, 0 1+ eu.{"’ (uy )l)

— (i)(
= u,) . +log .
e \k _17() e _y¢) {i) i)
l+e 1Ly (g e 10" (uy )'e""-z (g N (1 ; eIL: (uy )I)

|[,(;)(ut i (1 + ,_u_(l')(uk )l)

AT 0] o
= AL )y + (L) L= LD ) D +log, -

1 (uy N (1 -4 u, )x)

€ AU
—uAL) () + log,

(€3] (i)
=Ug ALzz (uk)_m_ T i, u
1+ &) (147l

[+ 0 et

Y .
14+ @)

D AFG 1
=—uP AL (u,) oy +log, 3.20)
I+e= ™

From relations (3.19) and (3.20), it is clear that for either value of ;" :

45 @)

()
p, (u,)
W) —geytos. — ey -
1+e= ™) 14+ )

Epg) [loge _—] = -ul(znAl’(.!ie)

- 3.21
le(uk) ¢ )

Further, if the value of | L? | is very large, ™™ “" is very small, and the fact that log,(1+x)=x

for very small x can be used . Using this in relation (3.21) yields:

(l')( .
13 ; : 1 (i) Y0
E , [log P2 k)]z_um: [ (w,) e B _ A )
g LA b T2e M 1L (g
- P, (uk) l1+e™
A 1 -1 (g = Gy Y ALY (1 )
=T e (4) G S ) | € —€
+e k k Te \k
(i) ) .
g, AL () | — ot attl )
=e ( 1L (g W ulALY) (1) +tl-e )
e 13 +e k Te \ 4t
) i i : - OO _glitagtit
e-"‘ [CAL =0= =e L (ue ) (l-u,‘c')ﬁ [(I:(uk)e u, AL () —e oy AL:,(u,))
1L g ~ul AL (uy ) i i
=N (1 - M L+ u ALY (1)) (3.22)

3

It is well known that the exponential series for e* is e* =1+x+Lx® ++x’+-.-. Based on this
P 21 30

series, it is straightforward to show that when x is negative and | xI<1, ¢* =1+ x. For example,
if x=—0.2, then e*=0.819, and 1+x=0.8. In relation (3.22), if at the i-th iteration AL;)(x,)

holds the same sign as u{” and has a magnitude less than one, the first two terms of the

exponential series dominate its value and:
s’ () L Gy (D) A (O () A (i)
E . [log, —=——]=e A=A -u D )A+u AL (1))
A PP ()

= (ALY ()™ (3.23)
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Combining this result with relation (3.12), the CE for the turbo decoder at the i-th iteration after

the second constituent decoder can be approximated as:
- N - {s)
TP =Y (AL () e ™", i1 (3.24)
k=1
Similarly, after decoder 1 during iteration i, the CE T,"” is:
. N - (i)
TP =Y (AL (u )y e™= ™", i22. (3.25)
k=1

Simulation results have shown that when T /T" =107 ~10" (m=1,2), iterative decoding
should be stopped [5]. T /T" is called the normalized CE. The normalized CE for the 1¥
constituent encoder is:

N (i
-LZ(AL‘,‘; (@ ))eF ™ iz2. (3.26)

( (8Y}
TOIT ~—5
1‘2 k=1

The normalized CE for the 2™ constituent encoder is:

N )
LZ(AL;‘Q (u))?e’™ ', izl (3.27)

T(") /T(l) —
2 2 )
7‘2 k=1

Figure 3.4 shows normalized CE values for the five frames considered in Figures 3.2 and 3.3.

Therefore, to implement CE for early stopping, specify the threshold of normalized CE and

the maximum number of iterations. At the 1* iteration after the 2° constituent decoder calculate
TS" using (3.24). Then during subsequent iterations, examine the normalized CE after the 1%

constituent decoder using relation (3.26) or after the 2™ constituent decoder using relation (3.27).
Compare the normalized CE with the specified threshold. If the threshold is satisfied at either
decoder, stop the iterative process and made a decision from the sign of the LLRs of that
constituent decoder. If the threshold is not satisfied, continue the iterative process. For the CE

stopping criterion, it can be seen that the minimum number of iterations for decoding is 1.5 owing

to evaluation of T;" .
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Figure 3.4: Normalized cross entropy for five typical frames (see Figure 3.2 for the
corresponding number of errors).

3.2.3 Sign-Change-Ratio and Hard-Decision-Aided

Two simple stopping criteria based on the concept of CE have been proposed: sign-change-ratio
(SCR) and hard-decision-aided (HDA) [38]. SCR considers the sign change between extrinsic

information L'-" and L) (m=1,2) from iteration i—1 to i (i22). Sign changes of the LLR

me

¥ and L’ (m=1,2) from iteration i—1 to i (i22) are the basis of the HDA technique.
Both are described below. Suppose that the iterative decoding process converges, and at iteration
i the decoding process can be terminated. Then, four assumptions are made regarding the LLR
and extrinsic values at the outputs of two constituent decoders at iteration i [38]:

(1) Hard decisions of the information bits based on the LLR values do not change anymore,
ie., sign(L”(u,))=sign (L)) =u ==£1.

(2) The magnitudes of LLR values are very large.

(3) sign (AL‘,,’,’, (, )) =sign(u ).

4) 1AL (u,) 1.
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A. SCR

Consider the calculation of T,;” given by (3.24). In the iterative decoding process, the values of
LLR and extrinsic information are different for each bit. From simulation, it can be shown that

when | AL (u,)I<1, if there are no sign changes between Lj.”(u,) and L5)(x,), the value of
AL (u,) is negligible when compared to the value of AL;)(u,) for positions where there are sign
changes [38]. That is, when ke A, é{k :sign (L5) (u,)) =sign (Lfl':”(uk))} , ALY (u,)=0, where
A, denotes the set of position k such that [$."(u,) and ILS)(x,) have the same sign. Therefore,
in a frame, the terms for calculation of 7" can be separated into two groups. Let T,” (1) denote
those terms that contribute little to 7, and let 7,”’(2) denote those bits which have sign changes

and therefore have greater contribution to the value of 7;” . Then:

() 2
cy W)y o
e

keA,

(AL ()

e:q' Y B

I =L°M+L7 () = X
ke Ay

Furthermore, the average value of 1L{(u,)! in T}”(1) is much larger than the corresponding
value for T”(2) . Therefore, T} (1) is negligible compared with 7;”(2), and:

(AL ()’

elL{" (W]

T:,(i) — Z

ked,

=CP&P, (22 (329)

where 6 denotes the average value of (AL (uk))zl &5 for ke A,, and C.” denotes the

number of sign changes of L in a frame from iteration i—1to i (i22).
Relation (3.29) shows that T,;" varies directly as C; . This relationship provides a stopping
(i)

criterion based on the number of sign changes C;’ . The ratio C;) /N is called the sign-change-

ratio, and when SCR drops to 0.005 ~ 0.03, iterative decoding can be stopped with about the
same performance degradation as when the CE criterion is used [38]. This criterion also holds for
f‘,l? (i22). Figure 3.5 shows SCR values with iterative decoding for the five typical frames

considered previously.
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Figure 3.5: Sign-change-ratio with different iterations for five typical frames
(see Figure 3.2 for the corresponding number of errors).

B. HDA

Decisions regarding the values of the information bits are based on the sign of the LLR values.

The HDA stopping criterion is based on comparison of these values from one iteration to the
next. At iteration i —1(i=2), store the hard decision values based on [_,,‘_i'[’. One iteration later,
compare these values to the hard decision values corresponding to LY. If they agree with each

other for the entire frame, the iterative process can be stopped at iteration i . This criterion also

holds for LI . In the following, the connection between CE and HDA is described.
. » - ‘v - - N .
Consider the CE between P and P, where A" =[] pi™"(«,) and P =[] P ).
k=1 k=1
The CE T is:

N (i)
79 =S E | log, 228 | 3.30
) [ B i) 30
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Assume that no sign changes occur between LY and [_3;’ from iteration { —1 to i, which means

that u,(c')—sign(L‘l"'”(u,c))=sign([,({’(u,‘)) and let ALP(u,)=L@w)-L"w), so that

uPALD () = I () 1= L5V (u )| Then:

L) LY ()

AL,;’(u )+log,1————. (331

Ly’ ()

Assume that the magnitude of Lz’) (u,) is very large. If u"’ =+1, then (3.31) becomes:

1 1S (g

- N . -
T = 3 u’ ALY (u,) +log, — e (3.32)
k=1 1+e™ ™

If 4’ =—-1, from (3.31), it follows that:

o N e—ll.‘.)(uk)l - 1+ L (0
1 t
T Z L (u 2 () +log, L (0
=1 l+e I+e =
(1) di-1)
N U gt (1+e'l”- ("‘)')
=5 & AI®
- Z L (g < (u“) +log‘ 1S (g ) 1 (aay )
=Eilte 2 e (1+e- t )
N e—"—‘;"(uk ) . ‘ ' 1 T (a0
= Z EO Al'(.")(“k) +(I L(.'[)(uk) (=l [g_”(“k) l) +log, 1 (e M
=l l4+e = l+e= ™
N g e—ll,‘;'(uk ) I 1L~
= 2 — AL () + AL () + 108~y
k=1 l+e = I+e= ™
N 1+eu:;"‘(u‘ »
=Z AT :)(uk) T log, e
k=1 1+ = ™™ I+e= ™™
N L M
— N D AT 1 1__‘;_ 333
~Z ALY (u,) +log, oo (3.33)
k=1 +e -

(i)

Therefore, considering (3.32) and (3.33), for any u,” it is clear that:

1 Y™ g

N
T2 =3 ul ALY () + log, ————-. (3:34)
e k=1 1+

12850 (ug M
et

Simulation shows that when no sign changes occur between L{™"(x,) and L3’(x,), and the
magnitude of L (u,) is large, ALY (u,) is very smail [38]. This causes T, to be small, which
indicates that the iterative process can be stopped. Figure 3.6 shows the number of sign changes

of LLR (L1 or L¥") for five typical frames. Generally, for any given interleaver size, simulation
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shows that when compared to CE and SCR, HDA can save more iterations at low to medium
values of SNR, but that it is not as efficient at high values of SNR [38].
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Figure 3.6: Number of sign changes of LLR for five typical frames.
(see Figure 3.2 for the corresponding number of errors).

3.2.4 Turbo-CRC

The idea of the turbo-CRC technique is that by incorporating a CRC into turbo codes, a CRC
check can be used to reduce the average number of iterations of decoding [31]. The CRC encoder
is introduced before the turbo encoder. After each constituent decoder, hard decisions are made

and a CRC error check is performed. If no errors are found, the iterative process can be stopped.

In [31], the information data is divided into a sequence of 5104-bit frames. Each frame of

data is first encoded using a 16-bit CRC code and then encoded by turbo codes with G(13,15).

The resulting performance is very good but 16 redundant CRC parity bits, which reduce the

effective code rate, have to be introduced in each frame.
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CHAPTER 4

NEW APPROACHES FOR COMBINING EARLY STOPPING
WITH ERROR DETECTION

When turbo codes are used for data transmission, the decoded sequence must be examined to
determine whether or not the frames contain errors. In an automatic-repeat-request (ARQ) data
transmission system, if any errors are detected, a retransmission request for whole frame will be
triggered. Buckley and Wicker [40] [41] have introduced an error estimation scheme for turbo
decoders in which a neural network attempts to determine the presence of errors using the CE of
the component decoders as input. In this chapter, new, simple and efficient methods to stop the
iterative decoding process and detect errors are presented. When the frame is thought to be error-

free, the iterative decoding process is stopped.
4.1 Error Detection

The flowchart in Figure 4.1 demonstrates what can happen when an error detection mechanism is

used. In this example there are 1000 frames of data, 100 of which are not decoded correctly.

(a) Perfect detection
error-free -m erroneous

frames frames

(b) Imperfect detection

1 000
presumed presumed
error-free frames erroneous frames
correct missed false correct
detection detection  alarm detection

890 =ha 10

Figure 4.1: Flowchart to illustrate error detection.
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If error detection is perfect, the 900 error-free frames and 100 erroneous frames will be correctly
identified. But if an imperfect detection approach is used, some invalid frames might be judged to
be without errors (20 frames with missed detection) and some correct frames might be considered
invalid (10 frames with false alarm). The goal of error detection is to reduce the occurrence of

missed detection and false alarm to acceptable levels.

4.2 Error Detection by Use of a Neural Network with CE

Buckley and Wicker showed that neural networks can be trained to use cross entropy of turbo
codes [5] to detect errors in the decoded frame of data. The neural networks they designed to do
so include a future error detecting network (FEDN-CE), a decoder error detecting network
(DEDN-CE) and a “backup” DEDN (DEDNpost-CE). The objective of the FEDN-CE is to
determine whether or not the frame is likely to be accurately decoded in future iterations, and if
not, terminating the decoding process early to minimize decoder complexity. The CE values of
the first two iterations are provided to the FEDN. The DEDN-CE is designed to maximize the
reliability. The DEDN-CE is provided the CE values from the first two iterations and the last two
iterations before the iterative decoding process is stopped. The DEDNpost-CE checks all frames
that are accepted by the FEDN-CE, providing enhanced reliability. Like the DEDN-CE, the input
values for the DEDNpost-CE are the CE values from the first two iterations and the last two
iterations. Design of their networks requires specification of a parameter K that can be viewed as
a relative emphasis of test frames with errors during network training. Selection of this parameter

is crucial to the performance of their systems [40].

Table 4.1 summarizes the error detection performance obtained by Buckley and Wicker for
their neural networks for turbo codes [40, 411, where MDR and FAR denote missed detection rate
and false alarm rate respectively. These results are averaged for E,/N, values of O through 0.8
dB. The simulations were carried out for the AWGN channel, frame length 1023, code rate 1/3,
G(31,33) and G(31, 27) constituent codes, a maximum of 10 iterations, and CE threshold 0.01;

the interleaver type was not mentioned.

Table 4.1: Performance of neural networks for the error detection

Network K MDR FAR Average errors per missed
detection frame
DEDN-CE 20 48 x10° 1.3x 107 8.2
FEDN-CE 0.05 0.68 7.7 x 107 26.2
DEDNpost-CE 20 8.6 x10™ 7.1 x10? 26.2
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4.3 Mean Estimate

In this section, the relationship between the mean of the absolute LLR values and the number of
errors as iterations proceed, is discussed. The mean estimate criterion for stopping and error

detection is then introduced.
4.3.1 The Number of Errors and the Mean of Absolute LLR Values

Figure 4.2 shows typical LLR values for ten frames of data at the output of a component decoder
after ten iterations. It can immediately be seen that there exist large differences in average
absolute LLR values between frames. This difference can be used to determine when to stop the

decoding process and detect errors. The new approaches are based on monitoring M,;,, the mean

of the absolute values of the constituent decoder LLR values. From simulation it can be shown

that as iterations proceed, M|, increases as the number of errors in a frame decreases. How the
mean M, and corresponding errors of five typical frames change with iterations is shown in

Figures 4.3 and 4.4. Note that Figure 3.2 is redrawn as Figure 4.3 here for convenience to
compare with other stopping criteria. From these figures, it can be seen that in general, the mean
of the absolute LLR values is inversely proportional to the number of errors in the frames. This
mean value will increase as the number of errors decreases, it will decrease as the number of
errors increase, and it will remain small if many errors continue to exist. A more rigorous

foundation for these observations is given in the next subsection.

Iteration 10, Berrou’s interleaver, Fame size 256, ‘ |
Rate 173, Ey/N, 0.5dB ‘

30 al -

LLR's of decoder
(o]

0 256 512 768 1024 1280 1536 1792 2048 2304 2560
Bits
Figure 4.2: LLR values for ten frames under identical channel conditions.
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Number of errors per frame

The mean of the absolute LLR values

70 — T
Berrou’s interleaver, frame 256 —&— Frame 1, error-free, fast convergence
AWGN, E/N,: 0.5dB —5— Frame 2, error-free, slow convergence

60 I | G(37.21), rate 173, —&— Frame 3, few errors ]
terminating 1% encoder AEE Frame 4. many errors

Frame 5, oscillatory error output

50

40 L

30

20 [

10 |

o]
0

Iterations

Figure 4.3: The number of errors with iterations for 5 typical frames.

[ —&— Frame I, error-free, fast convergence
60 —E— Frame 2, error-free, slow convergence
—&— Frame 3, few errors
—— Frame 4, many errors
50 oo . . _ =S Frame 5, oscillatory error output ]
/ o o—e S——
40 7
30 |
20
10 T
(]
0 1 2 3 4 5 6 7 8 9 10

Iterations
Figure 4.4: The mean of the absolute LLR values with iterations for 5 typical frames.
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4.3.2 The Mean of Absolute LLR Values and the Variance of the Meta-Channel

Recall that the meta-channel for turbo decoding was introduced in the discussion of Berrou’s

decoding algorithm (subsection 2.3.3) and Robertson’s variance estimate criterion (subsection
3.2.1). The meta-channel is modeled as AWGN with zero mean and variance o2, where
xe {—1,+1} is transmitted and z is the received value. The LLR L(x), given observation z, is
available after each constituent decoder during turbo decoding. From relation (3.2), considering

the mean absolute values yields:

ENL(x) I]=-o%-E[l zl]. “.1n

m

Also from relation (2.79), it is clear that:
Ell i =277 0,29 terf (1/ 202 ) . 4.2)

Through iteration, turbo decoding decreases the variance o> . Figure 4.5 plots the relationship

between E[l zI] with o2 for values of o in the range 0.01to 1.2.

1.25
1.2

1.15

E(lzl}

0 02 0.4 0.6 0.8 1 12
c.

Figure 4.5: Relationship between the mean of the absolute value of z and ol .

Relation (4.1) yields:

\ 2
o, =Ellz[}——. 4.3
From Figure 4.5 it can be seen that when &7, is less than 0.2, E[l z{] = 1.0, and therefore:
2 2
- for E[I L(x){]>10. 44

ol =——,
"™ E[lL(x)I]
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It is known that o2 can be calculated from the second moment of L(x) according to relation
(3.8). Also relation (4.4) suggests 0’; can also be approximated from E[lL(x)[]. Figure 4.6
shows the estimate of o, from M, =E[I*(x)] and M, = E[IL(x)1] for five typical frames. In

these simulations, expectations are replaced by the time average within a frame. From this figure,

it can be seen that the values estimated from both M. and M, approach equality when ol is
small, but that the estimated values from M,, are slightly less than the values from M, for

larger values of o . This occurs because E[lzI[] is greater than 1.0 for large o7, and therefore

the accuracy of the approximation of (4.4) decreases. Also because M, is inversely proportional

to the number of errors in a frame, o2 is proportional to this number of errors.
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Figure 4.6: Comparison of the variance estimate of meta-channel from the second moment of
the LLR values and the mean of the absolute LLR values for five typical frames
(see Figure 4.3 for the corresponding number of the errors).
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4.3.3 New Mean Estimate Criterion (ME)

Given the relationship between M|, and number of errors in decoded frames, a new stopping

criterion and error detection technique called mean estimate is proposed. This technique involves

continuously monitoring M,,, and, based on this value, making a judgement as to whether or nat
the most recently decoded frame contains errors. M,;, is calculated from the LLR values after

constituent decoder j during iteration i according to:

N
M, =-1-2| L) (). (4.5)
N k=l

First, specify MAX, , the maximum number of iterations allowed, and a threshold Th. The

it
ME criterion is as follows:

Compare M, to the threshold Th. If M,, >Th, stop the iterative process and

consider the frame to be error-free, otherwise continue iterating. If M, <Th for

MAX,

i

consider the frame to be erroneous.

Although the ME approach can be implemented easily, the threshold has to be determined

from simulation, and optimum values change with E,/N,, frame size and code rate. From
relations (3.13) and (3.14), it can be seen that the magnitude of LLR’s is related to the variance
o*. When E,/N, increases, o’ decreases, and therefore the magnitude of the LLR’s will
increase. Figure 4.7 shows how the optimum threshold for percentage of correct detection varies

with E,/N,, where percentage of correct detection is defined as:
Percentage of correct detection =(1—MDR —FAR)x100% .

As shown in the next chapter, this easily implemented scheme offers good performance.

4.4 New Mean-Sign-Change Criterion (MSC)

In order to decrease the average number of iterations and further enhance the performance of
error detection, both the mean of the absolute LLR values and the number of sign changes of LLR

values can be considered simultaneously. The sign changes considered are different from those in

HDA. In HDA, signs are compared between L, from iteration i to i+1 (SCL,,) or between L
from iteration i to i+1 (SCL,,). In this new criterion, the sign changes between L and L

(SCL,,) are compared for two concatenated MAP decoding processes. Simulations show that
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Figure 4.7: The optimum thresholds for different E,/N,.

using SCL,, can save iterations and provide better error detection. The new Mean-Sign-

Change (MSC) criterion improves the performance of decoding and error detection over

ME at the cost of increased complexity. For this approach, establish a base threshold, 7, ,

and a limit threshold, Th,. Set Th, = f -Th, , where f is a factor greater than 1.

Having evaluated M, of the output of a component decoder, proceed with the MSC criterion
as follows:
(1) If M, >Th,, and if SCL,, is zero, stop the process and consider the frame to be error-free. If
SCL,, is not zero for MAX, , also consider the frame to be error-free.
(@) If Th,<M,, <Th,, consider SCL,. If SCL, is zero, terminate the decoding process, and

consider the frame to be error-free. If SCL,, is not zero for MAX, , consider the frame to be

€1roneous.

(3) If M,, <Th, up until MAX, —0.5, stop the decoding process after decoder 1, and consider
the frame to be erroneous.

Possible scenarios for the MSC criterion are illustrated in Figure 4.8. As shown in the next
chapter, this criterion results in improved performance when compared to the ME technique, at

the cost of additional complexity.
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Figure 4.8: lllustration of the MSC criterion

4.5 MSC with a Short CRC

In this section, it is shown that the systematic component of a terminated recursive systematic
convolutional encoder provides a built-in CRC, and that this characteristic can be used to improve
the performance of the MSC criterion. In addition, by concatenating an external short CRC with

the MSC criterion the error detection performance can be improved even further.

4.5.1 Use of Built-in CRC

It is well known that the recursive structure of an RSC encoder implements division over the ring
of polynomials in GF(2). If an RSC encoder is terminated, its final state is all-zero, indicating that
the remainder from division of the systematic sequence by the feedback polynomial is zero. This
is also the premise of a cyclic redundancy check: the transmitted sequence is a multiple of the
CRC polynomial [42). This reveals that in the case of turbo coding with a terminated RSC

encoder, there is an implicit CRC. Therefore, the remainder R, of the estimated data and

terminating bits divided by the feedback polynomial can be used as an indication of the accuracy

of the decoded sequence.
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For CRC error detection, the order of the polynomial usually is high. Three polynomials that
have become international standards include CRC-12=D"+D"+D?+D*+D+1, CRC-16
=D+ D" +D*+1, and CRC-CCITT=D" +D"?+D’°+1 [43]. However, the order of the
generator used in turbo coding is low, generally v =2, 3, or 4. Therefore, the built-in CRC is
susceptible to some patterns of errors that will cause missed detection, and cannot be used on a
stand-alone basis. But it can be shown that the built-in CRC property of the turbo codes can be
used in conjunction with the MSC criterion to further improve the performance of the MSC. Note
that if only the first RSC encoder is terminated, R, can be considered only after the first
constituent decoder or after the deinterleaver that follows the second constituent decoder.

To simplify the decision mechanism, a simplified version of the MSC criterion outlined
above is considered here. This mechanism uses only a base threshold T#, instead of both this
threshold and a limit threshold Th,. After having evaluated M, of the output of a constituent
decoder, the simplified MSC criterion is implemented as follows:

(1) ¥ M, >Th,, consider SCL,. If SCL,, is zero, terminate the decoding process, and
consider the frame to be error-free. If SCL,, is not zero for MAX, , consider the frame
erroneous.

(2 If M, <Th, up until MAX, —0.5, stop the decoding process after decoder I, and
consider the frame to be erroneous.

Two approaches are proposed to incorporate the built-in CRC with this simplified MSC criterion:

e Approach I: If M, >Th, and SCL, =0, consider R,.If R, is zero, terminate the

decoding process, and consider the frame to be error-free. If R, is not zero for MAX,,
consider the frame erroneous.

e Approach 2: If M, >Th,, consider R, and SCL,. If R, =0 and SCL;, =0, terminate
the decoding process, and consider the frame to be error-free. If R, =0, but SCL,, is not

zero for MAX . , also consider the frame error-free.

i

4.5.2 New MSC-CRC Criterion
The MSC criterion provides an easy way to detect a frame with a large number of errors; its
weakness is that since it is based on an average measure of the entire frame, it may not detect a

frame with very few errors. Inclusion of an external CRC prior to turbo encoding can permit
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detection of frames with very few errors at the expense of additional redundancy. Note that the
concept of using an external CRC for error detection with turbo decoding is not new [31],
however, to date only use of standard, high-order CRC polynomials has been proposed. By
exploiting knowledge of the kinds of error patterns that often miss being detected by the MSC
criterion, it is shown that polynomials of much lower degree can be used for CRC detection,
thereby lowering the amount of redundancy introduced into the transmitted sequence.

It is well known that the decoded error patterns most likely to occur at moderate and high
SNR'’s with turbo codes using RSC constituent codes with a primitive feedback polynomial of
degree v are weight-2 patterns where the errors are separated by a distance [ =n(2" —1), where
n is any positive integer. In order to detect decoded frames containing these highly probable
error patterns, it is proposed to select an external CRC code designed specifically to detect
patterns of two errors. It can be shown that choosing CRC polynomials to be low degree (not
equal to v) and primitive is sufficient for detecting errors when combined with the MSC

criterion. For convenience, define:
E,(D): weight-2 error polynomial
d(D): feedback polynomial of turbo codes

Crc (D) : generator polynomial of CRC codes.

In turbo decoding, if E,(D) is divisible by d(D) for both constituent decoders and [ is not large,

the errors will not be corrected, and also the errors cannot be detected without introducing
additional redundancy. Since the likelihood of these error patterns appearing in the decoded

sequence decreases with increasing /, it is likely to use a low degree Cr-(D) in conjunction with
d(D) to detect the most likely weight-2 error patterns. For example, let d(D)=7 ¢<>111 and
Cprc (D) =45 ¢>100101. Therefore, the only undetectable error patterns are E,(D) with distance
which is a multiple of 93 ((2* —1)(2° —1) =93) because only in these cases do d(D) and Cr(D)
both divide E,(D).

As shown in the next chapter, for the proposed two approaches using the built-in CRC,

approach 2 provides better error detection performance than approach 1. Therefore, approach 2 is

used in the MSC-CRC criterion. Let R. be the remainder associated with the short CRC. The

MSC-CRC criterion works as follows:
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(1) If M, >Th,, consider SCL,,, R, and R..If SCL,=0, R =0 and R. =0, terminate
the decoding process, and consider the frame to be error-free. If R, =0 and R. =0, but
SCL,, is not zero for MAX,, , also consider the frame error-free.

@) If M, <Th, up until MAX, —0.5, stop the decoding process after decoder 1, and

consider the frame to be erroneous.

The MSC-CRC is a simple and efficient method for early stopping and, as shown in the next

chapter, provides excellent performance for error detection in iterative turbo decoding.
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CHAPTER S

PERFORMANCE RESULTS

This chapter reports the performance of the new algorithms introduced in the previous chapter.
The performance of these new algorithms is summarized in terms of BER, FER, average number
of iterations, MDR, FAR, and the average number of errors per missed detection frame. The early
stopping performance of the new algorithms is compared with the HDA and CE techniques; their
error detection performance is compared with that of the neural network approaches. The
performance of the new algorithms is investigated by changing the parameters of codes including
constraint length, generators, frame sizes, code rate, interleavers and the maximum number of
iterations allowed. Note that only the first constituent encoder was terminated for all simulations

that were carried out in this chapter.

5.1 Simulation Groups and Corresponding Thresholds

The performance of the new algorithms is investigated using the four groups of simulation
conditions shown in Table 5.1. The names of simulation groups are derived from the type of
interleaver, the frame size and the memory (PIL900-2 uses the PIL interleaver, frame size 900
and memory v=2). Frame sizes of approximately 1000 were selected when obtaining
performance for FER, MDR, FAR and average number of errors per missed detection frame with

medium and high E, /N, . Shorter frame sizes were used when collecting the data for comparison

of the performance within a reasonable period of time. In these simulations, two different

interleavers, PIL and SR (spread random), were used.

Each simulation group was designed for a special purpose. The first group was designed to
compare the performance of the new algorithms with the performance of other early stopping
criteria including CE and HDA, and to compare it to the case when a fixed number of iterations,
in this case six (FixIt6), are used. Their error detection performance is also compared with the
neural network approaches using the results obtained from the second simulation group. The third
and fourth group of simulations were designed to show the influence of code generators and
memory. The thresholds used for early stopping and error detection are provided in Tables 5.2
through 5.5. The base thresholds used for MSC-CRC are identical to those for MSC. For MSC,
the factor f =3 is used for PIL900-2 and SR1024-4, and f =5 for SR256-2 and SR256-3.
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Table 5.1: Simulation groups and the corresponding parameters

Simulation Interleaver Frgme Code MAX,| v Code Criteria
gl'Ollp si1ze rate generator
G(7.5) FixIt6, CE, HDA, ME, and MSC
1 PIL 1900 ) 12} 6 | 2 G(15.15) MSC-CRC
G(31,33) ME and MSC
2 SR 1024 | 113 10 4 GB313345) MSC.CRC
G(7.5) ME and MSC
3 SR 256 | 173 10 2 G515 MSC.CRC
G(13,15) ME and MSC
4 SR | 256 | 13| 10 | 3 —Eq39537) MSC-CRC
Table 5.2: Thresholds for PIL.900-2
E/Ny (dB)
—_n 0.0 05 1.0 15 2.0 25 3.0
Stopping
criteria
ME 12 14 18 26 32 38 40
MSC 7 8 9 12 16 17 19
CE 1073 107

Table 5.3: Thresholds for SR1024-4

Ey/N, (dB)
: 0.0 0.2 03 04 0.6 0.8
Stopping
criteria
ME 22 26 28 30 34 36
MSC 7 9 10 12 17 19

Table 5.4: Thresholds for SR256-2

E /Ny (dB)
. Th. G.0 0.5 1.0 1.5 2.0 2.5
Stopping
criteria
ME 18 20 24 28 33 36
MSC 16 18 20 22 24 26
Table 5.5: Thresholds for SR256-3
Ep/Ny (dB)
Stomes Th. 0.0 0.5 1.0 L5 2.0
topping
criteria
ME 18 22 25 30 36
MSC 14 15 17 18 20

5.2 Performance with PIL900-2

In this section, the performance of the new algorithms is simulated for parameters from the

simulation group PIL900-2 in Table 5.1. The performance of the new algorithms for early
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stopping and error detection is shown in Figures 5.1 through 5.6; the performance comparison of

the new algorithms with other stopping criteria is provided in Figures 5.7 through 5.9.
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Figure 5.1: FER and BER vs. E,/N,, for the new algorithms in simulation group PIL900-2.
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Figure 5.2: Average number of iterations vs. E,/N, for the new algorithms
in simulation group PIL300-2.
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Figure 5.3: MDR vs. E/N, for the new algorithms in simulation group PIL900-2.
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Figure 5.4: FAR vs. E,/N, for the new algorithms in simulation group PIL900-2.

122



—¥%— ME 4
—=— MSC
—<— MSC-CRC

Average number of errors per missed detection frame

0] 0.5 I 1.5
E,/N,(dB)

[ 8]

2.5 3

Figure 5.5: Average number of errors per missed detection frame vs. Ep/Ny for the new algorithms
in simulation group PILS00-2.

1 —*— FixIt6 3
—&— CE
—&— HDA
10! —¥— ME B
—=— MSC
MSC-CRC
10—2 -
[« 4
[34]
[+2]
S g
o 10% b
163]
o
10+
105
10% : :
0 0.s 1 1.5 2 25 3

E,/N,(dB)

Figure 5.6: Comparison of the FER and BER for the new algorithms and other stopping criteria
in simulation group PIL900-2.
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Figure 5.7: Comparison of the average number of iterations for the new algorithms and other
stopping criteria in simulation group PIL900-2.

From Figures 5.1 and 5.2, regarding the early stopping performance of the three new
algorithms, it can be seen that there is no difference in BER and FER when E, /N, <1.5dB.
MSC-CRC criterion gives slightly better performance when E, /N, >1.5dB, and MSC saves the
most number of iterations. Also the performance of MSC-CRC is very similar to that of MSC.

From Figures 5.3 and 5.4, regarding the error detection performance, it is clear that MSC-

CRC results in the best MDR and FAR. It is interesting that the ME crterion provides MDR
performance very similar to that of the MSC-CRC technique at low E, /N, (say 0.0 dB). This

occurs since the mean of the absolute LLR values are very small and thus it is easier to detect an
erroneous frame with the simple ME criterion. Note that the curves of MDR and FAR have

convex shapes (M). This means that at low or high E, /N, the performance in terms of MDR and
FAR is better than the case with intermediate values of E, /N, . Given the high BER and FER for
low E,/N,, however, the good resuits for MDR and FAR at these low signal-to-noise ratios are
not of much interest. Note that FAR results were not generated for E, /N, =0.0dB and 2.5 dB in
Figure 5.4, because the FAR was too low to simulate within a reasonable period of time.

Figure 5.5 depicts the average number of errors per missed detection frame. MSC-CRC gives

the largest values, however this is to be expected since MSC-CRC technique is designed to detect

frames with very few errors that cannot be detected by the ME and the MSC techniques.
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Figures 5.6 and 5.7 compare the performance of the new algorithms with the performance of
other stopping criteria. Note that performance with six fixed iterations is also given for purpose of
comparison. In terms of BER and FER, at low to intermediate E, /N, all early stopping criteria
provide the same performance as FixIt6; at higher E,/N,, MSC, MSC-CRC and CE give the
same performance as FixIt6. Figure 5.7 illustrates that MSC saves the most iterations of all
simulated stopping criteria, however MSC-CRC saves nearly the same number of iterations as
MSC except at very low E, /N, . Also the performance of ME is very similar to that of CE except
at 0.0dB.

5.3 Performance with SR1024-4

The performance of the new algorithms with simulation parameters taken from group SR1024-4
in Table 5.1 is investigated in this section. The performance of the new algorithms for early
stopping and error detection is shown in Figures 5.8 to 5.12, and the performance comparison of
the new algorithms and the neural network techniques is provided in Figures 5.13 to 5.15. Note
that performance of the neural networks with the CE for error detection in turbo codes was not
simulated in this thesis. The results obtained by Buckley and Wicker (see Table 4.1) for error
detection with the neural networks was used for purposes of comparison. Their simulations of
neural networks with CE (see Section 4.2) were performed with parameters very similar to those
of SR1024-4.

10!

10—2 L

FER or BER

103

10+

0 02 0.4 0.6 0.8
E,/N,(dB)

Figure 5.8: FER and BER vs. E,/N,, for simulation group SR1024-4.
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Figure 5.11: FAR vs. E,/N, for simulation group SR1024-4.
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Figure 5.12: Average number of errors per missed detection frame vs. E/Np for simulation group

SR1024-4.

127



102 r

—=— MSC

10 L —<— MSC-CRC ]
—&— FEDN-CE

—@— DEDNpost-CE

—— DEDN-CE

o
a 100 E
=
0% %\x\x\v ?
10—3 EE:L —_— P
t:\
— — |
- Y%\ﬁ\v \?
105 + - . -
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
E,/N,(dB)

Figure 5.13: Comparison of MDR for simulation group SR1024-4 and neural network techniques.
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Figure 5.14: Comparison of FAR for simulation group SR1024-4 and neural network techniques.
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Figure 5.15: Comparison of average number of errors per missed detection frame for
simulation group SR1024-4 and neural network techniques.

The following observations can be made from Figures 5.8 through 5.12. In terms of BER and
FER, there is nearly no difference between the three new algorithms, except that the MSC-CRC
gives slightly better FER performance at the highest value of E, /N, simulated. Also it can be

observed that MSC and MSC-CRC save the most iterations. In terms of MDR and FAR, the
MSC-CRC technique gives the best result. Note that the MDR vs. E, /N, curve for MSC-CRC

was only generated for 0.0 dB, 0.2dB and 0.3 dB, since when E, /N, >0.3dB, the MDR was too

low to generate a reliable value within a reasonable period of time.

Figures 5.13 to 5.15 compare the error detection performance of the new algorithms to that of
neural networks with CE. When presenting their results, Buckley and Wicker presented only

averaged results for E, /N, values of O through 0.8 dB [40, 41]. Therefore, in these figures, their

averaged results are plotted as straight lines. It should be emphasized, however, that the neural
networks could show performance trends not visible in these averaged results. Regarding MDR,
ME is better than FEDN-CE and DEDNpost-CE, however it is worse than DEDN-CE. On
average, MSC is better than all three neural network schemes and MSC-CRC provides much
better performance than do the neural networks. Regarding FAR, on average the ME and the
MSC techniques provide better performance than the neural networks, and MSC-CRC provides
significantly superior performance. Regarding the average number of errors per missed detection

frame, ME and MSC offer much better results than the neural networks. Although MSC-CRC is
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worse than DEDN-CE at the lower E,/N,, it can be seen that it tends toward better performance

at higher E, /N, .

5.4 Performance Comparison

In this section, the performance of the new algorithms is investigated for varying coding
parameters. For purpose of comparison, three comparison pairs of the simulation groups are
constructed: (a) SR256-2 and SR256-3, (b) SR256-3 and SR1024-4, and (c) PIL900-2 and
SR1024-4. The first pair of codes are identical, except for the different generators and memory
v . The second pair differ in their generators, memory and frame size. For the third pair, all

parameters are different. In the following, a performance comparison of these pairs is presented.

A. FER and BER

The performance of the FER and BER for the three pairs is compared in Figure 5.16 (a) — (c).
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Figure 5.16 (a): Comparison of the FER and BER for simulation groups SR256-2 and SR256-3.
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Figure 5.16 (b): Comparison of the FER and BER for simulation groups SR256-3 and SR1024-4.
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Figure 5.16 (c): Comparison of the FER and BER for simulation groups PIL900-2 and SR1024-4.
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B. The average number of iterations

The performance of the average number of iterations for the three pairs is compared in Figure
5.17 (a) — (c).

Average number of iterations

0 0.5 1 1.5
E,/N,(dB)

Figure 5.17 (a): Comparison of the average number of iterations for simulation groups
SR256-2 and SR256-3.
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Figure 5.17 (b): Comparison of the average number of iterations for simulation groups
SR256-3 and SR1024-4.
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Figure 5.17 (c): Comparison of the average number of iterations for simulation groups
PIL900-2 and SR1024-4.

The performance of the MDR for the three pairs is compared in Figure 5.18 (a) - (c).
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Figure 5.18 (a): Comparison of the MDR for simulation groups SR256-2 and SR256-3.
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Figure 5.18 (b): Comparison of the MDR for simulation groups SR256-3 and SR1024-4.
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Figure 5.18 (c): Comparison of the MDR for simulation groups PILS00-2 and SR1024-4.
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D. FAR

The performance of the FAR for the three pairs is compared in Figure 5.19 (a) — (¢).
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Figure 5.19 (a): Comparison of the FAR for simulation groups SR256-2 and SR256-3.
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Figure 5.19 (b): Comparison of the FAR for simulation groups SR256-3 and SR1024-4.
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Figure 5.19 (c): Comparison of the FAR for simulation groups PIL900-2 and SR1024-4.

E. The average number of errors per missed detection frame

The performance of the average number of errors per missed detection frame for the three pairs is

compared in Figure 5.20 (a) - (c)-
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Figure 5.20 (a): Comparison of the average number of errors per missed detection frame
for simulation groups SR256-2 and SR256-3.
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Figure 5.20 (c): Comparison of the average number of errors per missed detection frames

for simulation groups PIL.900-2 and SR1024-4.
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From these figures, generally it is clear that for all three new algorithms at all but the lowest
values of E,/N,, increasing the memory of the generators, frame sizes, and MAX,, and

decreasing the code rate offers better performance. Given the very high FER and BER results at

the lowest values of E,/N,, however, differences in terms of other performance measures are
irrelevant, therefore this conclusion holds for all E, / N, of interest.

From these figures, the reduction in the required E,/N,, between the two codes in the

simulation pair, to achieve a specified values of the FER, BER, MDR and FAR is obtained to
show the influence of increasing the difference of code parameters for the three comparison pairs.
The results are illustrated in Table 5.6. Note that since the performance in terms of the FER and

BER for the three new algorithms is very similar, the reduction in the required E, /N, in terms of

FER and BER is given without considering the difference for the three new algorithms.

Table 5.6: Reduction in the required E, / N,

Reduction in
E/Np (dB) Comparison pairs
st nd rd
Specified 1 2 3
rates and (SR256-3 / SR256-2) |(SR1024-4 / SR256-3) [(SR1024-4 / PIL900-2)
algorithms
FER (1x10?) 0.21 0.57 1.30
BER (1x107) 6.06 0.53 0.84
ME (1x10?) 0.37 0.83 2.11
MDR MSC (5x10™) 0.63 1.35 2.70
MSC-CRC (5x107) 0.84 0.98 2.47
ME 0.60 0.65 1.56
FAR
MSC-CRC 0.40 0.63 1.00

From Table 5.6, it can be observed that for the values in each row, the reduction in the
required E, / N, between the two codes in the simulation pair increases from the first through the
third comparison pairs. The difference of the code parameters also increases according to this

order. The third comparison pair yields the largest reduction in the required E, /Ny

The reductions for the average number of errors per missed detection frame and the average
number of iterations, between the two codes in the simulation pair, are presented in the Tables 5.7
and 5.8 for the three comparison pairs. The results are taken from Figures 5.20 (a) - (c) and 5.17
(a) — (c) for the specified values of E, /N,.
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Table 5.7: Reduction of the average number of errors per missed detection frame

Reduction Comparison pairs
of errors 1* 2nd 3
Algorithms (SR256-3 / SR256-2) (SR1024-4 / SR256-3) | (SR1024-4/ PIL900-2)
ME (0.5 dB) 0.60 2.49 325
MSC (0.5 dB) 0.49 3.87 39
MSC-CRC (0.3dB) 0.64 331 17.37

Table 5.8: Reduction of the average number of iterations when E, /N, =0.8dB

Reduction Comparison pairs
of iterations

lst 2nd 3rd
(SR256-3 / SR256-2) (SR1024-4 / SR256-3) (SR1024-4 / PIL900-2)

Algorithms
ME 0.94 0.53 2.02
MSC 0.95 0.51 2.02
MSC-CRC 1.00 0.54 2.03

Table 5.7 demonstrates trends similar to those in Table 5.6; the reduction in the average
number of errors per missed detection frame increases from the first through the third comparison
pairs for the values in each row. Note that for the third comparison pair MSC-CRC yields a very
large reduction at E, /N, =0.3dB.

In Table 5.8, the reduction of the average number of iterations is given for the three new

algorithms when E, / N, =0.8dB. Note that when comparing the first two columns, the difference

of the parameters for the second pair is larger, but the reduction for the average number of
iterations is smaller. The reason is that increasing the frame size results in an increase of the
average number of iterations [38]. Therefore, for simulation group SR1024-4 in the second
comparison pair, the average number of iterations decreases due to the larger memory generators,
but not as much as it would have decreased if the frame size had remained small. For the third
comparison pair, the difference in code memory results in the reduction of the average number of
iterations being larger than with other comparison pairs. Also the small difference of the frame

sizes, only 124, does not significantly affect this reduction.
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5.4 Performance Summary

The main points of the preceding discussion regarding the performance of the three new

algorithms can be summarized as follows:

Q)]

@)

3)

4

In terms of FER and BER, the three new algorithms offer similar performance at low
values of E, /N, and MSC-CRC provides slightly better performance at larger E,/N,.
In terms of average number of iterations, among the three algorithms the MSC technique
saves the most number of iterations, while the MSC-CRC approach provides almost the
same performance as MSC at larger values of E,/N,. In terms of MDR and FAR, MSC-
CRC gives the best results except at the lowest values of E,/N,, and MSC provides
better performance than ME. Regarding the average number of errors per missed

detection frame, MSC-CRC results in the largest values. ME and MSC may miss

detection of frames with very few errors.

The FER and BER performance of the three new algorithms is very similar to that of the
other CE and HDA early stopping techniques and the performance obtained when a
sufficient number of fixed iterations are used. In terms of the average number of
iterations, the performance of the ME is similar to that of CE. MSC, which gives very
similar performance to MSC-CRC at medium and higher values of E,/N,, provides the

best result among all simulated criteria.

When compared to the error detection performance of the neural network techniques, ME
provides better MDR results than FEDN-CE and DEDNpost-CE. The performance of
MSC is also better, and the performance of MSC-CRC much better, than the performance
of all three neural network approaches. In terms of FAR, on average ME and MSC
provide better performance than that of the neural networks, and MSC-CRC provides
significantly superior performance. For the average number of errors per missed
detection frame, ME and MSC offer much better results than that of the neural networks.
When compared to the DEDN-CE, the MSC-CRC is appears worse at the lowest values

of E,/N,, however it can be seen that MSC-CRC tends toward better performance at
higher E,/N,.
Generally, at all but the lowest values of E,/N,, increasing the memory of the

generators, frame sizes, and MAX;

i

and decreasing the code rate offers better
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performance in terms of FER, BER, MDR, FAR and the average number of errors per
missed detection frame. The average number of iterations will decrease with an increase

in memory and MAX, , and a decrease in code rate, but it will increase with an increase

in the frame size.
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CHAPTER 6

CONCLUSION

This thesis has introduced new stopping criteria in conjunction with error detection techniques for
turbo decoding. This chapter summarizes the development of these techniques and offers

suggestions for further work.

6.1 Thesis Summary

Following the introduction of error control coding and turbo coding in Chapter 1, Chapter 2
presented further details regarding turbo coding. Since the BCJR algorithm is the basis for
understanding turbo decoding, it was introduced first. The modifications to this algorithm were
then described. These included the modifications that are needed to decode RSC codes, Berrou's
turbo coding scheme, and the improved decoding structure proposed by Robertson. The estimates
of the symbol energy and noise variance in practical turbo coding were discussed. The concepts
of weight and distance of codes, which are relevant to the average performance of codes and
interleaver design, were introduced. Interleavers and termination of trellises, which are important
issues in the design of turbo codes, were also discussed in that chapter. Finally a simulation
platform for turbo coding was described. It is apparent from this chapter that turbo codes provide

excellent performance with a cost of increasing complexity.

Following an introduction to challenges with iterative decoding, several early stopping
criteria were overviewed in Chapter 3. It can be seen that the early stopping criteria developed to
date focus on stopping the iterative process early to save the number of iterations without
degrading BER and FER. However, these criteria are not typically used to determine if all errors
are corrected or if some still remain in the frame. In Chapter 4, the ME, MSC, and MSC-CRC
approaches for combining early stopping and error detection were proposed and analyzed. The
relationship between the mean of the absolute LLR values and the variance of the meta-channel
for decoding was discussed. It was shown that this mean value over a frame is inversely
proportionai to the number of errors, and the variance of the meta-channel is proportional to the
number of the errors. Therefore, this mean can be used to construct a criterion called ME to stop
the iterative decoding process and detect errors. In order to reduce the number of iterations

further, the number of sign changes of LLR values can be considered with this mean
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simultaneously to obtain the MSC criterion. The ME and the MSC techniques provide simple
ways to detect a frame with a large number of errors, although they may not detect a frame with
very few errors. This provided the motivation to include an external CRC prior to turbo encoding
to detect a frame with very few errors. In Chapter 4 it was shown that polynomials of a much
lower degree than conventional polynomials can be used for CRC detection. This results in the
MSC-CRC criterion.

The performance of the new approaches was reported in Chapter 5. The frame error rate, bit
error rate, average number of iterations, missed detection rate, false alarm rate, and average
number of errors per missed detection frame were compared with corresponding values for other
approaches. These results showed that the proposed schemes provide simple and efficient
methods to stop the iterative decoding process without appreciably degrading performance, and
also check for errors without introducing any redundancy or, in the case of MSC-CRC,
introducing less redundancy than other techniques including standard CRC polynomials. The
BER and FER performance of the three newly proposed criteria are very similar. The error

detection performance of the MSC-CRC technique is better than MSC, which is better than ME.

6.2 Suggestions for Further Work

This thesis is the first detailed investigation of the relationships between the number of errors in a
frame with the mean of the absolute LLR values, the sign changes of the LLR values, and the
remainders of built-in CRC and external short CRC codes. Work remains regarding the suitability
of these techniques when they are used with other decoding algorithms, scheme of the single

threshold, and criterion of saving the number of iterations still further.
The following provides suggestions for further research.

(1) Throughout the simulations of the new techniques, only the MAP algorithm for turbo
decoding was investigated. Although the MAP algorithm is optimum for decoding
performance and it is not difficult to implement in simulation with software, it is likely to be
considered complex for implementation in a real system mainly because of the numerical
representation of the real numbers and the mixed multiplications of these values. The Log-
MAP algorithm [44], which works in the logarithmic domain and has equivalent performance
of the MAP algorithm, is a transformation of the MAP algorithm. This algorithm decreases
the complexity of the algorithm for practical implementation of turbo decoding by converting

multiplications to additions. Although in the Log-MAP algorithm, the intermediate variables
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used to obtain the LLR values are calculated in the logarithmic domain, the LLR values will
be approximately equal in both decoding algorithms. Therefore, the new techniques
developed in this thesis should be applicable to the Log-MAP algorithm. However, further

simulation is required to verify these techniques in the logarithmic domain.

In this thesis, simulations of the new techniques were carried out to search the best thresholds

of M,, for different E, / N,. Although in practical turbo decoding, knowledge of E, /N, will

be available through estimation, it would be convenient to use a single threshold over the
range of SNR values of interest. Therefore, the performance of the new techniques using a

sihgle threshold should be investigated.

In order to save the most number of iterations, the error-free frame should be stopped at the
instant when all the errors in the frame have just been corrected. In general for a potential

error-free frame, the sign changes SCL,, in the MSC criterion decrease to zero earlier than
the sign changes SCL,, and SCL,,, and for an erroneous frame, the value of M, usually

remains low as iterations proceed. Table 6.1 illustrates the relevant information for an error-

free frame and an erroneous frame where MAX, =10 and Th, =15 . From this table, it can be

seen that for this error-free frame the error number decreases to zero at iteration 3.5.
However, the iterative process will be stopped at iteration 4.0 using the MSC criterion. It
means that there is still potentially 0.5 iteration that could be saved. It does not appear that the

MSC criterion can be modified to save this half iteration. However, if MAX, is large enough,

the MSC-CRC criterion could be changed as follows
If M, >Th,, consider SCL,, R, and R..If SCL,<2, R =0 and R, =0,
terminate the decoding process, and consider the frame to be error-free. If R, =0
and R. =0, but SCL,, is not zero for MAX, , also consider the frame error-free.
For the erroneous frame, in order to save iterations, the M,, values could be checked at
iteration fO.SMAX ,.,_] . If M, <0.2Th, at the half MAX,, it may be impossible for M, of
this frame to be greater than Th, at iteration MAX,, . Therefore, the iterative decoding could
be stopped at I_O.SMAX ,.,_| for this frame. Also this table illustrates that M, is very important

to determine if many errors remain in the frame. If M, is very small, there are many

uncorrected errors in the frame. Clearly, however, just the fact that the number of the sign
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changes of the LLR values is zero cannot be taken as an indication that no errors exist in the
frame.

Table 6.1: Relevant information for an error-free frame and an erroneous frame

Error-free frame Erroneous frame
Iteration | Error num. | M,,, | SCL, | SCL;, or SCL,, | Iteration | Error num. | M, | SCL;, SCL,, or SCL,,

0.5 31 2.93 | N/A N/A 0.5 51 BIG | N/A N/A
1.0 15 540 | 30 N/A 1.0 46 23 N/A
1.5 6 843 | 13 33 1.5 41 13 20
2.0 6 11.80| 4 17 2.0 39 12 21
2.5 2 S| 4 4 2.5 38 9 11
3.0 2 19.07| 2 4 3.0 41 9 14
3.5 ] 2041) 2 2 3.5 41 6 9
4.0 0 2063 B 2 4.0 41 2 6
4.5 0 20.88| 0O g 4.5 39 2 4
5.0 0 2193 © 0 5.0 41 2 4
5.5 0 2337 0 0 5.5 41 2 2
6.0 0 2484 0 0 6.0 41 b 2
6.5 0 2622 0 0 6.5 41 0 0
7.0 0 27581 0 0 7.0 41 0 0
7.5 0 2894 0 0 7.5 41 . 0 0
8.0 0 29911 © 0 8.0 40 224 | 1 1
8.5 0 3066 O 0 8.5 40 2234 0 1
9.0 0 31.02| 0O 0 9.0 41 223 1 1
9.5 0 31.20| o 0 9.5 41 2231 0 1
10.0 0 31.33| O 0 10.0 41 223 | 0 0
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APPENDIX 1

EVALUATION OF PROBABILITIES y,(m’,m), a,(m) AND S/ (m)
FOR THE BCJR ALGORITHM

This appendix presents detailed derivation of probabilities ¥, (m’,m), a;(m) and S, (m) for the

BCIJR algorithm.
All y,(m',m)

7[: (mlv m) = Pr{Yk;Sk =m I Sk—l = m’}
In[roducing Xk —3 = Zpr{ (}’k ; Xk — X);Sk =m I Sk_l = ml}
X
PHABIC=Pr(BICOPHABC) = = Pr{S, =mlS,, =m’}-Pr{¥;;X, =X IS, =m.S, , =m'}
X

Using Pr(ABIC)=Pr(BIC)Pr(AIBC)
to the second term = = ZPr{Sk =ml S,‘_l = m'} - Pr{Xk =XI Sk - m;Sk—l =m'}
X

Pr{¥, | X, =X;S, =m,S,_, =m'}

Considering DMC property
to simplify the condition
in the third term = =Y Pr{S, =mlS, , =m’}-Pr{X, = XIS, =m;S, , =m'}
X
Pr{Y, I X, =X}
=Y p(mim)-q (X 1m’,m)-R(Y, 1X}. (ALD)
X

where the summation in (A1.1.1) is over all possible output symbols X.
Al2 o[ (m)

For time k=1,2,...,N :
a,(m)=Pr{S, =m;Y;"}

M=l
Introducing §,_, = = Z Pr{S,_, =m";S, =m;Y*}

m'=0
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M-l
=Y Pr{S,, =m;S, =mY X}

m'=0

M-1
= > Pr{(S,, =m ¥ ,:S, =m)}
m'=0

M-l
Pr(AB)=Pr(A)Pr(BIA) = = Pr{(S,, =m (")} -Pr{(Y: S, =m) (S, = m’ Y}
m'=0
M-l
Using Markov property = = 3_ Pr{S,, =m’ ;1" }-Pr(Y,; S, =m|S,, =m’}
m'=0
M ’ ’ ’
=Y o, (m)-7.(m'\m). (Al.2)
m'=0

For k=0, the boundary conditions are
@) (0)=1 and aj(m)=0,forallm=0. (Al1.3)
These boundary conditions are suitable since the process is assumed to start from the zero state at

time k=0 . For the calculation of probability a(m), begin with the boundary conditions and
knowledge of the values of ¥, (m’,m), and then ¢;(m) can be obtained recursively for any time

k . The calculation of &, (m) can be looked at as a forward recursion.
Al13 B/(m)

Fortimek =1,2,...,N-1:

ﬁ;(m) = Pr{lel IS, =m}

M-t
Introducing S,., = = Z Pr{S,,, =m’; YN 1S, =m}
m'=0
M-l
= z Pr(S,,, =m’ Y ;¥ 1S, =m}
m'=0
M=l
= Z Pr{Ys;(Yom3Si =m)1 S, =m}
m'=0

M-l
PHABIC)=PHABCPHBIC) = = O Pr{¥), 1Y 38, =m’iS, =m}-Pr{Y,;iSp, = m’lS, =m}

m’=0
M-1
Using Markov property = = Z Pr{Y, 185, =m}-Pr{Y, ;S = m'{S, =m}
m'=0
M ’ ’ 4
= Bra(m)- Ve (m,m’). (Al.4)
m'=0
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Because the encoder is assumed to end in the zero state at time k =N , the appropriate boundary
conditions for Bj, (m)are:

B (0)=1,and B, (m)=0, forall m#0. (A1.5)
For the calculation of probability A;(m), begin with the boundary conditions and knowledge of
the values of ¥,,,(m,m"), and then B (m) can be obtained recursively for any allowed time & .

The calculation of S;(m) can be looked at as a backward recursion.
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APPENDIX 2

EVALUATION OF PROBABILITIES 7. (m’,m), a;(m) AND B, (m)
FOR THE M-BCJR ALGORITHM

A2.1 ¥(m,m)

Y. (m' m)=Pr{u, =i:Y,;S, =m\S,_ =m’}
=Pr{(u, =i;Y,);S, =miS,, =m'}
PrABIC)=Pr(ABOPIBIC)S =Pr{y, =i, 1S, =m; S, =m'}-Pr{S, =m!| S, =m’}
=Pr{¥,;u, =il S, =m; S, =m'}-Pr{S, =mlS,, =m'}
Pr(ABIC)=Pr(ABBC)Pr(BIC)=> =Pr{l lu, =i; S,=m;S,, = m’y-Priu, =ilS, =m;S,_ = m’}
Pr{S,=mlS, =m’}
=Pr{, lu, =i:S, =m; S, =m'}-q, (u, im’,m)- p,(mlm’) (A2.1)

where the trellis transition probabilities are g, (%, | m’,m)=Pr{u, =i IS, =m;S,, =m’} and the
state transition probabilities are p,(mim’)=Pr{S, =m |S,, =m’}. Therefore the branch

transition probability ¥;(m’,m) can be determined from the transition probabilities of the channel

and the transition probabilities of the encoder trellis.

The value of gq,(u, |m’,m) is either one or zero depending on whether input bit i is

associated with the transition from state m’ to m according to the trellis diagram. The

probabilities p,(m!m’) are also generated in part by the transitions in the trellis diagram. If a
state transition does not exist between state m’ and m, p,(mim’)=0.If the state transition
between them does exist, the value of p,(mim’) is governed by the input sequence statistics.
Generally, if all input sequences are equally likely for 0k <N,, p; (mIm’) =2"", since there
are 27% possible transitions out of each state. For 1/n, codes, p,(mim’)=0.5.During the trellis
termination period for N, <k <N, p,(ml m’)=1.0 when it is nonzero, because there is only one

path out of each state.
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If g (uim,m)=0, it 1is mnot necessary O consider the calculation of
Pri¥, lu, =i;S, =m;S,_, =m’}. If g, (u, 1m’,m)=1, this term must be evaluated. This evaluation

requires knowledge of the branch values X, that weight the corresponding branch in the trellis.

Two cases exist for the calculation of probability Pr{¥, lu, =55, =m; S, = m’}, depending
on if the received signal is quantized or not. If the received signal is quantized, the discrete
symbol transition probabilities are used, and the method is similar to the BCJR algorithm.
However, in the M-BCJR case, the probability Pr{Y, lu, =i, =m; S, =m’} is related to the

input bit #, , so there are two ¥, : one is 4 for u, =0, and the other is ¥, for u, =1. In matrix

notation, the matrix [y, ] will be separated into two matrices, [yf] and l:yi] .

A demodulator that does not quantize the received signal is said to perform perfect soft
decisions. The channel investigated here is the AWGN channel, where after modulation each
transmited symbol is added to an independent noise sample with zero mean and variance o*.
Figure A2.1 shows conditional Gaussian distributions with mean +1 and mean —1. This diagram
assumes binary phase shift keying (BPSK) where the modulator maps an encoded logic one to +1
and a logic zero to -1 respectively. That is, the transmitted signal has values 2x, —1, where x; is

the logic value of the encoded bit.

f(y)lmeml--l f(y)lman=+l
4\ A

-1 a +1

Figure A2.1: Conditional probability density function with Gaussian distribution.

Calculation of the probability Pr{Y, lu, =S, =m;S,_; = m’} is simplified if the value of the

probability density function is used instead of the value of the probability. This is feasible for the

following reasons.

Let Y be a continuous random variable with probability density function f(, let a be the

possible value in the value set, and let £ be a very small interval. Then {21, pp. 321
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+£/2

Pria-Z<¥ sa+23= [ fO)dy =£f(@). (A2.2)
In other words, the probability that ¥ will be contained in an interval of length £ around the
point a is approximately € f(a).
At time k , assuming BPSK modulation, the receiver obtains the sequence:
Yy = (Ver Yipaerss Ying-pk)
=(2x,, —14+n,,2%,, =14+, 002X ok =1+n, 0 -
Conditionally to (&, =S, =m; S, =m) s (Ve Yipurr Yin-npk) 2T uncorrelated Gaussian
random variables and therefore:
Pr¥, lu, =i;S, =m;S,, =m'}=Pr{{; l...}
=Pr{y,; l... 3 Pr{y,u t o 3o - Pr{¥niypua '+
= Gup 1) EF LI Gy 1) - EF L Oroypt 1) - €

=Yl FOnpa ) L Deng-typut 1++) -€" (A2.3)

Yiim',m)=Pr{, lu, =i;S, =m; S, =m'}-q, (%, lm',m)- p,(mim’)

= f(Yeetee) fOppu 1) L Vgt pute 1 ++-) -&"° -q,(u,|m’,m)- p,(ml m’) (A2.4)

Note that in the formulas for @; (m)and B, (m) (see A28 and A2.14), shown below for reference,
;{(m',m) is in both the numerator and denominator, so the £™ terms cancel. Therefore for the
actual calculation of Pr{¥, lu, =i;S, =m;S,_, =m’} in ¥, (m’,m) , the probability density function

can be used instead of the probability.

M-l
> o, (m) -y, (m'sm)
m'=0

M-iM-1 1

Z Z Za’k_l(m) -y (m, m)

m=0 m’'=0 i=0

ay(m)=

M-t 1
Z Z ﬁk-ﬂ (m’) : y;z (m’m’)

_ m'=0i=0
ﬂk(m) - .":!l—l lt'{-l

> (m)- v, (m, m)

=0 m’=0 i=0

3

If the channel model is AWGN with zero mean and variance o’ (note o*= N,/2 when the

mean is zero), the calculation of Pr{¥, lu, =i;S, =m; S, =m’} for ¥, (m’,m) can be simplified
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even further [7]. For example, let n, =2 so that ¥, =(¥,,,y,,) at time k. Let b, (i,m’,m) and
b, (i,m’,m) denote the bipolar branch values (branch value logic zero — bipolar branch value -1,
branch value logic one — bipolar branch value +1), which are the modulator outputs associated
with the branch from state m’ to m at time k . Then:
Pri, lu, =i;S, =m; S, =m’}=Pr{y,, lu, =i;5, =m; S, =m'}

Pr{y, , lu, =58, =m: S, =m'}

= f(y, . lu, =5:S, =m; S, =m’)
f Ol uy =S, =m; S, =m) -

1 —(y,,-b,(i.m'\m))* /20" 1 ~(y,,-b,(im'\m)’* 120" 2
= —_— .« — P -E
J2ro 2ro

—ke Ot (i.m' m))* 1207 .e—-(y”—bp(i.m'.m))2/20':
- Te

-k e—(y,‘—b, (im'\m))* /Ny e—(y‘,J -b, (i,m’ . m)’* I N,

e

(A2.5)
1 1

where & denotes —m=—=—-———-€>, which is common to all probabilities
¢ J2no 2o

Pr{y, lu, =i;S,=m;S,, =m’} and can be eliminated for the calculation of ¢ (m)and B, (m).

Equivalently, &, can be set to 1 in relation (A2.5).

A22 oi(m)

ai(m)=Pr{u, =i;S, =miY*}
_Pr{u, =i; S, =m;Yl"}
Pr{¥,*}
_ Pr{(uk =1 Sk =m;Yk);Y|k_l}
Pr{¥* ;Y. }
_Pr{(u, =i;S, =m; Y )1y Pry Ty
Pr{Yk I};lk—l }‘Pr{Ylk-l}
_Pri{u, =55, =mY 1"}
Pr{¥, (Y}

Introduce u, and S, in
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Pr{u, =i;S, =m;Y, 1Y
the denominator = = {w, =4S, =m:¥, 17} (A2.6)
> > Pr{u, =i; S, =mY, 1Y}
m=0 i=0
Note that there exists the same term in the numerator and denominator in relation (A2.6). In order

to obtain a recursive relation for calculation of a‘};(m) , this term is computed by introducing

variables u,_; and S, .

M-1_1

Priu, =i;S, = m¥, |7 =3 S Prie, = i,y =miiu, =i, =mY, 15"}
. & 4 k-1 1 !
m’=0 j=0
_Mz-lipr{uk-l = ji Sy =miu, =55, '_'m;Yk;Ylk-l}
= j=o Pr{lek—l}

‘i‘:‘ Z‘: Pr{(#y.; = Js Siey =Y T )i (e =55, =miY,)}
< Pr{}’lk_l}

m'=0

_M“iPr{uk 1 =T3Sk =m3Y""}

m'=0 j=0 Pr{i’l -l}
Priu, =i;S, =m:¥, lu,_, = jiSi, =m’ Y}
M-t 1 Pr{uk l _ml;yvlk—l} i
Mark It Priu, =i;S, =m;Y, IS, =m’}
arkov property = m=0; Pr{Yxk 0y {u, k k' ok

M-1 1 o,

=> > al (m)-yi(m',m)
m'=0 j=0
M-l )
=Y a,,(m) -y (m'\m) (A2.7)

m’'=0

By introducing relation (A2.7) to (A2.6), a recursive formula for a,‘; (m) can be obtained:

M-l ]
_ > a,  (m) -y (m',m)
a, (M) =55 T - (A2.8)
> @, (m)- i (m',m)

0 m’=0 i=0
1

t

3
1

M-
>, (m) -y, (m',m)

@, (m) =355 (A2.9)

> Y @ (m) -y (m',m)

m=0 m’'=0
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A23 B.(m)

N =
Note that B,(m)= Prify, | S, =m} , and consider first the numerator. Introducing «,,,and S,

Pr¥,, 1%}
yields:

M-l 1
Pr{Yinl IS, =m}= Z Zpr{uk+1 =08 =m’ Y, S, =m}

rt'=0 i=0

M-l 1

= Z zpr{ukﬂ =i; 8, =m3 Y Y, S, = m}

m’=0 i=0

1

M-l
= z ZPr{Yk+2'(uk+l =1 Sk+l =m’, Ykﬂ)"g —m}

m'=0 i=
M-l 1
Pr(ABIC)=Pr(ABOPIBIC) = = 9. O Pri¥[[, | (4 =58, =m" Y, )iS, =m}
m’'=0 i=0
Priug, =4S, =m Y, 1S =m}
M= 1 )
Markov property = = Z ZPr{Y 1S, =m}
m'=0 i=0

o — ,- —
Pr{i, =S, =m Y, 1S, =m}

Consider the denominator of £, (m):
Pr 1Y }=Pr{, Y 11}
Pr (ABIC)=Pr(AIBC)Pr(BIC) = =Pry Y, 1Y, Yy PriY,, 1Y)
=Pr{¥, 1Y Y- Priy,, 1Y}
By use of relations (A2.10) and (A2.11), B, (m) becomes:

M-l |

Z EPI'{Y,‘Z 1Sy =m'}Priu,,, =S, =m3Y, 1S, =m}
m) = m'=0 i=0
ﬂk( )= PI‘{Y:LZ lylkﬂ}'Pr{Ykn lYl y

< i Pr{¥,},1S,., =m?
_ m'=0i=0 Pf{Ykiz lYlkH }

Pr{uy, =S =mi Y | S, =m}

Pr{ka-l IYlk }
M-l 1
Z Y B () - Vi ()
m’=0 i=0

Pr{y,, |Y}}

The denominator of relation (A2.12) is:
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1

M-l
Z ZPr{ukH =S, =m3Y, 1Y}

Pr{y,., 1Y }=
m'=0 i=
M-1 1 M-I .
Using relation (A2.7) = = Z O a (m)- i, (mm)}
m'=0 i=0 m=0
M-iM-1
=3 > a (m)-¥,,(m,m). (A2.13)

m'=0 m=0

By introducing relation (A2.13) to (A2.12), a recursive relation for the calculation of B, (m) is

obtained:
M-1 1 i
Z B (M) - Vew (m,m’")
B (m) =25 , (A2.14)
Zak (m)- ¥, (m,m")
m=0 m’=0 i=0
M-l
Y1 (m, m’) . ﬂkq (ml)
o (A2.15)

'Bk(m)_u T M=

Z Z-:ak(m) Vi (m,m )
=0

m'=0
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APPENDIX 3

PROOFS OF E[l y, 1] AND E[y;]

This appendix provides the proofs for relations (2.78) and (2.79) in subsection 2.5.2. In order to
simplify the description let gz = / E .

A31 Elly, ]

The probability density function of the y, is given by:

—(y.—u) 1267 1 - 2o
e (Y —H) 120 + e (v, +H4) /20")_ (A3.1)

ro0= 7

Y =5\ Jaro J2rzo
Ell y, 1= El yi Lf(ye)dye
=2 [y, 1f )y,

=2 [Ty, f)dy,

1 e 126" o
= r—zﬂ-o—{f(yk _ﬂ)e (¥ =H) 120 d(yk _ﬂ)+ fﬂe =) 1 o—dyk

‘*‘f()’k +ﬂ)e_(y'+”):/2":d(yk +u)— fﬂe—(ynm:/zédyk}

1 {0'2 fe_(_‘.k_”)l/zald((."tz_::f):_)_‘_ﬁgﬂ fe'(_\.k-/l)llzo;d(%—%)‘)

" 2o

2 [ —(neur 126t s\ —(yp ) 1207 ((y.+m)1
+0 _[:e d(——zr. ) \[Z_G/lfe d\~— i

u = Ve —H ,
20
e +HU __9 { -Oe-p) 1267 -(.v.w):/zr‘}” H { [" -} J"’ iy |
u, = = =—{—e —e +-= e “du, — e “du,
\/50' ,’27[ o ,’7[ ﬂ/\rio' ! ﬂ/\[z_d’ -J

et (M) 2 -5 gy 2
P s +2{\/; fp/ﬁo’e duy \/}? ylﬁa’e duz}

e’fdx):—j—; . e du= = %O.e-;ﬁ/zd’ +%{eﬁc(_\/§o‘)—ed&[\/§a)}
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erf (x) = | — erfe(x) = =\/%o-e‘” 120* ‘“{ ( T-) 1+en‘(J— )}
erf (—x) = —erf (£) = =\E Loet L £ {erf(—\/%— +erf( J’aj}
=\[_’2;ae‘5-’2°“’ +JEepf(\/E].

where erfc(x) is the complementary error function and erf (x) is the error function.

A3.2 E[y;]

If the random variable w is normally distributed with mean 4 and variance o?, then the second

moment of w is [21, pp62]:

1 .
E[w?]= sz e (WY 1207 gy
J2ro

=u? +o’. (A3.2)

This result is used to derive E[y;] as follows.

Ely?1= [ yif () dve
21 1 ~(v.—p)120° 1 —(y+u) 20’
= —_ —e +—e d
J:y" {2(,/27;0- 2ro i
1 2 1 ~(y-u) 120° IR T e
=— p ———e dy, + " et dy,
Lt e Lt 8

=%{(y2 +0° ) + ((—,u)2 +07 )}

=#2_*_0.2

=E +07%.
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APPENDIX 4

PROGRAM SPECIFICS FOR SIMULATION OF TURBO CODES

This appendix gives a brief discussion of each program involved in the simulation of turbo codes.
More complete descriptions are available in the header information of the specific programs, and
also throughout the program segments. Note that parameters specified by the user are recorded in
the data files in addition to the data, where the data is the source information bit stream, encoded
codewords, codewords distorted by the channel, and decoded information bits. The structure of
the data file consists of the parameter information and data. Generally when a new data file
(except “source.dat”™) is created, the parameter message of the input data file is recorded again.
For example, “decoded.dat” also includes source, encoder, channel and decoder parameter

information.

A4.1 Source

Source bit stream generation:

Program: source.cpp

Input: seed.dat, tool.h

Output:  source.dat, log.dat

Function: Generates the random source bit stream and writes the data file to “source.dat”. The
user is asked to specify the number of source bits to be generated and the probabilities
of occurrence of the symbols. “seed.dat” is a random integer. It is updated every time
after generating “source.dat”, so the next time, a new random source bit sequence is
produced. “tool.h” includes several commonly used functions for calculation and file
input that are not available in the C++ Builder 3 software package. “log.dat” provides

information regarding when the data file is updated.
A4.2 Encoder
NSC encoded code streams:

Program: NSCCodes.cpp
Input: source.dat, seed.dat, tool.h
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Output:

Function:

encoded.dat, log.dat

Performs the encoding for code rate 1/n, NSC codes by reading in one bit source
words and generating ng-bit codewords, and writing the encoded data to
“encoded.dat”. The user is asked to specify the number of vectors (n,), the values of
the vectors (the vectors can be typed in either binary or octal), the constraint length
and the frame length. Encoding is frame-oriented. If the source data cannot be divided
into an integer number of frames, the program can generate extra random data padding
to the last frame such that the last frame is full. The reason for generating random data
and not just padding with zeros is to maintain the original probabilities of occurrence

of symbols specified by the user.

RSC encoded code streams:

av]
]
(@]
<]

gram:
t:

g

tput:

;

Function:

RSCCodes.cpp B
source.dat, seed.dat, tool.h
encoded.dat, log.dat

The process is as same as NSC encoding except that RSC codes are implemented.

Turbo code streams:

Program:

Input:
Qutput:

Function:

TurboCodes.cpp

source.dat, seed.dat, tool.h

encoded.dat, log.dat

Generates punctured (code rate 1/2) or unpunctured (code rate 1/3) turbo codes. The
default number of vectors is two; the user is asked to specify the values of these
vectors. Also the user is asked to specify whether or not the code is punctured, the
constraint length, the frame length, and the type of interleaver. There are three choices
of interleavers: Berrou, PIL and spread random. There are two termination schemes
including single termination and joint termination. If joint termination is specified, the
information corresponding to termination positions is written to a data file for use in
decoding. There are many choices for termination positions, but the program searches
the termination positions starting from the last row of F and chooses the first
available result. The information regarding source and encoder parameters and the

encoded words are written into “encoded.dat”.
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Turbo code streams with CRC:

Program:
Input:
Output:
Function:

TurboCodesCRC.cpp

source.dat, seed.dat, tool.h

encoded.dat, log.dat

The program is designed to integrate short CRC codes with turbo codes to improve
the performance of error detection. The user is required to specify the CRC generator

in addition to parameters that are needed for turbo encoding.

A4.3 Channel

Discrete AWGN:

Program: AWGNChannel.cpp

Input: encoded.dat, seed.dat, tool.h

Output:  demoded.dat, log.dat

Function: This program generates samples of additive white Gaussian noise. The program

integrates three functions together for simplicity. First, binary phase shift keying
modulation is assumed, so each logic “1” is transferred to “+1” and each logic “0” is
transferred to “-1”. Second, a Gaussian noise sample is generated according to the
SNR specified by the user and added to the modulated data. Third, the user is asked to
specify the demodulation style that determines if channel transition probabilities are
required. If so, they are included in the data file “demoded.dat”. Demodulation choices
include hard or soft decision. If the user chooses soft decision, the user will be asked if
perfect soft decision is selected. If so, perfect soft decision data (no quantization) will
be written to “demoded.dat” directly. If not, then quantized soft decision has been
selected, so the user is asked to specify the number of quantization levels. For hard
decision, where the default is two quantization levels, or quantized soft decision,
which implies the discrete Gaussian memoryless channel, the transition probabilities
are generated and written to data files, and the output data are quantized values
denoted with integer values. This program has strong connection with decoding
programs. In this thesis, for the VA and BCIR decoding programs in which the
Gaussian channel will be quantized, the transition probabilities are required for
decoding. For the M-BCJR algorithm and turbo decoding algorithm, it is not necessary

to quantize the channel, so transition probabilities are not required.
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Ad4.4 Decoder

In the following programs, decoding is frame-oriented. As each frame is decoded, the termination
bits are discarded, the decoded sequence is compared with the source sequence, and relevant error
information is collected. After all data has been decoded, error information is written to
«ErrorRate.dat” or “ErrorRateAll.dat”. The decoding programs obtain the relevant information
from the input data file automatically, and display a message on the monitor of the computer
which includes the type of encoder, the trellis diagram (input, branch values and state transitions),

constraint length, generators, code rate, frame length, E,/ N, for the channel, the time when the

decoding process is half completed, and the time when decoding starts and ends. Note that for the
Viterbi decoding algorithm, the state transitions of the trellis are shown for previous states, and

for other decoding algorithms, the state transitions of the trellis are shown for future states.

Viterbi decoding algorithm:

Program: VA.cpp

Input: demoded.dat, source.dat, tool.h

Output:  ErrorRate.dat, log.dat

Function: Decodes the received codewords using the Viterbi decoding algorithm. Writes the bit

error rate and frame error rate to “ErrorRate.dat”.

BCJR decoding algorithm:

o
-
Q
[

gram: BCJR.cpp

Input: demoded.dat, source.dat, tool.h
Output:  ErrorRate.dat, log.dat

Function: Decodes the received codewords using the BCIR decoding algorithm. Writes the bit

error rate and frame error rate to “ErrorRate.dat”.

M-BCJR decoding algorithm for RSC codes:

Program: M_BCJR.cpp

Input: demoded.dat, source.dat, tool.h

QOutput:  ErrorRate.dat, log.dat

Function: Decodes the received codewords corrupted by Gaussian noise using the M-BCJR

decoding algorithm. Note that the encoder should be an RSC encoder, and the channel
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is not quantized. The decoder needs the encoded symbol energy ,/E, and the variance

of the channel o? for decoding. For simplicity, perfect estimation is assumed. The

decoder uses ,/E, =1 and the value of E,/N, recorded in “demoded.dat” for

decoding (note that from ,/Es , E,/N, and code rate R, the variance of the channel

can be obtained). This assumption is also made for turbo coding programs. Writes the

bit error rate and frame error rate to “ErrorRate.dat”.

Berrou’s decoding algorithm for turbo codes:

Program: BerrouTurbo.cpp

Input: demoded.dat, source.dat, tool.h

Output:  ErrorRate.dat, log.dat

Function: Decodes the received turbo codewords corrupted by Gaussian noise using Berrou’s
decoding algorithm. The user is asked to specify the number of iterations. The greater
the number of iterations, the more time required for decoding. The interleaver style is
obtained from “demoded.dat” automatically. Writes the bit error rate and frame error

rate to “ErrorRate.dat”.

Robertson's decoding algorithm for turbo codes:

8",
-
(=}
o

gram: RobertsonTurbo.cpp

Input: demoded.dat, source.dat, tool.h
Output:  ErrorRate.dat, log.dat

Function: Decodes the received turbo codewords corrupted by Gaussian noise using Robertson’s

decoding algorithm. Writes the bit error rate and frame error rate to “ErrorRate.dat”.

Decoding algorithm with early stopping:

Program: EarlyStoppingHSC.cpp

Input: demoded.dat, source.dat, tool.h

Output:  ErrorRate.dat, log.dat

Function: Decodes the received turbo codewords using early stopping criteria including HDA,
SCR and CE. The user is required to indicate the maximum number of iterations and
specify which stopping criterion is to be used. After selecting the stopping criterion,
the user may be required to specify a threshold because for SCR and CE, the threshold

may change for different channel conditions for better performance. In addition, the
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average number of iterations is evaluated. Writes the bit error rate, frame error rate

and the average number of iterations to “ErrorRate.dat”.

Decoding algorithm with early stopping error detection:

Program: StoppingErrorDetection.cpp

Input: demoded.dat, tool.h, source.dat

Qutput:  ErrorRateAll.dat, log.dat

Function: Decodes the received turbo codewords using ME and MSC. Writes the bit error
rate, frame error rate, missed detection rate, false alarm rate, average number of errors

per missed detection and the average number of iterations to “ErrorRateAll.dat”.

Decoding algorithm with early stopping error detection and CRC check:

Program: StoppingErrorDetectionCRC.cpp

Input: demoded.dat, source.dat, tool.h

Output:  ErrorRateAll.dat, log.dat

Function: Decodes the received turbo codewords using MSC-CRC. Writes the bit error rate,
frame error rate, missed detection rate, false alarm rate, average number of errors per

missed detection and the average number of iterations to “ErrorRateAll.dat”.
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APPENDIX 5

TRELLIS DIAGRAMS FOR GENERAL USE OF RSC CODES

This appendix presents three trellis diagrams of RSC codes with generators G(1,5), G(13,15),
G(37,21), and G(31,33) that are used in this thesis. In these trellis diagrams, solid lines
correspond to paths taken when input bit is a 0, and dashed lines correspo-nd to paths taken when
the input bit is a 1. Note that for the trellis diagrams with generators G(13,15), G(37,21), and
G(31,33) the branch values are separately placed to the right of the trellis dliagrams.

AS.1 G(7,5)

A52 G(13,15)

3 01t
4 100
5 101

6 110
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3-GPP

AGC

APPENDIX 6

LIST OF ABBREVIATIONS

3™ Generation Partnership Project
The 3rd Generation Partnership Project is developing technical specifications
for IMT-2000, the International Telecommunication Union's (ITU) framework
for third-generation standards. 3GPP is a global co-operation between six
Organizational Partners (ARIB, CWTS, ETSI, T1, TTA and TTC) who are
recognised as being the world's major standardization bodies from Japan, China,
Europe, USA and Korea.
Note:

ARIB  Association of Radio Industries and Businesses, Japan

CWTS China Wireless Telecommunication Standards organization

ETSI  the European Telecommunications Standards Institute

T1 committee T1 (standards committee T1 telecommunications, USA)

TTA Telecommunication Technology Association, Korea

TTC Telecommunication Technology Committee, Japan

Analog-to-Digital

The A/D conversion is the process of changing continuously varying data into
digital quantities that represent the magnitude of the data at the moment the
conversion is made. The most common use is to change analog signals into
digital signals that can be used in data communications. The digital-to-analog

(D/A) conversion is the inverse process of the A/D.

Automatic Gain Control
The AGC is an adaptive system that operates over a wide dynamic range while
maintaining the output signal at a constant (signal plus noise) level. The AGC is

designed specifically for modem applications.

A Posteriori Probability
The probability Pr(u, =il¥,") is an APP for u, having the value of element i
after Y;" is received, where Y" is a frame of the demodulated coded sequence

with frame size N, and u, is the k-th symbol in the information sequence.
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ARQ

AWGN

BCIJR

BER

BPSK

CE

CRC

Automatic Repeat-reQuest

ARQ is an error control scheme for data transmission in which the receiver
detects transmission errors in a message and automatically requests a
retransmission from the transmitter. Usually, when the transmitter receives the
request, the transmitter retransmits the message until it is either correctly
received or until the error persists beyond a predetermined number of

retransmissions.

Additive White Gaussian Noise

An uncorrelated Gaussian (normally distributed) noise process that is
independent of the transmitted signals, corrupts the signal through addition, and
has flat power spectral density for all frequencies. The adjective “white” is used
in the sense that white light contains equal amounts of all frequencies within the

visible band of electromagnetic radiation.

Bahl, Cocke, Jelinek and Raviv
The BCIR algorithm minimizes the symbol error probability for linear codes.
The BCJR algorithm generates the APPs of the states and transitions on the

encoder trellis.

Bit Error Rate
BER is the probability that a message bit is incorrect. The number of erroneous

bits is averaged over the entire number of bits transmitted.

Binary Phase Shift Keying
BPSK is a binary modulation format in which the data is modulated onto the

carrier by varying the phase of the carrier by 7 radians.

Cross Entropy
The CE is a criterion for stopping an iterative decoder based on the closeness of
the two distributions that are obtained from the outputs of two constituent

decoders.

Cyclic Redundancy Check
The CRC is an error detection scheme that appends parity bits generated by
polynomial encoding of digital signals to the end of the data sequence, and uses

these parity bits to detect the presence of errors in the received digital signal.
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CRC-12

CRC-16

CRC-CCITT

DMC

DEC

DEDN-CE

DEDNpost-CE

ENC

FAR

D?+D"+D’+D*+D+1

An international standard for CRC error detection.

D' + DY +D*+1

An international standard for CRC error detection.

D" +D?+D° +1

An international standard for CRC error detection.

Discrete Memoryless Channel

The DMC is characterized by a discrete input alphabet, a discrete output
alphabet, and a set of conditional probabilities for all output symbols given the
input symbols. The channel noise affects each input symbol independently of all

other input symbols.

DECoder
A decoder is a device that attempts to restore the received, encoded signal to the

original message.

Decoder Error Detecting Network using CE

The DEDN-CE is a neural network trained to detect errors in the decoded
frames of data for turbo codes. The DEDN-CE maximizes the reliability by
basing retransmission requests on a highly accurate determination of whether

errors are present in the decoded data.

backup Decoder Error Detecting Network using CE

The DEDNpost-CE is a neural network trained to detect errors in a decoded
frame of data for turbo codes. The DEDNpost-CE checks all frames that are
accepted by the FEDN-CE, providing enhanced reliability.

ENCoder
An encoder is a device that transforms a source signal into an encoded signal

for transmission.

False Alarm Rate
FAR is the probability that an error-free frame is judged to be erroneous by
imperfect detection schemes. In order to obtain the FAR, the number of false

alarmed frames is averaged over the entire number of frames transmitted.
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FEDN-CE

FER

GF(Q2)

HDA

IRWEF

LLR

Future Error Detecting Network using CE

The FEDN-CE is a neural network trained to detect errors in a decoded frame of
data for turbo codes. The FEDN-CE minimizes decoder complexity by
determining whether or not the frame is likely to be accurately decoded in

future iterations, and if not, terminates decoding process early.

Frame Error Rate
FER is the probability that a decoded frame of data contains errors. In order to
obtain the FER, the number of erroneous frames is averaged over the entire

number of frames transmitted.

A Galois Field of order 2

Finite fields were discovered by Evariste Galois and are thus known as Galois
fields. A Galois field of order g is usually denoted GF(q). The simplest Galois
field is GF(2). GF(2) can be represented by the two element set {0,1} where
addition is defined as an exclusive-OR operation and multiplication is the

binary AND.

Hard-Decision-Aided
HDA is a criterion for stopping iterative decoding based on the number of sign
changes of the LLR values for a constituent decoder from two consecutive

iterations.

Input Redundancy Weight Enumerating Function
The IRWEF is a special enumerating function for constituent codes in turbo
codes. The IRWEF explicitly separates the weight contributions of the

information bits and the parity check bits.

Log-Likelihood Ratio
LLR is a useful metric evaluated by taking the logarithm of the ratio of two
probabilities. The LLR of u,, the k-th symbol in the information sequence, is

Pr(u, =+1)

=1
L(u,)=log Pr(a, =—1)

, where u, € {+1,—-1}. After YY, a frame of coded

sequence with frame length N, is received, the LLR of the APPs of u, is

Pr(u, =+11Y")

L(u, YY) =log .
1) =log T
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M-BCJR

MDR

MSC

Maximum A Posteriori
The MAP criterion is a detection criterion that leads to the selection of [ that

maximizes the probability Pr(ilY) for some received Y. It is also called

minimum error criterion, since on average this criterion yields the minimum
number of incorrect decisions. Note that this criterion is optimum only when all
types of errors are equally harmful or costly. When some of the error types are
more costly than others, a criterion that incorporates relative cost of errors

should be employed.

Modified BCJR
The M-BCJR algorithm is obtained by modifying the BCIR algorithm for
decoding an RSC code.

Missed Detection Rate

The MDR is the probability that an erroneous frame is detected to be error-free
by imperfect detection schemes. In order to obtain the MDR, the number of
missed detection frames is averaged over the entire number of frames

transmitted.

Mean Estimate

ME is a criterion for early stopping and error detection in turbo decoding. In
this criterion, the mean of the absoiute LLR values is examined to determine
whether the iterative decoding process should be stopped and whether the

decoded frame is error-free.

Maximum Likelihood
The ML is a detection criterion that leads to the selection of i that maximize the

probability Pr(Y li) for some received Y. If the source, denoted by i, is

equiprobable, then ML is equivalent to the MAP.

Mean-Sign-Change

MSC is a criterion for early stopping and error detection in turbo decoding. In
this criterion, the mean of the absolute LLR values and the number of sign
changes of LLR values are considered to determine whether the iterative
decoding process should be stopped and whether the decoded frame is error-

free.
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MSC-CRC

NSC

PCBC

PCCCs

PIL

RSC

SC

SCCCs

SCR

Mean-Sign-Change and Cyclic Redundancy Check
MSC-CRC is a criterion for early stopping and error detection in turbo
decoding. In this criterion, low order primitive CRC polynormials are combined

with the MSC criterion to improve the error detection performance of MSC.

Non-Systematic Convolutional
An NSC code is one in which the input data is not visible in the output code

word.

Parallel Concatenated Block Code
A PCBC is obtained by concatenating two systematic block codes that are

linked through an interleaver.

Parallel Concatenated Convolutional Codes
PCCCs are obtained through parallel concatenation of convolutional encoders

with interleavers. In this thesis, PCCCs are referred to as turbo codes.

Prime Interleaver

PIL is based on the construction of a rectangular mother interleaver and pruning
this mother interleaver if it is larger than the required size. The key features of
PIL are low complexity, good pseudo-random nature, and a wide range of

interleaving sizes from 240 to 8200.

Recursive Systematic Convolutional
An RSC code is obtained from an NSC code by using a feedback loop and

setting one of the output binary sequences equal to the input sequence.

Systematic Convolutional

An SC code is one in which the input data is visible in the output code word.

Serially Concatenated Convolutional Codes
The SCCCs are generated through serial concatenation of convolutional

encoders with interleavers.
Sign-Change-Ratio
SCR is a criterion for early stopping in turbo decoders. SCR considers the sign

changes in extrinsic information values from a constituent decoder over two

consecutive iterations.
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SNR

SR

UMTS

VA

WEF

Signal-to-Noise Ratio

SNR is a ratio of average signal power to average noise power.

Spread Random
The SR interleaver is based on the random generation of N integers from 1 to N
with a2 minimum constraint on the amount of spreading between adjacent

positions.

Universal Mobile Telecommunications System

UMTS is part of the International Telecommunications Union’s “IMT-2000"
vision of a global family of third-generation (3G) mobile communications
systems. UMTS will play a key role in creating the future mass market for high-

quality wireless multimedia communications

Viterbi Algorithm
The VA is a maximum likelihood decoding method that minimizes the

probability of word errors for convolutional codes.

Variance Estimate
VE is the first early stopping criterion proposed for turbo decoding. The meta-
channel variance is estimated to determine whether the iterative decoding

process should be stopped.

Weight Enumerating Function

The WEF is a representation of the weight distribution for a block code.

176



