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Abstract

Recently, a new accounting standard was established, namely the International

Financial Reporting Standard 9, requiring banks to build provisions using forward-

looking expected loss models. When there is a significant increase in credit risk

of a loan, additional provisions must be charged to the income statement. Banks

need to set a threshold for each loan, defining what such a significant increase in

credit risk constitutes. A low threshold allows banks to recognize credit risk early,

but leads to greater income volatility. By introducing a statistical framework, this

trade-off between early recognition of credit risk and avoidance of excessive income

volatility is modelled. We analyze the resulting optimization problem for various

models in both continuous-time and discrete-time settings, relate it to the banking

stress test of the European Union, and illustrate it using historical default data by

Standard and Poor’s.
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Chapter 1

Introduction

Credit risk analysis is an integral part of research for financial institutions, as bor-

rowers can default on their debts in many situations. A consequence of credit risk,

for instance, is that banks incur a loss if an obligor is unable to pay off a loan at

its maturity date. As a result, banks need to have sufficient capital to cover losses

that may occur in adverse scenarios from all relevant types of risk. To explain

further, capital requirements described by the Basel Committee on Banking Super-

vision (2005) involve the equity a financial institution must hold, and are directly

dependent on risk-weighted assets such as loans. Estimation of credit risk is also

important to determine an appropriate interest rate for each loan, as higher interest

rates associated with riskier loans acknowledge an increased risk of non-payment.

Nonetheless, if the riskiness of a loan increases after it is issued, further provisions

need to be built to account for the possibility of greater losses ensuing.

The global financial crisis of 2007–2008 highlighted the delayed recognition of

credit losses as a weakness of the accounting standards at that time. As a result,

the International Accounting Standards Board (2014) decided to introduce Interna-
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tional Financial Reporting Standard (IFRS) 9, which is an accounting standard that

requires banks to recognize increased credit risk of loans early and build additional

provisions for such loans. Because loss provisions affect banks’ income statements,

it is critical to have accurate estimations of these values for each reporting period.

However, the building of provisions and their subsequent release for reduced credit

risk leads to undesired volatility in the income statements of banks. In this the-

sis, we introduce and analyze a framework to model this trade-off between early

recognition of increased credit risk and avoidance of excessive income volatility.

IFRS 9, being mandatory since January 1, 2018, requires banks to consider

forward-looking expected loss impairment models. Randall and Thompson (2017)

outlined that forward-looking information regarding credit risk includes qualitative

information, such as the current economic environment, along with both statistical

models and non-statistical quantitative information. On the contrary, the previously

used backward-looking approach required a trigger event to occur prior to any credit

losses being reported. Regardless of the specific information considered, there is

still a subjective aspect involved in a financial institution’s assessment of credit

risk for loans, but it is crucial for each bank to have a sound underlying modelling

framework.

Under IFRS 9, banks are required to estimate the expected credit loss (ECL) for

each loan and build corresponding provisions. Compared to charging only highly

likely or even realized credit losses, this procedure allows for early recognition of

credit risk, well before an actual default occurs. The new standards require vari-

ous ECL measures for loans classified into three different buckets of progressively

higher default risk, compared to the initial default risk when the loan is issued;

see Cohen and Edwards (2017); Maggi et al. (2017). To avoid misunderstandings,
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these IFRS 9 buckets are not to be confused with the typical rating buckets in which

banks group obligors with similar credit ratings, within their diversified loan port-

folio. Table 1.1 provides a summary of the structure of the IFRS 9 buckets. ECL is

estimated over a one-year period for a loan in bucket 1, when the obligor generally

possesses "good credit" relative to their initial credit quality, so it is considered to

be a performing loan in this case.

IFRS 9 loan type ECL

bucket 1 performing one-year

bucket 2 underperforming lifetime

bucket 3 impaired lifetime

Table 1.1: ECL calculation criteria for loans, relative to their IFRS 9 classification.

The reclassification of a loan takes place when deteriorating credit quality of an

obligor is observed, based on predefined warning signs. These warning signs in-

volve an increased probability of default, in accordance with the current forecast

of the credit environment. Therefore, IFRS 9 bucket 2 represents underperforming

loans that have experienced a significant increase in credit risk since initial recogni-

tion. Furthermore, impaired loans, which result in the bank actually incurring credit

losses, are classified in bucket 3.

An important feature of this classification is that, for underperforming loans

(bucket 2), lifetime ECL is estimated over the remaining term to maturity, rather

than one-year ECL. Clearly, the ECL of a loan in bucket 2, especially in the early

stages of the period of the loan, would typically be much greater than the ECL of a

loan in bucket 1. It must be noted that for loans in bucket 3, ECL is estimated based

on the bank’s exposure along with the estimated recovery values. The subjective

nature of this IFRS 9 classification is critical when analyzing, from the perspective

of a financial institution, what a significant increase in credit risk actually is, as this
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is not specified in IFRS 9.

It is quite challenging to decide on the threshold for precisely defining a sig-

nificant increase in credit risk, for numerous reasons. If an extremely conservative

framework is implemented by a bank, its obligors would only need to experience

minor indicators of credit downturn to warrant a reclassification from bucket 1 to

bucket 2. In this instance, the bank’s ECL calculations are prone to volatility, as

loans could transfer from one-year ECL to lifetime ECL frequently. However, set-

ting a threshold that is very lenient towards obligors’ credit quality would indeed

create more stable ECL calculations for the bank, but at the same time lead to late

recognition of credit risk with respect to these loans. Finding a balance between

early recognition of credit risk and income volatility, in this sense, is an interesting

problem that is at the heart of this thesis and directly linked to the new loss impair-

ment standards of IFRS 9. Indeed, a survey by the European Banking Authority

(2017) found that "72% of the banks included in the survey anticipate that IFRS 9

impairment requirements will increase volatility in profit or loss. Respondents men-

tioned that this was mainly due to the ‘cliff effect’ when moving exposures from

stage 1 to stage 2 (from 12-month ECL to lifetime ECL), and to the inclusion of

forward-looking information, which will need to be reassessed at each reporting

period, in the ECL estimation."

Our setting is based on the structural model of default by Merton (1974). It

essentially states that an obligor can only meet its financial obligations if the value

of their assets exceeds that of the liabilities at the time of maturity, for a single debt

obligation. While the actual nature of an individual obligor’s debt is considerably

more complex, with default possible at several times, the preceding assumptions do

provide us with a quality, widely used starting point for credit risk modelling. There
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have been extensions in terms of asset value modelling (see Bluhm et al. (2010);

Bohn and Stein (2009); McNeil et al. (2015) for an overview), but the Merton model

remains the "prototype" of many credit risk models, such as Bluhm and Overbeck

(2003); Frei and Wunsch (2018); Gordy (2000). In particular, the Merton model is

at the basis of the capital requirement described by the Basel Committee on Banking

Supervision (2005), whose framework Miu and Ozdemir (2017) suggest to employ

for IFRS 9 purposes. Moreover, the Basel Committee on Banking Supervision

(2015) provides supervisory guidance on ECL accounting. Such models have also

been applied for stress testing; see, for example, Miu and Ozdemir (2009); Simons

and Rolwes (2009); Yang and Du (2015).

Since Merton (1974) models the underlying asset value of the obligor as a

stochastic process over time, we can formulate an optimization problem that con-

siders the impact on the income statement at different reporting moments. The

optimization problem consists of two penalization terms: (1) a term to penalize for

failing to early recognize an eventual default, and (2) a term that penalizes for in-

come volatility. We weight the two terms by a tuning parameter, which determines

the relative importance of low income volatility compared to early credit risk recog-

nition. While IFRS 9 does not define exactly what a significant increase in credit

risk is, and thus leaves flexibility in choosing our tuning parameter, we apply the

stress test framework of the European Banking Authority (2018) to obtain a suitable

estimation for this parameter. Overall, two problem formulations are considered,

namely, a continuous-time framework that is consistent with typical quantitative

finance modelling, as well as a discrete-time formulation relevant to the realistic

periodic reporting dates for obligor specific information. Our problem formulation

in a continuous-time framework leads to an optimization problem that we analyze
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numerically and extend to a situation with multiple obligors. In this discrete-time

setting, we solve the optimization problem analytically for certain distributions of

the asset value process. For the classical setting of Merton (1974), where the asset

value process is modelled as a Brownian motion observed at discrete moments in

time, we recast it as an optimization problem that we solve efficiently by numerical

routines, and provide an illustration using default data from Standard and Poor’s

(2018).

The content of this thesis is organized as follows. Chapter 2 introduces a credit

risk model that captures the trade-off between early recognition of credit risk and

income volatility in a continuous-time setting, and compares the model with the

stress test framework of the European Banking Authority (2018). Chapter 3 extends

this analysis to consider many obligors grouped in a particular credit rating bucket,

taking into account default correlations in the modelling structure. The optimization

problem is analyzed in a discrete-time formulation in Chapter 4, where the latent

asset return has either a continuous distribution or discrete distribution, in which the

process is modelled by alternatives to Brownian motion. Ultimately, our model is

applied to credit rating migration and default data from Standard and Poor’s (2018).

Chapter 5 concludes.
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Chapter 2

Continuous-time formulation

2.1 Theoretical examination of the problem

When considering an obligor being issued a loan from a bank, we can model the

trade-off between income volatility and the early recognition of credit risk. The net

asset value of the obligor at time t 2 [0,T ] can be represented by At for a stochastic

process (At)0tT , akin to the Merton model’s basic framework, and we assume

that this stochastic process has stationary and independent increments.1 In partic-

ular, we specify that (At �A0)0tT is a Brownian motion, and measure time t in

years. Recall from Section I.1 in Revuz and Yor (1999) that Brownian motion is a

stochastic process with continuous paths and stationary, independent, and normally

distributed increments. The starting point A0 = k is the initial distance to default

of an obligor, based on their initial default probability. We then let c denote the

threshold in which the obligor’s credit quality drops from bucket 1 to bucket 2 in

1A stochastic process (At)0tT has independent increments if for any 0 t1 < t2 < · · ·< tN  T ,

the increments At2 �At1 , At3 �At2 , . . . , AtN �AtN�1
, are independent. It has stationary increments if

for any 0  s < t  T , the increment At �As has the same distribution as At�s.
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terms of the IFRS 9 classification, for some constants c 2 [0,k]. Figure 2.1 provides

an example of the net asset value of an obligor with a loan over T = 10 years. To

0 2 4 6 8 10

−
2

0
2

4
6

8

Net asset value of an obligor

Time (years)

N
e
t 
a
s
s
e
t 
v
a
lu

e

Figure 2.1: Simulation of the net asset value of an obligor for a ten-year loan. The chosen

parameters are k = 5.2 and c = 2.

explain further, if At > c, the obligor’s loan is in bucket 1, signifying "good credit"

relative to their initial credit quality at the time the loan was issued. We define that

a default at time T occurs if AT < 0, and consequently, the initial distance to default

of the obligor is equal to k. Furthermore, when At  c, the loan is in bucket 2,

which means the bank’s provisions for this obligor’s particular loan are calculated

based on lifetime ECL rather than one-year ECL. We assume that there needs to be

enough assets to pay back the loan only at the maturity time T , so that we consider

default events only at T , consistent with the modelling of default in the Merton

model. Hence, in Figure 2.1, although the obligor’s loan experiences a significant

increase in credit risk at approximately T = 4, a default does not occur, since its

asset value evidently exceeds that of its liabilities at maturity, T = 10.
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Prior to formally defining the actual optimization problem, we examine the two

portions of the prospective objective function, which will model the trade-off be-

tween income volatility and the early recognition of credit risk. The recognition

portion is
Z T�1

0
(T �1� t)P(At > c | AT < 0)dt , (2.1)

while the volatility portion is

Z T�1

0
(T �1� t)Var(1At>c)dt. (2.2)

As we subsequently explain in more detail, the recognition portion penalizes for

failing to early recognize a default, while the volatility portion measures fluctua-

tions resulting from reclassifications between buckets 1 and 2. We first examine

the probability, P(At > c | AT < 0), which is part of (2.1), representing the condi-

tional probability that the net asset value of the obligor at time t exceeds c, given a

default occurs at time T . Hence, if this probability is low, the early recognition of

credit risk is likely, since experiencing the warning sign of a loan being classified in

bucket 2 before a default occurs is probable. Intuitively, this probability being low

would correspond to a high threshold value c, near A0 = k. In (2.2), the variance

term Var(1At>c) describes the stability, or lack thereof, of the process in terms of

changing from being above the threshold c (when the indicator 1At>c is one) to be-

low the threshold c (when the indicator 1At>c is zero), or vice versa. As we would

expect, if c is high, the net asset value of an obligor is more prone to fluctuation

between classification buckets 1 and 2. This would lead to frequent adjustments

in the calculation of ECL, changing from one-year ECL to lifetime ECL, and vice

versa, ultimately contributing to substantial earnings volatility from the perspec-
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tive of the bank that issues the loan. We recall here that ECL equals the product

of probability of default (PD), loss given default (LGD), and exposure at default

(EaD). In practice, LGD and EaD are often assumed to be constant so that the PD,

which we capture in this term, models the default risk. Together, the integrals in

both (2.1) and (2.2) capture the net asset value throughout time, up until the final

year of the loan. There is no impact on provisions when switching above and below

the threshold c after T � 1, as one-year ECL equals lifetime ECL during the final

year of the loan, hence the upper limit of integration being T � 1. The coefficient

(T �1� t) in both portions conveys that the early recognition of credit risk, along

with the management of income volatility, is more critical earlier in the term of

the loan. Thus, each portion has a negative, approximately linear relationship with

time. First of all, the earlier the risk of non-payment is identified, the sooner loan

loss provisions can be built proactively. Relative to income volatility, the earlier a

significant increase in credit risk occurs, the larger the impact on a bank’s income

relative to ECL estimation, hence the factor (T �1� t).

We model the inherent balance between early recognition of credit risk and

income volatility through the optimization problem

min
ck

✓Z T�1

0
(T �1� t)P(At > c | AT < 0)dt +λ

Z T�1

0
(T �1� t)Var(1At>c)dt

◆

,

(2.3)

where λ > 0 is a tuning parameter that, in practical terms, determines how much

importance is placed on minimizing income volatility from the viewpoint of a bank.

Moreover, each portion of (2.3) can be simplified, confirming mathematically that

(2.1) and (2.2) are decreasing and increasing, respectively, in the threshold value c.
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Proposition 1. The optimization problem (2.3) can be written as minck f (c), where

f (c) =
Z T�1

0
(T �1� t)

 R ∞
c�kp

t

Φ

⇣
�k�x

p
tp

T�t

⌘

ϕ(x)dx

Φ

⇣
�kp

T

⌘

!

dt

+λ

Z T�1

0
(T �1� t)

 

Φ

✓
c� kp

t

◆

�Φ2

✓
c� kp

t

◆!

dt. (2.4)

Proof. We first examine the conditional probability P(At > c | AT < 0), which is

part of (2.1). This term from the recognition portion can be written as

P(At > c | AT < 0) =
P(At > c, AT < 0)

P(AT < 0)

=
P(At > c, AT �At <�At)

P(AT < 0)

=
E[1At>c1AT�At<�At

]

P(AT < 0)

=
E
h

E[1At>c1AT�At<�At
| At ]

i

P(AT < 0)

=
E
h

1At>c E[1AT�At<�At
| At ]

i

P(AT < 0)
. (2.5)

Within the numerator in (2.5), we further simplify

E[1AT�At<�At
| At ] = E[1AT�At<�a] |a=At

= P

✓
AT �Atp

T � t
<

�ap
T � t

◆�
�
�
�
a=At

= Φ

✓
�ap
T � t

◆�
�
�
�
a=At

= Φ

✓
�Atp
T � t

◆

, (2.6)
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where Φ is the cumulative distribution function of a standard normally distributed

random variable. In the first equality of (2.6), we used the well-known result that

E[ f (X ,Y )|Y ] = E[ f (X ,y)|y=Y for independent random variables X and Y , and a

measurable function f with E[| f (X ,Y )|] < ∞; see for example Theorem 6.4 of

Kallenberg (2002). Subsequently, substituting our expression in (2.6) into (2.5),

we have that

E
h

1At>c E[1AT�At<�At
| At ]

i

P(AT < 0)
=

E
h

1At>c Φ

⇣
�Atp
T�t

⌘i

Φ

⇣
�kp

T

⌘

=
E
h

1
N>

c�kp
t

Φ

⇣
�k�N

p
tp

T�t

⌘i

Φ

⇣
�kp

T

⌘

=

R ∞
�∞1

x> c�kp
t

Φ

⇣
�k�x

p
tp

T�t

⌘

ϕ(x)dx

Φ

⇣
�kp

T

⌘

=

R ∞
c�kp

t

Φ

⇣
�k�x

p
tp

T�t

⌘

ϕ(x)dx

Φ

⇣
�kp

T

⌘ , (2.7)

where N ⇠ N (0,1), and ϕ is the probability density function of a standard nor-

mally distributed random variable. Note that since A0 = k, At has the same distribu-

tion as k+N
p

t. This expression is certainly decreasing in c, due to the fact that this

threshold constant is included only in the lower limit of integration in the numerator

in (2.7). Similarly, we can analyze Var(1At>c) in (2.2), deriving

Var(1At>c) = E[1At>c]� (E[1At>c])
2

= P(At > c)� (P(At > c))2

= (1�P(At < c))� (1�P(At < c))2
,
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which we further simplify to

Var(1At>c) = (1�P(At < c))� (1�2P(At < c)+(P(At < c))2)

= P(At < c)� (P(At < c))2

= P

✓
At � kp

t
<

c� kp
t

◆

�
✓

P

✓
At � kp

t
<

c� kp
t

◆◆2

= Φ

✓
c� kp

t

◆

�Φ2

✓
c� kp

t

◆

, (2.8)

which is a function of the form f (x) = x � x2, increasing for x <
1
2 . Hence, if

Φ

⇣
cp
t

⌘

<
1
2 , which is satisfied since c < k and t > 0, we make the conclusion from

(2.8) that Var(1At>c) is indeed increasing in c. As we would expect, if c is high, or

near A0 = k, the obligor’s loan would be more likely to alternate between one-year

and lifetime ECL calculations repeatedly.

Hence, using the expressions in (2.7) and (2.8), we reach the optimization prob-

lem representation in (2.4).

As preparation for the numerical analysis in the next section, we determine the

derivatives of the objective function (2.4). Differentiating twice, using the Leibniz

integral rule, we find that

f 0(c) =
Z T�1

0
� T �1� t
p

t Φ

⇣
�kp

T

⌘

 

Φ

✓
�cp
T � t

◆

ϕ

✓
c� kp

t

◆!

dt

+λ

Z T�1

0

T �1� tp
t

 

ϕ

✓
c� kp

t

◆

�2Φ

✓
c� kp

t

◆

ϕ

✓
c� kp

t

◆!

dt

and
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f 00(c) =
Z T�1

0

T �1� t
p

t Φ

⇣
�kp

T

⌘ϕ

✓
c� kp

t

◆

⇥
 

1p
T � t

ϕ

✓
�cp
T � t

◆

+
c� k

t
Φ

✓
�cp
T � t

◆!

dt

+λ

Z T�1

0
�(T �1� t)p

t

 

c� k

t
ϕ

✓
c� kp

t

◆

+2
ϕ2
⇣

c�kp
t

⌘

p
t

�2
c� k

t
Φ

✓
c� kp

t

◆

ϕ

✓
c� kp

t

◆!

dt.

The objective function and its first two derivatives, along with the initial assump-

tions of this section, provide sufficient information to proceed with obtaining a

solution for our optimal threshold, the desired minimizer.

2.2 Results and illustration of solutions

Due to the complexity of the preceding expressions in Section 2.1, numerical inte-

gration using the programming language R is performed, fixing T = 10 (loan issued

over ten years) and k such that P(AT < 0) = 0.05, representing a default probability

of 5%. Therefore, P
⇣

AT�A0p
T

<
�kp

T

⌘

= 0.05 and k =�
p

T Φ�1(0.05)⇡ 5.2. Letting

c⇤ be the solution to the minimization problem, given some λ , we need to satisfy

f 0(c⇤) = 0 and f 00(c⇤)> 0, so we obtain a minimum in the interval k � c⇤ � 0.

The portions of f (c), with the parameter values used in this example, are shown

in Figure 2.2. Evidently, the recognition and volatility portions do not necessarily

contribute equally, so we examine how the choice of λ affects the solution c⇤. From

an intuitive standpoint, as λ increases, we place more significance on managing in-
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Figure 2.2: Recognition and volatility portions of f (c), with T = 10, k ⇡ 5.2 and λ = 1.

come volatility, therefore recognizing credit risk early becomes less prominent, and

the corresponding c⇤ decreases. Clearly, in the extreme case where λ is sufficiently

large such that c⇤ ⇡ 0, the net assets of the obligor are unlikely to fluctuate fre-

quently between IFRS 9 buckets 1 and 2. This situation would be ideal from the

perspective of minimizing income volatility, yet disastrous in terms of recognizing

credit risk early. Solutions, for various λ values, are seen in Figure 2.3. We observe

that for many λ values, both a maximum and minimum exist in the appropriate in-

terval, k � c⇤ � 0. Obviously, the solution of interest is the minimum, and the red

line approximately indicates, for various λ values, where f 00(c⇤) = 0. It follows that

if we select λ "reasonably," we will have a solution to the minimization problem

such that f (c⇤) is convex, thus f 0(c⇤) = 0 and f 00(c⇤) > 0, as required. Addition-

ally, it must be explained that for very small λ values, a solution is not visible in

Figure 2.3. In those cases, f (c) is strictly decreasing in this interval, resulting in a
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Figure 2.3: Optimal thresholds versus corresponding λ values, with T = 10 and k ⇡ 5.2.

solution of c⇤ = k ⇡ 5.2. This is not feasible from a practical view, as a loan issued

would initially be classified in IFRS 9 bucket 2, leading to maximal income volatil-

ity for the bank that issues it. We see the specific nature of the objective function

for some viable λ values, and respective solutions, in Figure 2.4. The shapes of the

three objective functions in this interval are quite similar, although the decreasing

relationship between λ and c⇤ is noticeable, as expected. For this example, we fixed

k based on some particular obligor’s initial default probability, given the loan was

issued over T years. Another natural objective is to study the general relationship

between the distance to default of an obligor and the consequent solution c⇤.

A basic criticism of the trade-off modelled in our problem formulation is that

the tuning parameter, λ , could be chosen in a subjective manner by a financial
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Figure 2.4: Plot of f (c) for various λ , with T = 10 and k ⇡ 5.2. The optimal thresholds,

determined numerically, are c⇤ ⇡ 2.80 (λ = 3), c⇤ ⇡ 2.45 (λ = 3.5) and c⇤ ⇡ 2.09 (λ = 4).

institution, based on the extent to which they are concerned about early recognition

of credit risk compared to income volatility. To justify what reasonable values for

λ are in practice, we make a comparison with a European Union (EU) definition.

Although IFRS 9 does not specify explicitly what constitutes a significant increase,

the EU stress test of the European Banking Authority (2018) defines a significant

increase in credit risk as being 200% from the initial credit risk. To convert this

definition into our setting, consider a loan with maturity T and current time t, so

that the remaining time to maturity is T � t. The lifetime default probability at the

initial time is P(AT < 0) = Φ

⇣
�kp

T

⌘

. Assuming that the net asset value At equals a

at time t, the lifetime default probability at time t is

P(AT < 0 | At = a) = P(At +AT �At < 0 | At = a) = P(a+WT�t < 0)

17



for a Brownian motion W . We use the property that Brownian motion has inde-

pendent increments, and that P(WT �Wt  a) = P(WT�t  a) for any constant

a. Since WT�t is normally distributed with mean zero and variance (T � t), we

obtain that P(a +WT�t < 0) = Φ

⇣
�ap
T�t

⌘

. By the framework of the EU stress

test, the risk of a loan has significantly increased if the current lifetime default

probability is at least triple the initial lifetime default probability, which means

P(a+WT�t < 0)� 3P(AT < 0). We now define a⇤ as the critical value so that

P(a⇤+WT�t < 0) = 3P(AT < 0). Assuming the loan is in the middle of the life-

time, such that t = T
2 , we compare P(a⇤+WT�t < 0) with the corresponding value

P(c⇤+WT�t < 0) for our optimizer c⇤. Figure 2.5 conveys the relationship between

the initial lifetime default probability P(AT < 0) and the critical lifetime default

probability P
�
c⇤+WT

2
< 0
�
, for time t = T

2 . A positive relationship exists for each

λ value shown, since the critical lifetime default probability increases, intuitively,

as the initial lifetime default probability increases. Numerically, it is determined

that when P(AT < 0) ⇡ 0, the corresponding P
�
c⇤+WT

2
< 0
�
⇡ 0 also, regardless

of λ , so the intercept for each line is indeed approximately zero. In comparison to

the EU stress test reference line, we see that for each λ , the relationship does not

appear to be perfectly linear. However, we can still feasibly suggest that the value

P(a⇤+WT�t < 0) from the EU stress test corresponds to a parameter choice of λ

between 3.5 and 4, for this loan with maturity of T = 10. It is not critical for us to

choose λ completely analogously to the EU framework. Rather, this comparison is

made in order to explain how values of the tuning parameter can be inferred as a

guideline for practical applications of our framework.
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dashed line shows the relationship outlined by the EU stress test, which is linear by defini-

tion.
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Chapter 3

Multiple obligors and their latent

asset correlation

3.1 Theoretical formulation for this framework

We can extend our problem formulation to consider multiple obligors, which cer-

tainly takes into account a bank’s full loan portfolio. While obligors are actually

grouped into various homogeneous buckets, we will examine in this section obligors

in only one particular bucket. It must be acknowledged that these buckets created

by banks are not directly associated with the IFRS 9 classification buckets previ-

ously discussed. Now, for N obligors, the tradeoff between the early recognition of

credit risk and income volatility in (2.3) can be formulated in the new optimization
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problem

min
ck

 
Z T�1

0
(T �1� t)

N

∑
i=1

⇣

P(Ai
t > c | Ai

T < 0)
⌘

dt

+λ

Z T�1

0
(T �1� t)Var

✓
N

∑
i=1

1Ai
t>c

◆

dt

!

, (3.1)

where λ > 0 is the tuning parameter, and Ai
t is the net asset value of obligor i at

time t. As in the Vasicek (2002) model, the net asset value is defined as

Ai
t = k+

p
ρ Wt +

p

1�ρ β i
t

with W and β i representing the systematic and idiosyncratic (individual) compo-

nents, respectively, and ρ 2 [0,1] being a correlation coefficient for this specific

bucket. More precisely, Wt ⇠N (0, t) represents the systematic factor of this bucket

(equal for all obligors in it) at time t, while β i
t ⇠ N (0, t) models the idiosyncratic

factor of obligor i at time t. Note that β 1, . . . , β N and W are modelled as indepen-

dent Brownian motions. Also, observe that in (3.1), we evaluate the variance of the

sum of the net asset value indicators for all obligors in this bucket at time t. The net

asset values of different obligors in the bucket are not independent, so we have that

Var

✓
N

∑
i=1

1Ai
t>c

◆

6=
N

∑
i=1

Var
�
1Ai

t>c

�
.

However, from the bank’s perspective, the variability of the net asset value indicator

functions throughout time for the entire bucket is of interest, rather than summing

the individual variances for each individual obligor, which justifies the optimization

problem formulation in this regard.
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In relation to the average net asset value, we have

lim
N!∞

1

N

N

∑
i=1

Ai
t = lim

N!∞

 

1

N
(N · k)+

1

N
(N

p
ρ Wt)+

1

N

p

1�ρ
N

∑
i=1

β i
t

!

= lim
N!∞

 

k+
p

ρ Wt +
p

1�ρ

✓
1

N

N

∑
i=1

β i
t

◆!

= k+
p

ρ Wt +
p

1�ρ lim
N!∞

✓
1

N

N

∑
i=1

β i
t

◆

= k+
p

ρ Wt almost surely,

due to the fact that, for the random variable β i
t ,

lim
N!∞

✓
1

N

N

∑
i=1

β i
t

◆

= 0 almost surely

by the strong law of large numbers. Evidently, this limit suggests that as the number

of obligors increases to very large values, the idiosyncratic factor of each obligor

becomes negligible in terms of the average net asset value for a specific bucket. It is

intuitive that this average for the rating bucket has a systematic component but not

an idiosyncratic one, as we should theoretically have obligors with similar credit

quality in a certain bucket. Therefore, negating an obligor’s individual randomness

from a large-scale perspective, on average, is quite reasonable.

Proposition 2. The objective function in (3.1) can be written as minck f (c,ρ) for

f
�
c,ρ
�
=
Z T�1

0
(T �1� t)N

R ∞
c�kp

t

Φ

⇣
�k�x

p
tp

T�t

⌘

ϕ(x)dx

Φ

⇣
�kp

T

⌘ dt

+λ

Z T�1

0
(T �1� t)Var

✓
N

∑
i=1

1Ai
t>c

◆

dt , (3.2)

22



with

Var

✓
N

∑
i=1

1Ai
t>c

◆

=
�
N2 �N

�
E



Φ2

✓
c� k�p

ρ Wtp
t
p

1�ρ

◆�

+N Φ

✓
c� kp

t

◆

�N2 Φ2

✓
c� kp

t

◆

. (3.3)

Proof. Since we have the same framework as in the one-obligor case, we can sim-

plify the summation of the conditional probability statement within the recognition

portion in (3.1), in the form

N

∑
i=1

P(Ai
t > c | Ai

T < 0) = N P(A1
t > c | A1

T < 0)

= N

R ∞
c�kp

t

Φ

⇣
�k�x

p
tp

T�t

⌘

ϕ(x)dx

P(A1
T < 0)

= N

R ∞
c�kp

t

Φ

⇣
�k�x

p
tp

T�t

⌘

ϕ(x)dx

Φ

⇣
�kp

T

⌘ ,

where we use that, for the first equality above, the Ai
t are indeed identically dis-

tributed; the second equality follows from (2.7). Essentially, this makes the proba-

bility statement equivalent to the expression relative to one specific obligor, with a

coefficient of N to account for all obligors in the rating bucket. We also note that

this recognition portion of the overall objective function does not depend on ρ , the

bucket’s correlation coefficient.

For the income volatility portion of (3.1), we examine Var
⇣

∑
N
i=11Ai

t>c

⌘

, ap-

plying the law of total variance, while conditioning on the systemic factor of the
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bucket, Wt , to arrive at the following two terms:

Var

✓
N

∑
i=1

1Ai
t>c

◆

= E



Var

✓
N

∑
i=1

1Ai
t>c

�
�
�
�
Wt

◆�

| {z }

(3.4.1)

+Var

 

E


N

∑
i=1

1Ai
t>c

�
�
�
�
Wt

�!

| {z }

(3.4.2)

. (3.4)

As the Ai
t are conditionally independent, given Wt , (3.4.1) can be written as

E



Var

✓
N

∑
i=1

1Ai
t>c

�
�
�
�
Wt

◆�

= E

"
N

∑
i=1

Var
⇣

1Ai
t>c

�
�
�Wt

⌘
#

= E


N

∑
i=1

E
h

1Ai
t>c

�
�
�Wt

i

�
⇣

E
h

1Ai
t>c

�
�
�Wt

i⌘2
�

= E


N

∑
i=1

P(Ai
t > c |Wt)�

�
P(Ai

t > c |Wt)
�2
�

= E


N

∑
i=1

P(Ai
t < c |Wt)�

�
P(Ai

t < c |Wt)
�2
�

= E

"
N

∑
i=1

P

✓
β i

tp
t
<

c� k�p
ρ Wtp

t
p

1�ρ

◆

�
✓

P

✓
β i

tp
t
<

c� k�p
ρ Wtp

t
p

1�ρ

◆◆2
#

= E

"
N

∑
i=1

Φ

✓
c� k�p

ρ Wtp
t
p

1�ρ

◆

�Φ2

✓
c� k�p

ρ Wtp
t
p

1�ρ

◆#

= N E

"

Φ

✓
c� k�p

ρ Wtp
t
p

1�ρ

◆

�Φ2

✓
c� k�p

ρ Wtp
t
p

1�ρ

◆#

= N

✓

Φ

✓
c� kp

t

◆

�E



Φ2

✓
c� k�p

ρ Wtp
t
p

1�ρ

◆�◆

.
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For the last equality, we note that

E



Φ

✓
c� k�p

ρ Wtp
t
p

1�ρ

◆�

= E



P

✓

N  c� k�p
ρ Wtp

t
p

1�ρ

◆�

= E
h

1
N c�k�p

ρ Wtp
t
p

1�ρ

i

= E
h

1
N
p

1�ρ+
p

ρp
t
Wt c�kp

t

i

= E
h

1
Ñ c�kp

t

i

= E



P

✓

Ñ  c� kp
t

◆�

= E



Φ

✓
c� kp

t

◆�

= Φ

✓
c� kp

t

◆

,

where N is a standard normal random variable, independent of Wt , so that Ñ =

N
p

1�ρ +
p

ρp
t
Wt is also standard normally distributed. Thus, we have a simpli-

fied expression for (3.4.1), mainly by incorporating the formula for the identically

distributed Ai
t , and the fact that β i

t ⇠ N (0, t).

As for (3.4.2), we proceed with the derivation

Var

 

E


N

∑
i=1

1Ai
t>c

�
�
�
�
Wt

�!

= Var

✓

N E
h

1A1
t >c

�
�
�Wt

i◆

= N2 Var
⇣

P
�
A1

t > c
�
�Wt

�⌘

= N2 Var
⇣

1�P
�
A1

t < c
�
�Wt

�⌘

= N2 Var

 

P

✓
β 1

tp
t
<

c� k�p
ρ Wtp

t
p

1�ρ

�
�
�
�
Wt

◆!

= N2 Var

 

Φ

✓
c� k�p

ρ Wtp
t
p

1�ρ

◆!

,
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which we further simplify to

Var

 

E


N

∑
i=1

1Ai
t>c

�
�Wt

�!

= N2

 

E


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✓
c� k�p

ρ Wtp
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p

1�ρ
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Φ
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ρ Wtp
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1�ρ
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!
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

Φ2

✓
c� k�p

ρ Wtp
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p

1�ρ

◆�

�Φ2

✓
c� kp

t

◆!

,

and combining this term with (3.4.1) so that we deduce (3.3). Through these sim-

plifications, the objective function in (3.1) is indeed equivalent to (3.2).

A subsequent observation from Proposition 2 is that when ρ = 0, we see that

Var

✓
N

∑
i=1

1Ai
t>c

◆

=
�
N2 �N

�
✓

Φ2

✓
c� kp

t

◆◆

+N Φ

✓
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✓
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◆
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Φ

✓
c� kp

t

◆

�Φ2

✓
c� kp

t

◆◆

,

justifying that, for the case with uncorrelated net asset values in a rating bucket, the

variance of this sum is equivalent to the sum of the variances. Naturally, we have a

similar expression as in the volatility portion derivation in (2.8) for one obligor, but

with a coefficient of N. From (3.3), it is also evident that for the one-obligor case,

N = 1, we predictably arrive at the same expression as (2.8), independently of ρ .

Furthermore, we have that

E



Φ2

✓
c� k�p

ρ Wtp
t
p

1�ρ

◆�

= E

"
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ρ x
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e�
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2 dx ,
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which is useful, along with the Leibniz integral rule, in finding the derivative

d

dc
f (c,ρ) =
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t
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ϕ

✓
c� kp

t

◆◆#

dt,

necessary for solving the optimization problem. Once again, numerical integration

will be performed, because of the complex nature of these expressions.

3.2 Effect of the various parameters on the minimizer

We now investigate the influence of ρ and N on the objective function, along with

the corresponding solutions. For the following examples, T = 10 and k ⇡ 5.2 are

fixed, consistent with our parameter choices from Section 2.2. To paraphrase, we

now have many obligors with similar credit quality, that are all issued loans with

the same term and have equivalent initial default probabilities. In the upcoming

analysis, we also set λ = 1 and ρ = 0.05, then establish some knowledge regarding

the two portions of the objective function. Not surprisingly, the recognition portion

is the same as in the one-obligor case seen in (2.1), multiplied by N, therefore it is

decreasing in c and its influence is simply magnified by the number of obligors in

this bucket. Also, this portion is independent of ρ , thus examining the recognition

portion further provides minimal additional knowledge. A much different situation
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exists for the volatility portion of the objective function, due to the complex nature

of the variance term expressed in detail in (3.3). Realistically assuming that N > 1

for a rating bucket, we use numerical integration to visualize some results for this

advanced expression. For the parameter values previously mentioned, Figure 3.1

displays the effect of the volatility portion for N = 100 and N = 1000. Clearly, as

c increases, the values of the income volatility portion with N = 1000 represent

considerably more than a tenfold increase, when compared to the same function

with N = 100.

0 1 2 3 4 5

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

Income volatility portion of f(c) with N=100

c

V
o
la

ti
lit

y
 p

o
rt

io
n

0 1 2 3 4 5

0
5
0
0
0
0

1
0
0
0
0
0

2
0
0
0
0
0

3
0
0
0
0
0

Income volatility portion of f(c) with N=1000

c

V
o
la

ti
lit

y
 p

o
rt

io
n

Figure 3.1: Volatility portion of f (c), with T = 10, k ⇡ 5.2, λ = 1 and ρ = 0.05. Plots for

both N = 100 and N = 1000 are shown.

It is evident that the variance term in (3.3) can be written as Var
⇣

∑
N
i=11Ai

t>c

⌘

=

αN2 + βN, with α and β depending on functions of the values of the standard
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normal cumulative distribution function. In particular,

α = E


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ρ Wtp
t
p
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t
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The derivations of α and β are completely analogous to the expressions in (3.3.2)

and (3.3.1), respectively. As a result, both the variance of a conditional expectation,

along with the expected value of a conditional variance, are non-negative. Hence,

it is clear that Var
⇣

∑
N
i=11Ai

t>c

⌘

is also non-negative, grows quadratically in N,

and diverges to positive infinity as N ! ∞ . To summarize in practical terms, the

influence of the number of obligors is more drastic for the volatility portion than it

is for the recognition portion. A consequence is that for larger sized rating buckets,

a smaller value of the tuning parameter (for example, λ < 1 in this case) may be

needed so that the volatility portion does not have an excessive contribution to the

overall objective function. Recall that, intuitively, as we place more importance

on managing income volatility, the optimal threshold c⇤ gets closer to zero, which

disregards the early recognition of credit risk.

A sensible next step is to analyze the relationship between λ and correspond-

ing solutions to the optimization problem, for different numbers of obligors in the

rating bucket. With the same parameter values, we observe in Figures 3.2 and 3.3

that the solution "path" is similar to the one-obligor case, as we have a decreasing

relationship between c⇤ and λ , with some local maxima, not useful for our pur-

poses, also existing in the interval k � c⇤ � 0. Note that the red line in each figure

indicates the approximate cutoff point between concavity and convexity of f (c).
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Figure 3.2: Optimal thresholds versus corresponding λ values, with T = 10, k ⇡ 5.2 and

ρ = 0.05, for bucket size of N = 100.
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Figure 3.3: Optimal thresholds versus corresponding λ values, with T = 10, k ⇡ 5.2 and

ρ = 0.05, for bucket size of N = 1000.

30



This convexity requirement certainly needs to be satisfied in this multiple-obligor

formulation, with the minima being of interest, as expected.

A more insightful conclusion can be made when looking at the plot for N = 1000

in Figure 3.3. To avoid having a solution extremely close to zero, λ < 1 must be

selected, reinforcing the notion that our volatility portion of the objective function

has a stronger relationship with N. Therefore, for very large bucket sizes, the bal-

ance between the two portions can only be maintained if we shrink the considerably

larger values of income volatility, to some extent. This is done to ensure the early

recognition of credit risk is considered to be sufficiently important relative to our

formulation. Moreover, the subjective nature of choosing λ has already been dis-

cussed, but in general, to avoid having a solution approaching either endpoint, it is

reasonable to claim that 1  λ  2 (for N = 100) and 0.1  λ  0.3 (for N = 1000)

are feasible tuning parameter choices.

Ultimately, we can select λ = 1 (for N = 100) and λ = 0.1 (for N = 1000),

then scrutinize the relationship between ρ and related solutions c⇤. Note that in the

preceeding plots of this section, a common choice of ρ = 0.05 was arbitrarily used,

reasonable for a qualifying revolving retail portfolio, for example. It is natural to

study our objective function for different ρ values, in which Figures 3.4 and 3.5 are

prominent. We deduce that, regardless of the number of obligors in the bucket, as

ρ increases, c⇤ decreases. An explanation for this in layman’s terms is based on

the fact that the income volatility portion of f (c) depends on ρ , unlike the recog-

nition portion. Hence, as the correlation within the rating bucket becomes more

significant, and one obligor is reclassified from one-year ECL to lifetime ECL, we

would expect many other obligors to also experience a significant increase in credit

risk, based on their highly correlated net asset values. As a result, the total ECL for
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Figure 3.4: Plot of f (c) for various ρ , with T = 10, k ⇡ 5.2 and λ = 1, with a bucket size

of N = 100. The optimal thresholds, determined numerically, are c⇤ ⇡ 2.49 (ρ = 0.05),

c⇤ ⇡ 2.05 (ρ = 0.075) and c⇤ ⇡ 1.70 (ρ = 0.1).

this rating bucket would be unstable to estimate from the perspective of the bank.

To counter this, the conservative approach, focusing on the income volatility as-

pect, is to set the threshold c⇤ as far away from k as possible. In this extreme case,

which was confirmed numerically and does not depend on N, when ρ ! 1 ("per-

fect" correlation within the bucket), c⇤ ! 0 indeed. Another general conclusion

is that because only the income volatility portion depends on ρ , making λ larger

will increase the influence of ρ on the solution of the optimization problem. As

seen in Figure 3.5, for N = 1000, our choice of λ = 0.1 somewhat mitigated any

profound effect of ρ . However, numerically, for larger values of N and λ , solutions

tend to zero relatively hastily as ρ increases incrementally. Since c⇤ ⇡ 0 is not prac-

tical, these results are not displayed in the plots, although this relationship is still

important to acknowledge theoretically.
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Figure 3.5: Plot of f (c) for various ρ , with T = 10, k ⇡ 5.2 and λ = 0.1, with a bucket size

of N = 1000. The optimal thresholds, determined numerically, are c⇤ ⇡ 2.96 (ρ = 0.05),

c⇤ ⇡ 2.46 (ρ = 0.075) and c⇤ ⇡ 1.92 (ρ = 0.1).
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Chapter 4

Discrete-time formulation

4.1 Overview of modelling structure

In this chapter, an alternative formulation involving discrete-time observations is

incorporated. This logic is quite realistic, as obligor specific information from a

bank is typically observed at monthly or quarterly reporting dates. Here, we con-

sider instances t0 = 0 < t1 < · · · < tN = T and assume that tN�1  T � 1. This

assumption is without loss of generality, as we could simply disregard the instances

after time T � 1. There is no impact on provisions when switching above and be-

low the threshold c after T �1, since the loan’s one-year ECL equals lifetime ECL

when there is less than a year until maturity. We do not impose that (At)0tT is

necessarily a Brownian motion, but only assume that this stochastic process has

stationary and independent increments. Time continues to be measured in years,

and we maintain that the starting point A0 = k is the initial distance to default of an

obligor, depending directly on their initial default probability. From this discrete-

34



time perspective, the recognition portion is

N�1

∑
j=1

(T �1� t j)P(At j
> c | AT < 0) , (4.1)

and the volatility portion is

E

"
N�1

∑
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(T �1� t j)
⇣

1At j
>c �1At j�1

>c

⌘2
#

. (4.2)

It is clear that the recognition portion, along with the time-factor coefficient (T �

1� t j) in both portions, is constructed analogously to the logic of Section 2.1, of

course with a summation included rather than an integral. On the contrary, the

volatility portion takes here the effective variation between reporting dates into ac-

count and does not follow directly from the continuous-time formulation previously

discussed. In particular, the expression
�
1At j

>c�1At j�1
>c

�2
in (4.2) gives the value

1 (and zero otherwise) if the process changes from being above to below (or vice

versa) the threshold c from time t j�1 to t j. We can write the volatility portion as

E

"
N�1

∑
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⇣

1At j
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>c

⌘2
#
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.
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Naturally, we merge the two portions, and model the trade-off in a new optimization

problem

min
ck

f (c),

where

f (c) =
N�1

∑
j=1

(T �1� t j)P(At j
> c | AT < 0)

+λ
N�1

∑
j=1

(T �1� t j)
⇣

P
�
At j

> c, At j�1
 c
�
+P
�
At j

 c, At j�1
> c
�⌘

,

(4.3)

with λ > 0 being our familiar tuning parameter. Various approaches to modelling

the net asset value process (At)0tT will be investigated in the following subsec-

tions, including both continuous and discrete distributions for the increments of

(At)0tT .

4.2 Analyzing the optimization problem for continu-

ous asset distribution

In this section, we study the situation where the net asset value process has a con-

tinuous distribution. Before analyzing specific distributions, we rephrase our opti-

mization problem in terms of the distribution of At . We denote by Gt and gt the

cumulative distribution function and probability density function, respectively, of

the net asset value change At �A0 for a fixed time t.
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Proposition 3. The function f (c) in (4.3) can be written as

f (c) =
N�1

∑
j=1

(T �1� t j)
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c�k GT�t j

(�k� x)gt j
(x)dx
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(x)dx

◆

. (4.4)

Proof. Because the net asset value process has stationary increments, the cumula-

tive distribution function of At j
�Atk for j > k is Gt j�tk . For the recognition portion

of f (c), we derive the conditional probability

P(At j
> c | AT < 0) =

P
�
At j

> c, AT �At j
<�At j

�
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E
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1At j
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(�k� x)gt j
(x)dx

GT (�k)
, (4.5)

which follows from the procedure in Section 2.1, leading to an expression similar to

(2.7). The volatility portion simplification involves comparable methodology, with

some slight differences. First, we deduce that
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This is a condensed version of the derivation, as we are following the same proce-

dure as in the computation of (4.5). Similarly, this method yields
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so that the overall volatility portion is
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.

Merging the two portions, the objective function (4.3) results in (4.4).

To extend this analysis, a distribution must be established for the increments

of the net asset value, with the purpose of solving the optimization problem ana-

lytically when possible. In Subsection 4.2.1, we give a simple example where we

can find an explicit formula for the optimal threshold, while in Subsection 4.2.2

we present and numerically analyze the optimization problem in the case of the net

asset value given by Brownian motion.
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4.2.1 Considering a shifted exponential distribution for mod-

elling the net asset value

In this subsection, we assume the increments in the net asset value of an obligor are

of equal time length, such that t j =
j T
N

, with t j�t j�1 being constant. In addition, the

distribution of an increment, At j
�At j�1

, is given by G with corresponding density

g. More specifically, we consider the shifted exponential distribution with shift

parameter δ and mean parameter θ , such that

g(x) =
1

θ
e�

x�δ
θ

and

G(x) = 1� e�
x�δ

θ

with x� δ and θ > 0. In our situation, we specify δ < 0 to account for the obviously

realistic possibility of net losses occurring in any given time interval prior to matu-

rity. Under the assumption of equal time steps, we now have E(At j
) = k+ j(θ +δ )

and Var(At j
) = jθ 2, observing that the net asset value has greater variability over

longer periods of time. We further note that �k > δ , so that a default can theoreti-

cally occur in any time increment, with the initial default probability depending on

k directly.

In this situation, we examine the case when T = tN = t2 = 2 t1, such that we

have only one reporting date of the net asset value of the obligor, exactly halfway

to the time of maturity of the loan. We state an additional simple, albeit important

assumption, that T > 2. Otherwise, our problem would have no relevance to IFRS 9

expected credit loss, as we cannot have early recognition of credit risk if t1 =
T
2  1,
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since there would be no possible impact on provisions at the only reporting date

prior to maturity, for t1 � T � 1. We can find an explicit formula for the optimal

threshold, given in the following result.

Proposition 4. Consider the assumptions of this subsection and suppose that

1� e
k+δ

θ

1� e
k+2δ

θ

⇣
θ�(k+2δ )

θ

⌘ < λ <
1� e

δ
θ

1� e
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θ�(k+2δ )

θ

⌘ (4.6)

then the optimal threshold is given by
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Proof. Under the assumptions of this subsection, the objective function (4.3) is

simplified as

f (c) =
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.

Under the assumption that A0 = k > c, we eliminate the unrealistic possibility that

the loan is in IFRS 9 bucket 2 at the time it is issued. Consequently, we deduce that

P
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2
> c, A0  c

�
= 0 and P
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2
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, because P(A0  c)= 0

and P(A0 > c) = 1. Therefore, for our case where N = 2, the volatility portion of

f (c) from (4.3) simply becomes λ
�
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. Furthermore,
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,
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which, using (4.4), is expressed in terms of functions G and g as

f (c) =
T �2

2

R ∞
c�k G(�k� x)g(x)dx

P(AT < 0)
+λ

T �2

2
G(c� k). (4.8)

The next step in this problem is to further simplify f (c), take the partial derivative

with respect to c, and arrive at an expression for the solution to the minimization

problem, c⇤, depending on the other parameters involved. For the distribution of AT ,

we write AT = AT �A T
2
+A T

2
�A0 +A0, which shows that AT �A0 is the sum of

two independent and identically distributed random variables, namely, the random

variable AT �A T
2

and the random variable A T
2
�A0. This means that the distribution

of AT �A0 is a convolution, given by P(AT �A0 < x) =
R ∞
�∞ G(x�y)g(y)dy. Then

the initial default probability P(AT < 0) is derived from
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,

with the limits of integration in the second last equality being a consequence of the

fact that g(y) = 0 for y < δ , and G(�k� y) = 0 for �k� y < δ , or y >�k�δ .
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Obtaining P(AT < 0) now allows us to write our objective function in (4.8) as

f (c) =
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,

noting that, in the first equality, G(�k � x) = 0 for �k � x < δ , or equivalently

x >�k�δ , thus the integral

Z ∞
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G(�k� x)g(x)dx =
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G(�k� x)g(x)dx.

The next natural step is finding the derivative
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�c+2k+3δ

θ

✓
θ � (k+2δ )

θ

◆◆�

,

and in order to equate this to zero, we first acknowledge that T > 2, θ < ∞, and the

default probability P(AT < 0) = 1�e
k+2δ

θ

⇣
θ�(k+2δ )

θ

⌘

is of course finite. Therefore,

to satisfy f 0(c) = 0, we require

e
k+2δ

θ � e
�c+k+δ

θ +λ

✓

e
�c+k+δ

θ � e
�c+2k+3δ

θ

✓
θ � (k+2δ )

θ

◆◆

= 0,
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implying

e
�c+k+δ

θ



e
c+δ

θ �1+λ

✓

1� e
k+2δ

θ

✓
θ � (k+2δ )

θ

◆◆�

= 0 .

Examining the term e
�c+k+δ

θ , we observe from our initial specifications that �k > δ

or k + δ < 0, so that �c+ k + δ < 0. Since we desire a solution in the interval

0 < c⇤ < k, with |δ | > k > c, we assume the shift parameter δ is finite, ensuring

that �c+ k+ δ > �∞. This is reasonable, as we do not realistically consider that

infinite net losses can occur in a given time interval. Moreover, since θ > 0, and

all parameters are finite by assumption, we know e
�c+k+δ

θ > 0. All that remains is

solving

e
c+δ

θ �1+λ

✓

1� e
k+2δ

θ

✓
θ � (k+2δ )

θ

◆◆

= 0

yielding our result for optimal c⇤ given by (4.7).

However, we must establish an appropriate interval for λ to verify that our so-

lution (minimum) exists in the appropriate interval 0 < c⇤ < k, along with confir-

mation that f 00(c⇤)> 0, hence f (c⇤) is convex. Initially, we analyze the inequality

0 < c⇤ < k

or

0 < θ ln



1�λ

✓

1� e
k+2δ

θ

✓
θ � (k+2δ )

θ

◆◆�

�δ < k,

which is equivalent to the inequalities in (4.6) and gives our applicable interval

for the tuning parameter. From (4.7), considering the domain of the natural log
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function, we see that (4.6) also satisfies

1� e
k+2δ

θ

✓
θ � (k+2δ )

θ

◆

> 0

or

λ <
1

1� e
k+2δ

θ

⇣
θ�(k+2δ )

θ

⌘

since e
δ
θ > 0. Furthermore, we take the second partial derivative

f 00(c) =
T �2

2θ 2
⇣

1� e
k+2δ

θ

⇣
θ�(k+2δ )

θ

⌘⌘



e
�c+k+δ

θ

+λ

✓

e
�c+2k+3δ

θ

✓
θ � (k+2δ )

θ

◆

� e
�c+k+δ

θ

◆�

,

and following the same logic used when analyzing the first partial derivative, for

f 00(c)> 0 we require

e
�c+k+δ

θ

✓

1�λ

✓

1� e
k+2δ

θ

✓
θ � (k+2δ )

θ

◆◆

> 0,

meaning

1�λ

✓

1� e
k+2δ

θ

✓
θ � (k+2δ )

θ

◆◆

> 0,

or

λ <
1

1� e
k+2δ

θ

⇣
θ�(k+2δ )

θ

⌘ ,

already satisfied by (4.6), once again due to the fact that e
δ
θ > 0. This provides

certainty that f (c⇤) is convex, and to summarize, we have a proper solution to

the optimization problem in (4.7), given λ is selected in the interval derived in
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(4.6).

Focusing on the solution in detail, it is clear that c⇤ is decreasing in λ , consis-

tent with the notion from prior chapters that λ is associated with income volatility

management, thus an increased weight placed on it results in later recognition of

credit risk. It is also intuitive to note that, as k increases, keeping θ and δ con-

stant, the initial default probability decreases, since the distance to default becomes

larger at the time of origination of the loan. To confirm, we compute the first partial

derivative

d

d k
P(AT < 0) =

d

d k



1� e
k+2δ

θ

✓
θ � (k+2δ )

θ

◆�

=
e

k+2δ
θ

θ
| {z }

>0

k+2δ

θ
| {z }

<0

< 0 ,

leading us to the conclusion that P(AT < 0) is indeed decreasing in k. From the

initial assumptions of this subsection, we use the fact that θ > 0 and k+2δ < 0 to

confirm the sign of the derivative. As P(AT < 0) decreases, we see from (4.7) that

c⇤ increases, thus the overall solution is increasing in k.

The relationships of θ and δ with (4.7) are more complex, as they are interde-

pendent on the values of the other parameters in their effect on c⇤. However, using

appropriate sets of parameter choices that result in a solution existing in the interval

0 < c⇤ < k, some basic trends in these relationships can be observed. To demon-

strate this notion visually, we fix λ = 3 and k = 3.5, and examine the effect of θ

on c⇤ for different values of δ such that (4.6) is satisfied. In Figure 4.1, we indeed

see that c⇤ is increasing in θ , regardless of δ , in the applicable interval relative to k,

of 0 < c⇤ < 3.5. Additionally, we notice that c⇤ is a concave function of δ , and the
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Figure 4.1: Optimal thresholds versus corresponding θ values, with λ = 3 and k = 3.5, for

various values of the shift parameter δ .

increasing trend is less pronounced for larger values of θ . A logical explanation is

that, in general, E(At j
) = k+ j(θ + δ ) is increasing in θ , so if the mean net asset

value over the time interval is greater, we expect that the obligor is less likely to

default. This implies that the consequent initial default probability is lower, consis-

tent with the increasing relationship between c⇤ and k. As for the association being

weaker for higher θ , recall that Var(At j
) = jθ 2 is also increasing in θ , meaning the

net asset value is more volatile as this parameter value increases, providing sim-

ple reasoning as to why the curves "flatten out" in Figure 4.1. Likewise, using the

same predetermined λ and k values, the relationship between δ and c⇤ is investi-

gated, for various values of θ such that (4.6) is satisfied. Conclusively determining

the influence of δ on c⇤ theoretically is also of considerable complexity. Figure

4.2 conveys that, for these particular parameter selections, c⇤ is also increasing in

δ . To explain further, the shift parameter δ represents the worst case scenario, or

maximal loss, for an obligor in a given time interval. Therefore, as it increases, it
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Figure 4.2: Optimal thresholds versus corresponding δ values, with λ = 3 and k = 3.5, for

various θ values.

indicates the obligor is of higher credit quality, as they have less potential to have

a profound loss. In other words, this obligor would also be "farther from default"

in layman’s terms, so c⇤ should also increase, using reasoning from other relation-

ships already confirmed. Nevertheless, it is evident that c⇤ is a concave function

of δ , with the increasing relationship becoming slightly weaker for higher θ val-

ues. To provide justifiable evidence that the relationship is not conclusive, we can

actually find parameter selections such that (4.6) is satisfied, and c⇤ is decreasing

in δ . Figure 4.3 reveals that in this instance, with θ = 100, we indeed have a de-

creasing trend with respect to δ , with desired solutions existing in the appropriate

interval 0 < c⇤ < k. This counterintuitive observation is interesting, yet not overly

relevant, as it typically corresponds to very large θ values and extremely low initial

default probabilities. In fact, for the example in Figure 4.3, for δ = �3.6, the re-

sulting P(AT < 0) ⇡ 6.68 · 10�4, a miniscule default risk. Lastly, to provide some

context for these numerous parameters, we precisely set λ = 3, k = 3.5, θ = 14,
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Figure 4.3: Optimal thresholds versus corresponding δ values, with λ = 7, k = 3.5 and

θ = 100.

and δ =�3.6, so the initial default probability of the obligor is P(AT < 0)⇡ 0.03.

In practice, this is a realistic default risk, and the solution for this particular set of

parameter values is c⇤ ⇡ 2.31, which can be seen in Figure 4.4, where the optimal

threshold values are plotted for various λ . The decreasing relationship between c⇤

and λ is evident.
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Figure 4.4: Optimal thresholds versus corresponding λ values, with k = 3.5, θ = 14 and

δ =�3.6. A specific solution, for λ = 3 (c⇤ ⇡ 2.31) is labelled in red.
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4.2.2 Modelling the net asset value with Brownian motion

We now consider the case of the net asset value process driven by Brownian motion.

Concretely, we assume in this subsection that (At �A0)0tT is a Brownian motion.

With this modelling assumption, we can rephrase the objective function. We denote

by Φ and ϕ the cumulative distribution function and probability density function,

respectively, of a standard normally distributed random variable. Since Gt(x) =

Φ
�

xp
t

�
in this case of Brownian motion, we immediately obtain from Proposition 3

the following result.

Proposition 5. If (At �A0)0tT is a Brownian motion, the function f (c) in (4.3)

can be written as

f (c) =
N�1

∑
j=1

(T �1� t j)

R ∞
c�kp

t j

Φ

✓

�k�x
p

t jp
T�t j

◆

ϕ(x)dx

Φ

⇣
�kp

T

⌘ (4.9)

+λ
N�1

∑
j=1

(T �1� t j)

 
Z c�kp

t j�1

�∞

 

1�Φ

✓
c� k� x

p
t j�1p

t j � t j�1

◆!

ϕ(x)dx

+
Z ∞

c�kp
t j�1

Φ

 

c� k� x
p

t j�1p
t j � t j�1

!

ϕ(x)dx

!

.

Taking the partial derivative with respect to c in (4.9), we find that

f 0(c) =
N�1

∑
j=1

� (T �1� t j)
p

t j Φ

⇣
�kp

T

⌘

 

Φ

✓
�c

p
T � t j

◆

ϕ

✓
c� k
p

t j

◆!

+λ
N�1

∑
j=1

(T �1� t j)

"

�
Z c�kp

t j�1

�∞

ϕ(x)
p

t j � t j�1
ϕ

 

c� k� x
p

t j�1p
t j � t j�1

!

dx

+
Z ∞

c�kp
t j�1

ϕ(x)
p

t j � t j�1
ϕ

 

c� k� x
p

t j�1p
t j � t j�1

!

dx

#

.
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As these equations are quite elaborate and complicated, arriving at an analytical

solution relative to (4.3) is not feasible, although numerical results are certainly at-

tainable. To demonstrate an example of the objective function and its relevant min-

imum, consider a loan issued over ten years (T = 10) with yearly reporting dates

(N = 10), assuming equal time increments of (t j � t j�1) = 1 for j 2 {1,2, . . . ,10}.

We fix the initial distance to default, k, such that P(AT < 0) = 0.05. Accordingly,

P
⇣

AT�A0p
T

<
�kp

T

⌘

= 0.05 and k = �
p

T Φ�1(0.05) ⇡ 5.2. We observe the shape

of the objective function for some reasonably chosen λ values, and the respective

solutions to the minimization problem, in Figure 4.5.
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Figure 4.5: Plot of f (c) for various λ , with T = 10, N = 10, and k ⇡ 5.2. The optimal

thresholds, determined numerically, are c⇤ ⇡ 2.32 (λ = 5.5), c⇤ ⇡ 2.07 (λ = 6) and c⇤ ⇡
1.92 (λ = 6.5).

Note that for this specific example, smaller values of the tuning parameter

(λ < 5) produce solutions of c⇤ ⇡ k ⇡ 5.2, indicating the volatility portion is not

properly weighted, since the early recognition of credit risk would be considered

overwhelmingly important in that situation. Although an "ideal" selection of λ is

very subjective in terms of balancing the significance of the two portions of f (c),
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the choices in this example clearly result in solutions existing in the desired interval

of 0 < c⇤ < k. In addition, the decreasing relationship between c⇤ and λ is apparent,

identical to the conclusion established in the previous subsection, where the shifted

exponential distribution was used to model the net asset value.

Remark. We could study a model extension to a situation with multiple obligors,

similar to Chapter 3. However, the analysis would involve an expression of the form

E

"✓
L

∑
`=1

⇣

1A`
t j
>c �1A

t`
j�1

>c

⌘◆2
#

,

compared to Var
�

∑
L
`=11A`

t >c

�
from Chapter 3, where A` denotes the net asset value

of obligor ` = 1, . . . ,L. Because of this different expression, the study becomes

more convoluted without providing new conceptual insights, so that we refrain from

spelling out the details, but we note that the resulting optimization problem for this

discrete-time setting with multiple obligors could still be analyzed numerically.

4.3 Analyzing the optimization problem for discrete

asset distribution

4.3.1 Specific increments

In a discrete-time framework, we can consider a situation where the increments

At j
�At j�1

are explicitly defined in terms of assuming possible values, along with

their corresponding transition probabilities. In particular, we again consider the

case where T = tN = t2, letting t1 =
T
2 be the midpoint between the time the loan is

issued and time of maturity. Consistent with prior formulations, At0 = A0 = k > 0,
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and in this instance the optimization problem corresponding to (4.3) is simplified as

min
ck

f (c),

where

f (c) =
T �2

2
P
�
A T

2
> c | AT < 0

�

+λ
T �2

2

⇣

P
�
A T

2
> c, A0  c

�
+P
�
A T

2
 c, A0 > c

�⌘

,

equivalent to

f (c)=
T �2

2
P
�
A T

2
> c |AT < 0

�
+λ

T �2

2

⇣

P
�
A T

2
> c, k c

�
+P
�
A T

2
 c, k> c

�⌘

,

(4.10)

assuming again that λ > 0. The increments are independent, with fixed transition

probabilities

P
�
A T

2
�A0 = b1

�
= P

�
AT �A T

2
= b2

�
= p1 > 0.5,

P
�
A T

2
�A0 =�b1

�
= P

�
AT �A T

2
=�b2

�
= 1� p1 < 0.5.

Here, we do not require identical distribution of the two increments, but impose

b2 > k > b1 > 0. We also specify k + b1 � b2 < 0 < k � b1 + b2, which implies

the initial default probability P(AT < 0) = (1� p1)
2 + p1(1� p1) = 1� p1 < 0.5.

Therefore, relative to a specific obligor, we select p1 = 1�P(AT < 0). Ultimately,

the solution to the optimization problem, in terms of possible intervals for c⇤, can

be expressed as a piecewise function dependent on λ . We do consider the endpoints
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of the interval 0  c⇤  k in this instance. The objective function is

f (c) =

8

>>>>>><

>>>>>>:

T�2
2 if 0  c < k�b1

T�2
2

�
p1 +λ (1� p1)

�
if k�b1  c < k

T�2
2 p1(1+λ ) if c = k

and since the coefficient T�2
2 appears in each scenario, we examine all the other

coefficients as a means of solving for the minimum of f (c). First, we note that

p1 +λ (1� p1)< p1(1+λ )

regardless of the value of λ , since 1� p1 < p1 for our specified p1 > 0.5. Therefore,

we are certain that a solution of c⇤ = k will not be chosen. Secondly, we see that

p1 + λ (1� p1) < 1 if λ < 1, for any p1 > 0.5, leading to a clear solution to the

minimization problem in terms of optimal c⇤ selection intervals:

select

8

>>>>>><

>>>>>>:

k�b1  c⇤ < k if λ < 1

any 0  c⇤ < k if λ = 1

0  c⇤ < k�b1 if λ > 1

However, the instance when λ = 1 provides us with no information other than c⇤ 6=

k, while the case with 0  c⇤ < k�b1 allows no opportunity to observe a possible

IFRS 9 significant increase in credit risk prior to an eventual default. To conclude,

choosing 0 < λ < 1, resulting in a solution of k� b1  c⇤ < k, is most feasible in

this setting.
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4.3.2 General increments

In this subsection, we still consider just two reporting dates, T
2 and T , but in each

period we have K different possible values for the increments At j
�At j�1

, including

b1, . . . ,bK , comprised of both positive and negative integers, with relevant probabil-

ities p1, . . . , pK . A general discrete random variable is modelled in each step, where

we still assume that the changes in the two time steps are independent and identi-

cally distributed. In particular, we explicitly let X and Y be the independent random

variables, in time order, so that A T
2
= k+X and AT = k+X +Y . To evaluate the

objective function in this instance, starting with the recognition portion of f (c), we

compute

P
⇥
A T

2
> c|AT < 0

⇤
=

P
⇥
A T

2
> c, AT < 0

⇤

P[AT < 0]

=
P[X > c� k, X +Y <�k]

P[X +Y <�k]

=
P[
SK

n=1{X = bn}\{X > c� k}\{X +Y <�k}]

P[
SK

n=1{X = bn}\{X +Y <�k}]
(4.11)

=
∑

K
n=1 P[{X = bn}\{X > c� k}\{X +Y <�k}]

∑
K
n=1 P[{X = bn}\{X +Y <�k}]

=
∑

K
n=1 P[{X = bn}\{bn > c� k}\{bn +Y <�k}]

∑
K
n=1 P[{X = bn}\{bn +Y <�k}]

=
∑{n:bn>c�k}P[{X = bn}\{bn +Y <�k}]

∑
K
n=1 P[{X = bn}\{bn +Y <�k}]

=
∑{n:bn>c�k} pn P[Y <�k�bn]

∑
K
n=1 pn P[Y <�k�bn]

(4.12)

=
∑{n:bn>c�k} pn ∑{`:b`<�k�bn} p`

∑
K
n=1 pn ∑{`:b`<�k�bn} p`

,

using that the events in (4.11) are disjoint, and independence of X and Y in (4.12).

Under the assumption that A0 = k > c, from the volatility portion of f (c), we have
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that

P
�
A T

2
 c
�
= P[X  c� k]

=
K

∑
n=1

P[{X = bn}\{X  c� k}]

= ∑
{n:bnc�k}

P[{X = bn}]

= ∑
{n:bnc�k}

pn ,

resulting in (4.10) being expressed in this setting as

f (c) =
T �2

2

∑{n:bn>c�k} pn ∑{`:b`<�k�bn} p`

∑
K
n=1 pn ∑{`:b`<�k�bn} p`

+λ
T �2

2 ∑
{n:bnc�k}

pn

=
T �2

2

"

∑{n:bn>c�k} pn ∑{`:b`<�k�bn} p`

∑
K
n=1 pn ∑{`:b`<�k�bn} p`

+λ ∑
{n:bnc�k}

pn

#

=
T �2

2

"

∑{n:bn>c�k} pn ∑{`:b`<�k�bn} p`

∑
K
n=1 pn ∑{`:b`<�k�bn} p`

+
∑

K
n=1 pn ∑{`:b`<�k�bn} p`

�
λ ∑{n:bnc�k} pn

�

∑
K
n=1 pn ∑{`:b`<�k�bn} p`

#

.

Notice that the expression for f (c) depends on c only in the index sets in two of the

summations. This implies that f (c) is piecewise constant with jumps when c= bn+

k for n = 1, . . . ,N. Moreover, the sum ∑{n:bn>c�k} pn is decreasing in c, as it relates

to the early recognition of credit risk. On the contrary, the sum ∑{n:bnc�k} pn in the

second term of the numerator of the objective function, is increasing in c, being part

of the volatility portion. As a result, the optimal c⇤ is chosen in an interval between

bn + k and bn+1 + k such that the expression for f (c) on this interval is minimal

compared to values on other intervals. Therefore, the solution is similar to that
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of Subsection 4.3.1, but more intricate and cumbersome. Due to the complexity

of this expression, which depends on the exact distance to default along with the

incremental and probability values, a computer program is required to select the

minimum numerically. For each n, it will select cn with bn + k  cn < bn+1 + k

and compute f (cn). Because f is constant on such intervals, the specific choice

of cn within the interval does not affect the value of f (cn). Among all f (cn) for

different n, the program will choose the one with the smallest value, say f (cn⇤), as

the minimum.

4.4 Relating our model to the European Union stress

test and Standard and Poor’s default data

For this section, we use the assumption from Subsection 4.2.2 regarding the net

asset value modelling, such that (At �A0)0tT is a Brownian motion, and apply it

in practical settings.

4.4.1 Selecting λ in comparison to the European Union frame-

work

Similar to the procedure in Section 2.2, to rationalize possible selections of λ , we

relate the tuning parameter choice in this discrete-time formulation to the EU stress

test definition of a significant increase in credit risk. Recall that the stress test frame-

work of the European Banking Authority (2018) defines a significant increase in

credit risk as being 200% from the initial credit risk. We maintain that a⇤ is the crit-

ical value so that P(a⇤+WT�t < 0) = 3P(AT < 0), and compare P(a⇤+WT�t < 0)
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with its relative value P(c⇤+WT�t < 0) for our optimal threshold c⇤. For different

initial default probabilities, the minimizers are determined numerically using the

objective function in (4.9). Figure 4.6 displays the relationship between the initial

lifetime default probability P(AT < 0) and the critical lifetime default probability

P
�
c⇤+WT

2
< 0
�
, at the midpoint t = T

2 . As expected, a positive relationship between
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Figure 4.6: Plot of P
�
c⇤+WT

2
< 0
�

versus P(AT < 0), for various λ , with T = 10. The

dashed line shows the relationship outlined by the EU stress test, which is linear by defini-

tion.

the critical lifetime default probability and the initial lifetime default probability is

observed for each λ value displayed. Evidently, it is reasonable to conclude that,

for this ten-year loan, the value P(a⇤ +WT�t < 0) from the stress test threshold

corresponds to a parameter choice of λ between 5.5 and 6. When comparing this

result to the λ selections investigated in Section 2.2, slightly lower tuning parameter

values are appropriate in the continuous-time setting. As the two volatility portions

we introduced, (2.2) and (4.2), differ in terms of their interpretations of ECL in-

stability for a bank, it is not surprising that the two formulations do not produce
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exactly the same results. Nonetheless, the precise value of λ will always be sub-

jective, so we simply verified that our discrete-time problem formulation is indeed

also comparable to a practical framework.

4.4.2 Analyzing the income volatility portion with default data

by Standard and Poor’s

To directly relate our model to recent financial data, we use Standard and Poor’s

(2018) global corporate average default rates and yearly credit grouping transition

rates. Each defined credit rating group has assigned one-year and lifetime probabili-

ties of default, based on corporate averages from 1981 to 2017, which is relevant for

any future length of time up until maturity of a loan. Additionally, yearly transition

probabilities to all possible credit rating groups are available. From this informa-

tion, evaluating what percentage of loans experience a significant increase in credit

risk, depending on the threshold c⇤, is critical in terms of determining the severity

of income volatility for a bank in a particular year.

As far as integrating this data into our problem formulation, we first specify an

initial rating group, and subsequently observe the performance at time t = 1 year

of a loan issued over T = 10 years. The transition rates reveal proportions of loans

in each respective rating group possessing lower credit quality, one year since orig-

ination. Furthermore, under the modelling structure of Subsection 4.4.1, possible

threshold solutions are approximated using P(c⇤+WT�t < 0) = P(c⇤+W10�1 <

0) = P(c⇤+W9 < 0), in which nine-year probabilities of default over the remaining

time to maturity are used, relative to the current credit rating group at time t = 1. For

various c⇤ values defined by the cutoff points described by progressive downgrades
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Figure 4.7: Plot of reclassification percentage from IFRS 9 bucket 1 to buckets 2 or 3, after

year one of a ten-year loan, for different initial ratings.

in credit rating groups, the yearly transition rates reveal the percentage of loans

that would transfer to an IFRS 9 bucket of worsened performance status. Assum-

ing each loan examined originated in bucket 1, and that c⇤ < k, Figure 4.7 displays

the influence of the threshold level on the IFRS 9 bucket reclassification rate, for

three different initial rating groups. With an initial rating group of A, the initial

distance to default for a ten-year loan is k =�
p

10Φ�1(0.0147)⇡ 6.89, and if we

attribute, for example, a significant increase in credit risk over a one-year period

being a downgrade to rating BBB or worse, then c⇤ = �
p

9Φ�1(0.0285) ⇡ 5.71.

From our illustration, it is evident that the loan reclassification rate from one-year

ECL to lifetime ECL is more profound for lower initial credit rating groups (such as

BB), meaning these obligors that have a higher risk of non-payment also contribute

significantly to increased income volatility for the bank that issues their loans.

The actual calculation of ECL involves sophisticated models for each compo-

59



nent, including PD, EaD, and LGD for a credit facility. For demonstration purposes,

a proxy ECL calculation can be created to exemplify the relationship between ECL

and IFRS 9 loan reclassification, incorporating the same default data from Stan-

dard and Poor’s (2018). We still consider the case when T = 10, and assess three

different samples of 100 similar loans having the same initial and current rating

group, namely ratings A, BBB, and BB for the three samples, as of the midpoint

of T = 5 years. After year 5, we have three samples of 100 loans each, with one

sample experiencing a common migration from rating group A to BBB, the sec-

ond showing a deterioration from rating group BBB to BB, and the third having a

transition from rating group BB to B. In summary, all 100 obligors in a particular

sample have undergone a credit quality downgrade of three notches. We then fix

EaD = $500,000 and LGD = 0.1, and use both one-year and lifetime PDs (for the

five remaining years to maturity) to calculate proxy ECLs, simply from the product

of the three components. Figure 4.8 emphasizes the difference between one-year

and lifetime ECL for each sample from an initial rating group, assuming all loans

originated in IFRS 9 bucket 1. Essentially, if a downgrade of three rating groups is
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Figure 4.8: Plot of total ECL versus number of years involved in the calculation, for sam-

ples of 100 loans grouped in the same rating at the midpoint of a ten-year loan.

deemed sufficient enough to constitute a significant increase in credit risk, lifetime

(five-year) ECL is computed. Otherwise, ECL for a one-year horizon is calculated.

Consistent with the interpretation of Figure 4.7, we observe that the effect of reclas-

sification from bucket 1 to bucket 2 is considerably more drastic for inferior rating

groups. Clearly, the total ECL for a sample of just 100 loans increases sharply, by

over $700,000, when current rating group B, corresponding to initial rating group

BB, is classified in IFRS 9 bucket 2 rather than bucket 1.
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Chapter 5

Conclusion

While the delayed recognition of credit losses, particularly in the United States

subprime mortgage market, was heavily scrutinized following the global financial

crisis of 2007–2008, the actual solution to this concern involves a complex trade-

off involving income volatility. The recent introduction of the accounting standard

IFRS 9 specifies that lifetime ECL should be estimated for loans that have experi-

enced a significant increase in credit risk, as compared to one-year ECL. Although

additional provisions address the importance of the early recognition of credit risk,

the exact thresholds set by banks for IFRS 9 loan reclassification directly affect the

stability, or lack thereof, of their ECL calculations.

Modelling this trade-off statistically, and incorporating both continuous-time

and discrete-time formulations, allows us to examine the optimal threshold selec-

tion and its dependence on various factors. Since each relevant model analyzed is

influenced by a predetermined initial default risk, our approach can be applied ap-

propriately to an extensive variety of loans in different portfolios. By considering

a problem variation that accounts for multiple obligors in a credit rating group, we
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determined how other critical factors, such as asset correlation and rating bucket

size, impact the optimal threshold.

To supplement the knowledge obtained from the numerous parameters and rela-

tive solutions to our optimization problem, the applicability of the model structure is

demonstrated through a practical definition as well as recent default data. The eval-

uation of several optimal threshold values, in comparison to the European Banking

Authority (2018) stress test, conveys that our framework is effective in comparing

banks’ different definitions of what comprises a significant increase in credit risk.

The immediate consequence of establishing a precise threshold, in association with

this statistical model, is illustrated with Standard and Poor’s (2018) historical de-

fault data, clearly capturing the relevance of the volatility portion from the inherent

objective function. Regardless, our framework not only provides solutions to this

intricate trade-off, but reveals the realistic subjectivity involved in balancing the

early recognition of credit risk with income volatility in a suitable manner.
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