
On Improving Green Mining For Energy-Aware Software
Analysis

Stephen Romansky, Abram Hindle

Department of Computing Science
University of Alberta
Edmonton, Canada

{romansky, abram.hindle}@ualberta.ca

Abstract
Consumer demand for longer lasting battery life
in mobile computers, as well as industry inter-
est in energy efficient cloud infrastructure, cre-
ates a need for hardware and software energy ef-
ficiency improvements. One way to tackle this
problem is from a software perspective. If it were
known which software changes influenced energy
consumption, then tools could be created to help
software professionals create more energy efficient
software. The process of extracting energy con-
sumption information, Green Mining, is time de-
manding because researchers must run many tests,
with sufficient coverage, on each revision in a
software product multiple times. The time re-
quired for testing acts as a barrier to extracting
energy consumption measurements from new soft-
ware systems. Therefore, this work proposes, im-
plements, and evaluates a search-based approxima-
tion method that trades some precision for a speed-
up in the mining process. This speed-up enables re-
searchers to study additional software systems that
were too costly to investigate before.

1 Introduction
The energy efficiency of software and hardware has
become a hot topic for mobile consumers and soft-
ware service providers. Consumers tend to own
many battery-limited mobile devices such as lap-
tops, smart phones, and tablets. Battery-limited
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devices would all benefit from higher energy ef-
ficiency. In industry, there are service providers
that run the same software on hundreds of com-
puters. For these service providers, a small soft-
ware energy efficiency gain could lead to large cu-
mulative savings including reductions in cooling
expenses, electricity costs [1], carbon emissions,
and carbon emission taxes. If engineers and de-
velopers had more energy awareness of how soft-
ware changes impacted program energy efficiency,
they would be able to better set and manage soft-
ware energy consumption goals. Engineers and de-
velopers could then meet the demands of industry
and consumers. Collecting reliable measurements
and profiles of software energy use is difficult for
most software professionals because development
tool support, instrumentation, and information log-
ging support are lacking for hardware and software
available to many developers. Thus, this work ex-
plores a method to speed up energy profile collec-
tion to help researchers find relationships between
software change and energy consumption.

Industry and researchers have studied methods
to improve energy efficiency by modifying both
hardware and software. One such study in indus-
try is the usage of power management software [2]
on workstations to enforce practices such as screen
savers and hardware idling after period of inactiv-
ity. Savings can also be gained from using network
manager software [1] that remotely starts, or wakes
up, work stations when users try to access their
workstations instead of leaving the machines run-
ning while users are away. Researchers have stud-
ied additional software practices that reduce power
consumption by examining the interaction of soft-



ware with the CPU, and hard drive [3]. Thus, de-
velopers can gain more energy efficiency by orga-
nizing tasks like disk access and CPU usage in their
software. Other work has looked at profiling soft-
ware [4, 5] to locate areas with potential optimiza-
tions with respect to energy consumption. The aim
of this work is to improve the Green Mining tech-
nique so that researchers are able to access old en-
ergy consumption measurements quickly in order
to locate unused energy information from software
repositories.

Green Mining [6,7] is the study of how software
change affects the energy consumption of software.
Green Mining provides the original methodology
for extracting historic energy consumption profiles
from computer programs. The original method is
expensive with respect to time. A software product
with many revisions takes many more test runs to
profile the software’s energy consumption in rela-
tion to its change over time. An energy profile is
a profile of the past or historical energy consump-
tion utilization of an application. In terms of Green
Mining, an energy profile is the measurement of
energy consumption over different revisions of a
program. The research question that motivates this
work is, “Given a required level of accuracy how
many revisions need to be measured in order to ex-
tract a historical software energy consumption pro-
file from a software product?” If a solution exists
Green Mining of software energy profiles could be
sped up, enabling practitioners to spend less time
extracting profiles of their own software. In turn,
researchers could use this new historical data to
build corpus-based models to reason about the rela-
tionship between software change and energy con-
sumption.

This work proposes a solution based on search-
based software engineering (SBSE) [8], which
aims to solve difficult software engineering prob-
lems with search-based, or optimal, method selec-
tion techniques. A piece-wise linear interpolation
method is used to search for sets of optimal revi-
sions that give the best historic energy consump-
tion estimates. The best historic energy profile es-
timate has the least time requirement and highest
accuracy. Linear interpolation, between revisions,
is chosen to approximate energy consumption data
because there have been no prior attempts to opti-
mize the extraction time of Green Mining profiles.
The piece-wise linear interpolation approximation
technique allows useful historic green mining en-

ergy profiles to be collected much more quickly
than the current method. The current method ex-
amines each revision of a software product with out
approximating data. This work demonstrates

• the time consuming nature of harvesting his-
toric energy consumption information,

• how to trial an energy consumption approxi-
mation technique on collected measurements,

• a method for evaluating the new technique
against the original, and

• potential areas to explore in future works.

2 Prior Work
Energy consumption needs a unit of measurement
and a method for visualizing the measurements.
Researchers perform energy measurements using
Joules, a unit of measure from the International
System of Units (SI) that provides a measurement
of energy consumed. Watts, another SI unit, pro-
vides a measure for the rate at which work is done
and the rate of energy consumption. Watts per
second are equivalent to Joules. Researchers can
visualize captured energy consumption measure-
ments as watts over time. Visualization of captured
energy consumption measurements can help with
data analysis when identifying which part of hard-
ware or software had an interesting influence on en-
ergy consumption.

Figures 1 and 2 depict collected energy con-
sumption measurements, otherwise known as en-
ergy profiles, sorted by software revision. Figure
1 shows an energy profile for the Android Fennec
web browser application. The Fennec energy pro-
file took 33 hours to extract. Figure 2 shows an en-
ergy profile for the Android calculator application1

which took 268 hours to extract. The energy pro-
file measurements are collected by creating a set of
robust tests for a software product. These tests are
run repeatedly while energy consumption is mea-
sured. Hindle et al. [6] introduced the method-
ology for extracting these energy profiles and ex-
plored the instrumentation required to get empiri-
cal results from testing.

1By Xlythe on GitHub, for Cyanogen an
open source Android mobile operating system.
https://github.com/Xlythe/android packages apps Calculator
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Figure 1: Fennec Green Mining Model
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Figure 2: Calculator Green Mining Model

Green Mining [6] was proposed to investigate
the relationship between software change and soft-
ware energy consumption changes. The relation-
ship between software energy consumption change
and software change is studied by extracting en-
ergy profiles from software applications like Fen-
nec, shown in Figure 1, and Calculator, shown in
Figure 2. These energy profiles are then examined
with respect to software changes. Green Mining
is not currently practiced in industry. An energy
profile contains measurements of the mean watts

for each software revision examined. Energy pro-
files enable developers to understand their past per-
formance and regressions. Such energy profiles
have been extracted from both desktop [9] and mo-
bile [10] platforms. The energy profiles enable re-
searchers to study and model how software change
relates to change in software energy consumption.

The time required to manually extract a com-
prehensive energy profile is large and cumbersome
because in the original Green Mining method all
software revisions are tested. Therefore the Green
Miner [10] testbed was used to extract the en-
ergy profiles in Figure 1 and 2. The Green Miner
provides automated energy consumption measure-
ment, testing, and result reporting, reducing the ef-
fort, but not the time, required to harvest these mea-
surements. Figures 1 and 2 show box plots de-
picting the distribution of mean watts and joules
consumed when testing the respective Android ap-
plications, sorted by software revision. Peaks and
troughs were manually annotated. The annotated
regions may have spiked or dipped due to poor test
or software run-time behaviour such as a thread
hanging or failing to exit a loop. If the cause of the
variance could be identified in the energy profiles,
then tools could be created to monitor and predict
the changes in energy consumption that a change-
set could introduce.

The Green Miner [10] testbed uses kits consist-
ing of a Raspberry Pi, an Arduino, an Android
phone, and an INA219 IC. The kits are used to mea-
sure the energy consumption of software under test
running on the mobile phone. A power supply is
wired through the INA219 IC to the battery con-
tact of the mobile device. When test cases are be-
ing performed on the mobile device, the INA219
IC measures current and voltage of the mobile de-
vice to produce approximately 50 readings per sec-
ond. An Arduino receives data from the INA219
IC and relays this information to the Raspberry Pi.
Once testing has been completed the Raspberry Pi
assembles a tarball of the collected data and sends
it to a web service. The web service is responsible
for storing data from multiple kits, it is also capa-
ble of scheduling test batches and performing data
analysis to aid researchers.

To improve the method employed by Green Min-
ing for extracting energy profiles SBSE was in-
vestigated. SBSE was proposed by Harman and
Jones [8] as a means to solve difficult SE research
problems using search-based techniques. Harman



and Jones show how to translate SE problems [8]
into search problems by defining three ideas. The
first is a representation of the potential solutions
to a problem, the second is a fitness function that
distinguishes which solution is better between two
search results, and the third is a set of operators that
can be manipulated to control the results of the cho-
sen search techniques. Harman et al. [11] provides
a field summary of some of the work done since
the initial proposal. Harman et al. also encourages
the application of experimental search-based tech-
niques to SE fields that SBSE has not previously
been applied to, such as software energy consump-
tion profile extraction. This approach was investi-
gated since no prior optimizations had been applied
to the Green Mining methodology.

3 Method
The original Green Mining [6] methodology re-
quires a software product that has a sequence of
revisions that are compilable, and a set of tests cov-
ering use cases of the software product. An energy
profile can be extracted from the software product
by running the set of use-case tests on each revi-
sion and measuring energy consumption. The re-
sult of this process can be seen in Figure 1 and 2.
What the figures do not show is how time consum-
ing this energy profile extraction process is. Con-
sider that it may take several minutes to measure
the energy consumption of a single software revi-
sion with a set of tests. This one revision must then
be tested and measured multiple times to reduce the
error and increase the accuracy of the energy con-
sumption measurement. For example, if it took 3
minutes to test one revision, and each revision was
tested 40 times, and there were 200 revisions in the
software product under investigation, it would take
400 hours to extract an energy profile for the prod-
uct.

To obtain an improvement in the current rate
of Green Mining this work focuses on the idea
of spending less time by examining fewer revi-
sions. The energy consumption measurements
from the skipped revisions is instead approximated.
This speeds up the Green Mining methodology by
spending less time in the testing phase.

To implement this idea, a variable is defined
to control how many revisions are skipped in the
approximation technique. The revision control
variable is named the neighbour distance. If a

revision is picked for examination then the next
neighbour distance revisions are not examined.
For example, if the neighbour distance is 2 and the
set of software revisions is R = {0, 1, 2, .., n} then
the examined revision E will be E = {0, 3, 6, ..}.
Generally let there exist a set of software revisions
R = {0, 1, 2, .., n}. The revisions to be examined
will then consist of the elements E as defined by
E = {e | e mod (neighbourdistance + 1) =
0, e ∈ R}

The neighbour distance is the closest neighbour
to an examined revision. For a neighbour distance
of 2, one must travel past 2 neighbours after a re-
vision has been examined. Green Mining where all
revisions are explored has a neighbour distance of
0. A function for picking revisions for examination
can then be defined which takes a set of revisions
and a neighbour distance as parameters. Let the
function be,

revisionP icker(R, d) = {e | e mod (d+ 1) = 0, e ∈ R}

where R is a set of revisions from a software prod-
uct and d is a chosen neighbour distance.

With a set of examined revisions E, and the
knowledge of which revisions were not examined
while building E, linear interpolation can be ap-
plied to the set R\E to approximate all missing en-
ergy measurements from the skipped software revi-
sions. This is done by taking two consecutive revi-
sion test results from E and creating a vector from
the earlier revision point to the older revision point.
The skipped values can then be approximated by
linear interpolation based on the distance between
that revision and the closest revisions in E.

To understand the accuracy of different neigh-
bour distances, approximation technique output
was compared with the complete energy profile of
an application. The complete energy profile of an
application is the energy profile created from test-
ing every revision of the application. This complete
energy profile is the same as the profile obtained
from the original Green Mining technique. Multi-
ple approximated energy profiles can be created by
altering the neighbour distance parameter of the re-
vision picker function and applying the function to
an existing energy profile. The linear interpolation
method can then be applied to the revision picker
function output sets to create approximated energy
profiles for comparison.



Two metrics are used to identify the best neigh-
bour distance for approximating energy profiles for
a given amount of effort or time spent: a metric for
determining the accuracy of each approximation,
and a means to calculate how long it takes to col-
lect the measurements needed to approximate the
energy profile. To determine energy profile model
accuracy with respect to the original Green Mining
technique, which examined all revisions, the root
mean squared deviation (RMSD) is calculated be-
tween an approximated energy profile and the orig-
inal energy profile. RMSD is calculated using the
following formula,

RMSD(M̂,M) =
√
MSE =

√√√√ 1

n

n∑
i=1

(m̂i −mi)
2

where m̂i,mi are elements of M̂ and M respec-
tively, M̂ is the approximated model, M is the orig-
inal model, and n is the number of elements in M .
The approximated profile with the lowest RMSD is
the most accurate. The amount of time to generate
each approximated energy profile can be calculated
from the number of revisions used to create the ap-
proximated energy profile.

To extend this method to real scenarios, a par-
tial set of examined revisions, P , is defined from
a whole set E such that P ⊆ E. The linear inter-
polation method can then be applied to the partial
set of examined revisions P to create an approxi-
mated profile. An online procedure for maintaining
an approximated green mining profile would be to
initially choose a set of revisions to evaluate, E, to
choose the earliest and latest revision in E, to mea-
sure the revisions, and to add them into P . Revi-
sions from E can be selected and measured, the re-
sults can be added to P . At any point in this process
the approximate model will be the piecewise lin-
ear interpolation of P until P = E, calculated the
same way as E would be calculated. For the partial
approximated energy profiles it is also possible to
record the RMSD with respect to the original Green
Mining technique and the amount of revisions ex-
amined to produce the approximated model. The
number of revisions used to create the approxima-
tion and the RMSD of the approximation allow the
approximated profile to be compared with other en-
ergy profiles of the same application.

3.1 Method Discussion
The development of the proposed approximation
method was guided by the 3 points used to con-
vert a software engineering problem into an SBSE
problem. A representation of the potential solution
to the Green Mining speed-up problem was cho-
sen as approximated energy profiles computed via
piece-wise linear interpolation. A fitness function,
the RMSD, for identifying which approximated en-
ergy profile is the most accurate was found and ap-
plied. Then an operator to manipulate the results of
the approximated energy profile generating func-
tion was defined as the neighbour distance.

If revisions are picked in order when extracting
partially approximated energy profiles the RMSD
values will be skewed. For example, if there are
100 revisions and revisions 1, 5, and 9 have been
selected to build an approximated energy profile,
then there will be approximated measurements for
revisions 1 through 9, and no measurements for 10
through 100. Therefore to better fit the approxi-
mated energy profile to the whole energy model of
a given software product, a custom examination or-
der function is created given a set of revisions to
be examined. The first 2 revisions examined by
this function are the first and last revisions respec-
tively. In the previous scenario where 100 revi-
sions were present, revisions 1 and 100 would be
examined and linear interpolation would approxi-
mate values for revisions 2 through 99. The or-
dering function then takes the middle revision of
the examination set and adds it to the examination
order. Using the middle revision, the examination
set is split into two subsets. The same procedure
is then applied to the new subsets 4 times until 15
middle revisions have been picked. 15 revisions
was found to give reasonable results. Consider the
example of 100 revisions with a neighbour distance
of 2, the order of revisions evaluated would be
first be: {1, 100, 49, 73, 85, 91, 79, 61, 67, 55, 25,
37, 43, 31, 13, 19, 7, ...}. When using a higher
number than 4 in the bisection routine there was
little visible change in the RMSD value of the ap-
proximated energy profiles. Therefore, any remain-
ing untested revisions in the E set would be ex-
amined in order to smooth out the approximated
model from left to right. Partial approximated en-
ergy profiles in this work are all generated follow-
ing this custom examination ordering method.

Prior to this method, git bisect, a binary search
like method, was explored to approximate energy



profiles. Git’s bisect function is used to find a
bug introducing revision in a software repository.
Given the property that revisions before the bug
can be considered bug-free, and revisions after the
bug are considered to be buggy, the revisions can be
sorted. The motivation for considering this method
is that it can be used to identify revisions that in-
troduce significant changes in a software product’s
energy consumption. Energy consumption changes
introduced by new revisions are independent of one
another. If a revision introduced an energy con-
sumption increase, it may or may not ever be fixed
in a later revision. However, a later revision may
introduce an energy consumption decrease for an
unrelated reason. The later revision would hide the
revision that introduced the energy consumption in-
crease, which would prevent the software revisions
from being labeled with respect to the original re-
vision’s energy consumption increase being fixed.
Thus, a binary search could not be applied to the
software revisions since the original energy con-
sumption increasing code may not have been fixed
in the later revision. Instead of binary search, local
estimates, such as piece-wise linear interpolation,
that exploit the performance stability of the soft-
ware are used.

4 Case Study
The approximation technique was applied to 2 An-
droid applications to determine which neighbour
distances give the highest time savings and accu-
racy. The Mozilla Fennec Android web browser
application was mined in 2 experiments prior to
this work. Fennec test batch 1 used 228 unique
software revisions to test energy consumption
while actively reading a web page, and Fennec test
batch 2 used 252 unique software revisions to test
energy consumption while reading a web page and
idling on the web page. The Android calculator ap-
plication was found and 201 unique revisions were
built and tested for this work. On each set of green
mining energy profiles a neighbour distance of 1 to
20 was applied in the approximation technique to
create partial and full approximated models.

4.1 On Mining Android Calculator
The Fennec Android application was mined prior
to this work. A small criteria was created to pick
a software application for Green Mining to be ex-

 1  2  3  4  5

 6  7  8  9 10

11 12 13 14 15

16 17 18 19 20

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0 30 60 90 0 30 60 90 0 30 60 90 0 30 60 90 0 30 60 90

Revisions Examined

R
M

S
D

Figure 3: Fennec RMSD vs Total Revisions Exam-
ined using neighbour distance 1 to 20 on test batch
1

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

0 25 50 75 100125 0 25 50 75 100125 0 25 50 75 100125 0 25 50 75 100125 0 25 50 75 100125

Revisions Examined

R
M

S
D

Figure 4: Fennec RMSD vs Total Revisions Exam-
ined using neighbour distance 1 to 20 on test batch
2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

0.04

0.08

0.12

0.16

0.04

0.08

0.12

0.16

0.04

0.08

0.12

0.16

0.04

0.08

0.12

0.16

0 25 50 75 100125 0 25 50 75 100125 0 25 50 75 100125 0 25 50 75 100125 0 25 50 75 100125

Revisions Examined

R
M

S
D

Figure 5: Idle Fennec RMSD vs Total Revisions
Examined using neighbour distance 1 to 20 on test
batch 2

amined in addition to Fennec. The software appli-
cation needed to be a FLOSS Android application,
the software had to have more than 150 revisions
in its version control system, the software system
needed a very small set of third party dependencies
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Figure 7: Randomized Ordered Calculator Exam-
ination RMSD vs Total Revisions Examined with
Neighbour Distances 1 to 20

(if any), and the software needed to take less than
10 minutes for the first author to figure out how to
compile a revision of the application. The FLOSS
requirement gives researchers access to the soft-
ware changesets that are associated with the appli-
cation that is going to be mined, which are needed
to identify any relationship between the software
changesets and energy consumption change. The
10 minute or less compile rule was used because
many FLOSS applications were often not in an eas-
ily buildable state.

These criteria were used to find 3 Android ap-
plications only 1 of which was chosen. The cal-
culator application presented the simplest user in-
terface for writing test cases out of the three appli-
cations found and was therefore picked for Green
Mining. A set of test cases were written using
the Android monkeyrunner tool for the calculator.
Each compilable consecutive revision of the calcu-
lator application was then compiled into an apk
file (a package format for the Android operating
system) and sent to the Green Miner testbed with
the test cases. Green Miner ran the test cases 40
times on each revision of the calculator applica-
tion, and once completed it consolidated all rele-
vant measurements into a tarball for collection.

4.2 Android Application Test Cases
And Results

Fennec batch 1 and batch 2 both ran a reading
test. This involved simulating a user reading a
Wikipedia page on the American Idol TV show
with the browser. Fennec batch 2 ran an idle
browser usage test in addition to the reading test,
simulating a user not interacting with the web page.
Fennec is a web browser, thus it is quite compli-
cated so two kinds of tests were used.

5 test cases were created for the calculator appli-
cation and run consecutively. These tests included
a gallons to litre conversion, a miles to kilometers
conversion, a US dollars to Canadian dollars con-
version, a sales tax calculation given an un-taxed
price, and applying the quadratic equation to solve
a simple quadratic. The calculator tests were writ-
ten by an author of this work, thus they may not
represent an “average” case. On the other hand, the
use cases cover the case where users are swiping
screens on the application, as well as pressing but-
tons on the calculator which are two interactions a
user will likely do while using the calculator. The



calculator tests were run in the order listed with the
following assumptions: it will take a user 2 sec-
onds to slide to a new panel on the device, it will
take 0.9 seconds for a user to press a new button in
the calculator application, and it will take the user
3 seconds to clear the calculator display after per-
forming a calculation.

4.3 Results
Figures 3 through 7 show approximated energy
profiles for each neighbour distance of 1 to 20.
Each dot on one of the subgraphs represents an ap-
proximated energy profile, the x axis shows how
many revisions were used to approximate the pro-
file and the y axis shows the calculated RMSD us-
ing the model. A lower RMSD corresponds to a
more accurate approximation. A higher number of
revisions means additional time was needed to ap-
proximate an energy profile. Figure 7 examined
the first and last revision of the calculator appli-
cation then applied the Fisher-Yates shuffle algo-
rithm to randomize the neighbour distance revision
examination order. Each of these graphs show the
RMSD value for each partially approximated en-
ergy profile. The number of examined revisions
is shown on the x-axis. The number of examina-
tions can be converted to time spent by multiplying
by the time required to run one batch of tests and
how many times the test must be repeated. Readers
will notice that as the neighbour distance increases,
RMSD increases, and thus, accuracy decreases. As
a larger number of revisions are measured, RMSD
decreases in the majority of profiles. Comparing
Figure 6 and 7 shows that the custom examination
order function performs better than a random or-
dering on the calculator application. The custom
examination order function is better because it has
smaller RMSD values in Figure 6.

From looking at the figures it is clear that a lower
neighbour distance, more examinations, leads to a
better RMSD at the cost of far more testing time.
Pareto efficiency is the property of optimal resource
allocation; any energy profile with this property in
the case study will have the best RMSD given that
time spent. The Pareto efficiency graph or Pareto
frontier was created by plotting all measurements
from a test batch on one graph instead of 20. The
plotted points were then ordered by the time taken
to extract each energy profile, then removing any
non-monotonic decreasing points with respect to

RMSD from the graph. The Pareto efficiency was
calculated from all the approximate energy profiles
created from the measurements shown in Figures 3
and 6 and depicted in Figures 8 through 11.
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Figures 8 through 12 show Pareto frontiers for
the approximated energy profiles. The plotted
points are coloured based on the neighbour distance
used to create the approximated energy profile. In
addition to this, the Pareto fronts have been anno-
tated further with labels of the neighbour distances
used to create each section of approximated energy
profiles.

The Pareto front graphs show that a smaller
neighbour distance will give better accuracy.
Specifically, a neighbour distance between 1 and 3



0.050

0.075

0.100

0 25 50 75 100 125

Revisions Examined

R
M

S
D

5

10

15

neighbour

Distance

1-2

3

5-8

2-19

Figure 10: Test Batch 2: Idle Fennec Reading
Pareto front of accuracy versus time used while
varying the Neighbour Distance between tested re-
visions

0.009

0.010

0.011

0.012

0.013

0 20 40 60 80

Revisions Examined

R
M

S
D

5

10

15

neighbour

Distance

1-2

2-12

12-20

1

Figure 11: Calculator Pareto front of accuracy ver-
sus time used while varying the Neighbour Dis-
tance between tested revisions

give the best accuracy using the proposed method.
A second range of neighbour distances appears to
occur using the neighbour distances from 5 to 8
with additional gain in RMSD but a larger time sav-
ings. It is also interesting to note the difference be-
tween the Fennec Pareto fronts and the calculator
Pareto front: the calculator Pareto front has fewer
points and has a large gap between the energy pro-
files generated with a neighbour distance greater
than 2 and the group generated with a neighbour
distance less than or equal 2. The cause of this
gap in the calculator Pareto front most likely stems
from the smoother nature of the full energy pro-
file in Figure 2 and the nature of linear interpo-
lation. In comparison, the energy profile for the
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Figure 12: Randomized Ordered Calculator Exam-
ination Pareto front of accuracy versus time used
while varying the Neighbour Distance between
tested revisions

Fennec application in Figure 1 has its concavity
change more sporadically and has a larger variance
in mean watts. Therefore, its approximated energy
profile continuously improves with each additional
examination. Figure 11 compared to 12 shows
that the custom examination ordering function per-
forms better than a randomized ordering function; a
Pareto efficiency is reached sooner with the custom
examination order.

5 Threats to Validity
Construct Validity Unit tests written for the cal-
culator application pose a threat to construct valid-
ity. The unit tests attempt to emulate typical user
interaction with the Android application. However,
no actual user interaction data was collected before
hand. Therefore the unit tests may not produce rep-
resentative results with respect to real usage scenar-
ios. The work does not seek to show improvements
to the average use case energy consumption of the
calculator application. Instead, the work demon-
strates the improvement to the methodology, which
is focused on the energy profile model versus the
approximated energy profile model. If this case
study was looking to improve the efficiency of the
calculator application in the average use case then
creating better unit tests would be more important
to proving the validity of the improvements.

The source code coverage of the unit tests also
poses a threat to construct validity. If the unit tests
do not cover enough of the code then they may



not reflect software changes being introduced by
the developers. Poor unit test coverage would im-
pact data analysis when checking for correlation
between software change and energy consumption
change. This work did not focus on comparing
source code change to energy consumption change,
however; instead the performance of the approxi-
mation method on an energy profile was the focus.
Future works that explore code feature and energy
consumption change relationships should keep test
coverage in mind.

Internal Validity The internal validity of the
work is threatened by treating the commits from
each project as equal. Furthermore, this data is
drawn from operational data (data created to pro-
duce software) and not from experimental data.
There is an assumption made that software applica-
tions have common source code between revisions.
Thus, cumulative changes to energy consumption
could be identified with the approximation tech-
nique using a smaller neighbour distance for higher
accuracy.

External Validity The Android applications
were run only on a mobile platform. This hin-
ders the ability to generalize results from their en-
ergy profiles to other hardware platforms. For
instance, storage access may impact energy con-
sumption differently on the mobile platforms com-
pared to desktop platforms. This work applied the
proposed approximation method to 2 software ap-
plications. This threatens external validity with re-
spect to sample bias and generalizing the result to
other software applications.

Reliability Collecting energy consumption data
creates risks with respect to reproducibility. The
usage of the Green Miner improves the consistency
of the collected energy consumption data. Repeat-
edly running tests is done to reduce error intro-
duced by the environment of the mobile device.

6 Conclusion
From the case study, a neighbour distance of 1-3
could be recommended to a researcher who wants
to approximate an energy profile for a software
product with the highest accuracy while still sav-
ing time. A recommended neighbour distance of
5-8 could be used when a researcher is more inter-
ested in the general shape of an energy profile in-
stead of fine granularity. An example of a low gran-

ularity task is when a researcher is looking for a
large increase or decline in the energy consumption
of an application. Furthermore, with low RMSD
for neighbour distances between 1 and 4, it is ob-
vious that not all revisions (a neighbour distance
of 0) need to be tested because software products
under test often show stable energy consumption.
If a large jump in energy consumption is observed
more testing could be done in that range of revi-
sions. This recommendation answers the proposed
research question of how few software revisions
can be tested while extracting an energy profile of
a given product.

With this approximation technique and set of
recommendations, Green Mining now has a fast
technique for energy profile extraction while mini-
mizing accuracy loss. If a researcher used a neigh-
bour distance of 3 to generate their approximated
energy profile they would save 75% of the original
extraction time. If the researcher used a neighbour
distance of 8 they would save 89% of the origi-
nal extraction time. The proposed method allows
a larger range of software revision sets to be stud-
ied because the time required by the testing process
is reduced. This work also provides evidence that
energy profiles can be quite stable in small regions
of 1-4 revisions.

This work demonstrates how to test a new Green
Mining technique with existing energy consump-
tion measurements and how to harvest new en-
ergy consumption measurements. This work also
demonstrates how to compare a technique’s results
using RMSD, and the time taken to produce an
approximation with the approximation technique.
The work also produces some insight for future op-
timizations, as no prior optimizations have been at-
tempted on the Green Mining technique.

This advancement of Green Mining may lead to
future energy conscious development tools. With
energy consumption measurements that can be
more easily collected and studied, researchers may
be able to better identify software and energy con-
sumption change relationships. The change rela-
tionships could then be applied during software de-
velopment to aid developers in the development of
more energy efficient software.

6.1 Future Work
Effectiveness of Machine Learning on approxi-
mating energy profiles If an energy profile for



a software product is unstable, with its energy
consumption constantly increasing and decreasing
with each additional commit, then an approxima-
tion by linear interpolation may not work well.
Therefore, the question is raised, “can machine
learning be applied to previously collected green
mining energy profiles?” If so, can a trained learner
be used on software changesets to predict how a
software changeset will influence the energy con-
sumption of a software system? If not a machine
learning approach, are there other static analysis
techniques that can be applied to a software code
base, the code changesets introduced in a reposi-
tory, and the energy consumption change measure-
ments that are associated with the code changesets?

Machine learning would need a feature that is
extractable from software changesets that has a re-
lationship with energy consumption. The feature
could be used to predict whether or not a changeset
will influence energy consumption. Such an appli-
cation could reveal important energy consumption
altering revisions.

Energy debugging More investigation is needed
into turning these results into a consistent and
comprehensive software energy debugging pro-
cess. Such a process would enable developers to
help debug their energy bugs and save time. Help-
ing developers discover and locate energy bugs
would help them write more efficient applications.

The effect of churn Some potential features ex-
tractable from code changesets are code churn and
software language models. These features would
then need to be compared against energy consump-
tion measurements to check for a relationship be-
tween the feature and energy change. More poten-
tial code changeset features can be investigated for
whether or not they are useful with machine learn-
ing.

The effect of modularity The modularity of a
system could affect the performance of a green
mining approximation technique. Some modules
might be more correlated with energy consumption
than others. For instance, database modules might
be relevant to the amount of IO performed. Further-
more, API change might be a predictor of a change
in a green mining profile.
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