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Abstract

With increasing software size and complexity, corrective software maintenance has

become a challenging process. When a failure is reported, it takes time and ex-

pertise for human operators to collect the right information and pinpoint the root

cause. Typically, the operators are overloaded with information generated from

many system components, and need assistance.

In practice, however, failures are often recurrent. If they can be identified ac-

curately, the appropriate fix may already be known from prior collected experience

about the system. Our approach to diagnose failures is to look at differences in

the state of the filesystem and how files are accessed under normal and abnormal

situations. In this research, we monitor the behavior of the system through its file-

related calls on an instrumented filesystem. When a failure occurs, these calls are

abstracted and classified to identify the likely cause.

A diagnostic tool is implemented based on this approach. Through an exper-

iment involving one J2EE Web application, we present the effectiveness of our

approach in terms of precision and recall.
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Chapter 1

Introduction

In recent years, computer systems have become an integral part of most day to

day activities in many organizations. Such systems provide services ranging from

enterprise resource planning which automates the integration of management infor-

mation across an organization, to e-commerce systems that conduct online trade.

As the dependence on computer systems to run businesses increases, so does the

importance of efficiently analyzing and fixing problems that arise. According to

a survey, dealing with problems consumes an estimated 30-70% of IT resources,

and failure diagnosis and recovery comprises 1/3-1/2 of the ownership cost of sys-

tems [39].

1.1 Motivation

Corrective maintenance is a form of system maintenance that aims to bring a failed

system to operational status. It is performed upon receiving a failure report or after

noticing a problem in the system. Such problems may include loss of critical data,

unscheduled service interruption, or system security issues [11].

The process of corrective maintenance usually starts with collecting informa-

tion relevant to the noticed problem or reported failure in order to pinpoint the root

cause(s) before taking appropriate actions. This first step of corrective maintenance,

known as failure diagnosis, remains one of the most time-consuming and expertise-

dependent tasks [24], because it involves the exploration of failure symptoms in-

cluding message patterns and error codes, which differ from one system/applica-
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tion to another. With increasing software size and complexity, human operators

are overloaded with the information generated from the many components in such

systems, and need assistance.

To assist with failure diagnosis, we propose an unobtrusive and adaptive ap-

proach. It does not need access to source code, or recompilation of the software

or operating system. Also, it is generic, as it neither assumes the system is based

on any particular types of components nor relies on any supporting documents like

problem tickets, system models, or existing log files. Our approach determines the

failure causes by looking at differences in what and how files are accessed under

normal and abnormal situations. For Unix/Linux systems, which regard everything

as a file [26], filesystems are often involved in some way when the software mis-

behaves. To deal with software failures in a multi-filesystem and multi-process

system, we monitor how the software behaves through its file-related calls on an

instrumented filesystem. When a failure occurs, these calls are abstracted and clas-

sified to identify the likely cause.

Software failures may stem from defects in code and configurations. Ideally,

corrective maintenance activities such as developing and deploying solutions to ad-

dress the failures should resolve the problems permanently. In practice, however,

failures often recur. As mentioned in [2, 20, 8], most reported software failures are

caused by previously reported defects. Maintenance personnel often cannot stop a

defect from repeatedly causing the same type of failures, due to several reasons [21]

(see Figure 1.1(a)):

1. Corrective maintenance activities, including failure diagnosis and solution

development, can take a large amount of time.

2. Solution deployment may be postponed if it requires a scheduled service out-

age.

3. The deployed solution is ineffective.

4. System administrators do not deploy the available solution in time due to

concerns about introducing new problems.
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Figure 1.1: When Failures Recur

Moreover, failures are recurrent in some very old software systems where “the re-

sistance of the program to change is at its maximum” (referred to as “software

fatigue”) [13], because it would be rather expensive to address the problems perma-

nently (see Figure 1.1(b)).

Most of the time, the maintenance personnel have to resort to simple incident

resolution to quickly respond to the problems [29] before the deployment of perma-

nent solutions (see Figure 1.1). Those quick and simple incident fixes are usually

non-code changes that make the system temporarily operational rather than per-

manently resolving the problem. For example, a quick incident resolution to a

“database table locked” problem is unlocking the table with database administrator

privilege, which would not prevent the same problem from happening in another

scenario. Therefore, if a recurrent failure can be identified accurately, the appropri-

ate quick fix may already be known from collected experience about past failures

with similar causes. With the assistance of our approach, the maintenance person-

nel would be able to identify the type of recurrent failures. Also, they can look into

the faulty filesystem activities to get a clue of where to start the investigation.

1.2 Contribution

The contributions of this work are as follows:

1. We use an unobtrusive and adaptive system profiling technique to keep track

of the file-related calls. It does not require source code access or recompi-

lation of software and the operating system; and does not rely on supporting
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documents, as it logs its own events by itself. Although it is implemented

on Linux in this research, it theoretically works on several operating systems,

namely, Linux, FreeBSD, NetBSD, OpenSolaris, and Mac OS X.

2. We study the symptoms and effects in file-related calls when different types

of failures occur, and build a classifier to distinguish failures that are non-

performance-related.

3. We develop a preprocessing scheme for the file-related call traces. It creates

canonical traces with less data redundancy.

4. We set up a system that provides web services to serve as the test bed. We

programmatically generate random traffic with a load generator, and manu-

ally inject faults in order to quantitatively evaluate the effectiveness of our

approach.

1.3 Summary

In industry a large proportion of failures are due to previously reported defects,

and failure diagnosis is time-consuming and expertise-dependent. Thus identifying

recurrent failures helps the maintenance personnel to determine what prior solutions

may be appropriate. Our approach, which is based on file-related calls analysis,

assists human operators by suggesting the type of problem when a software failure

is reported.

The rest of the thesis is organized as follows. Chapter 2 provides background on

failure diagnosis and profiling techniques, and explains why techniques used in this

work were chosen. Chapter 3 presents our failure diagnosis approach in detail, fol-

lowed by Chapter 4 which describes the experiment we conducted to quantitatively

evaluate our approach. Chapter 5 relates this work to that of others, and Chapter 6

concludes our work and provides future directions.
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Chapter 2

Background

As described in Chapter 1, we collect system run-time information from file-related

calls, from which our approach suggests the failure types by classifying the col-

lected information. This chapter provides background knowledge on software di-

agnosis in Section 2.1 and system profiling tools/techniques in Section 2.2.

2.1 Software Failure Diagnosis

Failures occur in almost all systems due to different types of incidents that cause

one or more components to perform in unexpected ways. Software failures in in-

dustry are expensive, and the increasingly stringent requirements on performance

and reliability of enterprise systems have made the diagnosis of software failures

crucial and challenging. The tasks of failure diagnosis, as defined in [18], include

figuring out what caused a failure, or identifying the type or origin of a failure. For

example, the system warning message in the box at the top of Figure 2.1 indicates

the existence of problem(s) with the specified host or its related component(s), but

the possible root causes are many. For instance, the hard disk on the specified host

failed, the server software running on the specified host failed, or some human op-

erator misconfigured the port number or IP (Internet Protocol) address. To bring the

system back to the normal state, diagnosticians need to collect additional informa-

tion, analyze, and find the root cause(s), which is the process of failure diagnosis.

Manual failure diagnosis in enterprise systems is difficult and inefficient be-

cause it takes time for human operators to learn the failure symptoms and adapt to
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Figure 2.1: Failure and Possible Causes: An Example

unfamiliar components. With the emergence of concepts like autonomic comput-

ing, the interest on using system runtime information to assist in failure analysis

continues to increase [37]. System event traces (e.g., system call traces, method

call traces) and log files (e.g., server logs, incident reports, change logs) are two

major sources of system runtime information. Documentation (e.g., CMDB (Con-

figuration Management Database) information, bug reports) and configuration files

are also involved because they either record the architecture of system or imply

the history of system states. To use the above information for software diagnosis,

researchers proposed four types of failure diagnosis methods:

1. Rule-based approach (e.g., [15]): Set up and maintain a set of inferences,

from which to generate hypotheses for the root causes when a failure occurs.

For example, if the command ping ca-ssa fails, then the host named ca-ssa

fails.

2. Model-based approach (e.g., [34]): Build a system model to help generate

diagnostic results when a failure occurs. For example, if an application runs

on a host and the host fails, then the application also fails.

3. Statistical approach (e.g., [35] and [16]): Find out statistical correlations be-

tween causes and failure symptoms, from which to produce rules and models.
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4. Integrated (e.g., [23]): Combines at least two of the above into the investiga-

tion workflow.

Rather than grab information from existing logs, documentation, or configura-

tion files that vary in format, content, and use, our approach, which is statistical,

logs its own event traces in the form of file-related calls to provide a generic way of

performing diagnosis (see Chapter 3 for details).

2.2 Profiling Techniques

This section reviews generic profiling techniques to trace software application be-

havior, and explains why we use FUSE (Filesystem in Userspace) [38] in this re-

search.

Gprof [12] and OProfile [22] are two of the most commonly used Linux profil-

ers. Both of them are open source profiling tools which record the usage of func-

tions at the code level. The primary use is to monitor program performance by col-

lecting information regarding function executions. Using function execution data,

the behaviors of software applications can be modeled. However, gprof is unable

to monitor software without first instrumenting and recompiling the source code, or

work with multi-threaded code. And the problem with using OProfile is that it does

not record low-level filesystem activities.

The inotify [25] facility is a Linux kernel subsystem. An inotify watch point,

which restricts the effective scope of inotify, can be added to one directory, or re-

cursively to one directory and its subdirectories. For a watch point, inotify monitors

all inode changes, and thus is able to report all filesystem activities within the ef-

fective scope. It is easy to use; however, the PIDs (process IDs) cannot be gathered

directly, so the data cannot be decomposed by process. This makes distinguishing

filesystem activities difficult in an environment with multiple concurrent processes.

For Linux, the ptrace [14] facility can be used for recording filesystem changes.

By attaching ptrace to a process, programmers can observe the argument(s) and

return value(s) of every system call made by the monitored process. A problem

with this approach is that all system calls would be trapped, even if they are not
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Figure 2.2: The SystemTap Process

filesystem related. This results in overhead on all system operations.

DTrace [6] and SystemTap [17] are kernel profiling systems, which allow pro-

grammers to write scripts containing relatively complex logic to decide which events

to profile. However the support for DTrace in Linux systems is quite limited com-

pared to Solaris or Mac OS X. For SystemTap, as shown in Figure 2.2 [19], it

translates script.stp, a script written in SystemTap probe language, to C, and then

creates a kernel module (i.e., stap xxx.ko) by running the C compiler. Once the ker-

nel module is loaded and all probes are enabled, the corresponding events would be

reported when they occur. The problem with using SystemTap is that it takes time

to place probes upon newly created directories, causing some loss of events to be

captured.

FUSE [38], which provides an alternative way of monitoring filesystems, is

what we use for system monitoring in this work. It is a loadable kernel module

that allows “non-privileged users to create their own filesystems without touching

kernel code” [38]. In a system without FUSE (see Figure 2.3(a)), different types

of concrete filesystems (e.g., EXT, NFS) are plugged into VFS (Virtual Filesys-

tem) interface. When software applications need to access concrete filesystems, it

is FUSE’s responsibility to talk to the concrete filesystems and complete the file ac-

cesses. In a system with FUSE module being loaded (see Figure 2.3(b)), we mount

concrete filesystems to FUSE. And at this point, VFS is no longer able to talk to

concrete filesystems directly when software applications make a call – what VFS

does is to send VFS calls to FUSE, which replaces VFS calls with FUSE calls that
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Figure 2.3: How FUSE Works

are implemented by programmers.

We can distinguish VFS calls made by processes that we monitor. FUSE only

traps the VFS calls we specify, so it does not result in as much overhead as ptrace

does. Also, FUSE is unobtrusive as no source code access or recompilation of soft-

ware is required of . Unlike SystemTap which traces the filesystem operations by

trapping all the concerned system calls, FUSE uses a much smaller set of functions

to represent activities on the filesystem. For example, in the behavior of reading a

file, the variety of available system calls for reading could make data normalization

complicated, because reading data from the same file can be implemented by call-

ing different combinations of read, readv, pread, or even mmap and sendfile. FUSE

uses only one function fuse read to perform precisely the same operations.

2.3 Summary

Software diagnosis methods may use system event traces, log files, documentation

and configuration files, from which to model the behaviors of systems/applications,

and/or identify root causes of failures. Our approach is based on system event

traces in the form of file-related calls, which are captured by a FUSE-instrumented

filesystem.

The following chapters provide details of our approach, which is subsequently

evaluated for its effectiveness.
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Chapter 3

Approach

When a failure is reported, our approach determines the failure type by analyzing

the file-related calls that are logged by our instrumented filesystem. These calls

represent partial behaviors of software. In this chapter, we describe the architec-

tural design and implementation of our approach for capturing the file-related calls,

modeling software behaviors and failure diagnosis.

Figure 3.1 shows the high-level architecture of our approach, which mainly con-

tains two parts: off-line training (i.e., steps enclosed by dashed lines) and on-line

failure diagnosis (i.e., steps outside the area enclosed by dashed lines). And the

instrumented filesystem, which serves as the data collector, is used to capture the

file-related calls at run time to provide call sequences for both off-line training and

on-line failure diagnosis.

The training process involves the following activities:

1. Data collection and labeling: we keep track of the file-related calls in dif-

ferent abnormal situations caused by artificially injected faults. These call

sequences record how the monitored software behaves with respect to the

filesystem when failures occur (see step 1 in Figure 3.1). Each trace is la-

beled by its type of failure once collected.

2. Pattern mining: after preprocessing the raw data, the pattern discovery method

is applied to the call sequences to discover frequent call sequences, which

are considered as “featured behaviors”. These sequences are then used to

transform call sequences (collected from both off-line and on-line uses) into

10



Figure 3.1: Approach Flow Graph

feature vectors (see step 2 in Figure 3.1).

3. Building a classifier: Research in machine learning shows that Naive Bayes

is efficient and accurate in text classification [28, 3]. And in practice, Naive

Bayes is widely used in categorizing texts, for example, filtering out the spam,

identifying appointment messages, and so on. Since the execution traces we

logged are non-numerical (see Section 3.2) and the aim of our approach is

to correlate the texts and labels (i.e., failure causes), we build a Naive Bayes

classifier to classify transformed call sequences in the on-line failure diagno-

sis process (see step 3 in Figure 3.1).

As shown in Figure 3.1, the failure diagnosis process, which is started after a

failure is reported, relies on three things:

• the file-related call traces that are logged by our instrumented filesystem at

run time, which reflect the behaviors of the monitored software running in

faulty states;

• the patterns that are mined offline from a collection of labeled call sequences,

which are used to transform the run-time trace data into feature vectors; and
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• the classifier built in the off-line process upon the labeled traces.

On receiving a failure report of the monitored software, our approach looks into

the file-related call trace, starting from a certain time prior to the point that the prob-

lem is noticed (the selection of an effective starting point is studied in Chapter 4).

The call trace is transformed into a feature vector by the trace transformer, analyzed

and ultimately assigned the most probable root cause by the classifier built in the

off-line training process.

In the following sections, the technical details of our approach are described:

Section 3.1 describes the implementation of our instrumented filesystem and the

setup of the data collection environment; Section 3.2 presents the method applied

for raw data preprocessing; Section 3.3 depicts the algorithm we used for call se-

quence pattern discovery; Section 3.4 explains how to transform call traces into

feature vectors; and Section 3.5 describes failure diagnosis with the classifier we

build.

3.1 Capturing File-related Calls

We use file-related calls to model behaviors of the monitored software. We devel-

oped TraceFS with FUSE to instrument a running Linux system to collect infor-

mation on which files are accessed and how. With the loadable FUSE module, this

process only requires restarting the system, and thus is not as obtrusive as those that

need to recompile the operating system or software application.

Figure 3.2 shows how TraceFS works. The FUSE module, which resides in

the kernel space, redirects normal VFS calls made by the monitored software to

TraceFS, where the details of those VFS calls are logged, and precisely the same

operations on the target files are made in userspace. For example, suppose the

monitored software reads the file /lib/libdl-2.5.so. The following occurs:

1. The monitored software calls VFS read via a function in glibc (see step 1 in

Figure 3.2),

2. VFS read calls a corresponding function in the FUSE module (step 2), which

passes the read call to TraceFS via the libfuse2 library (step 3),

12



Figure 3.2: Capturing File-related Calls with TraceFS

3. Our implementation in TraceFS collects parameters passed with VFS read,

simulates VFS read by reading the file /lib/libdl-2.5.so (step 4) via glibc (i.e.,

TraceFS reads data from /lib/libdl-2.5.so into the specified buffer.), and keeps

the collected parameters in the TraceFS log file (step 5). See Figure 3.3.

4. The return value of the read call is sent back via TraceFS, libfuse2, the FUSE

module, VFS, and finally to the monitored software (steps 6, 7, and 8).

With the FUSE module, TraceFS is a fully functional filesystem that resides in

the userspace. The file-related calls that TraceFS monitors are listed in Table 3.1.

This covers all filesystem operations related to link operations, file/directory prop-

erty changes, directory operations, and regular file operations.

To get the complete picture of run-time filesystem operations, all filesystems of

interest should be mounted to a mount point bound to TraceFS. We used the method

in [31], which starts the initial process of the operating system (e.g., /sbin/init in

Centos 5.5) by using the chroot call to change the root directory of init and all its

child processes to that mount point, so as to have the entire operating system run

within our data collection environment.

Nevertheless, operations in some directories are not of interest but should still be

accessible to the monitored software application running within our environment.

These directories, namely, /dev, /sys, /proc, and /tmp, are special in Linux. Files
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1 /** Read data from an open file*/
2

3 int my_read(const char *path, char *buf, size_t size, off_t
offset, struct fuse_file_info *fi) {

4 int retstat = 0;
5 time(&now);
6 timenow = localtime(&now);
7

8 retstat = pread(fi->fh, buf, size, offset);
9 if (retstat < 0) {

10 retstat = bb_error("bb_read read");
11 log_msg("%d|ERROR(%d)|read|%s|%s", myGetpid(fi), retstat,

path, asctime(timenow));
12 }
13 else
14 log_msg("%d|NORMAL|read|%s|%s", myGetpid(fi), path, asctime

(timenow));
15

16 return retstat;
17 }

Figure 3.3: Reading a File in FUSE

in /dev are interfaces for communication with devices, while files in /sys and /proc

are either used to record driver classes or information regarding running processes.

Directory /tmp is used for temporary files storage. And keeping track of file-related

calls in /tmp will introduce much noise in the data because the names of some

files in this directory may constantly change. Therefore, we remount these special

directories to the same relative paths within TraceFS as they were in the original

VFS before starting the initial process init.

A startup script is used to configure the operating system and start the initial pro-

cess init within our data collection environment by using a “init=$SCRIPT PATH”

option (see Figure 3.4). In this way, information regarding filesystem operations

that take place in the system is collected as much as possible.

3.2 Data Preprocessing

The raw logs produced by TraceFS are actually operation-by-operation traces. As

shown in Figure 3.5 which contains a clip of a TraceFS log, each file-related call

contains 5 fields: PID (process ID), return value of the call, name of the call, tar-
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1 #!/bin/sh
2 TRACEFS=/root/fuse/fuse-tutorial/src/bbfs
3 TRACEMNT=/root/mnt
4 FALLBACK=/bin/bash
5 TRACEPID=""
6 # list of directories to remount under TraceFS
7 IGNOREDIRS=’/dev /proc /sys /tmp’;
8

9 fallback(){
10 echo $1
11 echo "starting fallback shell:\n"
12 exec $FALLBACK
13 }
14 if [ $$ -ne 1 ]; then
15 echo "This script is intended to run as an init process

only (PID=1)\nExiting..."
16 exit
17 fi
18

19 # Make sure the root filesystem is read-write, and setup FUSE
20 mount -o remount,rw /

|| fallback "Failed to remount / as read-write\n"
21 /sbin/insmod /lib/modules/2.6.18-194.el5/kernel/fs/fuse/fuse.ko

|| fallback "Failed to load FUSE module\n"
22 if [ ! -c /dev/fuse ]; then
23 mknod /dev/fuse c 10 229

|| fallback "Failed to create /dev/fuse\n"
24 fi
25

26 # Start gathering statistics from / by mounting on $TRACEFSMNT,
27 # and recording the PID of the statistic tracker fuse
28 # application.
29 mkdir -p $TRACEFSMNT || fallback "Failed to create directory

$TRACEFSMNT for TraceFS mountpoint\n"
30 $TRACEFS / $TRACEFSMNT & TRACEFSPID=$!
31 [ -n "$TRACEFSPID" ]

|| fallback "Failed to start \"$TRACEFS\"\n"
32 sleep 12
33

34 # Remount the following directories to ensure we don’t see
35 # their usage in our TraceFS logs.
36 for DIR in $IGNOREDIRS; do
37 mount --rbind $DIR $TRACEFSMNT$DIR

|| fallback "Failed to remount $DIR inside TraceFS\n"
38 done
39

40 # Pass off execution to the system’s normal init process
41 /usr/sbin/chroot $TRACEFSMNT /bin/ls /etc/init.d

|| fallback "Failed to start /sbin/init\n"
42 exec /usr/sbin/chroot $TRACEFSMNT /sbin/init 3

Figure 3.4: Startup Script for the Tracing Environment
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Table 3.1: Monitored File-related Calls
Call Function
symlink create a symbolic link
readlink read the target of a symbolic link into a buffer
unlink delete a name from the filesystem, and the referred file if no

process has the file open
link create a hard link to a file
mknod create a file node
rename rename a file
chmod change the permission of a file
truncate change the size of a file
chown change the owner of a file
utime change the access or modification time of a file
create create and open a file
open open a file
read read data from an opened file into a buffer
write write data to an opened file
fsync synchronize the content of a file
release release an opened file
access check access permission of a file
mkdir create a directory
rmdir remove a directory
opendir open a directory
readdir read a directory structure into a buffer
releasedir release an opened directory

geted file, and time stamp. Once the calls are captured, some preprocessing needs

to be done to the collected traces in order to reduce noise and data redundancy:

• Split the traces by PID: To collect data from an environment where multi-

ple concurrent processes are running, we use the PID to decompose the file-

related calls. In other words, we use PID to discard the file-related calls that

are made by processes we do not monitor (see rule 1 in Figure 3.7 for exam-

ple). This reduces irrelevant data from being involved in the analysis, how-

ever it also rules out the possibilities that failures are caused by inter-process

communications (e.g., signals, message queues).

• Shorten the sequences containing consecutive successful access calls gener-

ated during path resolution. For example, checking the permission of /bin/ls

will generate three access calls, i.e., /, /bin, and /bin/ls. In this case, we use
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Figure 3.5: Format of Collected Traces

Figure 3.6: Combine Multiple access Calls into One

the call for /bin/ls to represent all three (see rule 2 in Figure 3.7).

• Shorten the sequences containing consecutive access calls with identical re-

turn values. To reduce data redundancy, we combine repeated consecutive

access calls returning the same value with one call (see rule 3 in Figure 3.7),

as containing consecutive access calls with identical return values can always

be combined into one call (see Figure 3.6).

• Shorten the sequences containing readdir calls that aim to read the structure

of a directory into the buffer. In the trace data, a directory associated with

readdir includes the one that readdir aims to read into the buffer, and its

subdirectories. We discard the readdir calls for the subdirectories to reduce

the level of data redundancy (see rule 4 in Figure 3.7).

• Move successful open calls downward to the position just before the closest

read or write call targeted on the same files, and successful release calls up-

ward to the position just after the closest read or write call targeted on the

same files. A file must be opened prior to any read and write operations.

In other words, reading and writing can be applied to a file as long as it is

open, and the time that it was opened is not important. Similarly, when read-

ing and writing (and synchronization) are finished, calling release sooner or
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Figure 3.7: The Preprocessing of a Clip of Call Traces

later does not make any difference to the data stored in the file. So moving

successful open and release calls reduces noise and creates a more canonical

sequence of calls with the same effect (see rule 5 in Figure 3.7).

• For the same reason of moving open and release calls, move successful opendir

calls downward to the position just before the closest readir call targeted on

the same directory, and successful releasedir calls upward to the position just

after the closest readir call targeted on the same directory.

Once the call traces are preprocessed following the above strategy, they are used

for pattern discovery, or transformed into feature vectors.
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3.3 Pattern Discovery from File-call Traces

This section presents the pattern discovery process in this work. Section 3.3.1 de-

fines the terms in our pattern discovery problem, and Section 3.3.2 provides the

pseudo code.

3.3.1 Definitions

A call sequence S is an ordered list of file-related calls, denoted by c1c2...cn, where

ci (1 ≤ i ≤ n) is one call having 5 data fields (i.e., PID, return value of the call,

name of the call, targeted file, and time stamp). Two file-related calls cm and cn

are considered equal (denoted as cm = cn) if they have identical PID, return value,

name, and targeted file (although they may have different effects in different con-

texts). From the definition we know that each call trace is a call sequence, and

constituent calls are not necessarily distinct.

The number of calls in a call sequence is called the length of the call sequence.

If call sequence S contains l calls, S is an l-sequence, i.e., |S| = l.

Given two call sequences Sa = a1a2...am, Sb = b1b2...bn. Sa is properly con-

tained by Sb if m < n and there exist an integer i (1 ≤ i ≤ n −m + 1) such that

a1 = bi, a2 = bi+1, ..., an = bi+n−1. Sa is called the call subsequence of Sb, and Sb

the call super-sequence of Sa (denoted as Sa < Sb), if Sa is contained in Sb.

We use T to denote the training set which is used as the input of the pattern

discovery task. T contains the call sequences (labeled by the type of failure causes).

The support of a call sequence Sa in T , denoted by sup(T, Sa), is the number

of times that Sa appears as a call subsequence of the call sequences in T . And Sa

is considered as a frequent call sequence in T if sup(T, Sa) ≥ min sup, where

min sup is a support threshold.

If Sa is a frequent call sequence and there does not exist any call super-sequence

of Sa with the same support, i.e., ¬∃Sb such that Sa < Sb and sup(T, Sa) =

sup(T, Sb), we call Sa a maximal frequent call sequence.

The problem of pattern discovery is to find the complete set of maximal frequent

call sequences, denoted by FCS with a given min sup from a set of call sequences.
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In this work, the length of each preprocessed call sequence increases by at least

one hundred calls per minute. To reduce the run time of our pattern mining task,

we set a threshold lmax for the maximum length of call sequence patterns. Thus

the problem of pattern discovery in this work becomes finding the complete set of

maximal frequent l-sequences, 3 ≤ l ≤ lmax, with a given min sup from the call

traces.

PatternDiscovery(T , min sup, lmax) : FCS
Input: the set of all call traces T , the support threshold min sup, the pattern length thresholdlmax
Output: the set of maximal frequent call sequences FCS

l = lmax
FCS = ∅, tmpList = ∅
while l ≥ 3 do

for each call trace S in T do
pos = 0
while pos ≤ |S| − l do

S tmp = l consecutive calls starting from the position pos in S
if ¬∃S tmp in tmpList then

add S tmp to tmpList, sup(T, S tmp) = 1
else

sup(T, S tmp) = sup(T, S tmp) + 1
end if
pos = pos + 1

end while
end for
for each Sa in tmpList do

if sup(T, Sa) ≥ min sup
and isContain(Sa,FCS,T )=false then

add Sa into FCS
end if

end for
l = l − 1
tmpList = ∅

end while
return FCS

isContain(Sa, FCS, T ) : contain
Input: call sequence Sa, the set of maximal frequent call sequences FCS, the set of all call traces
Output: a boolean value contain indicating whether or not there exist a call super-sequence of Sa with the same support in
FCS

contain = false;
for each call sequence Sb in FCS do

if Sa < Sb and sup(T, Sa) = sup(T, Sb) then
contain = true
break

end if
end for
return contain

Figure 3.8: Pattern Discovery Pseudo Code

3.3.2 Algorithm

As stated at the end of Section 3.3.1, the aim of our pattern discovery method is

to find all maximal frequent call subsequences from the call sequences. As the
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TraceTranfomation(S, lmax, FCS) : V (S, FCS))
Input: a to-be-transformed call trace S, the pattern length threshold lmax, the set of maximal frequent call sequences FCS
Output: a feature vector V (S, FCS)

l = lmax
n = |FCS|
V (S, FCS) = 〈f1, f2, ..., fn〉, fi = 0, ∀fi, 1 ≤ i ≤ n
while l ≥ 3 do

pos = 0
while pos ≤ |S| − l do

S tmp = l consecutive calls starting from the position pos in S
if ∃S tmp in FCS then

pos = pattern ID of S tmp
fpos = fpos + 1

end if
end while
l = l − 1

end while
return V (S, FCS)

Figure 3.9: Trace Transformation Pseudo Code

pseudo code for pattern discovery given in Figure 3.8 shows, each call sequence

is scanned for (lmax − 3) times. Each time, every call sequence is scanned by a

sliding window of length l, and the support of all l-sequence are counted. Once

a scan finishes, the set of frequent l-sequences is merged into the set of maximal

frequent call sequences FCS. A frequent l-sequence is added to FCS only if it

does not have any call super-sequence in FCS with the same support. Ultimately

the complete set of maximal frequent call sequences is obtained.

3.4 Call Sequence Transformation

With the complete set of maximal frequent call sequences, we transform a call se-

quence into a vector of integers (see Equation 3.1). Compared with transforming

into a vector of bits (0s and 1s), integers indicates the times that the corresponding

maximal frequent call sequence is present, and preserve richer information regard-

ing the call sequence.

Let p denote an element of the set of maximal frequent call sequences (i.e.,

p ∈ FCS), let S denote the set of call traces to be transformed, and an individual

call trace S ∈ S can be transformed into a feature vector

V (S, FCS) = 〈f1, f2, ..., fn〉, (3.1)

where n = |FCS|, and fi denotes the number of times that pi appears in S (i
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denotes the index of p in FCS, 1 ≤ i ≤ n).

Example: Denoting each unique call with a different letter, we have 3 call traces

in Table 3.2. Given min sup = 4 and lmax = 6, the complete set of maximal

frequent call sequences comprises 4 elements, i.e., FCS ={ABCAAA (sup = 4),

ABCDA (sup = 4), AAA (sup = 6), ABC (sup = 8)}. Accordingly, with FCS,

3 call traces in Table 3.2 are transformed into 4-bit feature vectors V (1, FCS) =

〈1, 1, 1, 2〉, V (2, FCS) = 〈1, 1, 2, 2〉, and V (3, FCS) = 〈2, 2, 3, 4〉, respectively.

¥
The pseudo code of call sequence transformation is given in Figure 3.9.

Table 3.2: An Example Set of Call Sequences
ID Trace Data
1 A B C D A B C A A A
2 A B C A A A B C D A A A
3 A B C D A B C A A A A B C D A B C A A A

3.5 Learning Faulty Software Behaviors

As discussed at the beginning of Chapter 3, call sequences are collected to build a

classifier, which is later used for diagnosis (i.e., classification) when a failure oc-

curs. In practice, the call sequences collected under faulty states also contain normal

behaviors of the monitored software. Thus knowing how the software behaves in

its normal state is necessary, as it helps to distinguish the events that only happen

when failures occur and in this way improve the performance of classifier we build.

Since patterns in FCS are considered as featured behaviors of monitored soft-

ware, we transform call sequences with the pattern set (FCSfaulty − FCSnormal),

where FCSfaulty denotes the set of maximal frequent call sequences from call se-

quences collected under abnormal situations, and FCSnormal denotes the set of

maximal frequent call sequences from the normal state. In other words, patterns

that appear in the normal state are not used to build the classifier.

In this work, each call sequence is assigned only one class label, i.e., a fail-

ure type that has been already observed. We use Naive Bayes to build a classifier
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with the labeled call sequences. The classifier estimates the probabilities of failure

types that a new call sequence could belong to, and the call sequence is assigned

a failure type with the highest probability. For a feature vector V (S, FCS) =

〈f1, f2, ..., f|FCS|〉, the decision rule is

class(V (S, FCS)) = P (R)

|FCS|∏
i=1

P (fi|R), (3.2)

where R denotes the failure type, i.e., the class label, and P (fi|R) is estimated

assuming a Gaussian density function with mean µR and standard deviation σR

computed from the i-th attribute values in class R.

3.6 Summary

To use file-related calls to model the software’s behaviors, we implement TraceFS

and set up the data collection environment. In order to distinguish different types

of faulty states, we apply our pattern discovery algorithm on the preprocessed call

traces collected by TraceFS, and obtain the complete set of maximal frequent call

sequences, from which to transform the trace data and build a classifier.

To present the performance of this approach, Chapter 4 details the experiment

design and experimental results.
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Chapter 4

Evaluation

This chapter describes an experiment to evaluate our approach. The first three sec-

tions describe the design of our experiment, including the architecture of our test

bed (Section 4.1), and the strategies applied in the normal state simulation (Sec-

tion 4.2), fault injection, and training data collection (Section 4.3). The experimen-

tal results are presented in Section 4.4. Section 4.5 analyzes the limitations of this

work and threats to validity of the experimental results. And Section 4.6 summa-

rizes the whole chapter.

4.1 Test Bed

An enterprise software system is composed of a number of components, for in-

stance, one or more web application servers for the deployment of web applica-

tions, database servers for storing the transaction data, file servers for data archives,

an LDAP (Lightweight Directory Access Protocol) server for the user authentica-

tion, and so on. Each component in the system is a source of the file-related traces.

We observe the performance of our approach in a system that provides Web ser-

vices. Our test bed, as shown in Figure 4.1, is composed of four major components.

1. Web application server: We use Glassfish v3 as the Web application server,

where Duke’s Bank, an open source J2EE application that emulates a web-

based personal online banking system, is deployed.

2. Database server: We use Postgresql 8.3 to store the transaction records, bank

account and customer-related information.
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Figure 4.1: The Test Bed

1 function login_viewAccount(){
2 _setValue(_textbox("j_username"), "200");
3 _setValue(_password("j_password"), "javaee");
4 _click(_submit("Submit"));
5 _click(_link("Account List"));
6 _click(_link("Checking"));
7 _setSelected(_select("sortOption"), "Description");
8 _click(_submit("Update"));
9 _assertExists(_textbox("total"));

10 _assert(_isVisible(_textbox("total")));
11 _assertEqual( 1 8 5 0 , _getValue(_textbox("total")));
12 }

Figure 4.2: A Clip of a Sahi Script

3. LDAP server: OpenLDAP is installed for the user authentication of our database

server. The user name and password pair is transmitted between the database

server and LDAP server with TLS (Transport Layer Security) encryption en-

abled.

4. Load generator: We use Sahi [1], an open source web automation and test

tool, for traffic generation (see Section 4.2 for the strategy of generating traffic

in detail).

Sahi is able to store execution profiles of web applications in the form of

scripts by working as the proxy server of browsers that access the web ap-

plications. Line 1 to 8 in Figure 4.2 show an example of a Sahi script which

records the process of “user login” and “view bank account information”.
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Another feature of Sahi is the playback of recorded execution profiles. With

Sahi scripts that store use cases of the web application (i.e., Duke’s Bank),

we programmatically use the playback feature to simulate interaction with

a running system to produces trace data. We can add assertions (see Line

9 to 11 in Figure 4.2) to the end of page requests in Sahi scripts to check

if any unexpected events happen (e.g., the displayed values are incorrect or

improperly displayed). Figure 4.3 shows an example of a Sahi playback log,

with the assertion checks highlighted. Failed assertions are recorded along

with the expected and actual values. Those failed assertions are considered

as failures in our experiment. And their time stamps indicate the exact time

that failures happen.

Figure 4.3: Sahi Logs: a Failed Assertion

4.2 Normal State Simulation

As discussed in Section 3.5, for off-line training, not only do we collect call se-

quences containing faulty behaviors but also keep track of the file-related calls

when the system is running normally. Since the web application involved in this

experiment is small and simple, we collect call sequences from the system running
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for 48 hours normally to obtain a set of featured behaviors that can well represent

the normal state.

During this 48 hours, we generate the incoming user requests at a rate mimick-

ing the curve of incoming traffic rate at hulk02, a web server in Princeton University

Data Center [32] (see Figure 4.4). Since hulk02 is not a server responsible for large

file transfers, we assume the rate of user requests it receives fits the curve of incom-

ing traffic rate. To simulate the rate of user requests normal state, in the first 24

hours we generate the user request rate mimicking the curve between Friday 4 am

and Saturday 4 am at hulk02, and in the second 24 hours the curve between Satur-

day 4 am and Sunday 4 am. The rate of generated web page requests is adjusted

every 15 minutes following

f(t) =
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18π

e−
(t−9)2

18 , 0 ≤ t ≤ 9

b + k1√
18π

, 9 < t ≤ 12

b + k1√
18π

e−
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18 , 12 < t ≤ 16

b + k1√
18π

e−
8
9 , 16 < t ≤ 19

b + k1√
18π

e−
(t−15)2

18 , 19 < t ≤ 24

b + k2√
18π

e−
(t−36)2

18 , 24 < t ≤ 48

where x denotes the time in hours. The maximum web page request rate that our

load generator (i.e., Sahi) can achieve depends on the web server response time,

the performance of the computer on which Sahi is running, and the content of Sahi

scripts. In our environment, Sahi can generate less than 800 page requests per hour.

So in the experiment, we let b = 140, k1 = 4000, k2 = 1700, and get the distribution

of web page requests received by our web application server shown in Figure 4.5.

4.3 Fault Injection and Data Collection

Pertet et al. [33] performed a study on failures in enterprise Web Service systems

and concluded that 80% of the failures are due to software failures and human

errors. In order to get trace data from our test bed when failures occur, we choose

9 out of the 10 most common failure types summarized in [33]’s “software failures

and human errors” list (the type of failures not chosen is supposed to occur in a
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Figure 4.4: Incoming Traffic Rate at hulk02

Figure 4.5: The Rate of Web Page Requests at the Normal State

cache server, which we do not have). We manually inject faults to the test bed to

simulate those failures (see Table 4.1).

Table 4.2 shows how faults are simulated in this experiment. And Figure 4.6

illustrates our fault injection and data collection strategy:

• Faults are injected into our test bed while the web server receives a random

rate of web requests, i.e., the rate of web requests is a random value that

changes between the lowest and highest rate bound in “normal system simu-

lation”.

• We allow only one fault, which is randomly chosen, to be injected to the test

bed each time. Once a failure is noticed, we collect the call sequence that

starts from the time that fault injection finishes and ends when the failure is

noticed (also the time associated with the corresponding failed Sahi assertion,

as mentioned in Section 4.1).

• Recovery procedures are applied in order to make the test bed normal again.

Data collected during fault injection and system recovery are discarded, be-
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Table 4.1: Injected Faults
Faulty Component Index Root Cause

Web application server
1 Port used by Glassfish for the database server

connection is changed
2 The number of connections exceeds the upper

limit of connection pool
Web application 3 Insufficient memory

Database server

4 One table in the database is locked
5 The number of connections exceeds the upper

limit of database server
6 One table in the database is deleted
7 Port used for connecting LDAP server is mis-

configured

LDAP server

8 Some of the configurations are set to default
values due to unsuccessful software upgrade

9 Authentication fails due to the LDAP server
outage

cause those are not part of the “problems”. The time between the completion

of system recovery and the next fault injection and is at least 3 minutes.

In this experiment, we only analyze file-related calls made by processes started

by the web application server, the database server, and the LDAP server. We collect

20 traces for each type of fault. That makes 180 traces in total for the system

running abnormally.

4.4 Experimental Results

This section presents the effectiveness of our approach from 3 aspects: the perfor-

mance of our classifier in distinguishing different types of faults, the capability of

our approach in dealing with finer-grained faults, and the overhead of the instru-

mented filesystem.

4.4.1 Performance of the Classifier

The performance of our classifier is evaluated using 5-fold cross validation in precision,

recall, and F-Measure
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Table 4.2: Faults Simulation
Fault Index How to Simulate

1 Change the port number used by web application server for
database connection

2 Reduce the maximum size of connection pool of web application
server

3 Reduce the amount of memory that web application server can ac-
cess, so the web application fails when loaded

4 Use database administrator account to lock one of the tables
5 Reduce the number of connections permitted in postgresql.conf,

and restart Postgresql
6 Use database administrator account to delete one of the tables
7 Change the port used for LDAP connection specified in

pg hba.conf, and restart Postgresql
8 Change the encryption method of LDAP to default
9 Stop the LDAP server

precision =
tp

tp + fp
(4.1)

recall =
tp

tp + fn
(4.2)

F −Measure =
2× precision× recall

precision + recall
(4.3)

where tp denotes true positive (i.e.,“correct classification”, where the result of clas-

sification is the same with the type of injected failure), fp denotes false positive,

and fn denotes false negative.

Figure 4.7 shows the precision and recall that our classifier obtains with a given

maximum length of call sequence (i.e., lmax = 25). The curves reveal that the

performance of the classifier increases with the support threshold (i.e., min sup)

changing from 4 to 12 and precision peaks when min sup = 12, whereas it starts

to decline after min sup exceeds 12. This implies that, at least in our system, the

frequently appearing call sequences are not necessarily best for distinguishing call

traces with different failure causes. On the contrary, the most useful call sequences

appear only at most one dozen times. Therefore, in our system, a relatively small

support threshold should be used, and in a custom environment, it needs to be ad-

justed to help the classifier to achieve good performance.
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Figure 4.6: The Strategy of Failure Injection and Data Collection

Figure 4.7: Performance of Filesystem Activity Based Approach (lmax = 25)

One possible reason that the precision and recall are not inversely related is

some of the highly frequently appearing call sequences are common across all faulty

states and they lower the precision of our classifier when the support threshold

increases.

We compare the performance of this filesystem activity based approach against

31



Figure 4.8: Performance of Log Based Approach

a log-based failure diagnosis approach proposed in [16], where message patterns

derived from the training data set are used to aid in classifying log files. The log

files it analyzes are generated and collected from our test bed along with the collec-

tion of file-related call traces. In other words, each faulty state of our test bed in this

experiment is represented by one file-related call trace and one log file. The curves

in Figure 4.7 and Figure 4.8 show that these two approaches perform equally well

when highest performances are compared, although they use different data sources.

For the log-based approaches, existing log files from all components where the di-

agnosis is performed are required. Those logs are generated by logging modules

of the application/server software under monitoring, and vary in quality on which

the effectiveness of log-based approaches is dependent. And log-based approaches

cannot diagnose software having no logs. Our approach, however, analyzes only

low-level filesystem events, and does not rely on logging from the software compo-

nents..

In our experiment, when the highest performance was achieved, our pattern

discovery program spends 260 seconds on the mining. It processed 8.3 MB pre-

processed trace data and found 5190 patterns for the abnormal states. Building the

Naive Bayes classifier takes only a few seconds.

The maximum length of frequent call subsequence (i.e., lmax), as described in

Section 3.3, is another manually selected parameter. Figure 4.9 shows 3 sets of F-

Measure values the classifier obtained with 3 given support thresholds and an lmax

increasing from 3 to 60. The curves again reveal that the frequently appearing call

subsequences (i.e., subsequences that have high support) are not as good as those
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Figure 4.9: Maximum Length of Call Subsequences (lmax) and F-Measure

that appear a dozen times. In general, the performance of our classifier fluctuates

as lmax increases from 3 to 31 (min sup = 12), from 3 to 17 (min sup = 50),

and from 3 to 13 (min sup = 100). Then the performance remains stable as lmax

keeps increasing. This implies that long call subsequences (e.g., 30 calls or more)

are not useful in classifying call traces no matter how frequently they appear. In

summary, shorter sequences at lower support do better in classification.

We can use the classifier built upon previous faulty call traces to analyze any

incoming traces. But once a failure is noticed, how many file-related operations to

consider or “look backward” in time for diagnosis remains an issue. An appropri-

ate number of operations helps to obtain good classification accuracy. Intuitively,

the number should be neither too small (maybe we would miss important call se-

quences) nor too big (the trace would contain too much irrelevant data). To in-

vestigate the appropriate number of operations to look backward, we examine the

performance of our classifier by changing the number of operations for call traces

involved in testing (the traces involved in classifier training are unchanged). Fig-

ure 4.10 illustrates the effectiveness of our classifier in classifying traces of varying

number of operations to look backward (given that lmax = 10 and min sup = 12).

The results suggest that 1000 to 1300 are good choices for the number of operations

to look backward, which roughly corresponds to 30-35 seconds in time when our

server receives 600 web page requests per hour.
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Figure 4.10: Number of Operations to Look Backward

Figure 4.11: A Frequent Subsequence from a Faulty Call Trace

4.4.2 Providing Finer-grained Failure Causes

Our approach uses the file-related calls logged by the instrumented filesystem to

determine the type of fault, for example, database table locked. For the mainte-

nance personnel, they may find a clue from the call traces for performing corrective

actions. For example, the frequent call subsequence in Figure 4.11 indicates the

monitored software touches a table or tables in the database whose OID (Object

Identifier) is 16393. And the table name(s) can be determined if the OID creation

mechanism and data storage mapping mechanism of Postgresql is known. So, if

this frequent call subsequence happens to appear in a call sequence collected from

a faulty state, the table and database touched by the monitored software could be

one of the places to start investigation.

For maintenance purposes, finer-grained diagnostic results are more helpful

(e.g., the specific locked table being localized if the “database table lock” fault has

been determined). So we look into the call traces for two injected faults “database

table locked” and “database table missing” to investigate how effective our ap-

proach is when it is used to localize faults. As Section 4.3 describes, only one
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Figure 4.12: Performance of Classifier in Providing Finer-grained Failure Causes

of three tables is locked/dropped when “database table locked” or “database table

missing” is injected. We label the collected call traces with failure causes plus the

names of locked/dropped tables, using the strategies described in Chapter 3 and

5-fold cross validation to build and evaluate the classifier.

As Figure 4.12 shows, the logged calls cannot effectively suggest finer-grained

failure causes. We find some files strongly correlated with a failure are opened and

cached long before the failure is noticed (can be longer than 10 minutes), and thus

calls targeted to those files do not appear in the call sequence close to the time of

the failure report.

4.4.3 Overhead of the Instrumented Filesystem

The overhead of our instrumented filesystem is tested on a computer with a 2.4 GHz

CPU, 1 GB memory, and one 20 GB hard disk running Centos 5.5 and Linux kernel

version 2.6.18.

In the test bed, our instrumented filesystem produces an average of 5,047 KB

logs (before preprocessing) per 100 page requests. We firstly estimate the time

overhead by running two extremes: a CPU intensive program which involves almost

no file I/O, and 4 I/O intensive shell scripts which contain 100 tar, 200 cp, 400 rm,

and 400 “mkdir+rmdir” commands respectively. They are run for 10 times and

we use the average run time of each program/script to calculate the slow-down.

The results, as shown in Table 4.3, reveal that the filesystem instrumentation hardly

slows down the running of the CPU intensive program (less than 0.01%), whereas

the I/O intensive shell scripts are slowed down significantly (between 50% and
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Table 4.3: Time and Space Overhead
Time Overhead

I/O Intensive
Shell Scripts

tar 79.1%
cp 59.4%
rm 50.1%
mkdir+rmdir 53.2%

CPU Intensive Program 0.01%
Duke’s Bank Application 40.1%
Space Overhead
An average of 5,047 KB logs per 100 web page requests

80%).

To determine the time overhead for a web-based application, we conducted an

experiment by playing back 500 Sahi scripts on our test bed with and without the

FUSE module being loaded, and used the lengths of running time to calculate how

much time overhead the instrumented filesystem caused. The result shows that

the slow-down of our system (i.e., 40.1%) is between the I/O intensive and CPU

intensive extremes. Since part of the time overhead is due to collecting traces, the

performance of web services will be less deteriorated if the traces are written to a

separate hard drive.

4.5 Limitations and Threats to Validity

Some limitations of this work are:

1. Our approach can only diagnose recurrent problems, because it relies on a

classifier built upon file-related call traces collected at faulty states. Also,

this approach is not effective in providing finer-grained failure causes.

2. The overhead due to filesystem instrumentation slows down file operations.

3. This approach is unable to distinguish failures that have no manifestation or

very similar manifestations in file-related calls. Performance-related prob-

lems could also be hard to detect, as a software system would still be func-

tional but with degraded performance.
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4. In practice, when a failure is noticed, it is difficult to decide how many past

file-related operations to consider for training purposes, as a failure may not

be noticed immediately after its occurrence.

5. The time of file-related calls being made, and data transmitted between files

and virtual memory are not used by this approach.

6. The strategy of dealing with multiple failures and failure interactions is not

studied.

7. This approach can only be migrated to Linux/Unix systems which FUSE are

compatible with. The strategy of collecting and analyzing filesystem activi-

ties in other systems is not investigated.

8. The suggested support threshold and number of look-backward operations

are based on our test bed. A further study is needed to find the optimum

values systematically in a different environment.

Threats to the validity of the experimental results are as follows:

1. An enterprise system is usually large-scale, while our experiment is per-

formed on only one machine, although theoretically this approach can be

extended to an environment that comprises multiple machines. Similarly, the

size and complexity of the software system involved in the experiment is also

one of the threats, because most enterprise systems are larger and more com-

plicated than our the software system in our test bed.

2. Duke’s Bank is not a real banking application. Also, the rate of user requests

we generated in the experiment mimics the incoming traffic of a web server

in Princeton rather than business banking systems.

3. Failures are artificial and manually injected, and thus may not represent real,

spontaneous failures. For example, a locked table in the database may be due

to problems with the source code rather than an operator using the command

line to lock the table by mistake.
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4. We allow only one fault to be injected at a time, so the effectiveness of this

approach is not studied when multiple failures occur, and the interactions

between faults are not studied either.

4.6 Summary

The experimental results obtained in the evaluation, in particular the highest overall

performance of our approach (93% in precision and 92% in recall) in determining

the fault types, and the overhead of our instrumented filesystem in time and space,

confirm that file-related call traces can be used to diagnose the observable functional

failures. By experimenting on a system that provides web services, we show that

our approach can be successful in diagnosing systems that have multiple processes

and filesystems.
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Chapter 5

Related Work

To frame our work in its proper context, the related work is reviewed in this chapter.

The most closely related work to our approach is Ding et al. [10]. They col-

lect the environmental variables, user information, signals, and system calls from

a system’s normal execution at run time, and build an “application signature bank”

which represents normal behaviors of the software. The “signature bank” assists

the diagnosis in a dictionary-like way. When a failure occurs, the human operators

start the diagnosis process: a classifier tool would search the signature bank to find

the most similar model to the current state and therefore determine the type of the

failure. While Ding et al. use a relatively more intrusive technique to reverse engi-

neer the software behaviors with all system call traces and arguments, our approach

focuses on how to model the software behaviors using the information contained in

and returned by file-related calls.

The study conducted by Dickinson et al. [9] proposed the idea of clustering

event traces/execution profiles to assist software diagnosis by clustering traces/pro-

files. One of their conclusions is that a significant number of execution profiles with

failures are distributed in small clusters. The diagnosis that Dickinson et al. perform

is a process of similarity estimation between traces and no classifiers are involved.

While Dickinson et al. do not need to label the traces, they cannot determine failure

causes as our work does.

Event traces are also the key information for the root cause analysis in the ap-

proach proposed by Yuan et al. [41], while the difference is that they record all

system call traces for the Windows operating system, and SVM (Support Vector
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Machine) is employed to classify call sequences.

Rather than determining the failure causes, Chen et al. [7] use real-time requests

to pinpoint the misbehaved software components. They keep track of software

components involved in all requests and the corresponding return states, using them

to find correlations between software components and failures. Compared with our

approach working at the file level, the diagnosis approach proposed by Chen et al.

works at the software component level.

Besides the work reviewed above, there also exist failure diagnosis approaches

that use other sources of information. Log files contain implications of system

behaviors and representations of failure symptoms, and thus are one of the major

sources used for problem diagnosis. Both Reidemeister et al. [35, 36] and Mariani et

al. [27] are similar to the work in this thesis in the architectural design. With patterns

mined from logs, they transform log files into feature vectors, from which classifiers

are built to distinguish failures with different causes. While their approaches rely

on log files and clustering methods, our approach logs file-related calls with the tool

we developed and uses a Naive Bayes classifier.

In this area, post-error reports (e.g., [4]), problem tickets (e.g., [15]), incident

reports (e.g., [30]), call-stacks (e.g., [5]), and system configuration files (e.g., [40])

are also used for problem diagnosis. Our approach is complementary and considers

filesystem events, which are not sensitive to the ambiguity that may be found in

information sources such as problem tickets or bug reports.
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Chapter 6

Conclusion and Future Work

In this thesis, we propose an automatic approach to diagnose recurrent software

failures based on the assumption that filesystems are involved in some way when

software misbehaves. Unlike some autonomic systems, this approach is unobtru-

sive, because it does not re-architect the system. Our approach does not require

source code access, recompilation of software or the operating system, or any sup-

porting information regarding the monitored software. Also, it is more generic, and

does not assume the system is based on any particular types of components.

By capturing and analyzing file-related calls through an instrumented filesys-

tem, our approach suggests failure causes, which can assist maintenance personnel

in performing quick and simple incident fixes before the potential deployment of

a permanent solution. We evaluated this approach in a web service system, where

faults are injected.

The results show that our approach performs well in determining failure types

while the I/O intensive processes are slowed down (80% at worst) due to the filesys-

tem instrumentation. Nevertheless, it is not effective in providing finer-grained fail-

ure causes due to caching. Moreover, finding clues for corrective maintenance from

the call traces requires background knowledge of the system and monitored soft-

ware applications.

This approach collects and analyzes the file-related call names, targeted files,

PIDs, and return values. With the instrumented filesystem, we can collect more

information such as call parameters other than file names, and data transmitted be-

tween files and buffers in virtual memory. Also, failure interaction and the strategy
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of dealing with multiple failures will be investigated. This approach only deals with

faults that lead to an observable functional failure rather than a performance degra-

dation. Thus the analysis of time that file-related calls are made and returned will

also be part of the future work.

This approach currently works on one machine, and it will be extended in an

environment that comprises more machines, where the approach will be evaluated

with a greater variety of injected failures. Also, a more systematic way of choosing

parameters (e.g., the support threshold) of our approach in a custom environment

will be studied.
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