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Abstract 38 

Billi et al. (2017) proposed a new interpretation for the origin and internal 39 

structure of thermogene travertine deposits. On the basis of evidence from two 40 

quarries located in southern Tuscany (Italy), they interpreted some travertine 41 

beds as calcite veins and argued that undulating travertine beds formed by 42 

syn-diagenetic (i.e. non-tectonic) folding that was caused by laterally-confined 43 

volume expansion caused by incremental veining. They assumed that such a 44 

process causes changes to the rock properties, including porosity reduction, 45 

rock strengthening, and age rejuvenation. The interpretations by Billi et al. 46 

(2017) challenge and question the current understanding and interpretation of 47 

thermogene travertine deposits. This understanding, based on numerous 48 

studies since the 1980s, is that these deposits form from thermal water flowing 49 

downslope, and precipitating calcium carbonate. Here, we explain how the 50 

comparison with active depositional systems is essential for the understanding 51 

the origin of structures in older, inactive travertine deposits, such as those 52 

studied by Billi et al. (2017). We further argue that the three-dimensional 53 

setting of travertine deposits should be taken into account in order to discuss 54 

the possible development of secondary structures. Indeed travertine deposition 55 

on slopes typically leads to the formation of terraced morphologies with pools 56 

bordered by rounded rims and separated from each other by steep walls. The 57 

resulting three-dimensional structures can be misinterpreted as asymmetric 58 

folds in two-dimensional views (i.e., in saw-cut walls of quarry). In this paper 59 

we debate the interpretations offered by Billi et al. (2017) and their criteria to 60 

recognise syn-diagenetic, non-tectonic folds in travertine deposits, and explain 61 

why many of their ideas are questionable.  62 

 63 
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1. Introduction 70 

The recent literature on travertine (i.e. thermogene terrestrial carbonate) has 71 

made use of this deposit as a proxy for palaeo-environmental (Bertini et al.  72 

2008; Ricci et al., 2015) and climate change reconstructions (Sturchio et al., 73 

1994; D’Argenio et al. 1995; Rihs et al., 2000; Soligo et al., 2002; Mesci et al., 74 

2008; Faccenna et al., 2008; Zentmyer et al., 2008; Sierralta et al., 2010; 75 

Brogi et al., 2010), neotectonic and palaeoseismological analyses (Altunel and 76 

Hancock, 1993a, 1993b; Çakır, 1999; Hancock et al., 1999; Brogi, 2004; 77 

Altunel and Karabacak, 2005; Uysal et al., 2007; 2009; Mesci et al., 2008; 78 

Brogi and Capezzuoli, 2009, 2014; Temiz et al., 2009; 2013; Brogi et al., 79 

2010, 2012, 2014a, 2014b, 2016; Altunel and Karabacak, 2005; Uysal et al., 80 

2007; 2009; Hancock et al., 1999; Temiz et al., 2009; 2013; Temiz and 81 

Eikenberg, 2011; Cakir, 1999; Mesci et al., 2008), geothermal exploration 82 

(Navarro et al., 2011; Pasvanoğlu and Chandrasekharam, 2011; Alçiçek et al. 83 

2016; Brogi et al., 2016; Alçiçek et al., 2017), elemental biomediation 84 

processes analyses (Folk, 1994; Bonny and Jones, 2003; Fouke et al., 2003; 85 

Rogerson et al., 2014), and natural CO2 degassing evaluation (Shipton et al., 86 

2005; Uysal et al., 2011; Frery et al., 2016). These applications coupled with 87 

the fact that travertine is a rare carbonate deposit, makes it a precious archive 88 

of information from many different scientific perspectives. The conventional 89 

approach for the study of these deposits requires many different mandatory 90 

steps, including: (i) reconstruction of the three-dimensional geometry of the 91 

travertine deposit and its evolution through time; (ii) reconstruction of the 92 

depositional architectural setting of the different depositional stages; and (iii) 93 

sedimentary facies analysis that includes interpretation of sedimentary facies, 94 

their lateral relationships, and the processes associated with each depositional 95 

setting. The latter step is critical because it allows the reconstruction of the 96 

environmental features that controlled the travertine formation and the related 97 

sedimentary processes dictating its origin. Accurate facies interpretation 98 

depends on careful observations that follow a well-established methodology, 99 

which has been fully documented in a considerable number of previous studies 100 

(e.g. Chafetz and Folk, 1984; Guo and Riding, 1992, 1994, 1998; Chafetz and 101 

Guidry, 1999; Pentecost, 2005; Jones and Renaut, 2010; Gandin and 102 
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Capezzuoli, 2014). 103 

Failure to follow the established protocols can lead to misinterpretations. This 104 

is, in our opinion, the case presented in the paper by Billi et al. (2017) who 105 

analysed Pleistocene (thermogene) travertine deposits exposed in saw-cut 106 

walls of two quarries (see also: Ronchi and Cruciani, 2015), located in 107 

southern Tuscany (Italy). They interpreted structures in those walls as syn-108 

diagenetic, non-tectonic veins and folds and provided nine criteria for 109 

discriminating secondary structures (i.e. post-depositional syn-diagenetic 110 

processes such as veining, folding, or rejuvenation actions) from primary 111 

structures (i.e. related to the sedimentary evolution) in travertine deposits. We 112 

question these criteria, which in our view do not sufficiently take in to account 113 

the present knowledge on travertine formation. Herein, our comments aim to 114 

fill this gap and to favour a solid consideration of the comparison between 115 

active and fossil travertine depositional systems.  116 

 117 

1.1 Questions for comments 118 

Billi et al. (2017, their Figs. 3, 4) argued that the syn-diagenetic (i.e. non-119 

tectonic) folding of travertine was the result of laterally-confining volume 120 

expansion that was caused by incremental hydrothermal veining. Their idea, 121 

based on the study of Gratier et al. (2012), implied that undulating travertine 122 

beds are unreliable indicators of the sedimentary environment (and its 123 

evolution through space and time) in which the travertine accumulated. 124 

Furthermore, a consequence of their hydrothermal-veining interpretation is 125 

age rejuvenation of travertine deposits with implications for geochronological 126 

results and modification of travertine strength and porosity, and effective 127 

impacts on permeability evaluations. On the basis of these considerations, Billi 128 

et al. (2017) proposed “a list of significant criteria to discriminate secondary 129 

from primary structures and to identify rejuvenation processes” to explain the 130 

occurrence of: (i) radiometrically-dated structures that are younger than 131 

overlying ones; (ii) downward growth of crystals; (iii) veins 132 

overprinting/cutting through overlying or underlying beds; (iv) relicts of 133 
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primary porous travertine beds between radiating vein crystals; (v) 134 

increasingly deformed primary structures such as beds or pores towards veins 135 

and folds; (vi) bed-normal foliations and second-order folds nested inside 136 

larger folds; (vii) polyphase folding including overturned folds with refolded 137 

limbs; (viii) stylolite surfaces parallel and stylolite teeth normal to vein planes; 138 

(ix) post-depositional non-karstic voids between folded and flat veins and 139 

beds, outlining the occurrence of post-depositional detachment mechanisms 140 

between adjacent beds. We criticize the interpretation of these points. The 141 

following text is therefore organized in separate sections, each of which 142 

focuses on those aspects of the interpretations that are crucial for a well-143 

constrained facies analysis and reconstruction of the depositional 144 

environments. In so doing, we underline and stress the lessons that have been 145 

learnt from the analysis of active travertine depositional systems, which 146 

collectively provide clear insights into the processes that define the 147 

depositional geometry and development of travertine deposits.  148 

 149 

2. Calcite veins versus travertine beds/layers (crystalline crusts) 150 

This section discusses the points 2 to 5 of the list of criteria provided by Billi et 151 

al. (2017) for the interpretation of travertine deposits. 152 

Billi et al. (2017) described the geometric relation between the porous 153 

travertine beds and the growth direction of the constituent calcite crystals (Billi 154 

et al., 2017, their Figs. 4d, 4e and 11d) in the crystalline travertine beds (also 155 

termed crystalline crusts by Guo and Riding, 1998 and references therein). 156 

Based on this, Billi et al. (2017) argued that the porous travertine beds formed 157 

as a primary deposit, whereas the crystalline crusts developed as calcite veins 158 

that post-dated deposition of the travertine. This interpretation challenges the 159 

fact that crystalline crusts are primary carbonate precipitates that develop at 160 

the depositional surface as a result of CO2 degassing from carbonate-rich 161 

waters during their flow (Fig. 1). Thus, crystalline crusts are formed as a 162 

variety of calcite/aragonite crystals (feather, fan, dendrites; see Jones and 163 

Renaut, 1995; 2010 for a review; Jones et al., 2000, 2005). Furthermore, this 164 

clarifies the definition of travertine as a primary bedded thermogene deposit 165 
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(Chafetz and Folk, 1984; Jones and Renaut, 1995, 2008; Jones et al., 1996, 166 

2000, 2005; Guo and Riding, 1998; Jones and Renaut, 1995, 2008; Jones et 167 

al., 1996, 2000, 2005; Rainy and Jones, 2009; Gandin and Capezzuoli 2014; 168 

Della Porta, 2005; Croci et al., 2016; Della Porta et al., 2017) where the 169 

intercalation of porous (Fig. 2) and crystalline deposits is a characteristics of 170 

travertine spring deposits (Riding, 1991; Pedley, 1990; Flügel, 2004; 171 

Pentecost, 2005; Pedley, 2009; Brogi et al., 2010; Capezzuoli et al., 2014; 172 

Pola et al 2013; Gandin and Capezzuoli, 2014; Gradzinski et al., 2014).  173 

Veins (see Bons et al., 2012 for a review) in travertine deposits (Fig. 3) are 174 

formed of different types of crystals (Altunel and Karabacak, 2005; Uysal et 175 

al., 2009, 2011; Rimondi et al., 2015; Brogi et al., 2014a; Brogi et al., 2016) 176 

and fill cracks that cut across layers (Fig. 3a-f) or follow bedding surfaces 177 

(Fig. 3g-i) (e.g. Altunel and Hancock, 1993a, 1993b; Altunel and Karabacak, 178 

2005; Mesci et al., 2008; Uysal et al., 2009; 2011; Brogi et al., 2016; Brogi et 179 

al., 2017; Selçuk et al., 2017). 180 

The growth of bed-parallel veins (i.e. sub-horizontal veins that opened against 181 

the force of gravity) has been attributed to: i) the crystallization force of calcite 182 

triggered by CO2 degassing at depths of 1–10 m (Gratier et al., 2012); ii) 183 

repeated injections of high-pressure hydrothermal fluids (pressure exceeding 184 

the weight of the overlying rocks volume, Brogi et al., 2016) during seismic 185 

events (Uysal et al., 2007; Altunel and Karabacak, 2005; Uysal et al., 2007; 186 

Brogi and Capezzuoli, 2014; Brogi et al., 2017) and/or (iii) by climate induced 187 

pressure variations within the geothermal reservoir at depth (Uysal et al., 188 

2009). The textures of such veins (Fig. 4), however, are completely different 189 

from the ones reported by Billi et al. (2017, their Fig. 4e). In their case, the 190 

veins are formed of needle-like crystals, rows of palisade, fibrous or prismatic 191 

crystals, generally arranged in tight palisades with straight extinction or 192 

clusters of ray-shaped fans (as described in Folk et al., 1985; Atabey 2002; 193 

see also Flügel, 2004, Jones and Renaut, 2010, Gandin and Capezzuoli, 2014, 194 

for review on the petrographic characteristics of calcite veins and travertine). 195 

They are typical of precipitates associated with pools and terraces (Figs 1 and 196 

2). Such crystalline layers typically consist of dense crystalline dendrites or 197 

crusts (some could also be shrubs as illustrated in Tivoli, nearby Rome, Italy, 198 
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as documented by Erthal et al., 2017) that can laterally, or vertically, grade 199 

into the porous deposits where numerous voids from bubbles and other origins 200 

are present (Fig. 2). This arrangement is readily evident in present-day active 201 

travertine deposits all over the world and defines well-documented depositional 202 

geometries such as dams, rims, and terraces (e.g. Pamukkale, Turkey; 203 

Mammoth Hot Springs, USA; Huanglong, China; Badab-e surt, Iran, Saturnia, 204 

Italy; Rapolano Terme, Italy; see also Pentecost, 1995, 2005; Ford and Pedley, 205 

1996 for a review). Similar depositional structures are present in caves, where 206 

the same process can be active (rimstone dams; Ford and Williams 2007). 207 

These well-documented relationships between porous and crystalline beds 208 

(Figs 2 and 5 for active and fossil examples, respectively) also include what 209 

Billi et al. (2017, their Fig. 5a and 5b) described as “chimney-like veins”. In 210 

their photographs, it is apparent that the brownish porous layers pass laterally 211 

into the dense crystalline layers (“veins” in Billi et al., 2017), with visible 212 

interfingering relationships. This cannot, however, be attributed to a 213 

subsequent deformational event. Moreover, their Fig. 4f shows that the 214 

boundary of the crystalline beds with the porous micritic deposits is diffuse, 215 

underlining the absence of mechanical/physical discontinuities that would be 216 

expected if this were caused by subsequent pressure-induced deformation as 217 

proposed by Billi et al. (2017). 218 

Finally, Billi et al. (2017) based most of their arguments on evaluation of the 219 

direction of calcite crystals growth. Conversely, the criteria used to establish 220 

the growth-orientation of the travertine beds should be considered with care, 221 

because the fan-like crystal arrangement (Fig. 1d-g) may result in different 222 

apparent directions within the same bed (e.g. Billi et al. 2017, their Figs S25 223 

and S34). 224 

Billi et al. (2017) suggested that the development of calcite veins caused the 225 

reduction of primary porosity (their Fig. 5c), as indicated by the flattened 226 

pores, which they assumed were originally almost spherical (see their section 227 

3.1.3). It is important to stress, however, that the classical, spherical “coated 228 

bubbles” found in many travertine deposits (Guo and Riding, 1998; Gandin, 229 

2013; Gandin and Capezzuoli, 2014 for a review) are formed by the 230 

encrustation of bubbles with a thin coating of calcite caused by CO2 degassing 231 
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(see Schreiber et al., 1981; Chafetz et al., 1991 and Pentecost, 2005 for a 232 

complete description of this depositional process). When this is the case, the 233 

bubbles are externally characterized by thin calcite rims. Consequently, this 234 

type of porosity is commonly concentrated in small volumes (Fig. 2). 235 

Otherwise, most pores in travertine (as all the pores discussed in Billi et al., 236 

2017) are formed from photosynthetic oxygen that is produced by microbial 237 

activity and are common in microbial deposits (e.g. Folk et al., 1985; Riding, 238 

1991; Rainey and Jones, 2009). Given that these are not coated by a calcite 239 

rim, their shape is highly variable (e.g. Gandin and Capezzuoli, 2014 for a 240 

comparison) and reflects the balance among gas pressure, gravity, and weight 241 

of the microbial mat. Thus, the pore shape cannot be used to evaluate 242 

deformation in travertine deposits, because their initial shape is highly variable 243 

and unpredictable. It follows that the interpretation of the crystalline beds as 244 

calcite veins that postdated the original travertine deposits is difficult to 245 

accept.  246 

 247 

 248 

3. 2D-view of crystalline crusts versus folded travertine 249 

Hereafter we discuss the points 6 and 8 of the list of criteria that Billi et al. 250 

(2017) proposed for the interpretation of travertine deposits. 251 

Billi et al. (2017) argued that undulations in the travertine beds are syn-252 

diagenetic folds that developed during the progressive and incremental 253 

formation of syntaxial, bedding-parallel, calcite veins. In active spring 254 

depositional environments (Fig. 1) the undulation in travertine deposits 255 

(undulated layers) is a natural consequence of subaerial deposition on variably 256 

inclined surfaces (i.e. slopes and dammed zones), through pools and rims, 257 

producing terraced surfaces (Fig. 2). This is well constrained by three-258 

dimensional observations in most active and fossil travertine (and tufa) 259 

depositional systems (Italy: Chafetz and Folk, 1984; Guo and Riding, 1998; 260 

D’Argenio et al., 1981, D’Argenio and Ferreri, 1987,1988; Hungary: Scheuer 261 

and Schweitzer, 1981; Kele et al., 2008; Claes et al., 2017, Török et al., 2017; 262 

Turkey: Altunel and Hancock, 1993a; 1993b; Khatib et al. 2014; Lebatard et 263 

al., 2014; Claes et al., 2015; Tunisia: Henchiri et al., 2017; China: Liu et al., 264 
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1995; Lu et al., 2000; Central Italy: Capezzuoli et al., 2014; Della Porta, 265 

2015; Croci et al., 2016; Della Porta et al., 2017; Violante et al., 1994a, 266 

1994b; Central Western Carpathians, Slovakia: Gradzinski et al., 2014; USA: 267 

Fouke et al., 2000; different places: Pentecost 2005; Alonso-Zarza and Tanner 268 

2010; Arenas-Abad et al. 2010; Jones and Renaut 2010).  269 

Taking a different viewpoint, Billi et al. (2017), evaluating geometries based on 270 

2D-cross sections, interpreted the undulatory and terraced travertine beds as 271 

asymmetric folds, and argued that the typical aggradational and slightly 272 

progradational geometry of the pool/rims are the result of second-order folds. 273 

They did not consider the well-established fact that travertines are self-274 

regulating systems, that can modify their own depositional environment, which 275 

may result in changes in the attitude of the strata with, or even without, any 276 

syn- or post-depositional tectonic deformation. 277 

Ronchi and Cruciani (2015), who studied the same quarries as Billi et al. 278 

(2017), interpreted the terraced travertine as an effect of the travertine 279 

deposition on pre-existing slopes. Billi et al. (2017) did not provide convincing 280 

reasons for modifying the interpretations proposed by Ronchi and Cruciani 281 

(2015) and the numerous of studies from other areas that show the same 282 

features (Chafetz and Folk, 1984; Guo and Riding, 1998: D’Argenio et al. 283 

1981; Scheuer and Schweitzer, 1981; Altunel and Hancock, 1993a; Khatib et 284 

al. 2014; Lebatard et al., 2014; Claes et al., 2015; Henchiri et al., 2017; Liu et 285 

al., 1995; Lu et al., 2000; Pentecost, 2005 for a review; Capezzuoli et al., 286 

2014, Della Porta, 2015; Croci et al., 2016; Della Porta et al., 2017). 287 

Billi et al. (2017, their Figs 5f and 5g) also described folds with evident hinge 288 

thickening that affect the calcite veins. They proposed for a composite 289 

deformational process, with initial formation of mostly sub-horizontal calcite 290 

veins that was followed by folding of the previously developed veins and 291 

parallel porous travertine beds. They also argued that there was a sub-292 

horizontal tectonic foliation developed in association with the second-order 293 

folds developed only in the vertical fold limb of the first order structures (see 294 

their Fig. 5g and 6). In addition, their Fig. S10 is meant to show refolded 295 

structures resulting from at least two folding events, with deformation of the 296 

limb of a larger overturned fold.  297 
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The folds, refolded folds, and related tectonic foliation proposed by Billi et al. 298 

(2017) have already been unequivocally described as primary depositional 299 

features (cf. Chafetz and Folk, 1984; Hammer et al., 2010), but they did not 300 

discuss or refute this interpretation. The undulatory beds that they interpreted 301 

as first-order folds (and refolded folds) are explained as an effect of the plane 302 

view orientation in a travertine cascade environment (Fig. 6a-b). Their 303 

“second order folds” and associated “axial planar tectonic foliations” (cf. their 304 

Figs 6b, 6d and 6f) can be explained as microterraces (Fig. 6c-e) that formed 305 

on spring slopes (e.g. “rimstone pool” of Warwick, 1952, to “terracette” of 306 

Bargar, 1978 and Guerts et al., 1992; “minidams” of Pentecost 2005 and Jones 307 

and Renaut 2010; “microterracettes” in Hammer et al., 2010).  308 

The 2D-features displayed on the quarry walls by Billi et al. (2017, their Fig. 5 309 

and 6) are recognizable in all present-day depositional systems (Fig. 2). This 310 

circumstance reinforces the argument that these are really vertical cross-311 

sections through fossil pool rims (i.e. microterraces) and cascades that formed 312 

by natural (i.e. primary) sedimentary processes (Fig. 6); they are not 313 

(second-order) folds as suggested by Billi et al. (2017). In addition, it should 314 

also be remembered that the shape, size, and distance between micro- and 315 

macro-terraces depend on local depositional features (e.g. Riding, 1991; 316 

Pentecost 2005: see Fig. 16; Goldenfeld et al., 2006; Hammer et al. 2005, 317 

2007, 2010; Veysey and Goldenfeld, 2008), not only for travertine, but also for 318 

all flowstone deposits (speleothems, tufa, siliceous sinter). 319 

Billi et al. (2017) claimed a further explanation for their minor folds. They 320 

suggested that the process that produced the small-scale folding is analogous 321 

to the process that produces enterolithic and/or tepee structures, which are 322 

commonly found in evaporitic deposits. Enterolithic structures (i.e. irregular, 323 

highly-non-cylindrical tight to open folds) are typical of sabkha environments 324 

and cannot develop in travertine deposits. Such structures are produced by 325 

localized changes in volume after evaporite deposition (cf. Gandin and Wright, 326 

2007). This syn- to meta-depositional deformation is induced by the chemical 327 

transformation of the sulphates, such as the swelling of anhydrite during 328 

hydration to gypsum. Gypsum and anhydrite nodules form through the 329 

capillary system within the upper phreatic zones beneath the sabkha surface, 330 
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displacing and replacing sediment under pressurized saline fluids that are 331 

flowing through pores due to evaporative capillarity (Tucker, 1988; Warren, 332 

1999, 2006; Flügel, 2004; Gandin and Wright, 2007). These intrasediment 333 

crystals grow in a matrix of fine sediment (i.e. lime mud, clays), where the 334 

nodules grow and coalesce to form the enterolithic structures. Thermogene 335 

travertine, however, with primary precipitation of calcite/aragonite, has a 336 

completely different chemical and mineralogical composition, as well as an 337 

internal organisation, and its deposition occurs in totally different 338 

environments. Thus, there is no basis for assuming that travertine deposits 339 

may develop in the same manner as evaporites and therefore, extreme care 340 

should be taken when comparing the two.  341 

 342 

3.1 Mechanics of travertine folding 343 

This section discusses the points 7 and 9 of the list of criteria proposed by Billi 344 

et al. (2017). 345 

Travertine forms at the subaerial surface, where deposition and lithification 346 

processes are almost contemporaneous (Pentecost, 1995). Travertine is 347 

composed largely of calcite and/or aragonite, carbonate minerals that are 348 

brittle under low temperature conditions (< 250°C, Rutter, 1972). 349 

Furthermore, the maximum thickness of travertine in slope environments does 350 

not exceed a few tens of meters as found in several areas worldwide 351 

(Pentecost 1995; Guo et al., 1996; Hancock et al., 1999; Brogi, 2004; Brogi et 352 

al., 2010; Ronchi and Cruciani, 2015; Khatib et al. 2014; Lebatard et al., 353 

2014; Claes et al., 2017). This implies that travertine can only be affected by 354 

deformation at, or near the surface. It follows that the boundary conditions (P, 355 

T and/or significant content of interstitial fluids) required to obtain highly non-356 

cylindrical folds (Billi et al., 2017, their Fig. 5j) are not present. In this view, 357 

the flattened, squeezed, dragged pores as Billi et al. (2017) described close to 358 

the fold hinges, veins and folded veins (Figs. 3b, 5c, d, S6, S11, S12, S14, 359 

S23, and S35), are not the result of the folding mechanism but are primary 360 

sedimentary features, as discussed above. 361 

Second-order folds attributed to folding imply bedding viscosity contrast 362 

and/or thickness variations of a flexural slip folding mechanism. This is 363 
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normally produced in a multi-layered succession, which does not seem to apply 364 

to travertine formed by carbonate precipitation on a terraced slope. In order to 365 

explain fold hinge thickening and occurrence of second-order folds and 366 

foliations, Billi et al. (2017, their Figs. 5f, g, and 6) considered the Biot-367 

Ramberg's buckling equation (their Eq. 1). Billi et al. (2017) used the buckling 368 

equation for single-layer folding and an assumed Newtonian viscosity to obtain 369 

a viscosity contrast of about 1.5 to 4. They did not report the amplitudes of the 370 

folds (A) in relation to the fold wavelength (), which is shorter than the arc 371 

length (L) that they used. Although it is difficult to ascertain how layer 372 

thicknesses (t) were defined in the multi-layer setting, it seems that a ratio of 373 

A/l≥0.25 is a conservative estimate for the structures. Their reported L/t ratios 374 

range from about 4 to 5. This can be converted to t/l ratios, using l≥2/3·L, in 375 

the range of 0.1 to 0.25.  376 

A/ versus t/ trends depend on the amount of shortening and viscosity 377 

contrast (Fig. 6 in Schmalholz and Podladchikov, 2001; Fig. 2 in Llorens et al., 378 

2013). For single-layer folding, the range of measured ratios would indicate 379 

≥50% shortening and a viscosity ratio between 25 and 250. At the very low 380 

viscosity contrast, as used by Billi et al. (2017), folds grow very slowly in 381 

amplitude as layer thickening dominates. To achieve A/>>0.25, a very high 382 

strain would be required, but this would result in much higher t/ ratios 383 

(>>0.5) than the ones observed. 384 

If the buckle fold theory were applicable (which we doubt), the viscosity 385 

contrast between the layers in the travertine would need to be much higher 386 

than that proposed by Billi et al. (2017). More importantly, the amount of 387 

strain needed to achieve the high A/ ratios would be well over 50% 388 

shortening, or in case of constrained volume increase, >100% of layer length 389 

increase by volume change. In addition, Billi et al. (2017, their Fig. S11) also 390 

described bedding-parallel stylolites that are typically associated with 391 

dissolution that takes place as a result of overburden loads during deep burial 392 

and pressure solution (e.g. Bathurst, 1995; Rolland et al., 2012; Heap et al., 393 

2014; Koehn et al., 2016). Their development is related to the occurrence of 394 

local rock mass heterogeneity, occurrence of interlayered/intracrystalline 395 

water, dissolution and deposition of dissolved material in extensional veins, 396 
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and a sufficient lithostatic pressure. As shown by Sellier (1979), the pressure-397 

dissolution of calcite begins at a depth of about 300 m. In other cases, 398 

stylolites have been documented at lesser burial depth, at about 90 m, but 399 

only if the limestones have a high clay content (Schlanger, 1964). Taking into 400 

account that the travertine deposits described by Billi et al. (2017) were not 401 

buried to the depth needed for stylolite formation, we doubt that the structures 402 

described by Billi et al. (2017) are stylolites. The 2D-view of the outcrop is 403 

again at the base of this misunderstanding: features similar to stylolites can be 404 

produced if the saw-cut walls are about orthogonal (or at high angle) to the 405 

crystalline crust on slopes that were originally terraced (Fig. 6c-e).  406 

 407 

4. Travertine age rejuvenation  408 

This part is dedicated to the discussion of the point 1 of the list of criteria 409 

provided by Billi et al. (2017), concerning the interpretation of the age of 410 

travertine deposits. 411 

Radiometric age dating of travertine is possible by analysis of the U/Th content 412 

in the calcite molecules (Taylor and McLennan, 1995 and references therein). 413 

U/Th dating of carbonates, younger than 500ka (Walker, 2005), is a sensitive 414 

analysis that relies on carefully collected samples (Ku and Liang, 1985). The 415 

best dates come from compact, non-porous samples (cf. Carrara et al., 1998; 416 

Brogi et al., 2010). Porous travertine samples can be problematical because 417 

younger calcite and/or aragonite cements found in the pores may have formed 418 

at any time after deposition. The presence of these cement phases can 419 

seriously affect the isotopic and geochronological results. Billi et al. (2017, Fig. 420 

7) showed inconsistent age-dating results through a travertine section 421 

encompassing “veins” and “porous” travertine. The “inconsistent” ages 422 

(samples CP15_8, CP14_2, ST1 and ST3) were used as criteria to validate the 423 

“vein” formation. Two samples of travertine layers (lower photo in their Fig. 424 

7b) show an inverted age order, whereas, other samples (upper photos in their 425 

Fig. 7b) show upward younging. Following the principle they adopted, 426 

however, only one “vein” sample (CP15_8, at the lowest position) is younger 427 
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than the sample that represents the supposed hosting travertine (CP14_25), 428 

whereas the other “veins” produced older (CP15_1; CP14_5), or coeval 429 

(considering the error range: CP14_2) ages. Interestingly, the uppermost 430 

sample of their travertine (ST4) is younger than the underlying (CP13_1-5; 431 

CP13_1-4) or quasi coeval (considering the error range: ST1; ST3) to the 432 

underlying ST1 and ST3. Although problems seem to exist with the travertine 433 

ages, Billi et al. (2017) did not discuss any possible source of errors. The age 434 

results, irrespective of how reliable and of high precision in terms of the 435 

laboratory methods, cannot be considered as a solid argument to support their 436 

model for vein formation.  437 

 438 

5. Conclusions  439 

Billi et al. (2017) proposed that travertine deposits on horizontal and/or 440 

inclined surfaces can subsequently be folded non-tectonically by volume-441 

change processes. Herein, we have shown that: (i) a comparison with active 442 

travertine systems and the extensive literature on the topic do not support the 443 

interpretations proposed by Billi et al. (2017); (ii) the criteria proposed by Billi 444 

et al. (2017) are largely disproved, as most are based on questionable 445 

interpretations; iii) the deformation model proposed by Billi et al. (2017) is not 446 

supported by evidence that is available from spring systems found throughout 447 

the world. Therefore, we do not recommend using the nine criteria that Billi et 448 

al. (2017) proposed to distinguish between primary and secondary travertine 449 

structures.  450 
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Fig. 1 – a) Terraced depositional system at Saturnia (Italy) with pools and 958 
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rims, where calcite crystallize as a result of CO2 degassing from flowing 959 

carbonate-rich thermal waters; b) example of crystalline layers 960 

(crystalline crusts) deposited on the slope system and formed by dendritic 961 

calcite crystals; c) detail of the crystalline crusts indicated in (b). d-e) 962 

Example of a slope microterraced deposit formed by dendritic calcite 963 

crystals forming crystalline crusts (the so-called “chimney-like veins” by 964 

Billi et al., 2017); e-f) details of the inset in (e): note the different shape 965 

of the crystal-fans along the same level, emphasizing that that the 966 

direction of the calcite crystal growth cannot be based on the fan-like 967 

crystal arrangements as proposed by Billi et al. (2017). 968 

 969 

 970 

Fig. 2 - Present-day depositional systems and related macro-facies. a) 971 

Terraced slope depositional system at Pamukkale (Turkey); b) Terraced 972 

slope depositional system at Karahayıt (Turkey); note the stepped 973 

morphology of the terraced slope with metre-scale pools separated by 974 

round rims at the pool margin and vertical walls. c-d) Detail of a pool 975 

(indicated in b) illustrating the site of precipitation of travertine with 976 

different fabrics, such as shrubs, radial pisoids and coated gas bubbles (cf 977 

Guo and Riding, 1998); e) micro-terraced slope system; f) detail of micro-978 

terraces showing pools and rims, where the rims are built by crystalline 979 

dendrites and pools are sites of precipitation of different travertine fabrics 980 

such as shrubs and porous travertine (e.g. coated gas bubbles). 981 

 982 

Fig. 3 - Examples of banded calcite veins filling cracks that cut across layers or 983 

follow bedding surfaces; a) banded calcite vein crossing late Pleistocene 984 

travertine layers at Bagno Vignoni (southern Tuscany, Italy); b) banded 985 

calcite veins system crossing a Pleistocene fissure ridge-type travertine 986 

deposit (Akköy fissure-ridge) in the Denizli Basin (Turkey; c) banded 987 

calcite vein filling a sub-vertical fracture in the wall of the Akköy fissure 988 

ridge from Denizli Basin (Turkey); d) detail of the inset indicated in (b); e) 989 

banded calcite veins system filling sub-vertical fractures crossing the 990 

middle Pleistocene fissure ridge-type travertine deposit (Çukurbağ fissure-991 

ridge) in the Denizli Basin (Turkey; f) detail of the inset indicated in (e); 992 

g) sub-horizontal banded calcite vein filling a fracture sub-parallel to the 993 

bedding surfaces in the late Pleistocene-Holocene travertine deposits at 994 

Cava Campo Muri (Rapolano Terme, Italy); h) Sub-horizontal and low-995 

angle banded calcite veins system filling a fracture that cut across layers 996 

or follow bedding surfaces in the late-Pleistocene-Holocene travertine 997 

deposits at Cava Campo Muri (Rapolano Terme, Italy); i) detail of the 998 

inset indicated in (h). 999 

 1000 
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Fig. 4 - Photomicrographs of microfabrics of crystalline crusts and banded 1001 

calcite veins filling fractures cutting across travertine beds. a-b) example 1002 

of crystalline crust from Rapolano Terme (Italy); c-d) example of banded 1003 

calcite vein from the Denizli Basin (Turkey). Please note fabric, dimension 1004 

and crystal morphology that are different from the interpreted veins by 1005 

Billi et al. (2017). Many other examples of micro-fabrics are illustrated in 1006 

numerous publications (Gandin and Capezzuoli, 2014; Della Porta, 2015; 1007 

Croci et al., 2016; Della Porta et al., 2017 and references therein) to 1008 

which the readers are addressed for more details. 1009 

 1010 

Fig. 5 - Photographs of saw-cut walls exposed in the Pianetti quarry near 1011 

Saturnia (southern Tuscany, Italy), the same outcrops reported in Billi et 1012 

al. 2017. a-b) Slope deposit formed by crystalline crusts giving rise to 1013 

terraces in a prograding pools system (the so-called “chimney-like veins” 1014 

by Billi et al. 2017, enlarged in c) and the final slope accumulation. The 1015 

slope deposit is unconformably overlain by subhorizontal porous strata 1016 

formed by shrub facies (typical of subhorizontal pools) terminating in 1017 

onlap against the slope depositional profile. c) Decimeter-scale pools and 1018 

rims characterized by prograding and aggrading different fabric types. d) 1019 

Cross-section of a progradational terraced slope with pools bordered by 1020 

round rims prograding and aggrading. The terraced system is 1021 

unconformably overlain by subhorizontal strata onlapping against the pool 1022 

rims: this geometric configuration is a primary depositional feature and 1023 

should not be explained as a secondary features (i.e. the result of syn-1024 

diagenetic folds caused by laterally-confined volume expansion through 1025 

hydrothermal incremental veining) as proposed by Billi et al. (2017) 1026 

because the subhorizontal porous strata in onlap do not appear deformed 1027 

by the alleged syn-diagenetic folding.  1028 

 1029 

Fig. 6 – a) Irregular geometrical setting of travertine beds visible in saw-cut 1030 

walls exposed in the Pianetti quarry near Saturnia (southern Tuscany, 1031 

Italy), and interpreted by Billi et al. (2017) as the result of refold 1032 

structures (cf their Fig. S10); b) Example of an active cascade travertine 1033 

depositional system at Bagni San Filippo (southern Tuscany, Italy), where 1034 

the sub-vertical slopes explain the geometrical setting of the travertine 1035 

beds illustrated in (a) and interpreted by Billi et al. (2017) as secondary 1036 

fold structures (i.e. refolded structures). c) Cross-section of a terraced 1037 

slope; d) saw-tooth shape of travertine layers deriving from an orthogonal 1038 

cross-section of the terraced slope: the saw-tooth shape is the result of 1039 

the progradational growth of the microterraced slope. 1040 
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