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Abstract

Implicit concept mapping (iCmap; Aidman & Egan, 1998), measures: (1) the com-

plexity of conceptual activation, and (2) the degree to which integration is internally

consistent. These characteristics describe aspects of both Dual Code theory (DCT;

Paivio,1986) and of lexical meaning (Johnson-Laird, 1987). Within the DCT lit-

erature, two kinds of representations have been proposed, verbal and nonverbal,

and in the case of concrete words both kinds of representations will be activated

compared to abstract words, which only have a verbal representation. 40 Partici-

pants completed Experiment 1, which aimed to assess degree of conceptual change

due to learning. The results revealed no change in performance. 120 Participants

completed Experiment 2 with a modified task called, progressive concept map-

ping (proCmap). The results indicated that concrete nouns had greater consistency

between trials relative to abstract nouns, whereas abstract nouns had greater com-

plexity. These results provide confirmatory evidence that proCmap is sensitive to

information associated with conceptual structure.
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Chapter 1

Introduction

Language is a wonderful tool that people have learned to exploit in order to shape

and understand the world around us. With language we build relationships, we

establish public spaces, and we set in motion complex goals. The challenge with

which we are presented when investigating language is that many different psycho-

logical functions, from phoneme detection to lexical access and semantic activation,

participate in the production of meaning. As researchers, the practicalities of con-

ducting research on the nature of language requires of us that we focus our investi-

gations on just a few aspects, ignoring the vast array of factors that are nonetheless

actively engaged at other levels of the process.

The present manuscript brings together a set of theories and technologies which

are intended to provide additional perspective on the mental representation of the

meanings of words. The primary focus will be on the nature of concepts, and the

functions that concepts serve in the comprehension of meaning. The reason for the

emphasis on conceptual structure is to establish a framework for situating a nascent

paradigm built to describe and assess conceptual knowledge. In essence, it extends

the traditional semantic categorization task by generalizing the number of pairs of

words presented simultaneously. This new paradigm brings with it the promise

of a new methodology, new visualizations and new ideas about the structure and

functioning of the language system – as well as new barriers, and new challenges

to overcome.
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As such, the experiments carried out within this manuscript are based on an in-

triguing computer-based concept categorization task called Implicit Concept Map-

ping (iCmap; Aidman & Egan, 1998; Aidman & Ward, 2002), a task designed to

measure two structural characteristics of conceptual structure. The first character-

istic describes the complexity or amount of information used to categorize a set of

concepts, while the second characteristic describes how consistent the categoriza-

tions are from trial to trial, and ultimately block to block.

Aidman and Egan (1998) built the iCmap paradigm to provide instructors with

an automated assessment tool capable of describing the quality of the knowledge

constructed by students on a given topic, and also to provide each student with a

visual aid that affords further discovery learning. The original work and the repli-

cation by Aidman and Ward (2002) assessed the validity of the measurements and

the usefulness of the iCmap paradigm as a measurement tool of conceptual under-

standing.

Unfortunately, both investigations failed to demonstrate some of the expected

effects despite what appeared to be a genuinely intuitive task. One of the factors

that contributed to Aidman and Egan’s (1998) results owes itself to the way that

they adopted an approach that Komatsu (1992, p.500) had earlier commented on

when he said that “psychologists have traditionally equated knowing the meaning

of a word with knowing the concept labeled by a word.” The consequence was that

Aidman and Egan were unable to make predictions or meaningfully interpret their

(null) results.

Despite the initial lacklustre results observed in both investigations, there are

two reasons that led this author to propose that the iCmap paradigm warrants fur-

ther attention. The first is that it is very likely that if the paradigm is re-designed

to take into account a theory of conceptual structure along with some additional

constraints and assumptions about language processing, then the iCmap data will
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more precisely represent the complexity of the information that underlies concep-

tual categorization, and the manner in which that information is used.

The second reason that the iCmap paradigm is worth further attention is that it

is an attempt to quantify conceptual knowledge as it is experienced. The relations

among concepts, and how individuals experience those relations becomes the focus

of the investigation, a focus which mirrors the shift by cognitive researchers to view

conceptual structure more ecologically (e.g., Gabora, Rosch, & Aerts, 2009).

There is a great opportunity to expand the iCmap paradigm so that it is a use-

ful tool in the hands of psychologists, linguists, and other researchers interested in

gaining insight into the underlying nature of how concepts are experienced, and ul-

timately how the experience of meaning influences behaviour. What is required is

a theoretical framework to interpret the measurements created by the iCmap task.

Providing a sound theoretical framework to understand the iCmap paradigm is the

primary goal of Chapter 1, so that the experiments presented in Chapters 2 and 3

are meaningfully situated. The remainder of this chapter will briefly outline the

theoretical basis of conceptual structure adopted within this manuscript by first dis-

tinguishing between words and concepts.

The Relation Between Concepts and Words

The theory of conceptual structure presented below makes use of two foundational

terms that have crucial differences so it is important to distinguish between them

because they are used throughout the remainder of this manuscript. The first term

is concept and the second is word. Although on the surface these may seem to

be roughly equivalent terms, they describe different aspects of language. Words

have physical (visual or acoustic) representations. Concepts are more difficult to

describe because there are no observable characteristics that unequivocally identify

them. Concepts are not things, they are a way of encapsulating and talking about

3



our experience of meaning. Consequently, a tremendous amount of research on

the nature of concepts has presented topics surrounding the acquisition of concepts

(Nguyen, 2007), how concepts are represented psychologically (Hampton & Moss,

2003) and neurologically (Binder et al., 2005), the kinds of concepts (Medin &

Lynch, 2000), and more recently on the ecological nature of concepts (Gabora et

al., 2009). The result is an amorphous description that is ill-defined and difficult to

test. Notwithstanding these complexities, the goal of this manuscript is to develop

a new experimental method which attempts to measure the continuous changes in

conceptual structure that people experience above and beyond the verbal definitions

that underlie the meaning of words.

Part of the challenge in explicating the structure of concepts is that we only have

introspective access to their contents and operations, and it is only in language that

we are able to express what we experience there. Thus there is a natural tendency to

equate a concept with its label (i.e., a word) plus that word’s definitional informa-

tion. What is needed is a psychological theory of lexical meaning that guides our

understanding about how words and concepts relate. According to Johnson-Laird

(1987), there are several characteristics that can be ascribed to concepts, the first

of which is that meaning is inherently difficult to grasp through introspection. Im-

portantly for Johnson-Laird (1987, p.190), “as the processing of speech proceeds

from phonology through words to comprehension, it becomes increasingly depen-

dent on inferences based on the social and physical circumstances of the utterance,

on knowledge of the situation to which it refers, and on general knowledge.” The

implication of this characteristic is that some words have empirical definitions while

others have conventional definitions, yet these definitions only constitute a portion

of the meaning that is activated when using a concept.

Another characteristic ascribed to concepts by Johnson-Laird (1987) concerns

the effect that linguistic context has on the recognition of spoken and written words.
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Context influences the interpretation of words because words are notoriously am-

biguous (Johnson-Laird). For example, a single word presented in isolation (e.g.,

bank) will have a slightly different activated meaning compared to when it is pre-

sented in a sentence (e.g., I slept on the bank) because the context selects constraints

that cannot be accessed from the word in isolation. This issue of resolving ambi-

guity underscores one of the most problematic distinctions of word meaning, that

between the meaning or sense of a word, and the thing in the world that the word

refers to, the referent. The word bank is not an actual bank, nor is it any particular

bank. It is rather a frame that allows language users to refer to a particular building

or a place.

Johnson-Laird (1987) developed a psychological theory of meaning that sit-

uated reference as the means of disambiguating concepts. Inferences about the

concepts underlying expressions are based on knowledge of the reference of those

expressions. The meanings of words, as far as they are perceptible to language

speakers, do not contain information in themselves about how they are able to refer

to particular objects and events. It follows that the capacity to refer to things in the

world is not a part of the verbal definition of a word, but rather part of the concept

that is informed by the verbal definition of that word.

The characteristic that is perhaps most suggestive about the difficulty of equat-

ing word meaning with concepts is that people often do not know the complete

meaning of the word. For example, we can understand the sentence ‘He has cancer

of the pancreas’ despite the fact that our knowledge of cancer and pancreases may

be very incomplete. Regardless of how complete their understanding is, people are

able to imagine the state of affairs described by the linguistic context, and do not

notice the gap in their knowledge unless it is crucial to understanding the context.

The ability to imagine a state of affairs cannot be mediated by purely lexical

representations. Interpretations and inferences must be based on a theory about
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what the concept refers to, a theory which according to Johnson-Laird (1987, p.204)

selects the “prototypical member of the class that has [some set of] attributes” that

have been acquired through learning. This cannot be an image or prototype but is

better understood as a mental model.

A mental model, for the present purposes, is defined as a schema with a set of

inter-related default values that can be assumed in the absence of information to the

contrary. The existence of a schema affords a speaker the ability to make inferences

and theories about the current state of affairs. The main point is that when we

talk about concepts, we are talking about the way in which the meanings of words

are used, and there is more going on than simply adding word definitions together.

The discussion next turns to two related issues about categories that motivate the

experiments to follow.

Categories Are Not Categorical

To begin the discussion on categories, it is important to point out the relationship

between concepts and categories. The most basic description is that a concept spec-

ifies the features, functions, and theories around which particular exemplars of that

concept cohere, creating a category. A category refers to the set of exemplars that

meet the criteria of a concept and against which novel exemplars are compared

when deciding whether they are or aren’t properly labeled by the same word (Ko-

matsu, 1992). That is to say, concepts are the mental representations of the infor-

mation used to classify objects and states of affairs into coherent groupings called

categories. The basis for deciding whether an exemplar is or isn’t a member of a

category is the business of a psychological theory of conceptual structure. Broadly

speaking, there are two kinds of theories that address the fundamental nature of

concepts: similarity- and explanation-based. Similarity-based theories advance the

assumption that objects are classified as exemplars of a category because they share
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attributes with some abstract specification of a category, or with known exemplars

of the category.

Similarity-based Theories of Concepts

Within the similarity-based perspective, three main approaches have been advanced

in the literature: 1) the classical view, 2) the family resemblance view, and 3) the

exemplar view. According to the classical view, categories cohere as a result of

necessary and collectively sufficient attributes. Although this perspective is at best

an idealization, it does appeal to the observation that people have strong intuitions

that words have necessary and sufficient conditions, despite the fact that they cannot

always articulate those conditions.

Furthermore, within the classical view category membership is regarded as dis-

crete because there are strong constraints on the attributes: either an object is an

instance or it isn’t. According to this view, the necessary and sufficient attributes,

referred to as the definitional information, constitute all that is needed to explain

how people understand linguistic relations and how they make inferences about and

recognize exemplars of a category. Subsequent research has revealed, however,

that the boundaries between categories are graded and not distinct, and that people

show typicality effects, judging some exemplars as being more or less typical of the

category than others (Rosch & Mervis, 1975).

According to the family resemblance view, categories cohere by virtue of family

resemblances among exemplars. Komatsu identified five characteristics associated

with this perspective.

The first characteristic is that typicality or prototypicality is graded. Exemplars

with greater family resemblance to a category are judged to be more typical of that

category. The second characteristic is that every attribute specified for a concept

is shared by more than one exemplar. The implication is that information con-
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tained within a concept is an abstraction across exemplars, and that the overlapping

networks of shared attributes thus formed hold categories together. The third char-

acteristic is that an exemplar that shares many attributes with other exemplars of a

category will have greater family resemblance than an exemplar that shares only a

few attributes. The fourth characteristic is the assumption that the attribute weights

are independent and combined by adding, resulting in exemplars and non-exemplars

of a concept that can be perfectly partitioned by a linear discriminant function.

The fifth characteristic requires elaboration because there are two ways of con-

ceiving of similarity. One kind of family resemblance focuses on the similarity

of the exemplars themselves (i.e., the greater in similarity an exemplar is to other

exemplars, the greater its family resemblance), and therefore has an extensional

emphasis because it makes no assumptions about how the category is represented

mentally (i.e., similarity is judged between specific referents in the world that are

being compared as similar). The other kind of family resemblance focuses on the

similarity between an exemplar and the central tendencies of the category, which

places emphasis on the intensional representation. Hence the fifth characteristic of

the family resemblance view is that a concept provides a summary of a category in

terms of the central tendencies of the exemplars.

There are two challenges to the family resemblance approach of conceptual

structure. The first challenge is that with no a priori constraint on the nature of

similarity shared by the exemplars of a concept, the family resemblance approach

has difficulty specifying which similarities count and which do not when it comes

to setting the boundaries between categories. One solution is to adopt the assump-

tion that concepts are constrained ecologically, so that certain categories reflect the

natural partitionings of objects in the world by our perceptual systems. The sec-

ond challenge is related to the characteristic of context-dependence. Because the

representations described by the family resemblance view are context free, they
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cannot explain how levels of family resemblance or relevance weights of attributes

are affected by context.

Finally, under the exemplar view, if one considers that categories cohere around

unique exemplars, similarity is judged according to how similar a novel exemplar is

to one or more of the exemplars that constitute a category. Thus, categories cohere

because their constitutive exemplars are similar to one another in particular ways.

The exemplar view can account for contextual effects because the exemplars that

are stored in long-term memory depend on context and goals and therefore can

account for contextual effects on typicality judgments.

Explanation-based Theories of Concepts

The discussion now turns to two more complex and dynamic approaches to what

constitutes category membership, the explanation-based approaches. Explanation-

based theories attempt to explain three characteristics of concepts which are difficult

to explain by similarity alone. Those characteristics are: 1) the effect of context

on resolving ambiguity, 2) the ability to refer to things in the world, and 3) the

intensional relations which form the networks of relations within semantic memory.

The first explanation-based approach is the schema view (Murphy & Medin,

1985). This view combines the exemplar and family resemblance views into a sin-

gle structure. A schema is a single structure that captures characteristics of both

the family resemblance approach (by storing information that is abstracted across

instances) and the exemplar approach (by retaining information about actual exem-

plars). It provides a uniform method of simultaneously representing information

at different levels of abstraction. In addition to functional information, the schema

also includes information about the relationships that hold among the attributes of

the exemplars of a concept.

The schema view adds three characteristics of conceptual structure to those al-
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ready discussed. The first is a new operational definition for an attribute, called a

slot. Every piece of information that is stored about a concept is stored in a slot.

Moreover, the schema specifies just which values can and cannot be stored in a slot.

Some slots contain attributive information (e.g., furry) or probability distributions

(e.g., human males have a range of possible heights), while others contain refer-

ences to specific exemplars (e.g., Sylvester is an exemplar of cat). The redefinition

of an ‘attribute’ into a ‘slot’ allows researchers to specify more types of informa-

tion within the mental representation in order to move beyond simple perceptual

propositions.

The second characteristic added by the schema view is that if there is no value

associated with a slot, a default value may be inferred. Default values have a low

priority relative to slot values, which allows them to be overridden by context, but

they can also be context-free or contingent upon the most frequent or average value.

The third characteristic added by the schema view, related to the theory of semantic

networks, is an explicit description of the relationships among the slots and slot

values. By regarding concepts as networks, the schema view draws attention to the

fact that schemata actually include information about two kinds of relationships:

relations among the slots within a particular concept, and relations between con-

cepts. It is through the relations between concepts that slots and slot values may be

inherited from other concepts.

One of the important shifts in attention under the schema view places emphasis

on the kinds of relationships that schemata encode, such as functional or causal rela-

tionships between concepts. Perhaps more important than shifting focus away from

similarity-based perspectives to explanation-based perspectives is the recognition

that, concepts are constructed in working memory to participate within a particular

context. In the present manuscript that is assumed to be the case. Concepts are

not stable representations, but are rather emergent from the application of certain
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operations, on a base of information from long-term memory.

The second explanation-based approach is the mental model proposed by Johnson-

Laird (1987). Under this view a schema in long-term memory includes information

about how concepts are to be used to construct mental models in working memory,

and information about how exemplars of the concept interact with one another and

with other objects and forces in the real world. The mental model view highlights

the inferential processes inherent in conceptual thinking. Inferences are based on

background knowledge and inchoate theories about how the world works, which in

turn affect the construction of mental models.

An important distinction that motivates the explication of a mental model is

between ineffable truth conditions and verbal truth conditions. Ineffable truth con-

ditions for Johnson-Laird, Herrmann, and Chaffin (1984) are often called semantic

primitives in other cognitive theories of meaning. These are the innate and cogni-

tively impenetrable ingredients that are processed to construct meaning. Though

unanalysable, ineffable truth conditions play a major role in the construction, mod-

ification, and manipulation of mental models. For example, they specify what a

default value may be, they determine the constraints on a slot, and they specify

the type of relationships slots may enter into. It is through ineffable truth conditions

that intentional relations can be evaluated at all. Verbal truth conditions on the other

hand relate concepts to objects in the world. Moreover, the verbal definition is what

gradually becomes the theory that brings a set of exemplars into coherence.

In similarity-based models exemplars cohere in virtue of possessing similar at-

tributes. In explanation-based models concepts cohere because of the explanation

that relates all the schemata, slots, and relationship types together. In addition to

how the schemata relate to each other (at the macroscopic level of the concept and

the microscopic level of the slot), mental models also contain referential informa-

tion, such as whether the concept is used referentially to pick out an exemplar, or
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whether it is used attributively to locate an exemplar to fit a description.

An important argument made by Johnson-Laird (1987) is that the definition of a

mental model requires both ineffable truth conditions and verbal truth conditions to

be actively and reciprocally engaged. A linguistic utterance has to be translated into

an intentional representation - the proposition the utterance expresses - that is by

definition cognitively impenetrable. The second level of representation transforms

this cognitively impenetrable intentional representation into a model of the state of

affairs expressed by the proposition.

Humans can construct models of the world based on information from the per-

ceptual system, from memory, and through imagination in addition to verbal de-

scriptions (Johnson-Laird et al., 1984). Moreover, these models are constantly un-

der revision based on the incoming stream of experiences coming into working

memory. The final point that sets mental models apart from the other previously

mentioned theories is that mental models have structure that corresponds to the

perceived or conceived structure of the state of affairs. To use an example from

Johnson-Laird et al., the semantics of the expression “on the right of” specifies the

direction to be scanned in order to form a mental model of such assertions as “A is

on the right of B”.

In summary, the mental model view of conceptual structure provides a set char-

acteristics and operations that are ascribed to the fundamental nature of concepts

such that it is possible to make inferences in the absence of knowledge, to refer

to particulars in the world, and account for the way in which context can attune a

concept to a particular meaning.

A Sketch of the Internal Structure of Concepts

In the discussion up to this point, attention has been primarily focused on describing

those characteristics that a theory of concepts must specify if it is to adequately
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account for the way in which people use language. Some of the characteristics

warrant more elaboration in order to more specifically situate the experiments that

follow because the methodology that is developed in the following chapters assesses

only a few aspects of conceptual structure, not the entire theoretical specification

presented in the theories above.

Within the schema view of concepts, a slot contains the relevant information

about some property or relationship. However, a schema also encodes the con-

straints placed on those slots. Within the mental model view, slots in particular

indicate the kinds of relations that a concept may enter into with other concepts.

Information represented at this level is referred to as intensional, the mental infor-

mation about the meaning of the word, and how that information is related within a

representation and between representations.

According to Johnson-Laird (1987), a complete description of intensional phe-

nomena should explain: the intensional relations between words and expressions,

and how those relations yield states of affairs like synonymy or taxonomy, and the

semantic properties of those words that give rise to situations of ambiguity (i.e.,

unresolved constraint selection), analyticity (i.e., truth in virtue of meaning), and

self-contradiction (i.e., falsity in virtue of meaning).

A theory of conceptual structure also needs to account for extensional relations,

relations between words and the world as human beings experience it. An explica-

tion of extensional phenomena is important because meaning is lived through into

the world and is used to pick out aspects of the world, not merely to think about the

world.

Although a complete explication of these phenomena is beyond the scope of the

present manuscript, they are mentioned here as another way of conceiving the dif-

ference between words and concepts. Words present a stable and encapsulated way

of describing aspects of the world that are associated with particular contexts and
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behaviors. Concepts, in contrast, are highly dynamic and inter-connected within

a rich network of ontologically distinct meanings, such as intensional and exten-

sional information, that provide the mechanisms necessary for language speakers

to actively use meanings to make choices, solve problems and engage in imagina-

tive and creative thinking. For example, the meanings of the words cup and cake do

not explicitly specify how to form the compound word cupcake. Instead, through

the operations and characteristics of concepts, a new concept is formed based on

the context.

Having a rough characterization of the underlying structure of conceptual knowl-

edge allows the experiments described in Chapters 2 and 3 to be more thoroughly

described and interpreted. The iCmap procedure provides a way of measuring the

underlying conceptual structure used to classify concepts along a semantic dimen-

sion. The task, which is described in more detail in the next chapter, presents words

on a computer screen and asks participants to classify them into groups. The au-

thors of the iCmap paradigm adopted a perspective of conceptual structural that

was radically underspecified even compared to the brief introduction presented in

the previous section. As such, they were unable to formulate meaningful expla-

nations to account for the results of their experiments. Despite the theoretical and

methodological limitations in their work, the iCmap task appears to provide a useful

tool for investigating the internal structure of concepts.

Three Goals of the Present Work

The main purpose of the present manuscript is advance the applicability and util-

ity of iCmap. This can be broken down into three goals. The first goal of this

manuscript is to apply some of the knowledge from various cognitive and psy-

cholinguistic research to the theoretical specification of the iCmap paradigm. There

are many structural variables that contribute to performance during word-based
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tasks that remained uncontrolled in the original experiments, a state of affairs en-

tirely correctable and addressed here. For instance, Aidman and Egan (1998) se-

lected an arbitrary number of concepts to categorize during a trial (e.g., eight con-

cepts), and they did not consider word length when selecting concepts. Both of

these variables have been shown to have significant effects on performance in other

language related research, therefore the absence of control on these variables indi-

cates potential sources of error in the design of the initial iCmap procedure.

Another limitation of Aidman and Egan (1998) was that they adopted no theo-

retical account of concepts in their investigations, but simply placed the structure

and operations of concepts in a ‘black box’. By implementing a theoretical account

of concepts within the iCmap framework, the task can be modified to generate

testable hypotheses about conceptual categorization that are capable of shedding

light on the organization and operation of the conceptual system used in word–

based tasks. If it can be shown that the iCmap paradigm does measure qualities of

conceptual structure then a secondary question emerges: How can the task be fur-

ther refined and validated so that it can generate new experiments, and contribute

new perspectives toward our understanding about the structure and functioning of

conceptual representations?

The second goal of this manuscript is to build and test the task in an experi-

mental setting to collect evidence about its efficacy. The iCmap task was intended

to measure the complexity and the consistency of the conceptual structures acti-

vated and stored in working memory when categorizing lists of words presented

on a computer screen. The first experiment serves to provide the data necessary to

complete the second goal and is discussed in Chapter 2.

The third goal of this manuscript is to modify the procedure developed by Aid-

man and Egan (1998) to re-calibrate the iCmap methodology with additional char-

acteristics, and to demonstrate that the re-calibrations have significantly improved
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the precision and quality of the measurements that are collected through the tech-

nique. The assumption is that improving the design of the iCmap task and pro-

cedure will reveal unique sources of information that can shed light on the nature

of conceptual structure, which will be followed by Experiment 1. Whether this

assumption holds depends on whether the modifications prove to be sound. The

second experiment in Chapter 3 was designed to demonstrate that they do.

Summary

A way of measuring conceptual structure that is sensitive to context and that takes

the problems of the dynamic and graded representations of concepts seriously is

needed. The iCmap task potentially provides just such a methodology. However,

there are concerns of validity that must be addressed in addition to situating the

methodology more soundly in the extant research on concepts. In Chapter 2, a brief

overview of concept mapping will be presented, and will be followed by Experiment

1. The results from Experiment 1 will be used to motivate a set of refinements

that are hoped will suitably address the issue of validity. These refinements are

addressed in the second experiment presented in Chapter 3.
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Chapter 2

It is necessary to present a theory of concepts in the present manuscript in order

to bridge the understanding of conceptual structure from within cognitive psy-

chology with the practical applications of learning theory, which has adopted a

concept-centered approach towards explaining the psychology of meaningful learn-

ing. Where learning theory researchers are concerned with creating tools and in-

structional techniques that foster meaningful learning, cognitive psychologists are

more concerned with describing the structural and operational characteristics of

concepts within a language system, and developing hypotheses about why the lan-

guage system operates the way that it does. Not surprisingly, the manner in which

concepts are implemented by minds lies beyond the scope of the learning theory re-

search program. The consequence of each discipline focusing on different aspects

of meaning is that each constructs qualitatively different descriptions of a ‘concept’.

By adopting a learning theory perspective, one becomes concerned with the un-

derlying verbal definition of a concept as well as the encyclopedic and background

knowledge, so that new knowledge can be meaningfully integrated into the existing

networks of concepts. Phrased in this way, learning theory successfully enriches

knowledge structures through the operations and characteristics that mental models

afford. Therefore, by extension, meaningful learning is achieved through the appli-

cation of concept mapping, which is intrinsically tied to the mental models whose

explanatory inferences bring into coherence the attributes, inter-attribute correla-

tions and exemplars that participate within each concept, and across the domain of
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knowledge being taught.

The present chapter provides an overview of concept mapping as it was origi-

nally conceived by Novak, Gowin, and Johansen (1983), and then presents the work

by Trochim (1989) who takes concept mapping from the assessment of individual

concept maps to group concept maps. Within both of these accounts of concept

mapping, the scoring procedures that associate particular values to properties of

the concept maps are discussed because these tie directly to the experiments below.

Some attempt will be made to relate both accounts of concepts together. For even

though Novak et al. and Trochim provide definitions for their respective uses of

‘concept’, the definitions are different from the one advanced in Chapter 1. With

that said, the discussion first turns to the traditional concept map scoring procedure,

and then a comparison is drawn between that procedure and the procedure adopted

by Trochim before finally turning to implicit concept mapping and its scoring pro-

cedure.

Concept Mapping

Concept mapping is technique where an individual creates a 2-dimensional diagram

outlining his or her understanding of the relationships between and among impor-

tant concepts within a given domain of knowledge. Novak et al. (1983) demonstrate

that concept mapping is a useful technique to facilitate meaningful learning, a type

of learning inspired by Ausubel’s theory of meaningful learning (Ausubel, 1968).

Meaningful learning results when an individual consciously and explicitly ties new

knowledge to relevant concepts or propositions they already possess. Rote learn-

ing, on the other hand, results when new knowledge is arbitrarily incorporated into

cognitive structures. What emerged from the work of Novak et al. (1983) was that

concept maps serve to promote meaningful learning.

The connection between learning theory and conceptual structure is that, under
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Ausubel’s theory, a key factor for potential success in meaningful learning is the

framework of relevant concepts and propositions that an individual possesses. A

proposition within a concept mapping perspective is operationalized as two or more

concepts semantically linked (Novak et al., 1983). Hence the network of mental

models activated and integrated within working memory during the learning process

directly and indirectly influence the quality of the learning that takes place.

The procedure of concept mapping, generally speaking, begins by supplying

individuals with a set of related concepts that they then physically organize by plac-

ing the most inclusive, most general concept at the top (of the page or computer

display) and successively place less inclusive concepts at lower positions on a hier-

archy (Novak et al., 1983). Imposing a hierarchy is the most difficult characteristic

in constructing a concept map because the hierarchy depends on the particular ‘unit

of knowledge’ under consideration, where a unit of knowledge is any proposition.

As a consequence, the same concept can be located at various different levels in a

concept map for different units of knowledge (Novak et al.). It follows from their

claim that the propositions linking concepts must also change accordingly, a situa-

tion which further highlights the effect of context on the nature of meaning.

Underlying these claims regarding the structure of knowledge is the hypothesis

that meaningful learning leads students to organize knowledge hierarchically; how-

ever, Freeman and Jessup (2004) argue that networks of meaning are supportive of

hierarchical structure, but are not necessarily bound to that type of organization.

It is also the case that some topics are not hierarchical in nature, hence the work

of Safayeni, Derbentseva, and Cañas (2005) who develop a framework for cyclic

concept mapping, a procedure developed to capture functional or dynamic relation-

ships.

Freeman and Jessup (2004) identify many beneficial applications of concept

mapping, such as: expressing a conceptualization to others, collaboration in problem-

19



solving, increasing team performance, increasing shared expectations, and shared

understanding. Trochim (1989) suggests that concept mapping encourages a group

to stay on task, while they express the conceptual framework in their own language.

A few of the observed benefits of adopting a technique like concept mapping are

improved organizational cohesiveness and morale (Trochim & Linton, 1986).

West, Pomeroy, Park, Gerstenberger, and Sandoval (2000) use concept maps

to quantify changes in conceptual framework by comparing the concept maps of

resident medical students before and after training in a particular domain. Their re-

sults revealed that second- and third-year residents scored significantly higher than

first-year residents before instruction, but not after instruction. More importantly

they found evidence to suggest that concept mapping assessment reflects expected

differences and change in the conceptual framework of resident physicians.

Novak et al. (1983) observed that students (i.e., grade 7 and 8) of any abil-

ity level could be successful in concept mapping, and that factors like motivation

were more important than academic performance alone. Along with many other

related findings, they point out the absence of a correlation between SAT scores

and concept map scores, a result which they argue indicates that the two assessment

techniques tap different sets of abilities.

Once a concept map is produced however, there still remains the issue of inter-

preting it and evaluating it. To accomplish that, Novak et al. (1983) have content

experts create “ideal maps” and then compare individual maps to the ideal map.

One surprising finding from their work was the observation that some of the in-

dividual maps were better representations of the underlying conceptual structure

for the domain under investigation than the ideal map, a finding which hints at the

ecological validity of the technique.

One of the key issues surrounding the successful use of concept mapping in-

dicated by Freeman and Jessup (2004) is the need to elaborate the methods for
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assessing and measuring concept maps. Several approaches have been developed

to measure concept maps and are presented in the next section.

Concept Map Scoring

Individual Maps

Up to this point in the discussion, concept maps have been used to describe an

individual’s understanding of a topic in relation to an ideal map made by an expert.

The task of quantifying concept maps so that different maps can be meaningfully

compared requires a scoring procedure which assigns a numeric value to individual

concept maps. Novak et al. (1983) adopted a procedure where the ideal map was

assigned points for five characteristics:

1. number of relationships

2. hierarchy

3. branching

4. general to specific

5. cross links

The values are then summed together to produce a total score for the ideal map,

which can be used to form a ratio of an observed map score to the ideal map score.

The ideal map then serves as a template to score individual maps with the possibil-

ity, as mentioned above, for individuals to out perform the ideal map. Used in this

way, the procedure assigned values to concept maps that later revealed significant

differences in performance between mappers of different ability.

The scoring procedure by Novak et al. (1983) remained the predominant method

of assigning values to concept maps for many years. A recent scoring procedure by

Allen (2006) reduces the number of characteristics to two: the breadth and depth
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of a concept map. Allen argues that the traditional scoring procedure leads to a

fundamental problem: highly dissimilar maps can end up with similar scores - an

issue of no less importance for the iCmap procedure.

Within the framework developed by Allen (2006), individuals possessing greater

understanding in a topic will produce maps with a greater number of branches,

branches that are also longer on average compared to individuals with rote under-

standing. Although his scoring procedure reduces the number of characteristics, it

still requires an independent scorer to assign the values to the individual maps.

The scoring procedure begins by calculating the average number of branches

emanating from non-terminal nodes and then calculates the average branch length.

Allen (2006) models the probability of selecting a subset of independent concepts

correctly linked to non-terminal nodes within a particular concept map with a trun-

cated Poisson distribution. Importantly, over the course of Allen’s research, his data

revealed that the variance of branch length was found to be less than the variance for

the number of branches, and therefore not well represented by the Poisson distribu-

tion, therefore he selected the Conway-Maxwell-Poisson distribution to model the

branch length data. By fitting the data to known distributions, Allen places himself

in a position to construct maximum likelihood estimates for the population means,

which he uses to generate cumulative probability tables for observed pairs of depth

and breadth scores.

The well-specified scoring procedure developed by Allen (2006) establishes re-

liable estimates of the structural properties of a concept map so long as one is will-

ing to adopt his scoring procedure. Before leaving Allen’s work, it is worth noting

two competing factors that he made explicit because they contribute to the informa-

tion contained within a concept map score. On the one hand, as the maps become

bigger, the sample estimates improve (the Poisson distribution approaches a nor-

mal distribution), while on the other hand the task becomes increasingly difficult
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to administer beyond a certain number of concepts, a situation that places an upper

limit on both the number of branches and the average length of the branches that

an individual can generate for a particular topic. Allen’s observations are insightful

because they identified important behaviors of the scores assigned to concept maps,

that within an experimental context at least, the values will range from zero to some

number much smaller than the possible potential concepts that could be included in

the map.

Group Maps

A slightly different approach to the problem of scoring a concept map was de-

veloped by Trochim (1989) who set out to describe the information present in a

concept map aggregated from a group of individuals. For Trochim, the process of

conceptualization was the articulation of ideas, thoughts, or hunches represented

in some physical form. More specifically, he adopted structured conceptualization

(i.e., concept mapping) as a way to describe a sequence of concrete operationally

defined steps and which yields a conceptual (pictorial) representation (Trochim &

Linton, 1986).

Although Trochim (1989) maintained the process of collecting individual clas-

sification scores, he promoted a collaborative approach where the concepts and their

linkages were brainstormed and generated collectively. Within this perspective the

concept mappers, as opposed to the researchers, were responsible for assigning a

rating to each concept along some salient dimension. As a result, concept mapping

within Trochim’s framework is a highly collaborative process which produces dif-

ferent kinds of observations compared to Novak et al. (1983) and Allen (2006).

This difference stems from the purpose of Trochim’s procedure that was aimed at a

much broader level of understanding because it was intended to be used for evalua-

tion and program planning at an organizational level.
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Within the group mapping procedure, information about concept interrelation-

ships is gathered by using an unstructured card sorting procedure adopted from

Rosenberg and Kim (1975). There is overlap with the approach developed by

Rosenberg and Kim and the Q-technique developed by Stephenson (1953). In the

sorting method of Rosenberg and Kim, participants are asked to partition a set of

inter-related objects or terms into different groups on the basis of their ‘similarity,’

‘relatedness,’ or ‘co-occurrence’. The biggest difference between the two methods

pivots on whether the classifications are categorical (i.e., Rosenberg and Kim) or

ranked (i.e., Stephenson).

Following Rosenberg and Kim (1975), Trochim prints each concept on separate

3 X 5 index cards and the complete set of concepts is given to a participant. Each

participant is instructed to sort the cards into piles that make sense. The results

from each participant are put into a matrix with as many rows and columns as

there are concepts. The value ‘one’ is assigned to two concepts placed in the same

pile, and the value ‘zero’ indicates that they were not. There are two important

characteristics that emerge from this scoring procedure. The first is a symmetric

similarity matrix, and the second is that the diagonal values in that matrix are all set

to ‘one’ indicating that a concept is always placed in a pile with itself. These are

important characteristics because they are also incorporated into the iCmap scoring

procedure discussed in the next section.

Once the symmetric similarity matrices are computed, they are aggregated across

the group to obtain a final, group similarity matrix. In the aggregated similarity ma-

trix, the values indicate how many participants placed a particular pair of concepts

in the same pile, and the diagonal values are equal to the number of participants.

The final, aggregated matrix is considered the relational structure of the concep-

tual domain because it provides information about how the participants grouped the

statements (Trochim, 1989). A high value indicates that many participants grouped
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a pair of concepts together which implies that they are similar. A low value in-

dicates that the concept pair was seldom put together into the same pile, which

suggests that they are more distinct.

In order to facilitate interpreting the aggregated similarity matrix, Trochim (1989,

p.7) adopts multidimensional scaling, a technique that “takes a table of similarities

and iteratively places points on a map so that the original table is as fairly repre-

sented as possible” and cluster analysis which “represents higher order conceptual

groupings of the concepts”.

In the first case, the aggregated similarity matrix is submitted to an MDS proce-

dure, that outputs a map of points which represent the set of concepts (selected and

sorted by the participants) where distance between points on the map reflects the

similarity scores, the greater the frequency between two concept pairs, the shorter

distance between them. Importantly for Trochim (1989), the mathematics underly-

ing MDS are more sound than that of cluster analysis, which leads him to adopt the

MDS information as a stronger basis for interpreting the inter-relationships among

the concepts than the cluster analysis. In regards to cluster analysis, Trochim found

that the best clustering algorithm to match the MDS maps was Ward’s algorithm.

Before turning to implicit concept maps, Trochim (1989, p.8) has two warn-

ings concerning these multidimensional analytic techniques. The first is that se-

lecting the number of dimensions for the MDS analysis is an important part of the

process, “where 2-dimensions typically produce acceptable solutions”, however, a

researcher could adopted more or fewer dimensions depending on his or her the-

ory or particular data. The second warning concerns the number of clusters to

adopt because as he points out, “all hierarchical cluster analysis procedures give as

many possible cluster solutions as there are statements” Trochim (p.8). To aid in

the decision-making process, Trochim suggests that a researcher err on the side of

more rather than fewer clusters.
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Implicit Concept Mapping

Implicit concept mapping emerges out of the types of concept mapping research

outlined above. Starting from the position that concept maps are useful and ef-

fective instructional aids, Aidman and Egan (1998) adopt the direct learner ratings

implemented by Trochim (1989) by selecting a computer-based tool that collects

direct learner ratings for a set of concepts. The purpose of such a tool is to facilitate

teaching the process of traditional concept mapping, whereby the MDS and cluster

maps reveal groupings and higher order similarities within an individual’s concep-

tual structure not previously salient to them, and hence the pictorial representations

serve as heuristics when first learning the mapping procedure.

For example, by inspecting the 2-dimensional MDS map, an individual might

perceive a regularity (e.g., animals grouped tightly around animals, furniture around

furniture, and so forth) which triggers an inference to establish an inchoate theory

about why the set of concepts behave they way they do. With that inference or

theory “in mind” the learner embarks on a traditional concept mapping task for the

same set of concepts, selecting nodes and building branches around those initial im-

plicit clusters and maps. Aidman and Egan (1998, p.32) propose such a tool extends

Trochim’s (1989) work by “evaluating individual conceptual representations,” and

it is that purpose that ties implicit concept mapping to psychological theories of

conceptual structure.

Aidman and Egan (1998) selected the computer-based procedure developed by

Burmistrov and Shmeliov (1992) to test their hypotheses. Unlike the free-form

brainstorming adopted by Trochim, Burmistrov and Shmeliov design each trial to

restrict concept categorizations along a single semantic dimension (e.g., similarity),

and force participants to perform three choices per trial (i.e., select one concept that

is the most similar to, and two concepts that are the most contrastive to a target

concept, which is randomly selected from the list). Participants continue to make

26



the three categorizations per trial until each concept has been the target concept

once. The procedure essentially “builds-up” a similarity matrix of concept pairings.

The concept pairs (target + concept) are determined by classifying the non-target

concept into one of three “piles”:

1. similar; assigned a score of 1

2. contrastive; assigned a score of -1

3. not rated; assigned a score of 0

At the end of each iCmap procedure, the final data structure represents the concept

proximity information for the list of words categorized along a single semantic di-

mension. Burmistrov and Shmeliov (1992) argue that the data structure has certain

structural properties which they label complexity and internal consistency. Com-

plexity is a description of the unique information contained withing the similarity

matrix. Internal consistency describes how symmetrical the pairings are across the

entire task. That is to say, when a concept is the target, the participant must clas-

sify one of the remaining concepts to be “similar” to it, and when that concept later

becomes the target, the symmetrical solution re-assigns the pairing as “similar”.

In the first experiment by Aidman and Egan (1998), their primary goal was to

assess the utility of the structural properties of the concept proximity information at

differentiating students with different levels achievement. Additionally, they were

interested in demonstrating whether or not content experts could infer the criteria

adopted by a map maker from the MDS and cluster map reconstructions. The results

were suggestive. With strong inter-rater reliability (.89) content experts classified

student maps into one of four classes: expert, novice, mixed, and other (i.e., no

obvious structure).

Finally, an expert and a novice map (i.e., a map created with the criteria of using

the kinds of superficial features a novice might use to classify concepts) were cre-
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ated by an independent content expert, and the student maps was compared to each.

Aidman and Egan developed two additional scores to describe the congruency be-

tween student maps and the two template maps: global similarity to expert (GSE)

and global similarity to novice (GSN). It must be assumed that these variables were

manually scored by the content experts, because no algorithm or formulae are pre-

sented that describe the nature of these variables or what data was used in their

calculation.

Aidman and Egan (1998) found significant differences when comparing the ex-

pertly classified student maps to the novice student maps according to GSN (z=6.08,

p < .01) and GSE (z=4.50, p < .01). There was a greater difference in scores be-

tween the expert and novice student maps in relation to the constructed novice map,

compared to the constructed expert map. Additionally, students’ performance on

a formal test showed significant differences whereby students with expert maps

scored higher than students with novice or other maps (ME = 13.25; MN = 11.41;

MO = 11.30; p < .01), followed by students with mixed maps who scored higher

than novices and others (MM = 12.25; p = .04). Experts did not out perform the

mixed group (p > .05).

The most important results for the present manuscript were the performances of

the complexity and internal consistency scores relative to each other and the formal

test. Complexity had a moderate, negative correlation with internal consistency (r

= -.57, p < .01) which means that as students identified more unique dimensions

among the concepts, they were less consistent in their ratings. Internal consis-

tency was weakly correlated with the formal test score (r = .40, p < .05), indicating

that those students capable of producing a more internally consistent structure also

tended to score higher on the formal test. These results also revealed that the num-

ber of unique dimensions contained within the proximity data did not provide useful

information in differentiating learners of varying skill levels.
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Put another way, the complexity score developed by Burmistrov and Shmeliov

(1992), argued to measure an aspect of the conceptual structure for the set of con-

cepts, did not correlate with the formal test score, calling its validity into question.

Interestingly, Aidman and Egan (1998) offer no comment as to why the variable

might be negatively correlated with internal consistency or why it might fail to cor-

relate with the formal test score. This, not surprisingly, lead Aidman to move away

from the structural variables of Burmistrov and Schmeliov to begin focusing on the

utility of evaluating the MDS and cluster maps.

The second experiment by Aidman and Ward (2002), continued the examination

of the iCmap procedure, but shifted the focus from the structural properties of the

proximity data to expert-based evaluation of the reconstructed implicit structure re-

vealed by the MDS and cluster plots. In their experiment, Aidman and Ward were

again interested in evaluating the efficacy of “[s]tudying individual differences in

conceptual structures” (p.36) because it provides “a means for evaluating and as-

sessing knowledge.” (p.36). They hypothesized that both the structural and content

evaluation measures, derived from the reconstructed maps would vary as a function

of student achievement level. They made no mentioned about the failure of the

complexity score to correlate with achievement or even about the existing associa-

tion with internal consistency, presumably because they had no theoretical account

from which to discuss those issues.

Aidman and Ward (2002) found no significant differences between the complex-

ity score and the grade groups (F > 1), but did find a difference between internal

consistency and grade groups (F(5, 59) = 3.16, p < .05). Post-hoc analysis revealed

only that the top students (i.e., ‘A’ grade students) were different from the remainder

of the students. There were additional analyses on the expert ratings of MDS and

cluster maps of the students, grouped by grade, which revealed significant differ-

ences (F(5, 59) = 4.55, p < .01 and F(5, 59) = 5.21, p < .01 respectively).
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Aidman and Ward (2002) suggest that the failure to demonstrate differentiation

of complexity scores grouped by grade, and only the single difference for internal

consistency, was due to the fact that there is little shared variance in learners’ knowl-

edge reflected in both concept mapping and formal test scores. The conclusion that

they arrived at was that the kind of concept mapping in the iCmap procedure must

tap abilities not well measured by formal assessment techniques, namely multiple-

choice test scores. Moreover, they reiterate the claim that concept mapping tends

to discriminate more effectively between rote and meaningful learning. However,

they go no further to illuminate how the algorithms developed to measure complex-

ity and internal consistency might not measure what they were intended to measure.

Interim Summary

We are now in a position to situate the first experiment. In Chapter 1, a psycholog-

ical theory of meaning was presented to set the stage for thinking about concepts

as mental models in working memory. A mental model and its underlying propo-

sitional code work in tandem to select meanings that are attuned to the particular

linguistic and situational context. The critical claim by Johnson-Laird (1987) was

that resolving semantic ambiguity comes from the referential quality inherent in

the mental model, where concepts have intentional meaning structures as well as

extentional meaning structures, and that when combined with inferences based on

background knowledge, a particular meaning is selected that has the capacity to

refer to objects in the world.

The concept as mental model perspective adopted within this manuscript is used

to situate the work of learning theorists who design and evaluate tasks that empower

individuals and groups to express and visually represent their knowledge, and ide-

ally engage in meaningful learning. By making the process concrete through the

use of structured conceptualization techniques, learning researchers have been able
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to assess the quality of the knowledge constructed by participants in a wide range

of educational settings.

Concept mapping emerged as the favored tool to promote meaningful learning,

and remained a useful technique for many years. The downside of the concept

mapping procedure was the need to manually score the concept maps, with the

additional cost of having to teach the technique to students in order to use it effec-

tively. Implicit concept mapping was proposed as a means to solve both of those

challenges, by automatically scoring conceptual structure, and providing students

with visual aids to guide them during their initial concept mapping lessons.

The results of the two experiments assessing the iCmap paradigm revealed that

the structural variables do not discriminate between students of all achievement

levels. Even more problematic was the proposal by Aidman and Ward (2002) to

adopt manual scoring of the reconstructed MDS and cluster plots. By shifting the

assessment from the structural properties of the proximity data to the manually

scored reconstructed map, Aidman and Ward not only lost a tremendous amount of

information normally contained within the traditional concept mapping approach,

but implicitly suggested that the utility of the variables developed by Burmistrov

and Shmeliov (1992) was limited. With those issues raised, the discussion now

turns to the first experiment.

Experiment 1

The motivation for the current experiment was to conduct a pilot study to implement

the iCmap paradigm, and collect a set of data to be analyzed and compared to the

results of the existing iCmap literature. While that remains the basic purpose, there

were many issues with the iCmap research that warrant some attention and that

inform several additions to the design of the present experiment.

The first issue was addressed in Chapter 1 by providing a theoretical account
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of conceptual structure. Within the iCmap procedure, participants are required to

make conceptual categorizations, which are operating at a predominantly inten-

sional level of processing because the choices require linguistic meanings to be

processed and compared. As a result, a set of mental models are being activated

and stored in working memory, which through a series of inferential processes are

compared according to the intentional relationship of “similar” or “contrastive”.

The second issue has to do with the task design adopted in both previous ex-

periments. Recall the criticism raised by Allen (2006) that traditional scoring pro-

cedures where completely different concept maps can yield similar values. The

mathematical descriptions of complexity and internal consistency (discussed be-

low), yield values that behave similarly for a wide range of concept proximity ma-

trices. This is why the complexity score failed to yield significant results. By using

the iCmap procedure only once, both Aidman and Egan (1998) and Aidman and

Ward (2002) collected a set of arbitrary scores that when compared to each other

essentially canceled out any effects of learner achievement, because a random solu-

tion could potentially arrive at the same score as an expert solution.

A common technique to increase power is to incorporate a design where par-

ticipants submit multiple scores on the same variable. The design selected for

Experiment 1 is simply to have participants submit a set of scores, once before

learning the definitions of the concepts and once after having received instruction.

This kind of design, called a pre-post design, has the beneficial outcome of added

statistical control imposed by the addition of a second factor, namely, a subject vari-

able, which allows for an additional partitioning of the total variability in both CC

and CI scores.

Thus, the following experiment adopts a pre-post design. It is hypothesized that

as students learn the definitions of the concepts, the complexity scores will increase

due to the increased number of intentional relations being formed. Furthermore,
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because the mental models gain additional, salient information about the slot re-

lationships and slot values among the concepts, it is more likely that ratings will

become more consistent as these values become prototypical. Consequently, it is

hypothesized that training will increase internal consistency scores as well.

Finally, given that the present experiment is still assessing the validity and reli-

ability of the structural variables derived from the similarity judgments, it is useful

to compare them to other known measures of related cognitive functions. Although

there are a tremendous number of psychometric tests available, reading comprehen-

sion appeared to be the most likely to share variability in participant performance

during each iCmap trial. Where the iCmap measures might not tap the same skills

as multiple choice exams, reading comprehension is a skill used by all participants

in order successfully complete the iCmap task. Therefore both reading comprehen-

sion (measured prior to the experimental task), and scholastic achievement (e.g., the

final grade) in a first-year psychology class from which the concepts are selected

was also collected for subsequent analyses.

With that, the purpose of Experiment 1 is to first implement the iCmap paradigm

developed by Burmistrov and Shmeliov (1992), and second, to extend the experi-

mental procedure to make it more robust with greater control so that it produces

more refined information concerning the behavior of the dependent variables. Once

the iCmap procedure has been implemented, there are two different analyses that

need to be completed. The first is to thoroughly describe the behavior of the depen-

dent variables, complexity, henceforth referred to as cognitive complexity (CC),

and internal consistency (IC).

The second analysis is to determine whether the dependent measures are sensi-

tive to learning. If it is possible to demonstrate a significant change in performance

on either CC or IC, that would provide evidence that these variables are capable

of describing characteristics of the underlying conceptual structures activated and
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used in service of completing the iCmap task.

The experiment that follows attempts to adhere to the methods and procedures

described by Aidman and Egan (1998) and Aidman and Ward (2002). One chal-

lenge that emerged in developing and analyzing the software for Experiment 1 was

the inadequacy of the information provided in both articles. In both cases, typo-

graphic errors and the exclusion of various mathematical and algorithmic details

left certain decisions up to guess work and intuition on the part of the author. Con-

sequently, a minor goal of the present experiment is to clarify the experimental

design, and data analysis routines so that future research can move forward from a

coherent and consistent framework that is more amenable to replication.

Method

Participants

Forty-two University of Alberta undergraduates (20 female and 22 male; MAge =

19.1, SD = 1.89) volunteered to participate in the experiment. All student partic-

ipants were asked permission for access to their course grade at the completion

of the term, and if they did not wish to consent then an alternative activity was

provided of equal educational value. Regardless of whether the participant com-

pleted the experiment or activity, he or she received partial course credit. Four

participants were excluded from the analyses because they did not participate in the

post-instruction mapping session.

Materials

Reading comprehension test

Participants were seated in separate rooms at a computer terminal with the Mac OS

X 10.4.0+ operating system and 15” LCD computer monitor. Input was collected

from a standard keyboard and mouse.

The test of reading comprehension (RC) used in Experiment 1 was taken from
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Hannon and Daneman (2001) and was developed with permission as a computer-

based application. The software environment used to develop the RC test was Run-

time Revolution version 3.1.1. and is available for both OS X and Windows. The

RC test is composed of seven blocks, where the first block is used as a practice

session leaving six experimental blocks. Each block began by presenting a set of

self-paced instructions.

Following the instructions, each block consisted of three sentences that together

constituted an experimental paragraph (see Appendix C). The experimental para-

graph is designed to contain a set of five target nouns that share particular semantic

features. There are three nonsense terms and two real terms. For example:

A NORT resembles a JET but us faster and weighs more.

A BERL resembles a CAR but is slower and weighs more.

A SAMP resembles a BERL but is slower and weighs more.

In this paragraph, NORT, BERL, and SAMP are the nonsense terms, JET and

CAR are the real terms, and speed and weight are the two semantic features. The

number of features per paragraph increased every two paragraphs. Thus, the first

two experimental paragraphs had two features, the next two had three, and the final

two had four features.

After studying the paragraph, participants responded to a set of true-false state-

ments about it. Half of the statements were true, and half were false. There were

four types of true-false statements. Text memory statements tested memory for in-

formation explicitly presented in the paragraph; no prior knowledge was required.

Text inferencing statements tested inferences about information presented explicitly

in the paragraph; no prior knowledge was required. Knowledge access statements

tested access to prior knowledge; no information from the paragraph was required.

Knowledge integration statements tested integration of prior knowledge with text

information. For each true test statement, there was a corresponding false state-
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ment that was constructed by reversing the order of the target nouns in the state-

ment. There were two types of knowledge access statements (i.e., low & high)

and three types of knowledge integration statements (i.e., low, medium, & high).

A total of 276 experimental statements that were presented across the six experi-

mental blocks. See Table 1 for a breakdown of the number of statements for each

component subtype.

Table 1
Reading comprehension test statement types and
totals

Component n

Text-based memory 84
Text-based inference 36
Knowledge integration low 24
Knowledge integration medum 36
Knowledge integration high 36
Knowledge access low 36
Knowledge access high 24
Total score 276

Note. Each n is the sum of the true and false statements for
that subtype.

Implicit concept mapping

The iCmap task was originally developed as a software application to run on com-

puters running DOS, but was not available for the present experiment. It was there-

fore necessary to develop a working version of the iCmap task with Runtime Rev-

olution 3.1.1. There were some minor changes made to the iCmap task.

In the original iCmap task design represented in Figure 1, participants were re-

quired to drag one of the words from the concept list to the left column to indicate

that it was similar in meaning to the header concept. Participants were also required

to drag two concepts to the right column to indicate they were contrasting in mean-

ing. Each item from the concept list became the header concept once after which
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the task was complete.

Self-efficacy

Self-concept

Inferiority complex

Super-Ego

Self-actualisation

Conditioning

Projection

Reinforcement

Archetype Locus of Control

Header Concept

The Unconscious

Two contrasting conceptsConcept ListMost similar to Header

Figure 1
Graphical illustration of the original implicit concept mapping task developed by
Aidman and Egan (1998)

The first change eliminated the columnar category assignment mechanism and

replaced it with a graphical object called a text field that acted as a bin, which the

participant dragged the concepts ‘into’ (see Figure 2). Furthermore, because the

task is a forced choice task, the number of bins was set equal to the number of

choices that the participant was required to make.

The second change to the original design was to add a second similar-in-meaning

categorization so that participants were required to make two similar categorizations

and two contrastive categorizations. There was no justification for an asymmetrical

configuration (i.e., one similar vs. two contrastive categorizations), therefore the

task was made so that there were equal numbers of judgments for each category.

The final change was to the semantic dimension against which the concepts
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were classified. The original classification of similar-constrasting was exchanged

for related-unrelated. The change was based on the observation that the concept

list selected to represent aspects of Operant Conditioning contained many concepts

that were operationally related, thus it seemed more sensible to ask participants to

judge concepts according to the degree of relatedness rather than which held the

most contrasting meaning. Furthermore, because the iCmap task currently contains

decisions that require participants to evaluate and compare the intentional infor-

mation among the mental models, the notion of similarity being so broad might

prime some participants to compare the perceptual or functional characteristics of

the mental models, which could be superficial, physical features as opposed to more

essential intentional information gleaned from the verbal definition.

A side point of interest from the perspective of the author was to build the task

to be more intuitive for the participants. Precisely because this is a novel task,

any improvements to the usability might also serve to control for variability due

to different abilities in learning how to perform it. Hence, a few visual aspects,

such as color, font weight, and font family were modified in real-time to emphasize

the nature of the task, and how to successfully complete the task. For example,

when the participant used the mouse to click on a word, the color of the letters was

changed from dark gray to blue to provide explicit feedback that a word had been

successfully selected and could be dragged into a bin. Many of the visual design

choices were based on the work of Tufte (1991).

The set of concepts that were chosen for Experiment 1 were selected from the

two primary textbooks used for introductory psychology courses (Gray, 2002; Carl-

son, Buskist, Enzle, & Heth, 2005) at the University of Alberta during the semester.

Consultation with content experts revealed that the sub-domain of operant condi-

tioning was ideally suited for the present experiment for two reasons: 1) operant

conditioning is typically taught half-way through the semester; 2) the key concepts
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Figure 2
Graphical illustration of the implicit concept mapping task developed for
Experiment 1
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within operant conditioning are typically well-defined, and, therefore, the kinds of

terms found on the multiple choice exams used to assess academic performance.

From an initial list of 30 concepts, sixteen were identified as important by two

experienced professors both possessing PhDs in psychology. The final concept list

is presented in Appendix A. Prior research by Aidman and Egan (1998) and Aidman

and Ward (2002) used eight and eleven concepts respectively.

Procedure

Reading comprehension test

Participants were greeted and given two separate consent forms to read and sign.

The first consent form described the nature of the experiment and provided detailed

information about their rights while participating in the experiment. The second

consent form was required by the Office of the Registrar in order to release the fi-

nal grades obtained by participants in the introductory psychology course. If the

participant did not consent to participate or release their grades they were explicitly

assured that they would suffer no academic sanction and were given an alternate ac-

tivity to complete. The intent of the alternate activity was to provide an educational

experience of equal value to that of participating in the experiment. No participant

requested the alternative activity.

All the instructions for the RC test were presented on the computer screen, and

each participant was also given verbal instructions making explicit reference to the

keys on the keyboard for viewing the experimental paragraphs (e.g., a button on the

computer screen labeled ‘Next Sentence’), and for indicating True and False to the

statements (e.g., pressing the ‘E’ and ‘I’ keys respectively). Participants were told

to read the instructions and proceed at their own pace.

As in Experiments 2 – 4 of Hannon and Daneman (2001), participants were told

that they would see a single sentence in the center of the computer screen. Their task
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was to read the sentence and think about the target nouns and the relations specified

between them, and to remember these nouns and relations for the remainder of the

block. In particular, they were told that some of the target nouns in the sentence

would refer to real-world objects so they should be familiar with them, while the

remaining target nouns would represent fictitious objects unfamiliar to them. Each

paragraph was composed of three sentences, presented in a randomized order.

The participants both heard and viewed the instructions, which indicated that

they should use their real-world knowledge to answer the true-false statements, be-

cause some of the statements were considered true based on information contained

within the three sentences; other statements should be considered true because the

information described in them could be deduced from their existing knowledge

about real things in the world.

Participants controlled the length of time that the sentences were displayed,

and were told to click on a button labeled ‘Next Sentence’ to view them. Each

sentence was visible only once, and when the third sentence was presented, the

‘Next Sentence’ button was removed, and the participants were instructed to press

the space bar to begin viewing the true-false statements.

After studying each experimental paragraph, participants responded to a series

true-false statements presented in random order. While the participants controlled

the display time for the experimental sentences, they were told that they only had

12s to respond to each true-false statement once it was presented on the computer

screen. The 12s trial duration was chosen by Hannon and Daneman (2001) to pro-

vide enough time to respond ‘true’ or ‘false’, and also establishing a finite amount

of time required to complete the RC test. If a participant did not respond by the

end of the trial duration, the statement was scored as an error and the next true-false

statement was presented. At the end of each block, participants were presented

with a message indicating that they had finished, and the next block commenced.
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Participants typically required 25 – 30 min to complete the RC test.

Implicit concept mapping

Participants remained in the same room after completing the RC test. Each partici-

pant began the iCmap session with both text-based and verbal instructions indicat-

ing that they would be required to read a list of concepts, and that they would have to

classify some of them by dragging and dropping them into the bins provided on the

computer screen. Each trial of the iCmap task required that participants make two

‘related’ judgments and two ‘unrelated’ judgments for each concept that appeared

at the top of the screen, called the Header concept.

Specifically, participants were told to read each concept in the list carefully, and

select two concepts that were the most related in meaning to the header concept and

to drag them into the bins labeled ‘related’, and to select two concepts that were

the most unrelated in meaning to the header concept. When all four bins had words

assigned to them, the participant indicated that they were done, and the next trial

began. This process repeated until each concept in the list had taken its turn as

the Header. The resulting proximity matrix was then analyzed to compute global

structural characteristics, cognitive complexity and internal consistency.

Data analysis. The data analysis follows Aidman and Egan (1998) and Aidman

and Ward (2002) except for that the DCS-4 program of Burmistrov and Shmeliov

(1992) was not used. Instead, the freely available R statistical environment (Forster

& Hector, 2002) was used to process all the raw subject proximity data and generate

the global structural variables and the associated graphs presented below.

The proximity data were derived for each participant in the form of an n∗n non-

symmetrical square matrix An = {ai j}, where n = the number of concepts mapped.

The cell values were assigned as follows: ai j = 1 if the jth concept was judged as

related to the ith concept, ai j = −1 if the jth concept was judged as unrelated to the
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ith concept, and ai j = 0 if no judgment was made between the jth and ith concept.

According to Aidman and Egan (1998), the An matrix is not a distance matrix

because it is not symmetrical and therefore must be transformed in order to compute

a factorable metric. Thus, each An matrix was transformed into a normalized matrix

of all pair-wise scalar products of its rows in a procedure developed and tested by

Burmistrov and Shmeliov (1992). The resulting symmetrical matrices S n were then

used in subsequent analyses.

Cognitive Complexity. The first variable computed from each S n matrix was cog-

nitive complexity (CC), which according to Aidman and Egan (1998) is a variable

intended to estimate the number of independent elements, or the degree to which a

construct system is broken down. The CC of an S n matrix represents the number of

independent dimensions to which the proximity date can be reduced (Burmistrov &

Shmeliov, 1992). It is computed as follows:

CC = 1 −
�n

i=1
�i−1

j=1 abs(S i j)
m·n(n−1)

2

(1)

Where n = the number of concepts mapped, m = the number of non-zero cells

in each row of matrix {ai j}, and S i j is the scalar product of the ith and jth rows of the

matrix:

S i j =

n�

k=1

aik · ajk (2)

Cognitive complexity is effectively a measure of dimensionality of a proximity

matrix, with its values in the range [0,1]. As cited by Aidman and Egan (1998)

and Aidman and Ward (2002), CC has been reported to increase as the subject

distinguishes more independent properties in the given content domain, with low

values indicating a simpler cognitive structure.
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Internal Consistency. Internal consistency was estimated by a measure of sym-

metry of the proximity matrix:

IC = 1 −
�n

i=1
�i−1

j=1 S IGi j

n(n−1)
2

(3)

Where S IGi j = 1 if sign (Pi j) = sign (Qi j), and S IGi j = 0 if sign (Pi j) � sign

(Qi j), where Pi j is the scalar product of the ith and jth rows and Qi j is the scalar

product of the ith and jth columns of {Ai j}. As with cognitive complexity, IC is

within the range [0,1], reaching 1 for a symmetrical matrix, which is a perfectly

consistent set of relatedness judgments, and diminishing with increased asymmetry

of {Ai j}.

Results

Reading comprehension test

The dependent variable for the RC test and its components was accuracy (i.e., num-

ber correct). It should be noted that speed of responding (i.e., average reaction

time for correct response) was not collected because Hannon and Daneman (2001)

obtained results that indicated that speed of responding did not correlate with accu-

racy and therefore the speed measure likely taps some common factor having to do

with speed of reading and responding to a test statement and is not sensitive to the

particular component processes that the individual test statements were designed to

measure.

The descriptive statistics for the RC test are presented in Table 2. None of the

component processes suffered from ceiling or floor effects, and there was an ap-

preciable range of scores for each. The simple correlation matrix of the RC test

components is shown in Table 3. The correlations are consistent with the results

obtained by Hannon and Daneman (2001). The text-based components, text mem-

ory and text inferencing, were highly correlated with one another on both the pre-

and post-test (ranging from .83 to .88), while also being very weekly correlated with
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knowledge access components (ranging from .05 to .22). The knowledge integra-

tion components were also moderately correlated with the text-based components

(ranging from .36 to .68), each other (ranging from .57 to .71), and the knowledge

access components (ranging from .3 to .64).

Table 2
Descriptive statistics for reading comprehension test in
Experiment 1

Pre-test Post-test

Component M SD Range M SD Range

TBM 50.8 8.8 (34−67) 52.1 10.0 (27−67)
TBI 18.3 4.2 (10−25) 19.7 5.1 (6−27)
KIL 16.7 2.6 (9−20) 17.5 2.5 (10−20)
KIM 24.5 3.9 (15−30) 25.7 3.4 (16−30)
KIH 21.7 4.5 (12−30) 23.2 4.9 (12−30)
KAL 26.3 2.0 (20−28) 26.6 1.9 (20−28)
KAH 17.7 2.1 (11−20) 17.7 1.8 (13−20)
Total score 175.9 21.7 (133−216) 182.5 24.5 (117−219)

Note. n = 38. M =Mean. SD = Standard deviation.
TBM = Text-based memory; TBI = Text-based inference; KIL = Knowledge
integration low; KIM = Knowledge integration medium; KIH = Knowledge
integration high; KAL = Knowledge access low; KAH = Knowledge access
high.

Due to a programming error, the true-false statements could not be submitted

to a reliability analysis because the identifier for each statement was not recorded

and the statements were randomized for each participant. However, in light of the

congruence between the results obtained here and those obtained in Hannon and

Daneman (2001), there appears no reason why the reliability of the RC test (both in

terms of the components and the overall test score) would not be similarly reliable.

Implicit concept mapping

There were two dependent measures derived from each proximity matrix: 1) cog-

nitive complexity, and 2) internal consistency. The descriptive statistics for these
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Table 3
Simple correlation matrix for reading comprehension test for both pre- and
post-test in Experiment 1

Component 2 3 4 5 6 7

1. TBM .83**(.88)** .44**(.53)** .47**(.62)** .63**(.77)** .21 (.32) .22* (.25)
2. TBI .36* (.48)** .47**(.49)** .61**(.73)** .05 (.37)* .21 (.33)*

3. KIL .57**(.73)** .68**(.60)** .64**(.54)** .39* (.60)**

4. KIM .71**(.59)** .42**(.56)** .31 (.54)**

5. KIH .45**(.38)* .30 (.43)**

6. KAL .41* (.52)**

7. KAH

Note. n = 38. Post-test correlations are in parentheses.
TBM = Text-based memory; TBI = Text-based inference; KIL = Knowledge
integration low; KIM = Knowledge integration medium; KIH = Knowledge
integration high; KAL = Knowledge access low; KAH = Knowledge access high.

* p < .05. ** p < .01.

measures are presented in Table 4. CC has the same mean at both sessions as does

IC, contrary to the hypotheses that both would increase as a result of learning. This

suggests that participants did not add more complexity in their relatedness judg-

ments despite having received instruction covering the definitions for the concepts.

Further investigation of the overall behavior of these measures (See Figure 3) indi-

cates three patterns. The first is that IC tends to be greater than CC, which suggests

that participants are choosing a response strategy that prefers simple relationships

that are easier to recall from trial to trial.

The second pattern that emerged from an inspection of the means indicates that

the scores remain unchanged after receiving instruction. The boxplots in Figure 3

demonstrate that neither CC nor IC are sensitive to a change in understanding of

the underlying meaning of the concepts used in Experiment 1. The third pattern is

that there is very little variability in the scores, which is indicated by the range of

CC (.63 to .84) and the range of IC (.78 to .94).

In order to confirm the observation that the means of both measures were un-
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Table 4
Descriptive statistics for global structural characteristics for both
pre- and post-test in Experiment 1

Pre-test Post-test

Variable M SD Range M SD Range

Cognitive Complexity .76 .039 (.67−.82) .76 .051 (.63−.84)
Internal Consistency .85 .037 (.78−.94) .86 .036 (.78−.94)

Note. n = 38. M =Mean. SD = Standard deviation.

affected by learning, the scores for both variables were submitted to paired sample

t-tests. There was no significant difference for CC (t(37) = -0.35, p > .05), or for IC

(t(37) = -1.70, p > .05). Thus the hypotheses that both CC and IC would increase

with learning are not supported.

The correlations between the global structural variables and the component pro-

cesses of reading indicate that there is no association between an individual’s read-

ing ability and the relatedness judgments they generate during an iCmap session

(see Table 5). Further, there were no significant correlations between the global

structural variables and academic performance or between reading ability and aca-

demic performance (see Table 6). There were two significant correlations that

emerged from the analyses. First, the RC total scores, pre- and post instruction,

were significantly correlated (r = .64) with each other. Second, CC was correlated

with itself in the pre- and post-instruction conditions.

Post-hoc analyses. The absence of significant differences between pre- and post-

instruction for either CC or IC, and the failure to locate significant correlations

between either the RC test, academic performance or the global structural vari-

ables, indicates that hierarchical regression of reading ability on either CC or IC

is not warranted. Thus the hypothesis that reading ability explains a portion of the

variability in CC or IC is not tenable given the present results.
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Figure 3
Distribution of scores for both dependent measures for both pre- and post instruc-
tion in Experiment 1

Table 5
Simple correlations between reading component
processes and global structural characteristics in
Experiment 1

Pre-test Post-test

Component CC IC CC IC

TBM .08 -.21 .05 -.26
TBI .14 -.17 .06 -.20
KIL .00 -.06 .08 -.19
KIM .05 -.08 .01 -.14
KIH .14 -.01 -.11 -.22
KAL -.10 .00 .00 -.01
KAH -.29 -.17 -.05 -.07
Total score .06 -.16 .02 -.24

Note. Total score is the sum of the component scores from
the RC test. CC = Cognitive complexity. IC = Internal
consistency.
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Table 6
Simple correlation matrix for reading comprehension test, global structural
characteristics, and student GPA in Experiment 1

Variable 2 3 4 5 6 7

1. GPA -.08 .12 -.16 -.32 .04 -.10
2. RC Total Score (Pre-test) .64** .06 .04 -.16 -.07
3. RC Total Score (Post-test) -.10 .02 -.12 -.24
4. Cognitive Complexity (Pre-test) .35* .15 .01
5. Cognitive Complexity (Post-test) -.15 .21
6. Internal Consistency (Pre-test) -.10
7. Internal Consistency (Post-test)

Note. n = 38. RC = Reading comprehension.
* p < .05. ** p < .01.

There is an additional approach that can be pursued in order to help gain in-

sight into what the iCmap paradigm is measuring, given it is not associated with

reading ability, academic performance in introductory psychology or change in

learner knowledge. By splitting participant responses into two groups, those con-

cepts judged as related (i.e., assigned 1 during an iCmap trial) and those judged as

unrelated (i.e., assigned -1), it is possible to aggregate the related and unrelated fre-

quencies to produce two additional sets of group scores, analogous to the approach

of Trochim (1989). By subtracting the observed frequencies after instruction from

those frequencies obtained before instruction, a difference score is computed, which

indicates the overall change in semantic judgments for a particular header concept.

The difference scores obtained for the related judgments are presented in Figure 4

and are ordered from largest to smallest variance, from top to bottom.

There are two related patterns that emerge from this analysis. The first is that

the variance in the difference scores is not homogeneous across the header con-

cepts. Instead, what can be seen in Figure 4 is that the aggregated frequencies for

some header concepts were consistently more variable than others. For example,

“spontaneous recovery” had the highest variance of all the header concepts (SD =
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Figure 4
Difference in related categorization frequencies (n = 38) between pre- and post-
instruction in Experiment 1. Header concepts listed from highest to lowest variance
with symbol size indicating amount of variance.
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7.05), while “reinforcement schedules” had the lowest (SD = 2.48).

The second pattern that emerged was a funnel shape owing to the difference

between pre- and post-instruction relatedness scores; the greater the difference,

the farther from center the concept pair was plotted. Importantly, some concepts

were judged with greater frequency after instruction as “related”. For example,

the concept “operant response” is rated as related to “spontaneous recovery” more

frequently after instruction, while other concepts, such as “negative reinforcer”

are rated as “related” to “aversive stimulus” less frequently after instruction. The

header concept “spontaneous recovery” had a large sums of squares (SS = 746)

compared to “reinforcement schedules” (SS = 92) at the other end of the spectrum,

which observed very little change between pre- and post- instruction scores.

Discussion

In Experiment 1, a group of undergraduates were asked to categorize a set of con-

cepts according to whether they were related or unrelated. In each trial, the partici-

pants were required to select two concepts as being related to a header concept, and

two additional concepts as being unrelated to the header concept. The aims were to

replicate the work of Aidman and Egan (1998) and Aidman and Ward (2002), and

to improve the experimental design to assess whether learning would have an af-

fect on the dependent variables, cognitive complexity and internal consistency. By

collecting a set of proximity matrices before and after receiving instruction for the

operational definitions of the concepts, it was possible to assess the validity of the

dependent variables by first comparing the two sets of scores, and then assessing the

amount of association with a reading comprehension co-variate, and finally assess-

ing the association with each student’s final grade in the introductory psychology

course where the concepts were taught.

The results indicate that neither CC or IC are sensitive to change due to learn-
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ing, despite there being obvious changes in the underlying meanings of the concepts

held by the students. Moreover, both CC and IC failed to correlate with the read-

ing comprehension test, and the final grade. These results mirror the findings by

Aidman and Egan (1998), and provide direction for several proposed refinements

intended to improve the definitions of the dependent variables, and the design of the

iCmap procedure.

The primary hypotheses under investigation in the present experiment were that

CC and IC would both increase as a result of learning under the assumption that as

students learn the definitions of the concepts, they would be able to identify more

unique attributes, and be able to identify the correct pairings more easily. Paired

sample t-tests of both variables indicated that there was no significant difference

in the scores between the pre- and post-instruction. These results provide further

evidence that the variables defined by Burmistrov and Shmeliov (1992) are not

sensitive to conceptual structure per se, but rather merely describe properties of the

scores within the proximity matrix. That is to say, the definition of CC to describe

the number of unique dimensions within the proximity matrix does not appear to

explain any of the variability in concept relatedness judgments, nor does it share

any information with reading comprehension or the student’s final grade.

The same can be said about IC given a lack of significant correlations with it-

self, the reading comprehension test and the final grade. One difference between

the original work by Aidman and Egan (1998) and the present work was a failure

to locate an association between IC and the final grade. One reason this could have

happened was a change in the task design from three forced choices to four. Aidman

and Egan did not provide any justification about why they chose one similarity and

two contrastive judgments in their experiment, and because the algorithms prepared

by Burmistrov and Shmeliov (1992) allow for a variable number of judgments per

trial, moving to “two and two” (i.e., two related and two unrelated) per trial ap-
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peared to make the task more intuitive for the participants. Hence it is possible

that the asymmetrical task design of Aidman and Egan favoured individuals with

stronger underlying skills in concept categorization, whereas the modified design

in the present experiment was easier to perform for all achievement levels. Further

analysis is required to determine whether the number of concepts to select per trial

has an effect of the structural properties of the proximity matrix.

The failure to locate significant differences necessitated a post hoc investigation

of the data where the individual proximity matrices were partitioned into two sub-

sets, one of just the scores indicating relatedness and the other into scores of non

relatedness, under the assumption that formal instruction would provide accurate

definitions, and explain both the operational and functional relationships character-

istics of the concepts. The post hoc analysis revealed that the variability between

the pre- and post-instruction related frequencies of the concept headers was not ho-

mogeneous. Instead what emerged was that some concepts had considerably more

variability than others indicating that some of them had conceptual structures that

were more complex and hence more difficult to categorize.

By inspecting which concepts held greater variability, a possible explanation for

these results lies with the strategy adopted by participants during the pre-instruction

phase of the experiment. Those concepts whose definitions were interpretable from

the constituent terms, referred to as semantically transparent, could be reason-

ably guessed, and did not require meaningful learning to adequately understand

or categorize. For these semantically transparent concepts, there was less variabil-

ity between the pre- and post-instruction scores. On the other hand, those concepts

whose definitions were not recoverable from the literal definitions of the constituent

terms, referred to as semantically opaque, meaningful learning was required in or-

der to correctly relate them. Thus, during the pre-instruction phase, it was likely

that many of the categorizations of the semantically opaque concepts were simply
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guessed. In light of the fact that the task forced participants to make four choices

whether they knew the definitions or not, randomly pairing concepts from trial to

trial would appear to be the easiest strategy to adopt, with the consequence that any

real effects would cancel each other out.

Although guessing is a reasonable explanation for the results of the pre-instruction

phase, one would expect the post-instruction scores to move away from guessing

towards applying the verbal definitions during the mapping process. However, the

variance and central tendency of both CC and IC remained unchanged after instruc-

tion suggesting that despite the theoretical specification by Burmistrov and Shme-

liov (1992) for the scores to range from zero to one, the information contained

within the proximity matrices is so limited that there is little difference between

them when they are reduced to a single value. It seems useful to consider ways in

which more information can be added to the proximity matrix while still maintain-

ing faithful to the overall iCmap procedure.

The results from Experiment 1 provide clues about the nature of the structural

variables and the task design of the iCmap procedure, and where modifications

might be fruitfully applied. By considering a few critical refinements to the task de-

sign, the iCmap procedure can be altered sufficiently to produce a proximity matrix

that more accurately represents the underlying structures of the concepts presented

during each trial. Several refinements are proposed in lieu of the results.

The first refinement focuses on the categorical assignment of concepts to the

related and unrelated categories. The discussion presented in Chapter 1 revealed

that concepts have a graded rather than a discrete structure, where people experience

concepts as being more or less like the prototypical member. From that perspective,

the iCmap procedure forces participants to collapse the network of mental models

and their particular intensional relations along a singular dimension so that they can

assert whether it is related to the header concept or not. When we consider the fact
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that both dependent variables are affected by the same state of affairs as described

by Allen (2006) where considerably different concept maps can yield similar scores.

In addition to experimental conditions that promoted guessing, it is not surprising

that the expected results failed to be revealed.

The original choice to use categorical assignment came from the scoring proce-

dure developed by Trochim (1989), but it is entirely possible to modify the task so

that participants are able to rate the degree of relatedness by implementing a tool

similar to a Likert-scale where an interval scale can be assigned to the judgments.

Changing the measurement scale from nominal to interval for each concept pair is

warranted statistically because the change would increase the variability contained

in each score. The change is warranted theoretically because it would permit par-

ticipants to express their sense of the graded relationship between the two concepts

being rated.

Another way to add more information to the proximity matrix would be to re-

quire participants to rate all the concepts in each trial, not just the extreme ones.

This would have the effect of filling each cell in the proximity matrix with related-

ness information, which is substantially more than in Experiment 1 where only four

out of the total 15 concepts were rated.

The second refinement that is motivated by the results of the present experiment

is that some effort must be made towards developing a protocol for screening and

pre-sorting the population of potential concepts so that the final set can be shown

to be controlled on one or more dimensions. For example, the shortest concept,

“chaining” is composed of eight letters, compared to the longest concept, “Inter-

mittent reinforcement”, which has 24 letters. Although these concepts well rep-

resented the domain of knowledge under investigation, the amount of variability

their linguistic and structural characteristics contributed to the proximity matrices

is unknown; therefore, in order to collect the cleanest scores possible, some attempt
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must be made to reduce the kinds of words that appear in each iCmap trial.

Arguably, the most problematic linguistic dimension left uncontrolled in Exper-

iment 1 was an experimental list composed of both verbs and nouns, which ac-

cording to Komatsu (1992) are ontologically distinct, and therefore encoded and

processed in qualitatively different ways. This is rendered more salient within the

mental model approach where mental models have structure that corresponds to the

perceived or conceived structure of the state of affairs (Johnson-Laird et al., 1984)

they encode. That is to say, the intensional information, the exemplars, the central

tendencies and especially the background information between nouns and verbs

must be considerably different. Some control must be enforced on the stimuli to

bring the concepts more inline with each other.

The final refinement focuses on the limits of working memory and the effect that

the number of words during an iCmap trial has on the network of mental models

activated. Aidman and Egan (1998) did not base the number of concepts on any

theoretical account of the limits of working memory, rather they set eight as the

arbitrary lower threshold for how many concepts should be mapped together. Given

that working memory has functional limits it is very likely that eight concepts might

be too many for some participants to efficiently maintain and process. If the iCmap

task can be altered to assess performance for fewer as well as more concepts, the

added control might serve to illuminate response strategies, and even reveal effects

washed out in the noise incurred from the original iCmap procedure. The discussion

now turns to Chapter 3 where these modifications are applied and analyzed yielding

a new procedure, called progressive concept mapping.
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Chapter 3

From Models to Propositions

The results of Experiment 1 suggest that the iCmap task may be useful for as-

sessing the conceptual associations among the words presented during each trial,

a claim supported by the observation that the change in relatedness scores lacked

homogeneity. However, the results also strongly indicated that the utility of the

iCmap procedure is severely limited, primarily because the specifications and inter-

pretations of the dependent measures yield no explanatory or predictive power in

explaining the behavior underlying the observed scores or how those scores relate

to conceptual structure.

In the second experiment, the amount of control imposed on the task design was

increased by addressing several related issues. The first issue concerns the stimuli

that were selected for the mapping procedure. In Experiment 1, the concepts were

selected to represent a pre-defined domain of knowledge, resulting in a concept list

that contained a mixture of word types including monomorphemic nouns and verbs,

and compound words. In Experiment 2 that variability was constrained by selecting

a single word type, while simultaneously filtering potential candidates according to

several lexical characteristics (e.g., orthographic frequency). The increased control

on the stimuli increases the likelihood that the processing demands placed on work-

ing memory during each iCmap trial will be consistent from trial to trial, thereby

decreasing the amount of unexplained variance contained within each score.

The second issue concerns the iCmap scoring procedure and the measurements
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that are assigned to each rating. In Experiment 1, participants made only four rat-

ings in each trial, a constraint that produced an extremely sparse similarity matrix.

In Experiment 2 participants were asked to assign ratings to all the words presented

in each trial. Collecting more pair-wise ratings increases the number of non-zero

scalars that contribute to the final calculations used to obtain both CC and IC, which

was expected to increase the range of observed values for both CC and IC.

From the mental model perspective, these added theoretical and methodologi-

cal controls apply across the range of processing from the propositional codes that

underlie and support the mental models that are activated during each trial to the

models themselves. The lexical level factors controlled in the present experiment

apply most directly to the propositional codes because features like word length

and orthographic frequency are processed prior to conscious awareness and are not

immediately salient as factors that contribute to perceived lexical meaning.

Shifting focus from models to propositions changes the perspective about how

to conceive of the cognitive operations engaged during each iCmap task. The ben-

efit that is gained, however, is tremendous because it establishes a common ground

between research concerning conceptual structure and research investigating the

psycholinguistic characteristics of language.

In the following section the kinds of words that should be used during the iCmap

procedure are discussed first, followed by several theoretical accounts concerning

the distinction between concrete and abstract nouns. The discussion then addresses

the limits of working memory in language related tasks, and how the iCmap proce-

dure can be modified so that information about working memory load can be used

to interpret both CC and IC. The final topic that is presented highlights the need to

establish a meaningful null hypothesis and what modifications can be made so that

Experiment 2 can use the null hypotheses when evaluating the performance of both

CC and IC.
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Word Type Selection

In Chapter 2, it was mentioned that nouns and verbs are distinct because they map

onto ontologically distinct aspects of the environment. Medin and Lynch (2000,

p.125) further characterize nouns as “referring to clusters of correlated proper-

ties that create chunks of perceptual experience” whereas verbs focus on “rela-

tions among entities involving such things as causal relations, activity, or change of

state.” (p.125). Although either would be suitable within Experiment 2, nouns were

selected because they tend to have more stable representations due to the clusters

of correlated properties that they share.

The choice to use only nouns still leaves open a wide array of potential sub-

classes that can be used to partition the population of nouns into more refined

classes such as abstract and concrete, basic level versus subordinate or superordi-

nate level, or artifacts and natural kinds. Abstract and concrete nouns were chosen

because they have been well-studied and there is a large body of work showing that

they are processed in different ways.

According to Crutch and Warrington (2005), concrete and abstract nouns have

representational systems that have qualitatively different properties. The observa-

tion that concrete nouns are better retained than abstract nouns, referred to as the

concreteness effect, provides further evidence that these systems are qualitatively

different (Ruiz-Vargas, Cuevas, & Marschark, 1996). There is also evidence that

nouns and verbs have distinct neural representations (see Binder et al., 2005, for

recent evidence and a review).

Ruiz-Vargas et al. (1996) discuss three different possible sources of the con-

creteness effect. The first possibility is an elaborative processing account that ex-

plains the concreteness effect in terms of the likelihood that concrete words will

arouse more visual characteristics, and hence the propositional codes will be more

strongly elaborated during subsequent processing. The second possibility suggests
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that there is differential enhancement of the associative networks instantiated be-

tween concrete and abstract nouns, which can be either based on the strength of the

associations or the number of associations among concept nodes. The final pos-

sibility hypothesizes that concrete words have two different codes, with concrete

words being underlain by both an image-based and a verbal-based code, and ab-

stract words being underlain by a predominantly verbal-based code.

An example of such a theory is Paivio’s (1991) Dual Code (DC) theory. DC the-

ory states that when imagery is available (concrete words), recall is highly integra-

tive even when verbal associations are weak, whereas when imagery is unavailable

(abstract words), integration requires strong verbal associations. Ruiz-Vargas et al.

(1996, p.47) point out that it is not the case that abstract words have no image-based

propositions, but rather are “less likely to activate images or do so with greater dif-

ficulty because of their less direct access to the image-based system.”

A different explanation for the concreteness effect comes from the work of

Schwanenflugel and Stowe (1989), who proposed the Context Availability (CA)

theory. Under the CA theory, there is only one representational system that serves

both abstract and concrete nouns. The concreteness effect in tasks such as timed

comprehension, naming and meaningfulness judgments is explained as being due

to the the ease with which concrete nouns can access a network of relevant prior

knowledge compared to abstract nouns. This explains why the concreteness effect,

which is more pronounced when abstract words are presented in isolation, can be

ameliorated by providing a richer stimulus context through the addition of a sen-

tence or paragraph.

Schwanenflugel and Stowe (1989, p.117) argue that “abstract words are compre-

hended more slowly when presented in isolation because the reader is experiencing

difficulty retrieving the relevant prior knowledge.” The reason for this effect, ac-

cording to Samson and Pillon (2004, p.253) is that “concrete words have greater

61



contextual associations in semantic memory than abstract words.” In support of

this position, Crutch and Warrington (2005, p.623) claim that abstract words “may

be acquired in the context of language without any direct perceptual input”, which

places importance on the linguistic context within which the abstract concepts are

learned.

The CA theory is useful to consider in the present context because the set of

concepts presented during each iCmap trial form a meaningful, albeit a limited,

linguistic context. In Experiment 1, the linguistic context was highly informative

because the concepts were selected to represent a particular domain of knowledge.

The intention was that participants should use information from the context to shape

their categorization ratings because the concepts shared not only definitional infor-

mation, but also background and functional information.

In Experiment 2, the linguistic context was stripped of as much shared back-

ground information as possible so that each categorization judgment would place

emphasis on the intentional information held by the concepts being rated. The hy-

pothesis was that abstract words, because they rely on predominantly verbal-based

associations, will produce larger complexity scores since participants need to access

more intentional information in order to assign relatedness scores. The opposite

trend will emerge for the consistency scores. Concrete nouns have salient image-

based characteristics that will facilitate highly integrative processing. This should

promote greater consistency in their ratings.

Working Memory

Working memory (Baddeley, 1986) can be thought of as the mental system re-

sponsible for holding and manipulating information during a variety of cognitive

tasks. Working memory is implicated in a wide range of cognitive tasks including

reading comprehension, skill learning, and complex problem solving (Schmiedek,
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Hildebrandt, Lovden, Wilhelm, & Lindenberger, 2009). It is implicated in language

comprehension because different types of information must be integrated together

into a coherent whole during language processing (Wagner & Gunter, 2004). One

measure of working memory, reading span, captures the residual storage of work-

ing memory as well as the efficiency (Daneman & Carpenter, 1980). According to

Dixon, LeFevre, and Twilley (1988) reading span, unlike traditional measures of

short-term memory capacity, successfully predicts performance in reading compre-

hension tests.

Individuals with a low reading span can hold fewer items in working memory

compared to individuals with a high reading span. Gunter, Wagner, and Friederici

(2003) showed that individuals with a low span were not able to effectively inhibit

irrelevant information, whereas high-span subjects were. One of the implications of

the work by Wagner and Gunter (2004) and Gunter et al. is that low- and high-span

readers use lexicon and contextual factors differently. Interestingly, Dixon et al.

argue that the evidence suggests that the structural limits of working memory are

less important than the efficiency of the processes operating for successful reading.

Working memory is very limited. As a result, people’s performance declines

rapidly with an increase in memory demand (i.e., the number of independent items

held in working memory) in a wide range of experimental tasks (Oberauer & Kliegl,

2006). One model proposed to explain the limits of working memory, the inter-

ference model, assumes that items in working memory interfere with each other

through interactions of their features (Oberauer and Kliegl). Oberauer and Kliegl

point out that “when there are n items in working memory at the same time, each

item suffers interference from n - 1 other items.” (p.607). They go on to argue

that the traditional “magical number” approach of viewing the capacity of work-

ing memory does not explain the “accelerated decline of asymptotic accuracy with

increasing memory demand, together with a slowing of processing speed.”
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One of the challenges that the iCmap paradigm ought to address is the inherent

difficulty in activating and maintaining a set of concepts in working memory. Where

Aidman and Egan (1998) arbitrarily selected eight concepts to be presented in each

iCmap trial, the design of Experiment 2 adds a second factor that manipulates the

demand on working memory by gradually increasing the number of concepts so that

the effect of memory demand on performance can be more thoroughly understood.

The hypothesis is that there will be linear trends between the number of concepts to

map and both complexity and consistency.

In the case of complexity, there will be a positive linear trend. More concepts

will yield higher complexity scores. In contrast, consistency scores will have a neg-

ative linear trend because the demand on working memory will interfere with par-

ticipants ability to hold the concepts and the relevant intensional information neces-

sary to make concept rating. It is also predicted that number of words will interact

with word type because concrete nouns will tend to have considerably more feature

overlap, compared to abstract nouns. This should result in lower complexity scores

for concrete nouns due to the interference of the activated features. Conversely, con-

sistency will be weaker for abstract nouns because participants still must activate

more intensional information in order to rate them.

Establishing a Null Hypothesis

Before turning to Experiment 2, there is one further topic to address that relates to

the scoring procedure and usefulness of the iCmap procedure. Both initial iCmap

investigations assumed that the task and scoring procedure faithfully described con-

ceptual structure. However, when constructing a measuring device it is important

to verify that the measurements reflect the absence of the phenomenon being mea-

sured when it is absent. The iCmap procedure forces participants to create associa-

tions among concepts because Aidman and Egan (1998) assumed that the concepts
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represented a domain of knowledge, and, therefore contained explicit associative

relationships due to their verbal definitions, which each iCmap trial measured.

Theoretically, the iCmap task should only assign scores to meaningful concep-

tual associations and should assign a score of ‘zero’ in the absence of conceptual

relations. There are two reasons why this is not the case. Firstly, participants were

required to make four categorizations per trial under the assumption that the con-

cept list does contain meaningful intentional information concerning their mutual

associations. Regardless of participants’ inter-individual differences in the knowl-

edge of the particular concepts, there is no way for a participant to indicate that

there are no meaningful associations within a particular trial. Consequently, there

is no possibility to create a similarity matrix that represents “no associations”, and

hence there is no null hypothesis.

The second reason that a null hypothesis is difficult to formulate is because

concepts are so deeply inter-connected. For all intents and purposes, it is likely

that no set of concepts could be created for which participants would fail to find

at least one characteristic that would allow them to apply some degree of structure

on the similarity matrix. The absence of a null hypothesis makes it impossible to

determine whether the conceptual structure imposed by the concept list has an effect

on either complexity or consistency.

Because of these considerations, one of the modifications made to the task and

scoring procedure of Experiment 2 was to make it possible for a participant to

generate a similarity matrix with no associations, even though it is very unlikely

that such a similarity matrix would ever be produced. This was made possible by

setting one of the values they can assign to “no association”.

By combining the ability to create a null mapping with a concept list randomly

generated to have no explicit associations, it becomes possible to collect a set of

scores that closely resembles the null hypothesis. In actuality it is more likely that
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the scores collected under this perspective represent a baseline (‘low association’

rather than ‘no association’) condition which can be used to compare the similarity

matrices from different concept lists that do or do not contain explicit conceptual

relations.

In Experiment 2 another factor is added to the experimental design that uses

two different concept lists for each type of noun. One list was completely random,

and the other was structured to contain explicit relations among at least two of the

concepts in the list.

The hypothesis under investigation was to assess whether a third factor, explicit

semantic associations in the random condition would be lower for complexity than

in the explicit condition. This was expected because participants would have little or

no intentional information shared amongst the concepts in the random condition. In

the explicit association condition participants would identify the imposed structure

above and beyond the verbal definitions of the concepts, and incorporate the con-

textual information into their ratings. The same pattern was expected to emerge in

the consistency rating, because the presence of explicit semantic information would

facilitate more consistent ratings compared to the random condition.

Experiment 2

The goal of Experiment 2 was to adapt the iCmap procedure to account for a set of

theoretical and methodological refinements which were argued to provide increased

control over the scores assigned by participants to each pair-wise rating. The scores

provide the ability to re-assess the usefulness of the structural variables, which are

used to describe characteristics of the mental models maintained and manipulated

in working memory during each trial. If the scores are sensitive to the particular

factors manipulated within the current experiment, then a more meaningful inter-

pretation of the structural variables may be developed, which goes beyond the work
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of Aidman and Egan (1998).

Two critical changes were made to the iCmap procedure, which warrants a

new name for the task: progressive concept mapping (proCmap). The first change

added two additional concepts to each block beginning with three concepts (i.e.,

one header concept, and two concepts to rate) in the first block and ending with

nine concepts in the fourth block. The second modification changed the categorical

assignment adopted by Aidman and Egan (1998) into a continuous score. The end

result of developing the proCmap procedure is a tool that can be used by researchers

and educators interested in further understanding conceptual structure and the pro-

cess of meaningful learning.

Method

Experiment 2 assessed the proCmap procedure in a 2 (abstract vs. concrete) x 2

(random vs. structured) x 3 (5, 7, or 9 words per trial) mixed factors design with

a repeated measure on the last factor. The first factor was generated by selecting

words according to imageability and concreteness ratings from Coltheart (1981).

The second factor was created by randomly generating a list of words for the ran-

dom condition, and by replacing one word in the random list so that it would have

an explicit semantic association with other words in the structured condition. As

explained above, the third factor was created by adding two additional words to

each block, beginning with three words in the practice block and ending with nine.

This resulted in four blocks to which each participant contributed scores, with only

the last three blocks contributing to subsequent analyses. The same reading com-

prehension co-variate as used in Experiment 1 was used in Experiment 2.

Participants

One hundred and twenty University of Alberta undergraduates (78 female and 42

male; MAge = 19.0, SD = 1.73) volunteered to participate in the experiment. If the
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participant did not consent then an alternative activity was provided of equal edu-

cational purposes. Regardless of whether the participant completed the experiment

or activity, he or she received partial course credit.

Materials

Reading Comprehension Test. Participants were seated in separate rooms at a

computer terminal with the Mac OS X 10.4.0+ operating system and a 15” LCD

computer monitor. Input was collected from a standard keyboard and mouse. The

RC test used in Experiment 1 was again used in Experiment 2. The only change

to the RC test was to add a unique identifier to each test statement so that reli-

ability estimates could be calculated, which corrected a problem encountered in

Experiment 1.

proCmap. Though the proCmap task is different from iCmap task used in Experiment

1, it retains the essence of the iCmap task. In Experiment 1, participants were re-

quired to drag concepts into graphical “bins” (related/unrelated) which assigned one

of two values [1,-1] to the concept. In Experiment 2, each concept was displayed

above a slider that enabled participants to slide their rating along a scale. There

were n sliders drawn on the computer screen, where n is the number of concepts to

map in the current block (see Figure 5). Each slider was 250 pixels wide, which

when presented on monitors with a resolution of (1024 X 768) resulted in a scale

that was 93 mm in length. The slider itself occupied 5 percent of the total line

length.

Each slider was divided into two equal segments where the center point was

used to represent a lack of knowledge or a guess about the relationship between

the concept and the header, and is assigned zero. The range of scores remained

limited between 1 and -1, as in the original specification of the iCmap procedure,

however each rating assigned a decimal value equal to its proportional distance
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from the centre point. The proCmap task preserves the directionality of the values

implemented Aidman and Egan (1998), but allows participants to provide graded

information about the relatedness of the concepts relative to the header.

unrelatedrelated

unrelatedrelated

unrelatedrelated

unrelatedrelated

unrelatedrelated

PLANET

unrelatedrelated

PLIERS

RECORD

LEAF YACHT

POLE

ORANGE

Figure 5
Graphical illustration of the progressive concept mapping task developed for
Experiment 2. Each trial began in the null hypothesis state depicted in this il-
lustration.

The stimuli lists that were presented in each block of the proCmap procedure

were constructed with a more rigorous procedure than in Experiment 1. Follow-

ing the work of Binder et al. (2005) two variables were selected for matching

the abstract and concrete stimuli lists for Experiment 2: orthographic length and

orthographic frequency. Orthographic length is the number of letters in a word.

Orthographic frequency (oFreq) is the number of occurrences of a word per million

words of written text. Imageability ratings taken from Coltheart (1981) were used

to partition nouns into highly imageable (concrete) and low imageability nouns (ab-

stract).

Because there were two word type conditions, two semantic conditions and four

blocks of trials within each condition, 16 stimuli lists were created by matching

words according to the variables above. First, words were partitioned in abstract

and concrete according to their imageability ratings. Next, a three-word stimuli

list was created by randomly selecting words from the available set of concrete (or

abstract) nouns. The structured three-word stimuli list was identical to the random
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list because the first block was used as a practice block, thus no modifications were

necessary. The five-word stimuli list was created by adding two more randomly

selected words to the three-word list.

The lists differed in the seven- and nine-word conditions. The procedure to

randomly select two additional words was again used to construct the seven-word

list. However, for the structured list, one of the words was exchanged to contain

an explicit association with other words in the list. For example, in the seven-

word random concrete list, the word lemon was selected. To create the seven-word

structured concrete list, lemon was replaced with the word orange because it shared

a physical feature with the word planet, namely both are round or spherical.

Finally, the nine-word random list was created in the same fashion as the seven-

word list, with two additional words being selected and added to the list. The nine-

word structured list was created in the same way that the seven-word structured list

was created, only this time the word napkin was exchanged for autumn because one

of the colors of autumn is orange, and both autumn and orange share perceptual

features with sunsets.

Constructing the abstract stimuli lists followed the same procedure as outlined

above. The full set of 16 stimuli lists are located in Appendix B. The descriptive

statistics for the four variables used to match words in Experiment 2 are presented

in Table 7.

Procedure

Reading Comprehension Test. Participants were greeted and given a consent

form to read and sign. The consent form described the nature of the experiment and

provided detailed information about their rights while participating in the experiment.

If the participant did not consent to participate they would have been explicitly as-

sured that they would suffer no academic sanction and given an alternate activity to
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Table 7
Characteristics of concepts by condition used in Experiment 2

No. Word
of lettersa Frequencya Imageabilityb Concretenessb

Word type Semantics M SD M SD M SD M SD

Concrete Random 5.3 .87 17.8 20.2 601.7 22.9 580.0 39.8
Structured 5.4 .88 22.8 20.2 605.4 21.7 561.0 65.5

Abstract Random 5.3 .87 27.7 20.8 337.8 37.8 309.9 46.7
Structured 5.4 .88 40.6 32.0 330.6 35.1 289.9 42.6

Note. n = 120. No. = Number. M =Mean. SD = Standard deviation.
a See Baayen et al., 1995. Word frequency based on occurrences per million.
b See Coltheart, 1981.

complete. No participant requested the alternative activity. The remainder of the

procedure for the RC test was the same as in Experiment 1.

proCmap. Participants remained in the same room after completing the RC test.

Each participant began the proCmap session with both text-based and verbal in-

structions indicating that they would be required to read a list of words located in

the center of the computer display, and that they would have to rate those words

according to their meaning by dragging the slider along the scale located directly

beneath each word. Participants were specifically instructed to treat each end of the

scale to represent that they absolutely certain that the word was or wasn’t related

to the header while the center of the scale was to be used to indicate that they did

not know what the relationship was between the two concepts was and therefore

represented no knowledge.

Each trial initialized all the sliders to the center of the scale, which placed each

trial into the null hypothesis state (see Figure 5). When all words had been assigned

ratings, participants indicated that they had completed the trial by pressing a button

on the screen, which initiated the next trial. This process repeated until each word

in the list had taken its turn as the header. At the beginning of each subsequent
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block, the participants were told that more words were going to be added, but the

task remained the same.

Before initiating the first block, participants were informed that it was a practice

block so they could familiarize themselves with task, and that if they had any ques-

tions to contact a research assistant. Finally, participants were informed that there

would be four blocks to complete, and that they would be provided with instructions

at the start of each block so they didn’t have to memorize the instructions.

Data analysis

The resulting similarity matrices were then analyzed to compute the structural vari-

ables.

Cognitive Complexity. The data analysis for CC followed the same procedure

that was used in Experiment 1, except the cell values were assigned the value that

the slider was moved to, normalized to be between -1 and 1.

Cognitive Consistency. The calculation of Internal Consistency was based on

comparing the sign of the scalar values from the rows with the scalar values from the

columns from the similarity matrix. When two scalars had the same sign, they were

conceptually placed in the same pile, and if they had different signs, they were not.

As a result of moving to continuous values along with the intention of preserving the

magnitude of the cell values, Equation 2 developed by Burmistrov and Schmeliov

(1992) was not used. Instead the Pearson correlation (r) among the scalars was used

to assess the degree of consistency between the rows and columns of the similarity

matrix. To prevent confusion with the results obtained in Experiment 1, a new

variable was created, cognitive consistency (CI), which is the correlation of the row

and column scalars in each block.
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Results

Reading Comprehension

The dependent variable for the RC test and the subscales was accuracy (i.e., number

correct). The descriptive statistics for the RC test are presented in Table 8. None

of the component processes suffered from ceiling or floor effects, and there was a

wide range of scores for each. The simple correlation matrix for the RC test total

score and subscales along with the correlations from Experiment 1 (in parentheses)

are shown in Table 9. Performance on the RC test in the present experiment was

similar to the performance observed in Experiment 1.

Table 8
Descriptive statistics for reading comprehension test in
Experiment 2

Component M SD Range

Text-based memory 62.9 11.47 (27−82)
Text-based inference 25.0 5.54 (13−35)
Knowledge integration low 20.3 3.12 (11−24)
Knowledge integration med 29.2 4.58 (15−36)
Knowledge integration high 26.0 5.32 (16−35)
Knowledge access low 32.4 2.97 (20−36)
Knowledge access high 21.6 2.24 (12−24)
Total score 217.3 30.22 (144−265)

Note. Total score is the sum of the components. n = 120; M =Mean.
SD = Standard deviation. See Table 2 for component maximums.

A reliability analysis, which was not possible in Experiment 1, was carried out.

The result of the analysis was an extremely high Cronbach’s index (α = .96). This

suggests that the RC test is a reliable measure of reading comprehension and a

useful co-variate. The test was, however, lengthy, requiring roughly 20 minutes to

complete. The purpose of including the RC test as a co-variate was to determine if

there were chance differences among the groups on reading ability that might have

been introduced by randomly assigning participants to the experimental conditions.
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Table 9
Simple correlation matrix for reading comprehension test in Experiment 2

Component 2 3 4 5 6 7

1. TBM .84** (.83) .70** (.44) .80** (.47) .80** (.63) .43** (.21) .40** (.22)
2. TBI .61** (.36) .72** (.47) .71** (.61) .51** (.05) .43** (.21)

3. KIL .76** (.57) .68** (.68) .67** (.64) .54** (.39)
4. KIM .82** (.71) .57** (.42) .52** (.31)
5. KIH .44** (.45) .44** (.30)

6. KAL .66** (.41)
7. KAH

Note. n = 120. Experiment 1 correlations are in parentheses.
* p < .05. ** p < .01.

Submitting the scores to an mixed factors ANOVA revealed that the co-variate

was not different among the groups for either variable: (FCC < 1; FCI(1,115) = 3.54,

p > .05). Therefore subsequent analyses proceeded without adjusting the condition

means.

proCmap

The two dependent measures derived from each similarity matrix were Cognitive

Complexity, and Cognitive Consistency. In order to provide a transparent discus-

sion of the results, the distribution of each variable will be discussed first, and then

the descriptive statistics for both variables will be presented.

Cognitive complexity performed similarly to the pattern of results in Experiment

1, as can be seen in Figure 6. In all four conditions, CC scores tended to cluster

around .75, with very few scores falling below .5. There were several outliers iden-

tified. Given the lack of research to-date with these variables there was no formal

procedure to adjudicate whether to remove them or not, so they were retained in

subsequent analyses. Interestingly, there were fewer outliers in the Structured con-

ditions than the Random conditions.

Cognitive consistency followed suit with observations again converging around
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.75 (see Figure 7). However there was one notable exception, namely there were

values that approached zero, which means that some participants applied no sys-

tematicity to their ratings. More peculiarly, there were more outliers for CI that

appeared in the Structured condition than the Random condition. Again, outliers

were retained in subsequent analyses.
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The marginal means for Word Type are presented in Table 10. There appeared

to be agreement with the prediction that abstract words would tend to have higher

complexity ratings compared to concrete words (MAbstract = .77, MConcrete = .74;

F(1,115) = 4.48, p = .036). The prediction that concrete words would have higher
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consistency ratings was also supported (MConcrete = .81, MAbstract = .70; F(1,115) =

15.78, p < .001).

Table 10
Marginal Means for Word Type on CC
and CI in Experiment 2

Cognitive Cognitive
Complexity Consistency

M SD M SD

Concrete .74 .10 .81 .21
Abstract .77 .10 .70 .22
Note. M =Mean. SD = Standard Deviation.

The marginal means for Number of Words are presented in Table 11. In the case

of CC, it was predicted that there would be a positive linear relationship, which was

suggested by the means (M5word = .72, M7word = .75, M9word = .77) but no supported

statistically (F(1,115) = 1.88, p > .05). Additionally, it was predicted that more

words would impede cognitive consistency ratings resulting in a negative linear

trend. This hypothesis was not supported by the data either (M5word = .75, M7word =

.79, M9word = .73; F < 1).

Table 11
Marginal Means for Number of Words on CC and CI in
Experiment 2

5 Words 7 Words 9 Words

M SD M SD M SD

Cognitive Complexity .72 .11 .75 .09 .77 .09
Cognitive Consistency .75 .27 .78 .18 .73 .19
Note. M =Mean. SD = Standard Deviation.

However, there was an interaction between Number of Words and Word Type

on CI (F(1,115) = 4.05, p = .047). This interaction is depicted in Figure 8, which re-
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veals that Concrete words are progressively rated more consistently, while Abstract

words are progressively rated with less consistency.
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Interaction between Number of Words and Word Type on CI in Experiment 2

The descriptive statistics for cognitive complexity on the Semantics factor at

each level of Word Type are presented in Table 12. First, the cell means for the

5-word conditions were predicted to be equal because the stimuli were identical.

The data reveals that was the case (MRandom = .72, MS tructured = .72). The cell means

for the 7-word condition were predicted to be smaller in the random condition,

compared to the structured condition. This prediction was marginally supported

in the means from 7-word, concrete condition (MRandom = .70, MS tructured = .77),

but not in the 7-word abstract condition (MRandom = .77, MS tructured = .77) or in

either 9-word condition (MRandom = .76, MS tructured = .75; MRandom = .78, MS tructured

= .81). These patterns were not significant, however, revealed by a non-significant

78



three-way interaction for the linear trend of Number of Words by Word Type by

Semantics (F(1,115) = 1.41, p > .05), and a non-significant linear trend of Number

of Words by Semantics (F < 1). The three-way omnibus interaction between Word

Type, Semantics, and Number of Words on CC that was significant (F(2,115) =

3.45, p = .033) indicating that some other trend in the cell means was present.

Table 12
Descriptive statistics for Cognitive Complexity in Experiment 2

5 Words 7 Words 9 Words

Word Type Semantics M SD Range M SD Range M SD Range

Concrete Random .72 .11 (.35−.91) .70 .08 (.47−.86) .76 .06 (.59−.89)
Structured .72 .12 (.50−.92) .77 .08 (.63−.92) .75 .10 (.54−.93)

Abstract Random .74 .12 (.42−.89) .77 .11 (.46−.89) .78 .09 (.60−.93)
Structured .72 .11 (.45−.88) .77 .07 (.61−.88) .81 .07 (.54−.91)

Note. M =Mean. SD = Standard Deviation.

The descriptive statistics for cognitive consistency on the Semantics factor at

each level of Word Type are presented in Table 13. There is one notable trend in the

cell means, which is that in the 5-Word Abstract conditions, two participants pro-

duced negative consistency ratings. This is intriguing because it means that these

participants were changing the ratings they assigned between the header and the

concepts from ‘related’ to ‘unrelated’ between trials. This could indicate guessing,

not responding honestly, or that over the course of the task they identified new infor-

mation that weighed in on their beliefs about the relationship among the concepts.

Again, the cell means for the 5-Word conditions were predicted to be equal

because the stimuli were identical. However, the means reveals that the Random

concrete words were rated with slightly more consistently than the Structured con-

crete words (MRandom = .79, MS tructured = .75). The cell means for the 7-word condi-

tion were predicted to be smaller in the Random condition, compared to the Struc-

tured condition, a trend which appeared to emerge in the 7-word Abstract condition
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Table 13
Descriptive statistics for Cognitive Consistency in Experiment 2

5 Words 7 Words 9 Words

Word Type Semantics M SD Range M SD Range M SD Range

Concrete Random .79 .20 (.12−.97) .86 .16 (.20−1.0) .82 .12 (.51−1.0)
Structured .75 .28 (.00−1.0) .79 .22 (.19−1.0) .81 .22 (.00−1.0)

Abstract Random .68 .31 (−.52−1.0) .70 .17 (.24−.90) .63 .19 (.28−.97)
Structured .77 .30 (−.37−1.0) .77 .15 (.36−.96) .68 .15 (.36−.90)

Note. M =Mean. SD = Standard Deviation.

(MRandom = .70, MS tructured = .77). However the opposite trend emerged in the 7-

word Concrete condition (MRandom = .86, MS tructured = .79). In regards to the 9-word

condition, there appeared to be no difference of Semantics in the Concrete con-

dition (MRandom = .82, MS tructured = .81), but a small advantage in the Structured

Abstract condition over the Random Abstract condition (MRandom = .63, MS tructured

= .68). The above patterns were supported by a significant linear trend of Number

of Words by Word Type interaction (F(1,115) = 4.05, p = .047), but no linear trend

for the Number of Words by Semantics interaction, nor the three-way linear trend

interaction.

Post Hoc Analyses

There are two tacks to approach further exploration of the results from Experiment

2. The first addressed further statistical patterns and the second pursues an inspec-

tion of the graphical plots produced from the similarity matrices. In the first case,

there is only one further analysis that is needed to describe the patterns found in the

cell means. It was predicted that there would be linear trends as a result of progres-

sively adding more words to each trial. What emerged however were two quadratic

trends.

The first quadratic trend occurs between Number of Words and Semantics on
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CC (F(1,115) = 7.90, p < .01), but the three-way quadratic is also significant

(F(1,115) = 8.48, p < .01) thus the quadratic is best interpreted from the three-way

(see Figure 9).

This reflects the fact that, in the Concrete condition, the Structured concepts

gained complexity between the 5- and 7-word blocks, but then decreased in com-

plexity, whereas in the Random condition the complexity measure first decreased

and then increased to roughly the same level as in the concrete condition. There was

no quadratic trend in the Abstract condition, in which complexity progressively in-

creased. These trends are also presented in Figure 10.

Cluster plots. The final analyses are qualitative and follow Aidman and Egan

(1998) and Aidman and Ward (2002) who inspected the graphical representations

of similarity generated from each similarity matrix. For the sake of brevity and

clarity, only the cluster diagrams are discussed because they are somewhat easier to

interpret. To begin this discussion, the first cluster plot that is discussed is the null

hypothesis (see Figure 11).

Based on the task design used in experiment 2, there are three ways a participant

could produce the null mapping: 1) rate all words as completely related, 2) rate all

words as completely unrelated, and 3) make no ratings at all. The effect in all

three scenarios is to produce a similarity matrix with no variability in the ratings.

The null mapping is useful as a baseline to compare the following cluster plots

because it is now immediately possible to see the implicit structure that participants

are expressing in their ratings. The discussion will address the cluster plots from

the 9-Word conditions by presenting those maps that were the best and poorest

performing participants on each DV.

In the Concrete Random condition (see Figure 12), the top two cluster plots

depict the implicit structures created by the participants with the highest scores in
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CC and CI. In the case of CC, the participant scored .89, a relatively high score

and produced a very deeply structured cluster plot. Inspecting the plot revealed

that concepts were organized around the well established distinction between natu-

ral nouns versus artifact nouns. Clearly, naturally occurring objects clustered near

the bottom and progressively becoming less related based on size and shape, until

finally one section of the plot contained just man-made objects.

Importantly, when interpreting cluster plots, it is important to consider the branch-

ing structure as well the depth of the linkages.
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Figure 12
Hierarchical cluster plots for the highest and lowest performing participants in the
Concrete Random group. The score for each measure is listed in the diagram along
with the standardized reading comprehension score in parentheses.

Even though the words pliers and yacht are depicted at the same depth as leaf,

because they are located on different branches, they are very dissimilar. Interest-
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ingly, the next plot in Figure 12 denotes the highest consistency cluster plot, which

appears to be more evenly distributed. The words appear to cluster around three

primary properties: 1) natural vs. nominal, 2) size, 3) orthography. Moreover, the

CI score of 1.0 indicates that the participant was perfectly consistent in assigning

the ratings while maintaing the three properties. To help visualize how the proCmap

task created these scores, two example trials from participants scoring the highest

CC and highest CI in their condition are presented in Figures 13 and 14.

unrelatedrelated

unrelatedrelated

unrelatedrelated

unrelatedrelated

unrelatedrelated

PLANET

unrelatedrelated

PLIERS

RECORD

LEAF YACHT

POLE

ORANGE

Figure 13
Example trial from from the participant who scored the highest CC in the concrete
systematic group

unrelatedrelated

unrelatedrelated

unrelatedrelated

unrelatedrelated

unrelatedrelated

PLANET

unrelatedrelated

PLIERS

RECORD

LEAF YACHT

POLE

ORANGE

Figure 14
Example trial from from the participant who scored the highest CI in the concrete
systematic group

In contrast, the last two cluster plots in Figure 12 reveal the poorest performing

participants and the first feature that stands out is that the properties around which
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the words are classified are based heavily on the perceptual characteristics of the

words. That being said, planet and sunset were consistently grouped close together

indicating a salient imageable characteristic was accessed when rating these words.

Inferring the other characteristics leads the discussion into the terrain of id-

iosyncratic meanings that are not entirely useful for understanding the results of

Experiment 2. Many convincing theories could be proposed to account for these

particular cluster representations, therefore using the cluster plots to infer general

characteristics of conceptual structure is not particularly helpful.

Inspecting the next set of cluster plots (see Figure 15) for the Structured Con-

crete words does reveal a significant difference in the structure. Recall that the

Structured list swapped two words from the Random list (i.e., orange for yellow,

and autumn for napkin) with the intention of bringing orange, sun, autumn, and

planet into coherence. Notably, only the participant who scored ‘zero’ on consis-

tency didn’t capture the above cluster of words. In every other case, there is an

obvious partitioning of words into those experimentally intended to be similar and

those that were random.

Comparing the cluster plots from Figure 12 and 15, reveals that the proCmap

procedure is sensitive to explicit associative information above and beyond the ver-

bal definitions of the words.

Turning to the cluster plots for the abstract words (see Figures 16 & 17) a similar

picture emerges. When words were selected to bring coherence to the list, partic-

ipants successfully located that coherence and captured it in their ratings during

the proCmap task. Those participants that used superficial characteristics tended to

produce cluster maps organized around orthographic properties, perceptual prop-

erties, and weak verbal associations. For example, the participant who scored the

lowest CI in the Structured Abstract condition judged the words theory and guess

to be very related indicating their belief that theories are like guesses, which reveals
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Figure 15
Hierarchical cluster plots for the highest and lowest performing participants in the
Concrete Structured group. The score for each measure is listed in the diagram
along with the standardized reading comprehension score in parentheses.
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a potential misunderstanding of the meaning of the word theory. It would appear

that the cluster plots do provide useful qualitative information that each participant

could use to learn about the quality of the knowledge.
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Figure 16
Hierarchical cluster plots for the highest and lowest performing participants in the
Abstract Random group. The score for each measure is listed in the diagram along
with the standardized reading comprehension score in parentheses.

Discussion

In this study, a group of undergraduates was asked to rate the degree of semantic re-

latedness among a list of words presented in a new task called progressive concept

mapping. The aim was to assess the efficacy of the proCmap methodology at de-

scribing two useful, related characteristics of conceptual structure: the complexity

of the conceptual information activated during each trial, and the consistency that
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Figure 17
Hierarchical cluster plots for the highest and lowest performing participants in the
Abstract Structured group. The score for each measure is listed in the diagram
along with the standardized reading comprehension score in parentheses.
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conceptual structure can be expressed in this particular computer-based task.

By assessing the performance of two variables, Cognitive Complexity, and Cog-

nitive Consistency, across a range of factors, it was possible to answer a set of

theoretically motivated questions capable of providing explanations concerning the

nature of the scores collected for both dependent measures. Three factors were ma-

nipulated, word type, number of words, and semantic content in order to test the

effect that each had on the ratings assigned by participants. In addition, the number

of letters, and orthographic frequency of each word were used to match candidate

items selected for each level of the above factors.

The first factor, word type, partitioned the population of potential words into

nouns with high imageability (concrete), and those with low imageability (abstract).

It was predicted that imageability would play a crucial role in the kinds of propo-

sitional codes activated between concrete and abstract nouns that would in turn

have several functional benefits for concrete nouns (i.e., a concreteness effect) such

as highly integrative processing, and the activation of highly salient, image-based

propositional codes. Abstract nouns on the other hand would only have indirect ac-

cess to image-based propositional codes and would rely on predominantly verbal-

based propositional codes. The results provide converging evidence for the differ-

ential processing of concrete and abstract nouns, by supporting both predictions

that concrete words would be rated more consistently than abstract words (F(1,115)

= 15.78, p < .01) and with less complexity than abstract words (F(1,115) = 4.47, p

= 0.036). These results are the first to demonstrate that the proCmap procedure is

sensitive to the underlying representational structure of concepts. However, these

results require further qualification due to the interactions they had with the remain-

ing factors.

The next factor tested was number of words consisting of three levels: five

words, seven words, and nine words. Each level placed greater demands on work-
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ing memory in an attempt to see if the processing of concrete nouns relative abstract

nouns would reveal two opposing trends. In the first case, it was predicted that a

positive linear trend would emerge between the number of words and CC scores

because a larger linguistic context would activate and process more intensional in-

formation in working memory. CI on the other hand was predicted to decrease with

the number of words due to increased demands on working memory thereby re-

ducing the available resources required to recall previous ratings. Neither of these

predictions were supported.

However, what did emerge was an interaction between number of words and

word type on CI (F(1,115) = 4.05, p =.047). This pattern indicates that concrete

nouns facilitated consistent responding over the course of the experiment such that

demand on working memory did not appear to have detrimental effects on the con-

cept ratings. Abstract nouns appeared to be negatively impacted from the load on

working memory in the nine word condition. It is difficult to adjudicate between

the various theories attempting to account for the concreteness effect as to which

best explains the concreteness results obtained here, because the experiment was

only intended to assess the proCmap procedure. However, it appears that greater

linguistic context did not facilitate consistent responding, thus it is more likely that

the DC theory provides the simplest explanation. During the course of each trial,

with all things being equal between the concrete and abstract conditions, the addi-

tional image-based propositional codes serve to anchor relatedness judgments more

effectively than the predominantly verbal-based codes of abstract words.

Finally, the semantic factor established a baseline condition for conceptual re-

latedness scores compared to a more realistic condition wherein some of the words

had explicit associations with increased complexity for the structured words as well

as increased consistency. Neither the two-way linear interaction between the se-

mantic factor and number of words nor the three-way linear interaction between
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all three factors was significant for CC. Performance of CI was the same. Post

hoc analyses identified two quadratic trends as a two-interaction between semantics

and number of words and a three-way interaction. These results indicate that the

seven word condition tended to be the optimal number of words to compare, which

more strongly supports Dixon et al.’s (1988) claim that the structural limits of work-

ing memory are less important than the efficiency of the processes. These results

are less supportive of Oberauer and Kliegl’s (2006) claims that working memory

declines rapidly with an increase in memory demand because performance first

increased from the 5- to the 7-word condition and then decreased in the 9-word

condition.

There are several limitations in the present study. The first is that re-casting

consistency as a correlation changes the index that CI is measured against. Thus

even though the condition averages between CC and CI do tend to be in the same

range of values, comparing them directly is not appropriate. It was done here for

descriptive purposes to give a sense of how these variables behaved, but future

research will need to revisit the two structural variables. In light of the results ob-

tained in Experiment 2, it seems that CC is not a very useful variable for describing

stable characteristics of conceptual structure, as such it should be left out of future

research until it can be re-formulated and re-validated.

The second limitation of the present experiment was the specification of the

semantics factor. The imposed coherence of the structured list was not based on

any formal specification, and given that it was an arbitrary choice about which

words would promote coherence, the effect of semantics must be interpreted with

caution. Further research should explore ways in which conceptual coherence can

be incrementally imposed on the word lists.

The third limitation was the specification of the number of words factor as a

repeated measure. Although participants did rate the same initial three words in all
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four conditions, the five-, seven- and nine-word conditions were not the same as the

three- word condition. A better description of this factor is required in order to truly

assess the impact that working memory load has on conceptual rating scores.

Despite the above limitations and need for further empirical support for the

results obtained here, the initial results are promising. It was argued that the re-

finements made to the iCmap task would yield a more robust task that was better

able to measure conceptual structure. The results provide initial validation of that

claim that the proCmap procedure is a useful tool. Most importantly is the ob-

servation that the kinds of words selected (concrete vs. abstract) to represent the

domain of knowledge interact with the amount of overt associative information

among the words. Thus, researchers and educators who use this kind of concept

mapping or more traditional concept mapping techniques should pay close atten-

tion to the words they choose. That being said, in order for this procedure to really

be effectively used within other experimental work on conceptual structure, serious

attention must be given to the specification of the structural variables. Interestingly,

the graphical representations that are output by this procedure continue to provide

the most useful information about an individual‘s understanding of a particular do-

main of knowledge, which is exactly where Aidman and Ward (2002) ended their

investigation of the iCmap paradigm. This can be interpreted as suggesting that the

dynamic and context sensitive nature of concepts is better represented graphically

then as a single value.

Future research into the proCmap procedure should consider re-framing the the-

oretical perspective used to situate conceptual structure. Although mental models

provide a robust account of concepts, new work by Gabora et al. (2009) begins the

work of redefining concepts within an ecological perspective. “[I]t is only when

objects in the world have been conceptualized that they are charged with the poten-

tial to dynamically interact in myriad ways with the conceptions of other objects as
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well as with the goals, plans, schemas, desires, attitudes, fantasies, and so forth, that

constitute human life.” (p.95). Gabora et al. go on to state that “it is when stimuli in

the world come to be understood in conceptual terms that they acquire the weblike

structure and self-organizing dynamics characteristic of ecology.” (p.95).

In sum, the proCmap procedure has demonstrated that it is a useful tool, and that

it warrants further attention because it is sensitive to the well-established distinction

between concrete and abstract words. This result provides converging evidence of

the concreteness effect and that the proCmap procedure can detect this effect. More-

over, it opens the door to experiments that allow researchers to investigate concep-

tual structure in real-time, and under contexts that more meaningfully resemble the

way in which concepts are used, in service of interacting with the world.
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Chapter 4

Conclusion

In the present manuscript I set out to assess and validate the iCmap paradigm,

specifically the measurements that the task collected, whether it was a useful tool

for measuring conceptual structure, and ultimately whether it was capable of gen-

erating new research questions. The iCmap procedure was originally designed to

help students learn how to use conventional concept mapping based on the observa-

tion that students benefit from seeing the relationships implicit in their knowledge.

The benefit of both implicit and explicit concept mapping for the student is a mean-

ingful learning experience where new information is appropriately associated with

pre-existing knowledge structures.

The primary focus of the iCmap paradigm is on the contents of concepts, and

the associative links between concepts because the task requires individuals to read

a list of words, and to then classify those words into discrete categories based on

their shared meanings. Because the iCmap task was designed to measure implicit

conceptual structure, research into this paradigm necessarily overlaps with the work

of other researchers in cognitive psychology and psycholinguistics who are inves-

tigating lexical and semantic access; however, there are important differences that

had to be addressed.

The goal of the first chapter was to present a theoretical framework capable of

describing conceptual structure so that the results of the experiments could be mean-

ingfully interpreted. I argued that concepts should be viewed as mental models that
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encapsulate highly complex, and dynamic structures, which are context-dependent

and richly inter-connected. Such models are also analogous to the states of affairs

that they encode, suggesting, for example, that concrete nouns activate very differ-

ent models from abstract nouns, which are very different from verbs and so on.

To evaluate the dependent measures generated by the iCmap paradigm, I de-

signed an experiment to assess whether changes in conceptual structure due to

learning were detectable by the iCmap task. The hypothesis that I was interested

in assessing was simple. The iCmap procedure generates numerical scores that

reflect characteristics of the underlying conceptual structure as well as the con-

ceptual processing during each trial; therefore, formal training should increase the

available information contained within concepts, and clarify the most relevant in-

formation necessary to make judgments about those concepts. More specifically, I

asked whether formal training would increase both cognitive complexity, and inter-

nal consistency as indicated by larger scores in the post-instruction condition.

The results of Experiment 1 revealed that formal training did not have any effect

on the distribution of scores that the iCmap procedure assigned to the classification

judgments. The null results suggested that the tool was either not sensitive enough

to detect the changes, or that the task design was not sufficiently rigorous to remove

extraneous factors inflating the amount of noise contained within each classification

judgment.

Despite the null results, the iCmap task still appeared to be an intuitive and

sensible way of asking questions about the way in which people use concepts to

interact with the world. Many important characteristics concerning language pro-

duction and comprehension have emerged from researchers using the semantic de-

cision task (a relatively simple task), which made the iCmap task appear useful to

successfully generalize beyond a single pair-wise decision to a set of pair-wise de-

cisions. In fact, the most useful information to be gleaned from the first experiment
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was that a change in conceptual structure had taken place, but it was only detectable

by comparing the pre- and post-instruction scores for each of the header concepts

(comparing all pair-wise judgments across each header concept), not by comparing

the individual scores assigned to participants. The reason for this originates from

the nature of the scoring procedure. A single trial produces a sparse, n-dimensional

vector because only four pairings are required in each trial. In order to compare the

performance of the header concepts across for the entire experiment, the trials for

all the participants were aggregated together. Consequently, there was considerably

more information pooled together when comparing the header concepts.

By pooling the scores together a pattern emerged that provided a key insight that

proved to be useful for deepening our understanding of the semantics of the header

concepts and how to build better stimuli, namely, that some concepts have defini-

tions that are transparent whereas others have definitions that are opaque. However

this pattern was not useful for classifying individuals into meaningful categories.

These results did reinforce the decision to adopt a pre-post design as the ideal

way to investigate change in conceptual structure and whether the iCmap procedure

was sensitive to changes in conceptual structure, that is to say the experimental

design was sound. The additional control of within-subject variability and the abil-

ity to answer whether the iCmap procedure validly describes conceptual structure

makes the pre-post design ideal. By having the students complete the task before in-

struction and then afterwards was the correct way to assess the dependent variables

under their current specification.

The failure to find an association between the dependent variables and a reading

comprehension test or academic achievement suggested that the iCmap task was

not describing the complexity of the conceptual structures or the processes used to

compare them. Certainly the task assigned numerical scores to the classification

judgments, but the results called into question the validity of those scores.
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In retrospect, had I thought carefully about why Aidman and Egan (1998) ne-

glected to discuss the dependent variables in more detail, and their complete lack

of explanation about the relationship between the scoring algorithm and conceptual

structure I would have come to the conclusion that a problem existed. The results

from Experiment 1 clearly followed the original investigations, and called into ques-

tion the interpretation of the scores that were being assigned. While the iCmap task

remained an intriguing way of looking at conceptual structure, the above problems

presented an important challenge that I believed could be resolved. Something had

to be done to improve that state of affairs so that the dependent variables could be

used to partition individuals based on their performance in the task.

The purpose of the second experiment was to increase the amount of informa-

tion collected from each participant, and to greatly improve the task design, which

was renamed to proCmap - indicating that the number of words per trial was no

longer fixed. I controlled a few structural and probabilistic features of the words

so that differences in word length and frequency were minimized and contributed

as little extra noise as possible. As well, I modified the way that numerical scores

were assigned to each rating, opting for continuous instead of dichotomous values

because research had shown that categories are graded, not discrete.

Additionally, I asked if the kinds of concepts (concrete or abstract) presented

during each trial could facilitate processing, and whether the number of concepts

increased demand on working memory. For the final modification I wanted to de-

velop a null hypothesis, a situation where no judgments were made to act as a

baseline to which observed classifications could be compared to. My choice to de-

velop a null hypothesis differs from the original work by Aidman and Egan (1998)

where they produced an expert map, and the participant maps were compared to the

expert map. Because that there are many possible expert solutions, and many ways

for participants to achieve an expert mapping, developing a null condition seemed
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more useful.

The behaviour of the dependent variables in the second experiment followed

the first in terms of the range of scores that each group produced. This was not

expected because I predicted that by adding more scores on each trial in conjunction

with continuous values, that there would be more variability in the range of scores,

potentially spanning the theoretical range of zero to one specified by Burmistrov

and Shmeliov (1992). That was not the case. Thus the evidence suggests that there

is a fundamental problem with the cognitive complexity scoring algorithm. That is

to say, the task does not actually produce data that conforms to the claims made by

the original authors.

The new variable, cognitive consistency, on the other hand did produce a wider

range of scores, with a couple of outliers falling below zero. Cognitive consistency

is simply the average correlation among the scalars in the dissimilarity matrix com-

puted from the raw classification scores. The fact that the new consistency variable

obtained values near zero indicates that, either some individuals guessed from trial

to trial, or that their knowledge tended to be superficial and rote, which resulted

in inconsistent classification scores. In order to produce an average correlation of

zero, one would have to invert the classification ratings from trial to trial, which

would be difficult to do because of the way that the task is designed. From this data

we now have a way to establish a cut-off value for participants who obtain a low

score that indicates the presence of guessing.

Nevertheless, the second experiment primarily confirmed the existence of the

concreteness effect. On the surface this finding is not profound, but it does suggest

that the proCmap task, a completely different task compared to semantic catego-

rization, is capable of detecting the effect in a sample of university undergraduates.

There were two noteworthy interactions that emerged. The first interaction was

between Word Type, the number of words, and the semantic factor on cognitive
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complexity. I predicted that there would be a linear trend such that more words

per trial would increase the complexity of the classification judgments. While that

trend emerged for abstract nouns, concrete nouns revealed two quadratic trends: if

the nouns were selected at random, individuals began by using less information,

and then as more words were added, more information; if the words were chosen

to fit a pattern, then individuals began using more information and then switched

to using less information. The divergence between the two cannot be accounted for

by either mental models or by dual-coding theory, and so leaves an open question

for future research to address.

The second interaction emerged with cognitive consistency between the number

of words and Word Type, which verified my prediction that, as more words were

added to each trial, concrete nouns would have greater consistency. This prediction

was based on the argument that highly imageable nouns are strongly integrative

because the perceptual features of the non-verbal representations are very salient.

Abstract nouns on the other hand only have verbal representations; therefore, more

words should impede performance in terms of consistency, and this was observed.

The results suggested that the proCmap procedure was a valid way of describ-

ing aspects of the conceptual structure insofar as it was used within the task imple-

mented in Experiment 2. One characteristic to emerge from the results of Experiment

2 was the importance of theoretically motivated decisions when designing and im-

plementing experiments. By controlling the stimuli in Experiment 2 along several

dimensions, the proCmap procedure was able to tease apart significant differences

in performance across the four conditions. In contrast, modifying the number of

judgments per trial, adopting continuous scores, and varying the number of words

per trial produced very little additional information relative to the effects due to

Word Type.

The results from Experiment 2 were helpful in highlighting the assumptions and
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oversights that were built into the experiment because they indicated that cognitive

complexity was not a valid measure of conceptual structure, and that the scoring

algorithm had to be completely re-worked before any new research could be carried

out with the proCmap task. The failure to reveal linear trends with number of words

was also problematic because the quadratic trends could not be explained. I might

have anticipated the null effects based on the results from Experiment 1 given that

it was a sound experiment that failed to reveal effects for cognitive complexity.

The three-way, higher order interaction on cognitive complexity though interesting,

does not appear to be a useful effect given that cognitive complexity requires a

considerable overhaul.

Overall the experiments confirmed that there are problems with both the iCmap

and the proCmap procedures. The most problematic is the nature of the algorithm

that computes cognitive complexity. This algorithm is the mechanism that asso-

ciates the classification judgments to numerical scores, the scores that are used to

assess conceptual characteristics. Because the scores appear to be relatively insen-

sitive to individual differences in conceptual structure, it does not seem appropriate

to continue using this variable in any future research.

Changing the formulation and interpretation of the consistency score appeared

to produce useful results. I would argue that cognitive consistency does describe

an interesting characteristic of conceptual processing. Namely, that the conceptual

structures activated and maintained in working memory are not simple geometric

shapes that are arranged and rotated until they fit together. Rather structure and

process are intimately linked, and that performance measures need to assess the in-

tentional relationships from more than one direction to get a clear picture of what

the concepts mean to the individual. Taken together, the experiments presented in

Chapter’s 2 and 3 were successful in providing the evidence necessary to defini-

tively argue that cognitive complexity is not a useful variable, whereas cognitive
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consistency appears to be. Without the research carried out within this manuscript,

it would have remained uncertain why the initial work by Aidman and Egan (1998)

and Aidman and Ward (2002) turned out the way that it did. In that sense, the

research in this thesis helped to clarify the terminology used to discuss concepts,

reveal the diverse range of theories used to explain and understand conceptual struc-

ture, and shed light on a handful of the factors that contribute to conceptual process-

ing.

Future Directions

The above discussion has identified several problems with both the iCmap and

proCmap procedures. These problems are easily addressed and can be incorpo-

rated in another experiment. First and foremost, I recommend simplifying the task

so that it uses a fixed number of words to present in a session, (i.e., revert back

to the iCmap task structure). This will greatly reduce the statistical problems that

emerged by adopting a variable number of words. Although I believe it is important

to be inclusive and work towards bridging the gap between various domains within

Psychology, those researchers who specialize in working memory should propose

modifications based on theoretical and empirical evidence. Until then, focus on the

iCmap paradigm as a tool to investigate the characteristics of concepts.

The second modification would synthesize the experimental design of Experiment

1 with the rigour of Experiment 2. Instead of selecting words based on their lexi-

cal and probabilistic features, I recommend that a set of non-words be constructed

along with fictitious definitions. Creating fictitious definitions will ensure that all

participants have the same baseline exposure to the meanings of the stimuli, and

will help remove variability due to prior exposure. Additionally, the definitions can

be created with different levels of semantic complexity. For example, one could

adopt the strategy used by Hannon and Daneman (2001) where the number of fea-
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tures could be manipulated or the number of relations among the definitions. De-

signing the definitions based on theoretical dimensions would ensure that in the

pre-instruction condition participant ratings would all be near or at baseline. Then

there will be an instruction phase where the definitions for the words are presented.

The definitions should be created so that there are levels of understanding implicit

within them so that some of the stimuli are similar and others are not. In the post-

instruction condition participants repeat the iCmap task. This design will ensure

that all participants completing the pre-instruction condition will have as close to

identical understanding as possible (i.e., no knowledge).

Finally, the scoring algorithm used to summarize the dissimilarity matrix should

be addressed. The purpose of the scoring algorithm is to assign a single numerical

score to a set of classifications as a way of describing the underlying structure within

the dissimilarity matrix. The Q-technique developed by Stephenson (1953) should

be used as an alternative way of interpreting the data, but other approaches should

not be ruled out. The work of Allen (2006) may provide insight into methods for

summarizing the data collected during the iCmap task.

The research has been instrumental in clarifying and furthering my understand-

ing on the nature of concepts, and I hope that future research can refine my initial

steps outlined here so that cognitive psychology and linguistics can build a unified

theory of concepts that is capable of situating the vast array of experiences that

concepts participate in with the practicalities of modern research.
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Appendix A

Table 14
Items used in Experiment 1

Concept

Intermittent reinforcement
Secondary reinforcement
Appetitive stimulus
Aversive stimulus
Chaining
Consequence
Discriminative stimulus
Extinction
Negative reinforcer
Operant response
Place Learning
Positive Reinforcer
Punishment
Reinforcement schedules
Response rate
Spontaneous recovery

Note. The first two concepts were defined in
Carlson et al., 2005, and the remaining were
defined in Gray, 2002.
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Appendix B

Table 15
Word lists used for Concrete nouns within each block of Experiment 2

3 Words 5 Words 7 Words 9 Words

Random Structured Random Structured Random Structured Random Structured

LEAF LEAF LEAF LEAF LEAF LEAF LEAF LEAF
YACHT YACHT YACHT YACHT YACHT YACHT YACHT YACHT

RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD
POLE POLE POLE POLE POLE POLE

PLANET PLANET PLANET PLANET PLANET PLANET
PLIERS PLIERS PLIERS PLIERS
LEMON ORANGE LEMON ORANGE

SUNSET SUNSET
NAPKIN AUTUMN

Table 16
Word lists used for Abstract nouns within each block of Experiment 2

3 Words 5 Words 7 Words 9 Words

Random Structured Random Structured Random Structured Random Structured

SOUL SOUL SOUL SOUL SOUL SOUL SOUL SOUL
GUESS GUESS GUESS GUESS GUESS GUESS GUESS GUESS
BELIEF BELIEF BELIEF BELIEF BELIEF BELIEF BELIEF BELIEF

TALE TALE TALE TALE TALE TALE
TENURE TENURE TENURE TENURE TENURE TENURE

MALICE MALICE MALICE MALICE
TOPIC VIRTUE TOPIC VIRTUE

FACTOR FACTOR
HYBRID THEORY
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Appendix C

Paragraphs

Experimental paragraphs that constitute the reading comprehension test adminis-
tered in both experiments.

Practice. A GATH resembles a SHET but is heavier. A SHET resembles a COUCH
but is heavier. A MUNT resembles a LAMP but is heavier.
heavier - gath > shet > couch > lamp; munt > lamp

Block 1. A SAMP resembles a BERL but is slower and weighs more. A NORT
resembles a JET but is faster and weighs more. A BERL resembles a CAR but is
slower and weighs more.
speed - nort > jet > car > berl > samp
weight - nort > jet > car; samp> berl > car

Block 2. A DERP resembles a PINE but is taller and lives longer. A BUFT re-
sembles a PETUNIA but is shorter and lives longer. A ROSP resembles the DERP
but is taller and lives longer.
height - rosp > derp > pine > petunia > buft
lifespan - rosp > derp > pine > petunia; buft > petunia

Block 3. A FILP resembles a COFT but is smaller, has a longer neck, and nests on
land. A COFT resembles a ROBIN but is smaller and has a longer neck. A MIRT
resembles an OSTRICH but is larger and has a longer neck.
size - mirt > ostrich > ROBIN > coft > filp
neck length - mirt > ostrich > robin; filp > coft > robin
nests on land - filp, ostrich
doesn’t nest on land - coft, robin

Block 4. A MARB resembles a BUTTERFLY but is more colorful and larger.
A JERP resembles an ANT but is less colorful and larger. A TOLP resembles a
MARB but is more colorful, larger and lives in a colony.
colorful - tolp > marb > butterfly > ant > jerp
size - tolp > marb > butterfly > ant; jerp > ant
lives in colonies - tolp, ant
doesn’t live in colonies - marb, butterfly
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Block 5. A LORK resembles a TILN but is shorter, eats more, and lives on land.
A long-legged TILN resembles a MONKEY but is shorter and eats more. A WEMP
resembles a GIRAFFE but is taller and eats more.
height - wemp > giraffe > monkey > tiln > lork
amount eaten - wemp > giraffe > monkey; lork > tiln > monkey
long-legged - tiln, giraffe
short-legged - monkey
lives on land - lork, giraffe
doesn’t live on land - tiln, monkey

Block 6. A GORT resembles a TESK but is larger, sweeter, and grows on the
vine. A PESH resembles a LEMON but is smaller and sweeter. A TESK resembles
a WATERMELON but is larger and sweeter.
size - gort > tesk > watermelon > lemon > pesh
sweetness - gort > tesk > watermelon > lemon; pesh > lemon
round - gort, tesk
not round - watermelon, lemon
grows on vine - watermelon
doesn’t grow on vine - tesk, lemon

True/False Statements

All of the True/False statements are available in Hannon and Daneman (2001).
However, one statement representing each sub component will be presented.
Text-based memory - A GORT is larger than a TESK.
Text-based inferencing - A TILN doesn’t live on land.
Knowledge integration - Like HONEYBEES, MARBS fly in the air.
Knowledge access - A BLUEJAY lives in canada, whereas an OSTRICH typically
doesn’t.
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