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Abstract—Fatigue-induced crack initiation and growth are 

common in cyclically loaded structures. Crack reduces the 

structures' strength and increases the risk of failure. Engineers 

have been using degradation models like Paris' law to relate 

crack length to the magnitude of the applied load to schedule 

repair and maintenance of such structures. The presented 

study developed a methodology to estimate the Paris' law 

parameters that can be used to predict the fatigue lifetime of 

2024-T3 aluminum alloy plate under cyclic loading. An 

optimization method is also developed to optimize Paris' law 

parameters and their standard deviation, making the model 

more reliable. At the same time, the case of unavailable 

magnitude of the applied load is considered in this research. 

The optimized parameters are further updated using Bayesian 

updating with the help of condition monitoring data to 

increase the accuracy of crack length estimation. Virkler 

crack propagation data for an aluminum alloy plate is used to 

develop and validate the proposed method. The experimental 

samples' validation results show that our model's average 

error or structure's lifetime prediction based on crack length 

is 1.5% when the crack on validation samples reaches 71% of 

the failure threshold. 

Keywords-component; Paris' law, Probabilistic fatigue 

crack prediction, Genetic Algorithm, Bayesian Updating. 

I.  INTRODUCTION 

Fatigue is a phenomenon of initiation and growth of 
damage in a structure under cyclic loading [1]. Fatigue-
induced crack is the most common damage observed in 
structures made out of metal and alloy [2]. This type of crack 
may initiate in the elastic load limit and gradually grow as the 
number of loading cycles increases [3]. The growth of the 
crack reduces the load tolerance capacity of the structure and 
puts the structure at risk of failure. Often the structure with 
crack does not fail immediately; instead, the crack grows until 
it reaches a critical limit, and then the structure fails [4]. If the 
growing crack in the structure is not detected early, its failure 
can cause damage to life and property. The study of fatigue 
cracks can help prevent sudden failures in machines and 
structures; therefore, it is important to study the crack 
propagation.  

The fatigue crack prediction process is usually performed 
with the help of a crack propagation model. One widely used 
and frequently studied model is Paris' law [5]. Paris' law crack 

propagation model is used to estimate the crack length using a 
mathematical relation between current crack length and future 
crack length as shown in Eq. (1) where, m and C are the model 

parameters to be tuned, the term  
𝑑𝑎

𝑑𝑁
 is the crack growth rate 

with a being crack length and N being the loading cycle, the 
parameter S is the load parameter whose value is obtained 
from the applied load, and the term Y is the geometric 
correction factor.  

 
𝑑𝑎

𝑑𝑁
= 𝐶(SY√𝑎𝜋)𝑚 () 

The main challenge with using Paris' law is estimating 
proper values of its parameters because there are uncertainties 
in the crack propagation path [6]–[8]. The crack propagation 
path depends on factors such as manufacturing defects, 
varying environmental conditions, load uncertainties [9]–[11]. 
Changes in those factors can alter the propagation path. In this 
situation, estimating one proper set of Paris law parameters is 
challenging. If the values of the Paris law parameters are 
improper, the predicted fatigue crack length will face a 
significant error.  

This study works on fatigue crack prediction of aluminum 
alloy plates under cyclic loading. The study aims to address 
the identified shortcomings in existing research: weakness of 
optimization strategies that might generate a large standard 
deviation of parameters and lack of investigation in the case 
of unavailable magnitude of the applied load. This study tries 
to find the proper standard deviation of Paris' law parameters 
during optimization to obtain an accurate prior distribution of 
Paris' law parameters. The Bayesian updating method is 
further used to improve those parameters. This study also 
systematically estimates the value of load parameter in Paris' 
law for the case of unavailable load magnitude.  

II.  LITERATURE REVIEW 

Researchers have presented different methods to calculate 
the Paris' law parameters. Many of those methods have 
quantified the randomness in crack propagation path using a 
probabilistic Paris' law method [9], [10]. The parameters of 
the probabilistic form of Paris' law are assumed to follow a 
distribution such as normal and lognormal distribution [11] 
[12]. Many papers like [7], [9], [10] that made such 
assumptions have developed two-step methods, which is 
parameter optimization followed by the Bayesian updating, to 
estimate Paris' law parameters. Optimization is performed 
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offline in those methods, while Bayesian updating is 
performed online when new evidence from condition 
monitoring is available.  

A.  Review of Parameters Optimization  

Different offline optimization methods are available to 
estimate the probability distribution of Paris' law parameters. 
Anis Ben Abdessalem[9] minimized the sum of squared error 
in predicting crack length using the simulated annealing 
method. Xu Du et al. [7] maximize the log-likelihood of the 
integrated Paris' law equation using the maximum likelihood 
method. Similarly, Fuqiong Zhao, Zhigang Tian, Eric 
Bechhoefer and Yong Zeng[10] used regression fitting to 
optimize the parameters. A similar strategy is observed in all 
three papers. They have multiple experimental crack 
propagation paths available, and they considered each path 
individually for their optimization. The obtained values of the 
parameters are further used to form the distribution of the 
parameters. The methodology presented in the 
abovementioned papers estimated one set of parameters to 
represent a crack propagation path. However, some other 
papers, such as [13], [14], suggest that Paris' law parameters 
are dependent on each other, and different 
combinations of those parameters may give the same path. 

The condition mentioned above, i.e. different 
combinations of Paris' law parameters, may give the same path 
is tested using the crack propagation data from [6]. Two 
different combinations of parameters are obtained after 
performing the optimization twice on the same crack 
propagation path. In Fig. 1, (a)., the red curve is plotted using 
obtained parameters m1, C1 and the blue curve is plotted using 
obtained parameters m2, C2. It is observed that both curves are 
very close to each other. Since the value of m1, m2 and C1, C2 
are also very close, we form the cross combination m1, C2 and 
m2, C1 and plotted red and blue curves with respective 
parameters in Fig. 1, (b). The two curves obtained in the 
second figure are distinct enough to show that they do not 
represent the same crack propagation trend. From the 
illustration, it can be concluded that the existing methods 
which didn't consider the possibility of multiple combinations 
of parameters may generate a large standard deviation of the 
parameters' distributions. Therefore, further study is needed to 
obtain the best possible value for the standard deviation of m 
and C parameters to illustrate the uncertainty of crack length 
estimation. A better standard deviation of parameters would 
form a more accurate prior distribution, increasing the 
efficiency of the online parameters updating process. 

In addition, there is no proper investigation to deal with 
the situation of unavailable magnitude of the applied load. As 
mentioned earlier, Paris' law has load parameter S in its 
equation that takes the value of the magnitude of the applied 
cyclic load. Usually, the magnitude of applied load is 
available, like in [9], [10]. However, there can be situations 
when the magnitude of applied load is unknown. Dealing with 
an unknown magnitude of applied load is not properly 
investigated in existing methods, and some methods have even 
neglected the load value in Paris' law equation [10], [19]. 
Therefore, further investigation is required to identify a proper 
value of the load parameter for unavailable load magnitude.  

  
(a) (b) 

Figure 1. (a). two combinations of parameters give one path. (b). Cross 

combination of parameters from 'Figure 1. a' give distinct paths 

B. Review of Bayesian Updating of Parameters   

Bayesian updating updates the probability of a hypothesis 
whenever new evidence is available. In recent papers, online 
Bayesian updating methods with the help of condition 
monitoring data are used to improve the accuracy of estimated 
parameters. Bayes' theorem is used for Bayesian updating 
given by Eq. 2 [16]. In Eq.2, prior information is multiplied 
by likelihood to get an updated posterior. Prior is the 
distribution obtained from optimization, and likelihood is the 
conditional probability of new evidence from condition 
monitoring data given the prior. After updating, the means of 
the Paris' law parameters move towards an accurate value 
while their standard deviations decrease.  

 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑃𝑟𝑖𝑜𝑟  () 

Many papers used Markov Chain Monte Carlo (MCMC) 
sampling algorithm to estimate posterior distribution [7], [10], 
[13], [15], [17]–[19].  MCMC is a popular simulation method 
used in engineering analysis to generate samples from an 
unknown distribution [20]. One major concern about using 
MCMC is the computational time[19]. In [19], Fuqiong Zhao 
tries to reduce the computational time of the MCMC process 
for Bayesian updating of Paris' law by introducing the 
Polynomial chaos expansion method to the calculation of 
likelihood. That method by Fuqiong Zhao [19] can estimate 
posterior distribution by generating fewer samples than 
required for MCMC, which reduces the computational time 
from 43 hours per update to 17 minutes per update.  

An alternative to MCMC is proposed by A. A. Ben [9], 
who uses the Nested Sampling (NS) method instead of 
MCMC to generate samples from the posterior distribution, 
and they conclude that NS can be an alternative method to 
MCMC, but they do not claim improvement in computational 
time.   

Moreover, some papers have estimated posterior using the 
Bayes' theorem [14], [21], [22]. Bayes' theorem is used to 
estimate the posterior of one parameter in [21]. In [22], both 
m and C parameters are individually updated using Bayes' 
theorem. Similarly,[14] used Bayes' theorem and performed 
individual updating of parameters and updating the joint 
distribution of Paris' law parameters. Those papers show that 
the use of Bayes' theorem for Paris' law parameters updating 
is a good alternative to computationally heavy algorithms like 

https://ieeexplore.ieee.org/author/38561924600
https://ieeexplore.ieee.org/author/37404686100
https://ieeexplore.ieee.org/author/37268793300
https://ieeexplore.ieee.org/author/37268793300
https://ieeexplore.ieee.org/author/38561423900
https://ieeexplore.ieee.org/author/38561924600
https://ieeexplore.ieee.org/author/38561924600


 
 

MCMC and NS. Thus, the concept of using Bayes' theorem 
for updating is adopted in this study.   

III.  PROPOSED METHODOLOGY 

This study proposes a method to estimate Paris' law 
parameters effectively. The proposed methodology is based 
on the Paris' law parameter estimation framework from [10], 
[19], [21]. The detailed flowchart of the proposed 
methodology is illustrated in Fig. 2. This framework consists 
of two parts. The first part is optimization, an offline method 
to find the optimum value of Paris's law parameters. The 
second part is online updating of the estimated parameters 
with the help of condition monitoring data using the Bayesian 
Theorem. The left three blocks in the figure represent the 
optimization method to estimate Paris' law's parameters (m, C, 
and S). The estimated values of parameters from the 
optimization are used to form a joint distribution which is used 
as prior distribution for the Bayesian updating method with 
condition monitoring data. After updating, the updated 
parameters are used in lifetime prediction. 

The flowchart in Fig. 2 has data inputs in two places, i.e., 
crack length history data for Paris' law parameters 
optimization method and condition monitoring data being 
used for the Bayesian updating method. Both of those data 
consist of crack length and respective loading cycles. The 
crack length history data is the history of crack propagation, 
whereas condition monitoring data denotes new observation. 
In this study, the proposed method is validated using data of 
accelerated fatigue test experiments from [6]. This 
experimental data contains crack length vs respective loading 
cycles, also called crack propagation path, of 68 samples. 
Among the 68 crack propagation paths, 63 paths are used for 
training, and the remaining are reserved for validation. The 
training data are used in the optimization of Paris' law 
parameters, and validation data are used for the validation 
during Bayesian updating. 

 

 

Figure 2. Proposed methodology 

A. Optimization of Paris' Law Using GA 

This study presents an optimization method to estimate 
three parameters m, C, and S of Paris' law. The optimization 
method considers multiple crack propagation paths together 

during optimization and aims to optimize the Paris' law 
parameters and their standard deviations.  

The objective function defined for the optimization is 
shown in Eq. (3). in which n is the number of training data, p 
is the number of inspection points in a crack propagation path, 
𝑎𝑘 is the measured crack length, �̂�𝑘 is the predicted crack 

length and,  
 𝜎𝑚

𝜇𝑚
 and 

 𝜎𝐶

𝜇𝐶
 are the coefficients of variation of m 

and C, respectively. There are two parts in this equation, the 

first part, which is (
1

𝑛
∑ (

1

𝑝
∑

|𝑎𝑘−�̂�𝑘|

𝑎𝑘

𝑝
𝑘=1 )

𝑖

𝑛
𝑖=1 ), represents the 

model error that is the error in the prediction of crack length 

using Paris' law. The second part, which is ( 
1

4
(

𝜎𝑚

𝜇𝑚
+

𝜎𝐶

𝜇𝐶
)), 

represents the standard deviation of the parameters m and C. 

The constant  
1

4
  is to ensure that the algorithm does not 

emphasize one of the two parts in the objective function while 
minimizing it. If the constant is too large, then the algorithm 
emphasizes reducing the standard deviation. In contrast, if the 
constant is very small, the algorithm emphasizes minimizing 
the model error. While minimizing this objective function, it 
is intended to minimize the model error while finding a 
suitable standard deviation of m and C, different values for the 
constant is tried, and the proper result is obtained with the 

value 
1

4
 . 

 Obj = 𝑚𝑖𝑛 [
1

𝑛
∑ (

1

𝑝
∑

|𝑎𝑘−�̂�𝑘|

𝑎𝑘

𝑝
𝑘=1 )

𝑖

𝑛
𝑖=1 +

1

4
(

𝜎𝑚

𝜇𝑚
+

𝜎𝐶

𝜇𝐶
)] () 

In the first part of the objective function, Paris' law is used 
to predict the crack length �̂�𝑘. The Paris' law is in Eq. (1). This 
Paris' law equation is an ordinary differential equation, and it 
is needed to solve the equation before using it for crack length 
prediction. For the integration, the numerical integration 
method is followed. The numerical integration of Paris' law is 
performed using the Euler method 

The optimization is performed using GA, which stopped 
after 100,000 generations with the best objective function 
value 0.032. The time taken by GA was 22 hours. The optimal 
results obtained are provided in Table I. The model parameters 
from Table I are used in Paris' law to plot the obtained model 
in Fig. 3. It is observed from Fig.3 that the obtained model 
shows uncertainties in the crack propagation path; however, 
the standard deviation of the prediction made with the help of 
this model is still large. For example, the standard deviation of 
the loading cycle at the crack length of 79.6 mm, (assumed 
failure threshold) is 16,887 cycles. The predicted mean 
lifetime is 248,394 cycles. The obtained mean and standard 
deviation of the predicted lifetime are used to represent the 
lifetime distribution with a normal distribution. The obtained 
normal distribution quantifies the uncertainty in the crack 
propagation path. The normal distribution provides a range of 
lifetime i.e. [197,733, 299,055] cycles. This range covers 
99.7% of paths (±3-sigma range). The width of the ±3-sigma 
range is 101,322 cycles. The maximum error observed in 
lifetime prediction is 19.39% for sample number 49, which is 
the sample farthest from predicted mean lifetime. This 
observation shows that the obtained model may work for 
samples lying in the one sigma range (68.27% paths), but the 
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prediction may not be accurate enough for all other samples. 
Using condition monitoring data with the help of the Bayesian 
updating process is one of the most popular methods in the 
literature to improve the crack path prediction accuracy, and 
we used it to update the obtained model calculated using GA 
optimization. 

TABLE I.  RESULT OF OPTIMIZATION 

Description Variable Value 

Mean value of m  𝜇𝑚 3.3795 

The std of m  𝜎𝑚 0.1435 

Mean value of C  𝜇𝐶 1.9663 

The std of C  𝜎𝐶  0.8076 

load parameter S 0.3084 

 

 

Figure 3. Result of obtained model plotted with some experimental 

crack propagation paths 

B. Bayesian Updating of Paris' Law Parameters 

The estimated values of parameters from the optimization 
are used to form a joint distribution called prior distribution, 
which is updated using the Bayesian updating method with 
condition monitoring data. The Bayesian updating method 
used in this study is illustrated in the flowchart in Fig. 4. There 
are two inputs to the Bayesian updating method shown in the 
flowchart. The first is the optimization result, and the second 
is the condition monitoring data. The optimization result 
consists of 63 values for m, 63 values for C, and 1 value for S. 
All 63 crack propagation paths are obtained from replicated 
experiments on identical samples and performed under the 
same loading condition. Due to this reason, it is assumed that 
all samples have the same value for load parameter S. 
Therefore, only two parameters of Paris' law, m and C, are 
updated. It is observed that m follows a normal distribution, 
and C follows a lognormal distribution. Bivariate normal 
distribution of m and logC is obtained from the optimization, 
and it is used as the prior distribution for the Bayesian 
updating. The flowchart of Fig.4 shows how when new 
evidence is available; it is used to calculate the conditional 
probability given the prior distribution, which is the likelihood 

of the prior distribution. This likelihood is multiplied with the 
prior to get an updated distribution called the posterior 
distribution.   

The validation data consist of 163 inspection points. The 
crack length and the respective loading cycle are available at 
each inspection point. It is initially assumed that the crack 
propagation path of the considered validation samples is 
unknown for the validation. Then based on the available prior 
distribution, the lifetime is predicted. The predicted lifetime 
consists of the mean and standard deviation of the prediction. 
After that, the value of crack length and loading cycle for the 
first inspection point of the considered validation samples is 
assumed as new evidence from the condition monitoring., 
Bayesian updating is performed on the prior distribution using 
the new evidence. After updating, a new updated distribution 
is obtained called posterior distribution. The lifetime 
prediction is again performed using the posterior distribution. 
Finally, the predicted lifetime with prior and posterior is 
compared. It is expected that after updating, the mean 
prediction shifts towards the real value while the standard 
deviation of the prediction reduces. After one updating and 
prediction cycle is complete, another round of updating is 
performed considering the posterior as new prior and the crack 
vs loading cycle data from the second inspection point as the 
new evidence. This updating cycle can be repeated as long as 
required. In this study, 120 updates are performed on two 
different validation data sets. 

 

Figure 4. The Bayesian updating process of Paris' law 
parameters 

 The model shown in Fig. 4 is validated using five samples. 
The validation results for two samples among five are 
illustrated in this paper. In Table II, the change in the mean 
and standard deviation of the parameters after different 
numbers of updates are illustrated, whereas, in Table III, the 
result of lifetime prediction using updated parameters is 
illustrated. Sample 15 represents the left extreme crack 
propagation path near sample 68 in Fig. 2, and sample 49 
represents the right extreme crack propagation path near 
sample 48 in Fig. 2. The real failure cycle for sample 15 is 
212,237 cycles, and that of sample 49 is 308,158 cycles. For 
both samples, a total of 120 updates were performed. The pdf 
of the predicted lifetime is plotted after every 24 updates, 
which is illustrated in Fig. 4 a and b for samples 15 and 49, 
respectively. The prediction assumes that the sample has a 
failure threshold each in the crack length of 79.66mm. This 

• Distribution of m values, 

• Distribution of C values 

• Prior: 

 𝑓(𝑍)   =  𝑗𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡 𝑜𝑓 𝑚 𝑎𝑛𝑑 𝐶 

Result of optimization:  

Value of 63 m, values of 

63 C and value of 1 S 

Evidence: 

Crack length 𝑎𝑘 and 

loading cycles 𝑁𝑘 from 

condition monitoring  

Likelihood: 

𝑙(𝑍|𝑎𝑘) = 𝑃(𝑎𝑘| 𝑍) 

• Posterior: 𝑓(𝑍|𝑎𝑘)  ∝  𝑓(𝑍)  ×  𝑙(𝑍|𝑎𝑘) 

• Calculate updated m and C distributions from posterior 



 
 

crack length is 80% of the maximum crack length available in 
crack propagation data. 

Table III and Fig. 5 show that the general trend of error in 
and standard deviation of lifetime prediction decreases with 
an increase in the number of updates. Before updating, the 
standard deviation was 16,887 cycles, which decreased to 50 
cycles for sample 15 and 98 cycles for sample 49 after 120 
updates. Total 120 updates are performed in under 2 minutes. 
Moreover, the error in lifetime prediction is about 2% for 
sample 15 and 1.48% for sample 49 after 96 updates.   

TABLE II.  MEAN AND STD  OF PARAMETERS AFTER A DIFFERENT 

NUMBER OF UPDATES  
 

After 

update 

Sample 15 Sample 49 

𝜇𝑚 𝜎𝑚 𝜇𝑙𝑜𝑔𝐶  𝜇𝑚 𝜎𝑚 𝜇𝑙𝑜𝑔𝐶  

1 3.7070 0.0790 1.1390 3.5783 0.1154 0.9711 

24 4.1616 0.0315 2.8995 3.3919 0.0147 0.1532 

48 4.1130 0.0063 2.6772 3.4623 0.0073 0.4674 

72 4.1103 0.0033 2.6770 3.4752 0.0041 0.5690 

96 4.1101 0.0020 2.6794 3.4737 0.0024 0.5821 

120 4.1093 0.0013 2.6844 3.4744 0.0012 0.5893 

The validation results using five experimental samples 
(Sample15, 27,42,44, 49) show that the average error of 
lifetime prediction is 1.5% after the 96th update. The assumed 
threshold crack length was 79.6 mm. The crack length on the 
samples during the 96th update was 56 mm. A total of 120 
updates were performed for all five samples, during which the 
crack length on samples was 66 mm. After the 120th update, 
the standard deviation of the predicted lifetime decreases from 

16,887 cycles to an average of 50 cycles. The Bayesian 
updating algorithm developed in this study took 1 minute and 
15 seconds to complete 120 updates. 

TABLE III.  RESULTS OF BAYESIAN UPDATING 
 

Number 

of 

updates 

Sample 15  Sample 49 

Inspectio

n cycle 

Mean 

(cycles) 

Std 

(cycles) 
% Error 

Inspection 

cycle 
Mean (cycles) 

Std 

(cycles) 
% Error 

0 0 248,394 16,887 17.036 0 248,394 16,88

7 

19.393 

24 90,809 208,988 1,955 1.530 105,465 388,897 2,460 26.200 

48 138,30
0 

220,303 463 3.800 153,715 335,824 1,029 8.977 

72 165,63

9 
217,549 227 2.502 190,301 317,458 479 3.017 

96 185,14

9 
216,506 114 2.011 212,739 312,747 235 1.489 

120 199,41
5 

215,466 50 1.521 231,774 308,940 98 0.253 

IV.  CONCLUSION 

This study proposed a method to estimate Paris' law 
parameter for efficient and accurate fatigue lifetime prediction 
of an aluminum alloy plate with fatigue crack. The proposed 
optimization method optimizes the parameters m, C and S 
(Paris' law parameters) and their standard deviations. Since the 
magnitude of applied load is not available, the load parameter 
is optimized during the optimization. The optimized m and C 
parameters are used to form a prior distribution for a Bayesian 
updating framework to increase fatigue lifetime accuracy. As 
the standard deviation of m and C parameters are optimized, 
the prior distribution is more accurate and informative. An 
accurate prior helps in the performance of Bayesian updating 
by reducing the computational time and improving the model 
accuracy. During the validations, it is observed that the 
proposed method is fast while maintaining the accuracy of 
prediction.  

 

  
(a) (b) 

 

Figure 5.  Predicted lifetime distribution (lifetime distribution is represented as normal probability distribution) using optimized parameters (dash line, before 
updating) and updated parameters after a different number of updates for (a) sample 15 and (b) sample 49  
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