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Abstract  

 

In this thesis we organize the contents in three parts. The first part is about portfolio 

rebalancing with changing benchmarks and the second part is about modeling of 

fractional Brownian motion in financial market while the last part is the conclusion.  

 

In the first part, we introduce backgrounds in portfolio rebalancing and the rational 

why rebalancing is beneficial for a multi asset class portfolio. Then we describe four 

commonly used portfolio rebalancing methods and report other related comparisons. 

Then we introduce the proposed new portfolio rebalancing method and provide the 

back-testing results comparing with other methods using market data from June 2000 

to July 2014 for a hypothetical multi-client institutional fund.  

 

In the second part we introduce the properties and results of the mixed Brownian and 

fractional Brownian process with Hurst parameter H: 3/4 < H < 1. Then we estimated 

Hurst parameter H for the Equity, Fixed Income, and Forex markets across all the 

countries to get an overall picture of the financial markets all over the world.  

 

 

 

 

 



 iii 

Preface  

 

Research of the thesis in Chapters 1-3 has been performed in collaboration with Dr. 

Melnikov from University of Alberta, and Mr. Jerry (Bofu) Yang from Alberta 

Investment Management Corporation and research in Chapters 4-7 has been 

performed in collaboration with Dr. Melnikov. Experimental data in Chapter 3 was 

collected by Mr. Jerry (Bofu) Yang. Chapters 1-3 will be submitted for publication. 

My work includes summarizing results in Chapters 1-2 and 4-5, development of the 

new rebalancing method in Chapter 3, and empirical analysis in Chapter 3 and 6.  

 

 

 

 



 iv 

Acknowledgments  

 

First of all, I would like to express my deep gratitude to my supervisor, Dr. Alexander 

Melnikov for his support and guidance in my research. His helpful suggestions and 

advice have helped me enormously in writing my thesis. It is always a great pleasure 

to work under his supervision.  

 

I would also like to thank my co-supervisor, Mr. Jerry (Bofu) Yang, CFA, FRM, for 

his supports in this research. His industrial experience and knowledge helped my 

research a lot.  

 

Lastly, I would like to thank all the students and professors who made an impact in 

my graduate career at the University of Alberta. All the lasting memories will be 

cherished forever.  

 

 

 

 

 

 

 

 



 v 

Table of Contents  

 

Part I  

1. Introduction to Portfolio Rebalancing ................................................................. 1 

  1.1 Traditional Portfolio Rebalancing ...................................................................... 1 

  1.2 Reason of Rebalancing ....................................................................................... 2 

2. Main Approaching Methods and Comparison .................................................... 6 

  2.1 Calendar Method ................................................................................................ 6 

  2.2 Traditional Two Bands Method .......................................................................... 8 

  2.3 Dynamic Programming Method ....................................................................... 14 

  2.4 Masters Method ................................................................................................ 19 

  2.5 Comparison among Traditional Methods ......................................................... 22 

3. New Portfolio Rebalancing Method .................................................................... 26 

  3.1 New Idea in Portfolio Rebalancing .................................................................. 26 

  3.2 New Rebalancing Method ................................................................................ 29 

  3.3 Back-Testing ..................................................................................................... 33 

 

Part II  

4. Modeling with Fractional Brownian Motion ..................................................... 42 

  4.1 Tradition fractional Brownian motion .............................................................. 43 

  4.2 Mixed Brownian and Fractional Brownian Model ........................................... 44 

5. Why We Need H > 3/4? ........................................................................................ 45 

6. Estimate H and Empirical Results ...................................................................... 48 



 vi 

  6.1 Estimate Hurst Parameter H ............................................................................. 48 

  6.2 Empirical Results for World Equity Market ..................................................... 49 

  6.3 Empirical Results for World Forex Market ...................................................... 55 

  6.4 Empirical Results for World Fixed Income Market ......................................... 59 

 

Part III 

7. Conclusion ................................................................................. 65 

  7.1 Conclusion of Part I .............................................................. 65 

  7.2 Conclusion of Part II ................................................. ............ 65 

 

Bibliography ............................................................................................................. 67 

 

Appendix 1. Matlab Code and Output for Chapter 3 ................................................ 70 

 

Appendix 2. Matlab Code and Output for Chapter 6 ................................................ 85 

 



 vii 

List of Tables  

 

1.1.1 Constant mix portfolio rebalancing results figure, taken from [Andre F. Perold 

and William F. Sharpe (1988)
[2]

] ............................................................................. 3 

1.1.2 To compare several basic rebalancing methods with the buy and hold strategy in 

several measures, taken from [Christopher Donohue and Kenneth Yip (2003)
[3]

] . 4 

2.1.1 Returns by annual rebalancing vs returns by monthly rebalancing figure, taken 

from [Martin Leibowitz and Anthony Bova (2011)
[4]

] ........................................... 7 

2.1.2 Advantage vs annual rebalancing by monthly rebalancing and quarterly 

rebalancing, taken from [Martin Leibowitz and Anthony Bova (2011)
[4]

] ............. 7 

2.2.1 Three tables for the comparison of Tradition Two Bands method with other 

simple rebalancing methods figure, taken from [Christopher Donohue and 

Kenneth Yip (2003)
[3]

] .......................................................................................... 12 

2.3.1 Two tables for comparison of Dynamic Programming method with other simple 

rebalancing methods figure, taken from [Sun, Fan, Chen, Schouwenaars, and 

Albota (2004)
[6]

] ....................................................................................................16 

2.3.2 Comparison of the improved Dynamic Programming method with old Dynamic 

Programming method and other simple rebalancing methods figure, taken from 

[Kritzman, Myrgren, and Page (2009)
[7]

] ............................................................. 19 

2.5.1 List of portfolio rebalancing methods table, taken from [Ian Carmichael 

(2009)
[9]

] ............................................................................................................... 22 

3.1.1 Asset allocation trades for four investors table, taken from [William F. Sharpe 



 viii 

(2009)
[1]

]................................................................................................................ 27 

3.3.1 Five tables for the portfolio holding and benchmark information of five clients 

of the fund ............................................................................................................. 34  

3.3.2 Returns for fixed band with fully rebalancing from 1% to 15%, generated by 

Matlab ................................................................................................................... 36  

3.3.3 Returns for fixed band with half rebalancing from 1% to 15%, generated by 

Matlab ................................................................................................................... 37  

3.3.4 Returns for fixed band with marginal rebalancing from 1% to 15%, generated by 

Matlab ................................................................................................................... 38  

3.3.5 Returns for asymmetrical band with fully rebalancing from 1%, 2% to 6%, 7%, 

generated by Matlab ............................................................................................. 38  

3.3.6 Returns for asymmetrical band with half rebalancing from 1%, 2% to 6%, 7%, 

generated by Matlab ............................................................................................. 39  

3.3.7 Returns for asymmetrical band with marginal rebalancing from 1%, 2% to 6%, 

7%, generated by Matlab ...................................................................................... 40  

3.3.8 Returns for calendar method with monthly to annually rebalancing, generated by 

Matlab ................................................................................................................... 41  

3.3.9 Returns for Masters method, generated by Matlab ........................................... 41  

3.3.10 Returns for our new portfolio rebalancing method, generated by Matlab ...... 41  

6.2.1 Countries with estimated H of stock index > 0.75, generated by Matlab ......... 49  

6.2.2 Countries with estimated H of stock index close to 0.75, generated by 

Matlab ................................................................................................................... 49  



 ix 

6.2.3 Estimated H of stock indexes all over the world, generated by Matlab ............ 50  

6.2.4 Countries with estimated H of stock index close to 0.5, generated by 

Matlab ................................................................................................................... 53  

6.2.5 Estimated H of stock index in different regions, generated by Matlab ............. 54  

6.2.6 Estimated H of stock index for developed region and developing region, 

generated by Matlab ............................................................................................. 55  

6.3.1 Countries for estimated H of foreign exchange all over the world, generated by 

Matlab ................................................................................................................... 56  

6.3.2 Countries with estimated H of foreign exchange close to 0.5, generated by 

Matlab ................................................................................................................... 57  

6.3.3 Estimated H of foreign exchange in different regions, generated by Matlab .... 58  

6.4.1 Countries with estimated H of bond index > 0.75, generated by Matlab .......... 59  

6.4.2 Countries with estimated H of bond index close to 0.75, generated by 

Matlab ................................................................................................................... 59 

6.4.3 Countries with estimated H of bond index > 0.75 in all 3 estimation methods, 

generated by Matlab ............................................................................................. 60 

6.4.4 Countries for estimated H of bond indexes all over the world, generated by 

Matlab ................................................................................................................... 60  

6.4.5 Countries with estimated H of bond index close to 0.5, generated by Matlab .. 63  

6.4.6 Estimated H of bond index in different categories, generated by Matlab ......... 63  

 

 



 x 

List of Figures  

 

2.5.2 Annual transaction costs vs annual tracking error for all tested rebalancing 

methods in all market, taken from [Ian Carmichael (2009)
[9]

] ............................. 23 

2.5.3 Annual transaction costs vs annual tracking error for all tested rebalancing 

methods in bull market, taken from [Ian Carmichael (2009)
[9]

] ........................... 24 

2.5.4 Annual transaction costs vs annual tracking error for all tested rebalancing 

methods in bear market, taken from [Ian Carmichael (2009)
[9]

] .......................... 24 

 

 

 

 

 

 

 

 

 



 1 

Part I 

Chapter 1 

 

Introduction to Portfolio Rebalancing  

 

Portfolio rebalancing plays an important role in the overall portfolio management. 

The traditional portfolio rebalancing target for each asset class is stated as a percent of 

the total value of the fund. Every time when the asset proportions drifted away from 

its benchmark weight, we rebalance them back. To accommodate disparities, most 

asset allocation policies include acceptable ranges.  

 

1.1 Traditional Portfolio Rebalancing  

At the beginning part of William F. Sharpe (2009)
[1]

, it briefly introduces the 

traditional portfolio rebalancing method. Specifically, the traditional portfolio 

rebalancing method is to let dollar amounts invested in assets be X1, X2, ... Xn, then 

the initial value of the portfolio and proportion of every assets in the portfolio are:  

0

1

n

i

i

V X


  

1 2

0 0 0

, ,......, nXX X
V V V

 
 
 

 

Now a period has passed and we write the value-relative for asset i (the ratio of 

ending value to beginning value) as ki, then new dollar value of each asset, ending 

value of the portfolio, and the proportion of every assets in the portfolio are:  
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 1 1 2 2, ,......, n nk X k X k X  

1

1

n

i i

i

V k X


  

1 1 2 2

1 1 1

, ,......, n nk Xk X k X
V V V

 
 
 

 

We denote the value-relative change for portfolio as Kp, then:  

1

0
p

V
K

V
  

 

We let D1, D2, ... Dn denote dollar amounts of asset purchase (if positive) or sold (if 

negative) in order to fully rebalance. Then we should have the formulas:  

1 0

i i i ik X D X
V V


  

So that:  i p i iD K k X   

In this way, it keeps the asset proportions remain the same.  

 

This is known as the traditional portfolio rebalancing.  

 

1.2 Reason of Rebalancing  

In Andre F. Perold and William F. Sharpe (1988)
[2]

, it calls the traditional portfolio 

rebalancing method as the “constant mix” method. In this paper, it compares the 

“constant mix” with the normal buy and hold strategy, which explains why we do 

portfolio rebalancing and how to be benefit from the traditional portfolio rebalancing 

method.  
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We can see from an example in Andre F. Perold and William F. Sharpe (1988)
[2]

 as 

below (it assumes the transaction cost is zero here):  

Table 1.1.1  

 

 

It assumes the portfolio is a 60/40 constant mix in stock and bond, where the portfolio 

keeps 60% of its value invested in the stock market and 40% of its value invested in 

the bond market. In another ward, by assuming the total value of the portfolio is 100, 

the investor puts 60 in stocks and 40 in bonds.  

 

Now one time has passed and when the stock market value drops from 100 to 90, the 

value of stock drops to 54 while the value of bond is still 40 in the portfolio. The total 

value of the portfolio drops to 94 now. In order to keep 60% in stock and 40% in bond, 

the fund manager should sell 2.4 units of bonds to buy 2.4 units of stocks. As a result, 

the portfolio values become 56.4 in stock and 37.6 in bond.  

 

Now another period has passed and the stock market then rises from 90 back to 100. 

As a result, the value of stock rises from 56.4 to 62.67 while the value of bond is still 

37.6 in the portfolio. But as we can see from the table 1.1.1 above, the value of 

portfolio rises to 100.27 while now the stock market and bond market are both 100 as 

the beginning. Therefore, we can see the “constant mix” method (which is the 
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traditional portfolio rebalancing method) makes 0.27 gain without transaction costs.  

 

Consequently, in Andre F. Perold and William F. Sharpe (1988)
[2]

 it points out that the 

“constant mix” method gains from reversals. Specifically, the “constant mix” method 

tends to be superior if markets are characterized more by reversals than by trends 

while buy-and-hold policy tends to be superior if there is a major move in one 

direction. Therefore, rebalancing adds values to the return of portfolio when there are 

more reversals.  

 

What is more, at the beginning part of Christopher Donohue and Kenneth Yip 

(2003)
[3]

, it explains another reason why we do rebalancing. By comparing several 

basic rebalancing methods with the buy and hold strategy, Christopher Donohue and 

Kenneth Yip (2003)
[3] 

shows as in the table 1.1.2 below:  

Table 1.1.2  
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We can see that although never rebalancing (Buy and Hold strategy) outperforms all 

the other strategies in return, it has, for example, the lowest Shape Ratio.  

 

Therefore, in terms of maximizing Sharpe Ratio (or minimize total risk), rebalancing 

increase a portfolio’s Sharpe ratio by reducing volatility or increasing returns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

 

Chapter 2  

 

Main Approaching Methods and Comparison  

 

Here we introduce the commonly used portfolio rebalancing methods in the financial 

market and provide a comparison among those methods.  

 

2.1 Calendar Method 

The calendar method is the most straightforward rebalancing method. This method 

simply rebalances the asset ratios fully back to its benchmark ratios at certain time 

period such as monthly, quarterly, or annually. In Martin Leibowitz and Anthony Bova 

(2011)
[4]

, it compares the calendar methods based on annually, quarterly, and monthly 

time benchmarks.  

 

In Martin Leibowitz and Anthony Bova (2011)
[4]

, it did an empirical analysis based on 

historical study for a 60/40 portfolio (60% in equity and 40% in bond) over 1960 - 

2009 period under the zero transaction costs for monthly calendar rebalancing vs 

annually calendar rebalancing, and quarterly calendar rebalancing vs annually 

calendar rebalancing.  

 

Summaries provided in Martin Leibowitz and Anthony Bova (2011)
[4] 

are as follows:  
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Table 2.1.1  

 

Table 2.1.2  

 

 

We can see that from table 2.1.1, with zero transaction cost, the annual rebalancing 

performed better than the monthly rebalancing during 1960-2009 period. Since 

monthly rebalancing trades much more frequently than the annual rebalancing, on a 

net-cost basis the annual rebalancing should perform much better than the monthly 

rebalancing.  

 

Similarly in table 2.1.2, by calculating advantage vs annual rebalancing under the zero 

transaction cost, we can see that monthly rebalancing has an average advantage -0.1% 

while that of quarterly rebalancing is 0.0%. Since monthly rebalancing and quarterly 
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rebalancing both trade much more frequently than the annual rebalancing, the annual 

rebalancing should outperform significantly both monthly rebalancing and quarterly 

rebalancing.  

 

Therefore, in Martin Leibowitz and Anthony Bova (2011)
[4]

, it suggests that annual 

rebalancing outperforms both monthly rebalancing and quarterly rebalancing.  

 

2.2 Traditional Two Bands Method 

This method is first introduced in Hayne E. Leland (1996)
[5]

. It assumes transaction 

costs are proportional to the dollar amounts traded. It defines S - “stocks”, B - 

“bonds”, and assumes they both follow log random walks:  

( ) / ( )S S SdS t S dt dZ t    

( ) / ( )B B BdB t B dt dZ t    

Here dZS and dZB are the increments of Wiener processes with correlation  .  

Then the stochastic process w(t) = S(t)/B(t) is:  

2( ) / ( ) ( ) ( )S B B B S S S B Bdw t w dt dZ t dZ t             

We assume the target ratio is w*, then the dollar equivalent cost over a time interval dt 

may be approximated by:  

* 2( ( ) )L w t w dt    
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where   is a constant representing the cost per unit of tracking error 

Let kS and kB be transactions cost per dollar of stocks and bonds traded and let C , 

S and B be total costs, change in dollar value of stocks, and change in dollar value 

of bonds:  

B S    

( )S B S BC k S k B k k S        

Since (1 ) /w w S B   and W = B + S and /c C W  , we have:  

/ ( ) / (1 )S BC w B k k w      

2/ ( ) / (1 )S Bc w k k w      

Cost Function  

Let V(w(t); wmin, wmax) be the cost function associated a trading strategy characterized 

by no trading whenever min max( ) ( ) [ , ]w w w w    :  

  ( ) * 2( ) [ ( ( ) ) { cos };?,? ]r t

min m

t

ax E e w w d PV transaction tsV w t w w 



  


 





    

(1) When min max( ) ( ) [ , ]w w w w    :  

   * 2;?,? ( ) ( ( ) ) [ (  ( ) )];?,
t

min max mi

dt

rdt

n max

t

V w t w w V w tw t w d E e wd t ww


 






      

(2) When min( ) ( )w w w     or max( ) ( )w w w    :  
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  *;?, ( ) ( ) / (  ;?,?)
)(min max min min max minV w t w w V ww w tcw w w     

  **

max max( );?,?;?,? (
( / ( )))min max min max c wV w t w w V w w w w t w     

Therefore, we got the boundary conditions:  

* 2;?, ( ) / ( )(1 ) min min max minS Bc wkw w w kV w         

*

m

2

max ax

*;?, ( )  / ( )(1 )min max S BV c w kw w w wk      

Here Vk(*; *, *) is the derivative of V with respect to its k
th

 argument.  

 

By expanding the expectation term, we have:  

1

2 2

1 1

*;?,?;?,? ;
( ) 0.5 ( ) ( )   ) 0,?(min max min max min maxbawV w w w w wV w w w rw V w w w    

where 
2

S B B B Sa         , 
2 2 2S B B Sb       . 

 

The solution of above differential equation is:  

2 * *2

1 2;?,? 2
( ) [ ]

2
min max

x yw ww w
C w C w

r a
V w w

b r a
w

r
    

  
 

where x = (-2a + b - sqrt{(2a-b)
2 

+ 8br})/2b, y = (-2a + b + sqrt{(2a-b)
2 

+ 8br})/2b.  

Here C1 and C2 are determined by the boundary conditions and wmin & wmax.  

 

Therefore, by calculating the rebalancing bands base on the differential equations 

above, we can get “no trade” interval [wmin
*
, wmax

*
] where no trades are required 

when ratio of asset values moves within the interval and asset proportions should be 
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adjusted back to the nearest edge of the interval when asset ratio moves outside the 

no-trade interval.  

 

In Christopher Donohue and Kenneth Yip (2003)
[3]

, it improves above method in 

approximating the edges of the no-trade region.  

 

Since the no-trade region represents the area surrounding the target ratios, the 

marginal decline in expected future transaction and tracking error costs is less than or 

equal to marginal increase in current transaction costs. They let ( , )J   denote the 

present value of expected future transaction and tracking error costs as the proportion 

of wealth currently in risky asset w and rebalancing strategy  . Then the objective is 

to find strategy to minimize ( , )J   :  

(1) To accept the current level of tracking error, the cost is ( , )J   .  

(2) To reduce w to by reallocating funds from risky asset to risk-free asset, the cost 

is ( ) ( , )J      .  

Therefore, (1) is the optimal action if and only if:  

( , ) ( ) ( , )J J          

Further, if the optimal action is to trade (option (2)), the trade should move w to 

 such that:  

( , ) ( , ) ( )J J          

Or equivalently:  
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( , )J     

Here ( , )J    is the partial derivative of ( , )J    with respect to w.  

 

In Christopher Donohue and Kenneth Yip (2003)
[3]

, it compares optimal rebalancing 

with Periodic (equal tracking error, daily, weekly, monthly, quarterly, semiannually, 

annually), Volatility (1%, 2%, 3%, 4%, 5%, 10%, 15%, buy-and-hold), Equal 

Probability (x = 5%, 20%, 35%, 50%), and Active Risk (thresholds of 0.01%, 0.03%, 

0.05%, 0.1% from target-weight portfolio) respectively. The output is listed in tables 

2.2.1 below:  

Tables 2.2.1  
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We can see from tables 2.2.1, it concludes that strategies that use a no-trade region 

constructed as a function of individual asset transaction costs and investor risk 

aversion offer promise for finding the proper balance between minimizing transaction 
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costs and tracking error.  

 

2.3 Dynamic Programming Method  

In Sun, Fan, Chen, Schouwenaars, and Albota (2004)
[6]

, it first introduces the dynamic 

programming method. It presents an approach explicitly weighs transaction costs and 

portfolio tracking error.  

 

In that paper, it defines wt as state, ut as policy, and nt as state uncertainty. The state 

transition is: 

1 ( , , )t t t tw h w u n   

Therefore, the cost function is written recursively as:  

1 1( ) [ ( , , ) ( )]t t t t t t tJ w E G w u n J w    

Here Jt is the so-called cost-to-go function, G is the cost for current period. Therefore, 

the cost at any given period is the expected cost from t to t+1 along with the expected 

cost from t+1 onwards.  

 

At time t, the optimal strategy is to choose ut such that the cost is minimized:  

*

1 1( ) min [ ( , , ) ( )]
t

t t t t t t t
u

J w E G w u n J w    

Assuming convergence, this recursion approaches a fixed point such that:   

* * *

1( ) ( ) ( )t tJ w J w J w   

Therefore, we could use value iteration technique to determine the cost-to-go values. 

By randomly choosing an arbitrary set of cost-to-go values Jt(w), we repeatedly apply 
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above minimization function to obtain cost-to-go values successively. After a 

sufficient number of iterations, we will approach a steady-state, which should 

converge the optimal J*t(w).  

 

The decision to rebalance should be based on a consideration of 3 costs:  

(1) Tracking error associated with any deviation in our portfolio from the optimal 

portfolio 

(2) Trading costs associated with buying or selling any assets during rebalancing  

(3) Expected future cost from next month onwards  

 

Therefore, to apply dynamic programming, we write the cost function as:  

[ ( , , )] ( ) ( )t t t t t tE G w u n u w u     

Here ( )tu is the associated trading cost, (.) represents the sub-optimality cost. 

( ) 0t tw u   when 
*

t tw u w  .  

For a portfolio w to go to another portfolio w’, we assume for asset i we pay a 

transaction cost of ci per dollar to buy or sell so that:  

( ', ) 'Tw w c w w    

For any portfolio weights w, we express the expected utility as ( , )T TU w w w  . 

Then there exists a risk-free rate ( )CEr w where ( ,0) ( , )T T

CEU r U w w w  . We 

denote ( )CEr w as certainty equivalent return for weights w.  
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Under the certainty equivalence approach, the tracking error has the cost function:  

*( ) ( ) ( )CE CEw r w r w    

 

Therefore, by using above method, that paper compares it with other portfolio 

rebalancing methods as below:  

Tables 2.3.1  
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According to tables 2.3.1, it concludes that this optimal dynamic programming 

method provides gains over the best of the traditional techniques of rebalancing.  

 

In Kritzman, Myrgren, and Page (2009)
[7]

, it is doing similar thing but it re-defines the 

cost function as:  

1 1 1( , ) ( , )t t t t t t t tJ X X CEC TC J X X      

Here CECt is the Certainty Equivalent Cost and TCt is the Transaction Costs. Then the 

current period 1( , )t t tJ X X  is a function of the current CEC, TC, and future costs 

1 1( , )t t tJ X X  .  
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Specifically, it assumes investors have log-wealth utility and the expected utility E(U) 

is written as the weighted sum of the n security expected returns under m scenarios, 

each associated with p probability:  

1 1

( ) (1 ) (1 ')
m n

i j ij

i j

E U p In X pIn X 
 

      

Where: 

11 1

1

n

m mn

 



 

 
 

  
 
 

 

By letting 1[ ,..., ]opt opt opt

nX X X denote the optimal portfolio weights and E(U) is 

maximized when X = X
opt

 as E(U*), it quantifies the loss in expected utility as 

Certainty Equivalent Cost (CEC): 

*( ) ( )E U E UCEC e e    

And it defines the Transaction Costs (TC) at period t are:  

1

1

n

t j jt jt

i

TC C X X 



   

 

Then in Kritzman, Myrgren, and Page (2009)
[7] 

it improves the method in Sun, Fan, 

Chen, Schouwenaars, and Albota (2004)
[6] 

by replacing 1 1( , )t t tJ X X   as above by 

the quadratic function below:  
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2

1

( )
n

opt

i

i

Q d X X


   

As a result, the cost function becomes:  

1( , )t t t t t tJ X X CEC TC Q     

 

In that paper, it also provides empirical results as below:  

Table 2.3.2 

 

 

We can see in table 2.3.2, it shows that by using this method it performs similar to the 

dynamic programming in Sun, Fan, Chen, Schouwenaars, and Albota (2004)
[6]

 and 

performs substantially better than other heuristic methods.  

 

2.4 Masters Method  

In Seth J. Masters (2003)
[8]

, it introduces a very intuitive way to calculate the 

rebalancing bands.  
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2.4.1 Trigger Bands 

It lets K represent the investor’s risk tolerance, and lets Delta be the deviation from 

target allocation, then the benefit of rebalancing is:  

 

Here the tracking error is a measure of how closely a portfolio follows the 

benchmarks, where it could be defined as the standard deviation of the difference 

between the portfolio and the benchmark returns.   

Let C be the total two-way cost of rebalancing, then the cost of rebalancing is:  

 

To sum up, the net benefit of rebalancing is:  

 

 

Therefore, the trigger point T for asset class i should be:  

 

We get:  

 

We can see two points about the triggering points:  

(1) The higher risk tolerance K, the higher trigger point. 

(2) The more expensive to trade an asset, the higher trigger point.  
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We let 
2

i  be the volatility of the asset to be rebalanced; 
2

j  be the volatility of 

the rest of the portfolio; and ij  be the correlation between the asset and the rest of 

portfolio. Then the tracking error can be calculated by:  

 

As a result, the trigger point is:  

 

 

2.4.2 Level of Rebalancing 

For the optimal rebalancing, marginal benefit should be equal to marginal cost.  

Therefore, we should rebalance as far as the incremental move still yields a marginal 

net benefit and stop when the marginal benefit of rebalancing is equal to marginal 

cost:  

 

Then we get:  

 

This is exactly half of the trigger point T.  
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To sum up, for Masters method, we calculate the triggering points as the formula 

before, then every time we rebalance back to the midpoint between and triggering 

point and the benchmark.  

 

2.5 Comparison among Traditional Methods 

In order to determine the best portfolio rebalancing method, we need to find out the 

most optimal trade-off between tracking error and transaction costs. In Ian Carmichael 

(2009)
[9]

, it compares most of the portfolio rebalancing methods in the financial 

market.  

 

The methods it takes into consideration are:  

Table 2.5.1  

method name method brief 

Calendar Portfolio is rebalanced at a pre-determined frequency. (e.g. annually)  

Common in Practice - 

'Complete' 

All asset classes have identical no-trading intervals that are fixed and do not 

change with time. - To rebalance all assets back to target allocation 

Common in Practice - 

'Selective' 

All asset classes have identical no-trading intervals that are fixed and do not 

change with time. - To only rebalance the asset class in breach of its rebalancing 

interval back to target allocaton 

Asymmetrical 
It has asymmetrical no-trading intervals around target allocation where upper 

bound significantly wider than lower bound 

Leland (1996) 

(Traditional Two 

Bands) 

Optimal no-trade intervals are dependent on 'relative asset class volatility', 'cost 

per unit of tracking error', and 'transaction cost'. It requires asset classes to be only 

rebalanced back to the boundary of the no-trade interval.  
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Masters (2003) 
In contrast to Leland, Masters found it optimal to rebalance back only to half-way 

between the edge of the no-trading interval and the target allocation.  

Dynamic 

programming 
It uses dynamic programming to determine optimal rebalancing rules.  

 

However, in order to be useful in the financial market, it should satisfy the criteria 

below:  

(1) Must be unambiguous and simple to follow  

(2) Must be practical to both individual and institutional investors (no infinite 

infinitesimal changes)  

(3) Must work in a world with transaction fees  

 

Therefore, based on the criteria above, only ‘Calendar’, ‘Common - Complete’, 

‘Common - Selective’, ‘Asymmetrical’, and ‘Masters’ methods are satisfied.  

 

In Ian Carmichael (2009)
[9]

, it applies bootstrapping simulation method to above 

rebalancing methods. It assumes the transaction costs are 1% if VIX >= 35 and 0.2% 

if VIX < 35 and one week delay is built into the model. In this way, this paper 

summarizes the performance annual transaction cost (%) vs annual tracking error (%) 

in all market, in bull market, and in bear market.  

The performance curves are shown in Ian Carmichael (2009)
[9] 

as below:  

Figure 2.5.2 - in all market  
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Figure 2.5.3 - in bull market  

 

Figure 2.5.4 - in bear market  
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Therefore, according to figure 2.5.2, figure 2.5.3, and figure 2.5.4 from Ian 

Carmichael (2009)
[9] 

above, we can see that no matter in which market environment, 

in bull market, in bear market, or dropping the transaction costs’ dependence on 

market volatility, Masters method is found to provide the most optimal trade-off 

between tracking error and associated transaction costs where:  

(1) It incurs a significant smaller transaction cost per rebalance 

(2) It requires only a marginal increase in rebalancing frequency  
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Chapter 3  

 

New Portfolio Rebalancing Method  

 

In the previous chapters, we describe the traditional portfolio rebalancing methods. 

However, all previous methods are basing on fixed benchmarks. But when market 

moves dramatically, fixed benchmarks might not capture the market feature changes 

very well. Therefore, in this chapter, we are going to introduce a new portfolio 

rebalancing method with changing benchmarks.  

 

3.1 New Idea in Portfolio Rebalancing  

In the introduction part, we describe the traditional portfolio rebalancing. As we 

discussed before, buying stocks when they fall and selling stocks as they rise strategy 

capitalizes on reversals and normally provide lower total risk and higher Sharpe 

Ratio.  

 

However, in William F. Sharpe (2009)
[1]

, it points out that it is impossible for all the 

investors to follow the traditional portfolio rebalancing method. It illustrates this with 

a simple example. It assumes that there are totally four investors where they follow an 

asset allocation policy with positive proportions of four asset classes but proportions 

differ. Now a period has passed, and the assets have performed differently. In the table 
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below the assets are numbered in terms of their performance (k1 > k2 > k3 > k4):  

Table 3.1.1  

 

Here a minus sign indicates an asset to be sold and a plus sign one to be purchased. The 

final columns show the number of investors wishing to sell an asset, the number 

wishing to buy and the difference between the two.  

 

We can see that since every investor holds the best-performing asset, every investor’s 

portfolio return will be below its return. Hence, every investor will wish to sell shares 

of asset 1. Conversely, every investor’s portfolio return will be greater than the return of 

the worst-performing asset, so every investor will wish to buy shares of asset 4. As a 

result, there are only sellers for asset 1 and only buyers for asset 4 so that no trades will 

incur for these two assets. Therefore, it is impossible for all the investors to rebalance 

base on the traditional rebalancing method.  

 

In order to solve this problem, in William F. Sharpe (2009)
[1] 

it introduces the an 

adaptive asset allocation method which is macro-consistent in the sense that it is 

possible for all investors to follow. Specifically, it lets benchmark ratios change with 

market change.  
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It lets Vim,t and Vim, 0 be total outstanding market values of asset i at time t and time 0, 

lets Xim, 0 and Xim, t be the proportion of values in the market for asset i at time 0 and 

time t, and lets the proportion invested in asset i at time 0 and time t be Xif, 0 and Xif, t.  

Then the base market asset allocations are:  

 

The base portfolio asset allocations are:  

  

Then it defines the benchmark portfolio asset allocations at time t are:  

 

 

Since total market value of asset i at time 0 / t equal its proportion of total value Xim, 0 

/ Xim, t times total value of all assets at time Vm, 0 / Vm, t, therefore:  

 

Put (14) into (13) we have:  

 

In this way, the ratio of the fund’s proportion in stocks to that of the market varied. To 

convert an existing balanced fund to an adaptive one, the stated policy Xf, 0 need only 

be augmented by the “normal” market conditions Xm, 0.  
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What is more, if the fund has a base allocation changing in every time period, we can 

just let Xib, t represent the “base” allocation for time t specified in current policy. This 

replaces the constant allocation given by Xif, 0 in the formula:  

 

 

3.2 New Portfolio Rebalancing Method 

In William F. Sharpe (2009)
[1]

, it provides a way to be consist with the market change. 

This kind of idea makes sense because fixed benchmark ratios tend to under-weigh 

the market changing when there is a big move in one asset. Therefore, changing 

benchmark ratios according to the market change makes contribution to minimize the 

market changing affection in portfolio management. However, if we strictly follow 

this idea, no rebalancing will happen after the portfolio asset allocation ratios change 

to the benchmark ratio. Because according to William F. Sharpe (2009)
[1]

, the 

benchmark ratios at time t are:  

 

If the portfolio asset ratios Yif, 0 equal to the benchmark asset ratios Xif, 0 at time 0, we 

can see at time t the portfolio asset ratios Yif, t will be:  
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Therefore, if we follow the adaptive method strictly, once the portfolio ratios change 

to the benchmark ratios, no further rebalancing will happen.  

 

In order to prevent this kind of issue but also take the market changing effects into 

consideration, we define control parameters ki to all the assets. Here ki is a market 

sensitivity parameter for asset i.  

We define the benchmark ratios at time t to be:  
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Here 0 <= ki <= 1.  

 

We can see when ki = 0: 

,0

, ,0

,0

1

if

if t ifn
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i

X
X X

X


 


 

This is the traditional portfolio rebalancing case.  

 

And when ki = 1:  
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This is the adaptive portfolio rebalancing case. 

 

Since Ian Carmichael (2009)
[9]

, it finds out that no matter in any market conditions, in 

bull market, and in bear market, Masters method is found to provide the most optimal 

trade-off between tracking error and associated transaction costs. We try to utilize the 

ideas from Masters method but we make our improvement, for Masters method is 

based on the traditional fixed rebalancing benchmark.  

 

Here we combine the idea of Masters’ method with our new adaptive portfolio 

rebalancing benchmark ratios, where we apply the Masters portfolio rebalancing 

method to the moving adaptive benchmark ratios as we define above.  

 

At the beginning, we let the market asset allocation ratios at time 0 be:  

 ,0 1 ,0 2 ,0 ,0, ,......,m m m nmX X X X  

 

And we define our benchmark portfolio asset allocation ratios at time 0 as:  

 ,0 1 ,0 2 ,0 ,0, ,......,f f f nfX X X X  

 

Also, our portfolio holding of asset 1, 2, ......, n at time 0 are:  
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 ,0 1 ,0 2 ,0 ,0, ,......,f f f nfY Y Y Y  

 

We also define the market sensitivity parameter for asset i as ki where 0 <= ki <= 1.  

 

When one period has passed at time t, we assume the market ratio for asset i changes 

from Xim,0 to Xim,t, for every 1<= i <= n, then from our benchmark changing method, 

the benchmark portfolio asset allocation ratios at time t becomes:  
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Since in Masters’ paper, it defines the trigger point as :  

 

 

Then we can set Uif,t and Lif,t, the upper band and lower band for triggering 

rebalancing for asset i, as:  

 
, , 2

2 i
if t if t

i

KC
U X

TrackingError
   

 
, , 2

2 i
if t if t

i

KC
L X

TrackingError
   

 

Since portfolio holding of asset i at time 0 is Yif,0, with the market changing at time t 

it becomes:  



 33 

,
, ,0

,0

im t
if t if

im

X
Y Y

X
 

  
 

 

 

Base on our portfolio rebalancing method:  

When , , ,if t if t if tU Y L  , it keeps unchanged:  

, ,if t if tY Y  

 

Otherwise, while 
, ,if t if tY U , we do the rebalancing and change Yif,t to:  

 
, , 2

i
if t if t

i

KC
Y X

TrackingError
   

 

While 
, ,if t if tY L , we do the rebalancing and change Yif,t to:  

 
, , 2

i
if t if t

i

KC
Y X

TrackingError
   

 

Specifically, we move the portfolio ratios to the midpoints of benchmark ratios and 

triggering bands.  

 

3.3 Back-Testing  

Here we did a back-testing for testing this new portfolio rebalancing method. For 

comparison purpose, we also calculate the results from Calendar Methods, Traditional 

Two Bands Methods, Asymmetrical Two Bands Methods, and Masters Method. The 

same as the reason in Ian Carmichael (2009)
[9]

, since the differential equations and 

Dynamic Programming Method are impractical to implement and very difficult to 
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calculate, they are excluded in the discussion in this paper. We calculate the fixed 

bands from 1% to 15% for rebalancing back to bands, back to benchmarks, and back 

to the midpoints of bands and benchmarks respectively so that it should include the 

bands calculated by Leland method.  

 

In order to more accurately mimic the financial market, here we define the fund’s 

structure, rebalancing criteria, starting situation, and market data all based on a 

hypothetical multi-clients institutional funds.  

 

We consider the institutional fund with 5 clients, each has assets in equity, fixed 

income, cash, private equity, and infrastructure respectively. Since the private equity 

and infrastructure are highly illiquid, we use a combination of equity and fixed 

income to approximate.  

Tables 3.3.1  

 

 Client A   

Asset Class Asset Benchmark Benchmark 

Equity 51% 55% MSCI World 

Fixed Income 29% 30% Barc Agg Bond Index 

Cash 2% 1% 91 Day T-Bill 

Illiquid - Private Equity 8% 6% 100% MSCI World 

Illiquid - Infrastructure 
10% 8% 

50% MSCI World 50% Barc Agg Bond 

Index 

Total 100% 100%  

    

Current Market Value $200,000,000    

 

 Client B   

Asset Class Asset Benchmark Benchmark 
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Equity 30% 25% MSCI World 

Fixed Income 40% 30% Barc Agg Bond Index 

Cash 2% 5% 91 Day T-Bill 

Illiquid - Private Equity 10% 16% 100% MSCI World 

Illiquid - Infrastructure 
18% 24% 

75% MSCI World 25% Barc Agg Bond 

Index 

Total 100% 100%  

    

Current Market Value $100,000,000    

 

 Client C   

Asset Class Asset Benchmark Benchmark 

Equity 62% 60% MSCI World 

Fixed Income 7% 10% Barc Agg Bond Index 

Cash 3% 5% 91 Day T-Bill 

Illiquid - Private Equity 13% 13% 100% MSCI World 

Illiquid - Infrastructure 
15% 13% 

75% MSCI World 25% Barc Agg Bond 

Index 

Total 100% 100%  

    

Current Market Value $10,000,000    

 

 Client D1   

Asset Class Asset Benchmark Benchmark 

Equity 53% 50% MSCI World 

Fixed Income 37% 40% Barc Agg Bond Index 

Cash 5% 5% 91 Day T-Bill 

Illiquid - Private Equity 2% 3% 100% MSCI World 

Illiquid - Infrastructure 
3% 2% 

50% MSCI World 50% Barc Agg Bond 

Index 

Total 100% 100%  

    

Current Market Value $10,000,000    

 

 Client D2   

Asset Class Asset Benchmark Benchmark 

Equity 51% 50% MSCI World 

Fixed Income 39% 40% Barc Agg Bond Index 

Cash 1% 5% 91 Day T-Bill 

Illiquid - Private Equity 6% 3% 100% MSCI World 

Illiquid - Infrastructure 3% 2% 50% MSCI World 50% Barc Agg Bond 
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Index 

Total 100% 100%  

    

Current Market Value $3,000,000    

 

Therefore when we need to rebalance the private equity or infrastructure, we 

rebalance the equivalent amount of equity and fixed income according to their public 

benchmark defined above (private investment benchmarking is not within the scope 

of this paper). What is more, when doing the rebalancing, we use the cash account 

first once it has enough money (greater than minimum requirement and the 

benchmark ratio for cash account). There is no transaction cost for cash. The 

transaction cost for equity is 10 bps and that for fixed income is 5 bps. Moreover, 

when doing the rebalancing, preference is given to internal cross trades (between 

clients) first before buying or selling in the market. The first 30 internal trades are free. 

After the first 30 trades, the transaction cost is 1 bps.  

 

Base on the portfolio rebalancing platform we developed in Matlab (sample codes are 

introduced in the end), for fixed band with fully rebalancing (rebalance to the 

benchmark exactly) from 1% to 15%, we can see the return of the fund and returns of 

each client is:   

Table 3.3.2  

Return Rate Total Client A Client B Client C Client D1 Client D2 

Fixed Band, Fully Rebalancing, 1% 0.6081  0.6068  0.6195  0.4135  0.6886  0.6886  

Fixed Band, Fully Rebalancing, 2% 0.6211  0.6241  0.6275  0.4166  0.6804  0.6938  

Fixed Band, Fully Rebalancing, 3% 0.6089  0.6083  0.6166  0.4360  0.6936  0.6840  

Fixed Band, Fully Rebalancing, 4% 0.6023  0.5958  0.6241  0.3914  0.6923  0.7116  
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Fixed Band, Fully Rebalancing, 5% 0.6284  0.6234  0.6516  0.4272  0.6762  0.6989  

Fixed Band, Fully Rebalancing, 6% 0.6161  0.6201  0.6167  0.3725  0.7456  0.7081  

Fixed Band, Fully Rebalancing, 7% 0.6325  0.6208  0.6719  0.3832  0.6954  0.7115  

Fixed Band, Fully Rebalancing, 8% 0.6127  0.6059  0.6361  0.3954  0.6978  0.7191  

Fixed Band, Fully Rebalancing, 9% 0.6951  0.7147  0.6804  0.4072  0.7223  0.7550  

Fixed Band, Fully Rebalancing, 10% 0.6520  0.6689  0.6343  0.4186  0.6960  0.7457  

Fixed Band, Fully Rebalancing, 11% 0.6873  0.7038  0.6766  0.4333  0.7143  0.7022  

Fixed Band, Fully Rebalancing, 12% 0.6237  0.6533  0.5773  0.3543  0.7369  0.7148  

Fixed Band, Fully Rebalancing, 13% 0.6417  0.6746  0.6011  0.3543  0.6463  0.7430  

Fixed Band, Fully Rebalancing, 14% 0.6748  0.7105  0.6370  0.3544  0.6718  0.6301  

Fixed Band, Fully Rebalancing, 15% 0.6124  0.5790  0.6971  0.3544  0.6818  0.6411  

 

For fixed band with half rebalancing (rebalance to the midpoint of benchmark and 

triggering band) from 1% to 15%, we can see the return of the fund and returns of 

each client is:  

Table 3.3.3  

Return Rate Total Client A Client B Client C Client D1 Client D2 

Fixed Band, Half Rebalancing, 1% 0.6135  0.6142  0.6214  0.4121  0.6954  0.6957  

Fixed Band, Half Rebalancing, 2% 0.6187  0.6158  0.6351  0.4132  0.6994  0.6851  

Fixed Band, Half Rebalancing, 3% 0.6178  0.6089  0.6448  0.4146  0.7066  0.6939  

Fixed Band, Half Rebalancing, 4% 0.6356  0.6372  0.6457  0.4059  0.7092  0.7077  

Fixed Band, Half Rebalancing, 5% 0.6416  0.6425  0.6543  0.4083  0.7073  0.7114  

Fixed Band, Half Rebalancing, 6% 0.6443  0.6444  0.6609  0.3790  0.7248  0.6997  

Fixed Band, Half Rebalancing, 7% 0.6526  0.6556  0.6623  0.4032  0.7218  0.7309  

Fixed Band, Half Rebalancing, 8% 0.6361  0.6478  0.6271  0.3810  0.7126  0.7567  

Fixed Band, Half Rebalancing, 9% 0.6290  0.6128  0.6715  0.3872  0.7394  0.7353  

Fixed Band, Half Rebalancing, 10% 0.6343  0.6301  0.6572  0.3925  0.6922  0.7671  

Fixed Band, Half Rebalancing, 11% 0.6322  0.6062  0.6977  0.4000  0.7068  0.7029  

Fixed Band, Half Rebalancing, 12% 0.6341  0.6294  0.6593  0.3554  0.7336  0.7085  

Fixed Band, Half Rebalancing, 13% 0.6627  0.6645  0.6859  0.3554  0.6790  0.7430  

Fixed Band, Half Rebalancing, 14% 0.6185  0.6089  0.6525  0.3554  0.7140  0.6796  

Fixed Band, Half Rebalancing, 15% 0.6419  0.6319  0.6796  0.3554  0.7282  0.7187  

 

Fox fixed band with marginal rebalancing (rebalance to the nearest triggering band) 



 38 

from 1% to 15%, we can see the return of the fund and returns of each client is:   

Table 3.3.4  

Return Rate Total Client A Client B Client C Client D1 Client D2 

Fixed Band, Marginal Rebalancing, 1% 0.6157  0.6146  0.6283  0.4086  0.6968  0.6922  

Fixed Band, Marginal Rebalancing, 2% 0.6165  0.6127  0.6337  0.4107  0.7031  0.6902  

Fixed Band, Marginal Rebalancing, 3% 0.6279  0.6249  0.6458  0.4021  0.7097  0.7054  

Fixed Band, Marginal Rebalancing, 4% 0.6403  0.6376  0.6597  0.3913  0.7247  0.7178  

Fixed Band, Marginal Rebalancing, 5% 0.6453  0.6453  0.6593  0.3903  0.7344  0.7317  

Fixed Band, Marginal Rebalancing, 6% 0.6451  0.6477  0.6528  0.3892  0.7417  0.7418  

Fixed Band, Marginal Rebalancing, 7% 0.6409  0.6412  0.6536  0.3862  0.7328  0.7405  

Fixed Band, Marginal Rebalancing, 8% 0.6371  0.6315  0.6636  0.3813  0.7145  0.7286  

Fixed Band, Marginal Rebalancing, 9% 0.6421  0.6363  0.6722  0.3752  0.7024  0.7167  

Fixed Band, Marginal Rebalancing, 10% 0.6476  0.6401  0.6828  0.3685  0.7022  0.7183  

Fixed Band, Marginal Rebalancing, 11% 0.6512  0.6429  0.6898  0.3596  0.7038  0.7190  

Fixed Band, Marginal Rebalancing, 12% 0.6545  0.6447  0.6971  0.3562  0.7038  0.7189  

Fixed Band, Marginal Rebalancing, 13% 0.6575  0.6457  0.7054  0.3562  0.6972  0.7180  

Fixed Band, Marginal Rebalancing, 14% 0.6590  0.6460  0.7103  0.3562  0.6920  0.7163  

Fixed Band, Marginal Rebalancing, 15% 0.6596  0.6448  0.7152  0.3562  0.6865  0.7138  

 

For asymmetrical band with fully rebalancing (rebalance to the benchmark exactly) 

from 1%, 2% to 6%, 7%, we can see the return of the fund and returns of each client 

is:  

Table 3.3.5  

Return Rate Total Client A Client B Client C Client D1 Client D2 

Asymmetrical,Fully Rebalancing, 1%, 2%  0.6110  0.6108  0.6199  0.4123  0.6971  0.6959  

Asymmetrical,Fully Rebalancing, 1%, 3%  0.6107  0.6081  0.6227  0.4196  0.7042  0.7044  

Asymmetrical,Fully Rebalancing, 1%, 4%  0.6088  0.6060  0.6213  0.4191  0.7013  0.7014  

Asymmetrical,Fully Rebalancing, 1%, 5%  0.6069  0.6039  0.6199  0.4185  0.6983  0.6985  

Asymmetrical,Fully Rebalancing, 1%, 6%  0.6051  0.6019  0.6185  0.4179  0.6954  0.6956  

Asymmetrical,Fully Rebalancing, 1%, 7%  0.6032  0.5998  0.6171  0.4174  0.6924  0.6926  

Asymmetrical,Fully Rebalancing, 2%, 3%  0.6105  0.6037  0.6349  0.4186  0.6755  0.6708  

Asymmetrical,Fully Rebalancing, 2%, 4%  0.6245  0.6179  0.6504  0.4283  0.6746  0.6846  

Asymmetrical,Fully Rebalancing, 2%, 5%  0.6157  0.6165  0.6246  0.4396  0.6694  0.6784  

Asymmetrical,Fully Rebalancing, 2%, 6%  0.6171  0.6151  0.6320  0.4391  0.6682  0.6771  



 39 

Asymmetrical,Fully Rebalancing, 2%, 7%  0.6172  0.6137  0.6353  0.4387  0.6669  0.6758  

Asymmetrical,Fully Rebalancing, 3%, 4%  0.6028  0.5964  0.6227  0.4238  0.6858  0.6851  

Asymmetrical,Fully Rebalancing, 3%, 5%  0.5994  0.5926  0.6206  0.4036  0.6950  0.6852  

Asymmetrical,Fully Rebalancing, 3%, 6%  0.6052  0.5917  0.6413  0.4231  0.6769  0.6740  

Asymmetrical,Fully Rebalancing, 3%, 7%  0.6052  0.5908  0.6440  0.4138  0.6785  0.6730  

Asymmetrical,Fully Rebalancing, 4%, 5%  0.5911  0.5866  0.6107  0.3738  0.6769  0.6781  

Asymmetrical,Fully Rebalancing, 4%, 6%  0.5889  0.5872  0.6014  0.3778  0.6728  0.7127  

Asymmetrical,Fully Rebalancing, 4%, 7%  0.5967  0.5865  0.6254  0.3777  0.7058  0.6860  

Asymmetrical,Fully Rebalancing, 5%, 6%  0.6051  0.6162  0.5966  0.3888  0.6677  0.6575  

Asymmetrical,Fully Rebalancing, 5%, 7%  0.6096  0.6237  0.5941  0.3963  0.6832  0.6607  

Asymmetrical,Fully Rebalancing, 6%, 7%  0.6135  0.6065  0.6401  0.3676  0.7078  0.7024  

 

For asymmetrical band with half rebalancing (rebalance to the midpoint of benchmark 

and triggering band) from 1%, 2% to 6%, 7%, we can see the return of the fund and 

returns of each client is:   

Table 3.3.6  

Return Rate Total Client A Client B Client C Client D1 Client D2 

Asymmetrical,Half Rebalancing, 1%, 2%  0.6173  0.6128  0.6363  0.4126  0.6973  0.6939  

Asymmetrical,Half Rebalancing, 1%, 3%  0.6164  0.6135  0.6322  0.4139  0.6950  0.6918  

Asymmetrical,Half Rebalancing, 1%, 4%  0.6158  0.6119  0.6338  0.4135  0.6929  0.6896  

Asymmetrical,Half Rebalancing, 1%, 5%  0.6144  0.6103  0.6329  0.4131  0.6908  0.6874  

Asymmetrical,Half Rebalancing, 1%, 6%  0.6129  0.6086  0.6317  0.4126  0.6888  0.6852  

Asymmetrical,Half Rebalancing, 1%, 7%  0.6114  0.6070  0.6306  0.4122  0.6867  0.6830  

Asymmetrical,Half Rebalancing, 2%, 3%  0.6149  0.6071  0.6397  0.4171  0.6974  0.6917  

Asymmetrical,Half Rebalancing, 2%, 4%  0.6238  0.6124  0.6588  0.4179  0.6920  0.6798  

Asymmetrical,Half Rebalancing, 2%, 5%  0.6217  0.6151  0.6461  0.4221  0.6915  0.6817  

Asymmetrical,Half Rebalancing, 2%, 6%  0.6220  0.6141  0.6493  0.4219  0.6904  0.6804  

Asymmetrical,Half Rebalancing, 2%, 7%  0.6226  0.6130  0.6534  0.4216  0.6894  0.6792  

Asymmetrical,Half Rebalancing, 3%, 4%  0.6099  0.6103  0.6181  0.4171  0.6907  0.6851  

Asymmetrical,Half Rebalancing, 3%, 5%  0.6165  0.6095  0.6417  0.4131  0.6885  0.6860  

Asymmetrical,Half Rebalancing, 3%, 6%  0.6162  0.6087  0.6412  0.4171  0.6951  0.6850  

Asymmetrical,Half Rebalancing, 3%, 7%  0.6155  0.6080  0.6404  0.4169  0.6943  0.6840  

Asymmetrical,Half Rebalancing, 4%, 5%  0.6219  0.6268  0.6265  0.3898  0.6888  0.6910  

Asymmetrical,Half Rebalancing, 4%, 6%  0.6264  0.6305  0.6315  0.3920  0.7070  0.6951  

Asymmetrical,Half Rebalancing, 4%, 7%  0.6265  0.6298  0.6336  0.3919  0.7031  0.6944  

Asymmetrical,Half Rebalancing, 5%, 6%  0.6292  0.6273  0.6481  0.3916  0.6999  0.6850  
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Asymmetrical,Half Rebalancing, 5%, 7%  0.6285  0.6266  0.6453  0.3916  0.7162  0.6867  

Asymmetrical,Half Rebalancing, 6%, 7%  0.6277  0.6298  0.6391  0.3752  0.6987  0.7123  

 

For asymmetrical band with marginal rebalancing (rebalance to the nearest triggering 

band) from 1%, 2% to 6%, 7%, we can see the return of the fund and returns of each 

client is:  

Table 3.3.7  

Return Rate Total Client A Client B Client C Client D1 Client D2 

Asymmetrical,Marginal Rebalancing, 1%, 2%  0.6175  0.6164  0.6294  0.4140  0.7034  0.6877  

Asymmetrical,Marginal Rebalancing, 1%, 3%  0.6175  0.6145  0.6328  0.4162  0.7012  0.6955  

Asymmetrical,Marginal Rebalancing, 1%, 4%  0.6205  0.6132  0.6454  0.4158  0.6995  0.6939  

Asymmetrical,Marginal Rebalancing, 1%, 5%  0.6195  0.6119  0.6451  0.4155  0.6978  0.6922  

Asymmetrical,Marginal Rebalancing, 1%, 6%  0.6183  0.6106  0.6442  0.4151  0.6961  0.6905  

Asymmetrical,Marginal Rebalancing, 1%, 7%  0.6172  0.6093  0.6432  0.4148  0.6944  0.6888  

Asymmetrical,Marginal Rebalancing, 2%, 3%  0.6129  0.6075  0.6338  0.4081  0.6939  0.6890  

Asymmetrical,Marginal Rebalancing, 2%, 4%  0.6173  0.6055  0.6508  0.4096  0.7018  0.6919  

Asymmetrical,Marginal Rebalancing, 2%, 5%  0.6177  0.6047  0.6536  0.4127  0.7047  0.6876  

Asymmetrical,Marginal Rebalancing, 2%, 6%  0.6143  0.6038  0.6442  0.4126  0.7052  0.6866  

Asymmetrical,Marginal Rebalancing, 2%, 7%  0.6205  0.6030  0.6660  0.4124  0.7043  0.6856  

Asymmetrical,Marginal Rebalancing, 3%, 4%  0.6206  0.6155  0.6424  0.3993  0.7047  0.6932  

Asymmetrical,Marginal Rebalancing, 3%, 5%  0.6205  0.6148  0.6426  0.3916  0.7162  0.7085  

Asymmetrical,Marginal Rebalancing, 3%, 6%  0.6219  0.6141  0.6488  0.3915  0.7128  0.7089  

Asymmetrical,Marginal Rebalancing, 3%, 7%  0.6247  0.6134  0.6590  0.3915  0.7166  0.7081  

Asymmetrical,Marginal Rebalancing, 4%, 5%  0.6306  0.6260  0.6534  0.3886  0.7162  0.7021  

Asymmetrical,Marginal Rebalancing, 4%, 6%  0.6323  0.6254  0.6592  0.3886  0.7182  0.7168  

Asymmetrical,Marginal Rebalancing, 4%, 7%  0.6250  0.6248  0.6366  0.3885  0.7216  0.7193  

Asymmetrical,Marginal Rebalancing, 5%, 6%  0.6343  0.6325  0.6515  0.3875  0.7199  0.7186  

Asymmetrical,Marginal Rebalancing, 5%, 7%  0.6336  0.6320  0.6494  0.3875  0.7297  0.7200  

Asymmetrical,Marginal Rebalancing, 6%, 7%  0.6298  0.6344  0.6330  0.3864  0.7200  0.7210  

 

For calendar method with monthly, quarterly, semi-annually, and annually rebalancing, 

we can see the return of the fund and returns of each client is:  
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Table 3.3.8  

Return Rate Total Client A Client B Client C Client D1 Client D2 

Calendar, Monthly Rebalancing 0.5949  0.5952  0.6036  0.4004  0.6726  0.6726  

Calendar, Quarterly Rebalancing 0.6281  0.6296  0.6351  0.4193  0.7134  0.7134  

Calendar, Semi-annually Rebalancing 0.5447  0.5426  0.5573  0.3741  0.6109  0.6109  

Calendar, Annually Rebalancing 0.5652  0.5648  0.5755  0.3793  0.6344  0.6344  

 

For Masters method, we can see the portfolio returns are:  

Table 3.3.9  

Return Rate Total Client A Client B Client C Client D1 Client D2 

Marsters' Method 0.7151  0.6310  0.9016  0.4271  0.7942  0.7998  

 

For our new portfolio rebalancing method, we can see the return of the fund and 

returns of each client is:   

Table 3.3.10  

Return Rate Total Client A Client B Client C Client D1 Client D2 

Our Method 0.7301  0.6631  0.9016  0.4271  0.6572  0.7365  

 

All in all, we can see that from the tables above our new portfolio rebalancing method 

performs the best among all the methods.  
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Part II 

Chapter 4 

 

Modeling with Fractional Brownian Motion  

 

Mathematical Finance was seriously developed with the help of the theory of 

self-similar (long-memory, long-range dependent, fractional) processes. On the one 

hand, according to A.N.Kolmogorov (1940)
[10]

, this theory was first initiated. On the 

other hand by H. Hurst (1951)
[11]

, it gave an experimental motivation/background for 

this theory. Hurst introduced a special parameter H which was interpreted later as a 

quantitative characteristics of long-range dependence of the the process. The Hurst 

experimental results were theoretically developed by B.B. Mandelbrott in many 

directions (including finance) and publications (see, for instance his book "The 

Fractional Geometry and Nature", San-Francisco, W.H.Freemann, 1982). He also 

proposed to call H as the Hurst parameter. By the way, the processes studied by 

A.N.Kolmogorov as the Wiener Spirals later became another name as Fractional 

Brownian Motions. A comprehensive theory as well as financial and statistical 

applications of these processes can be found in the book by Yu.Mishura "Stochastic 

calculus for fractional Brownian motion and related processes", Springer, Lecture 

Notes in Mathematics 1929 (2008).  

 

Here we give an introduction to fractional Brownian motion and Mixed Brownian and 
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Fractional Brownian Model.  

 

4.1 Tradition fractional Brownian motion  

A fractional Brownian motion is a generalization of Brownian motion without 

independent increments. It is a continuous-time Gaussian process , [0, ]H

tB t T , 

which:  

 

(i) It starts at 0:  

0 0HB   

(ii) It has expectation 0 for all t in [0, T]:  

[ ] 0,
t

HE B t    

(iii) It has the co-variance functions as:  

2 2 21[ ] ( )
2

H H HH H

t sE B B t s t s     

  

Here H is called Hurst parameter where:  

, (0,1)H H   

 

Value of H determines what kind of process the fractional Brownian motion is:  

If H = 1/2, the process is Brownian motion or Wiener process.  

If H > 1/2, the increments of the process are positively correlated.  

If H < 1/2, the increments of the process are negatively correlated.  
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The increment process is known as fractional Gaussian noise:  

1( ) H H

t tX t B B   

 

4.2 Mixed Brownian and Fractional Brownian Model  

In the financial market, we assume { , 0}tW t   is independent Brownian motion and 

{ , 0}H

tB t   is fractional Brownian motion with Hurst index H > 1/2.  

 

Then the financial market includes 2 assets:  

(1) non-risky asset:  

0 0 0

0 0, 0, 0rt

tS S e t S    

(2) risky asset governed by the linear combination of W and B
H
:  

1 2

0 0, 0, 0
H

t tt W B

tS S e t S
   

    

Here:  

0r   is the constant risk free rate.  

  is the drift coefficient.  

1 0   is the volatility for the standard Brownian motion W.  

2 0   is the volatility for the fractional Brownian motion B
H
.  

 

Then the discounted price process has the form:  

1( ) ( )

0

H
t tr t W Brt

t tX S e S e
       
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Chapter 5 

 

Why We Need H > 3/4?  

 

A long-range dependence phenomena is observed in many fields. From the point of 

view of the theory of stochastic processes, one of the most convenient stochastic 

models to describe the long-range dependence is the fractional Brownian motion with 

the Hurst parameter H > 1/2. However, the it has a disadvantage that it might admit 

arbitrage opportunity for a wide class of self-financing strategies.  

 

In Melnikov & Mishura (2011)
[12]

, it points out that mixed financial model that 

includes both Brownian and fractional Brownian components could avoid this 

problem. More importantly, it provides approaches that for H in (3/4, 1), the linear 

combination of a Wiener process and a fractional Brownian motion with H in (3/4, 1) 

is a semi-martingale with respect to the natural filtration. Therefore we could treat 

such market as a standard semi-martingale one.  

 

According to Melnikov & Mishura (2011)
[12]

, for fixed T > 0, we consider the market 

on the interval [0, T], we denote the mixed process 
, , [0, ]H H

t t tM W B t T     and 

filtration ,{ ,0 }M H

t uF M u t   .  

In Melnikov & Mishura (2011)
[12]

, it develops following 6 properties:  
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1. The mixed process 
,H H

t t tM W B   where t is in [0, T] is equivalent in measure 

to a Brownian motion if and only if H is in (3/4, 1).  

 

2. For H is in (3/4, 1), there exists a unique real-valued Volterra kernel 

2

2 ([0, ] )r L T   such that (t is in [0, T]):  

, ,

0 0

: ( , )

t s

H H

t t uB M r s u dM ds 

     

 

3. The representation below is unique:  

2 2 2

0

(2 1)( ) ( , ) ( , ) ( , ) ,0 .

s

HH H t s r t s r t x r s x dx s t T           

If B  is a Brownian motion on ( , , )F P  and 
2

2 ([0, ] )m L T  is a real-valued 

Volterra Kernel such that  

,

0 0

: ( , ) , [0, ],

t s

H

t t uM B m s u dB ds t T      

 

4. As a consequence of Property 3, the process 1 2

HW B   is a semi-martingale 

with respect to its natural filtration.  

 

5. Let Bt be a a Brownian motion on probability space ( , , )F P  and 

2

2 ([0, ] )k L T  be a real-valued Volterra Kernel, 2 ([0, ])a L T . Then:  



 47 

21
2

0 0 0 0

exp( ( , ) ( ( , ) ) ) 1.

t s t s

u s uE k s u dB dB k s u dB ds      

 

6. If we consider the following class of strategies  

(1) (2){ ( , )}:S       
(1) and 

(2)  are 
MF predictable ,  

2
(1) (2)

0 0

,

T T

u udu du     a.s.,  

Then the discounted capital 
(2)

0

0

, [0, ]

t

t u uV V dX t T    satisfies the condition 

[0, ]
inf 0t

t T
V


  a.s.  

 

Therefore we can see it is very important that H is > 3/4. When H is in (3/4, 1), the 

objective and the martingale measures coincide we obtain simple formulas to compute 

the solution of efficient hedging problem. Therefore, it is very important for us to find 

out H in (3/4, 1) in the real market.  
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Chapter 6 

 

Estimate H all over the World  

 

Since when the Hurst parameter > 3/4, we have such a lot interesting properties and 

beautiful results. Here we take a look at the estimated H values for equity, fixed 

income, and foreign exchange markets all over the world, respectively.  

 

6.1 Estimate Hurst Parameter H 

Since a fractional Brownian motion is a continuous-time Gaussian process depending 

on the Hurst parameter 0 < H < 1, the fractional Brownian motion is self-similar in 

distribution and the variance of the increments is given by:  

2
( ) *

HH H

t sVar B B v t s    

where here v is a positive constant.  

 

The special form of the variance of the increments suggests various ways to estimate 

the parameter H. In the Book <Theory and Applications of Long-Range 

Dependence>
[13]

, it explores many methods.   

 

There are 3 commonly used methods to estimate the Hurst parameter H. The first two 

methods are based on second order discrete derivative, where the second one is 
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wavelet-based
[14]

. The third estimate is based on the linear regression in log-log plot, 

of the variance of detail versus level
[15]

. Since first two methods give similar results 

with smaller dispersion than the third one, we focus on the estimated H from the first 

two methods.  

 

6.2 Empirical Results for World Equity Market  

We downloaded the stock index data for countries all over the world since January, 

2000 from Bloomberg. Then base on the estimation platform we developed in the 

Matlab (sample codes are provided in the end), we can see the estimated H of 

countries’ stock indexes which is > 0.75 are:  

Table 6.2.1  

Excellent: Method 1 Method 2 

Vietnam 0.8165  0.7919 

Slovenia 0.8529  0.8441 

Malta 0.7953  0.868 

Ukraine 0.8013  0.81 

Nigeria 0.8713  0.9143 

Kenya 0.8607  0.9194 

Morocco 0.7534  0.7569 

Qatar 0.7632  0.7765 

Palestine 0.8090  0.8839 

 

We find that Vietnam, Slovenia, Malta, Ukraine, Nigeria, Kenya, Morocco, Qatar, 

Palestine have estimated H > 0.75 in both methods.  

 

Table 6.2.2  

Good: Method 1 Method 2 
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Chile 0.7298  0.7587 

Laos 0.7026  0.7292 

Tunisia 0.7348  0.719 

Oman 0.7153  0.7335 

Lebanon 0.7379  0.717 

Jordan 0.7846  0.7351 

 

According to table 6.2.2 above, we also find that Chile, Jordan, Oman, Lebanon, Laos, 

Tunisia, Serbia have estimated H > 0.7 in both methods or > 0.75 in one method and 

close to 0.7 in another method.  

 

Therefore, above countries can be considered as having H > 0.75 or close to 0.75 in 

their stock indexes.  

 

Specifically, if we use the average of estimated H from both estimation methods as 

the our estimated H, the distribution of the estimated H of stock indexes for all the 

countries are:  

Table 6.2.3  

0.75<=H<1 

Vietnam 0.8042  

Slovenia 0.8485  

Serbia 0.9948  

Malta 0.8317  

Ukraine 0.8057  

Nigeria 0.8928  

Kenya 0.8900  

Morocco 0.7552  

Jordan 0.7598  

Qatar 0.7698  

Palestine 0.8465  
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0.7<=H<0.75 

Chile 0.7442  

Mongolia 0.7351  

Laos 0.7159  

Tunisia 0.7269  

Oman 0.7244  

Lebanon 0.7274  

0.65<=H<0.7 

Sri Lanka 0.6679  

Philippines 0.6749  

Egypt 0.6620  

Bahrain 0.6649  

0.6<=H<0.65 

Colombia 0.6105  

Venezuela 0.6290  

UK2 0.6027  

Iceland 0.6176  

Greece 0.6321  

Pakistan 0.6312  

Indonesia 0.6287  

India 0.6141  

Malaysia 0.6236  

Croatia 0.6015  

Lithuania 0.6186  

Bulgaria 0.6135  

Kuwait 0.6422  

0.55<=H<0.6 

Mexico 0.5930  

Peru 0.5977  

Portugal 0.5616  

Ireland 0.5639  

Belgium 0.5714  

Denmark 0.5666  

Austria 0.5542  

Poland 0.5698  

Czech Republic 0.5835  

China3 0.5572  

New Zealand 0.5863  

Japan1 0.5564  

Estonia 0.5877  
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Cyprus 0.5595  

Russia2 0.5595  

Hungary 0.5825  

Romania 0.5709  

Ghana 0.5924  

Namibia 0.5707  

Mauritius 0.5660  

Saudi Arabia 0.5998  

0.5<=H<0.55 

Canada 0.5025  

USA3 0.5104  

Brazil 0.5059  

Bloomberg Euro 0.5103  

EUROPE 600 0.5094  

Europe 350 0.5030  

UK3 0.5038  

Germany 0.5028  

France2 0.5064  

Spain 0.5259  

Switzerland 0.5496  

Luxembourg 0.5229  

Finland 0.5133  

Norway 0.5062  

Taiwan 0.5399  

South Korea 0.5361  

Thailand 0.5184  

Singapore 0.5170  

South Africa1 0.5369  

South Africa2 0.5451  

United Arab 0.5122  

Israel 0.5077  

0.45<=H<0.5 

Jamaica 0.4743  

Eurotop 100 0.4929  

UK1 0.4940  

France1 0.4908  

Italy 0.4594  

Netherland 0.4989  

Sweden 0.4838  

Australia 0.4603  
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Japan2 0.4729  

Hong Kong 0.4977  

China1 0.4979  

China2 0.4801  

Slovakia 0.4745  

Latvia 0.4921  

Turkey 0.4578  

Russia1 0.4964  

Botswana 0.4516  

0.4<=H<0.45 

USA1 0.4305  

USA2 0.4236  

USA4 0.4356  

USA5 0.4342  

Argentina 0.4489  

Bangladesh 0.4036  

0.35<=H<0.4 

Bermuda 0.3801  

0.3<=H<0.35 

Panama 0.3346  

0<=H<0.3 

Costa Rica 0.1584  

Kazakhstan 0.2963  

Tanzania 0.2843  

 

What is more, since when H = 0.5, it is the Wiener process. Therefore when the 

estimated H is closed to 0.5, it could be considered as Wiener process. By Matlab 

output, if we use the average of estimated H from both estimation methods as the our 

estimated H, the countries with estimated H closed to 0.5 are:  

Table 6.2.4  

H that closes to 0.5 

Canada 0.5025  

USA3 0.5104  

Brazil 0.5059  

Bloomberg Euro 0.5103  
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Eurotop 100 0.4929  

EUROPE 600 0.5094  

Europe 350 0.5030  

UK1 0.4940  

UK3 0.5038  

Germany 0.5028  

France1 0.4908  

France2 0.5064  

Netherland 0.4989  

Luxembourg 0.5229  

Finland 0.5133  

Norway 0.5062  

Sweden 0.4838  

Thailand 0.5184  

Singapore 0.5170  

Hong Kong 0.4977  

China1 0.4979  

China2 0.4801  

Latvia 0.4921  

Russia1 0.4964  

United Arab 0.5122  

Israel 0.5077  

 

Then we compare countries in different regions, if we use the average of estimated H 

from both estimation methods as the our estimated H, the estimated H of them are:  

Table 6.2.5  

Estimated H: Average Standard Deviation 

North America 0.4561  0.0393 

South America 0.4979  0.1638 

West Europe 0.5332  0.0441 

Asia 0.5782  0.1001 

East Europe 0.6881  0.247 

Africa 0.6280  0.183 

Middle East 0.6655  0.1109 

 

We can see that countries in East Europe has the highest Average Estimated H (which 
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is close to 0.7) but the variance is also big. The countries in Middle East also has the 

Average Estimated H close to 0.7 but the variance is modest. On the other hand, the 

countries in North America and West Europe both have Estimated H close to 0.5 and 

have very low variance. This means that stock indexes in those regions are close to 

Wiener processes.  

 

Moreover, we also compare the H values for stock indexes of countries for developed 

vs developing countries. if we use the average of estimated H from both estimation 

methods as the our estimated H, The estimated H of them are:  

Table 6.2.6  

Estimated H: Average Standard Deviation 

Developed Country 0.5411  0.0874 

Developing Country 0.6252  0.1942 

 

We can see that the developing countries have higher estimated H comparing to 

developed countries. On the other hand, they also have higher variance for estimated 

H comparing to developed countries.  

 

6.3 Empirical Results for World Foreign Exchange Market  

We downloaded the foreign exchange data for major countries all over the world since 

January, 2000 from Bloomberg. After running the Matlab programs, we find that in 

the foreign exchange market there are no currency with estimated Hurst parameter 

H > 0.75 or even close to 0.7 in both estimation methods. Therefore, no countries 

should be considered as having H > 0.75 or close to 0.75 in their foreign exchange 
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rates.  

 

Specifically, if we use the average of estimated H from both estimation methods as 

the our estimated H, the distribution of estimated H of foreign exchange for all the 

countries are:  

Table 6.3.1  

0.6<=H<0.65 

Argentina 0.6297  

0.55<=H<0.6 

South Korea 0.5553  

India 0.5824  

Hong Kong 0.5685  

Ukraine 0.5727  

Romania 0.5502  

Chile 0.5706  

Israel 0.5520  

0.5<=H<0.55 

Sweden 0.5059  

UK 0.5400  

Europe 0.5047  

Taiwan 0.5369  

Singapore 0.5001  

Turkey 0.5222  

Poland 0.5465  

Hungary 0.5341  

Venezuela 0.5355  

Colombia 0.5354  

Brazil 0.5453  

Saudi Arab 0.5182  

0.45<=H<0.5 

Norway 0.4876  

Japan 0.4591  

Denmark 0.4770  

Switzerland 0.4572  

New Zealand 0.4941  
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Australia 0.4545  

Japan 0.4591  

Thailand 0.4980  

Philippine 0.4819  

Malaysia 0.4962  

Indonesia 0.4685  

China 0.4717  

South Africa 0.4856  

Russia 0.4729  

Iceland 0.4748  

Czech Republic 0.5000  

Bulgaria 0.4888  

Peru 0.4761  

Morocco 0.4658  

Iran 0.4869  

0.4<=H<0.45 

Canada 0.4344  

Mexica 0.4367  

0.35<=H<0.4 

Syria 0.3844  

Egypt 0.3660  

0<=H<0.3 

Qatar 0.1252  

Oman 0.1995  

Lebanon 0.1603  

Kuwait 0.1993  

Jordan 0.1783  

Bahrain 0.0886  

United Arab 0.2173  

 

What is more, since when H = 0.5, it is the Wiener process. Therefore when the 

estimated H is closed to 0.5, it could be considered as Wiener process. Then if we use 

the average of estimated H from both estimation methods as the our estimated H, the 

countries with estimated H closed to 0.5 are:  

Table 6.3.2  
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H that closes to 0.5 

Sweden 0.5059  

Norway 0.4876  

Denmark 0.4770  

New Zealand 0.4941  

Europe 0.5047  

Thailand 0.4980  

Singapore 0.5001  

Philippine 0.4819  

Malaysia 0.4962  

South Africa 0.4856  

Turkey 0.5222  

Czech Republic 0.5000  

Bulgaria 0.4888  

Peru 0.4761  

Saudi Arab 0.5182  

Iran 0.4869  

 

Then we compare the countries in different regions, if we use the average of estimated 

H from both estimation methods as the our estimated H, the estimated H of them are:  

Table 6.3.3  

Estimated H: Average Standard Deviation 

G10 0.4814  0.0313  

Asia 0.5108  0.0429  

East Europe Africa 0.5148  0.0352  

Latin America 0.5328  0.0625  

Middle East 0.3032  0.1637  

 

We can see that the average estimated H for exchange rates for G10, Asian, East 

Europe, African, and Latin American countries are all close to 0.5, which means they 

close to Wiener process. For Middle East countries, they have an average estimated H 

which is closed to 0.3.  
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6.4 Empirical Results for World Fixed Income Market  

We downloaded the bond index data for the countries all over the world since January, 

2000 from Bloomberg. By running Matlab program, we have:  

Table 6.4.1  

Excellent: Method 1 Method 2 

Portugal 0.7593  0.8342  

Greece 0.7630  0.8180  

Colombia 0.8262  0.8171  

Mexico 0.7565  0.7633  

Indonesia 0.8925  0.9179  

Philippine 0.7724  0.8216  

 

We find out that Portugal, Greece, Colombia, Mexico, Indonesia, Philippine have 

estimated H > 0.75 in both methods.  

 

Table 6.4.2  

Good: Method 1 Method 2 

Italy 0.7065  0.7327  

Spain 0.7442  0.8025  

Ireland 0.7289  0.7351  

Belgium 0.7234  0.7612  

Norway 0.7169  0.7069  

Egypt 0.7161  0.7712  

Romania 0.8534  0.7471  

Peru 0.7643  0.7450  

Malaysia 0.7700  0.7393  

 

We also find Spain, Romania, Peru, Malaysia, Belgium, Egypt, Italy, Ireland have 

estimated H > 0.7 in both methods or > 0.75 in one method and > 0.7 in another 

method.  
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What is more, although we know that 3
rd

 method is not a very good method to 

estimate H, from the Matlab output we have:  

Table 6.4.3  

Wonderful: Method 1 Method 2 Method 3 

Indonesia 0.8925  0.9179  0.7812  

Philippine 0.7724  0.8216  0.8402  

 

For Indonesia and Philippine, all 3 methods indicate they have estimated Hurst 

parameter H > 0.75 by table 6.4.3.  

 

Therefore, above countries can be considered as having H > 0.75 or close to 0.75 in 

their bond indexes while Indonesia and Philippine should be considered with strong 

certainty.  

 

Specifically, if we use the average of estimated H from both estimation methods as 

the our estimated H, the distribution of estimated H of bond indexes for all the 

countries are:  

Table 6.4.4  

0.75<=H<1 

Spain 0.7734  

Portugal 0.7967  

Greece 0.7905  

Romania 0.8002  

Colombia 0.8216  

Mexico 0.7599  

Peru 0.7547  
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Indonesia 0.9052  

Malaysia 0.7546  

Philippine 0.7970  

0.7<=H<0.75 

Italy 0.7196  

Ireland 0.7320  

Belgium 0.7423  

Norway 0.7119  

Egypt 0.7437  

India 0.7094  

0.65<=H<0.7 

Croatia 0.6592  

Hungary 0.6556  

Nigeria 0.6734  

SEK Corp 0.6660  

0.6<=H<0.65 

Slovenia 0.6457  

Sweden 0.6262  

Singapore 0.6102  

Poland 0.6005  

Dominican 0.6215  

CHF Corp 0.6107  

NOK Corp 0.6100  

0.55<=H<0.6 

Eurozone 0.5808  

France 0.5544  

Austria 0.5863  

UK 0.5620  

Denmark 0.5881  

New Zealand 0.5518  

Loc EM 0.5732  

Russia 0.5800  

Turkey 0.5678  

LATAM 0.5941  

0.5<=H<0.55 

Canada 0.5135  

Germany 0.5101  

Netherland 0.5188  

Luxembourg 0.5071  

Finland 0.5072  
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Switzerland 0.5458  

Japan 0.5140  

EMEA Local 0.5085  

Czech Republic 0.5009  

Latvia 0.5228  

South Africa 0.5332  

Serbia 0.5224  

Brazil 0.5044  

South Korea 0.5207  

Thailand 0.5466  

CAD Corp 0.5042  

GBP Corp 0.5100  

0.45<=H<0.5 

US2 0.4697  

US3 0.4678  

US4 0.4773  

Pacific 0.4716  

Hong Kong 0.4743  

Israel 0.4552  

Kenya 0.4571  

Chile 0.4883  

Jamaica 0.4607  

Asia 0.4516  

USD Corp 0.4578  

EUR Corp 0.4786  

0.4<=H<0.45 

US1 0.4445  

Slovakia 0.4472  

Australia 0.4210  

Bulgaria 0.4010  

Lithuania 0.4232  

Taiwan 0.4271  

JPY Corp 0.4265  

AUD Corp 0.4106  

0<=H<0.3 

China 0.1522  

 

What is more, since when H = 0.5, it is the Wiener process. Therefore when the 
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estimated H is closed to 0.5, it could be considered as Wiener process. Then if we use 

the average of estimated H from both estimation methods as the our estimated H, the 

countries with estimated H closed to 0.5 are:  

Table 6.4.5  

H that closes to 0.5 

Canada 0.5135  

US4 0.4773  

Germany 0.5101  

Netherland 0.5188  

Luxembourg 0.5071  

Finland 0.5072  

Japan 0.5140  

EMEA Local 0.5085  

Czech Republic 0.5009  

Latvia 0.5228  

Serbia 0.5224  

Brazil 0.5044  

Chile 0.4883  

South Korea 0.5207  

CAD Corp 0.5042  

EUR Corp 0.4786  

GBP Corp 0.5100  

 

Then we examine the average bond indexes in different categories, if we use the 

average of estimated H from both estimation methods as the our estimated H, the 

estimated H of them are:  

Table 6.4.6  

Estimated H: Average Standard Deviation 

North American 0.4746  0.0250  

Eurozone 0.6275  0.1212  

Other European 0.6068  0.0661  

Asia Pacific 0.5071  0.0670  

Local Emerging 0.5842  0.1517  
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Corporate 0.5194  0.0896  

 

We can see that for Asia Pacific bonds (only include developed countries), the average 

estimated Hurst parameter H are very close to 0.5 and have very low standard 

deviation, which means they close to Wiener process. This is also true for and North 

American bonds and Corporate bonds. However, both Euro-zone bonds and emerging 

market bonds have higher average estimated H which are close to 0.6.  
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Part III 

Chapter 7 

 

Conclusion   

 

7.1 Conclusion of Part I  

Base on the result of the back-testing we did in Chapter 3, our portfolio rebalancing 

method was shown performed the best. Therefore, this method makes its contribution 

by responding the market changes and it should be considered as a new method in 

portfolio rebalancing.  

 

7.2 Conclusion of Part II  

Base on the empirical results we got in Chapter 6, in equity market, the stock indexes 

of Vietnam, Slovenia, Malta, Ukraine, Nigeria, Kenya, Morocco, Qatar, Palestine 

could be treated as a standard semi-martingale with mixed financial model that 

includes both Brownian and fractional Brownian components in Melnikov & Mishura 

(2011)
[1] 

while those of countries in North America and West Europe both could be 

considered as Wiener process. Stock indexes of developing countries have higher 

estimated H comparing to those of developed countries.  

 

In foreign exchange market, there is no country’s currency could be treated as a 

standard semi-martingale with mixed financial model that includes both Brownian 



 66 

and fractional Brownian components in Melnikov & Mishura (2011)
[1] 

but exchange 

rates for G10, Asian, East Europe, African, and Latin American countries all could be 

considered as Wiener process.  

 

In fixed income market, the bond indexes of Portugal, Greece, Colombia, Mexico, 

Indonesia, Philippine could be treated as a standard semi-martingale with mixed 

financial model that includes both Brownian and fractional Brownian components in 

Melnikov & Mishura (2011)
[1] 

while those of the developed countries in Asia Pacific 

region, the countries in North America and Corporate bond indexes could be 

considered as Wiener process.  
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Appendix 1. Sample Matlab Code and Output for Chapter 3  

(For full Matlab codes, please contact Jiayin Kang: jiayin2@ualberta.ca) 

  

%% (1) Traditional Rebalancing Method with Fixed Band 

%% Benchmark Weight Parameter  

% To store the benchmark weight for each client:  

% Column: 1 - Equity, 2 - Fixed Income, 3 - Cash, 4 - PE, 5 - Infrastructure:  

benchmark_A = [0.55 0.3 0.01 0.06 0.08]; 

  

benchmark_B = [0.25 0.3 0.05 0.16 0.24]; 

  

benchmark_C = [0.6 0.1 0.05 0.125 0.125]; 

  

benchmark_D1 = [0.5 0.4 0.05 0.03 0.02]; 

benchmark_D2 = [0.5 0.4 0.05 0.03 0.02]; 

  

  

%% Starting Weight & Market Value 

% To input the starting weight and starting market value for each client:  

% Column: 1 - Equity, 2 - Fixed Income, 3 - Cash, 4 - PE, 5 - Infrastructure:  

start_A = [0.51 0.29 0.02 0.08 0.1]; 

marketvalue_start_A = 200000000; 

  

start_B = [0.3 0.4 0.02 0.1 0.18]; 

marketvalue_start_B = 100000000; 

  

start_C = [0.62 0.07 0.03 0.13 0.15]; 

marketvalue_start_C = 10000000; 

  

start_D1 = [0.53 0.37 0.05 0.02 0.03]; 

marketvalue_start_D1 = 10000000; 

  

start_D2 = [0.51 0.39 0.01 0.06 0.03]; 

marketvalue_start_D2 = 3000000; 

  

  

%% Cost Parameter 

% To store the transaction cost parameters of each asset for both external 

% and internal:  

  

equity_transaction_percentage = 0.001; 

fixedincome_transaction_percentage = 0.0005; 

mailto:jiayin2@ualberta.ca
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cash_transaction_percentage = 0; 

  

PE_transaction_percentage = equity_transaction_percentage; 

infrastruture_transaction_percentage_A = 

0.5*equity_transaction_percentage + 

0.5*fixedincome_transaction_percentage; 

infrastruture_transaction_percentage_B = 

0.75*equity_transaction_percentage + 

0.25*fixedincome_transaction_percentage; 

infrastruture_transaction_percentage_C = 

0.75*equity_transaction_percentage + 

0.25*fixedincome_transaction_percentage; 

infrastruture_transaction_percentage_D1 = 

0.5*equity_transaction_percentage + 

0.5*fixedincome_transaction_percentage; 

infrastruture_transaction_percentage_D2 = 

0.5*equity_transaction_percentage + 

0.5*fixedincome_transaction_percentage; 

  

internal_transaction_percentage = 0.0001; 

  

internalcost_limitnumber = 30; 

  

  

%% Import Data 

% We first change the data into 'csv' form and put them in "Data" file.  

% Since the date data in the 1st column is not readable, we change them 

% into number form and store in the 3rd column.  

% To import the data from "Data" for future use:  

  

equity_data = importdata('C:\Users\Alan Kang\Desktop\Paper 

Writing\Rebalancing Codes\Data1\MSCI World.csv'); 

bond_data = importdata('C:\Users\Alan Kang\Desktop\Paper 

Writing\Rebalancing Codes\Data1\Barc Agg Bond Index.csv'); 

cash_data = importdata('C:\Users\Alan Kang\Desktop\Paper 

Writing\Rebalancing Codes\Data1\T-Bill.csv'); 

  

% Since we cannot change the date data (in 1st column) into proper form, 

we 

% change them into number in 3rd column and use them as proxy for date 

% here:  

equity_date = equity_data(:,3); 

equity_price = equity_data(:,2); 
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bond_date_old = bond_data(:, 3); 

bond_price_old = bond_data(:, 2); 

  

cash_date_old = cash_data(:, 3); 

cash_price_old = cash_data(:, 2); 

  

  

%% Get the number of days for data 

% To calculate the number of days in data file:  

d = length(equity_date);  

  

  

%% Sort Data 

% Since bond and cash data are missing for many days, we sort the data 

% according to equity data and fill missing parts with previous ones.  

  

[bond_date bond_price] = BA_sort_data(equity_date, equity_price, 

bond_date_old, bond_price_old); 

[cash_date cash_price] = BA_sort_data(equity_date, equity_price, 

cash_date_old, cash_price_old); 

  

  

%% Private Equity & Infrastructure 

% For illiquid assets, we use their banking system (base on eqiuty and 

bond 

% prices) to calculate their prices:  

  

PE_date = equity_date; 

PE_price = equity_price; 

  

infrastructure_date = equity_date; 

infrastructure_price_A = (equity_price + bond_price)/2; 

infrastructure_price_B = (3*equity_price + bond_price)/4; 

infrastructure_price_C = (3*equity_price + bond_price)/4; 

infrastructure_price_D1 = (equity_price + bond_price)/2; 

infrastructure_price_D2 = (equity_price + bond_price)/2; 

  

  

%% Rebalancing Record 

% To record the amounts of rebalancing of each asset in market value for 

% each client at each day:  

% 0: no trade, x: buy x market value, -x: sell x market value  

rebalancing_A = zeros(d, 5); 

rebalancing_B = zeros(d, 5); 
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rebalancing_C = zeros(d, 5); 

rebalancing_D1 = zeros(d, 5); 

rebalancing_D2 = zeros(d, 5); 

% To record the total amounts of rebalancing of each asset in market value 

% at each day:  

rebalancing_total = zeros(d, 5); 

  

  

%% Transaction Cost 

% To record the total transaction cost at each day:  

transaction_cost_total = zeros(d, 1); 

  

% To record the total amounts of transaction of each asset (in internal 

and 

% external) for each client at each day:  

% First 5 columns are internal transactions; Second 5 columns are external 

% transactions.  

transaction_A = zeros(d, 10); 

transaction_B = zeros(d, 10); 

transaction_C = zeros(d, 10); 

transaction_D1 = zeros(d, 10); 

transaction_D2 = zeros(d, 10); 

  

% To record the transaction cost of each asset for each client each day:  

transaction_cost_A = zeros(d, 5); 

transaction_cost_B = zeros(d, 5); 

transaction_cost_C = zeros(d, 5); 

transaction_cost_D1 = zeros(d, 5); 

transaction_cost_D2 = zeros(d, 5); 

  

% To record the current number of internal trades.  

internal_number = zeros(d, 1); 

  

% Since the first 30 internal transactions are free, we record them in 

% the credit account here. Then when calculating the total transaction 

% costs, we deduct them from total cost:  

trade_credit_A = zeros(d, 5); 

trade_credit_B = zeros(d, 5); 

trade_credit_C = zeros(d, 5); 

trade_credit_D1 = zeros(d, 5); 

trade_credit_D2 = zeros(d, 5); 

  

  

%% Traditinal Rebalancing Method with Fixed Band, Fully Rebalance  
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% Set the target rebalancing band width percentage:  

n1 = 15; 

MyRecord = zeros(n1, 6); 

x = 0; 

for a1 = 1:n1 

x = x + 1; 

rebalancing_benchmark = a1/100; 

% Set the level away from benchmark weight when we rebalance back to target 

% benchmark weight (this is a parameter for not fully rebalancing use):  

rebalancing_diff = 0; 

  

  

%% Cash Requirement 

% The index number for cash asset:  

cash_mark = 3; 

% To set the minimum percentage for cash value for each client:  

cash_min = 0; 

  

  

%% Rebalancing Test 

% To record the market values and percentage weights of each asset for 

each 

% client at each day:  

% First variable: market value  

% Second variable: percentage inside this client  

% Columns: 1 - Equity, 2 - Fixed Income, 3 - Cash, 4 - PE, 5 - Infrastructure  

marketvalue_A = zeros(d, 5); 

percentage_A = zeros(d, 5);  

  

marketvalue_B = zeros(d, 5); 

percentage_B = zeros(d, 5);  

  

marketvalue_C = zeros(d, 5); 

percentage_C = zeros(d, 5);  

  

marketvalue_D1 = zeros(d, 5); 

percentage_D1 = zeros(d, 5);  

  

marketvalue_D2 = zeros(d, 5); 

percentage_D2 = zeros(d, 5);  

  

% To input the 1st day's market values and percentage weights of each asset 

% for each client as our starting point:  

marketvalue_A(1, :) = start_A(1, :)*marketvalue_start_A; 
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marketvalue_B(1, :) = start_B(1, :)*marketvalue_start_B; 

marketvalue_C(1, :) = start_C(1, :)*marketvalue_start_C; 

marketvalue_D1(1, :) = start_D1(1, :)*marketvalue_start_D1; 

marketvalue_D2(1, :) = start_D2(1, :)*marketvalue_start_D2; 

  

percentage_A(1, :) = start_A; 

percentage_B(1, :) = start_B; 

percentage_C(1, :) = start_C; 

percentage_D1(1, :) = start_D1; 

percentage_D2(1, :) = start_D2; 

  

% Starting from the 2nd day, we do the rebalancing:  

% We do the rebalancing at the beginning of each day base on previous day's 

% close prices and information. Then we update at the end of that day base 

% on the market changes this day in order to get the information for the 

% rebalancing for the next day.  

for i = 2:d 

% To check whether this client's portfolio needs to be rebalanced:  

% 'y_': 1 - need to rebalance, 0 - not need to  

    y_A = BB2_check(percentage_A(i-1, :), benchmark_A, 

rebalancing_benchmark); 

    y_B = BB2_check(percentage_B(i-1, :), benchmark_B, 

rebalancing_benchmark); 

    y_C = BB2_check(percentage_C(i-1, :), benchmark_C, 

rebalancing_benchmark); 

    y_D1 = BB2_check(percentage_D1(i-1, :), benchmark_D1, 

rebalancing_benchmark); 

    y_D2 = BB2_check(percentage_D2(i-1, :), benchmark_D2, 

rebalancing_benchmark); 

  

% Rebalance until Satisfying Benchmark  

% 'percentage_' records the portfolio weights that they should be  

% 'rebalancing_' records the transaction that they should have  

  

% For "BB_rebalancing_weight" function, every time we rebalance the asset 

% with highest amount of weight difference away from benchmark. Then we 

% check whether it satisfies the requirement or not. If not, we rebalance 

% again base on this philosophy until it satisfies:  

% After everything is done, we also record the market values for each asset 

% after rebalancing.  

  

% At the beginning, it is yesterday's wieght.  

    percentage_A(i, :) = percentage_A(i-1, :); 

    while y_A == 1 
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% When it is not OK, we rebalance 1 unsatisfied asset each time.  

        [percentage_A(i, :), change] = 

BB_rebalancing_weight(percentage_A(i, :), benchmark_A, 

rebalancing_benchmark, rebalancing_diff, cash_mark, cash_min); 

        rebalancing_A(i, :) = rebalancing_A(i, :) + 

change.*sum(marketvalue_A(i-1, :)); 

        y_A = BB2_check(percentage_A(i, :), benchmark_A, 

rebalancing_benchmark); 

    end 

    marketvalue_A(i, :) = 

percentage_A(i, :).*sum(marketvalue_A(i-1, :)); 

  

% Similar logic is applied to client B, C, D1, D2:  

     

    percentage_B(i, :) = percentage_B(i-1, :); 

    while y_B == 1 

        [percentage_B(i, :), change] = 

BB_rebalancing_weight(percentage_B(i, :), benchmark_B, 

rebalancing_benchmark, rebalancing_diff, cash_mark, cash_min); 

        rebalancing_B(i, :) = rebalancing_B(i, :) + 

change.*sum(marketvalue_B(i-1, :)); 

        y_B = BB2_check(percentage_B(i, :), benchmark_B, 

rebalancing_benchmark); 

    end 

    marketvalue_B(i, :) = 

percentage_B(i, :).*sum(marketvalue_B(i-1, :)); 

  

    percentage_C(i, :) = percentage_C(i-1, :); 

    while y_C == 1 

        [percentage_C(i, :), change] = 

BB_rebalancing_weight(percentage_C(i, :), benchmark_C, 

rebalancing_benchmark, rebalancing_diff, cash_mark, cash_min); 

        rebalancing_C(i, :) = rebalancing_C(i, :) + 

change.*sum(marketvalue_C(i-1, :)); 

        y_C = BB2_check(percentage_C(i, :), benchmark_C, 

rebalancing_benchmark); 

    end 

    marketvalue_C(i, :) = 

percentage_C(i, :).*sum(marketvalue_C(i-1, :)); 

  

    percentage_D1(i, :) = percentage_D1(i-1, :); 

    while y_D1 == 1 

        [percentage_D1(i, :), change] = 

BB_rebalancing_weight(percentage_D1(i, :), benchmark_D1, 



 77 

rebalancing_benchmark, rebalancing_diff, cash_mark, cash_min); 

        rebalancing_D1(i, :) = rebalancing_D1(i, :) + 

change.*sum(marketvalue_D1(i-1, :)); 

        y_D1 = BB2_check(percentage_D1(i, :), benchmark_D1, 

rebalancing_benchmark); 

    end 

    marketvalue_D1(i, :) = 

percentage_D1(i, :).*sum(marketvalue_D1(i-1, :)); 

  

    percentage_D2(i, :) = percentage_D2(i-1, :); 

    while y_D2 == 1 

        [percentage_D2(i, :), change] = 

BB_rebalancing_weight(percentage_D2(i, :), benchmark_D2, 

rebalancing_benchmark, rebalancing_diff, cash_mark, cash_min); 

        rebalancing_D2(i, :) = rebalancing_D2(i, :) + 

change.*sum(marketvalue_D2(i-1, :)); 

        y_D2 = BB2_check(percentage_D2(i, :), benchmark_D2, 

rebalancing_benchmark); 

    end 

    marketvalue_D2(i, :) = 

percentage_D2(i, :).*sum(marketvalue_D2(i-1, :)); 

  

% Fullfill Cash Requirement (make sure it satisfies 1% cash requirement) 

% After rebalancing, we check whether the minimum cash requirement is 

% fulfilled or not. Since we calculate the updated portfolio weights they 

% should be, then calculate transaction costs to change from previous ones 

% to these ones. To calculate in this way is OK.  

    [percentage_A(i, :), marketvalue_A(i, :), rebalancing_A(i, :)] = 

BB3_check_cash(percentage_A(i, :), benchmark_A, marketvalue_A(i, :), 

rebalancing_A(i, :), cash_mark, cash_min); 

    [percentage_B(i, :), marketvalue_B(i, :), rebalancing_B(i, :)] = 

BB3_check_cash(percentage_B(i, :), benchmark_B, marketvalue_B(i, :), 

rebalancing_B(i, :), cash_mark, cash_min); 

    [percentage_C(i, :), marketvalue_C(i, :), rebalancing_C(i, :)] = 

BB3_check_cash(percentage_C(i, :), benchmark_C, marketvalue_C(i, :), 

rebalancing_C(i, :), cash_mark, cash_min); 

    [percentage_D1(i, :), marketvalue_D1(i, :), rebalancing_D1(i, :)] = 

BB3_check_cash(percentage_D1(i, :), benchmark_D1, marketvalue_D1(i, :), 

rebalancing_D1(i, :), cash_mark, cash_min); 

    [percentage_D2(i, :), marketvalue_D2(i, :), rebalancing_D2(i, :)] = 

BB3_check_cash(percentage_D2(i, :), benchmark_D2, marketvalue_D2(i, :), 

rebalancing_D2(i, :), cash_mark, cash_min); 

  

% Calculate Total Transaction for Each Product Everyday 
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% The reason to calculate this is because we need to determine the net 

% transaction for each asset. That is the amount which we have to buy 

% externally. After getting this, we can calculate the minimum transaction 

% cost from original portfolio weights to current ones, which should be 

the 

% transaction costs here.  

    rebalancing_total(i, :) = rebalancing_A(i, :) + rebalancing_B(i, :) 

+ rebalancing_C(i, :) + rebalancing_D1(i, :) + rebalancing_D2(i, :); 

  

% Divide Rebalancing into Internal and External 

% Here we extend the rebalancing data for each client into internal and 

% external trades and calculate the trades eligible for free internal 

% trades base on our 30 free internal trade condition and store them in 

% 'credit_temp'.  

    [transaction_A(i, :), transaction_B(i, :), transaction_C(i, :), 

transaction_D1(i, :), transaction_D2(i, :), internal_number(i), 

credit_temp] = BC_transaction_cost(rebalancing_total(i, :), 

rebalancing_A(i, :), rebalancing_B(i, :), rebalancing_C(i, :), 

rebalancing_D1(i, :), rebalancing_D2(i, :), internal_number(i-1), 

internalcost_limitnumber); 

    trade_credit_A(i, :) = credit_temp(1, :); 

    trade_credit_B(i, :) = credit_temp(2, :); 

    trade_credit_C(i, :) = credit_temp(3, :); 

    trade_credit_D1(i, :) = credit_temp(4, :); 

    trade_credit_D2(i, :) = credit_temp(5, :); 

  

% Calculate Transaction Cost 

% Base on internal trades, external trades, and free internal trades, we 

% calculate the optimal transaction cost that should be.  

    transaction_cost_A(i, :) = abs(transaction_A(i, 1:5) - 

trade_credit_A(i, :)).*[internal_transaction_percentage 

internal_transaction_percentage cash_transaction_percentage 

internal_transaction_percentage internal_transaction_percentage] + 

abs(transaction_A(i, 6:10)).*[equity_transaction_percentage 

fixedincome_transaction_percentage cash_transaction_percentage 

PE_transaction_percentage infrastruture_transaction_percentage_A]; 

    transaction_cost_B(i, :) = abs(transaction_B(i, 1:5) - 

trade_credit_B(i, :)).*[internal_transaction_percentage 

internal_transaction_percentage cash_transaction_percentage 

internal_transaction_percentage internal_transaction_percentage] + 

abs(transaction_B(i, 6:10)).*[equity_transaction_percentage 

fixedincome_transaction_percentage cash_transaction_percentage 

PE_transaction_percentage infrastruture_transaction_percentage_B]; 

    transaction_cost_C(i, :) = abs(transaction_C(i, 1:5) - 
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trade_credit_C(i, :)).*[internal_transaction_percentage 

internal_transaction_percentage cash_transaction_percentage 

internal_transaction_percentage internal_transaction_percentage] + 

abs(transaction_C(i, 6:10)).*[equity_transaction_percentage 

fixedincome_transaction_percentage cash_transaction_percentage 

PE_transaction_percentage infrastruture_transaction_percentage_C]; 

    transaction_cost_D1(i, :) = abs(transaction_D1(i, 1:5) - 

trade_credit_D1(i, :)).*[internal_transaction_percentage 

internal_transaction_percentage cash_transaction_percentage 

internal_transaction_percentage internal_transaction_percentage] + 

abs(transaction_D1(i, 6:10)).*[equity_transaction_percentage 

fixedincome_transaction_percentage cash_transaction_percentage 

PE_transaction_percentage infrastruture_transaction_percentage_D1]; 

    transaction_cost_D2(i, :) = abs(transaction_D2(i, 1:5) - 

trade_credit_D2(i, :)).*[internal_transaction_percentage 

internal_transaction_percentage cash_transaction_percentage 

internal_transaction_percentage internal_transaction_percentage] + 

abs(transaction_D2(i, 6:10)).*[equity_transaction_percentage 

fixedincome_transaction_percentage cash_transaction_percentage 

PE_transaction_percentage infrastruture_transaction_percentage_D2]; 

  

% Total Cost at Each Day 

% Sum of the transaction cost for each client is the total cost this day.  

    transaction_cost_total(i) = sum(transaction_cost_A(i, :)) + 

sum(transaction_cost_B(i, :)) + sum(transaction_cost_C(i, :)) + 

sum(transaction_cost_D1(i, :)) + sum(transaction_cost_D2(i, :)); 

  

% Update Market Value due to Market Changes  

% Since we do all the transaction at the beginning of each day base on 

% previous day's data, at the end of this day we need to update the new 

% market values and portfolio weights for each client base on the changes 

% in this day. Then the beginning of next day we can do next step base 

on 

% this information.  

    marketvalue_A(i, :) = 

marketvalue_A(i, :).*[equity_price(i)/equity_price(i-1) 

bond_price(i)/bond_price(i-1) cash_price(i)/cash_price(i-1) 

PE_price(i)/PE_price(i-1) 

infrastructure_price_A(i)/infrastructure_price_A(i-1)]; 

    marketvalue_B(i, :) = 

marketvalue_B(i, :).*[equity_price(i)/equity_price(i-1) 

bond_price(i)/bond_price(i-1) cash_price(i)/cash_price(i-1) 

PE_price(i)/PE_price(i-1) 

infrastructure_price_B(i)/infrastructure_price_B(i-1)]; 



 80 

    marketvalue_C(i, :) = 

marketvalue_C(i, :).*[equity_price(i)/equity_price(i-1) 

bond_price(i)/bond_price(i-1) cash_price(i)/cash_price(i-1) 

PE_price(i)/PE_price(i-1) 

infrastructure_price_C(i)/infrastructure_price_C(i-1)]; 

    marketvalue_D1(i, :) = 

marketvalue_D1(i, :).*[equity_price(i)/equity_price(i-1) 

bond_price(i)/bond_price(i-1) cash_price(i)/cash_price(i-1) 

PE_price(i)/PE_price(i-1) 

infrastructure_price_D1(i)/infrastructure_price_D1(i-1)]; 

    marketvalue_D2(i, :) = 

marketvalue_D2(i, :).*[equity_price(i)/equity_price(i-1) 

bond_price(i)/bond_price(i-1) cash_price(i)/cash_price(i-1) 

PE_price(i)/PE_price(i-1) 

infrastructure_price_D2(i)/infrastructure_price_D2(i-1)]; 

  

    percentage_A(i, :) = [marketvalue_A(i, 1) marketvalue_A(i, 2) 

marketvalue_A(i, 3) marketvalue_A(i, 4) marketvalue_A(i, 

5)]/sum(marketvalue_A(i, :)); 

    percentage_B(i, :) = [marketvalue_B(i, 1) marketvalue_B(i, 2) 

marketvalue_B(i, 3) marketvalue_B(i, 4) marketvalue_B(i, 

5)]/sum(marketvalue_B(i, :)); 

    percentage_C(i, :) = [marketvalue_C(i, 1) marketvalue_C(i, 2) 

marketvalue_C(i, 3) marketvalue_C(i, 4) marketvalue_C(i, 

5)]/sum(marketvalue_C(i, :)); 

    percentage_D1(i, :) = [marketvalue_D1(i, 1) marketvalue_D1(i, 2) 

marketvalue_D1(i, 3) marketvalue_D1(i, 4) marketvalue_D1(i, 

5)]/sum(marketvalue_D1(i, :)); 

    percentage_D2(i, :) = [marketvalue_D2(i, 1) marketvalue_D2(i, 2) 

marketvalue_D2(i, 3) marketvalue_D2(i, 4) marketvalue_D2(i, 

5)]/sum(marketvalue_D2(i, :)); 

  

end 

  

  

%% Transaction Costs 

TransactionCost_A = sum(transaction_cost_A(:, 1)) + 

sum(transaction_cost_A(:, 2)) + sum(transaction_cost_A(:, 3)) + 

sum(transaction_cost_A(:, 4)) + sum(transaction_cost_A(:, 5)); 

TransactionCost_B = sum(transaction_cost_B(:, 1)) + 

sum(transaction_cost_B(:, 2)) + sum(transaction_cost_B(:, 3)) + 

sum(transaction_cost_B(:, 4)) + sum(transaction_cost_B(:, 5)); 

TransactionCost_C = sum(transaction_cost_C(:, 1)) + 

sum(transaction_cost_C(:, 2)) + sum(transaction_cost_C(:, 3)) + 
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sum(transaction_cost_C(:, 4)) + sum(transaction_cost_C(:, 5)); 

TransactionCost_D1 = sum(transaction_cost_D1(:, 1)) + 

sum(transaction_cost_D1(:, 2)) + sum(transaction_cost_D1(:, 3)) + 

sum(transaction_cost_D1(:, 4)) + sum(transaction_cost_D1(:, 5)); 

TransactionCost_D2 = sum(transaction_cost_D2(:, 1)) + 

sum(transaction_cost_D2(:, 2)) + sum(transaction_cost_D2(:, 3)) + 

sum(transaction_cost_D2(:, 4)) + sum(transaction_cost_D2(:, 5)); 

  

TransactionCost_Total = TransactionCost_A + TransactionCost_B + 

TransactionCost_C + TransactionCost_D1 + TransactionCost_D2; 

  

  

%% Portfolio Final Returns 

Return_Value_A = sum(marketvalue_A(d, :)) - sum(marketvalue_A(1, :)) - 

TransactionCost_A;  

Return_Value_B = sum(marketvalue_B(d, :)) - sum(marketvalue_B(1, :)) - 

TransactionCost_B;  

Return_Value_C = sum(marketvalue_C(d, :)) - sum(marketvalue_C(1, :)) - 

TransactionCost_C;  

Return_Value_D1 = sum(marketvalue_D1(d, :)) - sum(marketvalue_D1(1, :)) 

- TransactionCost_D1;  

Return_Value_D2 = sum(marketvalue_D2(d, :)) - sum(marketvalue_D2(1, :)) 

- TransactionCost_D2;  

  

Return_Value_Total = Return_Value_A + Return_Value_B + Return_Value_C + 

Return_Value_D1 + Return_Value_D2;  

  

  

Return_Percentage_A = (sum(marketvalue_A(d, :)) - 

sum(marketvalue_A(1, :)) - TransactionCost_A)/sum(marketvalue_A(1, :)); 

Return_Percentage_B = (sum(marketvalue_B(d, :)) - 

sum(marketvalue_B(1, :)) - TransactionCost_B)/sum(marketvalue_B(1, :));  

Return_Percentage_C = (sum(marketvalue_C(d, :)) - 

sum(marketvalue_C(1, :)) - TransactionCost_C)/sum(marketvalue_C(1, :));  

Return_Percentage_D1 = (sum(marketvalue_D1(d, :)) - 

sum(marketvalue_D1(1, :)) - 

TransactionCost_D1)/sum(marketvalue_D1(1, :));  

Return_Percentage_D2 = (sum(marketvalue_D2(d, :)) - 

sum(marketvalue_D2(1, :)) - 

TransactionCost_D2)/sum(marketvalue_D2(1, :));  

  

Return_Percentage_Total = Return_Value_Total/(sum(marketvalue_A(1, :)) 

+ sum(marketvalue_B(1, :)) + sum(marketvalue_C(1, :)) + 

sum(marketvalue_D1(1, :)) + sum(marketvalue_D2(1, :))); 
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%% Output Section 

% Output the Transaction Cost  

fprintf('The transaction cost for Client A is: ') 

fprintf('\n') 

TransactionCost_A 

fprintf('\n') 

  

fprintf('The transaction cost for Client B is: ') 

fprintf('\n') 

TransactionCost_B 

fprintf('\n') 

  

fprintf('The transaction cost for Client C is: ') 

fprintf('\n') 

TransactionCost_C 

fprintf('\n') 

  

fprintf('The transaction cost for Client D1 is: ') 

fprintf('\n') 

TransactionCost_D1 

fprintf('\n') 

  

fprintf('The transaction cost for Client D2 is: ') 

fprintf('\n') 

TransactionCost_D2 

fprintf('\n') 

  

fprintf('The total transaction cost is: ') 

fprintf('\n') 

TransactionCost_Total 

fprintf('\n') 

  

fprintf('\n') 

fprintf('\n') 

  

  

% Output the Portfolio Return  

fprintf('The portfolio profit value for Client A is: ') 

fprintf('\n') 

Return_Value_A 

fprintf('\n') 
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fprintf('The portfolio profit value for Client B is: ') 

fprintf('\n') 

Return_Value_B 

fprintf('\n') 

  

fprintf('The portfolio profit value for Client C is: ') 

fprintf('\n') 

Return_Value_C 

fprintf('\n') 

  

fprintf('The portfolio profit value for Client D1 is: ') 

fprintf('\n') 

Return_Value_D1 

fprintf('\n') 

  

fprintf('The portfolio profit value for Client D2 is: ') 

fprintf('\n') 

Return_Value_D2 

fprintf('\n') 

  

fprintf('The total portfolio profit value is: ') 

fprintf('\n') 

Return_Value_Total 

fprintf('\n') 

  

fprintf('\n') 

fprintf('\n') 

  

  

fprintf('The portfolio return for Client A is: ') 

fprintf('\n') 

Return_Percentage_A 

fprintf('\n') 

  

fprintf('The portfolio return for Client B is: ') 

fprintf('\n') 

Return_Percentage_B 

fprintf('\n') 

  

fprintf('The portfolio return for Client C is: ') 

fprintf('\n') 

Return_Percentage_C 

fprintf('\n') 
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fprintf('The portfolio return for Client D1 is: ') 

fprintf('\n') 

Return_Percentage_D1 

fprintf('\n') 

  

fprintf('The portfolio return for Client D2 is: ') 

fprintf('\n') 

Return_Percentage_D2 

fprintf('\n') 

  

fprintf('The total portfolio return is: ') 

fprintf('\n') 

Return_Percentage_Total 

fprintf('\n') 

  

MyRecord(x, :) = [Return_Percentage_Total Return_Percentage_A 

Return_Percentage_B Return_Percentage_C Return_Percentage_D1 

Return_Percentage_D2]; 

end 
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Appendix 2. Sample Matlab Code and Output for Chapter 6  

(For full Matlab codes, please contact Jiayin Kang: jiayin2@ualberta.ca)  

  

%% Set number of indexes:  

N = 108;  

Data = cell(N, 3); 

  

%% Input data one by one:  

% North American Stock Index:  

Data{1, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Canada.csv'; 

Data{2, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\USA1.csv'; 

Data{3, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\USA2.csv'; 

Data{4, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\USA3.csv'; 

Data{5, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\USA4.csv'; 

Data{6, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\USA5.csv'; 

  

% South American Stock Index:  

Data{7, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV1\Costa 

Rica.csv'; 

Data{8, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Jamaica.csv'; 

Data{9, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Mexico.csv'; 

Data{10, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Panama.csv'; 

Data{11, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Peru.csv'; 

Data{12, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Argentina.csv'; 

Data{13, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Bermuda.csv'; 

Data{14, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Brazil.csv'; 

Data{15, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Chile.csv'; 

Data{16, 2} = 'C:\Users\Alan 

mailto:jiayin2@ualberta.ca
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Kang\Documents\MATLAB\fBm\Data\CSV1\Colombia.csv'; 

Data{17, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV1\Venezuela.csv'; 

  

% West European Stock Index:  

Data{18, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Bloomberg Euro.csv'; 

Data{19, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Eurotop 100.csv'; 

Data{20, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV2\EUROPE 

600.csv'; 

Data{21, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV2\Europe 

350.csv'; 

Data{22, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\UK1.csv'; 

Data{23, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\UK2.csv'; 

Data{24, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\UK3.csv'; 

Data{25, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Germany.csv'; 

Data{26, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\France1.csv'; 

Data{27, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\France2.csv'; 

Data{28, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Spain.csv'; 

Data{29, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Switzerland.csv'; 

Data{30, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Italy.csv'; 

Data{31, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Portugal.csv'; 

Data{32, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Ireland.csv'; 

Data{33, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Iceland.csv'; 

Data{34, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Netherland.csv'; 

Data{35, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Belgium.csv'; 

Data{36, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Luxembourg.csv'; 

Data{37, 2} = 'C:\Users\Alan 
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Kang\Documents\MATLAB\fBm\Data\CSV2\Denmark.csv'; 

Data{38, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Finland.csv'; 

Data{39, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Norway.csv'; 

Data{40, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Sweden.csv'; 

Data{41, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Austria.csv'; 

Data{42, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Greece.csv'; 

Data{43, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV2\Poland.csv'; 

Data{44, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV2\Czech 

Republic.csv'; 

  

% Asian Stock Index:  

Data{45, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\China3.csv'; 

Data{46, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Taiwan.csv'; 

Data{47, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV3\South 

Korea.csv'; 

Data{48, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Australia.csv'; 

Data{49, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV3\New 

Zealand.csv'; 

Data{50, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Pakistan.csv'; 

Data{51, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV3\Sri 

Lanka.csv'; 

Data{52, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Thailand.csv'; 

Data{53, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Indonesia.csv'; 

Data{54, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\India.csv'; 

Data{55, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Singapore.csv'; 

Data{56, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Malaysia.csv'; 

Data{57, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Philippines.csv'; 

Data{58, 2} = 'C:\Users\Alan 
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Kang\Documents\MATLAB\fBm\Data\CSV3\Vietnam.csv'; 

Data{59, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Bangladesh.csv'; 

Data{60, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Mongolia.csv'; 

Data{61, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Laos.csv'; 

Data{62, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Japan1.csv'; 

Data{63, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\Japan2.csv'; 

Data{64, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV3\Hong 

Kong.csv'; 

Data{65, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\China1.csv'; 

Data{66, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV3\China2.csv'; 

  

% East European Stock Index:  

Data{67, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Slovakia.csv'; 

Data{68, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Croatia.csv'; 

Data{69, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Slovenia.csv'; 

Data{70, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Bosnia.csv'; 

Data{71, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Serbia.csv'; 

Data{72, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Montenegro.csv'; 

Data{73, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Estonia.csv'; 

Data{74, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Macedonia.csv'; 

Data{75, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Latvia.csv'; 

Data{76, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Lithuania.csv'; 

Data{77, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Bulgaria.csv'; 

Data{78, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Turkey.csv'; 

Data{79, 2} = 'C:\Users\Alan 
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Kang\Documents\MATLAB\fBm\Data\CSV4\Cyprus.csv'; 

Data{80, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Malta.csv'; 

Data{81, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Russia1.csv'; 

Data{82, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Russia2.csv'; 

Data{83, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Hungary.csv'; 

Data{84, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Romania.csv'; 

Data{85, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Ukraine.csv'; 

Data{86, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV4\Kazakhstan.csv'; 

  

% African Stock Index:  

Data{87, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV5\Botswana.csv'; 

Data{88, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV5\Nigeria.csv'; 

Data{89, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV5\Tanzania.csv'; 

Data{90, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV5\Kenya.csv'; 

Data{91, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV5\Ghana.csv'; 

Data{92, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV5\South 

Africa1.csv'; 

Data{93, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV5\South 

Africa2.csv'; 

Data{94, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV5\Egypt.csv'; 

Data{95, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV5\Morocco.csv'; 

Data{96, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV5\Tunisia.csv'; 

Data{97, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV5\Namibia.csv'; 

  

% Middle East Stock Index:  

Data{98, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV6\Jordan.csv'; 

Data{99, 2} = 'C:\Users\Alan 
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Kang\Documents\MATLAB\fBm\Data\CSV6\Oman.csv'; 

Data{100, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV6\Qatar.csv'; 

Data{101, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV6\United Arab.csv'; 

Data{102, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV6\Mauritius.csv'; 

Data{103, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV6\Kuwait.csv'; 

Data{104, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV6\Israel.csv'; 

Data{105, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV6\Palestine.csv'; 

Data{106, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV6\Lebanon.csv'; 

Data{107, 2} = 'C:\Users\Alan 

Kang\Documents\MATLAB\fBm\Data\CSV6\Bahrain.csv'; 

Data{108, 2} = 'C:\Users\Alan Kang\Documents\MATLAB\fBm\Data\CSV6\Saudi 

Arabia.csv'; 

  

  

  

for i = 1:N 

    Data{i, 1} = uigetfile(Data{i, 2}); 

    Data{i, 3} = csvread(Data{i, 2}, 2, 1); 

end 

  

%% Estimate the H parameter:  

Hest = zeros(N ,3);  

for i = 1:N 

    Hest(i,:) = wfbmesti(Data{i, 3}); 

end 

  

  

%% Calculate our Chosen Estimated H:  

Hest_chosen =  (Hest(:, 1) + Hest(:, 2))/2; 

  

  

%% Pick up the indexes with H estimation in specific ranges:  

  

% Ranges:  

M = 12;  

  

M1 = 1; 
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M2 = 0.75; 

M3 = 0.7;  

M4 = 0.65; 

M5 = 0.6;  

M6 = 0.55; 

M7 = 0.5; 

M8 = 0.45; 

M9 = 0.4;  

M10 = 0.35; 

M11 = 0.3; 

M12 = 0; 

  

K1 = 0.475; 

K2 = 0.525; 

  

  

% Find out H that 0.75<=H<1:  

[index H_value] = AB_filter(Hest_chosen, M2, M1); 

if index(1) == 0 

    H_estimated1 = cell(1, 2); 

    H_estimated1{1, 1} = 'Null'; 

    H_estimated1{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated1 = cell(d, 2); 

    for i = 1:d 

        H_estimated1{i, 1} = Data{index(i), 1}; 

        H_estimated1{i, 2} = H_value(i); 

    end 

end 

  

% Find out H that 0.7<=H<0.75:  

[index H_value] = AB_filter(Hest_chosen, M3, M2); 

if index(1) == 0 

    H_estimated2 = cell(1, 2); 

    H_estimated2{1, 1} = 'Null'; 

    H_estimated2{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated2 = cell(d, 2); 

    for i = 1:d 

        H_estimated2{i, 1} = Data{index(i), 1}; 

        H_estimated2{i, 2} = H_value(i); 

    end 
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end 

  

% Find out H that 0.65<=H<0.7:  

[index H_value] = AB_filter(Hest_chosen, M4, M3); 

if index(1) == 0 

    H_estimated3 = cell(1, 2); 

    H_estimated3{1, 1} = 'Null'; 

    H_estimated3{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated3 = cell(d, 2); 

    for i = 1:d 

        H_estimated3{i, 1} = Data{index(i), 1}; 

        H_estimated3{i, 2} = H_value(i); 

    end 

end 

  

% Find out H that 0.6<=H<0.65:  

[index H_value] = AB_filter(Hest_chosen, M5, M4); 

if index(1) == 0 

    H_estimated4 = cell(1, 2); 

    H_estimated4{1, 1} = 'Null'; 

    H_estimated4{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated4 = cell(d, 2); 

    for i = 1:d 

        H_estimated4{i, 1} = Data{index(i), 1}; 

        H_estimated4{i, 2} = H_value(i); 

    end 

end 

  

% Find out H that 0.55<=H<0.6:  

[index H_value] = AB_filter(Hest_chosen, M6, M5); 

if index(1) == 0 

    H_estimated5 = cell(1, 2); 

    H_estimated5{1, 1} = 'Null'; 

    H_estimated5{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated5 = cell(d, 2); 

    for i = 1:d 

        H_estimated5{i, 1} = Data{index(i), 1}; 

        H_estimated5{i, 2} = H_value(i); 



 93 

    end 

end 

  

% Find out H that 0.5<=H<0.55:  

[index H_value] = AB_filter(Hest_chosen, M7, M6); 

if index(1) == 0 

    H_estimated6 = cell(1, 2); 

    H_estimated6{1, 1} = 'Null'; 

    H_estimated6{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated6 = cell(d, 2); 

    for i = 1:d 

        H_estimated6{i, 1} = Data{index(i), 1}; 

        H_estimated6{i, 2} = H_value(i); 

    end 

end 

  

% Find out H that 0.45<=H<0.5:  

[index H_value] = AB_filter(Hest_chosen, M8, M7); 

if index(1) == 0 

    H_estimated7 = cell(1, 2); 

    H_estimated7{1, 1} = 'Null'; 

    H_estimated7{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated7 = cell(d, 2); 

    for i = 1:d 

        H_estimated7{i, 1} = Data{index(i), 1}; 

        H_estimated7{i, 2} = H_value(i); 

    end 

end 

  

% Find out H that 0.4<=H<0.45:  

[index H_value] = AB_filter(Hest_chosen, M9, M8); 

if index(1) == 0 

    H_estimated8 = cell(1, 2); 

    H_estimated8{1, 1} = 'Null'; 

    H_estimated8{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated8 = cell(d, 2); 

    for i = 1:d 

        H_estimated8{i, 1} = Data{index(i), 1}; 
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        H_estimated8{i, 2} = H_value(i); 

    end 

end 

  

% Find out H that 0.35<=H<0.4:  

[index H_value] = AB_filter(Hest_chosen, M10, M9); 

if index(1) == 0 

    H_estimated9 = cell(1, 2); 

    H_estimated9{1, 1} = 'Null'; 

    H_estimated9{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated9 = cell(d, 2); 

    for i = 1:d 

        H_estimated9{i, 1} = Data{index(i), 1}; 

        H_estimated9{i, 2} = H_value(i); 

    end 

end 

  

% Find out H that 0.3<=H<0.35:  

[index H_value] = AB_filter(Hest_chosen, M11, M10); 

if index(1) == 0 

    H_estimated10 = cell(1, 2); 

    H_estimated10{1, 1} = 'Null'; 

    H_estimated10{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated10 = cell(d, 2); 

    for i = 1:d 

        H_estimated10{i, 1} = Data{index(i), 1}; 

        H_estimated10{i, 2} = H_value(i); 

    end 

end 

  

% Find out H that 0<=H<0.3:  

[index H_value] = AB_filter(Hest_chosen, M12, M11); 

if index(1) == 0 

    H_estimated11 = cell(1, 2); 

    H_estimated11{1, 1} = 'Null'; 

    H_estimated11{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated11 = cell(d, 2); 

    for i = 1:d 
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        H_estimated11{i, 1} = Data{index(i), 1}; 

        H_estimated11{i, 2} = H_value(i); 

    end 

end 

  

  

% Find out H that closes to 0.5:   

[index H_value] = AB_filter(Hest_chosen, K1, K2); 

if index(1) == 0 

    H_estimated_K = cell(1, 2); 

    H_estimated_K{1, 1} = 'Null'; 

    H_estimated_K{1, 2} = 0; 

else 

    d = length(index); 

    H_estimated_K = cell(d, 2); 

    for i = 1:d 

        H_estimated_K{i, 1} = Data{index(i), 1}; 

        H_estimated_K{i, 2} = H_value(i); 

    end 

end 

  

  

%% Divide Data by Region 

N1 = 6; 

N2 = 17; 

N3 = 44; 

N4 = 66; 

N5 = 86; 

N6 = 97; 

N7 = 108; 

  

  

%% Estimate Average H base on regions:  

  

first1 = mean(Hest_chosen(1:N1, 1)); 

first2 = mean(Hest_chosen((N1+1):N2, 1)); 

first3 = mean(Hest_chosen((N2+1):N3, 1)); 

first4 = mean(Hest_chosen((N3+1):N4, 1)); 

first5 = mean(Hest_chosen((N4+1):N5, 1)); 

first6 = mean(Hest_chosen((N5+1):N6, 1)); 

first7 = mean(Hest_chosen((N6+1):N7, 1)); 

  

first_sd1 = std(Hest_chosen(1:N1, 1)); 

first_sd2 = std(Hest_chosen((N1+1):N2, 1)); 
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first_sd3 = std(Hest_chosen((N2+1):N3, 1)); 

first_sd4 = std(Hest_chosen((N3+1):N4, 1)); 

first_sd5 = std(Hest_chosen((N4+1):N5, 1)); 

first_sd6 = std(Hest_chosen((N5+1):N6, 1)); 

first_sd7 = std(Hest_chosen((N6+1):N7, 1)); 

  

  

%% Output Section 

% Output estimators in specific ranges:  

if H_estimated1{1, 2} == 0 

    fprintf('There is no H that 0.75<=H<1.\n') 

else 

    fprintf('The estimated H that 0.75<=H<1 are: ') 

    H_estimated1 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

if H_estimated2{1, 2} == 0 

    fprintf('There is no H that 0.7<=H<0.75.\n') 

else 

    fprintf('The estimated H that 0.7<=H<0.75 are: ') 

    H_estimated2 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

if H_estimated3{1, 2} == 0 

    fprintf('There is no H that 0.65<=H<0.7.\n') 

else 

    fprintf('The estimated H that 0.65<=H<0.7 are: ') 

    H_estimated3 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

if H_estimated4{1, 2} == 0 

    fprintf('There is no H that 0.6<=H<0.65.\n') 

else 

    fprintf('The estimated H that 0.6<=H<0.65 are: ') 

    H_estimated4 
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    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

if H_estimated5{1, 2} == 0 

    fprintf('There is no H that 0.55<=H<0.6.\n') 

else 

    fprintf('The estimated H that 0.55<=H<0.6 are: ') 

    H_estimated5 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

if H_estimated6{1, 2} == 0 

    fprintf('There is no H that 0.5<=H<0.55.\n') 

else 

    fprintf('The estimated H that 0.5<=H<0.55 are: ') 

    H_estimated6 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

if H_estimated7{1, 2} == 0 

    fprintf('There is no H that 0.45<=H<0.5.\n') 

else 

    fprintf('The estimated H that 0.45<=H<0.5 are: ') 

    H_estimated7 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

if H_estimated8{1, 2} == 0 

    fprintf('There is no H that 0.4<=H<0.45.\n') 

else 

    fprintf('The estimated H that 0.4<=H<0.45 are: ') 

    H_estimated8 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 
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if H_estimated9{1, 2} == 0 

    fprintf('There is no H that 0.35<=H<0.4.\n') 

else 

    fprintf('The estimated H that 0.35<=H<0.4 are: ') 

    H_estimated9 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

if H_estimated10{1, 2} == 0 

    fprintf('There is no H that 0.3<=H<0.35.\n') 

else 

    fprintf('The estimated H that 0.3<=H<0.35 are: ') 

    H_estimated10 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

if H_estimated11{1, 2} == 0 

    fprintf('There is no H that 0<=H<0.3.\n') 

else 

    fprintf('The estimated H that 0<=H<0.3 are: ') 

    H_estimated11 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 

  

  

% Output H that closes to 0.5:  

if H_estimated_K{1, 2} == 0 

    fprintf('There is no H that closes to 0.5.\n') 

else 

    fprintf('The H that closes to 0.5 are: ') 

    H_estimated_K 

    fprintf('\n') 

end 

fprintf('\n') 

fprintf('\n') 
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% Output North American Estimated H:  

fprintf('The Average Estimated H in North America are: ') 

fprintf('\n') 

first1 

first_sd1 

fprintf('\n') 

fprintf('\n') 

  

% Output South American Estimated H:  

fprintf('The Average Estimated H in South America are: ') 

fprintf('\n') 

first2 

first_sd2 

fprintf('\n') 

fprintf('\n') 

  

% Output West European Estimated H:  

fprintf('The Average Estimated H in West Europe are: ') 

fprintf('\n') 

first3 

first_sd3 

fprintf('\n') 

fprintf('\n') 

  

% Output Asian Estimated H:  

fprintf('The Average Estimated H in Asia are: ') 

fprintf('\n') 

first4 

first_sd4 

fprintf('\n') 

fprintf('\n') 

  

% Output East European Estimated H:  

fprintf('The Average Estimated H in East Europe are: ') 

fprintf('\n') 

first5 

first_sd5 

fprintf('\n') 

fprintf('\n') 

  

% Output African Estimated H:  

fprintf('The Average Estimated H in Africa are: ') 

fprintf('\n') 

first6 
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first_sd6 

fprintf('\n') 

fprintf('\n') 

  

% Output Middle East Estimated H:  

fprintf('The Average Estimated H in Middle East are: ') 

fprintf('\n') 

first7 

first_sd7 

fprintf('\n') 

fprintf('\n') 

  

 

 


