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This result is too beautiful to be false;
it is more important to have beauty in one’s equations

than to have them fit experiment.

Paul Dirac, Nobel prize laureate in Physics, 1933

Theories have four stages of acceptance:

1. This is worthless nonsense;
2. This is interesting, but perverse;
3. This is true, but quite unimportant;
4. I always said so.

J. B. S. HALDANE, 1963



University of Alberta

A Particle Engineering Approach for the Design of Structured
Microparticles

by

Mohammed Abd El-Hameed Ahmed Boraey

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of

Doctor of Philosophy
.

Department of Mechanical Engineering

c© Mohammed Abd El-Hameed Ahmed Boraey
Spring 2014

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the
copyright in the thesis and, except as herein before provided, neither the thesis nor

any substantial portion thereof may be printed or otherwise reproduced in any
material form whatsoever without the author’s prior written permission.



Dedicated to prophet Muhammad
(peace and blessings be upon him)

The greatest man who ever walked on the face of the earth.

At the feet of my revered parents
Abd El-Hameed & Aisha

To my most beloved
Amira, Asmaa, Hend & Yousuf



Abstract

The process of microparticle formation from evaporating microdroplets is the main

production method for many products. For most of these applications (especially

pharmaceutical ones) the properties and morphology of the final dry particle have

to be precisely tailored to ensure the proper functionality of the final product.

Particle engineering focuses on improving particle production processes by de-

veloping physical understanding and applying models to deliberately alter the prop-

erties of the particles.

The present work discusses two aspects of the microparticle formation process,

the evaporation rate and the transient concentration profiles. Although many other

aspects are involved, it is thought that these two are the most influential ones.

Chapter one gives a brief introduction to the process of structured microparticle

formation along with the important particle physical properties and the associated

challenges. Chapter two and three introduce a new particle formation theory for

the formation of microparticles when diffusion is the main mechanism of mass trans-

port. They also introduce a simplification of the theory results through a hybrid

analytical/numerical model to ease the use of the results.

Chapter four introduces a novel hybrid technique for calculation of the variable



evaporation rate of microdroplets given knowledge of the droplet trajectory and the

solvent material properties. A simplification of this approach is also proposed in the

case when the trajectory data has a wide margin of uncertainty.

In chapter five, the asymptotic state solution and the transient solution of the

concentration profiles of an evaporating cylindrical cylinder were derived. These

results are used to verify the new model proposed in chapters six and seven.

Chapter six and seven propose a new numerical model (The Adaptive Interface

Sweeping Method) for the calculation of the transient concentration profiles of an

evaporating solution droplet. This model is capable of modeling many physical

mechanisms involved in the particle formation process. It also offers a viable tech-

nique in dealing with variable material properties and evaporation rates.

Chapter eight gives a brief discussion of the results introduced through the thesis

and recommendations for future work.
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Nomenclature

Symbols

Apro Droplet projected area
[
m2
]

C Solute concentration
[
kg/m3

]
CD Drag coefficient [−]

Ccs Slip correction factor [−]

Cc Solute center concentration
[
kg/m3

]
Cf Feed concentration

[
kg/m3

]
Cm Solute mean concentration

[
kg/m3

]
Co Solute initial concentration

[
kg/m3

]
Csol Solute solubility

[
kg/m3

]
Cs Solute surface concentration

[
kg/m3

]
Do Initial solute diffusion coefficient

[
m2/s

]
Ds Solvent vapor diffusion coefficient

[
m2/s

]
Di Solute diffusion coefficient of component i

[
m2/s

]
Ess Steady state surface enrichment [−]

Ei Surface enrichment of component i [−]

E75 Surface enrichment at 75 % of the droplet lifetime, τD [−]

J Solute mass flux
[
kg/s.m2

]
L Solvent latent heat of vaporization [J/kg]

Ms Solvent molecular weight [kg/mol]

N Number of grid points [−]

Nτ Number of normalized time steps [−]
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P Packing factor [−]

Ps Solvent surface vapor pressure [Pa]

Ptotal Total pressure [Pa]

Pei Péclet number of component i [−]

R Normalized radial coordinate [−]

Re Droplet Reynolds number [−]

T∞ Drying gas temperature [K]

Td Droplet temperature [K]

Yi Mass fraction of component i [−]

FD Drag force [N]

FG Gravitational force [N]

a Droplet acceleration
[
m/s2

]
g Gravitational acceleration

[
m/s2

]
v Droplet velocity [m/s]

vav Drying gas average velocity [m/s]

vconv Velocity of the convective term [−]

vdg Drying gas velocity [m/s]

vfx Final droplet X velocity [m/s]

vfy Final droplet Y velocity [m/s]

vix Initial droplet X velocity [m/s]

viy Initial droplet Y velocity [m/s]

vr Relative velocity between the droplet and the gas phase [m/s]

vts Droplet terminal settling velocity [m/s]

c̃∞ Solvent vapor concentration far from the droplet
[
kg/m3

]
c̃s Solvent vapor concentration at the droplet surface

[
kg/m3

]
t̃ Dummy variable for time [s]

cp Solvent specific heat [J/kg.K]

css Lattice speed of sound [−]

d Droplet diameter [m]
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da Aerodynamic diameter [m]

do Initial droplet diameter [m]

dsh Internal void diameter [m]

dt Tube internal diameter [m]

dv Volume equivalent diameter [m]

e Concentration enrichment [−]

eκ The error in the evaporation rate [−]

em The error in the solute mass [−]

f Droplet generation frequency [Hz]

gα Solute particle distribution function [−]

geqα Solute equilibrium particle distribution function [−]

k Drying gas thermal conductivity [W/m.K]

m Mass [kg]

mo Initial solute mass [kg]

nint Number of time steps between interface updates [−]

r Radial coordinate [m]

ro Initial droplet radius [m]

rs Droplet radius at time t [m]

s Saturation ratio [−]

so Initial saturation ratio [−]

t time [s]

tp Precipitation time [s]

tsat Time to reach saturation [s]

tt Time to reach true density [s]

v Volume
[
m3
]

Greek Letters

∆τ Normalized Time step [−]

∆τmax Maximum stable normalized time step [−]

∆r Change in the droplet radius [m]
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∆t Time step [s]

∆Ω The area between two interfaces
[
m2
]

ε Tolerance [−]

κ Evaporation rate
[
m2/s

]
κo Initial evaporation rate

[
m2/s

]
κrel Real evaporation rate

[
m2/s

]
κsim Simulated evaporation rate

[
m2/s

]
λ Mean free path of the drying gas [m]

λκ Evaporation rate decay rate [−]

λs Dynamic shape factor [−]

λD Diffusion coefficient decay rate [−]

µ Drying gas dynamic viscosity [Pa.s]

Ω The collision operator [−]

∂Ω The droplet interface [−]

ρ∗ Reference unit density
[
kg/m3

]
ρdg Drying gas density

[
kg/m3

]
ρd Droplet density

[
kg/m3

]
ρl Solvent density

[
kg/m3

]
ρp Particle density

[
kg/m3

]
ρsh Shell density

[
kg/m3

]
ρt Solute true density

[
kg/m3

]
ρi True density of component i

[
kg/m3

]
τ Normalized time [−]

τD Droplet lifetime [s]

τfinal Normalized final evaporation time [−]

τg Lattice relaxation time [−]

τp Normalized precipitation time [−]

τro Initial droplet relaxation time [s]

NOMENCLATURE - - Mohammed A. Boraey



A Particle Engineering Approach for the Design of Structured Microparticles

τr Droplet/particle relaxation time [s]

τsat Normalized time to reach saturation [−]

τsh Normalized shell formation time [−]

τt Normalized time to reach true density [−]

Abbreviations

AISM The Adaptive Interface Sweeping Method

BGK Bhatnagar-Gross-Krook

C-D Coupled-derivative

CFL Courant-Friedrichs-Lewy

CSS Critical supersaturation

ES Equilibrium saturation

LBM The Lattice Boltzmann Method

PDF Particle Velocity Distribution Function

pMDIs Pressurized Metered Dose inhalers

SEM Scanning Electron Microscope
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Chapter 1

Introduction

Evaporation of solution droplets is a topic of major importance to a wide spectrum
of applications, ranging from industrial and medical ones to pure theoretical inves-
tigations. Many industrial products depend in one way or another on evaporating
solution droplets to obtain the final product. Examples include the manufactur-
ing of dairy products, powders for inhalation and many other pharmaceutical and
industrial products [Vehring, 2008; Vehring et al., 2007; Boraey and Vehring, 2014].

1.1 Structured microparticles

A structured microparticle is a microparticle with a specific internal structure and
properties.

The successful design of structured microparticles is a key factor in their success
for their intended use. The properties and functionality of the final dry powder
depend on its composition, which in turn depends on the history of solutes con-
centration profiles of the formed particle. It also depends on the composition and
morphology of the particle shell, which is determined by the shell formation pro-
cess at the later stages of the evaporation [Vehring, 2008; Boraey and Vehring, 2014].

During the preliminary design of products that rely on microparticles, such as
dairy products or pharmaceutical powders, the ability to estimate the final dried
particle properties based on formulation and process parameters can ease process
development. The properties and functionality of the final dried product depend on
the particle morphology, which varies given changes in drying process parameters
or the physiochemical properties of the formulation.

In the case of a multi-component formulation, the spatial distribution of the
different components is a key factor in the design of layered particles for microen-
capsulation [Schwendeman, 2002; Wischke and Schwendeman, 2008; Vehring, 2008],
stabilization of biotherapeutics [Matinkhoo et al., 2011] and vaccines [Ingvarsson
et al., 2013], and controlled release applications [Arifin et al., 2006]. Shell thickness
and composition are responsible for controlling the drug release profiles and rates

Parts of this chapter has been published in the following publications.

1. M.A. Boraey and R. Vehring. Diffusion controlled formation of microparticles. Journal of
Aerosol Science, 67:131–143, 2014
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[Nie et al., 2010; Tan et al., 2005; Xu et al., 2013]. Particle size and surface chemistry
also play a vital role in targeted delivery applications [Champion et al., 2008].

1.2 Spray drying as a microparticles manufacturing tech-
nique

The evaporation process is a challenging problem to deal with due to the many in-
teracting physical mechanisms involved. However, many industrial applications rely
on droplet evaporation using one of the various drying techniques [Nandiyanto and
Okuyama, 2011]. Spray drying is a well established, scalable, and relatively simple
one step process for drying solution droplets in a wide spectrum of applications.

There is a growing trend to use spray drying in the development of new phar-
maceutical formulations, especially respirable dosage forms that contain proteins
[Park et al., 2011; Schwendeman, 2002] , vaccines [Corbanie et al., 2007, 2008; Lee
et al., 1997], biomolecules [Maltesen et al., 2008; Hoe et al., 2013d; Matinkhoo et al.,
2012], lipids [Vehring et al., 2012], multi-component formulations [Hoe et al., 2013c],
poorly soluble actives [Boraey et al., 2013b; Lu and Park, 2013; Hoe et al., 2013b],
or nanoparticles [Nandiyanto and Okuyama, 2011; Okuyama et al., 2006a], fueled
by the ability of the process to produce dry particles with a wide range of desired
properties in one simple manufacturing step [Nandiyanto and Okuyama, 2011].

1.3 Design targets of structured microparticles

During the design stage for structured microparticles, several dry particle properties
are required to ensure a successful functionality of the produced powder.

The purpose of the design stage is to decide the different production process
parameters to ensure that the resulting powder possesses the required properties.

These properties can be split into four categories as following.

• Properties related to the internal structure: i.e., solid, hollow, layered ... etc.

• Properties related to the composition: Like spatial distribution of different
components in the final dry particle and shell composition.

• Properties related to the physical behavior of the final dry particle: Like dry
particle diameter, aerodynamic diameter , particle density and shell thickness
for hollow particles.

• Properties related to the solid state: Like a preferred solid state (amorphous
or crystalline) for different components in the final dry particle.

1.4 Particle engineering as a design approach

The process of particle formation due to the evaporation of solution droplets has
been extensively studied and reviewed [Vehring, 2008]. Nandiyanto and Okuyama
reviewed different dry particle morphologies and the corresponding manufacturing
techniques [Nandiyanto and Okuyama, 2011]. Generally, the theoretical description
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of evaporation processes is a challenging problem due to the many interacting phys-
ical mechanisms involved.

Particle engineering [Vehring, 2008; Vehring et al., 2007] provides an efficient
way of developing new formulations in a time and cost effective manner. It explores
the mechanisms governing the particle formation process and provides an easy-to-
use approach for systematic design of engineered microparticles for a wide range of
applications [Chen et al., 2011; Feng et al., 2011].

1.5 Challenges of the particle engineering approach

In order to make accurate predictions about the particle formation process, some
process parameters need to be determined.

The first parameter is the determination of the evaporation rate, κ. As will be
shown later this is the main factor that controls the particle formation process. Nor-
mally the assumption of a constant evaporation rate is used. This assumption may
be valid for pure single component droplets. But in general, systems of practical
importance are multi-component mixtures of different solvents and solutes. In this
case a constant evaporation rate is not a good approximation. In the present work,
a simple and fast approach for the determination of the variable evaporation rate is
proposed.

The second parameter is the determination of the material properties. Material
properties are generally specific to each formulation and have to be known a priori.
Although the present work does not provide a means for the estimation of the mate-
rial properties, it proposes a numerical framework which makes it easy to deal with
variable material properties, i.e., solute diffusivity and the concentration needed to
initialize shell formation, especially for interacting components.

In the present work, the evaporation of a single solution droplet to form a final
dry particle is considered. The effect of nearby droplets, i.e., in a spray, on the
particle formation process is out of the scope of the present study.
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Chapter 2

Diffusion controlled formation
of microparticles: Theory

2.1 Introduction

During the preliminary stages of product design (e.g. dairy products, new phar-
maceutical formulations) an estimate of the final dry particle properties is desired
in order to tailor the manufacturing process parameters accordingly. But due to the
highly sophisticated production techniques and the complexity of the evaporation
process this estimate is either not accurate enough using simple models or compu-
tationally expensive using full numerical models. For this reason many researchers
tried to introduce simple particle formation models (analytical and numerical) that
can reasonably predict the main properties of the final dry particle.

In the development of analytical models [Gardner, 1965; Leong, 1987; Vehring
et al., 2007; Vehring, 2008] one must make simplifying assumptions such as a con-
stant evaporation rate or constant material properties to arrive at a user friendly,
approximate solution. Analytical models are generally easier to use and may provide
a useful estimate of the final dry particle properties; however, due to the restrictive
assumptions imposed during their development, their accuracy and usability are
limited .

On the other hand, numerical models [Castillo and Munz, 2007a,b; Eslamian
and Ashgriz, 2007; Hubbard et al., 1975; Jayanthi et al., 1993; Vehring et al., 2007;

Parts of this chapter has been published in the following publications.

1. M.A. Boraey and R. Vehring. Diffusion controlled formation of microparticles. Journal of
Aerosol Science, 67:131–143, 2014

2. M. Boraey, A. Baldelli, and R. Vehring. Theoretical and experimental investigation of particle
formation from evaporating microdroplets. In AAAR 32nd Annual Conference, American
Association for Aerosol Research, Portland, Oregon, USA, September 30 - October 4, 2013a

3. M.A. Boraey and R. Vehring. A particle design model for spray drying of suspensions and
large molecule formulations. In RDD Europe, Respiratory Drug Delivery., 2013

4. M.A. Boraey, S. Hoe, H. Sharif, D.P. Miller, D. Lechuga-Ballesteros, and R. Vehring. Im-
provement of the dispersibility of spray-dried budesonide powders using leucine in an ethanol-
water cosolvent system. Powder Technology, 236:171–178, 2013b
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Widiyastuti et al., 2007; Xiong and Kodas, 1993; Yu and Liao, 1998] can take into
account the full range of different interacting physical mechanisms involved in the
evaporation process at the expense of higher complexity. In practice, the useful-
ness of numerical models is also limited. Firstly, accurate material properties are
often unavailable for systems of practical importance. Secondly, the iterative and
exploratory nature of the design stage of microparticles makes the use of numerical
models computationally demanding. Since production scale powders are generally
polydisperse, numerical model results have to be obtained for every size distribution
interval in a very time consuming fashion. Most useful would be a comparatively
simple model that can accurately predict the final dry particle properties with an
affordable computational effort.

The present chapter proposes a model of structured microparticles formation
from evaporating microdroplets. It is applicable when diffusion and surface reces-
sion are the main mechanisms of mass transport in the droplet. The model accounts
for the transient nature of the solute concentration profiles during the evaporation
process and thereby extends previously published models [Vehring, 2008; Vehring
et al., 2007] to particle formation processes in which the droplet surface recession
rate is much faster than the diffusion in the droplets, i.e., to cases with large Péclet
, Pe, numbers.

Furthermore, the model is useful when the initial concentration of solutes in the
droplet is close to saturation. The model also predicts the dry particle diameter, as-
suming a spherical particle, particle density, and aerodynamic diameter. For hollow
particles formed at large Péclet numbers the shell thickness can be approximated.
The model is capable of predicting the radial distribution of the components in
the final dry particle in the case of multi-component formulations. The results of
the model were recast in a simple analytical form, which can be used in particle
design without the need for numerical tools. Predictions of the model were found
to be in good agreement with analytical, numerical and experimental results in the
literature.

2.2 Problem background

Since the internal circulation inside a liquid droplet is induced by the shear forces
on the surface of the evaporating droplet, internal circulation can be neglected for
small droplet Reynolds numbers [Sirignano, 1999]. This condition is satisfied for
small particles moving at low velocities relative to the surrounding gas. Finlay
showed that this condition is typically fulfilled for microdroplets in the size range
of inhaled pharmaceutical aerosol particles [Finlay, 2001]. For this reason diffusion
can be assumed to be the dominant mechanism of mass transport.

During the evaporation of solution droplets, the radial concentration profiles of
the solutes are controlled by two counteracting mechanisms. The first is the recession
of the droplet surface, which promotes higher surface concentrations by sweeping
the solute molecules, while the second is the diffusion of solutes from the droplet
surface towards its lower concentration core. The relative importance of these two
mechanisms is described by the Péclet number, Pei, for component i which depends
on the ratio between the evaporation rate, κ, and solute diffusivity of each compo-
nent in the liquid phase, Di [Vehring, 2008; Vehring et al., 2007].

There are many definitions for the evaporation rate, κ. The definition used
here is the one given by Vehring et al., [Vehring, 2008; Vehring et al., 2007]. This
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definition comes from Maxwell’s equation for the evaporation of a spherical liquid
droplet. Maxwell’s equation can be written as follows [Finlay, 2001]:

dd

dt
= −4Ds[c̃s − c̃∞]

ρdd
(2.1)

−dd2

dt
=

8Ds[c̃s − c̃∞]

ρd
(2.2)

Where: c̃s is the solvent vapor concentration at the droplet surface and c̃∞ is
the solvent vapor concentration far from the droplet surface.

According to Equation 2.2, the evaporation rate, κ, can be defined as follows
[Vehring, 2008; Vehring et al., 2007]:

κ = −dd2

dt
(2.3)

The definition given by Equation 2.3 does not take into account the following
two effects:

• The suppression of the solvent vapor pressure on the surface of the evaporating
droplet due to the presence of solutes or any other impurities, i.e., Raoult’s
law [Finlay, 2001].

• The increase of the solvent vapor pressure on the droplet surface for very small
droplet diameters (d <5 µm), i.e., Kelvin effect [Finlay, 2001; Hinds, 1999].

However, there are many advantages for using this definition of the evaporation
rate, κ. Firstly, the evaporation rate, κ, is constant for a droplet whose diameter
squared decreases linearly with time. This is referred to as the d2 law and provides
a good estimate for the evaporation rate of pure liquid droplets [Finlay, 2001; Sirig-
nano, 1999].

Secondly, it allows the calculation of the droplet surface recession velocity, drs
dt ,

without knowing the droplet density, ρd, as follows:

κ = −dd2

dt
(2.4)

κ = −2d
dd

dt
(2.5)

κ = −8rs
drs

dt
(2.6)

drs

dt
= − κ

8rs
(2.7)

Where: d and rs are the time dependent droplet diameter and radius respectively.

And finally, a time independent Péclet number, Pe, can be defined, i.e., does not
depend on the droplet radius, rs, for a droplet evaporating with a constant evapo-
ration rate, κ.
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The mass Péclet number, Pe, is defined as the ratio between the mass transfer
by advection and by diffusion [Bird et al., 2006].

Pe =
LsU

D
(2.8)

Where: Ls is a length scale, U is a characteristic velocity and D is the diffusion
coefficient.

In the case of an evaporating solution droplet, it is desirable to quantify the
relative strength of the two acting mechanisms mentioned earlier, i.e., recession of
the droplet surface and the diffusion of solutes. In this case, it is reasonable to use
the droplet radius, rs, as the characteristic length since this is the distance between
the high concentration droplet surface and the low concentration core, and the so-
lute diffusivity as D. Actually, the ratio Ls

D can be interpreted as the resistance to
the diffusion of solutes from the droplet surface to its core. U can be replaced by
the droplet surface recession velocity, drs

dt , which is the mechanism responsible for
increasing the solute surface concentration.

Using the definition of the Péclet number, Pe, given in Equation 2.8 and the
velocity of the receding droplet surface given by Equation 2.7, the Péclet number,
Pe, can be defined as follows:

Pe =
κ

8D
(2.9)

Equation 2.9 shows that the Péclet number, Pe, is constant for a droplet evap-
orating with a constant evaporation rate, κ.

A Péclet number larger than unity indicates an evaporation rate dominant ef-
fect with a subsequent surface enrichment. A lower value indicates a higher diffusion
compared to evaporation rate and a nearly flat radial concentration profile is ob-
tained throughout the droplet lifetime [Vehring, 2008; Vehring et al., 2007].

At the end of the evaporation process the solution droplet forms a solid par-
ticle, either by crystallization or by transition to an amorphous solid. Frequently,
the formation of a shell is observed [Cruz et al., 2011; Gómez Gaete et al., 2008;
Gómez-Gaete et al., 2008]. Shell formation is initiated when the solute surface con-
centration reaches a critical value, i.e., critical supersaturation, CSS, for crystalline
shells, or a concentration close to the solute true density, i.e., density of the bulk
material, for amorphous shells [Vehring, 2008].

For Péclet numbers more than unity, the effect of the surface recession velocity
is more significant than solute diffusion, which results in a much higher solute con-
centration at the droplet surface compared to its core [Gómez Gaete et al., 2008;
Gómez-Gaete et al., 2008]. Evaporation at large Péclet numbers, i.e., Pe >25, is
a well-established technique for the production of large porous particles with low
density [Nandiyanto and Okuyama, 2011; Widiyastuti et al., 2007] for pulmonary
drug delivery [Anton et al., 2012; Vehring, 2008; Weers et al., 2007].

Comprehensive models describing in detail the various processes involved in shell
formation are unavailable at this time, but several individual aspects like buckling of
membranes have been described [Marty and Tsapis, 2008]. However, the compara-
tively simple evaporation models can be applied to estimate dry particle properties:
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for a given evaporation rate and initial solute concentration, and assuming a spher-
ical dry particle, the final dry particle diameter can be estimated if the time, and
with that the droplet diameter, at which shell formation commences is calculated.
The shell formation time depends on the evolution of surface concentration. Many
particle properties such as composition, aerodynamic diameter and particle density
can then be derived from the dry particle diameter. So an accurate estimate of the
shell formation time is necessary to predict final dry particle properties.

2.3 The governing equation

The equation for the conservation of mass (without taking convection into account
as per the discussion in section 2.2) can be written as follows:

∂C

∂t
+∇J = 0 (2.10)

It can be combined with Fick’s first law of diffusion

J = −D∇C (2.11)

to give Fick’s second law of diffusion.

∂C

∂t
= D∇2C (2.12)

Note that this is a special case of the general diffusion equation for a constant
diffusivity, D.

For a spherically symmetric droplet, the concentration is a function of the radial
coordinate only and Equation 2.12 can be written as follows:

∂C

∂t
= D

[
∂2C

∂r2
+

2

r

∂C

∂r

]
(2.13)

The radial coordinate, r, extends from the center of the droplet (i.e., r = 0) to
the droplet surface (i.e., r = rs(t)). Where rs(t) is the droplet radius at time t.
Since rs(t) is time dependent, it is easier to deal with Equation 2.13 if the radial
coordinate, r, is normalized by the droplet radius, rs. Let us call the normalized
coordinate R.

We can derive the normalized space derivatives as follows:

R =
r

rs(t)
(2.14)

∂R

∂r
=

1

rs(t)
(2.15)

∂

∂r
=

∂

∂R

∂R

∂r
(2.16)

∂

∂r
=

∂

∂R

1

rs(t)
(2.17)

∂2

∂r2
=

∂

∂r

[
∂

∂r

]
(2.18)
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∂2

∂r2
=

∂

∂R

1

rs(t)

[
∂

∂R

1

rs(t)

]
(2.19)

∂2

∂r2
=

1

r2
s (t)

∂2

∂R2
(2.20)

While the time derivative can be derived as follows:

∂

∂t

∣∣∣∣
r

=
∂

∂t

∣∣∣∣
R

+
∂

∂R

∂R

∂t
(2.21)

∂R

∂t
= − r

r2
s (t)

∂rs(t)

∂t
(2.22)

∂R

∂t
= − R

rs(t)

∂rs(t)

∂t
(2.23)

∂

∂t

∣∣∣∣
r

=
∂

∂t

∣∣∣∣
R

− ∂

∂R

R

rs(t)

∂rs(t)

∂t
(2.24)

Substituting Equation 2.17, Equation 2.20 and Equation 2.24 into Equation 2.13
gives the following equation:

∂C

∂t
=
Di

r2
s

[
∂2C

∂R2
+

2

R

∂C

∂R

]
+
R

rs

∂C

∂R

∂rs(t)

∂t
(2.25)

Equation 2.25 is the normalized version of Equation 2.13. Note that the normal-
ization by the time dependent droplet radius , rs(t), results in an extra convective
term on the right hand side of Equation 2.25. The convective term is a function of

the droplet receding surface velocity (i.e.,∂rs(t)∂t ) which is a function of the evapora-
tion rate, κ.

Substituting Equation 2.6 into Equation 2.25 gives the following equation:

∂C

∂t
=
Di

r2
s

[
∂2C

∂R2
+

2

R

∂C

∂R

]
− κR

8r2
s

∂C

∂R
(2.26)

Gardner used the assumptions of a constant evaporation rate, κ, constant ma-
terial properties (i.e., solute diffusivity, Di) and asymptotic state (i.e., limit of very
long evaporation time) to analytically calculate the radial solute concentration pro-
files and surface enrichment, Ei, [Gardner, 1965] of an evaporating spherical solution
droplet (Equation 2.26) using a zero flux boundary condition at the droplet center
(i.e., ∂C

∂R = 0 atR = 0).

Leong used the solution developed by Gardner to predict the final dry particle
morphology as a function of the nucleation and crystallization process parameters
[Leong, 1987].

Vehring presented a simple theory to predict the final dry particle volume equiv-
alent diameter, dv, and aerodynamic diameter, da, in addition to different charac-
teristic times (i.e., saturation time, tsat, precipitation time, tp, and the time to reach
true density, tt) using the results of Gardner and Leong [Vehring, 2008] under the
following assumptions.
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• Small Biot number, Bi (no temperate gradient) [Finlay, 2001].

• Diffusion is the only mechanism for mass transfer, (no reaction or convection)
[Finlay, 2001].

• Small droplet Reynolds number, Re (no internal circulation) [Sirignano, 1999].

• Constant evaporation rate, κ.

• Constant material properties, D and csol.

Vehring’s model inputs are a constant evaporation rate, κ, and a constant diffu-
sion coefficient, Di, for each solute component, i, in the liquid phase. The evapora-
tion rate can be estimated from tabulated data or using simple analytical expressions
like Maxwell’s equation, while the diffusion coefficient, Di, is solute and solvent spe-
cific.

A detailed discussion of the solution can be found in Leong [1987]; Vehring et al.
[2007] and Appendix A. The radial concentration profile can be calculated as follows:

Ci(R) = Cm,i
exp(PeiR

2/2)

3
∫ 1

0 R
2exp(PeiR2/2)dR

(2.27)

Where: Cm is the solute mean concentration. It is the solute concentration in
the droplet assuming a uniform concentration profile.

While the solute concentration at the droplet surface, Cs,i, can be found by:

Cs,i =
Cm,i

3β
exp

(
Pei
2

)
(2.28)

where βi =

∫ 1

0
R2exp

(
Pei
2
R2

)
dR (2.29)

The increase in the surface concentration, Cs,i, relative to the mean concentra-
tion, Cm,i, can be quantified by the surface enrichment, Ei, of component i which
is the dimensionless ratio between solute surface concentration, Cs,i, and its mean
concentration, Cm,i.

Surface enrichment can be calculated from Equation 2.28 as follows:

Ei =
Cs,i

Cm,i
=

1

3βi
exp

(
Pei
2

)
(2.30)

An analytical approximation for Ei , which is accurate within 1% for Péclet
numbers less than 20 has been provided by Vehring [Vehring, 2008; Vehring et al.,
2007].

Ei =
Cs,i

Cm,i
≈ 1 +

Pei
5

+
Pe2

i

100
− Pe3

i

4, 000
(2.31)

Vehring [Vehring, 2008] suggested the use of the following characteristic times
to indicate the solid state of each component in the final dry particle.
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tsat = τD

[
1− (soE)

2
3

]
(2.32)

so =
Co

Csol
(2.33)

tt = τD

[
1− (poE)

2
3

]
(2.34)

po =
Co

ρt
(2.35)

tp = τD − tsat = τD (soE)
2
3 (2.36)

Where: Csol is the solute solubility, tsat and tt are the times needed to reach sat-
uration (for crystalline components) and true density (for amorphous components)
on the droplet surface respectively.

tp is the precipitation time. It is the time remaining in the droplet lifetime, τD,
after the formation of the shell. A longer tp for a specific component means a higher
chance of forming a crystalline shell and higher crystalline content. This is because
solute molecules have more time to arrange themselves in a crystal structure before
their mobility is reduced by the reduction of the solvent mass fraction [Vehring,
2008; Vehring et al., 2007; Hoe et al., 2013a].

The actual precipitation time is usually less than the calculated one since τD is
calculated assuming a final droplet diameter of zero. Since non-pure droplets form
dry particles, the actual time remaining for crystallization is less than the one given
by Equation 2.36.

2.4 Clarification of misconceptions

The analytical and numerical models discussed in section 2.1 were derived and used
based on a set of assumptions. However, many studies in literature started to use
these models without paying attention to these limiting assumptions [Weiler et al.,
2012; Xiong and Kodas, 1993; Castillo and Munz, 2007a]. In this section, some
of the misconceptions related to these models and their range of usability will be
discussed.

2.4.1 Early shell formation

Shell formation is initiated when the solute surface concentration reaches a critical
value. Once the shell starts to form the evaporation rate, κ, is no longer constant
and the evaporation process starts to slow down.

The time at which shell formation starts depends on the initial saturation ratio,
so, and the evaporation rate, κ. A common mistake is to use the asymptotic state
solution of the concentration profile to predict shell composition. If critical super-
saturation at the surface precedes the establishment of the asymptotic concentration
profile, then it is this surface concentration that governs the shell composition. The
saturation ratio has to be kept in mind while predicting the transient concentration
profiles and not the concentration profiles alone.

CHAPTER 2 - 11 - Mohammed A. Boraey



A Particle Engineering Approach for the Design of Structured Microparticles

2.4.2 Asymptotic versus steady state

The expression derived by Gardner [1965] as a solution for the 1D diffusion equation
in spherical coordinates is an asymptotic solution and not a steady state solution
(see the detailed derivation in Appendix A). For an evaporating solution droplet,
concentration is always changing with time and so it can not reach a steady state
value.

This means that the predicted concentration, C, is an asymptotic and not a
steady state value which means that it is still varying with time. In Gardner’s
derivation the expressions for both the mean, Cm, and surface concentration, Cs,
are functions of the concentration at the droplet center, Cc, which is time dependent.

2.4.3 Surface concentration versus enrichment

Although both the mean and surface concentrations are time dependent, the asymp-
totic behavior of the surface concentration leads to a steady state value of surface
enrichment. This can happen when the surface concentration changes with the same
time rate as the mean concentration.

The first expression that is time independent in Gardner’s paper is the one for
surface enrichment, E. Reviewing the derivation for the asymptotic solution reveals
that this steady state behavior for surface enrichment was implicitly enforced by the
imposed condition that the concentration is inversely proportional to the droplet
volume for any point, R, in the asymptotic limit.

2.4.4 How long does it take to reach the asymptotic state ?

The fact that the expressions for the radial concentration profiles and surface en-
richment were derived assuming an asymptotic behavior is often overlooked. There
is a tendency to use these expressions at any time during the evaporation process
without checking if this asymptotic state is reached or not.

From a mathematical prospective, asymptotic behavior of an equation is reached
after a very long period of time. But in the case of an evaporating droplet, the whole
process has a limited time period and using this equation beyond this period is in-
valid. In other words, although the asymptotic solution for an equation describing
a physical system exists in a mathematical sense, the physical system itself may not
exist by the time the solution is valid.

Every evaporating droplet has a lifetime that depends on its size and the evap-
oration rate. The time it takes for the solute concentration profile to reach an
asymptotic behavior depends on other parameters. This time might be a fraction
of or even longer than the droplet lifetime.

The asymptotic solution introduced by Gardner does not consider how long
it takes for an evaporating droplet to reach that asymptotic state profile. It is
important to check the validity of this assumption and to introduce an improved
version of the theory for cases where this assumption is not justified. As will be
shown in the results section, for large Péclet numbers or high initial saturation the
error introduced by using the asymptotic state assumption becomes significant.
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2.5 The normalized form of the governing equation

To the best of the author’s knowledge none of the studies that used Gardner’s so-
lution of Equation 2.26 investigated the validity of his solution. The original paper
itself did not try to establish any relationship between the droplet lifetime and the
time required for the system to behave asymptotically. Although many studies used
his solution, they did not try to check if this solution is relevant to their problem of
interest.

Equation 2.26 itself does not tell us much about when the asymptotic state is
reached compared to the droplet lifetime and hence does not tell us about the range
of validity of the solution. The only process parameter that appears in the equation
is the evaporation rate, κ. However this is not enough to precisely correlate the equa-
tion to the existing physical system of an evaporating droplet with a limited lifetime.

For all these reasons, Equation 2.26 will be normalized by the main process pa-
rameters to help us better understand its behavior. The normalization procedure
will be presented in the rest of the current section.

In order to make the equation and its solution more usable, it is always desired
to put it in a non-dimensional form. In this case the non-dimensional numbers
will govern the behavior of the equation and its evolution in time. If these non-
dimensional numbers are process related, a meaningful and usable solution can be
obtained. For the rest of the chapter, the subscript i will be dropped for simplicity.

The radial coordinate, r, was already normalized by the droplet radius, rs. The
rest of the variables also need to be normalized. We will normalize the concentration,
C, and the time, t. Introducing the new normalized variables c and τ .

τ =
t

τD
Where τD is the droplet lifetime (2.37)

c =
C

Co
Where Co is the solute initial concentration (2.38)

All concentration derivatives, spatial and temporal, will be multiplied by Co
which will cancel out from all terms in the equation. For the rest of this chapter c
will refer to the normalized concentration.

The temporal derivative will be divided by τD to normalize the time variable.

∂

∂t
=

∂

∂τ

∂τ

∂t
(2.39)

∂τ

∂t
=

1

τD
(2.40)

∂

∂t
=

∂

∂τ

1

τD
(2.41)

Substituting Equation 2.41 in Equation 2.26 gives:

∂c

∂τ
=
τD

r2
s

[
D

(
∂2c

∂R2
+

2

R

∂c

∂R

)
− κR

8

∂c

∂R

]
(2.42)
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We can still remove κ and rs from Equation 2.42 as follows:

d2 = d2
o − κt (2.43)

4r2
s = 4r2

o − κt (2.44)(
rs

ro

)2

= 1− κt

4r2
o

(2.45)

Where: do and ro are the initial droplet diameter and radius respectively.

The droplet lifetime, τD, can be defined as follows (assuming a final droplet
diameter of zero):

τD =
d2

o

κ
=

4r2
o

κ
(2.46)

Substituting Equation 2.46 in Equation 2.45 gives the following equation:

(
rs

ro

)2

= 1− t

τD
= 1− τ (2.47)

τD

r2
s

=
4

κ

(
ro

rs

)2

=
4

κ

1

1− τ
(2.48)

Substituting Equation 2.48 in Equation 2.42 gives the following equation:

∂c

∂τ
=

1

2Pe(1− τ)

(
∂2c

∂R2
+

2

R

∂c

∂R

)
− R

2(1− τ)

∂c

∂R
(2.49)

Equation 2.49 is much more meaningful and useful compared to Equation 2.26.
All the variables are normalized and the solution is only governed by the Péclet
number, Pe. The time variable is also easier to use and understand as it gives the
solution of the concentration field relative to the droplet lifetime, τD. Note that
both the diffusive and convective terms evolve with the same temporal rate (i.e.,

1
1−τ ) and that the convective term does not depend on the Péclet number, Pe. The

convective term is also more significant at the droplet surface (i.e., R = 1). The
smaller the Péclet number, Pe, the stronger the diffusive flux compared to the con-
vective one. Both terms have different signs. All these observations, which agree
with the physics of the problem are now more obvious by looking at Equation 2.49.

The normalized mean concentration, cm, can also be derived in terms of the
normalized time, τ , as follows:

cm =

(
ro

rs

)3

= (1− τ)−
3
2 (2.50)

Surface enrichment can be calculated from the solution of Equation 2.49 and
Equation 2.50.

In Equation 2.49 the concentration was normalized by the initial solute concen-
tration, Co. However, in some cases it is more useful to express the concentration
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as a saturation ratio, s where s = C/Csol and Csol is the solute solubility. In this
case the equation reads as follows:

∂s

∂τ
=

1

2Pe(1− τ)

(
∂2s

∂R2
+

2

R

∂s

∂R

)
− R

2(1− τ)

∂s

∂R
(2.51)

A numerically more plausible form of Equation 2.49 can be obtained by solving
for the concentration enrichment, e, defined as the concentration, C, normalized by
the mean concentration, Cm, (i.e., e = C

Cm
). Time and space derivatives can be

derived as follows:

e =
C

Cm
=

c

cm
(2.52)

c = ecm (2.53)

cm = (1− τ)−
3
2 (2.54)

∂cm
∂τ

=
3

2
(1− τ)−

5
2 (2.55)

∂cm
∂τ

=
3

2

cm

(1− τ)
(2.56)

∂c

∂R
= cm

∂e

∂R
(2.57)

∂2c

∂R2
= cm

∂2e

∂R2
(2.58)

∂c

∂τ
= cm

∂e

∂τ
+ e

∂cm
∂τ

(2.59)

∂c

∂τ
= cm

∂e

∂τ
+

3

2

cm

(1− τ)
e (2.60)

Substituting Equation 2.57, Equation 2.58 and Equation 2.60 into Equation 2.49
gives the following form of the governing equation.

∂e

∂τ
=

1

2Pe(1− τ)

(
∂2e

∂R2
+

2

R

∂e

∂R

)
− R

2(1− τ)

∂e

∂R
− 3

2

e

(1− τ)
(2.61)

Equation 2.61 is favored numerically for two reasons. First, the concentration
enrichment, e, approaches a constant value with increasing τ in contrast to c that
keeps on increasing. Second, the gradient of e (i.e., ∂e

∂R) near the droplet surface
, especially for higher Pe numbers, is less as a numerical value compared to the
gradient of c. These two advantages make it easier to solve for the concentration
field at high Pe numbers.

2.6 A solution attempt

In order to calculate the time needed for the concentration field to reach an asymp-
totic state, Equation 2.49 has to be solved numerically since there is no analytical
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solution to it. The numerical procedure used will be presented in this section.

Equation 2.49 is a diffusion equation with a convective term that is time and
position dependent. The convective term gets stronger at the droplet surface (i.e.,
R = 1) and at the final stage of evaporation (i.e., τ ∼ 1). The diffusive term also
gets stronger for small Péclet numbers, Pe, and near the end of the droplet lifetime.
As will be shown later, these properties will have consequences on the solution pro-
cedure used.

Since the problem at hand dose not involve complex geometry, the finite differ-
ence method offers an easy and attractive way for the solution of Equation 2.49. As
a first step the finite difference method can be used to solve Equation 2.49 using a
fixed uniform grid and a constant time step.

Spatial derivatives were discretized using central second order differencing schemes
coupled with an Euler first order explicit time stepping scheme as follows:

∂c

∂R

∣∣∣∣n
i

≈
cni+1 − cni−1

2 ∆R
(2.62)

∂2c

∂R2

∣∣∣∣n
i

≈
cni+1 − 2cni + cni−1

(∆R)2
(2.63)

∂c

∂τ

∣∣∣∣n
i

≈
cn+1
i − cni

∆τ
(2.64)

2.6.1 Boundary and initial conditions

In order to solve Equation 2.49, boundary conditions are needed for both sides of
the computational domain (i.e., r = 0 & r = rs(t)).

Because of the symmetry, the no flux condition is used for the droplet center,
r = 0,

∂C

∂r
= 0 at r = 0 (2.65)

which when normalized following the same normalization procedure reads as:

∂c

∂R
= 0 at R = 0 (2.66)

This boundary condition is discretized using a first order forward differencing
scheme as follows:

∂c

∂R

∣∣∣∣n
R=0

≈
cni+1 − cni

∆R
(2.67)

At the other end of the domain, r = rs(t), the sum of the diffusive flux and the
convective flux due to the velocity of the receding droplet surface is zero since there
is no flux of the solute across the droplet surface.

D
∂C

∂r
+ C

∂rs(t)

∂t
= 0 at r = rs(t) (2.68)
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Which can be normalized to give the following Robin boundary condition:

∂c

∂R
− cPe = 0 at R = 1 (2.69)

Because of the high concentration gradient at the droplet surface, this boundary
condition (Equation 2.69) is discretized using a sixth order backward differencing
scheme.

∂c

∂R

∣∣∣∣n
R=1

≈ 49

20
cni − 6cni−1 +

15

2
cni−2 −

20

3
cni−3 +

15

4
cni−4 −

6

5
cni−5 +

1

6
cni−6 (2.70)

The choice of a sixth order scheme gave accurate results for the tested range
of Péclet numbers, Pe, and final evaporation time, τfinal. However, this choice was
arbitrary and it might have been possible to use lower order schemes.

The initial condition is a uniform concentration profile.

c(R) = 1 at τ = 0 (2.71)

The boundary and initial conditions for Equation 2.61 are given as follows:

∂e

∂R
= 0 at R = 0 (2.72)

∂e

∂R
− ePe = 0 at R = 1 (2.73)

e(R) = 1 at τ = 0 (2.74)

2.6.2 Mass conservation

The total solute mass has to be checked every time step during the solution to
ensure mass conservation. In the real physical domain of the problem, the domain
is changing with time (i.e., rs(t)) and mass can be simply calculated at each time
step as follows:

M(t) =

∫∫∫
v(t)

C dv (2.75)

Where: C is the solute concentration.

But since the radial coordinate, r, is normalized, the computational domain is
fixed and its volume does not reflect the actual volume of the droplet. An expression
has to be derived to express the system mass in terms of the normalized coordinate,
R.

Differential mass, dM , can be calculated for an elemental volume, dv = r2 sin θdrdθdφ,
in spherical coordinates as follows:

dM = C(r) dv = C(r) r2 sin θ dr dθ dφ (2.76)

Since it is only the radial coordinate, r, that was normalized and not the other
two coordinates (i.e., θ, φ), we can define the differential mass, dm, as follows:
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dm =
dM

sin θdθdφ
= C(r)r2dr (2.77)

m(t) =

∫ rs(t)

0
C(r)r2dr =

∫ 1

0
C(R)R2r2

s (t)dRrs(t) (2.78)

m(t) = r3
s (t)

∫ 1

0
C(R)R2dR (2.79)

Equation 2.79 can be used to calculate the mass at any time, m(t), using the
concentration, C(R), in the normalized coordinate , R. It can also be used to express
the ratio of the mass at any time, m(t), to the initial mass, mo.

mo = r3
o

∫ 1

0
CoR

2dR = r3
oCo

∫ 1

0
R2dR =

r3
oCo

3
(2.80)

m(t)

mo
= 3

(
rs

ro

)3 ∫ 1

0

C

Co
R2dR (2.81)

m(τ)

mo
= 3(1− τ)

3
2

∫ 1

0

C

Co
R2dR (2.82)

m(τ)

mo
= 3(1− τ)

3
2

∫ 1

0
cR2dR (2.83)

Where c is the normalized concentration, C
Co

. Equation 2.83 can be integrated
numerically using a zero order integration polynomial as follows:

m(τ)

mo
≈ 3(1− τ)

3
2

N∑
i=0

ciR
2
i∆R (2.84)

Where: N + 1 is the number of grid points and ∆R is the grid spacing (i.e.,
∆R = 1/N).

Although the ratio given by Equation 2.83 should be unity if mass conserva-
tion is achieved, it will be slightly different than unity even if the solution is mass
conservative. This is because the accuracy of the numerical integration given by
Equation 2.84 depends on the number of grid points, N + 1, and the integration
method. To account for this error, Equation 2.84 has to be corrected to account for
the accuracy of the numerical integration used.

We can start by calculating the ratio m(0)
mo

for the initial concentration profile,

co(R) = 1, at time τ = 0 assuming a constant grid spacing, ∆R.

m(0)

mo
≈ 3(1− τ)

3
2

N∑
i=0

ciR
2
i∆R (2.85)

m(0)

mo
≈ 3(1− τ)

3
2 ∆Rco

N∑
i=0

R2
i (2.86)

CHAPTER 2 - 18 - Mohammed A. Boraey



A Particle Engineering Approach for the Design of Structured Microparticles

Ri = i∆R (2.87)

m(0)

mo
≈ 3(1− τ)

3
2 (∆R)3co

N∑
i=0

i2 (2.88)

∆R =
1

N
(2.89)

m(0)

mo
≈ 3(1− τ)

3
2

1

N3
co

N∑
i=0

i2 (2.90)

N∑
i=0

i2 =
N3

3
+
N2

2
+
N

6
(2.91)

m(0)

mo
≈ 1 +

3

2

1

N
+

1

2

1

N2
(2.92)

Equation 2.92 shows that the ratio calculated by Equation 2.84 is not unity and
has to be corrected. The correction factor is a function of the number of grid points
used, N + 1. As the number of grid points increases, the ratio approaches unity.

2.6.3 Stability considerations

Using an explicit scheme (i.e., first order Euler) for time stepping puts an upper
limit on the time step, ∆τ . The CFL condition can be used to calculate the maxi-
mum time step for a stable solution.

First, we need to know the velocity magnitude of the convective term. Equa-
tion 2.49 will be rewritten by grouping all terms with a first order spatial derivative
together.

∂c

∂τ
=

1

2Pe(1− τ)

(
∂2c

∂R2

)
+

2−R2Pe

2(1− τ)RPe

(
∂c

∂R

)
(2.93)

By comparing Equation 2.93 to a standard convection-diffusion equation we can
write the velocity magnitude of the convective term as follows:

||vconv|| =
2−R2Pe

2(1− τ)RPe
(2.94)

The velocity of the convective term depends on the radial coordinate, R, The
Péclet number, Pe, and the time at the current time step, τ . Plotting Equation 2.94
shows that for a given Péclet number and time, τ , ||vconv|| is maximum at the droplet
center (Figure 2.1). Since the concentration of the first grid point is calculated from
the no flux boundary condition (i.e., Equation 2.66), the solution of Equation 2.93
starts from the second grid point which has a radial coordinate R = ∆R.

The maximum value for ||vconv|| can then be calculated as follows:

||vconv,max|| =
2− (∆R)2Pe

2(1− τ)∆RPe
(2.95)

Which can be conservatively approximated for small values of ∆R as follows:

||vconv,max|| ≈
1

(1− τ)∆RPe
(2.96)
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Figure 2.1: Magnitude of the convective term in Equation 2.49 for Pe = 5
& τ = 0.5.

The CFL condition is given by:

CFL =
||vconv,max||∆τ

∆R
≤ 1 (2.97)

CFL =
2− (∆R)2Pe

2(1− τ)∆RPe

∆τ

∆R
≤ 1 (2.98)

CFL ≈ ∆τ

(1− τ)(∆R)2Pe
≤ 1 (2.99)

The maximum time step, ∆τ , can be approximated as follows:

∆τmax ≈ (1− τ)(∆R)2Pe (2.100)

Equation 2.100 shows that the maximum time step, ∆τ , is inversely proportional
to the current time, τ . So there are two options for time stepping.

• Constant time step based on the final time, τfinal, at the end of the simulation
(which will give the most conservative value of ∆τmax).

• Adaptive time step based on the time at the current time step.

The first option is easier to implement but results in an unnecessarily small time
step during the early stage of evaporation. The final time has also to be determined
in advance to avoid any instability at the later stages of the simulation.

The second option offers a suitable time step according to the current state of
the simulation without imposing an upper limit on the final time. This is compu-
tationally more efficient than using a constant time step, as the ratio between the
maximum stable time step at the beginning and at the end of the simulation can be
huge.

The ratio between the maximum stable time steps, if adaptive time stepping is
used, can be calculated as follows:
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∆τmax ∝ 1− τ (2.101)

∆τ1

∆τNτ
≈ 1− τ1

1− τNτ
(2.102)

Where: ∆τ1 and ∆τNτ are the maximum stable initial and final time steps re-
spectively and τ1 and τNτ are the times of the first and last time points that needs
to be resolved respectively. For example, if τ1 = 0.01 and τNτ = 0.99 then the ratio
between the two time steps is 99. This can be shown be plotting Equation 2.100 for
a specific Pe and ∆R as a function of the normalized time, τ (Figure 2.2).

Figure 2.2: Maximum stable time step, ∆τmax, for Pe = 5 & ∆R = 0.01.

The main drawback of using an adaptive time step is that the time points of the
results are not known ahead of the simulation and are irregular. So the solution at a
certain time cannot be obtained. As a first step toward the solution of Equation 2.49
a constant time step will be used.

It has to be noted that the CFL condition provides a rough estimate of the
maximum time step that can be used for a stable solution. A more accurate estimate
can be obtained by using other stability analysis techniques like the matrix stability
analysis or von Neumann stability analysis [Moin, 2010].

2.7 Results

The evolution of the concentration profile described by Equation 2.49 is a function
of the Péclet number, Pe, only. Equation 2.49 was solved for a wide range of Pe
numbers (0.1 - 200). The evolution of the concentration profile and surface enrich-
ment suggests the splitting of that range into three regimes as shown in Figure 2.3.
As the Péclet number increases, it takes more time to reach the steady state value
for surface enrichment predicted by Equation 2.30.

2.7.1 How long does it take to reach the asymptotic state ?

Since a steady state value for E(τ) is only reached when the concentration profile
reaches an asymptotic state, subsection 2.4.3, the evolution of E(τ) with time can
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Low (Pe ≤ 0.5) Moderate (0.5 <Pe ≤ 25)

High (25 <Pe ≤ 200)

Figure 2.3: Evolution of the surface enrichment for different Péclet number
regimes.

be used to estimate the time needed to reach the asymptotic state.

It is hard to answer the question explained in subsection 2.4.4 just by looking
at the results for different Pe numbers given in Figure 2.3. We have to define a
criterion for E(τ) to reach a steady state. The first option is to calculate the time
needed for E(τ) to reach 95 % (or any other percentage) of the steady state value
given by Equation 2.30 or Equation 2.31. In this case Figure 2.3 can be used to
calculate this value for each Pe number to decide what is the limiting maximum Pe
number for the concentration profile to reach an asymptotic state within 95 % (or
any other percentage) of the droplet lifetime. Using Figure 2.3 we can predict this
number to be less than 10.

A second, more accurate, option is to calculate the time needed for dE(τ)
dτ to

reach a predefined tolerance, ε, small enough to reflect the variation of E with τ

as it approaches a steady state value. In this case we need to calculate dE(τ)
dτ for

different Pe numbers.
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Figure 2.4: Traces top to bottom are dE(τ)
dτ for: Pe = 25, 15, 10, 5, 0.5 and

0.1 respectively and Pe = 25, 15, 10 and 5 respectively (inset graph)

Figure 2.4 shows dE(τ)
dτ for different Pe numbers. It is clear that for any Pe

number above 5, the surface enrichment does not reach the steady state value within
the droplet lifetime. Of course this number will depend on the tolerance, ε.

2.7.2 Shell composition

Although we have answered the question of ”How long does it take for the concentra-
tion profile in an evaporating solution droplet to reach an asymptotic state ?” asked
in subsection 2.4.4, subsection 2.4.1 shows that the shell composition is determined
by the surface enrichment, E(τ), at the time of shell formation whether it is the
steady state value or not. It is important to calculate the surface enrichment for
any Pe number at any time during the evaporation process.

The solution of Equation 2.49 does not tell us anything about the shell formation,
however if we solve Equation 2.51 we can calculate the time needed for the surface
saturation ratio, s, to reach the value needed to trigger shell formation. This is the
time at which the shell starts to form. Then Figure 2.3 can be used to determine
the value of E at that time which gives the shell composition.

2.7.3 How to use the results

As pointed out in the last two sections (subsection 2.7.1 and subsection 2.7.2) both
figures (Figure 2.3 and Figure 2.4) can be used to determine the maximum limiting
Pe number and the shell composition. However, Equation 2.49 has to be solved for
other values of the Pe number not given in the two figures. An easier alternative is
to fit the model results with an analytical equation that is easier to use.

Pe <0.5 (Low)

For Pe numbers less than 0.5, the initial surface enrichment (i.e., E(0) = 1) is more
than 90 % of the steady state value, Ess, given by Equation 2.30 or Equation 2.31.
95 % of Ess is reached in less than 2 % of the droplet lifetime, τD, (i.e., τ <0.02).
While 99 % of Ess is reached in less than 9 % of the droplet lifetime, τD, (i.e., τ
<0.09). So using the steady state value , Ess, does not introduce a significant error.
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0.5 ≤ Pe ≤ 25 (Moderate)

Looking at Figure 2.3, we can fit the evolution of E(τ) with an asymptotic function
of the following form.

E(τ) = A−Be−nτ (2.103)

From Figure 2.3 it is clear that E(τ) reaches the steady state value, Ess, before
the end of the droplet lifetime. The two constants A and B can then be calcu-
lated to satisfy the two conditions E(0) = 1 and E(1) = Ess. Upon substitution,
Equation 2.103 takes the following form.

E(τ) ≈ Ess − e−n

1− e−n
− Ess − 1

1− e−n
e−nτ (2.104)

n determines the growth rate of E(τ) for different Pe numbers and is calculated
by fitting the model results.

n(Pe) = 15Pe−0.7 for 0.5 ≤ Pe ≤ 25 (2.105)

Equation 2.104 and Equation 2.105 are valid for Pe numbers from 0.5 up to 25.
The error of Equation 2.104 compared to the numerical model results is less than 8
% for τ > 0.2.

The time derivative of E(τ) can also be calculated from Equation 2.104 as follows:

dE(τ)

dτ
=
n (Ess − 1)

1− e−n
e−nτ (2.106)

Evaluating Equation 2.106 at τ = 1 can be used to calculate the maximum Pe
number for surface enrichment to reach a steady state condition.

dE(τ)

dτ

∣∣∣∣
τ=1

=
n (Ess − 1)

1− e−n
e−n (2.107)

n (Ess − 1)

1− e−n
e−n = ε (2.108)

Equation 2.108 can be solved iteratively for a given value of ε to calculate the
maximum Pe number that allows the concentration profile to reach the asymptotic
state within the droplet lifetime.

ε is a predetermined value small enough to reflect the temporal change of surface
enrichment, E(τ), at the asymptotic state (i.e., ideally it should be zero).

25 <Pe ≤ 200 (High)

Due to the higher gradients at high Pe numbers at the droplet surface, the concen-
tration profiles and surface enrichment were calculated up to 75 % of the droplet
lifetime, τD, (i.e., τfinal = 0.75) for Pe numbers more than 25.

The same form of Equation 2.103 can be used to fit the results for the evolution
of surface enrichment, E(τ). The two constants A and B can be calculated to
satisfy the two conditions E(0) = 1 and E(0.75) = E75, where E75 is the surface
entrainment at 75 % of the droplet lifetime, τD.
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E(τ) = A−Be−
4
3
nτ (2.109)

E(τ) ≈ E75 − e−n

1− e−n
− E75 − 1

1− e−n
e−

4
3
nτ (2.110)

n determines the growth rate of E(τ) for different Pe numbers and is given by:

n(Pe) = 0.95 for 25 <Pe ≤ 200 (2.111)

While E75 is give by:

E75 = 0.858Ess for 25 <Pe ≤ 200 (2.112)

The error of Equation 2.110 compared to the numerical model results is less than
10 % for τ > 0.2.

2.7.4 Steady state surface enrichment, Ess, at high Péclet numbers

In subsection 2.7.3 the model results were recast in simple analytical forms to make
them easy to use without the need for code development. However, subsection 2.7.3
shows that the steady state value of surface enrichment, Ess, is still needed to cal-
culate the transient value, E(τ). Ess can be calculated using Equation 2.29 by
numerical integration of Equation 2.30 for any Péclet number. Equation 2.30 was
obtained by fitting the numerical results of integration for Péclet numbers less than
20 [Vehring, 2008; Vehring et al., 2007]. This approach can not be used to derive
a similar relation for larger Péclet numbers because the computational demand for
this integration increases rapidly with increasing Péclet number.

This is because the integrand function becomes very steep near the droplet sur-
face which necessitates the use of a large number of points for integration and
double precision calculation. Instead, asymptotic analysis was used to derive an ap-
proximation for Ess which was then corrected with the numerical integration results.

Pe = 100 Pe = 25

Figure 2.5: β (Equation 2.113) vs. βapprox (Equation 2.114) at high Pe numbers.

For very high Pe numbers (i.e., Pe ≥ 100) an approximation can be made to
give an analytical solution for β. In this range of Pe numbers the integrand in

CHAPTER 2 - 25 - Mohammed A. Boraey



A Particle Engineering Approach for the Design of Structured Microparticles

Equation 2.29 is mainly dominated by the exponential part (i.e., exp
(
Pe
2 R

2
)
). The

integrand function is also very steep near the droplet surface (i.e., R = 1). The
value of β is mainly determined by the part of the integrand near the interface (i.e.,
R ∼ 1) and in this range we can replace R2 by R in the non-exponential part of the
integrand without introducing a significant error (Figure 2.5). This modification
allows us to obtain an analytical solution for β and hence Ess as follows:

β =

∫ 1

0
R2 exp

[(
Pe

2

)
R2

]
dR (2.113)

β ≈
∫ 1

0
R exp

[(
Pe

2

)
R2

]
dR (2.114)

β ≈ 1

Pe

∫ 1

0
PeR exp

[(
Pe

2

)
R2

]
dR (2.115)

β ≈ 1

Pe

[
exp

(
Pe

2
R2

)]1

0

(2.116)

β ≈
exp

(
Pe
2

)
− 1

Pe
(2.117)

Ess =
cs

cm
=

1

3β
exp

Pe

2
(2.118)

Ess ≈
Pe

3

exp
(
Pe
2

)
exp

(
Pe
2

)
− 1

(2.119)

The second term on the right hand side of Equation 2.119 approaches unity for
high Péclet numbers (i.e., 1.000045402 for Pe = 20) and hence can be dropped.

Ess ≈
Pe

3
(2.120)

Equation 2.120 is accurate within 1% for Pe ≥ 100.

A correction can be added to Equation 2.120 to extends its range of usability
and enhance its accuracy. For Pe ≥ 20 the following approximation can be used.

Ess =
cs

cm
≈ Pe

3
+ 0.363 (2.121)

The accuracy of Equation 2.121 can be demonstrated by plotting the steady
state surface enrichment, Ess, as calculated from Equation 2.121 compared to the
one obtained from Equation 2.29 by the numerical integration of Equation 2.30 as
shown by Figure 2.6. Equation 2.121 is accurate within 0.15% for Pe ≥ 20.

2.7.5 Transient surface enrichment, E(τ), at high Péclet numbers

Equation 2.110 for the high Péclet number regime depends on two parameters. The
first is n which is Pe number independent (Equation 2.111), while the second E75 is
linear in Ess (Equation 2.112) which is in turn a function of the Pe number (Equa-
tion 2.29). However, Equation 2.121 shows that E75 is linear in Pe for the high Pe
number regime. It can be shown that the evolution of the surface enrichment E(τ)
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Figure 2.6: Steady state surface enrichment, Ess: Gardner’s solution (Equa-
tion 2.29) vs. the proposed fitting equation (Equation 2.121).

is linear in Pe and the ratio E(τ)
Ess

is Pe independent for the high Pe number regime.

Equation 2.110 can be written as follows:

E(τ) =
1

c1
(E75 − c3 − (E75 − 1)ec2τ ) (2.122)

Where:
c1 = 1− e−n = 1− e−0.95 = 0.613
c2 = −4

3n = −4
3 × 0.95 = −1.267

c3 = e−n = e−0.95 = 0.387

Using Equation 2.120 as an approximation for Ess,
E(τ)
Ess

can be written as follows:

E(τ)

Ess
≈ 1

c1

3

Pe
(c4Pe− c3 − (c4Pe− 1)ec2τ ) (2.123)

E(τ)

Ess
≈ 1

c1

(
3c4 − 3

c3

Pe
−
[
3c4 − 3

1

Pe

]
ec2τ

)
(2.124)

Where:
c4 = 0.858× 1

3 = 0.286

For high Pe number, all the 1
Pe terms in Equation 2.124 can be dropped.

E(τ)

Ess
≈ 1

c1
(3c4 − 3c4e

c2τ ) (2.125)

E(τ)

Ess
≈ 3

c4

c1
(1− ec2τ ) (2.126)

E(τ)

Ess
≈ 1.4

(
1− e−1.267τ

)
(2.127)

CHAPTER 2 - 27 - Mohammed A. Boraey



A Particle Engineering Approach for the Design of Structured Microparticles

Equation 2.127 shows that the evolution of E(τ)
Ess

is Pe independent and can be
used for any Pe number in the high Pe number regime. This result can be verified

by the excellent matching between the the normalized surface enrichment, E(τ)
Ess

, as
calculated by the model and that predicted by Equation 2.127 for different Pe num-
bers as shown in Figure 2.7.

Equation 2.127 can be recast in a more usable form as follows:

E(Pe, τ) ≈
[
Pe

2
− 1

9

]
−
[
Pe

2
− 10

9

]
e−

6
5
τ (2.128)

Figure 2.7: Traces top to bottom are normalized surface enrichment, E(τ)
Ess

,
for Pe = 50, 100, 150 and 200 respectively. Black: Model results, Red:
Equation 2.127.

2.7.6 Characteristic times

Different characteristic times suggested by Vehring [2008] can be calculated using
E(τ) instead of Ess. Characteristic times normalized by the droplet drying time,
τD, are given as follows (see Equation 2.32, Equation 2.34 and Equation 2.36):

τsat = 1− (soE(τsat))
2
3 (2.129)

τt = 1− (poE(τt))
2
3 (2.130)

τp = 1− τsat = (soE(τsat))
2
3 (2.131)

However, in this case these equations have to be solved iteratively.

Equation 2.129 points again to the same important factor that has to be con-
sidered in addition to the Pe number, the initial saturation, so [subsection 2.4.1].
Equation 2.129 shows that the time to reach saturation at the droplet surface de-
pends on the product of so and E(τ). These variables are functions of both the
initial saturation and the Pe number respectively.
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τsat is the main characteristic time that affects most of the final dry particle
properties as will be shown in the following sections. It has to be noticed that τsat
is used for components that form crystalline shells while τt is used for amorphous
shells [Vehring, 2008].

In case of a variable evaporation rate, the droplet diameter at time t is calculated
as following for a known evaporation rate, κ(t).

d2(t) = d2
o −

∫ t

0
κ(t̃) dt̃ (2.132)

While the droplet lifetime, τD, can be calculated by solving the following equation
.

d2
o =

∫ τD

0
κ(t) dt (2.133)

In this case, the mean normalized concentration, cm, and the saturation time,
tsat, can be calculated as follows:

cm =
d2

o[
d2

o −
∫ t

0 κ(t̃) dt̃
] 3

2

(2.134)

∫ tsat

0

κ(t)

d2
o

dt = 1− [soE(tsat)]
2
3 (2.135)

2.7.7 Dry particle properties

Several dry particle properties can be calculated. Some of these properties can
be calculated using the classical particle formation theory [Vehring, 2008; Vehring
et al., 2007] as a first approximation. However, the results of this theory become in-
creasingly inaccurate at higher Pe numbers and initial saturation, as will be shown
later.

For single component droplets, the shell formation time, τsh, equals the satu-
ration time, τsat, (or the time to reach true density,τt for amorphous shells). For
multi-component droplets, the shell formation time, τsh, is equal to the saturation
time, τsat,i, for the component i that reaches saturation first.

τsh = min(τsat,i) for crystalline components (2.136)

τsh = min(τt,i) for amorphous components (2.137)

Dry particle size

The minimum concentration required to initialize shell formation is referred to as
the critical supersaturation, CSS. Generally CSS is hard to calculate numerically
and it is measured experimentally for different solutes under different evaporation
conditions. CSS also depends on the droplet temperature at the onset of shell for-
mation. Several researchers used different methods to estimate the value of CSS
[Leong, 1987; Tang and Munkelwitz, 1984; Brechtel and Kreidenweis, 2000a,b].
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Based on the evolution of E(τ) and an estimate of the minimum concentration
to initialize shell formation, the dry particle volume equivalent diameter, dv, can by
calculated as follows:

dv = do

√
1− τsh (2.138)

Under the following two assumptions:

• No shrinkage of the particle occurs once a shell is formed.

• No folding or buckling occurs for the formed shell.

The classical particle formation theory calculates the dry particle volume equiva-
lent diameter, dv, based on a simple mass balance of the solute mass without taking
radial concentration profiles into account.

dv = do
3

√
Cf

ρp
(2.139)

Where: Cf is the feed concentration, Cf =
∑
i
Co,i.

The dependence of the dry particle size on the drying conditions like the evap-
oration rate, κ, and the solute properties like diffusivity, D, is included through an
estimate of the dry particle density, ρp.

Density

Once the dry particle size is calculated, the true particle density, ρp, can be calcu-
lated as follows:

ρp = Cf

[
do

dv

]3

(2.140)

The classical particle formation theory does not provide a means to calculate
the dry particle density, which is a logical consequence of ignoring the dependence
of the dry particle morphology on the drying conditions and solute properties.

Using the steady state value of surface enrichment, Ess, instead of the transient
value, E(τ), has the drawback of making the particle density independent of the
initial concentration for a given Péclet number. This can be proved as follows:

For a constant surface enrichment, Ess, the normalized saturation time, τsat, can
be written as follows (Equation 2.129 & Equation 2.33):

τsat = 1−
(
Co

Csol
Ess

) 2
3

(2.141)

Then the dry particle diameter, dv, can be written as follows (Equation 2.141 &
Equation 2.139):

√
1− τsat =

(
Co

Csol
Ess

) 1
3

(2.142)
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dv = do
3

√
Co

Csol
Ess (2.143)

For a single component particle, the particle density can be written as follows
(Equation 2.140):

ρp = Co

[
do

dv

]3

(2.144)

Substituting Equation 2.143 in Equation 2.144 gives the particle density, ρp, as
follows:

[
do

dv

]3

=
Csol

Co Ess
(2.145)

ρp = Co
Csol

Co Ess
(2.146)

ρp =
Csol

Ess
for crystalline components (2.147)

ρp =
ρt

Ess
for amorphous components (2.148)

Equation 2.147 and Equation 2.148 show that for a given Péclet number, Pe,
the particle density, ρp, is independent of the initial concentration, Co.

Equation 2.147 and Equation 2.148 is a good approximation for particle density,
ρp, at low Péclet numbers, Pe, or low initial saturation ratios, so.

Aerodynamic diameter

The aerodynamic diameter is calculated based on the known particle density and
volume equivalent diameter.

da = dv

√
ρp

ρ∗
Ccs(dv)

Ccs(da)

1

λs
(2.149)

Where: ρ∗ is a reference unit density (1000 kg/m3) , Ccs(dv) and Ccs(da) are the
slip correction factors [Davis, 2006; DeCarlo et al., 2004] for the volume equivalent
diameter and aerodynamic diameter, respectively, and λs is the dynamic shape factor
[DeCarlo et al., 2004] of the dry particle. For spherical particles the dynamic shape
factor is unity.

Shell thickness

For droplets evaporating at high Pe numbers (section 2.7.3), the dry particle shell
thickness can be calculated. When the shell forms, the outer particle diameter is
assumed to be the fixed volume equivalent diameter, dv, and it is assumed that the
remaining solvent evaporates through the formed shell with a subsequent receding
of the internal interface from the droplet center towards its outer shell.

CHAPTER 2 - 31 - Mohammed A. Boraey



A Particle Engineering Approach for the Design of Structured Microparticles

Evaporation at high Pe numbers results in very steep concentration profiles
near the droplet surface with most of the droplet remaining close to the initial
concentration (Figure 2.8). Hence, we can assume that at the end of the evaporation
process the whole solute mass will be concentrated in a thin shell. If the average
shell density, ρsh, can be estimated, e.g., by the true density of the solute, ρt, a
simple mass balance yields the internal void diameter, dsh.

Figure 2.8: Traces top to bottom are concentration profiles for Pe = 25, at
τ = 0.75, 0.5, 0.25 and 0 respectively.

π

6
Cfd

3
o =

π

6
ρsh

[
d3

v − d3
sh

]
(2.150)

dsh

dv
=

3

√
1− Cf

ρsh

[
do

dv

]3

(2.151)

Substituting Equation 2.140 in Equation 2.151 gives dsh as a function of the
particle to shell density ratio.

dsh

dv
= 3

√
1− ρp

ρsh
(2.152)

For multi-component particles ρsh can be estimated as follows:

ρsh =
1∑
i

Yi
ρi

(2.153)

Where: Yi is the mass fraction of component i and ρi is the solubility of compo-
nent i (Csol) for crystalline components or the true density of component i (ρt) for
amorphous components.

For solid particles without a void, particle and shell density are the same which
gives an internal particle diameter of zero using Equation 2.152, as expected. For
hollow particles, particle density is always lower than the shell density which gives
a value less the unity for the ratio between the internal particle diameter and the
volume equivalent diameter.

CHAPTER 2 - 32 - Mohammed A. Boraey



A Particle Engineering Approach for the Design of Structured Microparticles

For droplets containing suspended solid particles the shell density can be calcu-
lated as follows:

ρsh = ρtP (2.154)

Where ρt is the true density of the used suspended particles and P is the packing
factor.

The packing factor depends on the diameter distribution of the suspended par-
ticles. The wider the distribution the higher the packing factor [Chen et al., 2011].
For the case of narrow size distributions, a packing factor of 63.1 % has been re-
ported for monodisperse particles [Chen et al., 2011].

It has to be noted that for some cases, especially for high Pe numbers and at
the later stages of the droplet lifetime, the model results cannot be used since the
concentration profiles at the surface of the droplet will be so steep to the point of
having a large concentration gradient across a length scale comparable to the mean
free path of the solute molecules. In this case, the continuum assumption breaks
down and the proposed approach cannot be used.

2.8 Conclusions

The new model presented in this chapter extends the range of usability of the clas-
sical particle formation theory [Vehring, 2008; Vehring et al., 2007] to high initial
saturation ratios and large Péclet numbers. Improved predictive ability was obtained
by removing one of the limiting assumptions of the classical particle formation the-
ory by taking the transient nature of the solute concentration profiles into account.

The additional accuracy was achieved without compromising usability for the
formulator. The numerical model results were recast in a simple analytical form
to facilitate easy use, especially in the preliminary stage of formulations design,
without the need for numerical model development. The model allows prediction of
many important properties of the resulting dry particle and thus enables a mech-
anistic procedure to the design of multi-component layered particles with specific
properties. Spray drying process parameters and the formulation composition can
be largely determined a priori and most parameters need not be determined em-
pirically, which may provide very significant time savings in the early development
process.

For a specific formulation design, the procedure of predicting the final dry par-
ticle properties can be summarized as follows:

1. Based on the range of possible drying process parameters, the available range
of evaporation rates can be derived.

2. The solute diffusivities are then used to calculate the Péclet numbers for all
components (Equation 2.9).

3. Using the appropriate equation for the Péclet number range, the surface en-
richment for each component can be determined at each point during the
droplet lifetime (Equation 2.31, Equation 2.104 or Equation 2.110).

4. By estimating the critical concentration, a characteristic time to reach super-
saturation, τsat,i can be derived for each component (Equation 2.129). The
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shortest time τsh indicates the component that likely forms a shell first and
will be found on the outside of the dry particle.

5. The volume equivalent diameter of the particle can now be approximated
by determining the particle diameter at the onset of shell formation (Equa-
tion 2.138).

6. Particle density (Equation 2.140), aerodynamic diameter (Equation 2.149) and
shell thickness (Equation 2.151 and Equation 2.152) can now be derived.

7. Information about the radial composition of the dry particles can be inferred
by calculating the radial concentration profiles for each component at the onset
of shell formation, τsh (Equation 2.49).

8. Components’ mass fractions, Yi, at any position, R, can then be calculated,

Yi = ci(R,τsh)∑
i
ci(R,τsh) .
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Chapter 3

Diffusion controlled formation
of microparticles: Validation &
Results

3.1 Introduction

The results of the new particle formation theory proposed in chapter 2 will be val-
idated in the current chapter. The chapter starts with comparing the model results
to the analytical solution given by Gardner [Gardner, 1965]. Then the model results
will be compared to experimental and numerical results from literature, highlighting
its ability in predicting different dry particle properties and emphasizing the lack
of accuracy of the classical particle formation theory for some particle formation
conditions. The model results will then be verified against the experimental results
generated by the single droplet setup.

3.2 Analytical Validation

Since the present model takes the transient nature of the concentration profiles into
account as opposed to the asymptotic state solution given by Gardner [Gardner,
1965], the model results should match Gardner’s solution for the cases where this
asymptotic state is reached within the droplet lifetime as pointed out in chapter 2.

Parts of this chapter has been published in the following publications.

1. M.A. Boraey and R. Vehring. Diffusion controlled formation of microparticles. Journal of
Aerosol Science, 67:131–143, 2014

2. M. Boraey, A. Baldelli, and R. Vehring. Theoretical and experimental investigation of particle
formation from evaporating microdroplets. In AAAR 32nd Annual Conference, American
Association for Aerosol Research, Portland, Oregon, USA, September 30 - October 4, 2013a

3. A.L. Feng, M.A. Boraey, M.A. Gwin, P.R. Finlay, P.J. Kuehl, and R. Vehring. Mechanistic
models facilitate efficient development of leucine containing microparticles for pulmonary
drug delivery. International Journal of Pharmaceutics, 409(1-2):156–163, 2011

4. M.A. Boraey, S. Matinkhoo, and R. Vehring. A new time and cost effective approach for
the development of microparticles for pulmonary drug delivery. In RDD Europe, Respiratory
Drug Delivery., 2011
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3.2.1 Asymptotic concentration profiles

The normalized concentration, c(R)
cm

, can be calculated using Gardner’s solution as

follows (see Appendix A):

c(R)

cm
=

1

3β
exp

[(
Pe

2

)
R2

]
(3.1)

Figure 3.1: Normalized concentration profiles: Model results at τ = 0.99
vs. Asymptotic state solution for Pe = 25.

The model results for the normalized concentration, c(R)
cm

, at τ = 0.99 is com-
pared against the asymptotic state solution given by Equation 3.1 for Pe = 25 as
shown in Figure 3.1.

Figure 3.2: Normalized transient concentration profiles: Model results for
Pe = 25.

The perfect agreement between the results confirms the ability of the new model
to predict the asymptotic state solution in addition to the transient concentration
profiles, as shown in Figure 3.2.
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3.2.2 Steady state surface enrichment

It was shown that the asymptotic state solution for the concentration profiles leads
to a steady state value for surface enrichment, Ess. In this section, the steady state
value predicted using Gardner’s solution is compared against the transient value for
surface enrichment, E(τ), at τ = 0.99. Good agreement can be seen in Figure 3.3.

Figure 3.3: Surface enrichment: Model results at τ = 0.99 vs. Asymptotic
state solution.

3.3 Experimental Validation

In this section, different dry particle properties predicted by the model are compared
against numerical and experimental results in literature.

3.3.1 Moderate Péclet number and low initial saturation

In the first study used for comparison [Vehring et al., 2007], glycoprotein particles
with increasingly hollow morphology were formed under controlled conditions using
a droplet chain apparatus. Different drying gas temperatures resulted in a Péclet
number range between 2.7 and 16.8, which lies in the moderate Péclet number
regime. A numerical model was also proposed to predict the transient concentra-
tion profiles and the droplet evaporation rate. However, the model did not include
a means to predict the dry particle diameter and density, so the VFL model was
used to calculate them [Vehring, 2008].

As pointed out previously [Vehring, 2008], components such as proteins often do
not crystallize. Thus, using the time when equilibrium saturation, ES, or critical
supersaturation, CSS, is reached to calculate the final dry particle diameter is not
relevant in this case. Instead, a value close to the component true density, ρt, was
used. In this case, the formed shell was assumed to be in an amorphous rather than
a crystalline state [Vehring, 2008].

Figure 3.4 shows the comparison between the measured dry particle diameter
and measured particle density and the predicted ones using the proposed model
(chapter 2) and the classical particle formation model using the steady state value
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Figure 3.4: Measured vs. predicted particle volume equivalent diameter,
dv, and particle density, ρp. [Vehring et al., 2007; Vehring, 2008]

for surface enrichment, Ess [Vehring, 2008].

As shown in Figure 3.4, the two theoretical approaches yield almost identical
results in this case, as expected. In this experiment the initial saturation of the
solute (so = 0.003 based on ρt = 1.37 g/cm3) was very low. Hence, shell formation
was initiated late in the drying process, when both models predict similar surface
enrichment. The appropriate concentration value for estimation of the onset of shell
formation was not known beforehand. A value of 0.85 g/cm3 was derived by fitting
the model results to the experimental ones at the lowest Péclet number.

In this case, both models predict particle size and density with sufficient accu-
racy to greatly assist in the particle design process. It is not surprising that there
is not a perfect match between experiment and models considering the relatively
simple nature of the theoretical description. Both models are limited to a constant
value for the solute diffusivity, D, which is in reality a function of the solute con-
centration, so as the concentration increases with the droplet evaporation the solute
diffusivity drops and the average or actual Pe number for the whole evaporation
time is larger than the initial value at the beginning of the evaporation. This results
in a higher surface enrichment, E, which means a shorter time is needed until surface
concentration reaches the minimum values to trigger shell formation. This shorter
time results in a larger droplet diameter at the onset of shell formation compared
to the calculated one. This is one of the reasons behind the underestimated dry
particle volume equivalent diameter, dv, and the overestimated particle density, ρp,
predicted by both models compared to the measured values. This is referred to as
Particle formation with changing Péclet number [Vehring, 2008; Vehring et al., 2007].

In addition, the appropriate concentration value for the onset of shell formation is
likely temperature dependent [Leong, 1987] and the models cannot properly account
for deformation of the shells, which was visible in the electron micrographs of the
dried particles in this study.

3.3.2 Moderate Péclet number and high initial saturation

Lin and Gentry [2003] experimentally studied the morphology of spray dried solution
droplets for different solutes using a pendant droplet approach. Three different ini-
tial saturation ratios, so = 0.2, 0.4 and 0.6, at four different drying air temperatures
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were used for the evaporation of sodium chloride solution droplets. The authors
reported the visually observed time for the appearance of the first crystal and the
corresponding reduced droplet diameter, i.e., the droplet diameter divided by the
initial droplet diameter.

so = 0.2 so = 0.4

so = 0.6

Figure 3.5: Predicted vs. measured particle volume equivalent diameter, dv, for
different initial saturation ratios (so = 0.2 top left panel, so = 0.4 top right panel,
so = 0.6 bottom panel).[Lin and Gentry, 2003]

The present model was used to calculate the droplet diameter at the onset of
crystallization based on the equilibrium saturation value of Csol = 6.167 M given
by Tang and Munkelwitz [1984]. The Péclet number was calculated based on an
estimate of the evaporation rate of water given by Vehring et al. [2007] and the
diffusion coefficient of sodium chloride in aqueous solutions given by Guggenheim
[1954].

Figure 3.5 shows the results of the model using the transient value of surface
enrichment, E(τ), in comparison to the experimental results and the results using
the steady state value, Ess.

Agreement between experimental and model results is reasonable, considering
that some experimental conditions were outside of the range of application of the
model. Droplets were in the millimeters range and suspended from a filament. Nev-
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ertheless trends are predicted correctly.

Figure 3.5 shows that the two models deviate increasingly from each other at
high saturation ratios, so, and higher Péclet numbers, Pe, as expected. The impor-
tance of these two parameters was realized earlier in the literature [Vehring et al.,
2007].

We can also see that, compared to the classical model, the new model more
accurately predicts the measured particle diameter at higher Péclet numbers, and
when the initial saturation is large, as shown in the bottom panel. In fact, the
classical model erroneously predicts surface supersaturation for this case from the
very beginning of the evaporation period, i.e., τ= 0, because it cannot account for
the transient behavior. The current model doses not suffer from this drawback.

The results shown in Figure 3.5 were calculated based on the assumption that
sodium chloride crystallization commences without delay when saturation, s = 1, is
reached at the surface. Several researchers studied the crystallization of evaporating
sodium chloride droplets and found that in fact supersaturation, s >1, is necessary
to trigger crystallization [Xiong and Kodas, 1993; Leong, 1987; Tang and Munkel-
witz, 1984]. Hence, the surface saturation ratio at the onset of crystallization which
was used in the model was adjusted by matching the dry particle diameter at the
smallest Péclet number and intermediate initial saturation ration of so = 0.4. Then,
using the same approach as in the previous section, this saturation ratio was also
applied for the larger Péclet numbers.

Figure 3.6: Predicted vs. measured particle volume equivalent diameter,
dv, for so=0.4. [Lin and Gentry, 2003]

Figure 3.6 shows the modeling results obtained using a supersaturation ratio of
ssat = 1.425. The results agree well with observed reduced droplet diameter at the
onset of crystallization. The supersaturation ratio used to fit the first data point
was found to be in excellent agreement with the critical supersaturation ratio for
sodium chloride, ssat = 1.40, numerically calculated and experimentally measured
by Brechtel et al., [Brechtel and Kreidenweis, 2000a,b].

The present case shows that the use of the new model to predict the transient
surface enrichment, E(τ), leads to significant improvement at large Péclet numbers
and high initial saturation ratios.
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3.3.3 High Péclet number and high initial saturation

Widiyastuti et al., [Lenggoro et al., 2000; Widiyastuti et al., 2007] numerically
and experimentally investigated spray pyrolysis of zirconyl hydroxychloride solution
droplets. The diffusion coefficient of zirconnyl hydroxychloride was not reported in
their work and the Péclet number could not be calculated. However, due to the very
high temperatures of up to 700 ◦C, used in the study it can be assumed that the
resulting Péclet number is large.

The authors developed a numerical model to predict the radial concentration
profiles and shell thickness for the final dry particle. For the zirconyl hydroxychlo-
ride used in this study solubility and critical supersaturation of 5.7 M and 8 M,
respectively, are well documented [Jayanthi et al., 1993].

The ratio of the dry particle size to the initial droplet diameter was calculated
from the reported measured data. Using an initial concentration of 0.32 g/cm3(so
= 0.35) and an estimated average shell density, ρsh, equal to the zirconium dioxide
true density of 5.68 g/cm3 [Pakhomov, 2011], the dry particle shell thickness can
be calculated using Equation 2.151 or Equation 2.152.

Figure 3.7: Predicted vs. measured shell thickness of Zirconia particles (T=500
◦C, left panel ; T=700 ◦C, right panel). [Widiyastuti et al., 2007]

Figure 3.7 shows the dry particle shell thickness predicted by the present model
and by the numerical model suggested by Widiyastuti et al., [Widiyastuti et al.,
2007]. The present model results have the same trend as the numerical model.
Despite the simplicity of the presented model, its results are appropriate for mi-
croparticle design.

3.4 Applications

In this section, the application of the classical [Vehring, 2008; Vehring et al., 2007]
and proposed particle formation models to the design and production of micropar-
ticles for some applications is discussed.
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3.4.1 The design of L-leucine containing microparticles

In this application, the classical particle formation theory is used in the design of L-
leucine containing microparticles. This was possible due to the low Péclet numbers,
Pe, and low initial saturation ratios, so, of the evaporation process. The asymptotic
normalized concentration profiles were calculated for the two components used (L-
leucine and trehalose) as shown in Figure 3.8.

Figure 3.8: Radial normalized concentration profiles, c
cm

, of L-leucine and

trehalose.

The solid state of Leucine in the final dry particle was determined using Raman
Spectroscopy [Vehring, 2005] and found to be in good agreement with an increas-
ing precipitation time for higher L-leucine initial concentration according to Equa-
tion 2.131.

Figure 3.9 shows the calculation of the L-leucine saturation time and shows that
it reaches saturation before trehalose (due to the higher solubility of trehalose) and
thus it is the main shell former.

Figure 3.9: Surface concentration and saturation time of L-leucine.

Figure 3.10 shows the increase of the crystalline leucine content of the final dry
particle with the increase in the initial mass fraction. Equation 2.131 shows that
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for a given evaporation rate, κ, the precipitation time, τp, increases with the ini-
tial saturation ratio. τp was correlated with a higher crystalline content, as expected.

Figure 3.10: Crystallinity of L-leucine in the final dry particle.

SEM micrographs of the dried particles provide further support of the proposed
model, as the predicted increase in volume equivalent diameter, dv, with increasing
initial saturation ratio, so, (Equation 2.138) was observed in this experiment as
shown in Figure 3.11.

Figure 3.11: Morphology of spray dried L-leucine (L) trehalose (T) micropar-
ticles with varying mass fractions of L-leucine.

3.4.2 Formation of sodium nitrate particles

In this study, sodium nitrate microparticles were formed by the evaporation of so-
lution microdroplets in a droplet chain setup (see chapter 4 for a description of the
setup). Four initial concentrations with two evaporation rates were used to test the
effect of the initial saturation ratio, so, and the Péclet number, Pe, on the morphol-
ogy and the solid state of the final dry powder.
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The solute surface saturation ratio was calculated and the corresponding time
to reach saturation was used to calculate the final dry particle diameter (Equa-
tion 2.138). Figure 3.12 shows the surface saturation ratios of sodium nitrate evap-
orating at two temperatures, 85◦C and 125◦C.

T = 85◦C T = 125◦C

Figure 3.12: Sodium nitrate surface saturation for different initial concentrations,
Co. The time axis shows the time needed to reach saturation, as fraction of the
total droplet lifetime.

Figure 3.13 shows the calculated dry particle diameter compared to values mea-
sured by averaging the dry particle diameter of 70 particles from the SEM images.
A good agreement can be observed.

T = 85◦C T = 125◦C

Figure 3.13: Diameter of the sodium nitrate dry particle, dv, at different initial
concentrations. Model results vs. SEM images.

Figure 3.14 shows the SEM images of the final dry particle. As the initial
concentration increases, the time needed to reach saturation, τsat, decreases with a
subsequent increase in the precipitation time, τp, which promotes crystallization.
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Figure 3.14: SEM images of sodium nitrate particles formed at 85◦C (top)
and 125◦C (bottom) at different initial concentrations.

3.5 Conclusions

Through this chapter and chapter 2, it was shown that the asymptotic solution of
the one dimensional spherically symmetric diffusion equation derived by Gardner
[Gardner, 1965] to describe the concentration profile of an evaporating spherical
droplet introduces a significant error for high Péclet numbers or high initial satura-
tion ratios. Although the solution itself is correct in a mathematical sense, it does
not consider the limited droplet lifetime.

chapter 2 introduces an analytical approach to calculate the time needed for the
concentration profile to reach the asymptotic solution [Gardner, 1965] by taking into
account the droplet lifetime.

The proposed approach also gives two alternatives for the calculation of the
surface enrichment during the evaporation process before the asymptotic state is
reached. The first is to solve the governing equation in time and space, while the
other one offers an easy way of calculating the evolution of surface enrichment using
an algebraic equation.

The results of proposed particle formation model become more important as
the difference between the transient and asymptotic solution gets bigger. Solution
droplets evaporating with a high Pe number or high initial saturation ratio, so, are
typical cases.
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Chapter 4

A hybrid approach for the
measurement of variable droplet
evaporation rate

4.1 Introduction

A new hybrid Optical-Numerical approach is proposed for the determination of the
variable evaporation rate of a multi-component solution or suspension droplet. The
proposed approach is based on the use of the droplet trajectory data to calculate the
droplet velocity and acceleration. With the knowledge of the initial droplet diame-
ter, the droplet evaporation rate and diameter can be calculated at any time during
the evaporation process. It turns out that the accuracy of the predicted evapora-
tion rate depends largely on the droplet generation frequency. The error increases
with a decreasing droplet generation frequency. To overcome this limitation, higher
order numerical schemes are used to predict the evaporation rate with a reasonable
accuracy at low generation frequencies. The proposed approach is robust, reliable,
much easier to use and less expensive compared to other fully optical techniques
commonly used. Some benchmark cases have been used to assess the accuracy of
the proposed approach.

Many industrial processes depend on the evaporation of pure or non-pure droplets
for the production of a specific product. Examples of this include the use of spray
dryers in the food and pharmaceutical industries. The evaporation rate is a key
parameter in any evaporation process as it affects many features of the process it-
self and its final product [Vehring, 2008]. Although the evaporation rate can be
controlled by the process parameters such as the drying gas temperature and the
relative humidity, its precise determination is not easy. The reason for this is the
many interfering physical and chemical mechanisms involved in the evaporation pro-
cess. Analytical expressions for the evaporation rate are limited to very specific and
simple flow situations. For these reasons experimental determination of the evapo-

Parts of this chapter has been published in the following publications.

1. M. Boraey, A. Baldelli, and R. Vehring. Theoretical and experimental investigation of particle
formation from evaporating microdroplets. In AAAR 32nd Annual Conference, American
Association for Aerosol Research, Portland, Oregon, USA, September 30 - October 4, 2013a
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ration rate is preferred.

There are several techniques for the measurement of the evaporation rate and
droplet diameter [Nandiyanto and Okuyama, 2011], such as low-angle light scatter-
ing [Lamanna et al., 2005], analytical expressions, i.e., Maxwell’s equation, [Finlay,
2001] and numerical simulations [Sirignano, 1999]. However, these techniques suffer
from some limitations. For example, in light scattering techniques the determina-
tion of the droplet diameter becomes difficult as its geometry starts to deviate from
that of a sphere. In fact, the accuracy of the technique is at its worst (during the
final stage of the drying process) when it is most needed, as it is at the end of the
droplet lifetime that deviations from simple theories are most apparent.

Also if the droplet diameter or the exposure time is small, the intensity of the
scattered light is reduced, which may affect the signal strength and the detection
limits. Using a high energy laser to overcome this problem may affect the evapora-
tion process through local heating of the droplet. Another limitation to this class
of techniques is the dependence of the scattered light intensity on the optical prop-
erties of the droplet (i.e., index of refraction) [Hinds, 1999]. For droplets of pure
liquids or a mixture of different liquids this may be taken into account by measuring
these properties for the mixture at hand a priori. However for a single-component
or multi-component solution droplet that will eventually form a solid particle it be-
comes very difficult to determine these properties in advance as they vary with the
change in the solvent mass fraction during the evaporation process.

In analytical expressions and numerical simulations, the temperature-vapor pres-
sure relationship must be known in addition to other physical properties.

The objective of this chapter is to provide a new approach for the determination
of the evaporation rate of a droplet based on its trajectory data.

4.2 Experimental setup

For the present study a custom built setup is used to collect the needed data.
The setup consists of a glass tube with a droplet-on-demand droplet generator (a
piezoceramic surrounding a glass capillary) to generate droplets of a pre-specified
initial diameter with controlled generation frequency. All the experimental work
including building the setup and collecting the data was done by Alberto Baldelli
in the particle engineering laboratory at the University of Alberta. The same setup
has been widely used and described in many previous studies [Vehring et al., 2007]
(Figure 4.1).

Droplets are injected horizontally into the glass tube with an initial velocity vix.
The droplet injection velocity is adjusted such that the droplet reaches the tube
center line when its velocity in the X direction drops to zero.

A laminar flow of the drying gas with controlled temperature and humidity enters
the tube from the top to provide the heat needed for evaporation. A high resolution
camera is used along with a strobe light to acquire the data of the droplet trajectory
during its evaporation in the glass tube.

Given the tube dimensions and the camera magnification the resulting photos can
be processed to give the droplet trajectory. The accuracy of the resulting trajectory
data will depend in part on the camera resolution.
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Figure 4.1: The droplet chain setup.

4.3 The hybrid approach for the determination of the
variable evaporation rate

In this section the theory behind the proposed approach for the determination of the
variable evaporation rate, κ(t), is explained. The equations used to calculate differ-
ent variables are derived and the numerical methods used for the implementation
are explained.

4.3.1 Theory

Neglecting the buoyancy force (due to the much higher density of the droplet (e.g.,
∼ 103 kg/m3) compared to that of the drying gas (e.g., ∼ 1 kg/m3)), the droplet
motion is governed by two forces, the drag force and the gravitational force.

For an evaporating solution droplet, the droplet density, ρd, can be calculated
as follows:

m = msolute +msolvent =
π

6

[
d3

oco + d3(t)ρl

]
(4.1)

ρd =
m

v
(4.2)

ρd = ρl + co

[
do

d(t)

]3

(4.3)

Using a coordinate system attached to the setup such that the glass tube center
line represents the Y axis and points downwards and the droplet generator center
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line represents the X axis (Figure 4.1), the droplet equation of motion can be written
as follows:

FG + FD =
d(mv)

dt
(4.4)

FG + FD = ma + v
dm

dt
(4.5)

dm

dt
=
π

2
ρld

2 dd

dt
(4.6)

FG = mg =
π

6

[
d3

oco + d3ρl

]
g (4.7)

FD =
1

2
ρg||vr||2Apro

CD

Ccs
nr (4.8)

Apro =
π

4
d2 (4.9)

nr =
vr

||vr||
(4.10)

vr = vdg − v (4.11)

Ccs = 1 +
λ

d

[
2.34 + 1.05 exp

(
−0.39

d

λ

)]
(4.12)

The drag coefficient, CD, depends on the range of the Re number of the droplet.
For small Re numbers of less than unity, the following expression can be used [Hinds,
1999]:

CD =
24

Re
(4.13)

For higher Re numbers the following relation can be used which is accurate
within ± 5 % for Re less than 800 [Clift et al., 1978].

CD =
24

Re

(
1 + 0.15Re0.687

)
(4.14)

Substituting all the variables in Equation 4.4 yields the following differential
equation for the droplet diameter, d.

dd(t)

dt
=

2

vπρld2(t)
[FG + FD −ma] (4.15)

The solution of Equation 4.15 gives the droplet diameter at any given time; then
the evaporation rate can be calculated. Note that this equation is valid for both X
and Y directions but with different values for v and a components.

The droplet velocity and acceleration can be calculated from the droplet trajec-
tory as follows:

v =
ds

dt
(4.16)
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a =
d2s

dt2
=

dv

dt
(4.17)

For a laminar flow in a circular tube the radial velocity profile is given by:

vdg(sx) = 2 vav

[
1−

(
2sx

dt

)2
]

(4.18)

4.3.2 Calculation of the droplet velocity and acceleration

Equation 4.15 uses the velocity and acceleration of the droplet that are calculated
from its trajectory data. The first source of errors comes from the trajectory data
and how they were acquired using the high resolution camera. The measurement
errors in the velocity and acceleration values will add to the error introduced by
the numerical approximation of the governing equation. To avoid the propagation
of the numerical error in the calculation of the velocity to the calculation of the
acceleration, the acceleration is calculated from the displacement rater than from
the velocity.

Regardless of the numerical scheme used, the accuracy of the calculated veloc-
ity and acceleration will depend on the time increment between the trajectory data
points, which in turn is a function of the droplet generator frequency. The preceding
discussion suggests that the use of the commonly used second order schemes is not
feasible and a numerical scheme with high order of accuracy is necessary, especially
at low droplet generation frequencies.

Four finite difference schemes have been tested.

• 8th order central difference scheme.
• 4th order Padé scheme.
• 6th order C-D scheme.
• 8th order C-D scheme.

8th order central difference scheme

This is a standard finite difference scheme with 8th order accuracy [Fornberg, 1988].
The first derivative of displacement (i.e., velocity) is calculated using the following
8th order central scheme.

f
′
i ≈

1

h

[
1

280
fi−4 −

4

105
fi−3 +

1

5
fi−2 −

4

5
fi−1

+
4

5
fi+1 −

1

5
fi+2 +

4

105
fi+3 −

1

280
fi+4

] (4.19)

The velocity at the end points are calculated using 8th order one sided schemes.

f
′
1 ≈

1

h

[
−761

280
f1 + 8f2 − 14f3 +

56

3
f4 −

35

2
f5

+
56

5
f6 −

14

3
f7 +

8

7
f8 −

1

8
f9

] (4.20)
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f
′
n ≈

1

h

[
761

280
fn − 8fn−1 + 14fn−2 −

56

3
fn−3 +

35

2
fn−4

−56

5
fn−5 +

14

3
fn−6 −

8

7
fn−7 +

1

8
fn−8

] (4.21)

The second derivative of displacement (i.e., acceleration) is calculated using the
following 8th order scheme.

f
′′
i ≈

1

h2

[
−1

560
fi−4 +

8

315
fi−3 −

1

5
fi−2 +

8

5
fi−1

−205

72
fi +

8

5
fi+1 −

1

5
fi+2 +

8

315
fi+3 −

1

560
fi+4

] (4.22)

The acceleration at the end points are calculated using 7th order one sided
schemes.

f
′′
1 ≈

1

h2

[
29531

5040
f1 −

962

35
f2 +

621

10
f3 −

4006

45
f4

+
691

8
f5 −

282

5
f6 +

2143

90
f7 −

206

35
f8 +

363

560
f9

] (4.23)

f
′′
n ≈

1

h2

[
−29531

5040
fn +

962

35
fn−1 −

621

10
fn−2 +

4006

45
fn−3

−691

8
fn−4 +

282

5
fn−5 −

2143

90
fn−6 +

206

35
fn−7 −

363

560
fn−8

] (4.24)

7th order one sided schemes are used for acceleration to keep the same stencil
width used for velocity calculations.

4th order Padé scheme

The Padé scheme is a compact finite difference scheme [Lele, 1992; Moin, 2010]. It
has a higher accuracy with fewer stencil points compared to the standard finite dif-
ference schemes. This is achieved by expressing the derivative at a certain point as
a function of the derivatives at neighbor points which results in a system of coupled
equations of size n that needs to be solved simultaneously.

The 4th order Padé scheme with 3rd order accuracy at the boundary for the first
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derivative is given as follows:



1 2 0 0 0 · · · 0
1 4 1 0 0 · · · 0
0 1 4 1 0 · · · 0
...

...
. . .

. . .
. . .

...
...

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · 1 4 1
0 0 0 0 · · · 2 1


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h
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2f3
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(4.25)

The 4th order Padé scheme for the second derivative can be calculated by solving
the following system of equations:


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...
12 (fn−2 − 2fn−1 + fn)
2fn − 4fn−1 + 2fn−2
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(4.26)

6th order C-D scheme.

C-D schemes are a class of compact finite difference schemes that have higher order
of accuracy compared to the standard finite difference schemes and the Padé scheme
for the same stencil width [Mahesh, 1998]. Higher accuracy is achieved by express-
ing the first and second derivatives as a function of the first and second derivatives
of neighbor points. This results in a coupled system of linear algebraic equations of
size 2n. Despite the higher computational cost, the C-D schemes are more suited
for applications when both the first and second derivative are needed.

The scheme is 6th order accurate for interior points while it is 3rd order accurate
for the boundary points 1 and n. The first and second derivative are calculated by
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solving the following system of equations:
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′′
n



≈ 1

h



3 (f2 − f1)
9f1 − 12f2 + 3f3

...

15 (fi+1 − fi−1)
24 (fi−1 − 2fi + fi+1)

...

3 (fn − fn−1)
−9fn + 12fn−1 − 3fn−2



(4.27)

8th order C-D scheme.

This scheme is 8th order accurate for the interior points 3 to n−2, 6th order accurate
for the interior points 2 and n− 1 and 3rd order accurate for the boundary points 1
and n.

The first and second derivative are calculated by solving the following system of
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equations:



1 0 2 −h/2
0 h −6 5h 0
7 h −16 0 7 −h
9 −h 0 8h 9 −h 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 51 9h 108 0 51 −9h
−138 −18h 0 108h 138 −18h 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 7 h 16 0 7 −h
−9 −h 0 8h 9 −h

0 2 h/2 1 0
−6 −5h 0 −h





f
′
1

f
′′
1

f
′
2

f
′′
2
...

f
′
i

f
′′
i
...

f
′
n−1

f
′′
n−1

f
′
n

f
′′
n



≈ 1

h



3 (f2 − f1)
9f1 − 12f2 + 3f3

15 (f3 − f1)
24 (f1 − 2f2 + f3)

...

107 (fi+1 − fi−1)− (fi+2 − fi−2)
− (fi+2 + fi−2) + 352 (fi+1 + fi−1)− 702fi

...

15 (fn − fn−2)
24 (fn−2 − 2fn−1 + fn)

3 (fn − fn−1)
−9fn + 12fn−1 − 3fn−2


(4.28)

The reason for the reduced order of accuracy at the end points for the implicit
difference schemes (i.e., Padé and C-D) comes from some considerations in the
numerical solution of ordinary differential equations [Moin, 2010] as will be discussed
in a later section (subsection 4.4.4).

4.3.3 Calculation of the droplet diameter and the evaporation rate

Equation 4.15 can be solved for the droplet diameter at any time and the evaporation
rate can be calculated afterwords. Starting with a known initial droplet diameter,
do, the droplet diameter, d(t + ∆t), can be calculated by numerically integrating
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Equation 4.15 as follows:

d(t+ ∆t) ≈ d(t) +
2∆t

vπρld2(t)
[FG + FD −ma] (4.29)

Equation 4.29 can be solved for either of the two directions. However, the droplet
velocity in each direction is zero at some point in its trajectory. vx approaches zero
as the droplet approaches the tube center line and vy is zero for the horizontally in-
jected initial droplet. The R.H.S. of Equation 4.29 approaches infinity in both cases.

This problem can be avoided by writing Equation 4.29 for both directions then
summing them to calculate the droplet diameter, d, as follows (see Appendix B for
the derivation):

d(t+∆t) ≈ d(t)+
2∆t

(vx + vy)πρld2(t)
[FGx + FGy + FDx + FDy −m(ax + ay)] (4.30)

The used coordinate system has to be chosen such that the sum of the two ve-
locity components (i.e., vx + vy) is never zero as shown in Figure 4.1.

A better option is to solve the droplet equation of motion in the direction tan-
gential to its motion; in this case the droplet velocity will always be more than zero.
The resulting equation is:

d(t+ ∆t) ≈ d(t) +
2∆t

vsπρld2(t)
[FGs + FDs −mas] (4.31)

Where the subscript s denotes the component of vector quantities tangential to
the droplet trajectory.

In the literature there is more than one definition for the evaporation rate. In
the present work the particle engineering definition will be used [Vehring, 2008].

d2(t) = d2
o − κt (4.32)

Differentiating this equation with respect to time gives the expression for the
evaporation rate.

κ = −dd2(t)

dt
= −2d(t)

dd(t)

dt
(4.33)

The evaporation rate, κ, can now be calculated using Equation 4.33 and assuming
a constant evaporation rate during the time increment ∆t [Roth et al., 2004].

κ(t) ≈ d2(t)− d2(t+ ∆t)

∆t
(4.34)

Where ∆t can be calculated from the droplet generation frequency as follows:

∆t =
1

f
(4.35)

Starting from a known initial droplet diameter, do , the evaporation rate and
the droplet diameter can be calculated until the end of the evaporation process.
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4.4 Results and discussion

To assess the validity and accuracy of the proposed approach, the calculated evap-
oration rate for a set of benchmark problems is compared with experimental or
analytical values given in literature. To the best of the author’s knowledge there is
no available data in the literature for the evaporation rate of droplets as a function
of the trajectory data. This is expected since all the available data is either analyt-
ically derived or optically measured using different light scattering techniques. The
proposed approach is kinematics based, so the evaporation rate can be calculated
even without knowing many of the droplet and drying gas properties (e.g., viscosity,
latent heat of vaporization, saturation pressure/temperature relationship, thermal
conductivity and heat capacity ... etc.) that are essential to the analytically derived
models. To validate the model experimentally, an experimental setup was built.

4.4.1 Non-evaporating droplet

The first test case is a non-evaporating droplet in a stagnant flow. The reason for
this is the ease of analytically calculating the trajectory for a constant diameter
droplet [Hinds, 1999].

Although it looks trivial, the constant diameter droplet case turns out to be
the most important case in validating the proposed approach. For an evaporating
droplet the error in the calculated evaporation rate will be the total error coming
from all sources including the solution of the droplet equation of motion in addition
to the error in the trajectory data obtained experimentally. Any discrepancies be-
tween the known and calculated evaporation rate, κ, do not reflect the accuracy of
the proposed algorithm.

For the case of a zero evaporation rate, κ, the trajectory data can be analyti-
cally calculated and does not need any measurements. Actually the algorithm will
be using a group of variables that should ideally lead to an evaporation rate of zero.
In this case the calculated evaporation rate will be the error introduced by the pro-
posed approach.

For a non-evaporating droplet, the injection velocity vix can be calculated using
the glass tube radius as the stopping distance as follows [Hinds, 1999]:

vix =
1

2

dt

τro
(4.36)

Where: τro is the initial droplet relaxation time and is given by [Hinds, 1999].

τro =
ρdd

2
oCcs

18µ
(4.37)

Since the droplet is injected horizontally in the tube, the initial droplet velocity
in the Y direction, viy, is zero. The droplet velocity in the X direction, vfx, becomes
zero as the droplet reaches the tube center line while the Y component of the velocity,
vfy, becomes the droplet terminal settling velocity, vts, given as follows [Hinds, 1999]:

vts = τrog (4.38)

The droplet trajectory can then be calculated as follows using Stokes’s law for
drag (Equation 4.13) ,without an external flow around the droplet and assuming a
constant droplet density [Hinds, 1999].
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x(t) =
[
vfxt− (vfx − vix) τro

(
1− exp

−t
τro

)]
− dt

2
(4.39)

y(t) =
[
vfyt− (vfy − viy) τro

(
1− exp

−t
τro

)]
(4.40)

The calculated trajectory data (i.e., x(t) and y(t)) can be used instead of the
measured one. The trajectory data was calculated for the first 100 ms of the droplet
lifetime.

4.4.2 Role of the droplet generation frequency

It is clear that the accuracy of the predicted evaporation rate will depend on the
droplet generation frequency. As will be shown later, the error becomes significant
for droplet generation frequencies below 1000 Hz. In fact most of the results reported
in literature are for the droplet diameter rather than the evaporation rate, κ [Roth
et al., 2004], for a high range of droplet generation frequency, f (20-70 kHz) [Homer
et al., 2009] and for droplets of liquid mixtures without any solutes [Hopkins and
Reid, 2005, 2006].

4.4.3 Test cases

Three different droplet generation frequencies (250, 500 and 1,000 Hz) are tested
for two droplet diameters (50 and 100 µm) with a solvent density ρl of 103 kg/m3.
For all cases the glass tube internal diameter is 30 mm. The drying gas is air at a
temperature of 360 K and atmospheric pressure of 1.014 bar.

Table 4.1 shows the final calculated evaporation rate for various differencing
schemes. The 8th order FDM gives the most accurate results especially at higher
droplet generation frequencies and larger droplets.

Table 4.1: The final predicted evaporation rate, κ (µm2/ms).

f (Hz)
FDM 8th Padé 4th C-D 6th C-D 8th

50 µm 100 µm 50 µm 100 µm 50 µm 100 µm 50 µm 100 µm

250 119.37 0.0 -76.40 1.36 -0.84E3 1.04 -1.27E8 -5.52E3
500 4.65 0.0 -58.05 0.21 -1.00E4 57.05 -1.07E6 -1.80E4

1,000 0.05 0.0 -58.57 0.03 -3.14E3 31.16 -1.47E6 -23.16

The accuracy for all schemes decreases dramatically with the decrease in the
droplet generation frequency. However the effect of the droplet size is more sig-
nificant. This shows that a high order scheme is needed especially for low droplet
generation frequencies and smaller droplets.

Table 4.2 shows the normalized final droplet diameter. This value shows the
loss of the initial droplet diameter due to the cumulative error in the calculated
evaporation rate.

Both tables (Table 4.1 & Table 4.2) show that both C-D schemes (6th & 8th

order) have a very large error compared to the 8th FDM and the 4th Padé schemes.

CHAPTER 4 - 57 - Mohammed A. Boraey



A Particle Engineering Approach for the Design of Structured Microparticles

Table 4.2: Normalized final droplet diameter, d
d0

.

f (Hz)
FDM 8th Padé 4th C-D 6th C-D 8th

50 µm 100 µm 50 µm 100 µm 50 µm 100 µm 50 µm 100 µm

250 0.49 0.99 -0.57 0.99 -1.89 0.99 737.42 5.10
500 0.99 0.99 -0.51 0.99 -6.67 0.86 -68.59 9.14

1,000 0.99 1.00 -0.51 0.99 -3.77 0.93 -2.58 -0.32

For this reason the two C-D schemes will not be used for the rest of the study. The
reason for their large error despite their higher accuracy is discussed in a following
section.

Figure 4.2 shows the normalized droplet diameter for the 50 µm diameter
droplet. It highlights the cumulative nature of the error. The normalized final
droplet diameter is affected by all the errors accumulating from the calculations at
the previous time steps. Ideally this value is unity for the cases considered.

8th FDM 4th Padé

Figure 4.2: Normalized droplet diameter for the 50µm droplet.

Figure 4.3 shows the same information for the 100 µm diameter droplet case. It
is clear that the error decreases for larger droplets, which puts a lower limit on the
droplet size for a given scheme. These figures also help to identify at which time in
the drying process the largest error occurs.

4.4.4 Optimal selection of the numerical scheme

Although the use of the 8th order FDM scheme looks favorable because of its small
error, the downside of this scheme is that it needs a minimum number of data points
to achieve this accuracy due to its wider stencil. For high values of droplet genera-
tion frequency, f , this is not a problem because the small time increment between
the droplets allows the collection of a large number of data points.
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8th FDM 4th Padé

Figure 4.3: Normalized droplet diameter for the 100µm droplet.

On the other side for low values of f the distance and time between successive
droplets is relatively large which may not provide the minimum number of data
points for this scheme during the droplet lifetime.

A possible way to overcome this problem is to extend the measurement time,
even unnecessarily. This will increase the cumulative error at the end point and may
need a longer glass tube and a higher camera resolution to get the droplet trajectory
in this long range with a reasonable accuracy. Another drawback of this approach
is the difficulty of obtaining accurate trajectory data for smaller droplets. Normally
droplets smaller than a specific size are not visible to the camera.

Using the 4th order Padé scheme does not suffer from these limitations since it is
a compact scheme which means that it achieves high numerical accuracy with fewer
stencil points [Moin, 2010; Lele, 1992; Mahesh, 1998]. It is worth mentioning that
despite its advantages, the Padé scheme is computationally more expensive than
the traditional finite difference schemes. It involves the inversion of a matrix. This
matrix is tridiagonal for the 4th order Padé scheme so its inversion is relatively easy,
but for higher order Padé schemes the matrix is a banded matrix which makes its
inversion more expensive especially for large data sets.

A better solution seems to be the use of higher order compact schemes (8th order
or higher) like the C-D schemes despite their higher computational cost compared
to the Padé schemes and the standard FDM schemes.

C-D schemes are a class of compact schemes that are considered to be a gener-
alization of the Padé schemes [Mahesh, 1998]. For example a 6th order accuracy for
the first derivative needs a stencil width of 7 points for the FDM scheme [Fornberg,
1988], 5 points for the Padé scheme [Moin, 2010] and 3 points for the C-D scheme
[Mahesh, 1998]. The drawbacks of the C-D schemes are its higher computational
cost (requires the inversion of a matrix of size 2n compared to a matrix of size n
for the Padé schemes and no matrix inversion at all for the FDM schemes) and a
reduced order of accuracy at the boundary points.

For compact schemes, lower order boundary formulations have to be used to
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ensure the stability of the overall scheme since the use of a boundary scheme with
the same order of accuracy of the internal points does not always guarantee stability
[Mahesh, 1998].

Since the derivatives are calculated by the solution of a coupled system of equa-
tions, this reduced order of accuracy at the boundary points affects the solution on
all points. Although it has been suggested that the effect of this reduced order is
limited to points close to the boundary for the Padé schemes [Moin, 2010], it was
shown that the global error is largely determined by the boundary schemes [Lele,
1992].

The previous discussion explains the reason for the poor performance of the
C-D schemes as shown in Table 4.1 and Table 4.2 compared to the FDM and
Padé schemes. Another reason is that the C-D schemes are used in the present
work to calculate temporal rather than spatial derivatives which makes the coupling
between the boundary points (actually initial and final time points) and internal
points stronger. In other words, even if the lower order of accuracy in estimating
the derivatives is limited to boundary points, the error in calculating the droplet
diameter propagates into all subsequent time points.

The search for higher order differencing schemes comes from the fact that the
droplet generation frequency, f , is not determined by a required order of accuracy for
the droplet velocity and acceleration, but rather by other considerations pertaining
to the droplet generation process, i.e., a specific production rate, a predetermined
spacing between successive droplets in the chain ... etc. So, in some cases, the use
of low order schemes might be acceptable.

Finally, the use of the 8th order FDM scheme is an optimal selection in terms
of accuracy and computational cost unless the minimum number of data point can
not be obtained. In this case the 4th order Padé can be used.

4.5 A simplified approach

Because of the transient nature of the evaporation process, the governing equation
for the droplet diameter, d, has to be solved by stepping in time (Equation 4.15).
In a real evaporation process, the droplet trajectory is obtained using a camera
and not calculated analytically as in subsection 4.4.1. In this case, any error in the
droplet trajectory will be reflected into the calculated evaporation rate. This error
will propagate very fast in subsequent time steps due to the transient nature of the
problem. The error in the estimation of the initial droplet diameter, do, (which is a
required variable for the previously proposed approach) is another source of errors
which contributes in making the approach less suitable for practical applications.

4.5.1 Theory

In this section, a much simpler approach is proposed for the determination of the
variable droplet diameter, d(t), and the variable evaporation rate, κ(t), that min-
imizes the propagation of the error in the droplet trajectory data and the initial
droplet diameter.

This is done by calculating the droplet diameter, d(t), from the droplet velocity in
the Y direction assuming that the droplet has reached its terminal settling velocity,
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vts as follows:

d(t) ≈

√
18µvts(t)

ρp(t)Ccs(t)g
(4.41)

In order to use this approximation, some assumptions and conditions have to be
met which can be summarized as follows:

• The droplet Reynolds number, Re, is less than unity (i.e., small droplet d(t)).

• The droplet velocity in the Y direction, vy(t), should be calculated using the
minimum number of trajectory points.

• The droplet relaxation time, τr(t), is small compared to the time step between
the droplets, ∆t.

• The component of droplet velocity relative to the gas velocity in the Y direc-
tion, vr, can be approximated as the droplet terminal settling velocity, vts.

• The slip correction factor, Ccs, for the droplet should be close to unity.

The first condition is necessary because the droplet terminal settling velocity can
only be calculated analytically for droplets with a Reynolds number less than unity
[Hinds, 1999]. If this condition is not satisfied for the first droplet in the chain, the
proposed approach can still be used but starting from the first point in the droplet
chain that satisfies this condition.

The second condition is required to minimize the propagation of the error in
obtaining the droplet trajectory date. The minimum number of points to calculate
vy is two, using Euler’s first order approximation as follows:

vy(t) ≈
y(t+ ∆t)− y(t)

∆t
(4.42)

Although a higher order approximation is favored, the uncertainty in the trajec-
tory data does not guarantee a better approximation for the droplet velocity.

The third condition is required because the relaxation time, τr, reflects how fast
the droplet accommodates to the surrounding flow field. For a particle starting from
rest, the time needed to reach 63% of its terminal settling velocity ,vts, is t = τr
and to reach 95% of vts is t = 3τr. So in assuming that the droplet has a constant
diameter between two trajectory points, a small τr compared to ∆t makes the as-
sumption that the droplet reached its terminal settling velocity a reasonable one. If
this condition is not satisfied the proposed approach can still be used but starting
from the first point in the chain that satisfies it. This is possible since the droplet
relaxation time decreases with the square of the droplet diameter as it evaporates,
while the time step, ∆t, is constant.

The droplet/particle relation time, τr(t), can be calculated as follows [Hinds,
1999]:

τr(t) =
ρd(t)d(t)2Ccs(t)

18µ
(4.43)

While the time step, ∆t, is given by Equation 4.35. The proposed approach
can still be used even if this condition is not strictly satisfied. This is because the
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droplet does not actually start from rest, but rather changes it velocity from the
terminal settling velocity at one diameter to a lower terminal velocity at a smaller
diameter.

The fourth condition is based on the third one by assuming that droplet reaches
its terminal settling velocity in the time interval ∆t.

The last condition is required since the slip correction factor, Ccs, is a non-linear
function of the droplet diameter, d, and Equation 4.41 has to be solved iteratively
if this condition is not satisfied. At atmospheric pressure, a droplet/particle with a
diameter of 10 µm or more satisfies this condition.

For multi-component droplets, the dependence of the droplet density, ρd, on the
droplet diameter, d(t), through Equation 4.3 also necessitates the use of an iterative
approach to solve Equation 4.41 for the droplet diameter, d(t).

However, this can be avoided by calculating the droplet aerodynamic diameter,
da(t), which does not depend on the droplet density, ρd, as follows (assuming a slip
correction factor, Ccs, close to unity):

da(t) =

√
18µvts

ρ∗Ccsg
(4.44)

Assuming a droplet chain centered at the tube center line with a fully developed
laminar flow velocity profile and satisfying all the previously mentioned conditions,
the droplet diameter at any time, d(t), can be calculated as follows:

d(t) =

√
18µ

ρdg

[
∆yf − 8

π

Q

d2
t

]
(4.45)

Where: Q is the drying gas flow rate. The evaporation rate, κ(t), can then be
calculated using Equation 4.34.

This simplified approach theoretically looks less accurate than the detailed ap-
proach suggested before. However, practical considerations related to the uncertain-
ties of different measured parameters makes it more accurate than the detailed one
in some cases.

The droplet terminal settling velocity, vts, is the difference between the measured
droplet velocity in the Y direction, vy, and the drying gas velocity, vdg.

vts = vy − vdg (4.46)

The droplet/particle terminal settling velocity, vts, has to be larger than the
uncertainty in the measured droplet velocity, vy. This puts a lower limit on the
smallest droplet diameter, d(t), that can be calculated with a reasonable accuracy.
It also puts an upper limit on the maximum flow rate in the tube, Q, in addition to
the condition of a droplet Reynolds number, Re, less than unity.

In case of high gas temperatures, convection currents impose a limit on the
minimum gas flow rate that can be used. The drying gas should have enough
momentum to overcome convection currents resulting from non-uniform temperature
distribution so that a stable droplet chain can be achieved.
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4.5.2 A test case

In this section, a test case on the use of the simplified approach is presented to
validate the proposed approach. All the required physical properties of the drying
gas (air) and the solvent (acetone) are given in Appendix C.

The test case is the evaporation of acetone droplets. An acetone droplet chain
was generated using the droplet chain setup and was allowed to evaporate in air
at a room temperature of 18 ◦C with a generation frequency of 50 Hz. A digital
camera was used to obtain the droplet trajectory during evaporation. The obtained
image was used to calculate the coordinates of each droplet in the droplet chain.
The drying gas (air) has a flow rate of 1 L/min and the internal tube diameter was
30 mm.

Figure 4.4: Trajectories of an evaporating acetone droplet chain.

Figure 4.4 shows a photo of the evaporating droplet chain and the measured
Y coordinates of the droplets. The droplet diameter can then be calculated using
Equation 4.45. Note that the first two droplets in the chain will not be considered
because they are not at the tube center line.

Figure 4.5: Calculated droplet diameter for the acetone droplet chain.

Figure 4.5 shows the calculated droplet diameter squared, d2, from the obtained
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trajectory data along with a liner fit. The variations around the linear fit shows
that the detailed time stepping approach will suffer from a big error propagation
and even with the simplified approach, the instantaneous evaporation rate, κ(t),
will not be accurate. The linear fit shows the trend of a constant evaporation rate
according to what is known as the d2 law [Finlay, 2001].

The slope of the linear fit is the average evaporation rate in the observed evap-
oration period. Based on these results the evaporation rate is calculated to be
κ = 14.99 µm2/ms.

The assumption of a Reynolds number less than unity can be checked by plotting
the droplet Reynolds number for the observed period of evaporation time as shown
in Figure 4.6.

Figure 4.6: Droplet Reynolds number during evaporation.

Where the droplet Reynolds number is calculated as follows:

Re =
ρdg||vts||d

µ
(4.47)

The last droplet in the chain has a diameter of 42.12 µm, so the slip correction
factor, Ccs, can be assumed to be unity. The first droplet used to calculate the evap-
oration rate has a diameter of 85.21 µm with a corresponding relaxation time of τr
= 16 ms. This relaxation time is smaller than the time step between the droplets,
∆t = 1

f = 20 ms. All the conditions necessary to use the simplified approach are

satisfied in the current test case.

The verification of the predicted evaporation rate can be done by comparing it
to the evaporation rate predicted using Maxwell’s equation. The evaporation rate
based on Maxwell’s equation can be written as follows [Finlay, 2001] assuming that
Stefan flow can be neglected.

κ = −dd2

dt
=

8Ds[c̃s − c̃∞]

ρl
(4.48)

Where: c̃s is the solvent vapor concentration at the droplet surface and c̃∞ is
the solvent vapor concentration far from the droplet surface. Equation 4.48 requires
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the determination of the droplet equilibrium temperature, Td, in order to calculate
c̃s.

The equilibrium temperature, Td, can be calculated assuming that the droplet
will maintain a constant temperature during evaporation as follows [Finlay, 2001]:

LDs(c̃s − c̃∞) + k(Td − T∞) = 0 (4.49)

Material properties in the gas phase, i.e., L,Ds andk, can be approximated by
those of the surrounding medium (air in this case). This assumption is valid as long
as the partial pressure of the solvent vapor at the droplet surface is small, as will
be shown later [Finlay, 2001].

T∞ is the surrounding gas temperature (18 ◦C in this case). This equation has
to be solved iteratively because of the dependence of c̃s on Td. Solving Equation 4.49
gives:

• Solvent surface vapor concentration, c̃s = 0.124 kg/m3

• Droplet temperate, Td = -12.92 ◦C

• Solvent surface vapor pressure, Ps = 4608.42 Pa

To assess the validity of the constant droplet temperature assumption, the fol-
lowing inequality was checked [Finlay, 2001]:

8Ds(c̃s − c̃∞)cp

12k
� 1 (4.50)

Substituting all variables in Equation 4.50, this quantity is found to be 0.086.
So this assumption is valid.

Now we have to check the second assumption of negligible Stefan flow. This
assumption is valid if the ratio of vapor pressure at the droplet surface to the total
pressure is small [Finlay, 2001].

Ps

Ptotal
� 1 (4.51)

Where: Ptotal is the total pressure (atmospheric in this case). In this case, this
ratio is 0.045.

Now we can use Equation 4.48 to estimate the evaporation rate. The calculated
value is κ = 15.51 µm2/ms. This corresponds to an error of eκ = 3.4% in the cal-
culated evaporation rate using the simplified approach.

Given the fact that Maxwell’s equation is a simplified mathematical description
of the evaporation process, we can see that the proposed approach has a good
accuracy.

4.6 Conclusions

A new approach for the determination of the variable evaporation rate of a droplet
of virtually any composition is presented. The approach relies on solving the droplet
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equation of motion numerically given its experimentally acquired trajectory data.
The approach was validated by calculating the evaporation rate of a constant diam-
eter droplet. The error predicted was minimal for a droplet generation frequency of
1000 Hz or more.

The poor performance of the higher order compact schemes suggests that the
standard FDM schemes are the best option for the problem at hand.

The proposed approach offers a robust, easy to use, less complicated and less ex-
pensive alternative for the determination of a time dependent evaporation rate with
the minimal knowledge of the material properties of different components involved
in the evaporation process.

The proposed approach can be used to easily generate charts and look up ta-
bles for the evaporation rates of a variety of multi-component solutions at different
conditions. Although the proposed technique lacks accuracy at very low droplet
generation frequencies, it is promising and can be greatly improved by identifying
the sources of errors and working to minimize them through further test cases.

This approach can be used to establish correlations or tabulated data for the
evaporation rate of different solvents and solvent mixtures for pure and non pure
droplets. Since the droplet chain setup is temperature and humidity controlled, the
evaporation rate at different surrounding conditions can also be measured.

In the case of high uncertainties in the measured droplet trajectory data or low
droplet generation frequencies, a simplified approach is introduced that minimizes
the propagation of the error in the predicted droplet diameter and evaporation rate.
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Chapter 5

Concentration profiles of an
evaporating cylindrical solution
droplet

5.1 Introduction

The purpose of this chapter is to develop an asymptotic state solution and a tran-
sient solution for the case of an evaporating cylindrical solution droplet.

The main motive to develop such a solution for this hypothetical case is to have
a verification for the proposed numerical model that will be discussed in chapter 6.
Similar to the case of a spherical droplet, We will start by developing the solute
concentration profiles and surface enrichment for the asymptotic state then move to
the transient case.

5.2 Asymptotic state solution

The solution developed here will follow the same approach developed by Gardner
[Gardner, 1965] with some modifications to account for the difference in the droplet
geometry (i.e., cylindrical vs. spherical).

Assume we have a cylindrical droplet that is infinitely long. If this droplet evap-
orates we can assume that the droplet height remains constant while the radius,
rs(t), shrinks. If the droplet is a solution droplet, we expect that the evaporation of
the solvent will generate a radial concentration gradient of the solute that depends
on the solute properties and the rate of evaporation.

Assuming the mass diffusion coefficient of the solute in the solvent, D, to be
constant, the solute radial concentration profile can be described by the one di-
mensional diffusion equation in the radial direction in cylindrical coordinates. This
equation can be written as follows:

∂C

∂t
= D

[
∂2C

∂r2
+

1

r

∂C

∂r

]
(5.1)
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The radial coordinate, r, can be normalized by the time dependent droplet ra-
dius, rs(t), to give the following normalized equation (see a similar derivation in
chapter 2):

∂C

∂t
=

D

r2
s (t)

(
∂2C

∂R2
+

1

R

∂C

∂R

)
+

R

rs(t)

∂C

∂R

∂rs(t)

∂t
(5.2)

The assumption that the droplet is evaporating with a constant evaporation
rate, κ, as defined by Vehring [2008]; Vehring et al. [2007] can be incorporated
mathematically as follows [Gardner, 1965]:

d2(t) = −κt (5.3)

r2
s (t) = −1

4
κt (5.4)

∂r2
s (t)

∂t
= −1

4
κ (5.5)

Substituting Equation 5.4 and Equation 5.5 in Equation 5.2 and using the def-
inition of the Péclet number, Pe = κ

8D [Vehring, 2008; Vehring et al., 2007], Equa-
tion 5.2 can be written as follows after normalizing the concentration C:

∂2c

∂R2
+
∂c

∂R

[
1

R
−RPe

]
+ 2Pe

∂c

∂t
t = 0 (5.6)

At the asymptotic state of a cylindrical droplet, the concentration, c, at any
point, R, can be assumed to be proportional to the inverse of the droplet radius,
rs(t), squared. (This is equivalent to saying that all points will have a concentration,
c, that is changing with the same rate of the mean concentration, cm, since the
droplet height is constant).

cor
2
o = cr2

s (5.7)

c = co

(
ro

rs

)2

(5.8)

c ∝ r−2
s (5.9)

For a given constant evaporation rate, κ, the relation between the droplet radius,
rs(t), and time, t, can be derived from Equation 5.4 as follows:

r2
s (t) ∝ −t (5.10)

From Equation 5.9 and Equation 5.10 the concentration, c(t), at any point, R,
in the asymptotic state can be written as follows:

c ∝ (−t)−1 (5.11)

c = A(−t)−1 (5.12)

Where: A is a constant.
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The term
[
−t∂c∂t

]
in Equation 5.6 can be replaced by a time independent term

in the asymptotic state as follows:

c = A(−t)−1 (5.13)

∂c

∂t
= A(−t)−2 (5.14)

−t∂c
∂t

= A(−t)−1 (5.15)

−t∂c
∂t

= c (5.16)

Substituting Equation 5.16 in Equation 5.6 gives the following equation for the
solute concentration at the asymptotic state.

∂2c

∂R2
+
∂c

∂R

[
1

R
−RPe

]
− 2cPe = 0 (5.17)

The solution for Equation 5.17 is given by:

c(R) = cc exp

[(
Pe

2

)
R2

]
(5.18)

Where: cc is the concentration at the droplet center (which is time dependent).

The solution satisfies the following two boundary conditions (see chapter 2 for
more details):

∂c

∂R
= 0 at R = 0 (5.19)

∂c

∂R
− cPe = 0 at R = 1 (5.20)

The mean concentration, cm, can then be calculated from c(R) as follows:

π(1)2cm =

∫ 1

0
c(R)2πRdR (5.21)

cm = 2cc

∫ 1

0
R exp

[(
Pe

2

)
R2

]
dR (5.22)

cm = 2ccβ (5.23)

β =

∫ 1

0
R exp

[(
Pe

2

)
R2

]
dR (5.24)

In this case, Equation 5.24 can be integrated analytically to calculate β as follows:

β =

∫ 1

0
R exp

[(
Pe

2

)
R2

]
dR (5.25)
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β =
1

Pe

∫ 1

0
PeR exp

[(
Pe

2

)
R2

]
dR (5.26)

β =
1

Pe

[
exp

(
Pe

2
R2

)]1

0

(5.27)

β =
exp

(
Pe
2

)
− 1

Pe
(5.28)

Using Equation 5.23, the concentration, c(R), can be expressed as follows:

c(R) =
cm

2β
exp

[(
Pe

2

)
R2

]
(5.29)

And the surface concentration, cs, is obtained at R = 1 as follows:

cs =
cm

2β
exp

(
Pe

2

)
(5.30)

Surface enrichment, E, can be calculated from Equation 5.30 as follows:

E =
cs

cm
=

1

2β
exp

(
Pe

2

)
(5.31)

Substituting the value of β from Equation 5.28 into Equation 5.31 yields the
following expression for surface enrichment:

E =
cs

cm
=
Pe

2

exp
(
Pe
2

)
exp

(
Pe
2

)
− 1

(5.32)

For high Péclet numbers, Pe, Equation 5.32 can be simplified to the following
form:

E =
cs

cm
≈ Pe

2
(5.33)

The error in using Equation 5.33 instead of Equation 5.32 can be calculated as
follows:

e% =

∣∣∣∣Eexact − Eapprox

Eexact

∣∣∣∣× 100 (5.34)

e% =
100

exp
(
Pe
2

) (5.35)

e% is less than 0.7 % for Pe ≥ 10.

We can see that although both cases (spherical and cylindrical droplets) have
the same radial concentration profiles (i.e., Equation 5.18) surface enrichment, E,
is different because the concentration at the droplet center, cc, is not the same.
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5.3 Transient solution

In this section the transient solution for the concentration profile and surface en-
richment similar to the ones developed previously for spherical droplets (chapter 2)
will be developed .

The importance of the transient solution is twofold. First, to use it as a veri-
fication case for the Adaptive Interface Sweeping Method that will be discussed in
chapter 6. Second, to validate the asymptotic solution developed in section 5.2. The
procedure used is the same one used for spherical droplets but with some modifica-
tions.

The one dimensional diffusion equation in cylindrical coordinates (Equation 5.2)
can be normalized using the same normalization procedure to yield the following
equation:

∂c

∂τ
=

1

2Pe(1− τ)

(
∂2c

∂R2
+

1

R

∂c

∂R

)
− R

2(1− τ)

∂c

∂R
(5.36)

The normalized mean concentration, cm, can also be derived in terms of the
normalized time, τ , as follows:

cm =

(
ro
rs

)2

= (1− τ)−1 (5.37)

Transient surface enrichment, E(τ), can be obtained from the solution of Equa-
tion 5.36 and Equation 5.37.

In terms of the saturation ratio, s, Equation 5.36 reads as follows:

∂s

∂τ
=

1

2Pe(1− τ)

(
∂2s

∂R2
+

1

R

∂s

∂R

)
− R

2(1− τ)

∂s

∂R
(5.38)

It can also be expressed in terms of the concentration enrichment, e, as follows:

∂e

∂τ
=

1

2Pe(1− τ)

(
∂2e

∂R2
+

1

R

∂e

∂R

)
− R

2(1− τ)

∂e

∂R
− e

(1− τ)
(5.39)

5.3.1 Boundary and initial conditions

The same set of boundary and initial conditions used for the spherical droplet (sub-
section 2.6.1) will be used.

5.3.2 Mass conservation

The same approach developed to check for solute mass conservation (subsection 2.6.2)
will be used but with minor modifications.

The total system mass has to be checked every time step during the solution to
ensure mass conservation. In the real physical domain of the problem, the domain
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is changing with time (i.e., rs(t)) and mass can be simply calculated at each time
step as follows:

M(t) =

∫∫∫
v(t)

C dv (5.40)

Where: C is the solute concentration.

But since the radial coordinate, r, is normalized, the computational domain is
fixed and its volume does not reflect the actual volume of the droplet. An expression
has to be derived to express the system mass in terms of the normalized coordinate,
R.

Differential mass, dM , can be calculated for an elemental volume, dv = rdrdθdz,
in cylindrical coordinates as follows:

dM = C(r) dv = C(r) r dr dθ dz (5.41)

Since it is only the radial coordinate, r, that was normalized and not the other
two coordinates (i.e., θ, z), we can define the mass, m, as follows:

dm =
dM

dθdz
= C(r)r dr (5.42)

m(t) =

∫ rs(t)

0
C(r)r dr =

∫ 1

0
C(R)Rrs(t)dR rs(t) (5.43)

m(t) = r2
s (t)

∫ 1

0
C(R)RdR (5.44)

Equation 5.44 can be used to calculate the mass at any time, m(τ), using the
concentration, C(R), in the normalized coordinate , R. It can also be used to express
the ratio of the mass at any time, m(τ), to the initial mass, mo.

mo = r2
o

∫ 1

0
CoR dR = r2

oCo

∫ 1

0
R dR =

r2
oCo

2
(5.45)

m(t)

mo
= 2

(
rs

ro

)2 ∫ 1

0

C

Co
R dR (5.46)

m(τ)

mo
= 2(1− τ)

∫ 1

0

C

Co
R dR (5.47)

m(τ)

mo
= 2(1− τ)

∫ 1

0
cR dR (5.48)

Where: c is the normalized concentration, C
Co

. Equation 5.48 can be integrated
numerically using a zero order integration polynomial as follows:

m(τ)

mo
≈ 2(1− τ)

N∑
i=0

ciRi∆R (5.49)
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Where: N + 1 is the number of grid points and ∆R is the grid spacing (i.e.,
∆R = 1/N).

Although the ratio given by Equation 5.48 should be unity if mass conserva-
tion is achieved, it will be slightly different than unity even if the solution is mass
conservative. This is because the accuracy of the numerical integration given by
Equation 5.49 depends on the number of grid points, N + 1, and the integration
method. To account for this error, Equation 5.49 has to be corrected to account for
the accuracy of the numerical integration used.

We can start by calculating the ratio m(0)
mo

for the initial concentration profile,

co(R) = 1, at time τ = 0 assuming a constant grid spacing, ∆R.

m(0)

mo
≈ 2(1− τ)

N∑
i=0

ciRi∆R (5.50)

m(0)

mo
≈ 2(1− τ)∆Rco

N∑
i=0

Ri (5.51)

Ri = i∆R (5.52)

m(0)

mo
≈ 2(1− τ)(∆R)2co

N∑
i=0

i (5.53)

∆R =
1

N
(5.54)

m(0)

mo
≈ 2(1− τ)

1

N2
co

N∑
i=0

i (5.55)

N∑
i=0

i =
N(N + 1)

2
(5.56)

m(0)

mo
≈ 1 +

1

N
(5.57)

Equation 5.57 shows that the ratio calculated by Equation 5.49 is not unity and
has to be corrected. The correction factor is a function of the number of grid points
used, N + 1.

5.3.3 Stability considerations

Using an explicit scheme (i.e., first order Euler) for time stepping puts an upper
limit on the time step, ∆τ . The CFL condition can be used to calculate the maxi-
mum time step for a stable solution.

First, we need to know the velocity of the convective term. Equation 5.36 will
be rewritten by grouping all terms with a fist order spatial derivative together.

∂c

∂τ
=

1

2Pe(1− τ)

(
∂2c

∂R2

)
+

1−R2Pe

2(1− τ)RPe

(
∂c

∂R

)
(5.58)
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By comparing Equation 5.58 to a standard convection-diffusion equation we can
write the velocity magnitude of the convective term as follows:

||vconv|| =
1−R2Pe

2(1− τ)RPe
(5.59)

The velocity of the convective term depends on the radial coordinate, R, the
Péclet number, Pe, and the time at the current time step, τ . Plotting Equation 5.59
shows that for a given Péclet number and time, τ , ||vconv|| is maximum at the droplet
center (Figure 5.1).

Since the concentration of the first grid point is calculated from the no flux
boundary condition (i.e., Equation 5.19), the solution of Equation 5.36 starts from
the second grid point which has a radial coordinate, R = ∆R. The maximum value
for ||vconv|| can then be calculated as follows:

||vconv,max|| =
1− (∆R)2Pe

2(1− τ)∆RPe
(5.60)

Figure 5.1: Magnitude of the convective term in Equation 5.59 for Pe = 5
& τ = 0.5.

Which can be approximated for small values of ∆R as follows:

||vconv,max|| ≈
1

2(1− τ)∆RPe
(5.61)

The CFL condition is given by:

CFL =
||vconv,max||∆τ

∆R
≤ 1 (5.62)

CFL =
1− (∆R)2Pe

2(1− τ)∆RPe

∆τ

∆R
≤ 1 (5.63)

CFL ≈ ∆τ

2(1− τ)(∆R)2Pe
≤ 1 (5.64)
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The maximum time step, ∆τmax, can be approximated as follows:

∆τmax ≈ 2(1− τ)(∆R)2Pe (5.65)

Comparing Equation 5.65 to Equation 2.100 shows that the spherical droplet case
is more restrictive in limiting the maximum stable time step than the cylindrical
droplet case (Figure 5.2).

Figure 5.2: Maximum stable time step, ∆τmax, for Pe = 5 & ∆R = 0.01.

It has to be noted that the CFL condition provides a rough estimate of the
minimum time step that can be used for a stable solution. A more accurate estimate
can be obtained by using other stability analysis techniques like the matrix stability
analysis or von Neumann stability analysis [Moin, 2010].

5.3.4 Results

Equation 5.36 is solved for a wide range of Pe numbers (1-200) and the results show
a behavior similar to that of spherical droplets. However, cylindrical droplets seem
to take more time to reach the asymptotic state for the concentration profiles or the
steady state value for surface enrichment (Figure 5.3).

5.3.5 Asymptotic concentration profiles

The normalized concentration, c(R)
cm

, can be calculated using the asymptotic concen-

tration profile as follows (see Equation 5.29):

c(R)

cm
=

1

2β
exp

[(
Pe

2

)
R2

]
(5.66)

The transient results for the normalized concentration, c(R)
cm

, at τ = 0.99 is com-
pared against the asymptotic state solution given by Equation 5.66 for Pe = 25 as
shown in Figure 5.4.

The perfect agreement between the results confirms the validity of the predicted
asymptotic state solution and the corresponding concentration profiles.
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1 ≤ Pe ≤ 25 50 ≤ Pe ≤ 200

Figure 5.3: Evolution of surface enrichment for different Péclet numbers: Tran-
sient numerical solution, E(τ) vs. the steady state value, Ess.

Figure 5.4: Normalized concentration profiles: Transient results at τ = 0.99
vs. Asymptotic state solution for Pe = 25.

5.3.6 Steady state surface enrichment

The steady state surface enrichment, Ess, predicted using the asymptotic state as-
sumption is compared against the transient value for surface enrichment, E(τ), at
τ = 0.99. Good agreement can be seen in Figure 5.5.

5.4 Conclusions

All the results derived in the previous sections were verified by solving Equation 5.36.
The results confirmed the existence of an asymptotic solution and the correspond-
ing value of surface enrichment, E. The results also confirmed the validity of the
analysis done for mass conservation and stability considerations.

Through this chapter it was shown that the same approach used to obtain an
asymptotic and transient solution of the concentration profiles for spherical droplets
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Figure 5.5: Surface enrichment: Transient results at τ = 0.99 vs. Asymp-
totic state solution.

can be used for cylindrical droplets as well.

The results confirmed the validity of the used assumptions and approximations
and will be used to validate the results of the Adaptive Interface Sweeping Method
discussed in the next chapter.
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Chapter 6

The Adaptive Interface
Sweeping Method: Theory

6.1 Introduction

In the development of the simplified particle formation model proposed in chap-
ter 2, it was assumed that both the evaporation rate and the solute properties (i.e.,
diffusion coefficient, solubility) are constant. These assumptions were necessary
to develop the proposed normalization procedure in order to recast the numerical
results in a general easy-to-use form for an easy and fast means of designing multi-
component layered microparticles in a computationally affordable manner. However,
in some cases these assumptions limit the model usability and accuracy.

During the evaporation of solution droplets, the solute surface concentration in-
creases with time and suppresses the solvent vapor pressure on the droplet surface
which is the driving force for the evaporation process [Finlay, 2001]. This effect,
which becomes more significant in the later stages of evaporation, leads to a decrease
in the actual Péclet number and a subsequent decrease in the surface enrichment
rate. At the same time the diffusivity of the solute decreases because the molecular
mobility drops significantly at higher concentrations.

The effects of variable solvent vapor pressure and solute diffusivity have been in-
corporated into several numerical models [Seydel et al., 2006; Eslamian et al., 2009;
Okuzono et al., 2006; Homer et al., 2009; Handscomb et al., 2009b,a; Jiang et al.,
2010; Chen et al., 2011; Vehring et al., 2007] that can take into account the variation
in both the evaporation rate and the solute properties.

These models can be generally classified as spherically symmetric models. In
these models, the droplet is assumed to be a perfect sphere during the whole evap-
oration and shell formation process with the subsequent mapping of the physical
domain into a one dimensional spherically symmetric domain. This offers many
advantages such as lower computational cost for the model and a simplified form for
the governing equations. It also allows the normalization of the radial coordinate
with the time dependent droplet radius which reduces the variable size domain into
a one dimensional fixed size domain and avoids many numerical issues in dealing
with moving interfaces.

Different studies also extend this spherical symmetry to different variable fields
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outside the evaporating droplet, e.g., velocity, temperature and solvent vapor con-
centration. Some of these studies solved for these external variable fields using this
assumption, while others relied on analytical and semi-analytical predefined solu-
tions to them.

Although spherical symmetry offers an accurate and computationally affordable
way of tackling the problem of droplet evaporation, there are some situations that
necessitate the use of a non-spherically symmetric model even if the droplet is spher-
ical.

• Internal circulation: For droplets with high Reynolds number, Re, (due
to large size or high droplet velocities like Pressurized Metered Dose inhalers
(pMDIs) [Finlay, 2001]) the solvent internal circulation has to be taken into
account when solving for the concentration field.

• Internal structure: Formation of particles with non spherically symmet-
ric internal structure [Okuyama et al., 2006b; Okuyama and Lenggoro, 2003;
Guterres et al., 2009; Yuk et al., 2012] cannot be modeled. This includes
evaporation of suspension/emulsion droplets with more than one component.

Despite the fact that the majority of pharmaceutical aerosols do not fall under
the last two categories [Finlay, 2001], recent advances in the design of structured mi-
croparticles and the accompanying sophistication in the manufacturing techniques
suggest that the majority of these aerosols will shift towards a more complicated
morphology [Nandiyanto and Okuyama, 2011].

The purpose of this chapter is to introduce a new numerical method for the
calculation of the transient concentration fields of an evaporating solution droplet
without the use of the spherical symmetry assumption. This method is a first
step toward the development of a more general numerical framework for modeling
structured microparticle formation.

6.2 The Adaptive Interface Sweeping Method (AISM)

The proposed Adaptive Interface Sweeping Method (AISM) mimics the physical
mechanism responsible for the phenomena of surface enrichment of evaporating so-
lution droplets as explained in section 2.2 [Vehring, 2008; Vehring et al., 2007]. It
can predict the evolution of the solute concentration fields during the whole evap-
oration period under an arbitrary evaporation rate and varying material properties
(spatially and temporally).

In the current chapter, the method is developed for a hypothetical cylindrical
droplet. The reason for this is to make the problem tractable using reasonable
computational resources and to ease the method implementation during the de-
velopment phase of the model. The extension to the three dimensional case (i.e.,
spherical droplets) is straightforward.

Assume an initially well mixed solution droplet, that started to evaporate with
an evaporation rate, κ. Depending on the relative strength of the diffusional flux and
the convective flux resulting from the motion of the droplet surface, a concentration
gradient will develop. So at any given position in the droplet, solute molecules will
experience the two counteracting mechanisms of diffusion and convection. These
two mechanisms act at the same time and modeling their simultaneous effect is a
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key factor for a successful modeling approach.

In the case of a spherically symmetric model, the radial coordinate normaliza-
tion by the droplet radius guarantees that both mechanisms’ effects are considered
simultaneously (see the boundary conditions given by Equation 2.69). However, if
the whole droplet geometry is to be modeled, which does not allow for the radial
normalization procedure, another approach has to be used.

The other option is to model the two mechanisms separately. By controlling the
way the two mechanisms are modeled, the effect of their simultaneous action can be
modeled.

Figure 6.1: A schematic diagram showing the AISM

If the droplet has a radius of ri at time t (Figure 6.1) after a time increment
∆t the new droplet radius is ri+1. During the time interval ∆t, the droplet inter-
face changed from the old ∂Ω(t) to the new ∂Ω(t + ∆t) while sweeping the solute
molecules towards the new droplet interface. At the same time diffusional flux of so-
lute goes from the droplet interface (which is higher in concentration) to the droplet
center (which is lower in concentration).

The AISM splits the two processes, instead of modeling them simultaneously,
into the following two steps:

• Process 1 : The sweeping of the molecules towards the new interface (recession
of the droplet surface without solute diffusion).

• Process 2 : The diffusion of the solute from the interface to the droplet center
(diffusion of the solute in a constant diameter droplet).

Process 1 : Starting from a droplet of radius ri and allowing the droplet to evap-
orate until it reaches a radius ri+1, the solute mass between the two interfaces can
be added to the solute mass of the new droplet interface ∂Ω(t+ ∆t). In this step it
is assumed that there is no diffusion taking place during the evaporation.

Process 2 : Following the first step, the concentration field in a hypothetically
non-evaporating droplet of radius ri+1 is allowed to relax to a period of time ∆t
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that is needed to change the droplet radius by ∆r.

The proposed method starts with calculating the time needed to change the
droplet radius from ri to ri+1 which can be derived from the instantaneous evapo-
ration rate, κ(t), as follows (note that i is a counter for the interface update):

κ(t) = −dd2

dt
= −4

dr2

dt
(6.1)

−4

∫ ri+1

ri

dr2 =

∫ ti+1

ti

κ(t)dt (6.2)

ti+1 − ti =
4

κi

[
r2
i − r2

i+1

]
(6.3)

ri+1 = ri −∆r (6.4)

∆t =
4

κi
∆r [2ri −∆r] (6.5)

Equation 6.5 allows the calculation of ∆t for a given evaporation rate, κi, initial
droplet radius, ri, and a given change in the droplet radius, ∆r. Note that κ can
be any function of time and not a constant.

The equation can also be recast to allow the calculation of the changes in the
droplet radius, ∆r, for a given period of time ,∆t, as follows:

4
[
r2
i − r2

i+1

]
= κi∆t (6.6)

4 [ri −∆r]2 = 4r2
i − κi∆t (6.7)

[ri −∆r]2 = r2
i −

κi∆t

4
(6.8)

ri −∆r =

√
r2
i −

κi∆t

4
(6.9)

∆r = ri −
√
r2
i −

κi∆t

4
(6.10)

The reason for preferring one form over the other will be explained later in the
implementation section.

The solute mass, ∆mint, contained between the two interfaces can be calculated
as follows:

∆mint =

∫∫
∆Ω

c(x, y) dx dy (6.11)

This mass is distributed on the new interface, ∂Ω(t + ∆t), by increasing the
interface concentration by ∆cint, assuming an interface of thickness δ, as follows:

∆cint =
∆mint

2πδri+1
(6.12)
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The updated interface concentration, cint, is used as an initial condition for
the interface before solving for the concentration field. This concentration can be
calculated as follows:

cint = cint,i + ∆cint (6.13)

In the second step, the concentration field inside the droplet is solved assuming
a non-evaporating droplet by relaxing the concentration field with the new interface
concentration initial condition for a ∆t period of time using the standard convection-
diffusion equation.

∂c

∂t
= ∇ (D∇c)− v∇c (6.14)

Note that Equation 6.14 contains a convective term which allows the inclusion
of the internal velocity field from internal circulation in the solution of the concen-
tration field. It also allows for a variable diffusion coefficient, D.

These two steps correspond to a single interface update from ∂Ω(t) to ∂Ω(t+∆t).
The two steps can be repeated as many times as required.

The success of this approach depends on the time scales of diffusion and droplet
surface recession, which are governed by the diffusion coefficient, D, and the evap-
oration rate, κ, respectively. The numerical details are discussed subsequently.

The AISM algorithm can be summarized as follows:

Step 1: Start with a droplet radius ro, a uniform solute concentration, co, a known
evaporation rate, κ(t) and solute diffusivity, D(x, t).

Step 2: Calculate the new droplet radius, ri+1, and the corresponding time step, ∆t
(Equation 6.5 or Equation 6.10).

Step 3: Calculate the initial solute concentration on the new droplet interface (Equa-
tion 6.13).

Step 4: Calculate the concentration field by relaxing the current one for a ∆t period
of time (Equation 6.14).

Step 5: The concentration field at the end of the last step is the required transient
concentration field at the new interface.

Step 6: All the previous steps can be repeated as required (e.g., until a predefined
droplet radius, r, is reached, a predefined concentration value on the droplet
surface is reached or any other criterion).

6.3 Numerical implementation of the AISM

This section details the numerical implementation of the AISM discussed in sec-
tion 6.2. This includes droplet interface updating and numerical solution of the
convection-diffusion equation to obtain the transient concentration field.
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6.3.1 Interface updates

The interface update frequency is crucial in obtaining reasonable results as it has
to resolve the real-time competing behavior between the velocity of the receding in-
terface and the solute diffusivity. Two alternatives of updating the droplet interface
were suggested in section 6.2.

1. Using a predefined change in the droplet radius, ∆r (Equation 6.5).

2. Using a predefined time step, ∆t (Equation 6.10).

A predefined change in ∆r guarantees that the change between the two inter-
faces ∂Ω(t) and ∂Ω(t + ∆t) can be controlled regardless of the evaporation rate.
In contrast, a predefined change in ∆t will not control the corresponding change
in ∆r since it depends on the current droplet radius, ri, and the time dependent
evaporation rate, κ(t).

For a very low evaporation rate, κ(t), a predefined time step, ∆t, might not be
enough to cause any changes in the droplet radius, ∆r, for a given grid refinement
level. On the other hand a high evaporation rate results in a large change in the
droplet radius. It will be shown later that ∆r should be kept as small as possible for
better accuracy. For this reason Equation 6.5 is used to update the droplet interface.

6.3.2 Solving for the concentration field

Equation 6.14 suggests that a robust numerical method has to be used for the calcu-
lation of the transient concentration field. The Lattice Boltzmann Method (LBM)
is a good candidate due to its superior ability in dealing with complex boundaries
and variable material properties [Chen and Doolen, 1998]. The LBM is also well
suited for parallelization which makes it the method of choice for computationally
demanding problems.

The Lattice Boltzmann Method (LBM) is a discrete meso-scale modeling ap-
proach. It relies on solving the Boltzmann Equation in a discrete velocity space.
The method has been successfully used to model many computationally challenging
problems [Boraey and Epstein, 2010; Aidun and Clausen, 2010].

The computational domain is divided into grid points, i.e., a lattice, and for
each lattice location the Particle Velocity Distribution Function (PDF) reflects the
fraction of fictitious particles at that location moving in a certain direction with a
specific velocity at a given time instant.

By initializing the particle distribution functions at all lattice sites and allowing
these particles to stream to neighboring lattice nodes and collide with others coming
from different directions according to a set of predetermined streaming and collision
rules, the macro-scale behavior of the convection-diffusion equation can be retrieved.

The discretized Boltzmann equation is given by:

gα(x + eα∆t, t+ ∆t)− gα(x, t) = Ω (6.15)

Where: gα(x, t) is the particle distribution function in the direction α at lattice
node x at time t and Ω is the collision operator which when replaced by the BGK
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(Bhatnagar-Gross-Krook) collision operator [Bhatnagar et al., 1954],

Ω = −
[
gα(x, t)− geqα (x, t)

τg

]
(6.16)

results in the following PDF evolution equation:

gα(x + eα∆t, t+ ∆t) = gα(x, t)−
[
gα(x, t)− geq

α (x, t)

τg

]
(6.17)

geq
α is the local equilibrium distribution function given by:

geq
α (x, t) = ωαc(x, t)

[
1 +

3eα.U(x, t)

c2
ss e

2

]
(6.18)

Where: U is the flow velocity in the lattice Boltzmann units. The first term in
the brackets represents the diffusive flux while the second term is the convective one.

The solute concentration, c, can be calculated from gα as follows:

c(x, t) =
n∑

α=0

gα(x, t) (6.19)

and the solute diffusivity, D, is given by:

D = c2
ss

(
τg −

1

2

)
(6.20)

Where: css is the lattice speed of sound.

Figure 6.2: The D2Q9 lattice configuration
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For the two dimensional, nine speed, i.e., D2Q9, lattice configuration shown in
Figure 6.2, css = 1/3 and ωα is given by:

ωα =


4/9 α = 0
1/9 α = 1, 2, 3, 4
1/36 α = 5, 6, 7, 8

(6.21)

At the beginning of the simulation, the initial concentration field, co, represents
a uniform well mixed droplet and is used to calculate the initial PDF as follows:

gα(x, 0) = ωαco at Ω(0) (6.22)

Before solving for the concentration field at each interface update, the concen-
tration at the new interface, cint, (calculated using Equation 6.13) is set as an initial
condition for the interface cells as follows:

gα(x, t) = ωαcint at ∂Ω(t+ ∆t) (6.23)

gα(x, t) = ωα [cint,i + ∆cint] at ∂Ω(t+ ∆t) (6.24)

During the solution of the concentration field, the droplet is assumed to have a
constant radius (i.e., non-evaporating) and the boundary condition given by Equa-
tion 2.68 reduces to the no flux boundary condition.

∂c

∂r
= 0 (6.25)

This boundary condition is implemented by applying the full-way bounce back
condition for all the cells outside the new droplet interface.

6.4 On the optimal selection of the AISM parameters

As has been discussed before, the AISM models the surface recession and diffusion
processes separately. This necessitates the fine tuning of the method parameters to
make it as close as possible to their real simultaneous effects. In this section, the
optimal selection of different simulation parameters is discussed.

6.4.1 The change in the droplet radius, ∆r, between interface up-
dates

The change in the droplet radius, ∆r, is an input parameter for the AISM. The ac-
curacy of the predicted transient concentration fields will depend on it (for a given
grid refinement level). ∆r has to be kept to a minimum for an accurate prediction
of the transient concentration fields. Large ∆r results in an underestimation of
the calculated concentration field because of a higher concentration gradient at the
droplet surface (Equation 6.11) which is the driving force for the diffusion and a
longer time, ∆t, for the concentration field to relax.

In the model results, it will be shown that ∆r affects the predicted concentration
field even if other simulation parameters are kept the same. For all reported results
∆r was set to one computational cell.
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6.4.2 The minimum number of time steps, nint, between interface
updates

To relax the concentration field, the transient convection-diffusion equation has to
be solved for a ∆t period of time . In the LBM, this physical time step corresponds
to a number of time steps, nint, between interface updates. The LBM iterates for
nint number of time steps to represent the physical ∆t. Since nint is generally not an
integer, it has to be rounded up or down to produce an integer number of iterations.

For a given evaporation rate, κ, a change in the droplet radius, ∆r, and a corre-
sponding ∆mint, if the number of iterations is rounded down, this will be equivalent
to a higher evaporation rate (Equation 6.5) which will overestimate the concentra-
tion values. On the other hand, if nint is rounded up, this will give the effect of
a lower evaporation rate and consequently an underestimated concentration fields.
Because of the underestimation effect of the concentration due to a large ∆r (or a
coarse grid) as explained in the previous section, it is better to round the number
of iterations down to counteract that effect.

The calculated number of iterations using Equation 6.5 can be written as follows:

nint = A+B (6.26)

Where: A is the integer part which will be used during the relaxation step of
the concentration field (since nint is rounded down) while B is the real part that
will be ignored. The simulated evaporation rate, κsim, and the real one, κrel, for a
single interface update can be calculated as follows:

κsim =
4

A

[
r2
i − r2

i+1

]
(6.27)

κrel =
4

A+B

[
r2
i − r2

i+1

]
(6.28)

The error in the simulated evaporation rate for a single interface update, eκ, can
then be calculated as follows:

eκ =

∣∣∣∣κrel − κsim

κrel

∣∣∣∣ (6.29)

eκ =
B

A
(6.30)

Since B is the real part of nint, its maximum value is ∼ 1 and the maximum
error in the simulated evaporation rate is give by:

eκ,max ∼
1

A
(6.31)

Equation 6.31 is the maximum error in a single interface update. Even if this
error is small, a large number of interface updates, N , will cause an overestimation
of the concentration values especially at latter stages of the simulation. It is desired
to keep this error below a certain value by limiting the minimum nint during the
whole simulation period.
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nint can be calculated from Equation 6.5 using Lattice Boltzmann units as fol-
lows:

nint =
4

κi
∆r [2ri −∆r] (6.32)

nint should not drop below a predefined minimum value nint,min at any instant
during the whole simulation period to minimize the effect of rounding the number
of iterations.

nint ≥ nint,min (6.33)

If the evaporation rate, κi, is known in advance, Equation 6.32 can be used to
check that the condition given by Equation 6.33 is satisfied. If κi is not known
(e.g., function of the simulation results), this condition has to be checked during the
simulation.

If the condition of Equation 6.33 is not satisfied, further grid refinement is re-
quired to satisfy it. This can be shown by considering a case of a constant evapo-
ration rate, κ. For a constant evaporation rate, the minimum number of iterations
occurs at the final interface update (i.e., ri+1 = rN) and is given by:

nint =
4

κ
∆r [2rN−1 −∆r] (6.34)

nint =
4

κ
∆r [2rN + ∆r] (6.35)

Where: N is the number of interface updates. The final droplet radius, rN, can
be related to the initial radius, ro, as follows:

rN = ro −N ∆r (6.36)

nint can be expressed as a function of the initial droplet radius, ro, as follows:

nint =
4∆r

κ
[2ro − 2N∆r + ∆r] (6.37)

Equation 6.37 shows that a finer grid (i.e., more points to represent the initial
droplet radius, ro) results in a higher nint. The number of grid points needed for
the initial droplet (in Lattice Boltzmann units) can be derived as follows:

do =
κ nint

4∆r
+ ∆r [2N − 1] (6.38)

And the minimum number of grid points to represent the initial droplet diameter,
do, for a given nint,min is given by:

do =
κ nint,min

4∆r
+ ∆r [2N − 1] (6.39)

For the most conservative selection of ∆r = 1, Equation 6.39 becomes:

do =
κ nint,min

4
+ 2N − 1 (6.40)

do ≈
κ nint,min

4
+ 2N (6.41)
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Equation 6.41 represents the minimum number of points needed to represents the
initial droplet (i.e., grid size) in order to satisfy the condition given by Equation 6.33
to minimize the error in the simulated evaporation rate. It is worth mentioning that
this condition is not a substitute for a grid convergence study.

6.4.3 Grid convergence

Solving for the transient concentration fields using the AISM requires careful con-
sideration of the grid convergence. As the droplet evaporates, the number of grid
points representing the droplet geometry decreases while concentration gradients
increase. So, it can be expected that the size of the used grid will depend on the
evaporation rate and the final simulation time. A grid convergence study has to be
performed for each case since the results can not be generalized as it depends on
many parameters governing the problem at hand.

However, Equation 6.41 is a good starting point for a grid convergence study
since it takes into account the evaporation rate, κ, and the final simulation time
(represented by N) in calculating the minimum number of grid point used to rep-
resent the initial droplet diameter, do.

Generally speaking, Equation 6.41 is more conservative than the results of the
grid convergence study for high evaporation rates (assuming κ is constant). But a
grid convergence study is still needed since the evaporation rate is generally variable.

6.4.4 Interface concentration, cint, between interface updates

Implementing Step 3 of the AISM algorithm requires the imposition of the solute
surface concentration, cint, as an initial condition before relaxing the concentration
field for each interface update.

Instead of updating the droplet surface concentration at the beginning of the
relaxation step for each interface update (Equation 6.23), it can be updated at each
time step during the relaxation stage of the algorithm. In this case the ∆mint cal-
culated using Equation 6.11 is divided by the number of time steps nint to calculate
the solute concentration that will be imposed at each time step of nint. ∆mint is
divided by the rounded number of iterations to conserve the solute mass.

At each iteration, j, the interface concentration for the next iteration, j + 1,
can now be written as follows (i denotes the interface update counter while j is the
iteration counter for a given interface update i).

cj+1
int = cjint,i +

∆cint

Int(nint)
(6.42)

gj+1
α (x, t) = ωαc

j+1
int at ∂Ω(t+ ∆t) (6.43)

So at each iteration of nint a concentration increment of ∆cint
Int(nint)

is added to the

previous iteration’s concentration. This also helps is minimizing the effect of large
values of ∆r or the use of a coarse grid as discussed in subsection 6.4.1.
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6.5 Mass conservation

The conservation of mass can be checked by comparing the solute mass at a given
time, m(t), to the initial mass, mo. The error in mass conservation can be calculated
as follows:

em =
m(t)−mo

mo
(6.44)

em =
m(t)

mo
− 1 (6.45)

m(t) and mo can be calculated as follows:

m(t) =

∫∫
Ω(t)

c(t, x, y) dx dy (6.46)

mo =
π

4
co d

2
o (6.47)

em has to be checked at each time step to ensure the conservation of mass.

6.6 Conclusions

A new approach is proposed for calculating the transient concentration fields of
an evaporating solution droplet. The Adaptive Interface Sweeping Method can
predict the concentration field of different solutes in an evaporating solution droplet.
Variable evaporation rate and material properties can be taken into account. The
method relies on updating the droplet interface using an adaptive approach rather
than updating it after a constant time step.
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Chapter 7

The Adaptive Interface
Sweeping Method: Validation &
Results

7.1 Introduction

The results of the proposed Adaptive Interface Sweeping Method (chapter 6) will
be presented here. The chapter starts with the validation of the results using the
asymptotic state solution then the transient solution, both derived in chapter 5.
Some cases for variable evaporation rate and material properties are given to show
the ability of the proposed approach to deal with these cases.

For all simulation cases, the error in mass conservation, em, as defined by Equa-
tion 6.45 was checked and was less than 0.0007.

7.2 Validation

In this section, the results of the AISM are compared against the analytical asymp-
totic state solution and the numerical transient solution of radial concentration
profiles of an evaporating cylindrical solution droplet. This validation step is neces-
sary before the AISM can be used for the general cases of variable evaporation rate
and material properties.

7.2.1 Asymptotic concentration profiles

The results of the AISM are compared against the asymptotic state solution derived

in chapter 5. The normalized radial concentration profiles, c(R)
cm

, can be derived from
the asymptotic solution as follows:

c(R)

cm
=

1

2β
exp

[(
Pe

2

)
R2

]
(7.1)

It is clear from Figure 5.3 that the asymptotic state is reached for cylindrical
solution droplet in less than 90 % of the droplet lifetime (i.e., τ <0.9) for Péclet
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numbers of 5 or less.

Figure 7.1 shows the normalized radial concentration profiles for two Péclet num-
bers compared to the asymptotic state profiles calculated using Equation 7.1.

Pe = 1 Pe = 5

Figure 7.1: Normalized concentration profiles: AISM vs. Asymptotic state solu-
tion.

It is clear that the AISM can accurately predict the asymptotic state concentra-
tion profile given by Equation 7.1.

7.2.2 Steady state surface enrichment

The evolution of surface enrichment, E(τ), is plotted against the steady state values
of surface enrichment, Ess, given by Equation 5.32 as follows:

Ess =
cs

cm
=
Pe

2

exp
(
Pe
2

)
exp

(
Pe
2

)
− 1

(7.2)

The steady state surface enrichment, Ess, is reached around τ = 0.3 for Pe = 1
and at τ = 0.9 for Pe = 5 as can be seen from Figure 5.3.

7.2.3 Transient concentration profiles

The calculated transient concentration profiles using the AISM are compared against
the profiles calculated by the numerical solution of the normalized diffusion equa-
tion given in chapter 5 for different Péclet numbers at different times during the
evaporation process.

Figure 7.3 and Figure 7.4 show a good agreement between the AISM results and
the numerical ones for different cases.

7.2.4 Transient surface enrichment

The evolution of surface enrichment, E(τ), of the AISM is compared against the
transient solution as shown in Figure 7.5 and Figure 7.6.
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Pe = 1 Pe = 5

Figure 7.2: Evolution of surface enrichment: AISM vs. Steady state value, Ess.

Pe = 1 & τ = 0.5 Pe = 5 & τ = 0.9

Figure 7.3: Transient concentration profiles for cylindrical solution droplets: the
AISM vs. the numerical solution given in chapter 5 for Pe = 1 & 5.

Good agreement between the numerical solution and the AISM can be seen from
both figures.

7.2.5 Preservation of the circular symmetry

The AISM was mainly developed to deal with problems where the spherical symme-
try assumption breaks down for the required solution variables, i.e., concentration
and velocity fields, (section 6.1). However, for problems where this assumption is
still valid, like the cases discussed in this chapter, the method should preserve this
symmetry.

Radial normalized concentration profiles can not be used to check for this, instead
normalized concentration contours are used. Figure 7.7 shows the contours for the
normalized concentration, c

cm
, for two Péclet numbers at different evaporation times.
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Pe = 10 & τ = 0.75 Pe = 15 & τ = 0.5

Pe = 25 & τ = 0.25

Figure 7.4: Transient concentration profiles for cylindrical solution droplets: the
AISM vs. the numerical solution given in chapter 5 for Pe = 10, 15 & 25.

It is clear that the AISM can preserve the symmetry of the transient concentration
profiles for cases where the problem physically possesses circular symmetry.

7.3 Selection of the AISM parameters

In this section, the effect of selecting different parameters of the AISM is demon-
strated as compared to the analysis given in section 6.4.

7.3.1 The change in the droplet radius, ∆r

In subsection 6.4.1 is was concluded that for a given grid size (i.e., level of grid
refinement) the change in the droplet radius, ∆r, has to be kept to the minimum.

The solution for the case of Pe = 10 is repeated with different values for ∆r
and compared against the numerical solution up to τ = 0.5. Figure 7.8 shows the
radial concentration profiles at τ = 0.5 and transient surface enrichment, E(τ).
As ∆r increases the surface concentration becomes increasingly underestimated as
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Pe = 1 Pe = 5

Figure 7.5: Evolution of surface enrichment for cylindrical solution droplets: the
AISM vs. the numerical solution given in chapter 5 for Pe = 1 & 5.

predicted in subsection 6.4.1. This becomes more clear by looking at the evolution
of surface enrichment. The case with the smallest ∆r is the closest to the correct
numerical solution.

7.3.2 The minimum number of time steps, nint

In subsection 6.4.2 it was shown that the number of time steps between interface
updates, nint, has to be kept above a minimum value, nint,min, for an accurate pre-
diction of the transient concentration profiles.

Figure 7.9 shows the normalized concentration profiles and surface enrichment
for different nint,min values for the case of Pe = 10. As predicted in subsection 6.4.2,
a smaller nint,min overestimates the concentration profiles.

7.3.3 Grid convergence

The numerical solution of any problem should be grid independent. In subsec-
tion 6.4.3 is was shown that the condition for nint,min is a good starting point for a
grid convergence test.

Figure 7.10 shows the solution for the Pe = 10 with different level of grid refine-
ment. It is clear that after a certain level of grid refinement, the solution does not
change.

7.4 Results

In section 7.2 the results of the AISM were validated using the analytical and nu-
merical solutions presented previously (chapter 5). Different parameters controlling
the accuracy of the results of the AISM were investigated in section 7.3. In this sec-
tion, the results for cases with variable evaporation rate, κ, and variable diffusion
coefficient, D, are presented. None of these cases can be solved using the approach
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Pe = 10 Pe = 15

Pe = 25

Figure 7.6: Evolution of surface enrichment for cylindrical solution droplets: the
AISM vs. the numerical solution given in chapter 5 for Pe = 10, 15 & 25.

proposed in chapter 2. This was one of the motives behind the development of the
AISM as discussed in chapter 6.

7.4.1 Variable evaporation rate, κ(cs)

The simplified particle formation theory presented in chapter 2 assumes a constant
evaporation rate, κ. Maxwell’s equation predicts a constant evaporation rate for the
case of a pure liquid droplet in a sufficiently large domain with constant material
properties [Finlay, 2001].

In real evaporation processes, some of the simplifying assumptions used in the
derivation of Maxwell’s equation are not satisfied. In addition, most of the industrial
evaporation processes are for multi-component solvents and non-pure solutions. A
simple representation for the effect of solutes on the evaporation rate is given by
Raoult’s law [Finlay, 2001]. In this section, a case of an evaporating solution droplet
with variable evaporation rate is presented.
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Pe = 1 & τ = 0.9 Pe = 25 & τ = 0.25

Figure 7.7: Normalized concentration, c
cm

, contours for a cylindrical droplet.

Figure 7.8: The effect of ∆r on the accuracy of the AISM for Pe = 10.

Assuming a variable evaporation rate that is surface concentration dependent as
follows:

κ(cs) = κo e
−λκ(cs−1) (7.3)

Where: κo is the initial evaporation rate at the beginning of the evaporation
process, cs is the normalized solute surface concentration and λκ is a solute depen-
dent dimensionless decay rate. Although the relation between the evaporation rate
and the solute surface concentration depends on the type of the solute [Finlay, 2001]
and may be more complicated than the proposed relation, Equation 7.3 can capture
the two-way coupling between the evaporation rate, κ, and the solute surface con-
centration, cs.

As the droplet evaporates according to the initial evaporation rate, κo, a concen-
tration profile develops and cs increases. This increase suppresses the evaporation
rate and results in a lower rate of increase for cs.

An evaporating solution droplet with an initial Péclet number of 10 based on
the initial evaporation rate, κo, and a constant diffusion coefficient, D, evaporates
with a variable evaporation rate given by Equation 7.3 and λκ = 0.1 which results
in a variable Péclet number evaporation process. As the evaporation rate decreases
the Péclet number decreases and the simulation continued until the Péclet number
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Figure 7.9: The effect of nint,min on the accuracy of the AISM for Pe = 10.

Figure 7.10: Grid convergence test for the AISM for Pe = 10.

drops to 5. Figure 7.11 shows the variation of the Péclet number during the evapo-
ration process.

The variable evaporation rate case does not have an analytical or numerical
solution. The results were compared against the two limiting Péclet numbers of
5 and 10. Figure 7.12 shows the transient surface enrichment and the normalized
surface concentration for the variable evaporation rate case. It can be seen that the
surface enrichment increases then decreases. Surface enrichment, E, (right panel)
is not to be confused with surface concentration which always increases, (left panel).

It can be seen that for both the surface enrichment, E, and surface concentra-
tion, cs, the solution for the variable evaporation rate is bound by the two solutions
for Pe = 5 and 10. The values of E and cs at the final value of the reduced droplet
diameter, d

do
, is higher than the corresponding values for the case of Pe = 5 because

of the effect of higher evaporation rate, κ, at the beginning of the evaporation pro-
cess. The trends change from being close to the case of Pe = 10 to being close to
the case of Pe = 5 as the evaporation proceeds.

Since the results of the constant Pe number cases are given as a function of the
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Figure 7.11: Evolution of the Péclet number during evaporation with a
variable evaporation rate for an initial Péclet number of 10 and λκ = 0.1.

Figure 7.12: Evaporation with a variable evaporation rate, κ(cs), for an initial
Péclet number of 10 and λκ = 0.1.

normalized evaporation time, τ , while the results of the variable evaporation rate are
given as a function of the reduced droplet diameter, d

do
, (since the droplet lifetime

τD is not known), the results for the cases of constant Pe numbers were converted
as follows:

d(τ)

do
=
√

1− τ (7.4)

7.4.2 Variable diffusion coefficient, D(c)

The case of variable material properties provides another example of the limitations
of the model discussed in chapter 2. Normally the solute diffusivity is concentration
dependent. Solubility and critical super saturation values are also temperature de-
pendent.

In this section, a case of droplet evaporating with a variable diffusivity, D(c),
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is solved using the proposed AISM. The initial droplet is well mixed with initial
concentration, co, initial diffusivity, Do, and initial Péclet number, Pe = 10. The
evaporation rate was kept constant while the diffusivity is allowed to change as a
function of the concentration as follows:

D(c) = Do e
−λD(c−1) (7.5)

Where: c is the normalized local solute concentration and λD is a solute de-
pendent dimensionless decay rate. The definition of the Péclet number is not valid
in this case since the diffusivity will change spatially in addition to its temporal
change. Figure 7.13 shows the evolution of surface enrichment and the normalized
concentration profiles at the final simulation time of τ = 0.5.

Figure 7.13: Evaporation with a variable diffusion coefficient, D(c), for an initial
Péclet number of 10 and λD = 0.1.

The relation between D and the concentration is solute dependent, but Equa-
tion 7.5 still represent the coupling between the diffusion coefficient, D, and the
solute concentration, c. As a concentration gradient develops and higher solute con-
centrations are achieved near the droplet surface, the diffusivity drops which results
in a higher surface enrichment, E. It is clear that surface enrichment exceeds the
value of the corresponding surface enrichment for the case of a constant Péclet num-
ber, Pe = 10, because of the reduced diffusivity.

At such high initial Péclet number, the effect of variable D is limited to the region
close to the droplet surface since the concentration at the core of the droplet is still
close to the initial concentration. This is evident from the plot of the normalized
diffusion coefficient, D

Do
, shown in the left panel of Figure 7.13.

7.4.3 Variable evaporation rate, κ(cs), and diffusion coefficient, D(c)

In this case, both the evaporation rate, κ, and the diffusion coefficient, D, were
allowed to change for the case of an initial Péclet number of 10.

Figure 7.14 shows the evolution of the surface enrichment, E, compared to the
case of a constant Péclet number, variable evaporation rate and variable diffusion
coefficient. The current case is again bound by the two extreme cases of a variable
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Figure 7.14: Evaporation with a variable evaporation rate, κ(cs), and diffu-
sion coefficient, D(c), for λκ = 0.1, λD = 0.1 and an initial Péclet number
of 10.

evaporation rate (resulting in lower surface enrichment) and a variable diffusion
coefficient (resulting in a higher surface enrichment). The result for a constant
Péclet number is given as a reference case. During the initial evaporation period
( ddo = 1 : 0.95) all the cases predict nearly the same surface enrichment values.

The dependence of the evaporation rate and diffusion coefficient on the solute
concentration can be governed by any relation and the usability of the AISM is not
limited to the form given in the current cases (Equation 7.3 and Equation 7.5).

7.5 Conclusions

Throughout this chapter the results of the AISM were verified using analytical and
numerical results. The effect of different simulation parameters on the accuracy of
the predicted concentration profiles were investigated. The ability of the AISM to
predict the transient concentration profiles for cases with variable evaporation rate
and material properties was demonstrated.

The flexibility of the proposed AISM offers many advantages in the design of
engineered microparticles. By incorporating more physical mechanisms affecting the
particle formation process, more realistic predictions can be obtained.

The use of the LBM for the solution of the concentration fields offers the extra
advantage of dealing with complex geometries and variable material properties.

The AISM is a first step towards a comprehensive numerical framework for
modeling the formation of structured microparticles.

CHAPTER 7 - 100 - Mohammed A. Boraey



A Particle Engineering Approach for the Design of Structured Microparticles

Chapter 8

Discussion and future work

8.1 Discussion

Throughout this work, several aspects related to the formation of structured mi-
croparticles were investigated from a particle engineering perspective. The emphasis
here is to provide simple and easy-to-use approaches to design structured micropar-
ticles with predefined set of desired properties. Although the present work does not
discuss several other related processes like solute crystallization, it is thought that
droplet evaporation and solute diffusion processes are the main ones controlling the
particle formation process.

8.1.1 Calculation of the evaporation rate

In terms of predicting the evaporation rate, two approaches have been suggested
along with the limitations and assumptions for each. Again, the emphasis here is to
predict the variable evaporation rate of different solute/solvent combinations given
tabulated, constant material properties. The simplified approach offers an easy es-
timation of the evaporation rate which is accurate enough during the preliminary
stage of design, while the detailed approach offers extra accuracy at the cost of more
computational work and a more sophisticated experimental setup.

The detailed approach takes into account the transient nature of the droplet
evaporation process by solving the droplet/particle equation of motion in a time
stepping manner. The effect of the used numerical scheme on the accuracy of the pre-
dicted evaporation rate was demonstrated. Several numerical schemes were tested
along with the advantages and limitations of each. The use of a specific scheme
depends largely on the problem at hand.

On the other hand, the simplified approach offers a faster and easier way of
calculating the evaporation rate, but at the cost of more limitations. The simplified
approach is more suitable for cases when the trajectory data has a large margin of
uncertainty.

8.1.2 The simplified particle formation theory

The simplified particle formation theory proposed in chapter 2 introduces an easy
and fast alternative of designing engineered microparticles with a desired set of pro-
prieties. Despite its simplicity its results can greatly accelerate the development
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stage of microparticle design and manufacturing. Recasting the model results in a
non-dimensional form makes them more readily applicable to a variety of processing
conditions. The model shows that with the extra effort needed to consider the tran-
sient nature of the concentration profiles, more accurate predictions for the final dry
particle properties can be made without compromising the utility of the model. The
usability of the model results were increased by fitting the numerical model results
with analytical easy-to-use expressions.

The theory also introduces asymptotic approximations for different variables like
the steady state surface enrichment and the evolution of the transient surface en-
richment in the limit of high Péclet numbers. These approximations are a powerful
tool when designing formulations containing suspensions or large molecular weight
actives.

The characteristic times previously proposed by the VFL model can now be
estimated more accurately after taking the transient nature of the problem into
account. These characteristic times are good indicative parameters of the solid
state of different components in final dry particle.

8.1.3 The Adaptive Interface Sweeping Method

The AISM approach proposed in chapter 6 is a first step towards building a com-
prehensive framework for a detailed numerical simulation of the particle formation
process. It allows for the addition of many physical mechanisms that contribute
to the particle formation process. This approach is more suitable if a fundamental
understanding of the particle formation process is desired, especially for interacting
multi-component formulations.

The numerical implementation of the AISM was discussed in detail. Different
numerical parameters affecting the accuracy of the ASIM were investigated. The
equations needed for the determination of these parameters were derived and veri-
fied by the model results.

The ability of the proposed approach to deal with cases that cannot be dealt
with using the proposed simplified particle formation theory was demonstrated.

It has to be noted that the AISM can only be used for spherical or cylindrical
droplets. Although it can deal with non-spherically symmetric variables fields, i.e.,
concentration, velocity, temperature, the droplet geometry itself has to stay spher-
ical. This condition must be fulfilled because the droplet surface recession velocity
is in the radial direction only for spherical droplets. This allows for the sweeping of
the solute mass in the radial direction , which is one of the two main steps in the
AISM algorithm.

8.2 Future work

There is still many improvements that can be introduced to enhance the predictive
ability of the proposed simplified particle formation theory. This can be done by
lifting one or more of the assumptions imposed during the development of the theory.

The first assumption that can be lifted is the assumption of a constant evapo-
ration rate, κ. In this case, the Péclet number will change during the evaporation
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process.

The second assumption is the assumption of a constant diffusion coefficient, D.
For this assumption, two scenarios will be possible. The first is to assume that D is
a function of the mean concentration, cm(τ), which results in a time dependent Pe
number. The second possibility is to have D as a function of the local concentration,
c(R, τ). In this case the definition of the Pe number is not valid and a more detailed
model is need.

The AISM can be extended by including more physical mechanisms like internal
circulation. The crystallization process can be modelled by incorporating a source
term [Boraey and Epstein, 2010] in the diffusion equation to represent the formation
of crystals. Suspension droplets can also be modelled by modelling the motion of
the suspending particles during evaporation.
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Appendix A

Asymptotic concentration
profiles of an evaporating
spherical solution droplet

A.1 Introduction

This appendix gives a detailed derivation of the asymptotic concentration profiles
of an evaporating spherical solution droplet as presented by Gardner [1965]; Leong
[1987]; Vehring et al. [2007].

A.2 Derivation

The asymptotic concentration profiles and surface enrichment for an evaporating
spherical solution droplet were obtained analytically by Gardner [Gardner, 1965].

Gardner [Gardner, 1965] started with the one dimensional diffusion equation in
spherical coordinates which can be written as follows:

∂C

∂t
= D

[
∂2C

∂r2
+

2

r

∂C

∂r

]
(A.1)

The radial coordinate, r, can be normalized by the droplet time dependent ra-
dius, rs(t), to give the following normalized equation.

∂C

∂t
=

D

r2
s (t)

(
∂2C

∂R2
+

2

R

∂C

∂R

)
+

R

rs(t)

∂C

∂R

∂rs(t)

∂t
(A.2)

The assumption of a constant evaporation rate, κ, as defined by Vehring [2008]
and Vehring et al. [2007] can be written as follows [Gardner, 1965]:

d2(t) = −κt (A.3)

r2
s (t) = −1

4
κt (A.4)

∂r2
s (t)

∂t
= −1

4
κ (A.5)
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∂rs(t)

∂t
= −1

8

κ

rs
(A.6)

Substituting Equation A.4 and Equation A.6 in Equation A.2 and using the
definition of the Péclet number, Pe = κ

8D [Vehring, 2008; Vehring et al., 2007],
Equation A.2 can be written as follows after normalizing the concentration, C:

∂2c

∂R2
+
∂c

∂R

[
2

R
−RPe

]
+ 2Pe

∂c

∂t
t = 0 (A.7)

For the asymptotic state, the concentration, c, at any point, R, is proportional
to the inverse of the droplet radius, rs(t), cubed. (This is equivalent to saying that
all points will have a concentration, c(R), that is changing with the same rate as
the mean concentration, cm).

cor
3
o = cr3

s (A.8)

c = co

(
ro

rs

)3

(A.9)

c ∝ r−3
s (A.10)

From Equation A.4 we can derive the relation between the droplet radius, rs(t),
and time, t, as follows:

r2
s (t) ∝ −t (A.11)

r3
s (t) ∝ (−t)

3
2 (A.12)

From Equation A.10 and Equation A.12 the concentration, c(t), at any point,
R, in the asymptotic state can be written as follows:

c ∝ (−t)−
3
2 (A.13)

c = A(−t)−
3
2 (A.14)

Where: A is a constant.

The term −t∂c∂t in Equation A.7 can be replaced by a time independent term in
the asymptotic state as follows:

c = A(−t)−
3
2 (A.15)

∂c

∂t
=

3

2
A(−t)−

5
2 (A.16)

−t∂c
∂t

=
3

2
A(−t)−

3
2 (A.17)

−t∂c
∂t

=
3

2
c (A.18)
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Substituting Equation A.18 in Equation A.7 gives the following equation for the
solute concentration at the asymptotic state.

∂2c

∂R2
+
∂c

∂R

[
2

R
−RPe

]
− 3cPe = 0 (A.19)

The solution for equation Equation A.19 under the boundary condition, ∂c
∂R |R=0 =

0 is given by:

c(R) = cc exp

[(
Pe

2

)
R2

]
(A.20)

Where: cc is the concentration at the droplet center (which is time dependent).

The mean concentration, cm, can then be calculated from c(R) as follows:

4

3
π(1)3cm =

∫ 1

0
c(R)4πR2dR (A.21)

cm = 3cc

∫ 1

0
R2exp

[(
Pe

2

)
R2

]
dR (A.22)

cm = 3ccβ (A.23)

β =

∫ 1

0
R2exp

[(
Pe

2

)
R2

]
dR (A.24)

Equation A.24 can not be integrated analytically to calculate β and has to be
numerically evaluated for each Pe number.

Using Equation A.23, the concentration c(R) can be expressed as follows:

c(R) =
cm

3β
exp

[(
Pe

2

)
R2

]
(A.25)

And the surface concentration, cs, is obtained at R = 1 as following

cs =
cm

3β
exp

(
Pe

2

)
(A.26)

Surface enrichment, E, can be calculated from Equation A.26 as follows:

E =
cs

cm
=

1

3β
exp

(
Pe

2

)
(A.27)

Surface enrichment, E, can also be approximated using the relation given by
Vehring [2008]; Vehring et al. [2007]:

E =
cs

cm
≈ 1 +

Pe

5
+
Pe2

100
− Pe3

4, 000
(A.28)

Equation A.28 is accurate within 1% for Pe <20.
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Appendix B

Derivation of the droplet
diameter updating equation

B.1 Introduction

It is required to derive a form for the droplet diameter updating equation such that
the denominator is not zero for any point in the droplet trajectory.

B.2 The derivation

Starting by witting Equation 4.29 as follows:

d(t+ ∆t) ≈ d(t) +
2∆t

vπρld2(t)
[FG + FD −ma] (B.1)

This equation can be written for both directions (X&Y ) of the used coordinate
system as follows:

d(t+ ∆t) ≈ d(t) +
2∆t

vxπρld2(t)
[FGx + FDx −max] (B.2)

d(t+ ∆t) ≈ d(t) +
2∆t

vyπρld2(t)
[FGy + FDy −may] (B.3)

Summing Equation B.2 and Equation B.3 results in the following equation:

d(t+ ∆t) ≈ d(t) +
∆t

πρld2(t)

[
FGx + FDx −max

vx
+
FGy + FDy −may

vy

]
(B.4)

Equation B.4 does not solve the problem that arises if one of the two velocity
components (vx&vy) is zero. This can be solved by manipulating the equation as
follows:

d(t+ ∆t) ≈ d(t) +
∆t

πρld2(t)

vx + vy
vx + vy

[
FGx + FDx −max

vx
+
FGy + FDy −may

vy

]
(B.5)
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d(t+ ∆t) ≈ d(t) +
∆t

πρld2(t)

1

vx + vy

[
(FGx + FDx −max)

(
1 +

vy
vx

)
+ (FGy + FDy −may)

(
1 +

vx
vy

)] (B.6)

From Equation B.2 and Equation B.3 the following relations can be derived:

FGx + FDx −max
vx

=
FGy + FDy −may

vy
(B.7)

vx
vy

=
FGx + FDx −max
FGy + FDy −may

(B.8)

vy
vx

[FGx + FDx −max] = FGy + FDy −may (B.9)

vx
vy

[FGy + FDy −may] = FGx + FDx −max (B.10)

Substituting Equation B.9 and Equation B.10 in Equation B.6 gives the required
equation.

d(t+∆t) ≈ d(t)+
2∆t

(vx + vy)πρld2(t)
[FGx + FGy + FDx + FDy −m(ax + ay)] (B.11)

The denominator of Equation B.11 will not be zero as long as the sum of the
two velocity components (vx&vy) is not zero. The used coordinate system is chosen
to ensure that this condition is satisfied (see Figure 4.1) by forcing both velocity
components to be positive during the whole trajectory.

B.3 Another derivation

Another way to derive Equation B.11 is by writing Equation B.2 and Equation B.3
as follows:

FGx + FDx −max ≈
vxπρld

2(t)

2∆t
[d(t+ ∆t)− d(t)] (B.12)

FGy + FDy −may ≈
vyπρld

2(t)

2∆t
[d(t+ ∆t)− d(t)] (B.13)

Summing Equation B.12 and Equation B.13 and rearranging the resulting equa-
tion gives the required form for the droplet diameter updating equation as follows:

FGx + FGy + FDx + FDy −m(ax + ay) ≈
(vx + vy)πρld

2(t)

2∆t
[d(t+ ∆t)− d(t)]

(B.14)

d(t+ ∆t) ≈ d(t) +
2∆t

(vx + vy)πρld2(t)
[FGx + FGy + FDx + FDy −m(ax + ay)]

(B.15)
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Appendix C

Physical properties of Air &
Acetone

C.1 Physical properties of Air

Dynamic viscosity: µ = 1.98× 10−5 Pa.s
Thermal conductivity: k = 0.0257 W/m.K
Density: ρdg = 1.2 kg/m3

C.2 Physical properties of Acetone

Diffusion coefficient in air: Ds = 1.24× 10−5 m2/s
Latent heat of vaporization: L = 510× 103 J/kg
Molecular weight: Ms = 58.08× 10−3 kg/mol
Density: ρl = 791 kg/m3

Specific heat: cp = 2150 J/kg.K

C.2.1 Antoine equation (vapor pressure)

P = 10A−
B

T+C

P : Vapor pressure in bar
T : Temperature in K
A = 4.42448
B = 1312.253
C = −32.445
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