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Abstract

Aquatic invasive species (AIS) cause significant ecological and economic damages around the

world. A major spread mechanism for AIS is traffic of boaters transporting their watercraft from

invaded to uninvaded waterbodies. To inhibit the spread of AIS, Canadian provinces and American

states often set up watercraft inspection stations at roadsides, where potentially infested boats are

screened for AIS and, if necessary, decontaminated. However, since budgets for AIS control are

limited, watercraft inspection stations can only be operated at specific locations and daytimes.

Though theoretical studies provide managers with general guidelines for AIS management, more

specific results are needed to determine when and where watercraft inspections would be most

effective. This is the subject of this paper. We show how linear integer programming techniques

can be used to optimize watercraft inspection policies under budget constraints. We introduce our

approach as a general framework and apply it to the prevention of the spread of zebra and quagga

mussels (Dreissena spp.) to the Canadian province of British Columbia. We consider multiple

scenarios and show how variations in budget constraints, propagule sources, and model uncertainty

affect the optimal policy. Based on these results, we identify simple, generally applicable principles

for optimal AIS management.

Keywords: aquatic invasive species; linear integer programming; optimal management; spatially ex-

plicit; zebra mussel
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1 Introduction

Human traffic and trade are major vectors for invasive species (Lockwood et al., 2013). Due to

the significant ecological and economic damages invasive species cause (Pimentel et al., 2005),

government regulations restrict the import of certain goods and require treatment of potentially

infested freight and carriers (Shine et al., 2010; Johnson et al., 2017; Turbelin et al., 2017). While

such regulations may be enforced comparatively easily at sea ports, air ports, and border crossings,

control of inland traffic is more difficult, as a vast number of routes need to be monitored. This

applies, for example, to the spread of zebra and quagga mussels (Dreissena spp.) and other aquatic

invasive species (AIS), which often spread with watercraft and equipment transported from invaded

to uninvaded waterbodies (Johnson et al., 2001). Zebra and quagga mussels are invasive in North

America and have negative effects on native species and ecosystems, water quality, tourism, and

infrastructure (Rosaen et al., 2012; Karatayev et al., 2015).

To counteract the spread of these AIS, watercraft inspection stations are often set up on roads,

where transported watercraft are inspected for AIS and decontaminated if at risk for carrying AIS

(Mangin, 2011; Alberta Environment and Parks Fish and Wildlife Policy, 2015; Inter-Ministry

Invasive Species Working Group, 2015). However, since budgets for inspections are limited, not

all pathways can be monitored around the clock and managers need to prioritize certain locations

and daytimes. Though several theoretical studies provide managers with helpful guidelines for

their work (Leung et al., 2002; Potapov and Lewis, 2008; Potapov et al., 2008; Vander Zanden

and Olden, 2008; Finnoff et al., 2010; Hyytiäinen et al., 2013), more specific results are needed

in practice to determine the locations and times for where and when control is most effective.

To date it has been difficult to tackle these questions rigorously, as comprehensive models for

road traffic of potential vectors have been missing. Therefore, AIS managers have relied on past

watercraft inspection data, shared experience between jurisdictions, and iterative improvements

of control policies. Recent modelling advances (Fischer et al., 2020), however, now permit the

application of quantitative methods to optimize control measures in road networks and to evaluate

their effectiveness. This is the subject of this paper.

Our goal is to minimize the number of boaters reaching uninvaded waterbodies without being
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inspected for AIS. We assume that a fixed budget is available for AIS control. This problem

setup differs from scenarios considered in other studies, where the budget is optimized along with

the control actions so as to minimize the joint costs of invasive species damages and management

(Hastings et al., 2006; Potapov and Lewis, 2008; Potapov et al., 2008; Finnoff et al., 2010; Epanchin-

Niell and Wilen, 2012; Hall et al., 2018). This approach, however, requires that the damage caused

by invasive species is quantified in monetary terms. This is an often difficult and politically sensitive

task. Furthermore, the budget available for AIS control may be subject to political and social

influences and determined on a different decision hierarchy than management actions. Therefore,

AIS managers may seek to spend a fixed yearly budget optimally rather than to determine the

theoretically best control budget. The presence of fixed budget constraints also reduces the need

to consider the invasion as a dynamic process.

Identifying the locations where a maximal number of boaters could be screened for AIS is similar

to the problem of finding optimal locations for road-side infrastructure (Trullols et al., 2010). A

well-known technique to solve such problems is linear integer programming (Conforti et al., 2014).

The idea is to model the optimization problem with functions that are linear in terms of the

decision variables. Though solving linear integer programs is a computationally difficult task in

general, good approximate solutions can often be determined and a variety of software tools are

available to compute solutions. Unsurprisingly then, linear integer programming has also been

used in the context of invasive species management (Epanchin-Niell and Wilen, 2012; Kıbış and

Büyüktahtakın, 2017).

A crucial step in linear integer optimization is to find a problem formulation that facilitates

good approximations (Ageev and Sviridenko, 2004). In this paper, we provide such a formulation

to optimize locations and operating times of watercraft inspection stations. This problem differs

from comparable resource allocation problems (Surkov et al., 2008; Trullols et al., 2010), as we need

to account for temporal variations in traffic. These variations are key when considering the trade-

off between operating a few inspection stations intensely, e.g. around the clock, and distributing

resources over many locations operated at peak traffic times only.

We demonstrate the potential of our approach by applying it to optimize watercraft inspection
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Figure 1: Components of our approach. The control model determines how the traffic estimated
by the traffic model changes under a given control policy. The cost model yields the costs for
control actions. The optimizer maximizes the controlled traffic subject to a cost constraint.

policies for the Canadian province of British Columbia (BC). We show how uncertainty, different

cost constraints, and additional propagule sources impact the optimal policy. Based on this, we

identify control principles applicable beyond the specific case study.

2 Method

2.1 Model

We assume that the control strategy counteracting the introduction of AIS can be adjusted in two

aspects: the locations and operating times of watercraft inspection stations. As traffic typically

follows cyclic patterns, we consider one such cycle as the time horizon for the control optimization.

To find an optimal inspection policy, we need three models (Figure 1): (1) a model for boater

traffic, (2) a model for control, and (3) a model for control costs. The traffic model gives us

estimates of when, where, and along which routes boaters travel. The control model shows us

when and where inspections could be conducted and how effective they are. Lastly, the cost model

measures the costs for inspections. The information from the three models serve as input for a

control optimizer that determines a good – or, if possible, the best – watercraft inspection strategy.

Below, we describe each of the models in greater detail before introducing suitable optimization

routines in the next section.
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2.1.1 Traffic model

The traffic model provides estimates of when, where, and along which routes boaters drive. Knowl-

edge about routes is key to understanding whether boaters passing one control location have already

been inspected at another location. For each considered route, the traffic model provides us with

a traffic estimate. In this study, we use a hybrid gravity and route choice model (Fischer et al.,

2020) to estimate traffic. The model includes components accounting for boaters’ travel incentive,

their route choice, the timing of traffic, and boaters’ compliance with inspections.

In practice, it is rarely feasible to consider all routes that boaters could possibly take, so we

need to focus on some set of “reasonable” routes (Bovy, 2009; Fischer, 2020). As a consequence,

there may be some boaters travelling along unexpected routes. When boaters travelling along such

routes arrive at inspection locations, we do not know whether their watercraft have been inspected

earlier. This makes it difficult to optimize inspection strategies. Nonetheless, we may want to

account for these boaters by introducing a “noise” term to our model. To that end, we assume

that a fraction of the travelling boaters could be observed at any inspection location with a small

probability (see Fischer et al., 2020).

As road traffic is rarely uniform over time, we furthermore need a submodel predicting how

traffic varies with time. While it may be comparatively easy to determine the temporal distribution

of traffic at a specific location, it can be difficult to identify the temporal relationship between traffic

at two locations on the same route. For example, boaters passing one location in the morning

may not be able to reach another location before the afternoon. Modelling such relationships is

particularly difficult for locations far from each other, as boaters may have different travel speeds.

We therefore apply a simplification and assume all boaters travelling along a route have the same

speed.

2.1.2 Control model

We assume that there is a specific set of locations where watercraft inspections could be con-

ducted. For example, these locations could be pullouts large enough to provide a safe environment

for inspections. We suppose that compliant boaters stop for an inspection whenever they pass an
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operated inspection station. Conversely, uncompliant boaters are assumed to bypass every inspec-

tion station on their route. Consequently, we seek to maximize the number of boaters that pass

at least one operated watercraft inspection.

We further assume that there are specific time intervals when inspections can be conducted.

The available time intervals may be determined by safety concerns or practical considerations and

can be location dependent. As staff cannot move between distant inspection locations easily and

the working hours of inspection staff are subject to legal and practical constraints, we further

assume that every inspection station can be operated in shifts of predetermined lengths only.

2.1.3 Cost model

Control costs may be split into two classes: infrastructure costs that apply once for each chosen

inspection location and operational costs, which depend on when and for how long an inspection

station is operated. The operational costs may also account for ongoing equipment maintenance

costs and training of staff. The control costs may be location and time dependent. For example, it

may be expensive to conduct inspections at remote locations if staff must travel long distances to

their work place. Furthermore, some locations will require significantly more infrastructure costs

(e.g. lighting and washrooms) in order to operate overnight shifts. In addition, wages are often

higher in overnight shifts.

2.2 Optimizing control locations

Given the submodels described in the previous section, we proceed with describing how to optimize

the inspection strategy. Optimizing both locations and operating times of watercraft inspection

stations at the same time is conceptually and computationally challenging. To ease the introduction

of our approach, we first consider a scenario in which inspection stations are operational around

the clock. In this case, we can ignore the temporal variations of traffic and focus on only choosing

optimal control locations (cf. Trullols et al., 2010).

We formulate the corresponding optimization problem as a linear integer problem. To that

end, we let L be the set of all admissible inspection locations and introduce for each location l ∈ L
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a binary variable xl that assumes the value 1 if and only if an inspection station is set up at l. Let

R be the set of potential routes that boaters may choose, nr the expected number of complying

boaters travelling along route r ∈ R, and Lr ⊆ L the set of locations where boaters travelling on

route r could be inspected.

As noted earlier, one inspection station suffices to control all complying boaters driving along

a route r. Consequently, boaters travelling on route r will be controlled if and only if

∑
l∈Lr

xl ≥ 1. (1)

Therefore, we can express the total number of inspected boaters by

Floc(x) :=
∑
r∈R

min

{
1,
∑
l∈Lr

xl

}
nr. (2)

To formulate the cost constraint, let cl be the cost for operating control location l ∈ L and B

the available budget. As we assume that all inspection stations are operated for the same time,

we do not need to distinguish between infrastructure and operation costs. Hence, we can write the

cost constraint as

∑
l∈L

clxl ≤ B. (3)

The optimal placement policy can be identified by maximizing Floc(x) over all x ∈ {0, 1}|L|

subject to constraint (3). Though Floc contains a “minimum” function, Floc can be easily trans-

formed to a linear function by introducing further variables and linear inequality constraints (see

e.g. Ageev and Sviridenko, 1999). Since the left hand side of the cost constraint (3) is linear in x

as well, and x is constrained to be a vector of integers, the considered optimization problem is a

linear integer problem. This can be solved with a general linear integer programming solver (see

Conforti et al., 2014) or a heuristic method (Ageev and Sviridenko, 2004). We discuss possible

optimization routines in section 2.5.
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2.3 Optimizing control locations and timing

We now extend our approach to permit free choice of inspection station operating times. In

this generalized case, we need to balance the trade-off between operating a few highly frequented

inspection stations around the clock and distributing efforts over many locations operated at peak

traffic times only. This trade-off makes combined optimization of location choice and timing more

challenging than separate optimization of location choice and timing (cf. Epanchin-Niell and Wilen,

2012).

While location choice is a discrete optimization problem – each potential inspection location is

either chosen or not – optimization of operating times is a continuous problem, since inspections

could in theory be started at any time. To exploit the toolset of discrete optimization, however,

we simplify our problem by discretizing time. More specifically, we split boater departure times

into disjoint time intervals and choose the timing of inspection shifts accordingly.

Let T be a set of disjoint time intervals covering the complete time span of interest. We

write nrt for the expected number of boaters willing to comply with inspections who travel on

route r ∈ R and start their journey in time interval t ∈ T . Furthermore, let Sl be the set of

admissible inspection shifts for location l ∈ L. Each shift corresponds to a time interval in which

the inspection station is operated. Since shift lengths are given, Sl can be fully characterized by

the shifts’ start times.

As we assume that all boaters travelling along a route have the same speed, we can determine

the set Slrt ⊆ Sl of control shifts during which boaters who started their journey in time interval

t ∈ T arrive at location l ∈ L via route r ∈ R. Under reasonable error allowance, it is possible to

construct the sets Slrt in a way that each shift covers the departure time intervals either completely

or not at all, respectively. This setup prevents issues arising if some intervals overlap only partially.

To formulate our optimization problem as a linear integer problem, we describe the control

policy again with binary variables xls ∈ {0, 1}. Here, xls is 1 if and only if an inspection station

at location l ∈ L is operated in shift s ∈ Slrs. Boaters travelling on route r ∈ R who departed in

time interval t ∈ T are controlled if and only if
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∑
l∈Lr

∑
s∈Slrt

xls ≥ 1. (4)

Consequently, the total controlled boater flow is given by

Ffull(x) :=
∑
r∈R

∑
t∈T

min

{
1,
∑
l∈Lr

∑
s∈Slrt

xls

}
nrt. (5)

To derive the cost constraint, recall that we distinguish between infrastructure costs clocl for us-

ing location l and operating costs cshiftls payable per inspection shift s conducted at l. Consequently,

the total costs for control at l are given by

∑
s∈Sl

cshiftls xls + clocl max
r∈R, t∈T

(∑
s∈Slrt

xls

)
, (6)

and the cost constraint reads

∑
l∈L

(∑
s∈Sl

cshiftls xls + clocl max
r∈R, t∈T

(∑
s∈Slrt

xls

))
≤ B. (7)

As in the previous section, B denotes the available budget. Optimizing Ffull subject to (7) is a

linear integer problem, since the “minimum” term in (5) and the “maximum” terms in (7) can be

replaced by introducing constrained auxiliary variables.

2.4 Boaters travelling on unknown routes

Even if the traffic model accounts for most routes boaters use, some boaters may travel along

unexpected routes. It is difficult to optimize inspection station operation with regards to these

boaters, as we do not know which inspection stations cover the same routes. Nonetheless, it can

be desirable to account for boaters travelling on unknown routes, since the level of uncertainty

may affect the optimal inspection policy.

In the absence of a mechanistic model for traffic along unknown routes, we assume that boaters
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travelling on unexpected routes are passing any inspection location with a small probability ηo and

choose their passing time randomly. Let τsl be the probability that a boater passing location l

on an unexpected route does so during shift s. Then, the expected number of inspected boaters

travelling along unknown routes is given by

Fnoise =

(
1−

∏
l∈L

(
1− ηo

∑
s∈Sl

xlsτsl

))
nnoise. (8)

Here, nnoise denotes the expected number of boaters travelling on unknown routes.

Adding the non-convex function Fnoise to the objective function would make optimization dif-

ficult, but after introducing additional variables and constraints, Fnoise could be replaced with an

equivalent linear term (Morton et al., 2007; O’Hanley et al., 2013). Alternatively, we may linearize

Fnoise via a Taylor expansion (see Supplementary Appendix A): since η0 is typically small, equation

(8) is well approximated by

F̂noise = ηonnoise

∑
l∈L

∑
s∈Sl

xlsτsl, (9)

which can be incorporated in a linear integer problem. In this study, we apply approximation

(9), which is most precise if xls = 0 for most l and s. If the budget is high enough to operate

many inspection stations for long times, the noise term may be overestimated. However, if nnoise is

small compared to the total boater traffic, the approximation error is unlikely to alter the overall

optimization results significantly.

2.5 Solving the optimization problems

The inspection station placement problem described in section 2.2 is equivalent to the budgeted

maximum coverage problem (Khuller et al., 1999), also called maximum coverage problem with

knapsack constraint (Ageev and Sviridenko, 2004). This problem is well studied in computing

science and difficult to solve exactly in general (Feige, 1998). Nonetheless, good approximate or

even optimal solutions can often be obtained in practical applications.

We solve the full optimization problem using a branch and bound algorithm (see Conforti et al.,
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2014), in which the distance between upper and lower bounds on the optimal objective is reduced

until the gap is satisfactorily small. Branch and bound algorithms are commonly used to solve

linear integer programming problems such as ours, and efficient implementations are included in

many optimization packages. Branch and bound algorithms are most effective if they can improve

upon a good initial starting solution. To find such an initial starting solution, we implement

a “greedy” rounding algorithm that (1) repeatedly solves a relaxed version of our optimization

problem, permitting non-integer decision variables xls ∈ [0, 1], and (2) rounds up the respective

largest non-integer decision variable xls that can be set to 1 without violating the cost constraint.

In Supplementary Appendix B, we describe the procedure in greater detail.

3 Application

To demonstrate the potential of our approach, we applied it to optimize watercraft inspections in

the Canadian province of British Columbia (BC). Below we provide an overview of the case-study-

specific submodels we used. Furthermore, we briefly describe our implementation of the presented

approach.

3.1 Case-study-specific submodels

3.1.1 Traffic model

To model boater traffic, we used the hierarchical gravity and route choice model for boater traffic

presented in Fischer et al. (2020). The model was fitted using data collected at British Columbian

watercraft inspection stations in the years 2015 and 2016. At the time this study was conducted,

dreissenid mussels were not known to be established anywhere in BC. As sources of potentially

infested boaters, we therefore considered the Canadian provinces and American states that (1)

were known to be invaded by dreissenid mussels or (2) had connected waterway to an infested

jurisdiction and no coordinated mussel detection program in place at the time the data were

collected. As sinks we identified 5981 potentially boater accessible lakes in BC.

To estimate the boater traffic between an origin and destination, the model considered char-
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acteristics of the donor jurisdiction, the recipient lake, and the distance between the two. Major

sources of high-risk boaters were characterized by high population counts. Furthermore, Canadian

provinces were found to have higher boater traffic to BC than American states. Attractiveness of

destination lakes increased with their surface area, the population counts of surrounding towns and

cities, and the availability of close-by touristic facilities, such as campgrounds. Lastly, the boater

flow was estimated to decay in cubic order of the distance between an origin and a destination.

For a detailed description of the model along with precise parameter estimates, refer to Fischer

et al. (2020).

To identify potential boater pathways, we computed locally optimal routes (Fischer, 2020)

between the considered origins and destinations. These routes arise if routing decisions on local

scales are rational and based on simple criteria (here: minimizing travel time) whereas unknown

factors may affect routing decisions on larger scales. Consequently, the model accounts for routes

arising from a multitude of mechanisms. The attractiveness of the routes was computed based

on their length measured in travel time, because boaters have a strong incentive to carry larger

trailered watercraft on short and well-developed routes. Again, a more in-depth description of the

model and the fitted parameter values can be found in Fischer et al. (2020).

The fraction ηc of boaters travelling on routes not covered by our traffic model was estimated as

4.9%. However, this number is not estimable from survey data obtained at watercraft inspection

stations alone because it is negatively correlated with the parameter ηo (section 2.4), which denotes

the probability to observe a boater travelling on an unknown route at an arbitrary inspection

location. Therefore, Fischer et al. (2020) introduced an additional model assumption bounding

ηc below 5%. Note that due to the dependency of ηo on ηc, the estimability issue has little effect

on how many boaters driving on unknown routes are observed at watercraft inspection stations.

Hence, the estimability problem does not affect the inspection policy significantly. Based on a

noise level of ηc = 4.9%, Fischer et al. (2020) estimated ηo = 0.06 .

The temporal distribution of traffic was modelled with a von Mises distribution. This is a

unimodal circular distribution often used in models (Lee, 2010). The temporal pattern was assumed

to have a period of one day. The traffic high was estimated to be at 2 PM, and the estimated peak
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traffic was 15 times higher than the estimated traffic volume at night. As traffic data were available

for specific inspection locations only, the temporal traffic distribution was assumed to be the same

for all locations, thereby neglecting the time boaters need to travel between sites. This limitation

can be addressed by shifting the obtained operating times according to local traffic patterns after

the optimization.

3.1.2 Control model

As described in section 2.1.2, we assume that every complying boater passing an operated inspec-

tion location is inspected for invasive mussels. The compliance rate across all inspection stations

was estimated to be 80% (Fischer et al., 2020). To find potentially suitable locations for inspec-

tions, we identified pullouts across BC. We reduced the number of possible options by disregarding

some pullouts in close proximity to others. We included currently used locations as candidates

without giving them any preference over other locations. In total, we considered 249 candidate

locations.

Due to the large number of candidate locations, we did not conduct a detailed evaluation of the

operational suitability of all considered locations (e.g. pullout size, signage, and safety). Instead,

we consulted with the BC Invasive Mussel Defence Program to gauge the general suitability of the

locations suggested by the optimizer. If a suggested location seemed unsuitable, we removed it

from the candidate set and repeated the optimization procedure. Despite this superficial suitability

check, a more detailed analysis would be necessary to account for all potential practical constraints.

These must be considered independent of the model before an inspection station can be potentially

located.

For each location, we assumed that 8 hours long inspection shifts could be started at each full

hour of the day. Note that “shift” here refers to the time inspections are conducted and does not

include time required for staff to access or set up an inspection station. The work time of staff will

therefore be longer in practice. The assumed length of the inspection shifts aligns with average

operation patterns of watercraft inspection stations in BC and divides each day into three equally

sized shifts, which simplifies the model. Though the effective operation time (limited by access
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time of staff) is lower at remote locations, our time model provides a good first approximation.

3.1.3 Cost model

We determined the inspection costs based on correspondence with the BC Invasive Mussel Defence

Program. Since the considered optimization problem is often easier to solve if costs are rounded

to well aligned cost units, we expressed costs in a custom monetary unit, with one cost unit

representing the infrastructure costs for setting up an inspection station. In terms of this cost unit,

the costs per conducted inspection shift are 3.5 units during daytime and 5.5 units between 9 PM

and 5 AM. These operational costs include salary, training, and equipment for inspection staff. In

2017, the BC Invasive Mussel Defence Program was operating on a budget of approximately 80

cost units.

As an in-depth location-specific cost analysis would have been difficult, we assumed that the

inspection costs are equal for all considered locations. Note, however, that site specific costs can

vary significantly and may be a limitation when assessing a location for overnight operations.

3.2 Implementation

As we considered approximately 300, 000 origin-destination pairs connected by 6.7 routes on aver-

age, considering all boater pathways individually would be difficult. Therefore, we merged traffic

of boaters passing the same sets of potential inspection locations. As a result, the number of

distinct boater flows reduced to 2026.

We determined optimal inspection locations and operating times under different budget con-

straints. This allowed us to determine the budget required to minimize the fraction of uninspected

high-risk boaters to a desired level. We also varied the fraction of boaters travelling on unknown

routes to test how inspection strategies change under increased uncertainty. To see how new infes-

tations in close-by jurisdictions change the inspection policy, we furthermore considered a scenario

in which the American states Idaho, Wyoming, and Oregon are invaded. Note that boaters from

Montana were considered high-risk in the base scenario already. Finally, we determined how the

US-Canadian border closure in response to the global COVID-19 pandemic in 2020 affected the
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optimal inspection policy.

We implemented the model in the high-level programming language Python version 3.7. To

formulate the linear integer problem, we used the modelling software CVXPY version 1.0.25 with

added support for initial starting solutions. To solve the linear integer problem, we used the com-

mercial solver MOSEK. We computed initial starting solutions with the greedy rounding procedure

described in Supplementary Appendix B. We let the solver terminate if a solution was found that

was guaranteed to be less than 0.5% below the optimum or if 50 minutes had passed. We con-

ducted the computations on a Linux server with a 20 core Intel Xeon 640 E5-2689 CPU (3.1GHz

per CPU) and with 512GB RAM. The computer code can be retrieved from vemomoto.github.io.

4 Results

In 72% of the considered scenarios, we were able to identify a solution with the desired accuracy.

In the remaining cases, the relative optimality gap never exceeded 8.7%; i.e., the optimal solution

was guaranteed to be no more than 8.7% above the solution we found. In scenarios with budgets

B ≥ 25 units, we could always identify solutions with optimality gap below 2%. The initial

starting solutions computed via the greedy algorithm reached the desired final accuracy in 58% of

the considered cases and never exceeded an optimality gap of 11%.

Figure 2 displays the optimized locations and operating times for watercraft inspection stations

in the considered case study. We depict the optimal policy for scenarios with a budget of 25, 50,

and 100 cost units respectively. The optimal locations for inspections are located close to border

crossings if suitable locations are available. However, where the traffic through many border

crossings merges on a major highway (e.g. in the Vancouver metropolitan area), it is optimal to

place the inspection stations farther inland.

Figure 3 depicts characteristics of the optimal inspection stations for various model scenar-

ios. The optimized operating times are correlated with the expected traffic volume at inspection

stations. Additional budget is preferably spent on additional inspection locations rather than

longer operating hours. However, larger portions of the additional budget are spent on additional

locations (see also Figure 2).
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Figure 2: Optimal locations and operation shifts for three different budget scenarios. Most inspec-
tion stations are placed close to the British Columbian border. The markers depict the optimal
inspection locations for each scenario. Green (triangle): optimal locations with a budget of 25
units; blue (square) 50 unit budget; red (circle) 100 unit budget. The number of markers stacked
on top of each other corresponds to the optimal numbers of inspection shifts. The darkness of the
roads show the estimated boater traffic volume. The hollow circles depict the considered candidates
for inspection locations.
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Figure 3: Characteristics of the optimized inspection stations in scenarios with (a) different budget
constraints, and (b) different fractions of boaters travelling on unknown routes (cost bound fixed
at 80 units). Each marker corresponds to an inspection station. The position of the marker depicts
the daily traffic volume expected at the location and the fraction of daily traffic covered under the
optimal operation policy (compliance supposed). Note that the traffic volume at the inspection
locations changes with the fraction of boaters driving on unknown routes.

If the uncertainty in the traffic predictions increases significantly, more inspection stations are

set up at the cost of shorter operations. Little changes of the fraction of boaters travelling on

unknown routes (e.g. from 0.001 to 0.05) have no effect, whereas increasing this fraction from 0.05

to 0.2 results in two additional inspection locations being used (+18%) at the expense of reduced

shifts at two inspection stations and slightly altered operating times at two other stations.

Optimizing inspection station operation under a range of different budget allowances showed

that a moderate inspection budget, corresponding to about half the 2017 BC inspection budget,

suffices to inspect half of the incoming high-risk boaters (Figure 4). However, the resources required

for inspections increase quickly if more boaters shall be controlled. The fraction of inspected

boaters is limited by boaters’ compliance with inspections.

The considered change in the invasion state of three American states had only a moderate

impact on inspection policy. As the additional propagule sources were located south of BC, the

inspection effort increased at the southern border under the optimal policy. Furthermore, the

optimal policy contained no overnight inspection at the eastern border of BC and distributed

resources more evenly across inspection stations.
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Figure 4: Inspection effectiveness dependent on the budget constraint (a) and price per inspected
high-risk boater dependent on the proportion of inspected boaters (b). While a large fraction of
high-risk boaters can be covered with moderate effort, inspecting all complying boaters is costly.
Panel (a) shows the expected fraction of incoming high-risk boaters that can be inspected under
the optimal policy. The dotted line shows the level of complying boaters, which is the maximal
fraction of boaters that can be inspected.

If the US-Canadian border is closed, all boater traffic concentrates on the eastern provincial

border crossings. Consequently, the inspection effort increases at these locations. If a high budget

is available (e.g. 100 units), all major boater routes can be covered, and the distribution of

the excess budget depends strongly on the submodel for boaters travelling on unknown routes.

Figures depicting the results obtained for the invasion and border closure scenarios can be found

in Supplementary Appendix C.

5 Discussion

We present a method to optimize placement and operating times of watercraft inspection stations.

The approach is suited to model management scenarios on a detailed level and gives specific

advice for management actions. We applied our approach to invasive mussel management in BC

and investigated the impact of budget constraints, model uncertainty, potential future invasions,

and border closures on management actions and efficiency. Though our model did not account for

all critical operational factors, such as site safety and jurisdiction, the presented results provide
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valuable insights into optimal management of AIS when combined with critical operational factors.

Most of our results agree with common sense. In general, it is optimal to inspect boaters as soon

as they enter the managed region. That way, waterbodies close to the border can be protected. If

multiple routes via different border crossings merge close to the border, it can be optimal to inspect

boaters after this merging point. Inspection stations should operate longer at locations with high

traffic volume. Furthermore, uncertainty in traffic predictions increases the benefit of spreading

the inspection efforts over many locations. Driven by these simple principles, our results were

remarkably robust throughout considered scenarios and agree well with the watercraft inspection

policy currently implemented in BC.

While these qualitative principles may seem obvious, it can be challenging to identify quan-

titative definitions of terms like “close to the border” and “longer”. The difficulty in optimizing

management policies is in balancing trade-offs, such as between leaving some waterbodies close

to the border unprotected and maximizing the overall number of inspected boaters, or between

long-time operation of few highly frequented inspection stations and distribution of resources over

many locations. As the approach proposed in this paper is suited to account for these trade-offs,

it is a valuable extension to earlier more theoretical results on AIS management (Potapov and

Lewis, 2008; Potapov et al., 2008; Finnoff et al., 2010; Warziniack et al., 2011), which typically do

not include enough detail to answer specific operational questions. Since the presented approach

is easily adjusted to new circumstances, it can furthermore help managers to respond rapidly and

effectively to short-term changes in traffic patterns, such as experienced due to southern border

closures in the global COVID-19 pandemic.

Considering scenarios with different budget constraints allowed us to investigate the trade-

off between resources invested in AIS control and the number of inspected high-risk boaters.

In combination with the expected monetary damage caused by the arrival of an uncontrolled

boater at an uninvaded lake, this trade-off curve can be used to identify the optimal budget for

inspections. Since both invasion risk and damages due to invasions are difficult to quantify, a

rigorous computation of the optimal inspection budget may not always be feasible in practice.

Nonetheless, the cost-effectiveness curve provides an estimate of the efficacy of control efforts and
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shows which budget is required to achieve a certain management goal.

In the case of AIS control in BC, a moderate budget suffices to inspect a significant portion

of the incoming high-risk boaters. This is because boater traffic in BC concentrates on a small

number of major highways. Nevertheless, inspecting all high-risk boaters would be very costly, as

many minor roads would have to be considered as well. It could, therefore, be more cost-effective

to implement measures to increase the compliance of boaters at existing inspection locations.

These measures can include additional / improved road signs, public outreach and education,

and increased presence of enforcement officers at inspection locations. In BC, it is mandatory

for boaters to stop at open inspection stations along their travel routes, and tickets and fines

are issued to uncompliant boaters. The compliance rates are tracked continuously, and with the

implementation of the above measures, the BC program has seen an increase in compliance to

83% in 2019. Furthermore there is an added layer of protection provided by inspection programs

operating in other western Canadian provinces and US states.

We see a particular contribution of our approach in supporting and evaluating concrete man-

agement decisions. Often, significant funds are allocated for invasive species management with

mostly qualitative and heuristic research insights at hand. Quantitative evaluation of the imple-

mented policy is thus key to ensure that the resources are used effectively. This, in turn, requires

a spatially explicit approach incorporating enough details to account for the trade-offs between

available options. Our approach adds on to previously developed methods by incorporating these

details. Our results confirming the effectiveness of the British Columbian watercraft inspection

policy are a valuable contribution to justify the implemented policy to stakeholders and funders.

Besides evaluating existing policy, we see particular use of our approach for optimizing rapid

response actions under scenarios of interest. The scenarios considered in this paper show that

slight adjustments to the inspection policy may suffice to react on new invasions, whereas stronger

adjustments are needed when border closures alter traffic patterns strongly. Our approach could

also be used to assess the benefit from cross-border and and cross-agency collaborations, in which

inspection efforts are combined to control the boater inflow to a large joint area and at international

border crossings. Due to the flexibility of our model, managers can consider a variety of scenarios
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at little cost.

5.1 Limitations and possible extensions

Our approach does not consider human behavioural responses to the inspection policy. Uncompli-

ant boaters may try to avoid inspections by bypassing inspection stations on alternate routes or by

travelling outside the operating hours. In the former case, identifying locations that cannot be by-

passed easily becomes more important; additional inspection stations might be necessary to cover

alternative routes of uncompliant boaters. If boaters take the inspection policy into account when

they evaluate the quality of routes, different routes would need to be computed for each tested set

of inspection locations. This is computationally expensive and incompatible with the optimization

routines we used. As for our case study in BC, however, the road network is relatively sparse, and

by placing inspection stations at key entry points into the province, the detours required to bypass

inspection stations typically take longer than watercraft inspections.

The accuracy of our approach is strongly dependent on the accuracy and level of detail of

the utilized data and models. Therefore, the results should be combined with expert knowledge

and refined iteratively if necessary. For example, our model did not incorporate site-specific costs

and operational constraints. In some scenarios, the model thus suggested overnight inspections

at remote sites that are lacking the required infrastructure to safely operate at night, e.g. proper

road infrastructure (lanes/barriers), lighting, access to safe communication and nearby living ac-

commodations for staff. Such constraints could be incorporated in a more detailed model as well

as increased costs at remote locations. A more detailed model could also account for inspection

stations operated by other jurisdictions or federal agencies. Nonetheless, the presented model in-

cludes major factors affecting inspection station operation and can serve as a helpful resource to

inform managers’ decisions in parallel with operational constraints.

Limitations exist with respect to the objective function we considered. Though the number

of potentially infested watercraft arriving at a waterbody is a valuable proxy for invasion risk,

the establishment probability of dreissenid mussels is a more complicated, nonlinear function of

the boater inflow (Leung et al., 2004). Minimizing this function is a computationally more dif-
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ficult optimization problem, however, and minimizing a proxy for invasion risk instead may be

the preferred option in many practical applications. If desired, the suitability of the destination

waterbodies as habitat for AIS could be considered in our linear model by weighting boater flows

corresponding to the AIS establishment risk at the destination waterbodies.

Our model could also be extended to incorporate location-specific and management-dependent

compliance rates. At certain sites, such as cross-national border crossings, compliance can be en-

forced more easily than at other locations. Compliance may furthermore depend on management

efforts: it may be possible to increase the compliance rate of boaters at some costs. In Supplemen-

tary Appendix D, we show how location-dependent and flexible compliance rates can be considered

with small model adjustments. The idea is to consider boaters with different compliance levels

separately from one another and to extend the objective function (5) by a multiplier modelling

boater compliance dependent on management effort.

Despite the high level of detail incorporated in our model, some factors remain difficult to

consider. Since our traffic model does not explicitly account for the time boaters need to travel

between locations, the optimized inspection station operating times may have to be adjusted

to local traffic patterns. This correction may not fully resolve the issue if boaters pass multiple

inspection stations under the optimal policy, but such configurations are rarely optimal in practice.

In our case study, for example, inspection stations were optimally operated during traffic peak

hours, which indicates that boaters passing multiple inspection stations did not affect the optimal

operating times significantly.

Another modelling challenge is to appropriately account for boaters travelling along unexpected

routes. As our submodel for this traffic is not based on road topology, some traffic is predicted

on inland roads even if all border crossings are covered with inspection stations. This can bias

the results in high-budget scenarios, in which boaters can be inspected at most border crossings,

thereby also covering traffic along unexpected routes. In such cases, more meaningful results may

be obtained by disregarding traffic along unexpected routes (see Supplementary Appendix C).

To improve the submodel for traffic along unexpected routes, it could be adjusted to reflect that

boater traffic is typically higher on major highways than on minor roads. In most scenarios of our
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case study, however, the results were not very sensitive to the traffic along unexpected routes, and

an extended model may not yield significantly different inspection policies.

The numerical optimization techniques we applied gave good results in this study, but there

may be cases in which linear integer solvers fail to provide good solutions. This may happen,

for example, if many boaters pass multiple inspection stations under the optimal policy. For

a more detailed discussion of such cases and their prevalence in real-world applications refer to

Supplementary Appendix E.

5.2 General conclusions for invasive species management

In this paper, we considered specific management scenarios with focus of AIS control in BC.

Nonetheless, some common patterns were consistent throughout our results and may thus apply

with greater generality. These principles may be used as rules of thumb if no comprehensive

modelling and optimization effort is possible. Below we summarize these conclusions.

• Inspection stations should be placed close to the border of the uninfested region. Conse-

quently, cross-border collaborations between uninvaded jurisdictions have a high potential of

improving the cost-effectiveness of control.

• If traffic flows merge close to the border, inspections are more cost-effective after the merging

point. Hence, identifying such points is crucial for successful management.

• If traffic predictions involve a high level of uncertainty, inspection efforts should be distributed

over many locations at the cost of lower inspection effort at each site.

• If a high reduction of the propagule inflow is desired, it may be most cost-effective to imple-

ment measures increasing the compliance rate rather than operating more inspection stations

for longer hours.

These conclusions agree well with earlier results describing the importance of the geometry of

control (Potapov and Lewis, 2008; Epanchin-Niell and Wilen, 2012), the benefits of collaborative

management (Epanchin-Niell et al., 2010; Epanchin-Niell and Wilen, 2015), and the effects of

uncertainty on the control policy (Finnoff et al., 2010; Hall et al., 2018).

23



Authors’ contributions

All authors conceived the project; SMF conceived the methods jointly with MAL. SMF and MB

jointly prepared the data for the analysis. SMF conducted the mathematical analysis, implemented

the model, and wrote the manuscript. All authors revised the manuscript.

Acknowledgements

The authors would like to give thanks to the BC Ministry of Environment and Climate Change

Strategy staff of the BC Invasive Mussel Defence Program, who conducted the survey this study

is based on. Furthermore, the authors thank the members of the Lewis Research Group at the

University of Alberta for helpful feedback and discussions. SMF is thankful for the funding received

from the Canadian Aquatic Invasive Species Network and the Natural Sciences and Engineering

Research Council of Canada (NSERC); MAL gratefully acknowledges an NSERC Discovery Grant

and Canada Research Chair.

Competing Interests

The authors declare no competing interests.

References

Ageev, A. and Sviridenko, M. (2004). Pipage rounding: a new method of constructing algorithms

with proven performance guarantee. Journal of Combinatorial Optimization, 8(3):307–328.

Ageev, A. A. and Sviridenko, M. I. (1999). Approximation algorithms for maximum coverage

and max cut with given sizes of parts. In Cornuéjols, G., Burkard, R. E., and Woeginger,
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