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A Linearization of the term accounting for boaters travel-

ling on unexpected routes

In the main text, we use a linear approximation of

Fnoise =

(
1−

∏
l∈L

(
1− ηo

∑
s∈Sl

xlsτsl

))
nnoise. (A1)

to facilitate faster maximization of the objective function. Here, we show how this approximation

can be computed. We start by noting that the parameter ηo is small. Hence, Fnoise can be

approximated via a Taylor expansion in ηo about ηo = 0. Let us write Fnoise = Fnoise(ηo) as a
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function in ηo. Then,

Fnoise(ηo) ≈ Fnoise(0) + F ′
noise(0) · ηo. (A2)

With fl(ηo) := 1− ηo
∑
s∈Sl

xlsτsl, we obtain by the product rule

d

dηo

∏
l∈L

fl(ηo) =
∑
l∈L

f ′
l (ηo)

∏
l̃∈L\{l}

fl̃(ηo) (A3)

and thus

F ′
noise(0) = nnoise

∑
l∈L

∑
s∈Sl

xlsτsl. (A4)

Inserting (A4) into (A2) yields

Fnoise(ηo) ≈ ηonnoise

∑
l∈L

∑
s∈Sl

xlsτsl =: F̂noise, (A5)

which is the approximation given in equation (9) in the main text.

B Greedy rounding algorithm

In this Appendix, we describe the greedy rounding algorithm we applied to obtain initial starting

solutions for the general branch and bound solvers. We start by introducing some helpful notation.

Let P be the linear integer problem that we desire to solve and Pcont its continuous relaxation,

in which decision variables xls may attain fractional values. In contrast to the integer problem

P , which is NP-hard, the relaxed problem Pcont can be solved efficiently with linear programming

techniques. We write x for the N -dimensional vector of decision variables, indexed by (l, s) ∈ L×S.

Let els be a unit vector that is 0 everywhere except for the component corresponding to the index

(l, s). Suppose that C(x) denotes the cost for implementing a policy given by x. We provide

pseudo code for the greedy rounding algorithm in Algorithm 1.
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The algorithm repeatedly solves the relaxed problem Pcont with different constraints fixing

some decision variables to integer values. The algorithm proceeds in two phases. In the first

phase, the maximal non-integral decision variable that can be rounded up without violating the

budget constraint is determined. With this variable fixed, problem Pcont is solved again. When

no additional component can be rounded up without violating the cost constraint, all previous

constraints are removed, and the set of utilized locations is fixed instead. The algorithm sets a

flag locked to True to show that the second phase of the algorithm has started.

In the second phase, components of x are still rounded up if possible. However, now we do not

round up the largest non-integral component of x. Instead, we determine for some location l ∈ L

with non-integral operation (i.e. ∃s̃ ∈ Sl : xls̃ /∈ {0, 1}) the first time interval

t := minargmax
t∈T

{∑
s∈Slt

xls

∣∣∣∣∣xls < 1∀s ∈ Slt

}
(A6)

that is operated strongest at this location. Here, minargmax {·} refers to the minimal admissible

value for argmax {·} if the maximum is not unique. Then, we round up the latest affordable shift

s ∈ Sl that covers the time interval t and add xls = 1 to the set of constraints. If no additional

shift can be operated at location l, we add a constraint fixing the usage of this location: xls = bxlsc

for all s ∈ Sl.

Distinguishing between the two phases of the algorithm yields optimized operating times. Sup-

pose we are in phase 2, and consider the example depicted in Figure A2. The solution to the

relaxed problem Pcont suggests that 3 inspection shifts s1, s2, and s3 are conducted fractionally at

the considered location l, with s2 overlapping with s1 and s3. The respective operation intensities

are xls1 = xls3 = 0.8 and xls2 = 0.2. The budget assigned to this location does not suffice to

operate both s1 and s3 completely. Hence, only one shift can be operated at l. Naive greedy

rounding would suggest to operate shift s1, as it is the earliest shift with the maximal fractional

operation. However, in the optimal solution, the time interval between 8 AM and 4 PM should be

operated strongest. Therefore, shift s2 would be the optimal choice.

In its second phase, the suggested algorithm rounds up shifts based on the maximal cumulative

operation rather than choosing the shift with the highest operation variable. Nonetheless, it would
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Figure A1: Motivation for the changed rounding procedure in phase 2 of the greedy rounding
algorithm. The operation intensity is depicted as a function of time for some inspection location.
The intervals on the time axis depict the discretization of the day time. The grey boxes show
the extent to which the inspection station would be operated in the respective time intervals if
fractional operation would be allowed. The boxes’ colours correspond to the respective operation
shifts. Naive greedy rounding would suggest to operate shift s1. Improved rounding, however,
would prefer the time interval in which the cumulative operation is maximal (shift s2).

be of disadvantage to apply this rounding scheme in phase 1 of the algorithm, in which the set of

used locations is not fixed. In this case, shifts in the middle of the day would always be chosen

with preference, which make operation of two shifts on a day less efficient. In the second phase, it

is typically known how many shifts should be operated at each location.

Slight improvements to the suggested algorithm are possible. For example, we added constraints

in phase 1 to suppress fractional operation of shifts that would not be affordable completely under

the costs of the already constrained variables. However, this improvement is unlikely to have a

major effect on the results.

C Optimal inspection policy for the invasion scenario and

the border closure scenario

To assess how the optimal inspection policy changes in response to altered external conditions, we

considered (1) a scenario in which the invasion has progressed to states bordering BC and (2) a

scenario in which the US-Canadian border is closed, such as experienced in the summer of 2020 in

response to the global COVID-19 pandemic.

In the first scenario, we considered boaters from Idaho, Oregon, and Wyoming as high-risk
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Algorithm 1: Greedy rounding algorithm.

1 Function lock location(x̃, l, Θ):

2 foreach s ∈ Sl do

3 Θ := Θ ∪ {xls = x̃ls};

4 locked := False; Θ := ∅;
5 while True do

6 x := solution to Pcont subject to additional constraints in Θ;

7 if x ∈ ZN then

8 return x;

9 x̃ := bxc;
10 Ω := {(l, s) ∈ L× S | 0 < xls < 1; C(x̃ + els) ≤ B};
11 if Ω = ∅ then

12 if not locked then

13 locked := True; Θ := ∅;
14 foreach l ∈ L with max

s∈Sl

xls = 1 do

15 Θ := Θ ∪ {max
s∈Sl

xls = 1};

16 else

17 l := some location with 0 < xls < 1 for some s ∈ Sl;
18 lock location(x̃, l, Θ);

19 else

20 (l, s) := minargmax
(l,s)∈Ω

xls;

21 if locked then

22 t := minargmax
t∈T

{ ∑
s∈Slt

xls

∣∣∣∣∣xls < 1∀s ∈ Slt

}
;

23 Ψ :=
{
s ∈ Slt

∣∣C(x̃ + els) ≤ B
}

;

24 if Ψ = ∅ then

25 lock location(x̃, l, Θ);

26 continue;

27 else

28 s := maxSlt;

29 Θ := Θ ∪ {xls = 1};
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Figure A2: Optimal locations and operation shifts assuming that Idaho, Oregon, and Wyoming
are mussel invaded. Compared to the base scenario with fewer infested States south of BC, more
inspections are conducted at the southern border of the province. The symbols have the same
meaning as in Figure 2 (main text).

boaters. Boaters from Montana were considered high-risk in the base scenario already. The results

are depicted in Figure A2. As more high-risk boaters enter BC via the southern border, inspection

efforts at this border are increased. The required resources are freed by operating fewer inspection

stations over night and by abandoning inspection locations in the north. Nonetheless, the overall

changes are moderate, because even in the changed invasion scenario, most high-risk boaters are

expected to enter the province via the eastern border.

In the border closure scenario, boaters from the US were disregarded and routes to BC via the

US were excluded. The latter led to a slight increase of boater traffic on some of the remaining

routes. The optimized inspection locations and operating times are depicted in Figure A3. All

resources are allocated to sites close to the eastern provincial border. In the Fort St. John area
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there are three eastern border crossings but location candidates were not identified near the border

for all three routes. Hence, a location further inland, north of Prince George, had to be chosen to

cover boaters travelling westbound from all three routes.

If a high budget is available, not all resources can be used in a meaningful way, and the

distribution of the excess funds is dominated by model artefacts. Specifically, our model for traffic

along unexpected routes does not incorporate the road topology. Hence, some traffic is predicted

on inland roads even if all border crossings are covered with inspection stations. This biases the

results to suggest inspections at inland locations, such as the location in northern BC (Figure

A3). This issue can be resolved by disregarding traffic along unexpected routes when optimizing

inspections in high-budget scenarios (Figure A4).

D Flexible and location-specific compliance rates

It may be more cost-effective to implement measures enforcing boaters’ compliance than to operate

many inspection stations for long hours. Furthermore, compliance of boaters may be higher or

enforced more easily at some specific locations. In this appendix, we show how the approach

presented in this paper can be adjusted to take these factors into account.

D.1 Location-specific compliance rates

We start by considering the case of non-uniform compliance rates. To that end, we split the

boater flows based on the compliance of the boaters. Let C be the set of possible compliance rates,

cl ∈ C the expected compliance rate of boaters at location l ∈ L, and Lc the set of locations with

compliance rate c̃ ≥ c. For a route r ∈ R and a time interval t ∈ T Let nrtc be the expected

number of boaters who travel along route r ∈ R, started their journey in time interval t ∈ T , and

comply at all inspection locations l with lc ≥ c but not at inspection locations with lc < c. These

boaters will be inspected if and only if

∑
l∈Lr∩Lc

∑
s∈Slrt

xls ≥ 1. (A7)
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Figure A3: Optimal locations and operation shifts if the US-Canadian border is closed. All
inspection efforts are distributed along the eastern provincial border. If the budget is high (100
units), all major traffic flows are blocked, and the allocation of the remaining resources is dominated
by model and optimization artefacts, e.g. resulting in the choice of an inland location in northern
BC. Note that the locations surrounding Fort St. John cover northbound traffic only; the suggested
location north of Prince George is the first location candidate to cover westbound traffic from the
border in this area.
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Figure A4: Optimal locations and operation shifts if the US-Canadian border is closed and
traffic along unexpected routes is ignored. For the low and medium budget scenario, the chosen
locations do not differ from those obtained when traffic along unexpected routes is considered
(Figure A4). For the high-budget scenario, however, all resources are distributed to locations in
border proximity, and no inland locations are used. Note that the locations surrounding Fort
St. John cover northbound traffic only; the suggested location north of Prince George is the first
location candidate to cover westbound traffic from the border in this area.
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As in the main text, xls is a binary variable denoting whether inspections are conducted at location

l ∈ L in shift s ∈ S. Consequently, the total number of inspected boaters is given by

Floc-compliance(x) :=
∑
c∈C

∑
r∈R

∑
t∈T

min

{
1,

∑
l∈Lr∩Lc

∑
s∈Slrt

xls

}
nrtc. (A8)

This function can be optimized with the same method discussed in the main text. With a similar

approach, time-dependent compliance rates could be incorporated, too.

D.2 Flexible compliance rates

In some applications, the compliance rate may be altered at a specific cost. If these costs can be

expressed as a convex function of the achieved compliance rate, a flexible compliance rate can be

incorporated in our model easily. Below, we consider for simplicity the base case with a uniform

compliance rate at all locations. Allowing location-specific flexible compliance rates can be done

by combining the two approaches introduced in this appendix.

Let nrt be the expected number of boaters travelling on route r ∈ R and who started their

journey in time interval t ∈ T . Note that other than in the main text, compliance of these boaters

is not supposed. Altering equation (5) from the main text to

Fflex-compliance(x) := c
∑
r∈R

∑
t∈T

min

{
1,
∑
l∈Lr

∑
s∈Slrt

xls

}
nrt (A9)

accounts for the flexible compliance rate c.

Let us assume assume that the costs for enforcing a specific compliance rate c at a location

l ∈ L and during shift s ∈ S are given by the linear function

costls(c) = αl (c− c0) , (A10)

where c0 is the base compliance rate if no actions are taken to increase compliance. More complex

cost functions can be modelled with convex piece-wise linear functions or general convex functions.
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Adding these costs to the overall cost function changes the cost constraint to

∑
l∈L

(∑
s∈Sl

(
cshift
ls + αl (c− c0)

)
xls + cloc

l max
r∈R, t∈T

(∑
s∈Slrt

xls

))
≤ B. (A11)

In addition to changing the objective function and the cost constraint, we have to introduce

one further constraint limiting the compliance rate to the feasible range:

c0 ≤ c ≤ 1.

With these changes, the compliance rate can be optimized along with the inspection locations and

operating times.

E Difficult inspection optimization scenarios

In many real-world instances, good solutions to the linear integer problems derived in this paper

can be identified within reasonable time. Nonetheless there are examples in which the optimization

is computationally challenging. In this appendix, we discuss two important mechanism that can

make it difficult to find a highly optimal solution in short time. We also provide examples for the

discussed mechanisms.

Difficulties can arise (1) if a significant fraction of the budget is unused under the optimal

policy and (2) if many boaters pass multiple operated inspection locations under the optimal

policy. We start by considering budget-related issues before we discuss problems arising from

unfavourable relationships between potential inspection locations. At the end of this appendix we

discuss why these challenges are not of major concern in many real-world applications. To simplify

explanations, we consider the case of optimizing inspection station placement only. The described

mechanisms extend easily to the full problem in which operating times must be optimized as well.
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E.1 Difficulties due to cost constraints

Let us first consider a scenario in which a fraction of the given budget remains unused under the

optimal policy. For example, suppose that operation of an inspection station costs 5 cost units and

that we are given a budget of 9 units. Consequently, 4 cost units of the budget will remain unused.

To obtain an approximate solution and obtain an upper bound on the optimal objective value,

solvers consider the problem’s continuous relaxation, in which partial use of inspection locations

(and shifts) is permissible. In this relaxed scenario, all 9 cost units will be spent, which allows the

inspection of more boaters than in the realistic scenario with binary choices. Consequently, the

upper bound on the solution given by the solution to the relaxed problem may be much higher

than the true optimal solution. This makes it difficult to check whether an identified solution is

highly optimal and thus increases computation time.

The problem described above becomes even more difficult if control actions with different costs

are possible. Suppose that we may operate one of three inspection stations, which are passed by

different sets of boaters, respectively. That is, no boater passes two of the potential inspection

locations. Assume that per day n1 = n2 = 5 boaters pass stations l1 and l2, respectively, and that

n3 = 8 boaters may be inspected at location 3. Suppose we are given a budget of 9 units and that

the costs for operating stations l1 and l2 are c1 = c2 = 5 cost units, whereas operation of station

l3 requires c3 = 9 cost units.

Again, optimizers may consider the problem’s continuous relaxation to find an approximate

solution and a quality estimate. An optimal solution to the relaxed problem is to operate both

station 1 and station 2 fractionally with weight x1 = x2 = 0.9. Then, the total costs x1c1+x2c2 = 9

satisfy the budget constraint and the total number of inspected boaters is given by x1n1+x2n2 = 9.

However, in the original integer problem, stations cannot be operated fractionally, and only one

station can be chosen. As more boaters pass location 3 than locations l1 or l2, it would be optimal to

conduct inspections at location l3, where 8 boaters can be inspected. Applying a greedy rounding

algorithm to the relaxed solution, however, would suggest to operate either location l1 or l2, where

only 5 boaters would be expected.
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Figure A5: Inspection location setup that leads to a challenging optimization problem. The lines
denote roads, the solid black circles origins and destination, and the hollow orange circles potential
inspection locations.

E.2 Difficulties due to unfavourable relations between inspection lo-

cations

Besides challenges induced by cost constraints, specific relationships between potential inspection

locations can make the optimization difficult. Consider the example depicted in Figure A5 and

assume that an arbitrary number of boaters may drive from each origin/destination (black circle)

to each other origin/destination. Suppose that operating an inspection location at any of the

permissible locations has unit cost and that we are provided a budget of 2 cost units. If the

relaxed version of the problem is considered and fractional operation of stations is permitted,

operating each location with intensity 1
2

would cover all boater flows and hence be the optimal

solution. However, if discrete choices must be made, some boaters will not be inspected. As all

locations are operated equally in the optimal solution to the relaxed problem, this solution does

not provide any hint towards which of the locations should be operated in the original scenario

with binary decisions. Therefore, the problem is difficult to solve.

E.3 Prevalence of difficult scenarios in real-world applications

Any of the challenging scenarios discussed above can occur in real-world problems. However,

certain characteristics of real-world scenarios lower the risk of running into optimization issues.

In many management scenarios of interest, various inspection stations can be operated. Problems
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induced by the budget constraint become less significant if a large budget is considered so that a

potential remainder of the budget becomes insignificant. For example, in all scenarios with a budget

above 30 units considered in this paper, we reached a solution with at least 98% optimality within

minutes. Furthermore, issues induced by budget constraints can be mitigated by investigating

alternative scenarios with slightly adjusted budgets.

Scenarios with unfavourable relationships between potential inspection locations can be ex-

pected in real-world applications. Note that the issue with the setup in Figure A5 persists if the

roads connecting the potential inspection locations have a shape different from the road pattern

drawn in the figure. Furthermore, the depicted situation may refer to a portion of the road network

only, with multiple origins and destinations connected to each of the depicted origin/destination

vertices. In fact, situations such as the considered one could appear multiple times in a road

network. Therefore, the considered challenges do not only occur in scenarios in which inspections

are restricted to locations close to origins and destinations.

Nonetheless, invasion patterns frequent in real-world scenarios reduce the prevalence of such

unfavourable inspection station relationships. As short distance dispersal of invasive species is

typically more likely than long-distance dispersal, invaded habitat patches form clusters so that

the inflow of potentially infested vectors, such as boaters, comes from specific directions only. For

example, high-risk boaters enter BC through the southern and eastern border only. Therefore, it

is often possible to identify inspection location configurations in which only few high-risk boaters

pass multiple operated inspection stations. This simplifies optimization of the inspection policy.

Greater optimization challenges can be expected if origins and destinations are intermixed.
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