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Biological invasions, a major and increasing agent of
global biodiversity change, are often the result of

inadvertent releases from trade and travel pathways
(Levine et al. 2003; Ruiz and Carlton 2003; Drake and
Lodge 2004). Empirical and theoretical evidence indicate
that invasion risk can be decreased by reducing propagule
pressure, specifically, the quantity, quality, and frequency
of introduced individuals (Grevstad 1999; Rouget and
Richardson 2003; Drake and Lodge 2004; Verling et al.
2005). In marine and estuarine systems, the dominant
invasion pathway worldwide is the ballast water of com-
mercial ships (Carlton and Geller 1993; Carlton 1998;
Ruiz and Carlton 2003; Drake and Lodge 2004; Holeck et
al. 2004). Current estimates suggest that a global fleet of
approximately 35 000 commercial vessels transports an
annual volume of about 3.5 x 109 metric tons of ballast
water, containing some 7000–10 000 species – mostly
marine – at any one time (Carlton 1999; Endresen et al.
2004; Figure 1)

This invasion pathway is currently managed primarily
by open-ocean ballast-water exchange (IMO 2004;
Minton et al. 2005). Under this practice, a ship’s ballast
tanks are loaded as usual at the start of a voyage, emptied

and refilled in mid-ocean, and subsequently emptied in or
near the destination port (Figure 2). Exchange is based
on three assumptions: (1) that most initial organisms are
flushed out; (2) that remaining organisms survive poorly,
if at all, in the newly ballasted ocean water; and (3) that
oceanic organisms released in the destination port pose a
minimal invasion risk. We focus here on the interaction
between the first and second assumptions in determining
exchange effectiveness. 

Ballast-water exchange was originally developed in the
context of ships sailing from fresh- through saltwater back
to freshwater, so that any freshwater organisms remaining
after exchange would be expected to die in the newly
loaded oceanic water. Exchange has since been recom-
mended or required by a number of coastal ports and
nations, and a recently adopted International Maritime
Organization convention now requires vessels arriving in
all 164 member states to conduct open-ocean exchange
or equivalent management (IMO 2004; Minton et al.
2005). However, it is not clear if exchange would be as
effective for saltwater organisms, where post-exchange
survival in oceanic water could be equal to or greater
than that in the initial water. 

Here we develop a simple theoretical framework for
evaluating and maximizing the effectiveness of ballast-
water exchange. Using this framework, we show when
exchange is predicted to reduce propagule pressure, and
when it can, counterintuitively, increase propagule pres-
sure relative to a nonexchanged tank. We then apply the
model to evaluate exchange effectiveness for a series of
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introduced marine and estuarine species. Although this
framework is developed with reference to exchange, it
could readily be applied to other ballast treatment meth-
ods (eg Waite et al. 2003; Minton et al. 2005) during or at
either end of a voyage.

� Ballast-exchange model 

Model structure
Our goal is to model organism survival in ballast-water
tanks with and without exchange. Based on empirical
results (Gollasch et al. 2000; Wonham et al. 2001; Drake
et al. 2002; Taylor et al. 2002; Murphy et al. 2004), we
model the abundance of a single species in a single ship as
declining exponentially both before and after exchange.
We use the following equation modified from equation 7
of MacIsaac et al. (2002):

(1) n(T) = n(0)     e-�1tB r       e-�2(T– tB)= n(0)e(-MtB– �2T)r
final           initial       survival     retention      survival

abundance  abundance    before        during            after
exchange   exchange     exchange

Here, n(T) is the final organism abundance at the end of
a ballast voyage of length T days and n(0) is the initial
abundance. Exchange occurs on day tB < T, and r is the
proportion of organisms retained during exchange, giving
exchange efficiency as 1 – r. The difference in per capita
daily mortality rates in initial (�1) and exchanged (�2)
water is M = �1 – �2. Since we are considering organism
abundance within the ship only, we leave off the original
ballast discharge parameter r1. In the absence of
exchange, equation (1) simplifies to:

(2)                     n(T)    =      n(0)        e-�1T

final                   initial            survival   
abundance          abundance          over          

voyage      

as in MacIsaac et al. (2002) equation 8.
For simplicity, we consider the abundance of a single

ballasted species, and do not consider any new organisms
produced during the voyage, loaded during open-ocean
ballast exchange, or hatched from ballast sediments (eg
Gollasch et al. 2000; Wonham et al. 2001; Taylor et al.
2002; Murphy et al. 2004; Wonham et al. in press).
Species mortality rates �1 and �2 are not associated with
freshwater and saltwater per se, as in MacIsaac et al.
(2002), but simply with pre-exchange and post-exchange
ballast water. We assume that both mortality rates are
constant, which is consistent with empirical data for
many but not all taxa (Gollasch et al. 2000; Wonham et
al. 2001; Drake et al. 2002; Taylor et al. 2002).

Model analysis

We define exchange as effective if it reduces the final
organism abundance n(T) relative to that in a non-
exchanged tank. To obtain the conditions for effective
exchange, we set equation (1) < equation (2), and find
that exchange is effective if, and only if: 

(3) r < eM(tB–T).

When the mortality rate is greater after than before
exchange, M < 0 and inequality (3) always holds. For
M ≥ 0, inequality (3) means that effective exchange
occurs only below a threshold value of exchange reten-
tion r < r* = eM(tB–T). Assuming r < 1, this expression can
be rearranged to give the threshold exchange day
tB > t*

B = ln(r)/M + T, or the threshold difference in mor-
tality rates, M < M* = ln(r)/(tB – T) required for effective
exchange. In the last expression, a higher value of M*

generated by more efficient or later exchange (ie as
r � 0 or tB � T) indicates that exchange will be effective
over a wider range of M ≥ 0. As M* decreases with lower
or earlier exchange (ie as r � 1 or tB � 0), exchange will
be effective only for species with lower values of M.

This model illustrates that for species with M < 0,
exchange is always effective (Figure 3a). We would gener-
ally expect this to be the case for freshwater organisms
exposed to seawater during open-ocean exchange. For
estuarine and marine organisms, we might still expect
M < 0 if the ocean water were less hospitable than the
initial water in terms of salinity or other factors. On the
other hand, if the ocean water were equally or more hos-
pitable, we could find M ≥ 0. In this case, exchange effec-
tiveness would depend on the exchange retention and
timing (Figure 3a). 

For a given M value, exchange operations can be opti-
mized to minimize the final organism abundance n(T).
This is illustrated for a fixed value of r = 0.1, with exam-
ples of earlier (tB = 3) and later (tB = 7) exchange (Figure
3b). When M < 0, earlier exchange leads to the lowest
value of n(T). When 0 < M < M*, later exchange leads to
the lowest n(T). In the region M > M*, n(T) is minimized
by not exchanging ballast water (Figure 3b). 

The above calculations would ensure effective

Figure 1. Vessel deballasting in coastal waters.

{ {{ { {

{ { {



MJ Wonham et al. Ballast-water exchange

475

© The Ecological Society of America www.frontiersinecology.org

exchange when that is defined simply
as a reduction in n(T) relative to
a non-exchanged tank. In a more
realistic approach, we consider a
target reduction in organism abun-
dance to be x% of a nonexchanged
tank. We then obtain, for M ≥ 0,
the more general threshold expres-
sions for effective exchange, r < r*=
xeM(tB–T), tB > t*

B = ln(r/x)/M+T, and
M < M* = ln(r/x)/(tB– T). In other
words, the lower the value of x, the
lower r must be, the later tB must be, or the lower M must
be for effective exchange. To illustrate the model’s appli-
cation to particular species, we use the special case shown
in inequality (3) where x = 1. 

Application to estuarine and marine species

To illustrate the application of this model, we assumed as
a first approximation that the only difference between
the initial and oceanic ballast water was salinity. We con-
ducted a literature search to obtain published data on
proportional survival p over a given number of days d at
lower and higher salinity levels i for known introduced
estuarine and marine species. We then estimated each
species’ daily mortality rate �i as e-�id = p (following
MacIsaac et al. 2002). We assumed that the lower salinity
mortality rate applied in the pre-exchange coastal water,
and the higher salinity rate in the post-exchange oceanic
water. From these mortality rates, we determined the
threshold retention r* and timing t*

B of exchange. When
multiple data were available in the original sources, we
preferentially selected those for planktonic larval and

juvenile stages at temperatures 10–20 ˚C, with salinities
as close as possible to the lower range 20–29‰ and the
higher range 30–35‰. Although the laboratory studies
we used were not designed explicitly to test ballast
exchange, they provide preliminary data for examining
the biological constraints on effective exchange.

Of the resulting mortality rate estimates, almost all
were in the range 0 ≤ �i < 0.3, which is generally consis-
tent with the empirically observed range for invertebrate
zooplankton in ballast tanks (eg 0.02–0.22; Wonham et
al. 2001; Table 1). In approximately half the cases, M ≤ 0.
In these cases, any exchange level r < 1 is predicted to
reduce n(T) relative to a non-exchanged tank (Table 1).
Of these cases, when M = 0, exchange timing does not
affect n(T); when M < 0, exchange on any day is effective
and the earlier the exchange, the greater its effectiveness. 

For the remaining half of the cases, M > 0. Here,
exchange is effective only for certain values of r and tB.
For example, if we fix tB = 5 and T = 10, the threshold
retention value r* ranges from 0.12–0.99, corresponding
to a minimum exchange efficiency of 1 – r* = 0.01–0.88
(Table 1). If r < r*, exchange would lead to a higher n(T)

Figure 2. Illustration of the ballast-water exchange process. 

Figure 3. Ballast-exchange model predictions. In (a), the proportion of organisms surviving in a ballast tank depends on the
difference in mortality rates M = �1 – �2, (parameter values �1 = 0.4; �2 = 0.001 [blue solid], 0.04 [green dashed], 0.8 [red
dotted]; r = 0.1; tB = 3; T = 10). In (b), vertical dotted lines separate regions of M for which no, later, and earlier exchange
minimize n(T) (parameter values �1 = 0.85, �2 = [0, 1]; r = 0.1; tB = 3 [earlier], and 7 [later]; T = 10).

(a) (b)



Ballast-water exchange MJ Wonham et al.

476

www.frontiersinecology.org © The Ecological Society of America

effective exchange. For example, exchange would be
effective for the pearl oyster (Pinctada imbricata; M =
0.42) with a combination of r < 0.9 and tB > 4.5, or r < 0.7
and tB > 7 (Figure 2a). For the Eurasian green crab
(Carcinus maenas), which has a lower M value (first zoeal
stage M = 0.15), effective exchange on the same days
would require more efficient exchange with a lower r
value (Figure 4a). 

Some species have different M values at different life
stages (Table 1), in which case the same exchange strat-
egy may not be optimal for all stages (Figure 4b). In the
Chinese mitten crab (Eriocheir sinensis), for example, the
first and second zoeal stages have M < 0 so earlier
exchange would minimize n(T). In the third stage, where
M = 0, exchange timing would not affect n(T). In the
fourth and fifth stages, M > 0, so later exchange would
minimize n(T) (Figure 4b).

� Summary

Population and genetic theory predict that the chances of
successful biological invasion increase with the number,
frequency, and quality of individuals released. Ballast-
water exchange represents a global-scale implementation

than in a nonexchanged tank. For comparison, empirical
estimates of exchange efficiency range from < 0.5 to >
0.99 (eg Taylor et al. 2002), which corresponds to r-values
from under 0.01 to over 0.5. 

Alternatively, if we fix r = 0.1 and T = 10, we obtain
the threshold value t*

B, which ranges from 2.4–3.9. For M
> 0, exchange would be effective only if conducted on
day tB > t*

B; prior to t*
B, it would be counterproductive

(Table 1). These critical exchange rates would be more
readily achieved on some voyages than others. For exam-
ple, the average voyage distances of vessels arriving in US
ports are 1100 km and 8275 km (Drake and Lodge 2004),
which at an average sailing speed of 15 knots corresponds
to voyage lengths of approximately 1.6 and 12.4 days.
These estimates are consistent with observed intracoastal
and interoceanic voyage lengths reported for selected US
ports (Smith et al. 1999; Verling et al. 2005). Thus, values
of tB greater than 2 to 4 days would be more feasible for
longer transoceanic than for shorter intracoastal voyages.

More generally, we can visualize the range of effective
combinations of ballast exchange retention and timing
by plotting contour values of r* as a function of tB and M
(Figure 4a). For a species with a given M value, multiple
combinations of r and tB can be determined to ensure

Table 1. Critical retention and timing of ballast exchange required to ensure effectiveness  

Species a Stage �1 �2 M r* t*
B

Japanese oyster1 early larvae 0.000 0.000 0.000 1.00 -
late larvae 0.000 0.063 -0.063 1.00 +

Eastern oyster2 embryos 0.015 0.200 -0.185 1.00 +
Atlantic pearl oyster3 larvae 0.602 0.178 0.424 0.12 2.3
Mediterranean mussel4 larvae 0.090 0.088 0.002 0.99 3.9
Japanese littleneck clam5 larvae 0.000 0.000 0.000 1.00 -
Veined rapa whelk6 early larvae 0.093 0.255 -0.162 1.00 +

late larvae 0.005 0.020 -0.015 1.00 +
Signal crayfish7 juveniles 0.004 0.111 -0.108 1.00 +
Eurasian green crab8 zoea 1 0.182 0.032 0.150 0.47 2.4

zoea 2 0.099 0.068 0.031 0.86 2.6
zoea 3 0.090 0.046 0.045 0.80 2.5
zoea 4 0.095 0.037 0.058 0.75 2.5

Chinese mitten crab9 zoea 1 0.025 0.054 -0.030 1.00 +
zoea 2 0.008 0.013 -0.005 1.00 +
zoea 3 0.000 0.000 0.000 1.00 -
zoea 4 0.015 0.000 0.015 0.93 2.8
zoea 5 0.009 0.005 0.004 0.98 3.5
megalopa 0.018 0.038 -0.020 1.00 +

Gammarid amphipod10 adults 0.098 0.768 -0.669 1.00 +
Calanoid copepod11 juveniles 0.048 0.005 0.044 0.80 2.5
Northern Pacific seastar12 larvae 0.227 0.231 -0.004 1.00 +

For selected introduced invertebrates, daily per capita mortality rates �1 at lower and �2 at higher salinity determine M = �1 – �2, for which sample calculations show r* and t*B.
Under  t*B, – indicates that exchange timing does not influence effectiveness; + indicates that exchange on any day is effective, and that effectiveness increases as tB decreases.

a Species names, lower and higher salinities (‰), and sources: 1. Crassostrea gigas (24, 32; Yaroslavtseva et al. 1991); 2. Crassostrea virginica (23, 33; Davis 1958); 3. Pinctada imbricata
(30,35;O’Connor and Lawler 2004);4.Mytilus galloprovincialis (20,30;Matson 2003); 5.Ruditapes philippinarum (26,33;Namaguchi 1998);6.Rapana venosa (25,32;Mann and Harding
2003); 7. Pacifastacus leniusculus (21, 35; Holdich et al. 1997); 8. Carcinus maenas (20, 32; Anger et al. 1998); 9. Eriocheir sinensis (25, 32;Anger 1991); 10. Dikerogammarus villosus
(15, 25; Bruijs et al. 2001); 11. Eurytemora affinis (10, 27; Lee and Peterson 2002); 12. Asterias amurensis (28, 35; Sutton and Bruce 1996).
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of this theory designed to reduce propagule pressure and
invasion risk in aquatic and marine systems. Although
exchange is increasingly being adopted by port states
worldwide (IMO 2004) it has been tested empirically in
only a few instances (eg Taylor et al. 2002). 

Here, we have provided a simple model to investigate
when and how much exchange reduces propagule pressure,

and how this reduction can be optimized. Depending on
the species, maximum invasion risk reduction may be
achieved by early exchange, late exchange, or no exchange
at all. Although there exists a parameter space in which
exchange is counterproductive, leading to increased
propagule pressure relative to a nonexchanged tank, we find
that exchange is generally predicted to be effective for the
introduced estuarine and marine species we examined. In
many cases, though, there is a minimum exchange level or
timing required for effectiveness. Of course, these calcu-
lated critical values would apply only to a vessel far enough
from the coast to conduct open-ocean exchange, since
exchanging too close to the departure or arrival port would
defeat the purpose (Taylor et al. 2002; IMO 2004).

To introduce this modeling framework, we made several
simplifying assumptions that could be investigated with fur-
ther extensions to the model. Our model incorporates the
first two underlying assumptions of ballast exchange, organ-
ism flushing during and mortality following exchange, but
the third assumption of minimal survival of oceanic organ-
isms in coastal waters remains to be assessed. Although we
developed this model for a single species or life stage, a bal-
last assemblage typically consists of multiple species and life
stages, with a resulting wide range of optimal exchange
strategies that need to be considered together. Additional
aspects of the ballast community, including organisms
hatching and reproducing during the voyage, could also be
incorporated (eg Wonham et al. in press). We assumed that
exchange affected only ballast-water salinity, although it
may also affect oxygen, pollutant, and nutrient levels, as
well as species composition, all of which could influence
mortality rates. We also assumed that mortality rates

Figure 4. Using the ballast-exchange model to optimize exchange strategy. In (a), contours of the critical value r* from 0.1 to 0.9 are
plotted as a function of M and tB. For a given species’ M value, shown as lower horizontal dashed line for Eurasian green crab
(Carcinus maenas) and upper for Atlantic pearl oyster (Pinctada imbricata), different effective combinations of r and tB can be
selected to ensure effective exchange. In (b), five larval stages of the Chinese mitten crab (Eriocheir sinensis) have different M
values and therefore different optimal exchange strategies (shown for r = 0.1 and T = 10).

Panel 1. Model parameters
Symbol Meaning

n(0) initial organism abundance in ballast tank
n(T) final organism abundance in ballast tank
�1 daily per capita mortality rate before 

exchange, 0 ≤ �1 ≤ 1
�2 daily per capita mortality rate after 

exchange, 0 ≤ �2 ≤ 1
T voyage duration in days
M difference in mortality rates, �1 – �2

M* critical difference: only when M < M* will 
exchange reduce n(T) relative to a 
nonexchanged tank

tB day of ballast exchange, tB < T
t*B critical exchange day: only when tB > t*B

will exchange reduce n(T) relative to
a nonexchanged tank

r proportion of organisms remaining
following exchange, 0 ≤ r ≤ 1

r* critical proportion: only when r < r* will 
exchange reduce n(T) relative to a
nonexchanged tank

1 – r exchange efficiency

(a) (b)
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before and after exchange were constant, although empir-
ical evidence shows that they can vary (Gollasch et al.
2000; Wonham et al. 2001; Drake et al. 2002; Taylor et al.
2002). A more complex model could incorporate a range
of mortality functions dependent on multiple environ-
mental variables. Finally, the observed variation in the
ballast assemblage and environment indicates the impor-
tance of considering alternate management strategies to
complement ballast-water exchange in reducing invasion
risk (eg Carlton 1998; Taylor et al. 2002; Minton et al.
2005). Modifications of our model could be readily used
for similar analyses of other emerging ballast-treatment
methods.
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