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ABSTRACT 

Digital transformation of the construction industry has been slow and challenging. With 

continuously improving information and communication technology, increasing amounts of 

construction data are automatically generated throughout the stages of construction for all 

construction management functions. However, due to the complex nature of construction, 

collected data are noisy, fragmented, and discordant, consisting of observational and 

subjective as well as structured and unstructured information. These types of data form 

natural barriers for use in any data-driven applications, limiting their ability to provide 

reliable, timely, and informed decision support. How to fully exploit the value of “big data”—

specifically, learn as much as we can from the raw construction data that we collect—is a 

challenge the entire construction industry is facing. 

This research investigated this problem by addressing three specific challenges that hinder 

the digital transformation of the construction industry: 1) low automation for integrating and 

pre-processing fragmented construction data for project-level decision support; 2) lack of 

means for fusing information derived from various origins for data-driven simulation in real-

time; and 3) slow implementation of machine learning, resulting in organizations ‘drowning’ 

in a flood of data. 

This research adopted methods from applied mathematics and statistics, data science, and 

computing science to develop methodologies capable of addressing these challenges. This 

research better exploits the value of construction data and improves its conversion into 

informed project decision support. Specifically,   

Through the development of an enhanced data-driven application framework with 

two embedded custom functions to automate key data preprocessing steps for data 
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aggregation and merging, this research increases information flow between 

segmented data sets, thus enhancing data-driven simulation and analytics in general;  

Through the proposal of two methods for enabling real-time input model calibration 

for simulation, this research establishes a foundation of dynamic data-driven 

simulations to incorporate real-time data of diverse origins, extending their 

applications to all stages of a project’s life cycle and potential connections with 

multiple project stakeholders;  

Through the development of a data solution to improve preliminary resource 

planning in industrial construction, this research not only provides vital decision 

support—a scientific and data-driven resource plan at the early planning stage—but 

also demonstrates the practicality of integrating unsupervised and supervised 

learning for large, unlabeled, and noisy construction data. 

This research has achieved the goal of bridging low-quality construction data to a real-time 

data solution and contributed to the academic literature and construction industry by: 1) 

proposing a novel framework for enhanced data-driven applications built upon fragmented 

construction data; 2) developing and generalizing functions to automate and streamline the 

otherwise manual data pre-processing steps; 3) proposing a numerical-based Bayesian 

inference method for systematically updating input models (any given univariate continuous 

probability distribution) of simulations as new observations become available; 4) proposing a 

Markov chain Monte Carlo-based weighted geometric average method to effectively fuse 

information generated from diverse sources (both subjective and objective) for stochastic 

simulation inputs; and 5) developing a data solution to scientifically plan project resources 

with incomplete engineering.  
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1.1. BACKGROUND 

Managing a construction project involves effective planning, organizing, executing, 

monitoring, and controlling (Ahuja et al. 1994). The introduction of quantitative analysis in 

assisting these project management functions has been slowly shifting the construction 

industry from a craft-oriented culture to a data-driven one.  

The digital transformation in the construction industry, however, has been slow and 

challenging (Wu and AbouRizk 2021a). Unlike its increasingly digitized customers, the 

construction industry seems to “stuck in the analog era” (Koeleman et al. 2019). The low level 

of digitalization and painful transformation is caused by many inherent characteristics of 

construction:   

Fragmentation. The lifecycle of a construction project involves a collection of large 

and small contractors, subcontractors, and numerous specialized trades (Neelamkavil 

2009). Each agency in this dynamic network has adopted various degrees of 

technological advancements to suit its operation, capital, and culture (Rezgui et al. 

2011, Sardroud 2015). This is especially true for independent subcontractors and 

suppliers, who have little incentive to embrace advanced technologies during the brief 

periods when they are on the project (Koeleman et al. 2019). Standardizing and 

implementing information technology across a project, which requires buy-in from all 

stakeholders, is extremely challenging.  

Complex and Unique. Unlike many other industries, construction projects are 

almost always one-of-a-kind and complex (Behzadan et al. 2015, Lu et al. 2015, Caldas 

and Soibelman 2003). Many project management processes are in place to fulfill 

specific contractual requirements for a specific project. The industry’s inherent 
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complexity and uniqueness challenge information technologies to provide universal 

solutions that apply to various stakeholders and diverse projects and that cross 

multiple project phases. 

Transience. Workforce turnover is extremely high in construction at both the project 

and company levels (Koeleman et al. 2019). This results in a corporation’s reluctance 

to invest in employee training, which is critical in digitalization. Additionally, a 

significant amount of project data is exchanged verbally or in unstructured documents 

among only the involved personnel (Caldas et al. 2002; Al Qady and Kandil 2013). 

These data often include experts’ opinions of the current project conditions and 

forecasts of future performance, shedding light on important factors for critical project 

decision-making. Unfortunately, very few of these valuable assets are captured or 

shared to enhance future projects in a company—they remain in the mind of the 

individuals and leave the company when the person departs (Martínez-Rojas et al. 

2016).  

Remote and Harsh Environments. Unlike manufacturing, which takes place in a 

well-controlled environment, construction sites are often in remote and harsh 

environments (Sidawi and Alsudairi 2014). The harsh and remote site conditions pose 

extra challenges to hardware and software development, including limited IT support, 

which impedes the data quality. Construction data is often embedded with missing 

values, human errors, and outliers. 

These characteristics of the construction sector make it particularly difficult to develop a 

standardized commercial digital solution at both the industry and corporation levels. Indeed, 

many large general contractors, such as our industry partners, reported a large portion of in-

house developed information technologies, such as APIs (application programming interface), 
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databases, and data warehouses. Without coordination, the competing systems exist not only 

among companies but also within a single firm (Koeleman et al. 2019). Especially for large 

companies, who are often highly federated, project data from different departments are 

commonly maintained and stored separately at different databases, either commercially- or 

in-house-developed. 

Reflecting the low level of digitalization—reported among one of the world’s least digitized 

industry by McKinsey Global Institute (Manyika et al. 2015)—construction data are noisy, 

both “soft” and “hard”, both structured and unstructured, and segmented. These types of data 

form natural barriers for use in any data-driven applications to provide reliable, timely, and 

informed decision supports.  

1.2. DEFINITION OF DATA 

Before diving into research-related details, clarification of the following concepts will greatly 

assist readers in grasping the magnitude of the problem and the significance of this research. 

Data are defined as “information, especially facts or numbers, collected to be examined and 

considered and used to help decision-making, or information in the electronic form that can 

be stored and used by a computer” (Cambridge Business English Dictionary 2020). Within 

the data boundary, hard data are defined as “information such as numbers or facts that can 

be proved” (Cambridge Business English Dictionary 2020). In other words, hard data are in 

the form of numbers or graphs (McGraw-Hill Dictionary of Scientific & Technical Terms 

2003). Opposed to hard data, soft data are defined as “information about things that are 

difficult to measure such as people’s opinions or feelings” (Cambridge Business English 

Dictionary 2020). 
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Both hard and soft data prevailingly exist in the construction industry. The development and 

implementation of various sensor technologies (e.g. radio frequency identification, global 

positioning system, laser, and vision-based detection) in construction has drastically 

improved the efficiency of the data collection process in industry (Zhang et al. 2017), resulting 

in larger volumes of hard data. These data, also referred to as observational data in this 

research, are commonly stored in relational databases, as a single spreadsheet quickly 

reaches its capacity. On the other hand, seemingly repetitive operations in construction can 

drastically differ due to uncertainties and external factors, such as location, weather, labor 

skills, morale, and utilization of technology (Seresht and Robinson Fayek 2018). The majority 

of such important project data—which capture these external factors—are stored in 

unstructured text documents or exchanged verbally among the professionals involved, 

rendering the terms “soft data” and difficult to apply (Martínez-Rojas et al. 2016, Caldas et 

al. 2002, Al Qady and Kandil 2013).  

1.3. PROBLEM STATEMENT 

How to fully exploit the value of construction data—specifically, to learn as much as we can 

from the raw construction data that we collect and covert them into informed decision 

support—is a grand challenge the entire construction industry is facing. Attempting to 

answer this grand problem, this research identified the following three bottlenecks that 

prevail in the construction industry, preventing data from being properly converted into 

informed decision supports. Exploring solutions to these identified bottlenecks, this research 

removes some systemic barriers to increase data usage and enhance data-driven applications 

in construction, thus bridging fragmented construction data with a real-time data-driven 

application.  



6 

Challenge 1: Low automation in integrating and pre-processing segmented 

construction data for project-level decision support 

The existing standalone data management systems support a limited number of data 

analysis functions and decision support tasks (Ng et al. 2017), but they often fail to provide 

insights in connections among various data sets or provide a high-level integrated view. For 

instance, a safety database can summarize, report, and visualize safety incidents at various 

detail levels throughout the entire project. But, to discover the potential correlation between 

safety indices and various project conditions, or a specific incident’s immediate and delayed 

effect on the project requires merging, process, and cleaning data that are stored in separate 

databases to a central location.  

Because each of the databases is developed individually and often cater to a specific 

construction management function (as illustrated in the above case), the level of detail and 

structure of the data can differ drastically among different databases, creating difficulties in 

data sharing, syncing, and aggregating. The resulting project data are segregated like 

individual islands without channels to flow and integrate freely, thus requiring routine data 

manipulation manually. Repetitive and mundane manual manipulation is not only an 

inefficient use of experts’ time but also introduces human error further lowering the data 

quality (Wu et al. 2020a). 

Challenge 2: Lack of means in fusing information derived from various origins for 

data-driven simulation in real-time 

Data-driven simulations have been widely used in project management to plan, schedule, 

and control in a variety of construction projects. However, many documented challenges, 

especially failing to effectively reflect the project conditions based on real-time project data, 
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limit this powerful tool to mostly planning stages (Martínez-Rojas et al. 2016, Abdelmegid et 

al. 2020, Leite et al. 2016). 

The success of a simulation model is highly dependent on accurately modeling the inputs, 

particularly in construction where a considerable number of inputs (each imbued with a wide 

variety of uncertainties) all relate to the underlying random process of various activities and 

tasks (Wu et al. 2020b, Wu and AbouRizk 2021b). Modeling inputs as probability 

distributions, in a process known as stochastic or Monte Carlo simulation, has been widely 

studied and used in the construction industry due to its success at incorporating the 

randomness and various uncertainties inherent to construction activities. Nevertheless, 

these input probability distributions are often rigid (e.g. a distribution fitted from historical 

data or experts’ judgments) and lack reliable or effective solutions for fusing actual 

performance and subjective opinions with the original input distribution to achieve real-time 

updating (Akhavian and Behzadan 2013). 

Challenge 3: Behind the curve in implementing machine learning—drowning in a 

flood of data 

The traditionally craft-oriented culture and processes in the construction industry pose 

additional barriers to the adoption of data-driven applications, as the industry tends to put 

trust in individual experience and expertise over empirics. Very few companies have data 

analysts on staff who can take ownership of advanced analytics initiatives (Hovnanian et al. 

2019).  

On the other hand, a majority of marching learning techniques are like black-boxes, where 

the paths from input to output are too complicated for any human to comprehend (Rudin 

2019). Additionally, the typical machine learning process focuses on selecting a model solely 
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on performance metrics, such as accuracy rate, while neglecting the interpretability and 

actionable insights of the data (Krause et al. 2016).  

The often inaccurate predictions from these machine learned models, as a result of low-

quality data, have exacerbated the clash between craft-oriented culture in construction and 

the implementation of black-box approaches. Reflecting the highly-fragmented, stressful, and 

dynamic environment—like most raw data—construction data require extensive data 

preprocessing, such as identifying outliers, labelling, and formatting to produce a robust, 

predictive model (Han et al. 2011). Due to a lack of trained staff and constant pressure to 

deliver, this critical step—a key to the success of gaining insights into raw facts—is often 

skipped or inadequately performed during project execution. Consequently, the results of 

these data solutions often demonstrate large deviations and mismatch with human intuition, 

which further diminishes trust of machine-learned models by the construction industry.   

To conclude, most construction companies are only capable of summarizing the quick, easy, 

factual information from a large amount of construction data they collect, and they miss the 

potentially critical project information such as connections, correlations, and causal 

relationships among large data sets that are often hidden and harder to discover— rendering 

the majority of the construction agents drowning in a flood of data (Leite et al, 2016).  

1.4. RESEARCH AIM AND OBJECTIVES 

Aiming to better exploit the value of construction data and convert data into informed project 

decision supports, this research explored and adopted methods from applied mathematics 

and statistics, data science, and computing science. The research goal of bridging low-quality 

construction data to a real-time data solution was achieved by addressing the above-

mentioned challenges and accomplishing the following objectives: 
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1) Increasing information flow among separate databases and automating critical data 

pre-processing tasks (Chapter 2). This objective focuses on addressing the challenges 

of the common, labor-intensive, raw data preparation steps that prevail in the 

industry. Data sets that are hard to integrate due to drastically different structure 

can be easily merged and prepared to the required level for the next step analysis by 

automating two major data pre-processing tasks. Further generalizing these two 

functions as public R library, this research developed a framework that linked original 

raw data stored in separate databases with the ultimate managerial product, data-

driven analytics and/or simulation model.  

2) Improving the input modeling process to incorporate real-time “soft” and “hard” data 

(Chapters 3 and 4). This objective examines the state-of-art methods in fusing data 

generated from various origins and adopts methodologies from applied statistics to 

improve the way we model simulation inputs in real-time. It also enables a new 

generation of decision-support systems capable of incorporating real-time updates 

based on as-built data, integrating different data sources (both subjective and 

objective), and consolidating all critical information into the input of data-driven 

simulation models. 

3) Demonstrating how to use a variety of machine learning algorithms to augment the 

data parsing and labelling process, learn critical design information from large 

available historical construction data sets, and form a data-driven decision support 

system in future projects (Chapter 5). This research objective examines a critical 

construction management function, namely preliminary resource planning—a 

preconstruction planning function traditionally carried out in an ad hoc way—and 

proposes a combination of supervised and unsupervised (or semi-supervised) machine 

learning methods to reveal critical design information from a low level-of-detail 3D 
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model while engineering is incomplete, thereby bridging certain design to its historical 

resource requirement. This research component is the first academic study for 

deriving a set of data-driven preliminary resource planning indices given limited 

engineering. By demonstrating how unsupervised learning can be combined with 

supervised learning, this research component also promotes analysis of large 

construction data sets from a data-driven perspective, and effectively brings forward 

“hidden” project information without the labor-intensive process of labelling and 

parsing data.  

Segmented, raw construction data deter the majority of data-driven applications. As 

depicted in Figure 1-1, the first research objective addresses this bottleneck and lays a 

solid foundation for the following research activities. The second and third research 

objectives further discuss how to incorporate both “hard” and “soft” construction data in 

real-time for enhanced decision supports. 

1.5. RESEARCH METHODOLOGY AND ACTIVITIES 

This research explored and adopted interdisciplinary methods such as dynamic programming, 

Bayesian inference, Monte Carlo and Markov chain Monte Carlo (MCMC) methods, weighted 

geometric averages, and supervised and unsupervised machine learning algorithms to 

achieve the research objectives of connecting raw construction data to real-time data solution.  
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The goal and objectives of this research was achieved through the following activities (Figure 

1-1): 

 

Figure 1-1 Roadmap of the research 

1.5.1. Enhancing real-time information flow for data-driven applications 

This research activity in Chapter 2 was developed to address the challenges of low 

automation in data preprocessing steps for highly fragmented and non-integrated raw 

construction data. Specifically, this research developed two custom functions (published as R 

libraries) to automate key data preprocessing steps for data aggregating and merging: the 

dynamic programming-based longest common substring algorithm (Li et al. 2019) and the 

interval-based 3D object relationship detection algorithm (Wu and AbouRizk 2020). Building 

on these two functions, this research proposed a framework to automatically prepare data 

generated from various origins with no obvious path to a tidy format (where each variable is 

a column, and each observation is a row (Wickham 2014)) and can be supplied to a wide range 

of applications in real-time. The proposed framework increases the information flow among 

segmented data sets, thus enhancing data-driven simulation and analytics in general.  
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1.5.2. Input modelling for dynamic data-driven simulations in Construction 

Targeting the challenges of rigid parameters, structure, and assumptions that limit data-

driven simulations’ application mostly to the planning stage, this research activity 

systematically studied the way we model simulation inputs and proposed two methods in 

enabling real-time input model calibration for simulation.  

The first study in Chapter 3 coupled the MCMC method with Bayesian inference to enable 

input model updating with real-time observations for any given univariate distribution. This 

research not only demonstrates Bayesian inference updates and approximates the 

underlying probability distribution despite noisy data, in a real-time manner, but also 

extends its application to cases when analytical solutions do not exist. The second study in 

Chapter 4 has proposed a MCMC-based, weighted geometric averaging method for fusing 

data generated from diverse sources—including both subjective and objective—to update 

inputs of simulation models in real-time. This research addresses the practical challenges 

associated with fusing observational and subjective project information in real-time, which 

is extremely common in construction, as experts’ opinions are critical during a decision-

making process.  

The methodological improvement of enabling data-driven simulations to incorporate real-

time data of diverse origins extends their applications to all stages of a project’s life cycle and 

potential connections with multiple project stakeholders. Additionally, both studies 

implemented MCMC-based numerical methods, demonstrating their great potential for 

approximating complex and arbitrary probability in the engineering discipline.  
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1.5.3. Data solution to improve industrial construction preliminary resource 

planning  

This research in Chapter 5 proposed a data-driven approach for preliminary resource 

planning in industrial construction projects. This approach deploys semi-supervised machine 

learning techniques (clustering and classification) to learn from historical projects, predict 

module types, and generate key resource planning indices based on incomplete, segmented—

yet early available—data for a future project. This research not only provides vital decision 

support, as it is the first to provide a scientific and data-driven resource plan at the early 

planning stage with limited engineering, but it also demonstrates the practicality of 

integrating unsupervised and supervised learning for large unlabeled noisy construction data.  

1.6. THESIS ORGANIZATION 

This thesis is organized following a paper-based format, and the remainder of the thesis is 

organized as described in Table 1-1. 
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Table 1-1. Thesis organization 

Chapter Research Activity Publication 

2 

1.4.1“Enhancing 

real-time 

information flow 

for data-driven 

applications” 

Wu, L., Li, Z., and AbouRizk, S., (2020) “Automation in 

extraction and sharing information between BIM and 

project management databases” Proceedings of the 

International Conference on Construction and Real Estate 

Management (ICCREM) 2020: 37-46, Stockholm, Sweden  

3 1.4.2 “Input 

modelling for 

dynamic data-

driven 

simulations in 

Construction” 

Wu, L., Ji, W., and AbouRizk, S. M. (2020). “Bayesian 

inference with Markov chain Monte Carlo–based numerical 

approach for input model updating.” Journal of Computing 

in Civil Engineering, 34(1), 04019043 

4 

Wu, L., and AbouRizk, S. (2021). Numerical-Based 

Approach for Updating Simulation Input in Real 

Time. Journal of Computing in Civil Engineering, 35(2), 

04020067. 

5 

1.4.3 “Data 

solution to 

improve 

industrial 

construction 

preliminary 

resource 

planning” 

Wu, L., Ji, W., Feng, B., Hermann U., and AbouRizk, S., 

“Intelligent Data-Driven Approach for enhancing 

preliminary resource planning in industrial construction.” 

Automation in Construction, [Revision] 
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2.1. INTRODUCTION 

With the digitalization—the rapid evolution of digital technologies enabling both generating 

and storing data electronically—more data than ever are being created and stored during 

construction (Soibelman et al. 2008, Soibelman and Kim 2002). Benefiting from information 

learned through these data, construction agencies have been slowly shifting from a craft-

oriented culture to a data-driven one. Ultimately the more a company can learn from its data, 

the better its chances of identifying potential risks, increasing profitability, and staying 

competitive (McGee et al 1993).  

With increasing data generated through automated data collection technology, such as radio 

frequency tags, barcode, and sensors (Sardroud 2015), a single spreadsheet quickly reaches 

its maximum capacity to properly store, transmit, and manage data. In the past few decades, 

construction agencies have invested time, effort, and money in information and 

communication technology (ICT) to manage the increasing amount of data (Martínez-Rojas 

et al. 2016, Sardroud 2015). As a result, the majority of observational construction data is 

stored in large, complex databases, either developed commercially or in-house.  

Nevertheless, the value of these construction data has been significantly under exploited 

(Leite et l. 2016, Sardroud 2015, Barbosa et al. 2017). The construction industry is one of the 

world’s least digitized sectors (Manyika et al. 2015), according to McKinsey Global Institute, 

and it seems to “stuck in the analog era” (Koeleman et al. 2019).  

Many researchers have studied and documented the barriers and struggles to standardizing 

and fully-implementing digital solutions in construction (Martínez-Rojas et al. 2016, 

Sardroud 2015, Lu et al. 2015, Adriaanse et al. 2010). Hindering digitalization are the 

inherent characteristics of the construction industry: 1) fragmentation along the value chain 
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(Nitithamyong and Skibniewski 2004, Rezgui et al. 2011, Lu et al. 2015, Koeleman et al. 

2019), 2) uniqueness and complexity (Behzadan et al. 2015, Adriaanse et al. 2010), 3) 

transient and temporariness (Koeleman et al. 2019), and 4) open and uncertain conditions 

(Bowden et al. 2006; Behzadan et al. 2008). These characteristics of the industry further 

create secondary barriers, such as the data’s low quality leading to lost trust (Soibelman et 

al. 2008), inadequate employee trainings (Lu et al. 2015, Viljamaa and Peltomaa 2014), and 

low research and development budgets (Agarwal et al. 2016).  

These challenges are magnified when it comes to industrial construction industry, which is 

more complex; often located in remote, harsh environments; and usually involves multiple 

layers of contractors, suppliers, specialized trades and subcontractors at each phase of the 

project lifecycle (Koeleman et al. 2019). As such the construction data in a large industrial 

construction project is highly segmented—1) each construction agency along the value chain 

adopts a certain degree of ICT that matches its own organizational structure, culture, and 

capital; and 2) each department within one large construction company, functioning as one 

federate, invests in ICT independently without coordinating with other departments. The 

lack of industry-wide standardization and the lack of coordination during development and 

implementation create physical barriers to freely share project data among departments and 

corporations (Forcada et al. 2007, Chassiakos and Sakellaropoulos 2008).  

These standalone data management systems usually support a limited number of data 

analysis functions and decision support tasks (Ng et al. 2017), but often fail to provide 

insights at a high-level with an integrated view, or to be easily shared and reused by 

downstream stakeholders. In practice, domain experts routinely (e.g. weekly, biweekly, 

monthly) perform manual data manipulation, including data extraction, merging, filtering, 

re-entery, summarizing, and wrangling. Multiple iterations of manual data pre-processing 
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not only is inefficient and labor-costly, but it also introduces human error, further lowering 

the data quality. The low level of information integration occupies experts’ essential time, 

introduces potential errors, and hinders the success of construction projects (Mitchell 2006, 

Saraf et al, 2007, Berteaux and Jacernick-Will 2015).  

The initiative of this research came directly from a multi-national general contractor, whose 

portfolio covers heavy industrial, infrastructure, and commercial/residential construction, 

along with special projects. As an industry leader, they have implemented many commercial 

information systems, such as Autodesk Navisworks, Oracle’s JD Edwards EnterpriseOne, 

Primavera P6 Enterprise Project Portfolio Management, as well as dozens of in-house 

developed information systems, from a small scaffolding request system to a large progress 

tracking database. They have been struggling with the aforementioned challenges at full 

scale in past industrial construction projects.  

This research developed two custom functions to automate common data pre-processing tasks 

and address this prevailing challenge in the industrial construction industry: 1) automating 

data mapping based on auto-detected keywords; 2) auto-identifying overlapped and/or 

included relationships between two 3D objects. Wrapped around these two core functions is 

a framework that incorporates data adopter(s) for real-time access of segmented data sets, 

structured query language (SQL) for effective data merging, and various simulation and 

machine learning algorithms for advanced data analysis. The proposed framework 

demonstrates the capability in effectively and efficiently bridging raw, segmented 

construction data with various data analytics through automated data pre-processing. The 

proposed framework significantly reduces the manual data manipulation, improves the data 

quality, streamlines the processes between raw, segmented data and data solutions, thus 

enhance data-driven applications in general.  
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After validating the two core custom functions, the proposed framework was implemented in 

a case study where historical project data was used for auto-generating S-curves for project 

controlling and managing tasks. The proposed framework provides a universal solution to 

increase automation in data pre-processing for all fragmented construction data. As a result, 

it promotes information flow, improves data quality, and ultimately, increases data 

utilization for critical project decision supports. The rest of the chapter is organized as follows: 

a systematic literature review on integrating information management systems in 

construction, the methodology of the proposed framework, validation of the custom functions, 

and an industrial case study. 

2.2. RESEARCH BACKGROUND 

Construction projects—regardless of size—generate a large amount of raw data throughout 

their lifecycles (Tatari et al. 2004, Martínez-Rojas et al. 2016). As outlined in Figure 2-1, the 

project data generated at one project phase are often critical for stakeholders within this 

phase, as well as the following phase(s) (Hu 2008). However, due to the fundamental causes 

and derivative barriers listed above, the data flow has been rocky, causing information loss 

and inefficiency—either among departments within a corporation or among organizations.  

 

Figure 2-1 Construction project phases and typical construction data involved 
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Previous research has proposed many solutions and frameworks in the attempt to address 

fragmented construction data, improve information flow, and achieve integrated decision 

support (Yuan et al. 2019). The three subsections below review such research efforts 

including the most promising ICTs: construction enterprise resource planning (CERP) 

systems and building information modeling (BIM). Regardless of the degree of 

implementation, they are unarguably the most widely adopted ICT with the capability of 

integrating fragmented data.  

2.2.1. Construction Enterprise Resource Planning 

Originating from manufacturing, enterprise resource planning (ERP) systems are highly 

complex information systems (Fizgerald 1992, Umble, 2003). More than a traditional 

database, these information systems provide an enterprise with a platform to gather and 

store business data among departments and perform integrated critical management 

functions (Shi and Halpin, 2003, Thompson 1996; Gibson and Holland 1999; Tinham 1999). 

With widely recognized benefits including financial, operational, managerial, strategic, 

organizational and IT (Fan, 2018), an ERP system in manufacturing commonly includes 

functions such as production planning, purchasing, inventory control, sales, marketing, 

financial, human resources (Umble, 2003, Zhang et al, 2005). 

To extend ERP’s benefits to the construction industry, Shi and Halpin (2003) first studied 

and proposed CERP knowledge base systems and summarised 6 features—“project-oriented, 

paralleled and distributed, open and expandable, scalable, remotely accessible, and reliable 

and robust”—as necessities for a CERP system to suit construction industry’s needs. Later, 

a few qualitative analyses of implementation, performance, and recommendation of CERP 

systems were conducted: Tatari et al (2008) employed a qualitative system dynamics model 

to explore and describe the implementation and performance of CERP in two construction 
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agencies; Chung et al (2008) identified factors associated with the success/failure of CERP 

systems. 

Despite the great potential benefits, the costly implementation and high demands of 

corporation’s time, effort, and resources (Umble 2003, Voordijk et al. 2003) has deterred the 

majority of general contractors. Consequently, many construction firms have implemented 

their CERP systems partially, where only the financial management processes were adopted 

(Tatari et al. 2007). Other software packages for the rest of the construction processes, 

commercial or in-house developed, are then integrated with the partial CERP (Chang et al 

2008). 

2.2.2. Building Information Modeling 

Building information modeling (BIM), as an extension and enhancement of conventional 

computer-aided design tools, has been widely adopted in construction industry to support 

design, design evaluation, quantity take-off, construction planning and control (Kaner et al 

2008). 

Defined as “a digital representation of physical and functional characteristics of a facility” 

(US National Building Information Model Standard), BIM has the potential to integrate 

design information with project data in a digital format throughout the project’s lifecycle 

(Penttila, 2006). Regardless of the documented benefits of using BIM to integrate graphical 

and non-graphical data for different construction functions (Jung and Gibson, 1999; Sanvido 

and Medeiros, 1990; Teicholz and Fischer, 1994, Azhar 2011, Kimmance 2002), the full 

utilization of BIM beyond design stage has been very limited. In particular, Santos et al. 

(2017) provides a systematic review and analysis of BIM in assisting various aspects of 

project decision-making. 
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A series of studies have examined, evaluated, and documented the challenges in adopting 

BIM as an information hub to integrate design data and various construction data (Guerra 

and Leite, 2020, Arshad et al. 2019, Hamdi and Leite 2013, Alwash et al. 2017, Olatunji 2015, 

Ashcraft 2008). First, such attempt is a costly, multi-organizational endeavor, which requires 

buy-in from all stakeholders along the project value chain (Eastman et al 2009, Solihin et al. 

2017, Solihin and Eastman 2015). Second, the lack of industry-wide standards and legal 

status of 3D models—not perceived as a contractual deliverable—causes great contractual 

risks and legal concerns for many major players (Arshad et al. 2019, Ashcraft 2008, Olatunji 

2015). To reduce risks and avoid potential legal issues, BIM (or 3D model) has been excluded 

from contracts as a source of deliverables, and is widely perceived to be unnecessary by 

downstream stakeholders, such as the general contractor and subcontractors (Guerra and 

Leite, 2020). 

To conclude, although it has great potential, such as a handful of demonstrations of BIM as 

a link to connect pre-existing ERP systems with engineering drawings (Babic et al, 2010), 

BIM has not been the universal solution to the fragmented construction data.  

2.2.3. Other Solutions of Integrated Data Analysis on Segregated Data 

As noted above, none of the current information systems has the capacity to meet the 

demanding requirements for integrating construction project data among the various 

stakeholders. Research efforts have been made to address the challenges with the segmented 

data, while not interfering with the current organizational data structure. Most research 

suggests exporting all required data through data adaptors into a single location and then 

supplying the data to the required analysis systems (Ji and AbouRizk 2018). Although a data 

adaptor enables information systems to access data freely, it does not replace the manual 

pre-processing of the fragmented raw data. Pereira, et al. (2019) demonstrated the 
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employment of high-level architecture (HLA) or distributed simulations to connect to various 

data sources for a data-driven simulations in real time. Nevertheless, the initial construction 

of HLA is costly. Further, it requires additional services for ongoing maintenance to keep up 

with the updates from all its connected data sources.  

Although a few studies have proposed solutions for the structure and techniques on 

constructing data-driven analytics from fragmented data, the challenge of repetitive manual 

manipulation of the non-integrated raw data remains. This research mainly focuses on the 

automation of critical data pre-processing steps, aiming to bridge the gap between the non-

integrated raw construction data with data-driven analytics. 

2.3. METHODOLOGY 

2.3.1. Framework 

The proposed framework is depicted in Figure 2-2. 



28 

 

Figure 2-2 The proposed framework 

2.3.2. Data Adaptor 

As outlined in Figure 2-1, the construction phase relies on data from previous phase(s) (such 

as specifications and drawings, which are static data as they are less frequently modified); at 

the same time it generates a large amount of dynamic data (such as cost, safety, quality, and 

progress).  
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To access various data sets freely and retrieve relevant tables and store them in a central 

location, data adaptors are an essential first step within this framework. In this research, a 

data adaptor was designed using R package RODBC (v1.3-16; Ripley and Lapsley 2019). 

Package RODBC provides access to various types of databases through an open database 

connectivity (ODBC) interface. With the data adaptor, data from various sources can be 

gathered in real-time for further cleaning, wrangling, and mining. Thus, at a very low cost, 

the company could continuously rely on its existing information systems, as well as enjoy the 

benefit of real-time access to any given database. 

2.3.3. DP-Based Longest Common Substring Algorithm 

Although data from different databases is gathered to a central location through the data 

adaptor, the data structure, level of details, and different naming convention present 

challenges for further data aggregation. In an industrial construction project, for instance, 

one section of pipe in the BIM is named as “PIPE-ISO-1234-A1”, while it is called “P1-CWA1-

ISO-1234-001” in the progress database.  

Nevertheless, a technical data set often contains a unique identification document (ID) 

number or serial number, such as “ISO-1234” from the aforementioned example. Given 

impossible-to-unify naming conventions due to lack of standardization and coordination, 

identifying the common serial or ID number and matching data through this shared serial or 

ID number is a must to create the linkage between various data sets.  

As easy as it looks, the process of matching anywhere ten to hundreds of thousands of records 

from one database to another is labor-intensive. The practical challenge in automating the 

data aggregation process among various databases comes down to matching objects from one 

database to another based on shared attributes (or partially-shared attributes).  
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This problem can be further simplified and categorized into one of the classic problems in 

string analysis, the longest common substring (Gusfield 1997). For example, if 𝑆1 = 𝑖𝑚𝑠𝑡𝑟, 

and 𝑆2 = 𝑢𝑟𝑠𝑡𝑟2, then the longest common substring of 𝑆1 and 𝑆2 is 𝑠𝑡𝑟.  

Although the generalized suffix tree is efficient and conceptually simple in finding the longest 

common substring (Gusfield 1997), this method is difficult to implement. Dynamic 

programming (DP), first introduced by Richard Bellman (Bellman 1954), has proven effective 

in solving problems with overlapping subproblems (Nath et al, 2018). With a DP-based 

algorithm, the problem of finding the longest common substring of 𝑆1  and 𝑆2 with length 

𝑛 and 𝑚, respectively, can be solved by filling a (𝑛 + 1) × (𝑚 + 1) matrix.  

Specifically, given 𝑆1 = 𝑖𝑚𝑠𝑡𝑟, and 𝑆2 = 𝑢𝑟𝑠𝑡𝑟2, the detailed steps of the DP algorithm in 

finding the longest common substring is demonstrated as follows: 

Step 1: Insert a place holder character (e.g. #) in front of both strings 𝑆1  and 𝑆2 

resulting in 𝑆1 = #𝑖𝑚𝑠𝑡𝑟, and 𝑆2 = #𝑢𝑟𝑠𝑡𝑟2. 

Step 2: Calculate the length of 𝑆1 and 𝑆2, resulting in 6 and 7, respectively, in this case.  

Step 3: Initialize an empty matrix 𝑀6×7. 

Step 4: Insert 0 for the first column and the first row of matrix 𝑀. 

Step 5(a): If using 𝑖 to represent the index of 𝑆1, and 𝑗 for the index of 𝑆2, 

Step 5(b): construct a nested loop. The outer loop starts with 𝑖 = 2, and ends with 𝑖 =

6. The inner loop starts with 𝑗 = 2 and ends with 𝑗 = 7; 

Step 5(c): Calculate the matrix 𝑀6×7 using the function: 

𝑀6×7[𝑖, 𝑗] = {
𝑀[𝑖 − 1, 𝑗 − 1] + 1, 

𝑖𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑜𝑓 𝑆1 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 𝑖 = 𝑡ℎ𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑜𝑓 𝑆2 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Step 6: Identify the maximum value of the 𝑀6×7 together with its indices 𝑖, 𝑗 . The 

maximum value, which represents the length of the longest common substring, 

is 3 in this case. 

Step 7: Extract the longest common substring from 𝑆1 based the length of the longest 

common substring (3), and the end index (6), resulting in 𝑠𝑡𝑟. 

Figure 2-3 illustrates the results of matrix  𝑀6×7  at 𝑖 = 4, 𝑗 = 7 (a), and 𝑖 = 6, 𝑗 = 7 (b). As 

demonstrated, this algorithm is simple, straightforward, and easy to implement. The DP-

based algorithm effectively allocates the longest common substring between any two given 

strings regardless of the length or location of the common substring. As a result, this 

algorithm was chosen for this research. 

 
Figure 2-3 Result matrix of the longest common substring example 

In replacing the traditionally manual matching object ID task, a DP-based longest common 

substring algorithm was designed to facilitate the auto-detection of matching key phrases. 

Since no exact R function with the DP-based algorithm existed, a custom R function “LCStr” 

was developed. LCStr takes three arguments: aString, bString, and minlen; and returns the 

longest common substring based on the minimum length defined by “minlen”. Figure 2-4 
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presents the pseudocode of this function. This custom function was validated through an 

artificial dataset, as well as a case study, then wrapped as a library and uploaded to GitHub 

(Li et al, 2019; Wu et al. 2020).  

 

Figure 2-4 Pseudocode of custom R function LCStr 

2.3.4. Interval-based 3D Objects Relationship Detection 

In addition to temporal data, increasing spatial data (such as 3D models) are shared and 

used in the construction phase. Spatial information is often stored in object databases, in the 

form of objects and classes, which resembles object-oriented programming languages. 

Consequently, this type of data is significantly different from temporal data or dynamic data.  

Heavy data pre-processing steps are involved to reuse the 3D model for construction 

management purposes (Preidel, et al. 2017), including summarizing construction work, 

progress, and/or engineering objects by contractor-defined physical envelops—a critical 

project management function. Construction work areas and pre-fabricated modules are 

common types of physical envelopes that are manually defined later in the project life cycle 
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by downstream organizations (e.g. contractors, fabricators); as a result, to identify each 3D 

element from the 3D model to a list of physical envelop boundaries is a common exercise 

performed by general contractors. 

To automate this common spatial data pre-processing task, an interval-based 3D object 

relationship detection algorithm was designed (Wu and AbouRizk 2020). As any 3D object 

can be easily exported from the model as its boundaries on three coordinates (i.e. maxima 

and minima on x, y, and z coordinates), the relationships between 3D objects can be first 

detected on each coordinate, then conclude based on results on all coordinates. Specifically, 

1) if and only if the boundaries (i.e. intervals) on all coordinates of 3D object 𝑎 are included 

in the boundaries of the 3D object 𝑏, then 3D object 𝑎 is within 3D object 𝑏; 2) if and only if 

the boundaries of 3D object 𝑐 on all coordinates overlap the boundaries of the 3D object 𝑑 on 

all coordinates, then 3D object 𝑐 overlaps 3D object 𝑑. Further, as inclusion is a special case 

of overlap, conditions of inclusion will be checked first.  

Although no exact R function detects 3D object relationships, package intervals created by 

Bourgon (2015) has a full list of functions for working with and comparing sets of intervals. 

Built upon main functions such as “interval_included” and “interval_overlap” from the 

package intervals, a custom R function “detecte3Dr” was developed during this research (Wu 

and AbouRizk 2020). detecte3Dr takes four arguments: tablefrom, tableto, closedfrom, 

closedto; and returns a result table in the form of tabletowith two additional columns – 

“Within ID” and “Overlap ID”. Input arguments tablefrom and tableto (both in tabular format) 

each have 6 columns, identifying the boundaries of the 3D objects (i.e. maxima and minima 

on x, y, and z coordinates). Input arguments closedfrom and closedto each are a two-element 

vector with either “TRUE” or “FALSE” required to indicate whether endpoints are included 

(i.e. “TRUE” for including endpoint). Each row of the result table presents an element from 
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the tableto; and the column “Within ID” and “Overlap ID” indicates which row index of input 

closedfrom these tableto elements is included or overlapped. Figure 2-5 illustrates the logical 

process of this function through a process flowchart. This custom function was validated 

through an artificial dataset first, then demonstrated through a case study. To benefit the 

greater construction industry, this custom function is wrapped as a R library and uploaded 

to GitHub (Wu and AbouRizk 2020).  

 

Figure 2-5 Flow chart of custom R function detecte3Dr 
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2.3.5. Real-Time Connection Among Relational Database 

With the automation of identifying common key words, and additionally—in the case of 

spatial data—automation of identifying 3D object relationships, the relationship among 

stand-alone databases (i.e. one-to-one, one-to-many, many-to-many) can be identified without 

human intervention.  

The desired data aggregation thus can be achieved through various SQL commands. In this 

research, R package dplyr (v0.8.3; Wickham et al 2020) was used, as it provides various types 

of joining functions, including mutating joints, filtering joins, and nesting joins, catering to 

different relationship types and merging requirements. 

2.3.6. Analysis Module and Decision Support Matrix 

Upon gathering, linking and aggregating fragmented data to a tidy format, desired machine 

learning algorithms and/or simulation models can be applied (Han et al. 2011). As a result, 

the proposed framework provides a highly-automated and efficient channel to quickly process 

raw fragmented data for any data-driven decision supports.  

2.4. VALIDATION 

Validations of the DP-based longest common substring algorithm and interval-based 3D 

objects relationship detection algorithms was conducted prior to the case study. Artificial 

data sets were randomly generated to exhaust all possible cases. 

2.4.1. DP-Based Longest Common Substring Algorithm 

A list of strings was randomly generated including numbers, symbols, and upper- and lower-

case letters as shown in the 1st column in Table 2-1. Based on this list, five types of 
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modifications – 1) remain identical, 2) addition, 3) subtraction, 4) subtraction and addition, 

5) regenerate randomly, were conducted to generate the second list of strings (3rd column in 

Table 2-1). For example, through “subtraction and addition” type of modification, item 

“#pLtjgF905jlsg” from column “List 1” is modified to “#pLtjgF9lsg-155”, where “05j” was 

removed and “-155” was added to the end. 
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Table 2-1 Randomly generated lists of strings for validation 

List 1 Modification List 2 

Manual Identified 

Longest Common 

Substring 

ajM-VN-P0XQ5 addition 1ajM-VN-P0XQ5_2fg ajM-VN-P0XQ5 

Y*a429RAxJc addition Y*a429RAx(24)Jc Y*a429RAx 

QH#L&NxJeHma addition $we[QH#L&NxJeHma QH#L&NxJeHma 

3VS.TMi7+mdn addition 3VS.TMi7+mdn1T.d 3VS.TMi7+mdn 

dK(dvZM)Rrcn 
remain 

identical 
dK(dvZM)Rrcn dK(dvZM)Rrcn 

ia2KzXZS5n_e3 
remain 

identical 
ia2KzXZS5n_e3 ia2KzXZS5n_e3 

0SAGuE3I0I subtraction 0SAGuE3I 0SAGuE3I 

sfS\3dRGy5m subtraction \3dRGy5m \3dRGy5m 

7s8O(5Ng_jlZ subtraction 7s8O(5_jlZ 7s8O(5 

VqdZjOzOyp addition Vqd**ZjOzOyp ZjOzOyp 

Z8_wAo-0dGZx addition 0WZ8_wAo-0dGZx1e5 Z8_wAo-0dGZx 

Cg[pux$eYs)Rk subtraction pux$eYs)R pux$eYs)R 

PgvdeToxvA addition P*gvdeToxvA.1 gvdeToxvA 

Lc-Zw@D2cVvS 
subtraction 

and addition 
Lc-Zw@D2c.23 Lc-Zw@D2c 

qrgmF2YIL4 
subtraction 

and addition 
1gw_rgmF2YIL4 rgmF2YIL4 

16vz*9n-Q143 
subtraction 

and addition 
16*9n-Q143-YI24 *9n-Q143 

#pLtjgF905jlsg 
subtraction 

and addition 
#pLtjgF9lsg-155 #pLtjgF9 

O_Jh(KGk1-gpk5 
generate 

randomly 
3QHxqr6%s8afj[ NA 

a6sQzj231=gQ 
generate 

randomly 
2Pgz%8z)fgW#0 NA 

 

A nested loop was built to check the potential longest common substrings between List 1 and 

List 2. For each item from List 1, all possible common substrings longer than 5 digits from 
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List 2 were identified (with argument “minlen” set to be “5”) and vice versa. The results are 

captured in Table 2-2 

 

 

 

 

Table 2-3, with manually identified longest common substring listed in last column for 

comparison.  
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Table 2-2 DP-based longest common substring result table for List 1 

Detect 

Machine Identified 

Longest Common 

Substring 

List 1 

Manually Identified 

Longest Common 

Substring 

TRUE ajM-VN-P0XQ5 ajM-VN-P0XQ5 ajM-VN-P0XQ5 

TRUE Y*a429RAx Y*a429RAxJc Y*a429RAx 

TRUE QH#L&NxJeHma QH#L&NxJeHma QH#L&NxJeHma 

TRUE 3VS.TMi7+mdn 3VS.TMi7+mdn 3VS.TMi7+mdn 

TRUE dK(dvZM)Rrcn dK(dvZM)Rrcn dK(dvZM)Rrcn 

TRUE ia2KzXZS5n_e3 ia2KzXZS5n_e3 ia2KzXZS5n_e3 

TRUE 0SAGuE3I 0SAGuE3I0I 0SAGuE3I 

TRUE \3dRGy5m sfS\3dRGy5m \3dRGy5m 

TRUE 7s8O(5 7s8O(5Ng_jlZ 7s8O(5 

TRUE ZjOzOyp VqdZjOzOyp ZjOzOyp 

TRUE Z8_wAo-0dGZx Z8_wAo-0dGZx Z8_wAo-0dGZx 

TRUE pux$eYs)R Cg[pux$eYs)Rk pux$eYs)R 

TRUE gvdeToxvA PgvdeToxvA gvdeToxvA 

TRUE Lc-Zw@D2c Lc-Zw@D2cVvS Lc-Zw@D2c 

TRUE rgmF2YIL4 qrgmF2YIL4 rgmF2YIL4 

TRUE *9n-Q143 16vz*9n-Q143 *9n-Q143 

TRUE #pLtjgF9 #pLtjgF905jlsg #pLtjgF9 

FALSE  O_Jh(KGk1-gpk5 NA 

FALSE  a6sQzj231=gQ NA 

 

 

 

 

 

 

Table 2-3 DP-based longest common substring result table for List 2 
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Detect 

Machine Identified 

Longest Common 

Substring 

list.2 

Manually Identified 

Longest Common 

Substring 

TRUE ajM-VN-P0XQ5 1ajM-VN-P0XQ5_2fg ajM-VN-P0XQ5 

TRUE Y*a429RAx Y*a429RAx(24)Jc Y*a429RAx 

TRUE QH#L&NxJeHma $we[QH#L&NxJeHma QH#L&NxJeHma 

TRUE 3VS.TMi7+mdn 3VS.TMi7+mdn1T.d 3VS.TMi7+mdn 

TRUE dK(dvZM)Rrcn dK(dvZM)Rrcn dK(dvZM)Rrcn 

TRUE ia2KzXZS5n_e3 ia2KzXZS5n_e3 ia2KzXZS5n_e3 

TRUE 0SAGuE3I 0SAGuE3I 0SAGuE3I 

TRUE \3dRGy5m \3dRGy5m \3dRGy5m 

TRUE 7s8O(5 7s8O(5_jlZ 7s8O(5 

TRUE ZjOzOyp Vqd**ZjOzOyp ZjOzOyp 

TRUE Z8_wAo-0dGZx 0WZ8_wAo-0dGZx1e5 Z8_wAo-0dGZx 

TRUE pux$eYs)R pux$eYs)R pux$eYs)R 

TRUE gvdeToxvA P*gvdeToxvA.1 gvdeToxvA 

TRUE Lc-Zw@D2c Lc-Zw@D2c.23 Lc-Zw@D2c 

TRUE rgmF2YIL4 1gw_rgmF2YIL4 rgmF2YIL4 

TRUE *9n-Q143 16*9n-Q143-YI24 *9n-Q143 

TRUE #pLtjgF9 #pLtjgF9lsg-155 #pLtjgF9 

FALSE  3QHxqr6%s8afj[ NA 

FALSE  2Pgz%8z)fgW#0 NA 

 

2.4.2. Interval-Based 3D Objects Relationship Detection 

Two sets of 3D object boundaries were designed including real number,  integer, positive and 

negative values (Table 2-4 and Table 2-5). The relationship between every 3D object on List 

2 to every 3D object on List 1 was manually examined, and the result is shown in the last 

column of Table 2-5.  

The two tables (Table 2-4 and Table 2-5) were fed into the custom function, “detecte3Dr”. 

Table 2-6 presents both the manual detection result (the 7th column) and the machine 
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detection result (the 8th and 9th columns). If both 8th and 9th columns in Table 2-6 in a given 

row are “NA”, it represents this specific 3D object on List 2 is outside of any of the 3D objects 

on List 1. If the 8th column is a number (e.g. “1”) and 9th column is “NA”, it represents this 

3D object from List 2 is within the specific 3D object, indicated by the number shown in the 

8th column of List 1 (in this case this object from List 2 is within the object with “List1 ID” = 

“1” from List 1). If the 8th column is “NA” and 9th column is a number (e.g. “2”), it represents 

this 3D object from List 2 overlaps the 3D object indicated by the number shown in the 9th 

column of List 1 (in this case this object from List 2 overlaps the object with “List1 ID” = “2”).  

Table 2-4 List 1 of the boundaries of the 3D object 

List1 

ID 

MIN.X MAX.X MIN.Y MAX.Y MIN.Z MAX.Z 

1 100 200 100 200 100 200 

2 -100.01 -0.01 -100.01 -0.01 -100.01 -0.01 

 

Table 2-5 List 2 of the boundaries of the 3D object 

MIN.X MAX.X MIN.Y MAX.Y MIN.Z MAX.Z Manual Result 

10 20 10 20 50 150 Outside 

100.5 120 105.5 150.5 50.5 150 Overlap of 1 

100.5 120 10 20 50 150 Outside 

50 250 150 160.1 150.1 160.1 Overlap of 1 

150.1 160.1 150.1 160 150 160 Within 1 

10 150 150 160 150 160 Overlap of 1 

-190 -180 -190 -180 -150 -50 Outside 

-99.5 -80 -194.5 -49.5 -149.5 -50 Overlap of 2 

-150 50 -50 -39.9 -49.9 -39.9 Overlap of 2 

-49.9 -39.9 -49.9 -40 -50 -40 Within 2 

-190 -50 -50 -40 -150 -140 Outside 

-150 180.5 -50.5 150 -150 150.5 Overlap of 1,2 
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Table 2-6 Validation result of checking List 2 against List 1 

MIN.X MAX.X MIN.Y MAX.Y MIN.Z MAX.Z Manual 

Result 

Withi

n ID 

Overla

p ID 

10 20 10 20 50 150 Outside NA NA 

100.5 120 105.5 150.5 50.5 150 Overlap of 1 NA 1 

100.5 120 10 20 50 150 Outside NA NA 

50 250 150 160.1 150.1 160.1 Overlap of 1 NA 1 

150.1 160.1 150.1 160 150 160 Within 1 1 NA 

10 150 150 160 150 160 Overlap of 1 NA 1 

-190 -180 -190 -180 -150 -50 Outside NA NA 

-99.5 -80 -194.5 -49.5 -149.5 -50 Overlap of 2 NA 2 

-150 50 -50 -39.9 -49.9 -39.9 Overlap of 2 NA 2 

-49.9 -39.9 -49.9 -40 -50 -40 Within 2 2 NA 

-190 -50 -50 -40 -150 -140 Outside NA NA 

-150 180.5 -50.5 150 -150 150.5 Overlap of 

1,2 

NA 1 

-150 180.5 -50.5 150 -150 150.5 Overlap of 

1,2 

NA 2 

 

2.5. CASE STUDY 

2.5.1. Overview 

The proposed framework was demonstrated through a case study using historical project data. 

This project was a multi-billion-dollar industrial construction project located in Alberta, 

Canada. The project ran from 2014 to 2016; and is a typical-to-the-region oil sand secondary 

extraction project.  

At the request of our industrial partner, the end product was to generate a real-time S-curves 

for each discipline per contractor-identified module classes. Not as straightforward as it 

sounds, the information required for the deliverables traditionally are stored in four separate 
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information systems—including BIM (3D model), an in-house developed progress tracking 

system, module lift schedule, and a spreadsheet of module class list—without obvious links 

among one and another.  

To meet the specific requirements, the proposed framework was adapted as shown in Figure 

2-6. As per the industrial partner’s request, the proposed method was applied to the 

databases by each discipline. For illustration purposes, however, only piping discipline is 

presented in this chapter. 

 

Figure 2-6 Adapted framework of the case study 

With the help of the data adaptor, four tables were retrieved from the above-mentioned 

sources, as shown in Figure 2-7. The progress table (shown as a sample section in Figure 2-8 ) 

contains the following information: discipline, progress activity, and weekly records of labor-

hours earned for each activity. The component table (shown as a sample section in Figure 

2-9) extracted from the 3D model contains the coordinates of each component (the smallest 

modeling item at the geometry level), the component name (a long string that contains most 

of the design-related information), and discipline.  
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Except the one-to-many relationships between the module class table and the module list 

table, none of the other relationships among these tables as shown in Figure 2-7 existed. 

Since work breakdown structure does not necessarily follow the division of modules, progress 

activities as the lower level of work breakdown structure can not be summarized to the 

modular level. Nevertheless, through 3D model, progress activities can link to BIM 

components, which has its physical coordinates. Then, by comparing each component’s 

coordinates with each module’s coordinates, an indirect link can be generated for progress 

activities to be summarized to the modular level. 

 

Figure 2-7 Entity relationship diagram of module list table, component table and 

progress table 
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Figure 2-8 Sample section of progress table from progress database 

 

Figure 2-9 Sample section of component prosperity table from BIM 
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2.5.2. Generate Links Among Segmented Data Sets 

The generation of a one-to-many relationship between the progress table and component 

table started with a careful manual examination of the data. Patterns of naming conventions 

for both tables were unveiled. For instance, a majority (3,709 out of 4,766 entries) of the 

piping progress names start with “ISO-MCP-##-.” The pattern is directly followed by a serial 

identification code combined with letters, numbers, and symbols such as “PW-40005-01-

01A03.” The remaining 1,057 entries include field-run pipe and piping budget plugs where 

no obvious patterns could be determined. In the meantime, the piping serial identification 

code (e.g. “PW-40005-01-01A03”) prevailingly exists (105,503 out of 105,716) in the 

component name field.  

With the unveiled naming convention, the tasks of linking the progress table with the 

component table could be simplified as identifying the longest common substring between 

the “component name” from the component table with “Progress activity” column from the 

progress table through the longest common substrings. With the minimal length of the 

common substring set as 5, 3,075 progress activities were mapped to 98,640 components.  

For additional validation, manual extraction of the piping serial identification code from the 

progress database was performed, followed by a partially match algorithm developed to 

partially match each piping serial identification code that exists in the progress table with 

component names. The manual linkage allocated 2,697 progress activities to 90,224 

components.  

By careful comparison of the manual linkage result and the proposed DP algorithm result, 

the following were discovered: first, all of the linkages found through manual extraction were 

also found through the proposed algorithm; second, the DP-based algorithm detected extra 
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linkages that did not follow the pattern, “ISO-MCP-##-.”; third the increased linkages (378 

progress activities to 8,416 BIM components) were validated through manual inspection. 

Further, any progress activities that could not find a link to BIM elements were removed, 

since without location information, these activities would not be able to summarize into the 

modular level. 

The many-to-many relationship between module list table and the component table was 

generated by checking each component’s coordinates with the module’s using the customized 

function “detecte3Dr ”.  

With the many-to-many relationship between the module list and the component table, and 

the many-to-one relationship between component table and weekly progress table created, 

the four data sources were linked. Thus, progress could be summarized to module-level 

without repetitive manual manipulation in every reporting period.  

In this case study, the 208 modules were manually classified into 26 classes (e.g. pipe rack 

module, electrical building, boilers, pumps, etc.). This information was kept in a stand-alone 

spreadsheet, based on the experts’ knowledge on design/type of the structure (Figure 2-7). 

With S curves plotted side-by-side for modules belong to the same class, the experts can 

effectively evaluate the performance, progress, and hence proactively plan for the future. For 

instance, as shown in Figure 2-10, the S curves for all the modules that belong to high-density 

pipe rack are plotted on the single chart.  
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Figure 2-10 S curves for high-density pipe rack module class 

2.5.3. Synopsis 

In summary, the proposed framework effectively and efficiently addressed the practical 

challenges within the industrial construction regarding fragmented construction data. 

Specifically, the DP-based longest common substring algorithm successfully auto-detected 

the common keywords between the selected attributes from different databases. The interval-

based 3D objects relationship detection algorithm effectively identified the relationship 

between two sets of 3D objects. Once the relationship types (i.e. one-to-one, one-to-many, 

many-to-many) among databases were identified, the desired aggregation of information 
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could be achieved through various SQL commands. Thus, it freed the domain experts from 

the periodic manual manipulation of the non-integrated construction data and allowed them 

to spend their time in understanding the data and producing meaningful matrices/indices for 

critical decision support. 

2.6. CONCLUSION 

This research proposes a framework to effectively process fragmented construction raw data 

in achieving meaningful construction decision supports. Within the proposed framework, the 

data adaptor provides real-time database access; the DP-based longest common substring 

algorithm and the interval-based 3D objects relationship detection algorithm automates two 

commonly presented data pre-process tasks for identifying relationship types among 

databases; SQL functions integrate information stored from various databases into a tidy 

format; lastly, various data mining techniques and simulation models can effectively process 

the tidy data and produce meaningful decision supports indices. 

The proposed framework achieves the automation in information sharing and aggregating 

regardless of the data origins or data types. Through the two custom functions, spatial data 

and temporal data stored in various types of databases can be effectively aggregated to the 

desired level. Thus, it significantly reduces the repetitive manual data pre-processing, and 

increases information flow in a real-time manner without drastically modifying the existing 

information system structure. Ultimately, the proposed framework improved the data quality 

and promotes construction data utilization for critical decision-support process.  

The core functions (i.e. DP-based longest common substring algorithm and the interval-based 

3D objects relationship detection algorithm) were validated through artificial data sets. 

Further, the practicability and feasibility of the framework have been demonstrated through 
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a mega-sized industrial construction project. The custom R functions were successfully 

performed on the large data set (over 100,000 records) and produced the desired results. 

Additionally, these two custom functions written in R code for the DP-based longest common 

substring algorithm and interval-based 3D objects relationship detection algorithm have 

been generalized as public R libraries—“Chrisfufu/LongestCommonSubString” and 

“XiaomoLing/Detect3DRelation” respectively. These packages can be accessed from GitHub 

for the public.  

Despite advancements, this research can be furthered upon addressing the following aspects. 

First, optimizing the longest common substring algorithm to reduce the running time. The 

running time can be improved by replacing the DP-based algorithm with a generalized suffix 

tree. Reduced computational complexity from 𝑂(𝑚 × 𝑛) to 𝑂(𝑚 + 𝑛) is expected given string 

lengths 𝑚, and 𝑛. Second, identifying other common repetitive manual data manipulation 

tasks and applying computer science, applied mathematics, and/or applied statistic 

algorithms to increase automation. Third, although the proposed framework provides 

effective solutions to the common challenges of non-integrated construction raw data, it did 

not address the root cause of the fragmentation of the information systems in construction 

industry.  
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3.1. INTRODUCTION 

As a tool, modeling has been widely used in engineering disciplines to design, analyze, 

communicate, test, and commission industrial, commercial, and residential facilities 

(AbouRizk et al. 2016). Simulation models are becoming increasingly used to support critical 

decision-making in construction engineering. Of the myriad of simulation techniques 

available (Akhavian and Behzadan 2013), discrete-event simulation is most often applied in 

industrial and infrastructure construction decision-making processes due to its ability to 

simulate resource interactions and operation logistics, especially for large and complex 

construction projects.  

The success of a simulation model is highly dependent on accurately modeling the inputs, 

particularly in construction where a considerable number of inputs (each imbued with a wide 

variety of uncertainties) all relate to the underlying random process of various activities and 

tasks. The more accurate the model of the random input process, the more closely the 

simulation model mimics real-life behavior. To account for input variability, researchers have 

advocated for the modeling of inputs as probability distributions in a process known as 

stochastic or Monte Carlo simulation. Because of their ability to incorporate the randomness 

and various uncertainties inherent to construction activities, stochastic simulation models 

have been widely studied and used in the construction industry to enhance simulation-based 

decision-support systems. 

Despite such advancements, the application of stochastic, discrete-event simulation models 

has traditionally been limited to the planning phase of construction. The industry continues 

to face notable challenges when it comes to adopting, upgrading, and using simulation models 

for decision support during the execution stage, as inputs (e.g., a given distribution from 
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historical data or experts’ judgments) are often rigid, with no reliable or effective solution for 

fusing actual performance with the original input distribution to achieve real-time updating 

of the simulation model (Akhavian and Behzadan 2013). Because of these challenges, current 

simulation models have difficulty (1) reflecting real-time performance because of the use of 

static probability distributions and (2) fusing subjective judgements with objective 

observations, thus limiting the application of simulation-based decision-support systems 

during the execution-phase of a project. Although updating techniques, such as Bayesian 

statistics, have been proposed as a means of achieving real-time updating, many Bayesian-

based methods require input data to have an analytical solution (i.e., conjugacy), limiting the 

application of these techniques in practice. 

This study aims to address the limitation of real-time updating through the coupling of 

Bayesian inference with a Markov chain Monte Carlo-based numerical approximation 

approach, resulting in a universal input model updating method applicable to any univariate 

continuous probability distribution regardless of the conjugacy (i.e., a known parametric form 

of the posterior distribution). Demonstrated through its application on an illustrative case 

study, the proposed method was found capable of (1) fusing actual performance with expert 

judgment, (2) integrating actual performance with historical data, and (3) processing raw 

data by absorbing uncertainties and randomness. By enabling efficient, dynamic updating of 

the rigid inputs of a simulation model with new observations or subjective expert knowledge, 

the proposed method is expected to considerably improve the resilience, reliability, accuracy, 

and practicality of stochastic simulation models during the execution phase of construction. 
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3.2. LITERATURE REVIEW 

3.2.1. Generalized Beta Family of Distributions 

Following AbouRizk and Halpin’s (1992) empirical study, which demonstrated the 

criticalness of using a flexible distribution (e.g., generalized beta distribution) to ensure the 

accuracy of the input modeling, the beta distribution has been extensively used for modeling 

inputs of the construction process over the last two decades. Among all of the flexible 

distributions, the generalized beta distribution with four parameters is one of the most widely 

recognized distributions for modeling construction processes (Chau 1995). Many researchers 

have successfully employed beta distributions to model a large number of construction 

management parameters including, but not limited to the following: activity durations (Lu 

and AbouRizk 2000; Lu 2003; Poshdar et al. 2018; Zayed and Halpin 2001), construction costs 

(Inyim et al. 2016; Sonmez 2005; Wang et al. 2002), and quality management indicators (Ji 

and AbouRizk 2017).  

Due to its extensive usage in construction simulation modeling, the generalized beta family 

of distributions is presented here and is implemented in the case study. However, it is 

important to note that the proposed method is not limited to the beta distribution, and can 

be generalized to any other parametric probability distribution functions—a key contribution 

of the proposed method. 

Mathematically, on an interval of [𝐿, 𝑈], a generalized beta distribution can be described as 

follows (AbouRizk et al. 1991; Ahsanullah 2017; Johnson et al. 1994): 

 
𝑖𝑓(𝑦; 𝑎, 𝑏, 𝐿, 𝑈) =  

1

𝐵(𝑎, 𝑏)
∙  
(𝑦 − 𝐿)𝑎−1 (𝑈 − 𝑦)𝑏−1

(𝑈 − 𝐿)𝑎+𝑏−1
, 𝑖𝑓 𝐿 ≤ 𝑌 ≤ 𝑈 
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 𝑓(𝑦; 𝑎, 𝑏, 𝐿, 𝑈) = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1) 

where 𝐵(𝑎, 𝑏)  is the beta function. With the transformation matrix shown 

below, 𝑓(𝑦; 𝑎, 𝑏, 𝐿, 𝑈) can be standardized to 𝑓(𝑥: 𝑎, 𝑏) with an interval of [0,1]. 

 
𝑋 =  

𝑌 − 𝐿

𝑈 − 𝐿
, 𝑖𝑓 𝐿 ≤ 𝑌 ≤ 𝑈 (2) 

Standardized beta distribution: 

 
𝑓(𝑥: 𝑎, 𝑏) =  

1

𝐵(𝑎, 𝑏)
∙  𝑥𝑎−1(1 − 𝑥)𝑏−1， 𝑖𝑓 0 ≤ 𝑋 ≤ 1 

 

 𝑓(𝑥; 𝑎, 𝑏) = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3) 

Thus, the generalized beta distribution can be treated as a standardized beta distribution 

with shape parameters {𝑎, 𝑏} scaled to the [𝐿, 𝑈] interval.  

3.2.2. Bayesian Inference 

The simulation models of construction processes developed in the previously-mentioned 

studies have modeled their inputs based on either historical data or expert knowledge with 

fixed parameters as inputs and rigid assumptions. Construction processes, however, are 

highly dependent on the specific conditions that exist at the time they are performed, 

rendering them prone to deviation from expected baselines (Martinez 2009): what may have 

been anticipated and modeled in the planning stage of construction is often not what occurs 

during execution. The application of many construction simulation models proposed in the 

literature is, consequently, limited to the planning stages of construction.  

Background 
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The Bayesian inference approach, developed by Thomas Bayes and Richard Price in 1763 

(Bayes and Price 1763), has gained popularity in the 21st century due to its ability to 

incorporate multiple levels of randomness, integrate data originating from different sources, 

and reallocate credibility across the probability distribution of the value as new observations 

become available. Many researchers have since studied and demonstrated the practicality 

and benefits of implementing Bayesian techniques for updating underlying research 

interests (Brandley et al. 2015; Chung et al. 2004; Ji and AbouRizk 2017; Milo et al. 2015). 

While the aforementioned research was limited to conjugate priors, or a specific probability 

distribution, they have clearly demonstrated that a Bayesian approach can improve model 

accuracy, credibility, and reliability by systematically updating information of interest.  

In contrast to Bayesian statistics, frequentist statistics suggests that the sampling process is 

“random,” assuming that (1) the probability of each individual in the population being 

included in the sample is the same and (2) separate drawings are mutually independent 

(Neyman 1937). It is generally agreed, “all scientific data has some degree of ‘noise’ in their 

value” (Kruschke 2014). Indeed, the underlying random processes in construction are 

associated with various uncertainties and conditions; however, achieving the pure 

randomness suggested by frequentists in applied statistics is impossible. Techniques used for 

data analysis should therefore be capable of inferring the underlying trends despite noise.  

Bayesian statistics tackles the same problem from a different perspective. It systematically 

updates information of interest as more observations become available. Consequently, 

Bayesian inference is both flexible and practical due to its ability to incorporate multiple 

levels of randomness and to combine information from various sources while absorbing all 

reasonable uncertainties in the inferential summaries (Gelman et al. 2013). Derived from 

Bayes’ theorem, the basic components of Bayesian inference include the likelihood function, 
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prior distribution, and joint posterior distribution. If prior distribution(s) are denoted as 𝑝(𝛩) 

for the parameter set 𝛩 = {𝜃1 , … , 𝜃𝑛}, the likelihood function wherein all variables are related 

in a full probability mode denoted as 𝑝(𝑦|𝛩) and given a set of the new observation(s) of our 

underlying interest, 𝑦 = {𝑦1, . . . , 𝑦𝑛},, then the joint posterior distribution 𝑝(𝛩 | 𝑦) follows the 

numerical relation defined by Bayes’ rule: 

 
𝑝(𝛩|𝑦) =

𝑃(𝛩)𝑝(𝑦|𝛩)

𝑝(𝑦)
 (4) 

where 𝑝(𝑦) =  ∑ 𝑝(𝛩)𝑝(𝑦|𝛩)𝛩   for all possible values of Θ, or 𝑝(𝑦) =  ∫ 𝑝(𝛩)𝑝(𝑦|𝛩)𝑑𝛩  for 

continuous Θ. Factor 𝑝(𝑦) is often called the marginal distribution of 𝑦 or, more informatively, 

the prior predictive distribution (Gelman et al. 2013). Since it does not depend on Θ, and with 

fixed observation set 𝑦, it is a constant. Accordingly, the posterior distribution is proportional 

to the prior distribution multiplied by the likelihood function, denoted as: 

 𝑝(𝛩|𝑦) ∝ 𝑝(𝛩)𝑝(𝑦|𝛩) (5) 

Likelihood Function 

In non-statistical parlance, one could interchange “likelihood” for “probability.” Within 

Bayesian data analysis, however, “probability” provides us the ability to predict unobserved 

data; “likelihood,” on the other hand, contains the available information through observed 

data (Statisticat 2013). Thus, the likelihood function is: 

 
𝑝(𝑦|Θ) =  ∏𝑝(𝑦𝑖|Θ)

𝑛

𝑖=1

 (6) 
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As a result, Bayesian inference obeys the likelihood principle, which states that the same 

likelihood function 𝑝(𝑦|𝛩) yields the same inference for parameter(s)-𝛩 for a given set of 

observations.  

Prior Distributions 

In Bayesian inference, a prior probability distribution (often referred to simply as a “prior”) 

of a parameter is a distribution that expresses uncertainty about the parameter before new 

observations are considered (Statisticat 2013). By applying Bayes’ rule, the posterior 

distribution is affected by the selection of the prior distribution through multiplication. 

Consequently, the proper selection of the prior probability distribution strongly affects the 

outcome of the posterior distribution. Commonly, prior distributions are categorized into 

informative priors and uninformative priors, although further categorization has been 

suggested (Statisticat 2013).  Where uninformative priors express minimal, vague, diffuse 

beliefs about the parameters, informative priors express specific information. If a project 

management team believes a current project is similar to a previous project, for example, 

priors that are similar to the historical data of a similar project could be defined. The model 

could thus consider both the historical data and current project performance.   

Posterior Predictive Distributions 

When making inferences about an unknown observation, the posterior predictive distribution 

is an indispensable component within the Bayesian data analysis of most practical problems. 

Given the observation data 𝑦 = {𝑦1, . . . , 𝑦𝑛}, to-be-observed data �̃� can be predicted using: 

 
𝑝(�̃�|𝑦) =  ∫𝑝(�̃�|𝛩)𝑝(𝛩|𝑦)𝑑𝛩 (7) 
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The first factor, 𝑝(�̃�|𝛩), is the probability density function of �̃�, given the fixed parameter(s)-𝛩,  

which does not depend on observation 𝑦. To obtain the posterior predictive distribution 𝑝(�̃�|𝑦), 

one must first sample parameter set 𝛩 from the joint posterior distribution, and then simulate 

�̃� using  𝑦 ̃𝑖~ 𝑝(�̃�|𝛩).  

3.2.3. Application of Bayesian Inference for Real-Time Updating of Construction 

Models 

Though Bayes’ rule specifies the mathematical solution for the posterior distribution, exact 

analytical solutions rely on the possibility of computing the marginal probability. Historically, 

Bayesian inference techniques have been restricted to models with likelihood functions 

paired with corresponding formulas for prior distributions, known as conjugate priors 

(Kruschke 2014). Readers are referred to Jen and Hsiao (2018) for a detailed list of the most 

commonly used conjugate probability distribution functions.  

Accordingly, it has been a longstanding challenge to generate simulation models that are 

capable of incorporating real-time updates during the execution phase (Akhavian and 

Behzadan 2013) to dynamically perform data-driven analytics and to provide critical 

decision-making support. Although research attempts have been made to use Bayesian 

techniques for real-time updating purposes in construction (Brandley et al. 2015; Chung et 

al. 2004; Ji and AbouRizk 2017; Milo et al. 2015), the methods and solutions proposed are 

limited to very specific cases. While Chung (2004) proposed using a conjugate prior (i.e., 

normal distribution) for the probability density function (i.e., normal distribution) to achieve 

real-time updating of input models of a long-term repetitive tunneling project, the joint 

posterior distribution was assumed for the posterior predictive distribution. While both have 

the same mean in this case, the standard deviation differs; this results in an unrealistically 
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small deviation. Later, Ji and AbouRizk (2017) carefully validated the Bayesian inference 

methodology on a binominal case for the quality control system of pipe fabrication. While a 

conjugate prior (i.e., beta distribution) for the Bernoulli likelihood function (i.e., binomial case) 

was presented, the study did not provide a universal solution for using the Bayesian inference 

methodology to update any univariate continuous input models regardless of conjugacy or 

likelihood function. Additionally, the need for fusing real-time performance with historical 

data to reflect the current project condition and integrating subjective expert opinion with 

objective observation remains unmet.  

Performing Bayesian inference for realistic applications has often been limited to very 

specific cases, such as the aforementioned research, where a prior distribution conjugate to 

the likelihood function is specified to yield an analytically solvable posterior distribution. 

However, with the development of random sampling algorithms (such as Markov chain 

Monte Carlo (MCMC)) and faster computer hardware, a broader selection of priors and 

likelihood functions are available for conducting Bayesian inference. With the help of MCMC 

and powerful computer hardware, an accurate approximation of the Bayesian posterior 

distribution is achievable in the absence of an exact analytical solution.  

3.2.4. Markov Chain Monte Carlo 

In cases where an analytical mathematical solution does not exist (i.e., where conjugacy 

cannot be met), a numerical approximation of the target distribution has been found to be a 

reliable alternative (Ji and AbouRizk 2017). The most commonly used approximation 

approach involves mimicking the target distribution through the random sampling of a large 

number of data points. Notably, in cases where the parameter space is relatively small, other 

approaches that systematically cover the parameter space by exhaustively computing the 

marginal probability can also be applied (Kruschke 2014).  



70 

Here, the Markov chain Monte Carlo (MCMC) method is used to generate an accurate 

approximation of the Bayesian posterior distribution, thereby providing a universal, real-

time updating solution that overcomes previous limitations regarding conjugacy. The term 

Markov chain Monte Carlo combines two processes, namely: (1) Monte Carlo simulation, 

which involves the random sampling of a large number of values (Kroese et al. 2014) and (2) 

the Markov chain, “a stochastic model describing a sequence of possible events in which the 

probability of each event depends only on the state attained in the previous event” (Oxford 

Dictionaries 2019). The representativeness, accuracy, and efficiency of the MCMC method 

are attributable to both the algorithmic design of the method and the large number of 

iterations performed (Ji and AbouRizk 2017).  

Of the many sampling algorithms, the Metropolis algorithm—developed in the 1950s by 

Metropolis and colleagues (1953), and further refined in the 1970s (Moller and 

Waagepetersen, 2003)—has been widely used in physics, statistics, and applied sciences to 

approximate distributions (Robert and Casella 2011; Hitchcock 2003). Found capable of 

efficiently sampling single and double parameter problems, the Metropolis algorithm is well-

suited for sampling distributions commonly used to model construction processes and is, 

consequently, used here. 

Steps of the Metropolis methods are demonstrated as follows: 

Step 1: Randomly generate a proposed leap, Δ𝛩 ~ 𝑛𝑜𝑟𝑚𝑎𝑙( 𝜇 = 0, 𝜎), and denote the 

proposed value of the parameter as 𝛩𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝛩𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ∆𝛩 

Step 2: Calculate the probability of moving to the proposed value: 

 
𝑝𝑚𝑜𝑣𝑒 = min(1,

𝑝(𝛩𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑|𝑦)

𝑝(𝛩𝑐𝑢𝑟𝑟𝑒𝑛𝑡|𝑦)
) ,  𝑝(𝛩|𝑦)  ∝ 𝑝(𝛩)𝑝(𝑦|𝛩) (8) 

https://en.wikipedia.org/wiki/Stochastic_model
https://en.wikipedia.org/wiki/Sequence
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Step 3: Accept the proposed parameter value if a random value sampled from a [0,1] 

uniform distribution is less than the 𝑝𝑚𝑜𝑣𝑒; otherwise, reject the proposed parameter 

value, and tally the current value again. 

3.3. METHODOLOGY 

This research proposes a method that couples Bayesian inference with a Markov chain Monte 

Carlo-based numerical approximation approach for updating univariate continuous 

probability distributions, regardless of the conjugacy. The proposed research method is 

illustrated in Figure 3-1. To provide an illustrative example of the methodology, a generalized 

beta distribution with four parameters is outlined. It is important to note, however, that the 

proposed method can be applied to any univariate continuous probability distribution. 

 

 

Figure 3-1 Proposed methodology 

Step 1:  Define the Probability Model 
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A descriptive probability model for all observable and unobservable quantities representing 

the underlying research interest (e.g., duration of a construction process, labor cost of 

activities, or productivity factor of a trade) is first defined. For illustrative purposes here, the 

underlying research interest is assumed to follow a generalized beta distribution 

𝑌 ~ 𝐵𝑒𝑡𝑎(𝑦|𝑎, 𝑏, 𝐿, 𝑈) with 4 parameters: 𝑎, 𝑏, 𝐿, and 𝑈.  

Step 2: Identify and Understand the Parameters 

The parameter(s) of the selected probability model (e.g., mean and standard deviation for a 

normal distribution, shape parameters for beta distribution) are then identified and 

understood. In the case of a generalized beta distribution, parameters 𝐿 and 𝑈 define the 

boundaries of the beta distribution. For example, if 𝑌 represents the duration of an activity, 

parameters 𝐿 and 𝑈 are the minimum and maximum durations of this activity recorded in 

historical data, respectively. In practice, the boundary parameters 𝐿  and 𝑈 are often well-

established, with no further updates required; hence, they can be considered constants. In 

contrast, shape parameters 𝑎 and 𝑏, which directly control the shape of the beta distribution, 

commonly differ between projects; they are, therefore, the focus of the research interest.  

Step 3: Specify Prior Distribution for the Parameters 

In the case of multiple parameters, the credible values of the parameters may depend on the 

values of other the parameters, leading to a hierarchical model. Methods for addressing this 

issue are beyond the scope of this research. Alternatively, the credible values of the 

parameter may be independent of each other. For independent parameters 𝑎 and 𝑏 for a 

generalized beta distribution, the joint prior distribution follows: 𝑝(𝑎, 𝑏) = 𝑝(𝑎)𝑝(𝑏). Based on 

the specific situation, informative priors (e.g., normal distribution) or uninformative priors 

(e.g., uniform distribution) can be chosen for 𝑝(𝑎) and 𝑝(𝑏). 
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Step 4: Bayesian Inference with MCMC Method 

As more data points are collected, a Bayesian inference is conducted using the MCMC-based 

numerical method to derive the posterior distribution for the parameter(s). 

Given 𝑌 ~ 𝐵𝑒𝑡𝑎(𝑦|𝑎, 𝑏, 𝐿, 𝑈), the probability of collecting new observation(s) 𝑦1, . . . , 𝑦𝑛 follows 

the mathematical form described as: 

 
𝑝(𝑦|𝑎, 𝑏) =  

1

𝐵(𝑎, 𝑏)
 ∙  
(𝑦 − 𝐿)𝑎−1 (𝑈 − 𝑦)𝑏−1

(𝑈 − 𝐿)𝑎+𝑏−1
, 𝑖𝑓 𝐿 ≤ 𝑌 ≤ 𝑈 (9) 

Considering fixed set of observations, 𝑦 = {𝑦1, . . . , 𝑦𝑛}, 𝑝(𝑦|𝑎, 𝑏) is the likelihood function of 

parameters 𝑎 and 𝑏. Defined by Bayesian inference, the joint posterior distribution follows: 

 
𝑝(𝑎, 𝑏|𝑦) ∝ 𝑝(𝑎, 𝑏)𝑝(𝑦|𝑎, 𝑏) = 𝑝(𝑎)𝑝(𝑏) ∏𝑝(𝑦𝑖 |𝑎, 𝑏)

𝑛

𝑖=1

 (10) 

In both theory and practice, the log-likelihood is used instead of the likelihood on both the 

record-level and model-level. Thus: 

log[𝑝(𝑎, 𝑏|𝑦)] ∝ log[𝑝(𝑎, 𝑏)𝑝(𝑦|𝑎, 𝑏)] = log[𝑝(𝑎)] + log[𝑝(𝑏)] +∑log [𝑝(𝑦𝑖 |𝑎, 𝑏)]

𝑛

𝑖=1

 (11) 

To approximate the joint posterior distribution, the MCMC numerical method with the 

Metropolis sampling algorithm will be applied as follows: 

a. The approximation simulation begins with a set of initial values of parameters (𝑎1, 𝑏1); 

b. At the beginning of each iteration, randomly generate Δ𝑎 ~ 𝑛𝑜𝑟𝑚𝑎𝑙( 𝜇 = 0, 𝜎1) and 

Δ𝑏 ~ 𝑛𝑜𝑟𝑚𝑎𝑙( 𝜇 = 0, 𝜎2). Thus,  𝑎𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝑎𝑖 + ∆𝑎, 𝑏𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝑏𝑖 + ∆𝑏. 

c. Calculate the probability of moving to the proposed value: 
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 𝑝𝑚𝑜𝑣𝑒

= min(1,
𝑝(𝑎𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑, 𝑏𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 |𝑦)

𝑝(𝑎𝑖, 𝑏𝑖|𝑦)
)

=  min (1,
𝑝(𝑎𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑)𝑝(𝑏𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑) ∏ 𝑝(𝑦𝑖 |𝑎𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑, 𝑏𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝑛
𝑖=1

𝑝(𝑎𝑖)𝑝(𝑏𝑖) ∏ 𝑝(𝑦𝑖 |𝑎𝑖, 𝑏𝑖)
𝑛
𝑖=1

) 

(12) 

d. Accept the proposed parameter values 𝑎𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 and 𝑏𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 if a random value 

sample from a [0,1] uniform distribution is less than 𝑝𝑚𝑜𝑣𝑒 ; otherwise, reject the 

proposed parameter values and return to Step 4.2. 

Following the completion of a desired number of iterations (e.g., 100,000), a set of samples 

for shape parameters 𝑎  and 𝑏  is generated. A histogram of the data set provides the 

reasonable representation of the joint posterior distribution 𝑝(𝑎, 𝑏|𝑦).  

Step 5: Obtain the Posterior Predictive Distribution  

Finally, the posterior predictive distribution—representing the probability distribution of the 

yet-to-be-recorded data given the observed data—is derived. In the case of a beta distribution, 

the posterior predictive distribution for a future observation �̃� given 𝑦 can be written as: 

 
𝑝(�̃�|𝑦) =  ∬𝑝(�̃�|𝑎, 𝑏)𝑝(𝑎, 𝑏|𝑦)𝑑𝑎𝑑𝑏 (13) 

To approximate the posterior predictive distribution, first sample 𝑎𝑖 , 𝑏𝑖 from the joint 

posterior distribution  𝑝(𝑎, 𝑏|𝑦),  then simulate  𝑦 ̃𝑖~ 𝑏𝑒𝑡𝑎(𝑎𝑖 , 𝑏𝑖, 𝐿, 𝑈) , where overtime, 

�̃�1, . . . , �̃�𝑛  becomes an independently and identically distributed sample from 𝑝(�̃�|𝑦) (Gelman 

et al. 2014). 
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3.4. ILLUSTRATIVE CASE STUDY 

3.4.1. Background 

Since activity durations are one of the most studied and utilized inputs for simulation models 

of construction processes, a simplified simulation model of an earth-moving operation is used 

to demonstrate the feasibility and functionality of the proposed method. The simplified model 

captures a truck cycle that includes four major activities: loading, hauling, dumping, and 

return. The model simulates the delivery of 2,000 tons of dirt using five, 20-ton capacity 

trucks that are loaded by shovels, which are assumed to be an unlimited resource, as 

illustrated in Figure 3-2. Major activities and their durations are listed in Table 3-1. For the 

purposes of this case study, the duration of loading, dumping, and return are assumed to be 

constant, while hauling is assumed to follow a four-parameter generalized beta distribution 

fitted from experts’ knowledge and historical observations. 

 

Figure 3-2 Simulation model of simplified earth-moving operation 
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Table 3-1 Original duration distributions of activities 

Activity Duration (min.) 

Loading 20-Ton Truck 6 

Truck Hauling Beta (5, 10, 35, 50) 

Truck Dumping 3 

Truck Return 35 

 

3.4.2. Bayesian Updating of Input Models  

While many construction processes are repetitive, it is uncommon to collect hundreds of 

observations between critical reporting and decision-making periods. Thus, an input 

updating method capable of generating reliable results from a limited number of data points 

is critical to be functional in practice. To demonstrate the ability of the proposed method to 

perform appropriately under such conditions, only 20 new observations were generated for 

each of the five reporting cycles. Overall, 100 new sample observations (Table A-1) were 

randomly generated using the generalized beta distribution, Beta (5, 10, 35, 50). The 

proposed method was applied after 20 new observations were collected, and the accuracy of 

the proposed method was examined by comparing the input models derived using the 

proposed methodology (PM) with models that were directly fitted from the cumulative 

observations (CO), as well as the underlying distribution (UD). 

3.4.3. Results 

Shape parameters 𝑎  and 𝑏  that were obtained through direct fitting of the cumulative 

sampled observation actuals (i.e., Cycle 1, 20 samples were used for fitting; Cycle 2, 40 

samples were used for fitting; etc.) are listed on columns “Fitted on CO” and “Difference (% 

True) on CO” in Table 3-2 and Table 3-3. Expectedly, the similarity of 𝑎  and 𝑏  to the 
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underlying distribution increased as the number of data points accumulated. Notably, drastic 

fluctuations between cycles were observed, with the results of certain cycles being similar to 

the underlying distribution and others deviating considerably.  

Table 3-2 Shape parameters 𝒂 fitted from cumulative observations (CO) V.S. 

proposed method (PM) 

Cycle 
True 

Value 
Fitted on CO 

Difference (% 

True) on CO 
Fit using PM 

Difference (% 

True) using PM 

1 5 8.7314 74.63 4.6963 6.07 

2 5 5.1539 3.08 4.7936 4.13 

3 5 4.3740 12.52 4.6823 6.35 

4 5 4.0576 18.85 4.5827 8.35 

5 5 4.2786 14.43 4.6661 6.68 

Average  5.3191 24.70 4.6842 6.32 

  

Table 3-3 Shape parameters 𝒃 obtained using cumulative observations (CO) V.S. 

proposed method (PM) 

Cycle 

True 

Valu

e 

Fitted on CO 
Difference (% 

True) on CO 
Fit using PM 

Difference (% 

True) using PM 

1 10 21.1659 111.66 10.3876 3.88 

2 10 10.8684 8.68 9.9898 0.10 

3 10 9.3608 6.39 9.9063 0.94 

4 10 8.9133 10.87 9.9400 0.60 

5 10 9.0413 9.59 9.8226 1.77 

Average  11.8699 29.44 10.0093 1.46 

 

While the performance of this project is assumed to be similar to historical projects that follow 

the generalized beta distribution, Beta (5, 10, 35, 50), the project is characterized by certain 

unique features and uncertainties. Accordingly, a normal distribution, Normal (5, 0.5), was 

defined as the prior for shape parameter 𝑎, and a normal distribution, Normal (10, 1), as the 
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prior for shape parameter 𝑏. This set of informative priors was chosen as a means of credibly 

considering historical data and expert opinion regarding uncertainty, where the mean value 

of each parameter was set at the most probable value based on the historical project data 

with the standard deviation representing 10% of the mean value to account for uncertainty. 

The posterior distribution of shape parameters 𝑎  and 𝑏  that was generated using the 

proposed method are listed on columns “Fit using PM” and “Difference (% True) using PM” in 

Table 3-2 and Table 3-3.  

The proposed method demonstrates considerable reliability between cycles, and accuracy 

when compared to the underlying distribution—especially given the small set of observations. 

The average percentage differences between the mean value of the posterior distribution and 

the true value for shape parameters 𝑎 and 𝑏 were 6.32% and 1.46%, compared to the direct 

fitting on CO method, with 24.70% and 29.44%, respectively. 

The histogram and trace plot of MCMC results for shape parameters 𝑎 and 𝑏 using PM in 

Cycle 1, together with the true values of the parameters, and parameters obtained through 

CO, are illustrated in Figure 3-3. Histograms and trace plots for Cycles 2 through 5 are 

illustrated in Figure A-1 through Figure A-4, respectively.  
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Figure 3-3 Posterior histogram ((a) and (b)) and trace plot ((c) and (d)) of 

parameters a ((a) and (c)) and b ((b) and (d)) for Cycle 1 

The results demonstrate that (1) the mean of the MCMC posterior samples for 𝑎 and 𝑏 (solid 

line) were more similar to the true parameter values (dash line) when compared to the 

directly fitted from CO values (not represented in Figure 3-3; represented in Figure A-1 

through Figure A-4) in all five cycles and (2) the direct fitting from CO method was associated 

with much larger fluctuations between cycles compared to the Bayesian inference (PM) 

method. Indeed, the parameter values fitted from CO were not within the presented scale for 

Figure 3-3. In this instance, they are not shown.  
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The histograms of the samples of the posterior predictive distribution in Cycle 1, together 

with the three input model distributions, are illustrated in Figure 3-4. Histograms for Cycles 

2 through 5 are illustrated in Figure A-5 through Figure A-8. respectively. Similar to the 

results of shape parameters 𝑎 and 𝑏, the posterior predictive distribution was consistently 

closer to the underlying true distribution than the input distribution fitted directly from 

cumulative observations. The impact of the input modeling methods on project forecasting 

was also examined. The project was simulated using input models either (1) directly fitted 

from the cumulative observations (CO), (2) derived using the proposed method (PM), or (3) 

the underlying distribution (UD). The forecasted project duration was determined for 1,500 

runs; the results of the analysis are illustrated in Figure 3-5. 
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Figure 3-4 Histogram of posterior predictive hauling model for Cycle 1 
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Figure 3-5 Boxplot of simulation results obtained using input models directly 

fitted from the cumulative observations (CO), derived using the proposed method 

(PM), or derived using the underlying distribution (UD) 

Similar to the results obtained regarding the shape parameters and distributions, duration 

forecasts derived using the proposed input updating method were closer to the true 

underlying duration of the project for all five cycles when compared to the CO method. 

Moreover, during the first and second forecasting periods where the number of new 

observations was limited, the proposed method was found to more closely mimic the true 

underlying pattern and to more effectively incorporate various uncertainties (i.e., larger 

deviation window) than the direct fitting on CO method. Indeed, the narrower deviation 

window of the CO method may result in an over-optimistic forecast, as observed in Figure 

3-5. 
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3.4.4. Sensitivity Analysis 

To test the robustness of the proposed methodology, a sensitivity analysis designed to 

introduce a certain level of noise into the observation data to mimic the raw data collected 

from a real project site was performed. One of the most common causes of fluctuations in 

productivity in construction projects is the learning effect, which is known to result in 

significant forecasting challenges in the early stages of a project. To mimic the noise of 

decreased productivity resulting from the learning effect, the simulated data points from the 

first 3 cycles (i.e., 60 random samples) of actual hauling duration were generated using 10% 

of the uniform distribution, Uniform (45, 50), and 90% of generalized beta distribution, Beta 

(5, 10, 35, 50), placing a higher probability of sampling a lower productivity. Assuming that 

after 3 cycles the project had achieved optimum productivity, the simulated data points for 

Cycles 4 and 5 (i.e., the remaining 40 random samples) were generated using the generalized 

beta distribution, Beta (5, 10, 35, 50). The 100 random samples that were generated using 

this approach are listed in Table A-2. The shape parameters 𝑎 and 𝑏 fitted directly using 

cumulative observation samples are detailed in Table 3-4 and Table 3-5 from columns “Fitted 

on CO” to “Difference (% True) on CO”.  

Similar to the base case study scenario, the similarity of 𝑎 and 𝑏 to the true values from the 

underlying distribution, Beta (5, 10, 35, 50), increased as the number of data points 

accumulated. With the introduction of noise, the direct fitting using CO method took longer 

to approach the underlying distribution, demonstrating that this approach is sensitive to the 

noise in the data set. While the differences in parameters 𝑎 and 𝑏 from the true values settled 

to around 10% to 20% after a few cycles in the base scenario, (column “Difference (% True) on 

CO” in Table 3-2 and Table 3-3), the addition of noise resulted in a difference of around 20% 
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for both parameters for all five cycles, (column “Difference (% True) on CO” in Table 3-4 and 

Table 3-5).  

Table 3-4 Shape parameters 𝒂 fitted from cumulative observations (CO) V.S. 

proposed method (PM) 

Cycle 
True 

Value 
Fitted on CO 

Difference (% 

True) on CO 
Fit using PM 

Difference (% 

True) using PM 

1 5 7.0902 41.80 5.1683 3.37 

2 5 4.2651 14.70 5.0146 0.29 

3 5 3.4740 30.52 4.8798 2.40 

4 5 3.7698 24.60 4.9439 1.12 

5 5 4.3418 13.16 4.9255 1.49 

Averag

e 
 4.5882 24.96 4.9864 1.74 

 

Table 3-5 Shape parameters 𝒃 obtained using cumulative observations (CO) V.S. 

proposed method (PM) 

Cycle 
True 

Value 
Fitted on CO 

Difference (% 

True) on CO 
Fit using PM 

Difference (% 

True) using PM 

1 10 11.5305 15.31 9.7324 2.68 

2 10 7.7220 22.78 9.6055 3.94 

3 10 6.8282 31.72 9.7348 2.65 

4 10 7.1323 28.68 9.5155 4.85 

5 10 8.2430 17.57 9.5851 4.15 

Average  8.2912 23.21 9.6347 3.65 

 

Taking into consideration the learning effect and the uncertainties associated with recorded 

data, the project was anticipated to follow the generalized beta distribution, Beta (5, 10, 35, 

50). Again, informative priors were chosen with normal distributions, Normal (5, 0.25) and 

Normal (10, 0.5), as priors for shape parameters 𝑎  and 𝑏 , respectively. Since posterior 

distribution is influenced by both new observations and the prior distributions, a proper 
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selection of the priors can affect the posterior given the same set of observations. If a set of 

uninformative priors is chosen, the posterior will show no influence from the priors but let 

the data speak for itself. To express firm belief in the subjective judgment of experts, the 

productivity fluctuation is caused by the learning effect, and the expected future observation 

will follow Beta (5, 10, 35, 50). The standard deviation was set as 5% of the value of the mean 

for both priors of parameters 𝑎 and 𝑏. Corresponding posterior shape parameters are listed 

in Table 3-4 and Table 3-5 from columns “Fit using PM” to “Difference (% True) using PM”. 

As with the base scenario, the proposed method generated results that were more accurate 

and representative of the underlying probability distribution compared to the direct fitting 

using CO method. The average percentage difference between the mean value of posterior 

distribution and the true value for shape parameters 𝑎  and 𝑏  were 1.74% and 3.65%, 

compared to 24.96% and 23.21% fit directly from CO, respectively. The proposed method was 

also found to be comparatively insensitive to noise, with the average percentage difference 

similar for both the base scenario (column “Difference (% True) using PM” in Table 3-2 and 

Table 3-3) and following the addition of noise (column “Difference (% True) using PM” in Table 

3-4 and Table 3-5). To conclude, the proposed method demonstrated (1) robustness when the 

noise was introduced and (2) desired representativeness and accuracy of both subjective 

opinion and objective observations. 

The histogram and trace plot of MCMC results for shape parameters 𝑎 and 𝑏 using proposed 

method, together with the true values of the parameters, and parameters obtained using the 

other aforementioned method, are illustrated in Figure A-9 through Figure A-13. The 

histograms of the samples of the posterior predictive distribution, together with the three 

input model distributions, for Cycles 1 through 5 are illustrated in Figure A-14 through 
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Figure A-18. A comparison of the simulation results of project estimate at completion for each 

of the three input modeling methods is illustrated in Figure 3-6. 

 

Figure 3-6 Boxplot of simulation results obtained using input models directly 

fitted from the cumulative observations (CO), derived using the proposed method 

(PM), or derived using the underlying distribution (UD) 

As similarly, observed in the base scenario (Figure 3-5), the simulation results obtained using 

the proposed input updating method were associated with less fluctuation in the presence of 

noise and generated more reliable duration forecasts compared to the direct fitting on 

cumulative observation method. This was particularly evident during Cycles 1 and 2, where 

the robustness of the proposed method and its ability to deal with limited and noisy data 

were most apparent. 
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3.4.5. Potential Applications 

The implementation of the proposed methodology facilitates the dynamic real-time 

integration of data into the simulation models, thus enhancing the original model’s accuracy 

and predictability. The traditional DES benefits from the real-time auto-calibration of the 

input models by effectively assisting the decision-making process throughout both the project 

planning and execution phases of construction. This occurs in alignment with the dynamic 

data driven application system’s philosophy (DDDAS) (Darema 2004), which has also been 

referred to as simulation-based analytics (AbouRizk 2018; Ji and AbouRizk 2018b), and 

dynamic data-driven simulation (Ji and AbouRizk 2018a).   

Potential realistic applications in construction engineering and management fields include 

but are not limited to the following: production planning, earned value management, cost 

forecast, and risk management. Specifically, collected real-time performance data (such as 

production rate, productivity factor, actual cost, and so on) will be processed with the 

proposed methodology. The auto-calibrated input models will then be utilized in simulation-

based decision support systems to reflect the dynamic project performance, deriving more 

accurate and meaningful decision-support output for practitioners. The proposed 

methodology can benefit any DDDAS, simulation-based analytics, or dynamic data-driven 

simulation developed for various engineering and applied science fields. For example, this 

method can be used to effectively process live sensor-generated data for real-time severe 

weather prediction, hazardous contamination production, traffic flow simulation, and so on. 
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3.5. CONCLUSIONS 

Bayesian inference has been successfully implemented across many scientific and 

engineering disciplines to address the needs of multiple specific practical problems. However, 

many of the implementation methods, particularly in the area of construction engineering 

and management, are not generalizable due to their dependency on the availability of 

conjugate priors. Accordingly, many decision-support systems used in the construction 

industry remain unable to appropriately incorporate real-time information as it is generated.  

This chapter proposes a universal, Bayesian inference-based method for systematically 

updating any given univariate continuous probability distribution input model of simulations 

as new observations become available, and implements an MCMC-based numerical 

approximation approach to provide solutions regardless of conjugacy. An illustrative case 

study is used to demonstrate the generalizability, feasibility, and functionality of the 

proposed Bayesian inference with MCMC-based numerical method for updating simulation 

input models. The proposed method has been found capable of (1) effectively and efficiently 

updating input models as new observations become available, (2) accurately approximating 

the underlying probability distribution, (3) reliably fusing information from diverse sources, 

including subjective judgment and objective observations, (4) exhibiting robustness and 

resilience in situations where data were noisy and imbued with uncertainties, and (5) being 

generalized and applied to any given univariate continuous probability distribution. By 

applying the proposed method, input models of stochastic simulations can be effectively and 

efficiently updated in real time throughout the execution of a construction project. 

The contributions of this research should be considered in light of the several limitations. 

Due to the nature of the illustrative case study where the random observations were 
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generated based on a known underlying distribution, the fit of the model was not evaluated. 

In practice where the underlying distribution is unknown, however, assessing the fit of the 

model to the data and to the subjective knowledge of experts after obtaining the posterior 

predictive distribution is essential (Gelman et al., 2014). Additionally, the selection of the 

prior distribution is a complex problem that requires consideration of historical data, 

professional experience, and regard for current project conditions. Proper prior distribution 

selection is of the utmost importance for ensuring the accuracy of the posterior distribution. 

Finally, while the proposed method provides a philosophical approach for integrating 

information from various sources, incorporating multiple levels of uncertainty and 

randomness, and consistently providing accurate, reliable results, the method itself does not 

represent a complete, decision-support system.  

Laying the foundation for further dynamic, data-driven, simulation-based, and analytics-

focused research in construction, future work building upon the proposed methodology is 

expected to result in a new generation of quantitatively-driven, analytically-based decision-

support systems capable of providing real-time analytics, fusing various information sources, 

and incorporating randomness to enhance the efficiency and automation in construction 

management. 
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3.7. SUPPLEMENTAL DATA 

Table A-1 and Table A-2 and Figure A-1 to Figure A-18 are provided in Appendix A.  
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4.1. INTRODUCTION 

Construction processes are subject to a wide range of uncertainties and randomness, 

rendering them stochastic rather than deterministic. To account for these uncertainties, 

stochastic simulation models have been adopted to model construction processes and related 

systems using Monte Carlo (MC) methods (e.g. simulation of scheduling networks, production 

processes, risk management, and range estimates) (Altaf et al. 2018, Song and Eldin 2012, 

Liu et al. 2015). Given that the simulation model captures internal construction processes 

and their corresponding logics, the implementation of stochastic models aggregates these 

uncertainties and evaluate choices that will enhance the decision-making process (Hubbard 

2009, Rao et al. 2008).  

Construction projects are unique, dynamic and complex: Despite the internally identical or 

similar mechanisms and logics (Behzadan et al. 2015), the seemly repetitive operations in 

construction can drastically differ due to uncertainties and external factors, such as location, 

weather, labor skills, morale, and utilization of technology (Seresht and Robinson Fayek 

2018). Despite the rapid development of information technologies, most of the important 

project data—capturing these external factors—are stored in unstructured text documents 

or exchanged verbally among the involved professionals, making them difficult to use 

(Martínez-Rojas et al. 2016, Caldas et al. 2002, Al Qady and Kandil 2013). Thus, simply 

relying on a single data source, such as real-time observations, might lead to unrealistic 

predictions.  

Traditionally construction simulation models are built on rigid structures and static 

assumptions (Akhavian 2015, Hammad and Zhang 2011). The resulting models, 

unfortunately, can rarely be implemented for a different project, as they are not capable of 
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representing deviations caused by external factors. In fact, the simulation model is often used 

only in the planning stage—reportedly around 60% in Leite et al.’s (2016) study—as these 

models are not equipped to process the real-time observational data, other project 

information, and expert knowledge as it becomes available. The discrepancies from the 

simulation results and the actual performance expand, failing to provide reliable decision 

support over the entire project life span.  

Developing a simulation model for a construction process often starts with investigating 

business practices/processes/systems through the historical project(s) (AbouRizk et al. 2016a). 

Domain experts abstract the construction processes into a conceptual model (Abdelmegid et 

al. 2017, Chwif et al. 2013), then develop a simulation model to represent the required 

construction entities, logics, and state variables (AbouRizk et al. 2016b, AbouRizk 2010). 

After testing and validation with the existing project data, the resulting model will be 

implemented in a future project (Sargent 2010). The planning phase of a new construction 

project lacks actual data. Thus, project conditions are often judged based on experts’ 

experience, and the inputs for the simulation model are often static parametric distributions 

that are fit to historical project data (Akhavian and Behzadan 2013). Upon project 

commencement, more observational data are generated and collected such as productivity, 

cost, weather, safety, quality, etc. Additionally, more experts (e.g. superintendents, engineers, 

managers, technicians, etc.) are involved, further increasing subjective information on 

current project conditions (e.g. congestion level, moral, crew skill level, attrition rate) and 

knowledge in predicting future conditions. Consequently, the construction project needs a 

reliable method to fuse information gathered from various origins to properly reflect current 

and future project conditions and provide reliable decision-support. 
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The barriers and grand challenges of modeling the construction process have been studied 

and documented by various scholars (Leite et al. 2016, Martínez-Rojas et al. 2016, 

Abdelmegid et al. 2020). This study focuses on addressing the following two aspects of these 

challenges: 1) properly reflecting the dynamics of the construction ecosystem; 2) effectively 

processing real-time information generated from various origins—both observational and 

subjective—to update the existing model thus better reflecting the current project conditions.  

Regardless of the simulation techniques, the input modeling process is identical, and it is one 

of the most important factors to the success of the stochastic model (Gong and Caldas 2010). 

The appropriate selection of probability distributions ensures the representation of the 

underlying random input process and, ultimately, generates a meaningful result for the 

simulation model (as illustrated in Figure 4-1). If the inputs of a simulation model can 

properly fuse and represent the actual project data ranging from real-time observations, 

expert knowledge, and other information gathered from different sources, then the credibility, 

resilience, and application of the simulation models will be enhanced throughout the project. 

Through the better representation of the input models, to a certain degree, the simulation 

model captures and reflects the external mechanism in a construction system.  

 

Figure 4-1 Conceptual Model of Stochastic Simulation Model 
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Through developing a universal methodology in updating simulation input models, this 

research aims to capture and represent the dynamic observational data and subjective 

information collected throughout the project. Specifically, this research proposes a dynamic 

input model updating method that couples a Metropolis-Hastings based Markov chain Monte 

Carlo (MCMC) process with a weighted geometric average (GA). This novel approach 

provides direct solutions for fusing information generated or collected through various means 

(e.g. historical data, real-time performance, and expert knowledge), resulting in a universal 

solution for updating univariate, continuous, parametric probability input models, thus, 

improving the robustness and application of simulation models. 

4.2. MOTIVATION  

In this section, a simplified discrete event simulation model—takes in one input and provides 

the project total duration as a distribution—is used to demonstrate the four extremely 

common project monitoring and controlling scenarios. The configuration of the input model 

(i.e. the probabilistic distribution) is elaborated through the following four scenarios. 

Nevertheless, it is important to note that the proposed method is not limited to discrete event 

simulation nor forecast function, but any MC-driven model for any construction-related 

process as depicted in Figure 4-1. 

Scenario 1 – Planning stage with historical data 

Before the start of the project, the input model is often assumed to resemble historical project 

data, for instance, a four-parameter generalized beta distribution, such as beta (2, 2, 15, 28).  
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Scenario 2 – Construction stage with real-time observations 

Actual observations are generated and collected throughout project execution, and a new 

project’s conditions—as reflected in the observations—are unlikely to be identical to any 

historical projects. To reflect the new external factors, the new data necessitate updating 

existing input models with real-time observations from the field. Especially for highly-

repetitive construction activities, where the next observation(s) likely share the same 

external factors as current ones, such as tunneling activity with tunnel boring machine (e.g. 

the penetrating rate is mostly influenced by soil types) and welding at fabrication facility 

(highly-controlled environment). Applying Bayesian inference has proven effective for 

incorporating real-time data and fine-tuning the input model in such cases (Chung et al. 2004; 

Ji and AbouRizk 2017, Wu et al. 2020), and an updated input beta (5, 3, 15, 28) can be 

achieved. 

Scenario 3 – Construction stage with subjective opinions 

Various external factors (such as congestion level, safety, crew morale, and sustainability) 

can cause performance deviations; yet reasoning about performance deviations is still an 

emerging science (Skibniewski and Golparvar-Fard 2016). These types of project information, 

especially the subjective analysis of external factors, are commonly shared among involved 

parties verbally (Martínez-Rojas et al. 2016). Simply relying on project actual data could lead 

to unrealistic decision-making matrices due to ignoring foreseeable events and factors. 

Unlike the shop weld that takes place in a controlled environment, the performance of the 

field weld—extremely common yet problematic and inefficient construction activity in 

industrial projects—is influenced by various factors (CII 2015), such as weather (mostly 

precipitation), location (height and accessibility), and congestion level (whether sharing 

workspace with other crews, or tight workspace due to obstruction from other structures). 
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For instance, the current welding performance (actual data) was measured by performing 

activities at ground level, without the severe obstruction of other structure. With the project 

progressing, future welding activities are at various elevations, with potential shared 

workspace and obstruction from structures. Field supervisors expect the performance to 

decline, and three superintendents put in their three point estimates. As a result, the project 

manager often forecasts the project performance based on experts’ judgments of project 

future conditions. With axiom-based aggregation approaches (e.g. weighted average), the 

triangular distribution (15, 28, 19) could provide an aggregated input model based on the 

experts’ opinions. 

Scenario 4 – Construction stage with various information sources 

Methodologies have been developed and researched for forecasting a single type of data 

source, as in Scenarios 2 and 3. These two scenarios, however, are rather extreme cases, while 

most of the project management situations lay somewhere in between. No methodology, 

however, currently exists to accommodate the decision-maker (e.g. project manager) who 

would like to generate his decision based on both subjective (i.e. the triangular distribution 

(15, 28, 19)) and objective information sources (beta (5, 3, 15, 28)). The inability to combine 

and fuse relevant project information effectively as one input diminishes the simulation 

model’s purpose and remains its Achilles heel. One input model that reflects and fuses all 

relevant project data is needed, as illustrated in Figure 4-2.  
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Figure 4-2 Various information sources for the input model 

This chapter addresses the practical challenges illustrated in Scenario 4 and proposes to 

couple the MCMC-based numerical method with a weighted GA algorithm, resulting in a 

universal input model updating algorithm for fusing project data collected through objective 

and subjective sources. The remainder of the chapter is organized into a detailed literature 

review on input-model updating techniques, their applications, and limitations. The 

hypothesis first introduces the two pillars of the proposed methodology—axiom-based 

aggregation methods and MCMC-based numerical approach–then proposes a hypothesis. The 

methodology section outlines the proposed input model updating approach, which is then 

tested through a Monte Carlo study as a “Proof of Concept.” Lastly, an illustrative case study 

is presented to demonstrate the practicality, functionality, and feasibility of the proposed 

method in a typical industrial construction project setting.  
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4.3. LITERATURE REVIEW 

Many studies have provided practitioners with guidance on how to fit univariate input 

models based on observational data (Abourizk and Halpin 1994, Nelson and Yamnitsky 1998, 

Biller and Nelson 2002, Kuhl et al. 2006) or expert knowledge (DeBrota 1989, AbouRizk and 

Halpin 1991). However, most construction simulation inputs demand a combination of data 

origins. Indeed, the need for a solid methodology to extract useful information from 

heterogeneous data has been highlighted by several researchers in the construction and civil 

engineering domains (Pradhan and Akinci 2012, Soibelman and Kim 2002, Chen, et al. 2005).  

In the past few decades, construction industries have benefited from the rapid development 

of information technology. The implementation of various sensor technologies (e.g. Radio 

Frequency Identification, GPS, laser, and vision-based detection) in construction has 

drastically improved the efficiency of the data collection process in the industry (Zhang et al. 

2017). Several researchers have demonstrated incorporating real-time (or near real-time) 

data into simulation models to facilitate project management—such as progress monitoring 

for earthmoving operations (Vahdatikhaki and Hammad 2014, Louis and Dunston 2017), 

productivity prediction (Seresht and Robinson Fayek 2018), equipment management (Li and 

Liu 2012, Akhavian and Behzadan 2013, ElNimr et al. 2016, Liu et al. 2020), quality 

management (Akinci et al. 2006, Ji and AbouRizk 2018), production planning and controlling 

(Altaf et al. 2018), and scheduling (Song and Eldin 2012). Demonstrated techniques for 

processing messy real-time data for simulation inputs include rule-based systems 

(knowledgebases that encapsulate expert rules to convert the noisy data) (Vahdatikhaki and 

Hammad 2014, Akhavian and Behzadan 2013), designing models to only respond to 

standardized signal inputs(Li and Liu 2012), finite-state machines (Louis and Dunston 2017), 

random sample consensus algorithms (extracting a subset from the noisy data using random 
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sample consensus algorithms) (Altaf et al. 2018), and tuning the simulation parameters 

upfront to take in data without further preprocessing. In these aforementioned studies, the 

input modeling process in regards to real-time field data and subjective information, have 

been 1) specific to its application or tasks and not generic for any stochastic simulation; 2) 

static for subjective information, such as experts’ knowledge (e.g. a rule-based reasoning 

process, and a heuristic knowledgebase); 3) unable to address the fusing of data and 

information collected from various origins, including observational data and subjective data 

in real-time.  

The Bayesian approach has been also studied for real-time simulation input (Brandley et al. 

2015; Chung et al. 2004; Ji and AbouRizk 2017; Milo et al. 2015; Zhang et al. 2015), but the 

methods proposed in these studies are limited to specific cases due to conjugacy. Later, Wu 

et al. (2020) demonstrated a MCMC-based numeric Bayesian approach as a universal, real-

time, input model updating method for any stochastic simulation model. However, Bayesian 

inference fuses information by reallocating credibility across the possibility of the 

parameter(s) values (the parameter(s) of the probability input model)—an indirect way of 

updating the probability distribution—which more than often are not intuitively meaningful 

(Kruschke, 2014). For instance, to update a beta distribution beta (L, U, a, b) with four 

parameters, the domain expert needs to 1) identify the parameter(s) that requires updating, 

followed by 2) properly select prior distribution(s) for each of the selected parameter(s), then 

3) perform the numeric-based Bayesian inference to achieve posterior distribution(s) for all 

selected parameter(s), lastly 4) simulate the updated input model (the posterior predictive 

distribution) (Wu et al. 2020). Within this process, the choice of the priors heavily affects the 

resulting input model derived from Bayesian inference. However, studies in addressing this 

challenging process of defining priors are in its infancy for construction domain: Li et al (2019) 
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demonstrated a special case of the binomial distribution, with prior determined by only 

learning factor. As the case presented in Scenario 4 of the Motivation section, using Bayesian 

inference to fuse expert’s judgment (expressed as a triangular distribution), historical data 

(fitted as a beta distribution), and real-time observations, is extremely difficult, particularly 

in defining prior(s).  

None of the advancements from the aforementioned research provides a direct, effective, and 

generic solution to fuse heterogeneous data—including historical project data, dynamic 

subjective information, and actual observational data—expressed as parametric 

distributions in real-time. Nevertheless, the existing research has inspired the authors to 

explore the possibility of an axiom-based numerical approach for aggregating information.  

4.4. HYPOTHESIS 

4.4.1. Axiom-based aggregation methods 

Axiom-based aggregation approaches, such as weighted averages, have been studied for 

combining parametric distributions (Stone 1961, Genest and Zidek 1986, Clemen and 

Winkler 1999, Ayyub 2001). The weighted arithmetic average has been extensively used in 

risk management for aggregating diverse opinions due to the approach’s simplicity and 

flexibility (Schmucker 1982, Sharfman and Fernando 2008, Yager and Kacprzyk 2012, Liu 

et al. 2015). The disadvantages of the weighted arithmetic average have also been studied 

and reported. For example, the aggregated distribution is typically multi-modal, making it 

difficult for use as an input model in simulations (Genest and Zidek 1986). Additionally, 

Winkler and Cummings (1972) have pointed out that the results of the weighted arithmetic 

averages are relatively insensitive to the selection of weights. Many of the above-listed 
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shortcomings can be overcome by using the weighted geometric average (Genest and Zidek 

1986), defined as: 

 𝑝(𝑥) = 𝑘∏𝑝𝑖(𝑥)
𝑤𝑖

𝑛

𝑖=1

 (1) 

where, 𝑘 = ∫∏ 𝑝𝑖
𝑤𝑑𝑥𝑛

𝑖=1  is a normalizing constant, and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1.  

Practically, the challenges of deriving an analytical solution to the normalizing constant 𝑘 

(or the absence of it) significantly limit the applications of this method (Lindley 1985). A 

significant amount of research exists that uses the weighted GA for aggregating expert 

opinions through satisfying a number of reasonable axioms or limiting the form of pooling 

function (Bordley 1982, Morris 1974, Genest et al. 1984). Consequently, the weighted GA has 

been limited to a single source of information (expert opinions) with limited forms of the 

distribution function.  

The geometric mean does not exist if one or more data points are zero. Often these zero values 

indicate less than a certain limit of detection (Costa 2017). The conventional methods include 

substituting 0 with a pre-determined value such as half the limit of detection, the limit of 

detection divided by the square root of two, the detection limit itself, or some other small 

value (Kayhanian et al. 2002). Sometimes the value 1 (or another constant) is added to all 

values to eliminate zeros or negative values, or in the case of frequency data, by adding 0.5 

to all values (McDonald 2009). 

4.4.2. MCMC-based numerical approach 

As both computer hardware and random sampling algorithms continue to improve, many of 

the traditional challenges in deriving analytical solutions are being solved by developing 

accurate numerical approximations. One example is the Metropolis-Hastings (MH) algorithm, 
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which belongs to a larger class of sampling algorithms known as MCMC algorithms and has 

been recognized as one of the ten most influential algorithms in the development and practice 

of science and engineering in the 20th century (Beichl and Sullivan 2000). The MH algorithm 

is the most popular MCMC method (Hastings 1970, Metropolis et al. 1953); many other 

MCMC algorithms can be treated as a special case or extension of MH (Andrieu et al. 2003). 

The MH-based MCMC approach effectively solves integration and optimization problems and 

has been extensively applied to calculate the normalizing factor—such as the case in deriving 

normalizing factor for equation (1)—when an analytical solution is absent (Andrieu et al. 

2003).  

A handful of the above-mentioned studies have explored the MCMC-based numerical 

approach in developing decision-support applications in construction (Wu et al. 2020, Ji and 

AbouRizk 2017). Ji and AbouRizk (2017) demonstrated and compared the capability of a MH-

based MCMC approach in achieving an accurate approximation to the true target 

distribution. Wu et al. (2020) further deployed a MCMC-based numerical approach in 

achieving an updated 4-parameter beta distribution for simulation input where no analytical 

solution exists.  

4.4.3. Hypothesis Statement 

Given that 1) the weighted GA effectively fuses information expressed in form of parametric 

distributions but has seen limited application due to the absence of an analytical solution for 

the normalizing constant 𝑘; 2) the MH-based MCMC numerical method can approximate 

target distributions when analytical solutions are absent; and 3) compared with Bayesian 

inference (Wu et al. 2020), the weighted GA aggregates information expressed as 

distributions directly—without the four steps as elaborated in the Literature Review section. 

This research is the first to propose coupling the MH-based MCMC numeric approach with a 



108 

weighted GA to achieve an input model updating method that fuses data collected through 

various means.   

4.5. METHODOLOGY 

The methodology of this study is illustrated in Figure 4-3. If 𝑌  denotes the underlying 

construction activity and 𝑝(𝑦) presents the probability density function (PDF) of 𝑌, then 𝑝𝑖(𝑦) 

represents PDF generated from each of the various information sources, where 𝑖 = 1,… , 𝑛 is 

the number of sources. To fuse the information generated from all sources, the proposed 

method updates the input model 𝑝(𝑦)  through the weighted GA method. Thus, the 

probability of any point within the boundary reflects the information of each PDF originating 

from various sources.  

 

Figure 4-3 Proposed methodology 

Thus, �̃�(𝑦) denotes the updated/aggregated PDF of 𝑌, mathematically as follows: 
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�̃�(𝑦) = 𝐾∏𝑝𝑖(𝑦)
𝑤𝑖  

𝑛

𝑖=1

 (2) 

where 𝐾 is the normalizing constant; the integral of  �̃�(𝑦) is 1; and 𝑤𝑖 is the non-negative 

weight for each probability distribution and sums up to 1. Weights are herein assumed to be 

equal, as the choice of weight is beyond the scope of this research. With the help of the MH 

algorithm, �̃�(𝑦) could be approximated without the analytical solution of 𝐾 . Steps of the 

Metropolis methods are demonstrated as follows: 

Step 1: Randomly generate a proposed leap, Δ𝑦 ~ normal( 𝜇 = 0, 𝜎), and denote the 

proposed value of the parameter as 𝑦𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ∆𝑦 

Step 2: Calculate the probability of moving to the proposed value: 

𝑝𝑚𝑜𝑣𝑒   =  min(1,
𝑝(𝑦𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 )

𝑝(𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
) = min(1,

𝐾∏ 𝑝𝑖(𝑦𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 )
1
𝑛𝑛

𝑖=1

𝐾∏ 𝑝𝑖(𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
1
𝑛𝑛

𝑖=1

) ,   

In both theory and practice, the log-likelihood is used instead of the likelihood on both 

the record-level and model-level. Thus: 

𝑝𝑚𝑜𝑣𝑒 =  min (log(1) , log (
𝑝(𝑦𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 )

𝑝(𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
))  

            =  min (log(1) ,
1

𝑛
{∑log[𝑝𝑖(𝑦𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 )] −∑log[𝑝𝑖(𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡)]

𝑛

𝑖=1

𝑛

𝑖=1

}) 

Step 3: Accept the proposed parameter value if a random value sampled from a [0,1] 

uniform distribution is less than the 𝑝𝑚𝑜𝑣𝑒; otherwise, reject the proposed parameter 

value and tally the current value again. 
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4.6. PROOF OF CONCEPT – MONTE CARLO STUDY 

Three sets of MC experiments have been developed to test the proposed method. The three 

most widely used distributions for modeling construction processes are tested as listed in 

Table 4-1: uniform, triangular, and beta distributions. Uniform and triangular distributions 

are commonly used for expressing expert opinion. The uniform distribution represents a non-

informative judgment for the underlying interest by placing equal probability across the 

possible value range, and triangular distributions effectively represent three-point estimates 

(Chau 1995). Generalized beta distributions are one of the most widely adopted distributions 

for modeling construction processes (Chau 1995) and have been successfully employed to 

model construction activity durations, costs, safety indicators, etc. For illustrative purposes, 

the experiments were performed on the interval of [0,1], assuming that boundaries are often 

well-established and the research interest remains in the shape of the aggregated 

distribution.  

Table 4-1 The construction of the Monte Carlo study 

Monte Carlo 

Study 

Distribution 1 (D1) Distribution 2 (D2) Randomly generated 

parameters of D1 and D2 

Experiment 1 Uniform (0, 1) Beta (a, b)  {𝑎, 𝑏} ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,10) 

Experiment 2 Triangular (0, 1, c) Beta (a, b) 
{𝑎, 𝑏} ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,10); 

𝑐 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

Experiment 3 Beta (a, b) Beta (c, d) 
{𝑎, 𝑏} ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,10); 

{𝑐, 𝑑} ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1,15) 

 

As illustrated in Figure 4-4, the MC study validates the proposed method (PM) by examining 

the results with 100,000 samples generated using mixture density (MD):  
1

2
 D1 +

1

2
 D2 . The 

PM results were also compared with the results from the widely-adopted weighted arithmetic 

average method (WAAM). At the start of each iteration 𝑖, parameters of the corresponding 



111 

distributions (D1 and D2) were generated randomly. Based on this set of distributions, a total 

of 300,000 samples are collected: 100,000 MCMC samples from the PM; 100,000 Monte Carlo 

samples from WAAM; and 100,000 samples generated using mixture density 
1

2
 D1 +

1

2
 D2. 

After the sample collection, we estimated the shape parameters of three sample sets, 

calculated of the mean and variance, and plotted the updated distributions against the 

original D1 and D2. Due to the practicality and flexibility, all sample sets were fitted as a 

beta distribution. To examine the updated distributions from the two methods with the 

samples generated through the mixture density, changes of mean and variance were 

calculated and compared to the MD samples. The percentage differences are defined as below: 

 

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑚𝑒𝑎𝑛 = 

|𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑀𝐷 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛|

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑀𝐷 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100% 

(3) 

 

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 

(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑀𝐷 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓𝑡ℎ𝑒 𝑀𝐷 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 × 100% 

(4) 

where absolute value has been calculated for the percentage difference of the mean to 

represent the deviation irrespective of direction. Potential negative values have been kept for 

the percentage difference to identify the shrinkage (positive value) or expansion (negative 

value) of the variance.  
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Figure 4-4 Flow chart of the Monte Carlo study 

4.6.1. Monte Carlo Experiment 1 – Uniform and Beta  

A sample plot (randomly picked) from the 40th experiment run is presented in Figure 4-5. The 

solid line represents the randomly generated beta distribution, the thin dashed line 

represents the uniform distribution, the dash-dotted line represents the updated distribution 

from PM, the thick long-dashed line represents the updated distribution from WAAM, and 

the dotted line represents the updated distribution from MD. Both WAAM (thick long-dashed) 

and PM (dash-dotted) present a strong ability to mimic the shape of the given beta 

distribution, regardless of the uniform distribution. The PM exhibits an expansion of the 

variance under the influence of a uniform distribution similar to the MD (dotted), while 

WAAM (thick long-dashed) presents a decreased variance. To better present the results of 

the 1,000 experiment runs, Table 4-2 presents summary statistics of the percentage 

differences. Boxplots and jitter point plots of the same data are shown in Figure 4-6. The 

PM.mean and PM.var respectively represent the percentage difference of mean and variance 
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for the PM. Similarly, WAAM.mean and WAAM.var respectively represent the percentage 

difference of the mean and variance for the weighted arithmetic average method.  

Table 4-2 Summary statistics of percentage difference in Monte Carlo Experiment 1 

 

PM.mean WAAM.mean PM.var WAAM.var 

Min. 0.001% 0.000% 15.814% 49.680% 

1st Quartile 2.881% 0.047% 42.189% 50.893% 

Median 6.248% 0.103% 50.725% 53.911% 

Mean 7.823% 0.121% 49.251% 56.159% 

3rd Quartile 10.658% 0.173% 56.515% 60.084% 

Max. 37.649% 0.537% 77.682% 73.981% 

 

 

Figure 4-5 Input model plot (run #40) 
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Figure 4-6 Boxplot with jitter points percentage difference for mean and variance 

in Monte Carlo Experiment 1 

 

Compared to the PM, WAAM exhibits a strong capability in approaching the MD in terms of 

mean. The PM demonstrates consistent and reliable performance for the majority of the run 

and has a < 10% deviation from the mean of the MD. In terms of the variance, however, the 

PM demonstrates better performance in approximating the result generated using the MD. 

Due to the effect of uniform distribution, the MD samples recorded a wide variance from the 

original beta distribution. This effect has been well captured by the PM, though not as 

intensely. As demonstrated in Figure 4-5, resulting input models from WAAM sometimes 

displayed shrinkage in variance from the original beta distribution. The decrease in variance 

indicates a stronger belief with fewer uncertainties, counter to the logic of combining a beta 

distribution with a uniform distribution. 



115 

4.6.2. Monte Carlo Experiment 2 – Triangular and Beta 

A randomly selected sample plot from experiment run #301 is presented in Figure 4-7, along 

with summary statistics of the percentage difference (Table 4-3 and Figure 4-8).  

 

Figure 4-7 Input model plot (run #301) 

Table 4-3 Summary statistics of percentage difference of Monte Carlo Experiment 2 

 

PM.mean WAAM.mean PM.var WAAM.var 

Min. 0.01% 0.00% 9.85% 49.62% 

1st Quartile 1.65% 0.04% 25.63% 51.80% 

Median 4.09% 0.08% 34.00% 56.94% 

Mean 5.72% 0.10% 36.13% 59.52% 

3rd Quartile 8.27% 0.14% 45.36% 64.95% 

Max. 28.59% 0.50% 74.60% 84.85% 
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Figure 4-8 Boxplot with jittered points of percentage difference of mean and 

variance for Monte Carlo Experiment 2 

 

In Experiment 2, WAAM outperformed the PM with regards to the arithmetic mean of the 

MD; however, the PM produces a reliable central tendency with the majority (the third 

quartile) of PM.mean below 10%. With regards to variance, the PM demonstrates a far better 

performance than WAAM: the interquartile range is located between 25% and 45% compared 

to WAAM’s 50% to 65%. As a result, the PM produces more accurate and reliable interval 

estimates compared to WAAM. 

4.6.3. Monte Carlo Experiment 3 – Beta and Beta 

Figure 4-9and Figure 4-10 present sample-run result plots (run #77 and #80, respectively). 

Summary statistics are presented in Table 4-4, and Figure 4-11 presents boxplots and jitter 

point plots. In Experiment 3, WAAM excels in achieving the central tendency of the 

aggregated distribution (i.e. arithmetic mean). The PM, however, surpasses WAAM at 
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producing closer and more reliable results in terms of the dispersion of the aggregated 

distribution (i.e. variance), which is an indispensable component to interval estimate.  

 

Figure 4-9 Input model plot (run #77) 

 

Figure 4-10 Input model plot (run #80) 
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Table 4-4 Summary statistics of percentage difference of Monte Carlo Experiment 3 

 

PM.mean WAAM.mean PM.var WAAM.var 

Min. 0.00% 0.00% -8.45% 49.65% 

1st Quartile 1.55% 0.03% 22.90% 55.75% 

Median 4.36% 0.06% 42.26% 67.82% 

Mean 6.32% 0.08% 42.47% 68.83% 

3rd Quartile 9.32% 0.10% 62.30% 80.60% 

Max. 38.99% 0.43% 88.66% 97.05% 

 

Additionally, the PM.var has a much wider interquartile range than WAAM. With further 

analysis, a clear trend is discovered: if D1 and D2 have opposite skewness, it leads to a wider 

discrepancy between the PM’s variance and MD’s variance (e.g. run #77 in Figure 4-9). On 

the other hand, if D1 and D2 are same-side-skewed and their modes are very close, the PM 

produces very close results compared to MD (e.g, run #80 in Figure 4-10). The data points are 

thus filtered and then summarised based on the skewness of D1 and D2. Figure 4-12 shows 

the percentage difference results as boxplots. Similar behaviour was also recognized in 

Experiment 2 (Figure 4-13).  
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Figure 4-11 Boxplot with jittered points of percentage difference of mean and 

variance for Monte Carlo Experiment 3 

 

Figure 4-12 Boxplot of percentage difference of mean and variance with D1 and 

D2 skewed to the same side (left) and opposite side (right) for Monte Carlo 

Experiment 3 
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Figure 4-13 Boxplot of percentage difference of mean and variance with D1and 

D2 skewed to the same side (left) and opposite side (right) for Monte Carlo 

Experiment 2 

4.6.4. Synopsis 

Although this study did not exhaust all the possible combinations of parametric distributions, 

the three most commonly used distributions in modeling construction processes are 

thoroughly examined with clear trends discovered. This study demonstrates the following 

outcomes: 1) With regards to a point estimate (i.e. if the arithmetic mean is the interest), 

WAAM excels; 2) At times when the interval estimate is required (modeling construction 

processes imbued with uncertainties), the PM provides a more reliable and accurate result. 

Further, based on the three sets of experiments, it is unveiled that both the PM and WAAM 

tend to result in a stronger central tendency distribution compared with MD. For the PM, 

however, this central tendency only becomes significant when the modes of the two original 

distributions are set widely apart (i.e. opposite skewness). For WAAM, this central tendency 

is dominant and consistent regardless of the shapes of the original distribution, eliminating 

uncertainty and yielding an over-optimistic interval estimate.   
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4.7. ILLUSTRATIVE CASE STUDY 

To demonstrate the feasibility and functionality of the PM, a discrete event simulation (DES) 

model has been developed to represent a simplified critical path method (CPM) schedule 

network for site welding activities in a typical industrial construction project. There are ten 

20-inch standard carbon steel welds needing completion by the same crew in three modules: 

Mod A, Mod B, and Mod C. The precedence relationships between the activities are assumed 

to be “finish-to-start.” As is typical for repetitive construction activities, the duration of this 

type of weld is well documented from previous projects and follows a generalized four-

parameter beta distribution as illustrated by a dash-dotted line in Figure 4-14: beta (3, 3, 15, 

28). The superintendent in charge forecasts lower productivity for the following reasons: 

1. The crew consists of a higher percentage of apprentices; as such, the learning curve is 

expected to be steeper. 

2. Mod B is stacked above Mod A, and Mod C above Mod B, resulting in difficulties 

accessing the working area. 

The superintendent provides a three-point estimate with a most-likely duration of 26 hours, 

a low of 15 hours, and a high of 28 hours. The resulting triangular distribution is illustrated 

by the dotted line in Figure 4-14: triangular (15, 26, 28). Knowing this superintendent’s 

estimate was overly conservative, the project manager decides to blend the historical 

information with the superintendent’s judgment. The project manager implements the PM 

with equal weight on each information source. The input model of the manager’s choice (i.e. 

the PM) is computed and plotted in Figure 4-14 as a solid line.  
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Figure 4-14 Input models of duration for a 20-inch weld 

To mimic the general noise in data and decreased productivity resulting from the 

superintendent’s evaluation (assuming the actual project conditions align with the 

superintendent’s judgment), the simulated actual data points were generated using one third 

of the uniform distribution, uniform (22, 27), and two-thirds of generalized beta distribution 

(3, 3, 15, 28), creating a higher probability of sampling lower productivity.  

The simulated project duration is generated by running the DES model 100,000 times with 

the three input models: the historical data, expert opinion, and PM. The results, generated 

with different input models, were compared and examined with the random samples 

generated through the MD  
1

3
 uniform (22, 27) +

2

3
 beta (3, 3, 15, 28). Specifically, a 95% high 

density interval (HDI) (sometimes referred to as a high density region (HDR)) and mean 

value were calculated and plotted as shown in Figure 4-15. HDI is an effective method of 

summarizing a distribution and indicates the most credible parts of a distribution (Kruschke 

2014). For example, a 95% HDI is an interval wherein every value within the interval has 
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higher credibility than any of the points outside of the interval, and the area under the 

density curve between the two limits covers 95% of the area. As shown in Figure 4-15, the 

project duration forecast using the PM (solid line) is closer to the actual duration of the project 

(dash line). Further, the PM-generated HDI is located between the expert-opinion-generated 

HDI (dotted line) and the historical data (dotted-dash line), demonstrating the capability to 

aggregate information from both sources. 

 

Figure 4-15 HDI plot of forecasted project duration using various inputs 

The case study strongly demonstrates the functionality and practicality of implementing the 

PM to fuse information from historical data and expert experience to achieve an integrated 

forecast dynamically. The PM could be generalized to combine actual project performance, 

historical project data, multiple experts’ opinions, or other related project data for an 

increasingly more effective dynamic input-model updating method. 

4.8. CONCLUSIONS 

This research is the first to propose a MCMC-based weighted GA method for effective fusion 

of information generated from diverse sources, addressing the practical challenges associated 
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with modeling assorted inputs. This research has developed a universal input model updating 

method for any given univariate parametric continuous probability distribution. Due to the 

effectiveness of the MH algorithm, the PM provides solutions regardless of the choice of 

probability distributions (i.e. in absence of an analytical solution of the normalizing factor), 

thus expanding potential applications in engineering and management.  

A “Proof of Concept” MC study tested the PM against the WAAM, and the results have been 

compared with the MD samples. This study validated the capability of the PM in achieving 

a reliable, accurate distribution to counteract the uncertainties inherent in construction 

processes. Further, an illustrative case study is used to demonstrate the generalizability, 

feasibility, and functionality of the PM for aggregating subjective and objective information 

to update simulation input models in real time. The PM has been found capable of (1) 

effectively and efficiently updating input models given new sources of information, (2) 

accurately approximating the target probability distribution, (3) reliably fusing information 

from diverse sources, including subjective judgment and objective observations, and (4) being 

generalized and applied to combinations of any given univariate continuous probability 

distributions.  

The proposed methodology facilitates the dynamic fusion of data generated from various 

sources and aggregates all information to serve as the simulation model input. This input 

modeling method enhances the model’s practicality and predictability for construction project 

management where expert knowledge has a heavy influence on the decision-making process. 

The traditional simulation model benefits from effective integration of data by considering 

information from multiple sources and extending usage throughout project planning and 

execution. Potential applications in construction engineering and management fields include, 

but are not limited to, the following: production planning and scheduling, safety management, 
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cost forecast, and risk management. Actual project information such as productivity factors, 

safety indices, and actual costs will be aggregated with the historical data or expert judgment 

using the PM in a real-time manner. The aggregated input models will then be utilized in 

simulation-based decision-support systems to reflect dynamic project performance, deriving 

more accurate and meaningful decision-support output for practitioners. The proposed 

methodology can benefit any MC-driven analytics or dynamic, data-driven stochastic 

simulations developed for various engineering, management, and applied science fields.  

This research should be considered in light of several limitations. The proposed methodology 

itself does not guarantee improved accuracy. Rather, the PM provides a solution for fusion of 

information from various sources. The predictability of the model ultimately relies on the 

accuracy of all source information. Additionally, the selection of the weights is a complex 

problem that has not been discussed in this paper. Proper weight selection ensures an 

accurate and meaningful result. The advantages and disadvantages of implementing 

weighted geometric average are beyond the scope of this research. Although these aspects 

are briefly discussed in the Monte Carlo study, further research efforts are required. Finally, 

while the PM provides an approach for integrating information from various sources, the 

method itself does not represent a complete decision-support system.  
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5.1. INTRODUCTION 

Preliminary resource planning is vital for the success of a project. Most construction projects 

are awarded following a period of competitive tendering. The time available to a general 

contractor to thoroughly plan after a bid is awarded is often limited, as they must mobilize a 

team to meet the project demand quickly (Loosemore et al. 2003). In addition to the tight 

timeline, the labor market in the construction industry is highly sensitive to wider economic 

activity: during an upturn in the economy, general contractors are competing with each other 

for skilled craft and professionals; conversely, during an economic downturn, they face 

challenges keeping skilled craft workers and professionals due to the curtail of investments 

(Statistics Canada 2011).  

Beyond these common challenges, industrial construction projects face additional difficulties 

when it comes to preliminary resource planning. First, these projects are complex and involve 

multiple specialized trades, which require particular efforts to plan, schedule, and execute 

(Wu et al. 2014). Common trades involved in the completion of heavy industrial construction 

projects include boilermakers, carpenters, electricians, heavy equipment operators, 

insulation installers, ironworkers, millwrights, pipefitters and welders. Second, the 

industrial construction sector bears extra pressures stemming from market conditions and 

global resource pricing, resulting in the broad adoption of the fast-track project delivery 

method (Alberta Infrastructure 2001). Although it significantly reduces total project duration, 

this method leads to a severe overlap of the engineering phase and the construction phase 

(Williams 1995), thereby limiting the engineering information available at the preliminary 

trade resource planning stage.  
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Although challenging, preliminary resource planning should not be omitted or overlooked, as 

it provides a reference point that serves as a basis for monitoring, controlling, identifying 

risks, and developing corrective actions (Rosenau and Githens 2005). With complete 

engineering packages, resource planning, leveling, and optimizing can be effectively achieved 

by loading a critical path method network (Heon and Ei-Rayes 2011; Cheng et al. 2015; 

Menesi and Hegazy 2014; Markou et al. 2017). Without detailed engineering packages (such 

as the majority of the industrial construction projects that are carried out with fast-track 

methods), the preliminary resource plan predominantly relies on the experience and 

expertise of construction professionals. Commonly, the project manager/planner assumes one 

labor curve for each trade based on a similar historical project. Consequently, the plan is 

subjective and fails to reflect the true project design. Further, due to the disconnection from 

the design, the project team cannot systematically update this resource plan as more 

information becomes available. As a result, this plan is often outdated and can neither serve 

as a method of identifying risks nor as a quality reference. Eventually, this plan is replaced 

with a resource plan generated by loading a construction schedule network as more 

engineering is completed. The construction may have already been initiated, and a staffing 

issue (either overstaffed or understaffed) may already be pressing, which often is too late.  

The industry-wide adoption of information technology and modularization provides 

opportunities for innovative, data-driven preliminary resource planning. Benefiting from the 

rapid advancement of information technology, an increasing amount of data have been 

generated and collected during past projects (e.g. Building Information Model (BIM), budget 

data, progress charts). Although tremendous insight can be found in these data, very little of 

it has been analyzed and transformed into useful information to improve decision-making 

processes such as resource planning (Dean 2014). Furthermore, modular construction has 
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been widely applied in heavy industrial construction projects, such as the oil and gas, 

petroleum, and chemical industries (Burke and Miller 1998). These modules become natural 

physical envelopes to divide the scope of work at a high level, which could be taken advantage 

of for preliminary resource planning purposes.  

This research proposes a semi-supervised machine learning approach capable of achieving a 

logical, engineering-oriented, and design-driven preliminary resource plan at the modular 

level using project data that are available early in the life cycle of a project. Through the 

integration of unsupervised and supervised machine learning techniques, this research aims 

to 1) unveil the underlying similarities between modules according to its design elements (i.e. 

design data from BIM—data quality and level of details are discussed in the next section), 

resulting in a set of module clusters/classes per trade; 2) summarize critical labor resource 

requirement indices for each module class identified; and 3) develop classifiers to predict 

module class for similar future projects. This research advances the state-of-the-art by being 

the first method capable of 1) providing decision makers with a scientific and data-driven 

approach for preliminary resource planning at the modular level for each trade; 2) parsing 

incomplete BIM data to classify module types by trade for industrial construction projects; 

and 3) proposing a semi-supervised learning approach for mining construction data sets that 

are large, raw, and non-integrated. 

The remainder of the chapter is organized as follows: why and how BIM and modularization 

can assist in preliminary resource planning is discussed, and a review of the existing research 

on preliminary resource planning that identifies the research gaps and introduces the data-

driven approach to address it is then presented. The research methodology section details the 

stages, techniques, and algorithms involved in the proposed framework. Lastly, an industrial 

case study is presented to demonstrate each stage of the proposed method and the results.  
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5.2. BIM IN PRELIMINARY RESOURCE PLANNING   

Among one of the earliest types of projects to implement BIM, industrial construction projects 

have benefited tremendously from these models (Ali and Mohamed 2017). Relying on BIM to 

further improve the efficiency of industrial construction processes, however, has been 

challenging. Several research studies have examined, evaluated, and documented the 

difficulties limiting the use of BIM beyond the design/engineering stage (Guerra and Leite 

2020, Leite et al. 2010, Arshad et al. 2019, Hamdi and Leite 2013, Alwash et al. 2017, Olatunji 

2015, Ashcraft 2008). First, developing BIM is a costly and multi-organizational endeavor 

(Eastman et al. 2009, Solihin et al. 2017, Solihin and Eastman 2015). As such, information 

loss, inconsistency, missed interoperability, and redundancy are inevitable during the 

transfer and merging of data between stakeholders (Zhou et al. 2019). This is especially 

prevalent in industrial construction projects due to their large scale and complex processes.  

Furthermore, the lack of industry-wide standards and legal status—not perceived as a 

contractual deliverable—causes great contractual risks and legal concerns (Arshad et al. 

2019, Ashcraft 2008, Olatunji 2015). Olatunji (2015) demonstrated potential legal disputes 

arising from BIM use with respect to model integrity, storage security, intellectual property, 

and project changes. Even interoperability between different software chosen by various 

stakeholder can pose potential risk for disputes (Hamdi and Leite 2013). Consequently, BIM 

(or 3D models) have been excluded from contracts as a source of deliverables, and these 

models are often perceived as needless by downstream stakeholders, such as general 

contractors and subcontractors (Guerra and Leite, 2020)—a primary reason why general 

contractors are often issued incomplete, skimmed, and out-of-date models (Davies et al. 2017)  
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The BIM received in industrial construction is, most often, a rough 3D model of only an 

approximate physical representation of the structure that is missing critical construction 

details and other functional characteristics. The level of detail (LOD) of BIM in these 

industrial projects is typically approximate geometry (or LOD 200) or somewhere between 

conceptual (or LOD 100) and precise geometry (or LOD 300) depending on the discipline 

(Leite et al. 2010, Trimble Navigation Limited 2013). The maturity level of information in 

these 3D models is primarily for the conceptual and engineering stage and is insufficient to 

support construction or project management activities. As illustrated in Figure 5-1a, the 

properties of the indicated elbow are either missing or meaningless. Obtaining the 

dimensions of elements from such limited information is difficult.  Solutions, such as a 

customized API attached to Navisworks (Han et al. 2017), to extract rough coordinates have 

been developed and adopted industry (Figure 5-1a). Moreover, due to the fast-track feature, 

BIM models for industrial projects are often developed in tandem with the construction 

period, and contractors are issued updated BIM models periodically, with detailed content 

replacing placeholders over time (Azhar 2011).  

Modularization has been defined by the Construction Industry Institute (2014) as “the large-

scale transfer of stick-build construction effort from the jobsite to one or more local or distant 

fabrication shops/yards, to exploit any strategic advantages. A module is a portion of plant 

fully fabricated, assembled, and tested away from the final site placement, in so far as is 

practical.” In a modularized industrial construction project, practitioners often categorize 

modules based on its primary characteristics, such as a pipe rack module, electrical module, 

or equipment module. Figure 5-1b captures a typical BIM representation of a pipe rack 

module from an oil sands industrial project.  
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This subjective categorization captures the design information at a macro level, which reveals 

the design feature for the major trade involved in this specific type of module. To plan 

preliminary resources for each trade, however, the design features must be parsed at a micro-

level. For instance, the scope of work for ironworkers may be similar between a pipe rack 

module and an equipment module. Despite the low level of detail, BIM naturally contains 

geographic information through its rough physical representation of the structure (such as 

location coordinates, length of a pipe, and the number of staircases). It provides opportunities 

for machine learning algorithms to discover the design characteristics (i.e. similarities or 

dissimilarities) between modules for every trade at a micro-level.  

 

(a)                                                                              (b) 

Figure 5-1 3D Model of Pipe Elbow (a); and a Typical Pipe Rack Module (b) 

In a fast-tracked modularized industrial construction project, project information, such as 

the incomplete BIM, module list, and module lifting schedule, commonly become available 

early in the life cycle of a project, as the majority of onsite construction activities are 

successors to the completion of the module, including the transportation and lifting of these 

modules onto their foundation and supporting structures. With such data available, 

preliminary design information extracted from BIM can be classified at a modular level per 

discipline. Loading the labor resource requirements learned for a certain type of modular 

design to the module lifting schedule can provide a solid foundation for a preliminary resource 

plan. 
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5.3. PREVIOUS RESEARCH 

A critical activity in front end planning—a preliminary labor plan—identifies the labor 

resource requirements for a project, analyzing the source of labor, adequacy of supply, and 

addressing potential resource issues (George et al. 2008). While previous studies (CII 1995; 

CII 2006; CII 2009; Hwang and Ho, 2011) have confirmed the benefits of preliminary resource 

planning, including assisting the project team to appropriately dedicate resources, the 

aforementioned research studied the topic from a front-end planning perspective, which 

involves many activities beyond preliminary resource planning. Furthermore, these studies 

were survey-based or qualitative, and did not yield a methodology capable of addressing the 

challenges associated with preliminary resource planning.  

The potential for using BIM for enhancing resource planning has been explored. In a medium-

sized building construction setting, Babic and collaborators (2010) demonstrated the use of 

BIM as a channel to connect a pre-existing enterprise resource system with design 

information, such as AutoCAD drawings. Although similar to residential/commercial 

construction sectors, the industrial construction sector has unique challenges regarding BIM 

adoption. As mentioned previously, incomplete and unstandardized BIM data with a low level 

of detail severely limits its direct use for project management purposes. 

Data-driven applications developed with machine learning algorithms have been extensively 

used in the construction management industry to assist the discovery of hidden patterns and 

relationships embedded in large, raw (i.e. incomplete, messy, and non-integrated) data sets, 

thus providing critical decision support to practitioners (Zhang et al. 2019; Zhong et al, 2019; 

Sarkar et al. 2020; Zou et al. 2017; Ali and Mohamed 2017). Unsupervised learning—

clustering—aims to discover unknown, yet “natural” groups of objects (Jain et al. 1999; Dy 
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and Brodley 2004). Supervised learning—classification—learns the structure and content of 

a given data set that has been partitioned into groups (also referred to as classes), and yields 

a model (e.g. classifier) that predicts the labels of the classes for the unseen data set with 

known predictor features and unknown class labels (Aggarwal 2015). The territory between 

supervised and unsupervised learning is called semi-supervised learning (Witten et al. 2016), 

which improves the accuracy of supervised learning by exploiting information in unlabeled 

data. As such, semi-supervised learning algorithms have been successfully applied to derive 

solutions to problems, where the input is a fully or partially unlabelled large dataset, with a 

goal of developing a predictive model (Ferraretti et al. 2012). 

A semi-supervised learning approach is adopted in this research for three primary reasons.  

First, BIM contains a large amount of unlabelled design data, and manually labeling these 

data is impractical and introduces biases; moreover, the underlying data structure of each 

module for each trade is unclear. As such, when starting with an unsupervised learning 

approach, design similarity (quantity summary of key design elements) can be learned 

between modules for each trade at a micro-level. Second, resource requirements follow design, 

where a more complex design leads to higher labor-hour. With the “natural” grouping of 

modules, resource requirements can be summarized for each module cluster for each trade. 

Third, BIM data are commonly available at the design stage before the release of the complete 

engineering package with periodic updates. With supervised learning algorithms, classifiers 

can be trained to predict module classes following the latest BIM release, thereby yielding an 

updated resource plan. 
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5.4. METHODOLOGY 

As illustrated in Figure 5-2, the proposed framework involves four main stages – data pre-

processing, unsupervised learning, summarize resource planning indices, and supervised 

learning, this will produce the final product—data-driven preliminary resource plan. Each 

stage is further discussed in the following subsections.  

 

Figure 5-2 Proposed framework 
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5.4.1. Data Pre-Processing 

As construction data are highly fragmented and often low in quality, data pre-processing is 

an often crucial initial step for any data-driven decision support system in construction 

management.   

Raw data used in this research may include budget, progress, design, module, and module 

lifting schedules, each stored in separate databases. A construction data adaptor can be used 

to retrieve relevant data (tables) stored in separate locations and merge them into a central 

repository that can be further cleaned and analyzed without disturbing original data sets.  

Although certain algorithms can be applied to noisy, inconsistent data (Han et al. 2011), data 

wrangling is critical for ensuring robust and reliable results from a majority of machine 

learning algorithms. Once the data has been merged, extensive data wrangling tasks may 

still be required to further aggregate and reshape the data into a tidy format (where each 

variable is a column and each observation is a row) (Wickham 2014)—especially for industrial 

construction data, where they are often developed and owned by different 

organizations/stakeholders, resulting in drastically different structures or naming 

conventions. For example, design data (i.e. BIM) are usually generated by the engineering 

team, module-related data are provided by module assembly facilities, while budget, progress, 

and module lift schedules are created by contractors. The differences in database structures 

and naming conventions prevent these data from linking or merging freely. A series of 

manual and automated data wrangling steps, including filtering, sub-sectioning, identifying 

common key attributes (Wu et al. 2020, Li et al. 2019, Wu and AbouRizk 2020), must be 

performed to create links.  
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5.4.2. Real-time Tidy Data 

Two tidy tables are required as input into the following steps within the proposed framework. 

One table summarizes the key design by modules for each trade to a matrix. The other table 

groups weekly budgeted labor hours by module and by trade. The latter are then plotted as 

resource charts for visualization. During the merging and visualization process, data should 

be further examined, cleaned, and outliers identified. The data are then ready for input into 

the following machine learning stages. 

5.4.3. Unsupervised Learning 

Unsupervised learning, or clustering, is then performed to identify the similarities (or 

dissimilarities) between modules based on their key design features for each trade. A 

selection of methods can be used to analyze and validate clustering results: the multivariate 

analysis of variance (MANOVA), which tests the relevance between the cluster results and 

the variates; principal components analysis (PCA), which reduces the dimension of the data 

set thus allowing the cluster results to be plotted on a coordinate system with the first two 

principal components (PCs); use of external knowledge from experts (Rendon et al. 2011); 

and/or the use of internal data indices, such as Bayesian information criteria (Raftery 1986), 

to measure the similarity between different data points (Barbara et. al 2002; Santos and 

Morais 2013; Cleary and Trigg 1995). 

5.4.4. Summarize Resource Planning Indices 

Following clustering, a set of four resource planning indices are proposed for each discipline 

at the modular level, namely total budgeted labor-hours, duration, ramp-up rate, and ramp-

down rate, as they capture the key elements of a resource plan. Then, a statistical summary 

is gathered for these four indices on each module cluster for every trade. The resulting 
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resource indices summary presents the typical resource requirements for each module class, 

thus linking the preliminary resource plan to the actual design of the structure.  

5.4.5. Supervised Learning 

With the confirmed clustering results (i.e. the classes), one classifier for each trade is 

developed. Supervised learning follows the loop described in Figure 5-2. Feature selection 

(such as Pearson correlation coefficient matrix and PCA), as the first step, investigates the 

degree of association, reduces the attribute dimension, and increases classification success 

(Abdi and Williams 2010).  

Practitioners may choose any available supervised learning algorithms. This study 

recommends those listed in Table 5-1, as they are widely used for investigating construction 

problems and are useful for modeling complex relationships. The development of this set of 

classifiers bridges future project design to their typical resource requirements learned from 

historical projects. Together with the resource indices summary, this framework achieves the 

proposed data-driven preliminary resource plan as outlined in Figure 5-2.  

5.4.6. Decision Support: Data-Driven Preliminary Resource Plan 

The development of this set of classifiers (one classifier per trade) bridges future project 

design to their typical resource requirements learned from historical projects. Together with 

the resource indices summary, this framework achieves the proposed data-driven 

preliminary resource plan as outlined in Figure 5-2. For disciplines with insufficient data, 

estimation using the percentage method based on relevant disciplines can be used (such as 

to estimate hydrotest and insulation data based on piping data). 
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Table 5-1 Proposed classification algorithms 

Classification Algorithm Type Tuning Parameters 

Artificial Neural Networks 

(ANN) 

Perceptron-based 

techniques 

Size (Hidden Units); Decay (Weight 

Decay) 

Naive Bayes 
Statistical learning 

algorithms 

Laplace (Laplace Correction); Usekernel 

(Distribution Type); Adjust (Bandwidth 

Adjustment) 

K-nearest Neighbors (KNN) 
Instance-based 

learning 
K (#Neighbors) 

Support Vector Machines 

(SVM) 

Support Vector 

Machines 
Sigma; Tau (Regularization Parameter) 

Random Forest Decision trees NA 

5.5. CASE STUDY 

The functionality of the proposed research framework is demonstrated following its analysis 

of the historical data of an industrial construction project that lasted two years. The project 

is a typical oil sand secondary extraction project located in northern Alberta, Canada. This 

type of project accounts for a large portion of our industrial partner’s business portfolio. In 

this case study, R (R Core Team 2019), a free programming software environment for 

statistical computing and graphics, was used to perform all functionalities of the proposed 

methodology. 

5.5.1. Data Sources 

In this case study, the data required were stored in three separate databases—BIM, module 

lift schedule, and a progress database. The BIM model was generated by the engineering 

team; the progress database, which captured the work breakdown structure and project 

progress (budget hours earned per week), was developed in-house by the general contractor 

(our industrial partner) as a relational database; and the module lift schedule was co-

developed between the general contractor and the module assembly facility. The practical 
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challenge of summarizing labor-hours by modules in this case study was caused by the 

disconnection between the geographic information of the project and budget information, as 

they were stored in two different databases with no direct link. The BIM contained 

geographic information for all design elements, making it relatively easy to group design 

elements into a modular level based on the boundaries defined through the module lift 

schedule. However, the progress databases followed a traditional work breakdown structure, 

aimed at most effectively performing and tracking the onsite construction activities, with 

each work package usually containing one to two weeks of labor hours for one crew. This tree-

like structure usually broke down the scope of work into construction areas, disciplines, work 

packages, activities, and steps and did not follow the physical breakdown of modules.   

Data adaptor was developed in R through package RODBC (Ripley and Lapsley 2020) as a 

repository to retrieve useful information from all databases to a central location for further 

data wrangling. Notably, this data adaptor can be used in future projects to connect to the 

desired databases in a real-time manner. The weekly progress table queried from the 

progress database (Figure 5-3) contained the following information: discipline, work package, 

activity, and weekly records of labor-hours earned for each activity. The component list table 

extracted from the BIM database (Figure 5-3) contained the coordinates of each component 

(the smallest modeling item at geometry level); component name, which is a long string that 

contains most of the design-related information (such as “SUPPORT 12 of BRANCH/BFW-

41039-01-00M56/B1”); and discipline. Additionally, a list of modules with the module name, 

project ID, and its geographic coordinates was extracted from the module lift schedule 

database (Figure 5-3).  
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Figure 5-3 Entity-relationship diagram of module list table, component table, and 

progress table 

Although data from different databases were gathered to a central location through the data 

adaptor, further efforts were required to link the data (as shown in Figure 5-3) and aggregate 

information into a tidy format for further analysis. The many-to-many relationship between 

module list and the component table was generated by comparing each component’s 

coordinates with those of the module. The generation of a one-to-many relationship between 

the progress table and component list began with the manual parsing of data and patterns 

on both tables. For instance, a majority (3,709 out of 4,766 entries) of the piping progress 

activities began with “ISO-MCP-##-.” The pattern was directly followed by a serial 

identification code combined with letters, numbers, and symbols such as “PW-40005-01-

01A03.” In the meantime, the piping serial identification code (e.g. “PW-40005-01-01A03”) 

prevailingly existed (105,503 out of 105,716) in the component names column. The data pre-

processing step was a joint exercise involving both the research team and our industrial 

partner and consisted of multiple rounds of manual verification for ensuring an accurate and 
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optimal result. Any progress activities that could not find a link to BIM elements were 

removed, as without location information, these activities could not be summarized into at a 

modular level.  

Table 5-2 lists the results of the data aggregation for the major disciplines. For illustrative 

purposes, as well as the limitation of the data set, only the piping discipline is presented here. 

However, the proposed framework can be generalized for any discipline given the availability 

of the data. This is a key contribution of this research, as one module could belong to different 

clusters/classes given different disciplines. As a result, the proposed methodology tailors the 

resource requirement of each discipline for its specific design. For disciplines with insufficient 

data, estimation using the percentage method based on relevant disciplines can be used (such 

as to estimate hydrotest and insulation data based on piping data).  

Table 5-2 Result of weekly progress table linked to the modular level 

 

5.5.2. Hierarchical clustering 

In preparation for the clustering experiment, a list of key design elements (cap, closure, 

coupling, elbow, blind, flange, gasket, instrument, reducer, support, tee, tube, valve, weld) 

were extracted from the component name column in the component list table. The count of 

each design element in each module was summarized into a matrix. Together with the 

elevation of the module, this matrix served as the input for the clustering process. 

Discipline 

Number of activities allocated to 

modules / total number of 

activities 

Labor-hours of activities allocated 

to modules / total labor-hours 

Electrical 2,272 / 11,765 11,765 / 268,808 labor-hour 

Piping 3,629 / 4,766 307,727 / 368,517 labor -hour 

Mechanical 167 / 358 61,207 / 99,781 labor -hour 
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Followed by standardization and calculation of the Euclidean distance, the hierarchical 

clustering algorithm was applied to the input matrix. Hierarchical clustering, as an 

alternative approach to k-means clustering, was selected in the case study because: 1) when 

compared to k-means clustering, it does not require a pre-determined number of clusters; 2) 

it yields a tree-structured representation of the data, which is referred to as a dendrogram; 

and 3) from the dendrogram, a partition can be defined through a horizontal cut at a specified 

level that is defined by the user. The similarity between clusters is calculated using the ward 

method, as it is less susceptible to noise or outliers. The clustering result is presented as a 

dendrogram (Figure 5-4b)—a tree structure structured diagram that records the sequence of 

the merge.  

To assist in choosing the optimal number of clusters, the elbow method, silhouette method, 

and gap statistic method were used to provide further insights into the data set regarding 

natural separations. As shown in Figure 5-5a, with the maximum number of clusters set as 

12: no obvious “elbow” (location of bend, which is an indicator of optimal number) is observed 

from 1 to 12 clusters; the silhouette method (Figure 5-5b) suggests 2 clusters; and the gap 

statistic method suggests 12 clusters. Both gap statistics and elbow methods agree that more 

clusters result in a better description of the data. Finally, experts were invited to confirm a 

manageable number of clusters for practice, and 10 clusters were chosen in this case.  

With the chosen 10 clusters, goodness of the cluster results was tested using MANOVA, 

visually examined via plotting with PCA components (Figure 5-4a), and validated by experts. 

The MANOVA result presented a strong correlation between the variables and the cluster 

results, as a very small (2.2e-16) p-value was observed. The result of PCA (Figure 5-6b) 

indicated that PC1 explained half of the variability in the data set and, together with PC2, 

explained about 60% of the variability in the dataset. With the reduced dimensions, the 
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clustering result was able to plot in a coordinate system by the first two principal components 

(Figure 5-4a). Lastly, the clustering result was reviewed and validated by two experts (as 

demonstrated in Table 5-3), who have extensive site experience, and both working on this 

project.  

 

(a)                                                                   (b) 

Figure 5-4 Cluster result: (a) scatter plot on the first two PCs; (b) the dendrogram 

 

(a)                                 (b)                                             (c) 

Figure 5-5 Optimal number of clusters analysis: (a) elbow method, (b) silhouette 

method, and (c) gap statistic 
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(a)                                                                   (b) 

Figure 5-6 PCA result: (a) graph of variables, (b) scree plot 

 

Table 5-3 Expert validation of clusters 

 

Clusters Expert Validation 

C1 Module – Primarily cable tray, little pipe 

C2 Piperack Module with – higher density piping 

C3 Piperack Module and/or its substructure, minor piping, ground level 

C4 Larger areas or Buildings with minimal piping 

C5 Equipment areas with minimal piping 

C6 Areas with large tanks 

C7 Pre-packaged skids 

C8 Equipment modules 

C9 Equipment areas with piping 

C10 Fin Fan Coolers 
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5.5.3. Summary of the resource planning indices 

The statistical summary was gathered for the following four indices: total budgeted labor-

hours, duration, ramp-up rate, and ramp-down rate for each cluster. As shown in Error! R

eference source not found.—a randomly selected resource chart—the resource chart can 

be replicated with these four resource indices. To present the ramp-up and ramp-down rate, 

each resource chart of a module was fitted using the four-parameter generalized beta 

distribution. As a flexible distribution, the generalized beta distribution has been widely used 

in construction for representing resources, duration, cost, schedule, risk and more (Lu and 

AbouRizk 2000; Lu 2003; Poshdar et al. 2018; Zayed and Halpin 2001; Inyim et al. 2016; 

Sonmez 2005; Wang et al. 2002). The shape parameters of a generalized beta distribution 

represent the shape of the resource chart. Together with Total Labor Hour and Duration, 

these four resource indices are summarized for each module cluster in Table 5-4 and Figure 

5-8.  

With a closer inspection of the resource summary, trends were revealed. First, certain module 

cluster/class had a higher priority in demanding the resources. For instance, cluster 4 (C4) 

had more labor hours than the other clusters. The average total labor hour of C4 was over 

twice of the average for any other cluster, while the average duration (in weeks) of most of 

the clusters was between 35 weeks to 45 weeks, including C4. Second, trends, in terms of 

ramp-up and ramp-down, varied between clusters. For instance, C1, C2, and C10 had similar 

ramp-up and ramp-down rates (similar values of shape parameters a and b), which indicated 

that resource charts had a fairly symmetrical shape; for C4, shape parameter a was larger 

than shape parameter b, indicating a slower ramp-up but sharper ramp-down rate; whereas 

in C3, C7, C8, and C9, a quicker ramp-up, yet slower ramp-down, rate was observed. To 
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summarize, different design leads to different resource requirements, and critical resource 

trends can be learned from historical project data. 

 

 

Figure 5-7 Historical resource chart for a randomly selected module 
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Table 5-4 Statistical summary of resource indices for each cluster 

Resource 

Indices 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Total Labor Hour 

 

Min 19 37 228 2,550 55 250 303 101 65 811 

Q1 262 182 1,091 3,589 396 371 558 179 106 1,293 

Med 465 423 1,245 4,079 554 1,120 1,094 189 191 1,663 

Q3 616 910 1,716 4,528 1,084 1,867 1,891 195 350 2,267 

Max 2,058 3,999 2,536 10,196 2,796 2,909 3,665 217 612 2,275 

Duration in week 

 

Min 17 10 30 24 16 12 10 15 25 22 

Q1 30.5 21 38.75 36.5 23.5 24.5 25.5 17 31 30 

Med 42.5 33 42 51 35.5 33 34.5 20 34 42 

Q3 48.75 48.5 68 62.5 41.75 42 44.25 20 35 46 

Max 70 68 73 72 50 55 58 20 35 64 

Shape Parameter a 

 

Min 0.07 0.40 0.64 0.55 0.14 0.32 0.50 0.17 0.08 0.76 

Q1 0.71 0.97 1.15 2.22 0.39 0.64 0.84 0.50 0.45 1.21 

Med 0.99 1.25 1.46 3.20 1.31 1.15 2.14 2.09 0.67 2.12 

Q3 1.81 1.98 2.17 4.37 5.13 3.83 3.06 3.09 0.80 2.88 

Max 5.41 5.47 5.90 10.00 9.17 11.16 6.47 4.05 0.92 6.00 

Shape Parameter b 

 

Min 0.05 0.22 1.24 1.17 0.04 0.67 0.94 0.30 0.39 1.16 

Q1 0.89 1.24 2.23 1.97 0.97 1.49 1.92 2.22 0.61 1.46 

Med 1.30 1.70 2.38 2.71 2.26 2.11 2.60 3.87 2.32 1.82 

Q3 2.19 3.10 2.85 2.88 3.42 3.76 3.44 6.07 4.05 2.27 

Max 6.85 11.94 4.63 8.49 5.41 6.58 5.62 7.35 4.31 4.01 
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Figure 5-8 Boxplot with jittered point plot of the four resource indices 

5.5.4. Classification 

With resource plan indices summarized and trends discovered based on the confirmed cluster 

result, a classifier for piping discipline was built to predict the module type for future projects. 

With this classifier, the planner can effectively identify the type of the module based on the 

design elements, thus reference the historical resource indices (Table 5-4) for resource 

planning purposes.   
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Feature selection significantly reduced the dimensions, decreasing the intensity of computing 

efforts by removing irrelevant/redundant attributes to the target concept (Dash and Liu, 

1997). Additionally, it explains the structure of the data regarding the target result and helps 

practitioners gain better insight into the data set.  

In this case study, the Boruta algorithm, the automated feature selection (fscaret (Szlęk et 

al. 2013)) based on the caret R package (Kuhn 2008) modeling method, and the Pearson 

correlation coefficient were applied. After 15 iterations, the Boruta algorithm confirmed all 

variables as important (Figure 5-9). These results were consistent with those obtained using 

fscaret (Figure 5-10), where variables were ranked for models trained using each of the 

algorithms listed in Table 5-1. The 5-ranked variable list showed no consistent most or least 

important variables. To visualize the results, sequential indexes (with 1 as the most 

important variable and 18 as the least important) were assigned to the 5-ranked variable list. 

The sum of the sequential indexes for every variable were plotted as a pie chart. Notably, if 

one variable is consistently ranked as the most important among all 5 lists, its sequential 

index sum will be less than 0.1%. Conversely, if one variable is consistently ranked as the 

least important among all 5 lists, it will have a sequential index sum greater than 10%.   
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Figure 5-9 Boruta feature selection result 

 

Figure 5-10 fscaret feature selection result 
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With all attributes and class labels (i.e. expert validated clusters), classifiers were developed 

using 10-fold cross-validation method. The average accuracy was shown in Table 5-5 for each 

classification algorithm. KNN model was chosen in this case study with the most stable 

performance, and the confusion matrix for the selected model was presented in Figure 

5-11Error! Reference source not found.. 

Table 5-5 Average accuracy for each classification algorithm 

Classification Algorithm Accuracy (average) 

Artificial Neural Networks (ANN) 0.8941 

Naive Bayes 0.9073 

K-nearest neighbours (KNN) 0.9603 

Support Vector Machines (SVM) 0.9139 

Random Forest 0.8694 

 

 

Figure 5-11 Confusion matrix for the chosen KNN classifier 

5.5.5. Validation 

The proposed methodology and the summarized preliminary resource indices were validated 

through a second project that is currently in the pre-construction planning phase. As this 
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point, no detailed work breakdown structure or schedule are available. The only data 

available for validation is the total budgeted labor-hours.   

Of the 70 modules in the second project, 42 had a sufficient number of piping labor-hours 

required for validation purposes (i.e., more than 20 labor-hours). The chosen KNN classifier 

was applied to these 42 modules. Once classes were predicted for each module, total budgeted 

labor-hour predictions (Table 5-4), obtained from the analysis of the historical data previously 

performed, were assigned to each module. A comparison of the prediction obtained using the 

proposed approach versus the actual total labor-hours is presented in Figure 5-12. The 

scattered points represent actual budgeted total labor hour for each module, and the boxplot 

represents the statistical summary gathered from historical project data (same as top left 

chart of Figure 5-8). 

The proposed approach predicted labor-hours of the second, unseen project dataset with 

reasonable accuracy. Over 90% of the actual data points fell within the predicted range, with 

only 4 points falling outside of the predicted range (circled in red in Figure 5-12). Notably, 

the actual total piping labor-hour was also within the prediction range. 
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Figure 5-12 Plot of actual (scattered points) and predicted (box plots) total labor-

hours 

5.5.6. Synopsis 

This case study demonstrated the practicality and effectiveness of the proposed methodology 

in parsing, understanding, and learning critical resource planning information from a large, 

unlabeled, and non-integrated historical construction project dataset. Specifically, multi-

dimensional data sources were accessed through a data adaptor, resulting in a tidy table for 

input into various machine learning algorithms. This was followed by unsupervised learning 

and investigation of parameter space, which revealed the natural segregation of the dataset 

based on key module design elements. According to expert validated clustering result, 

resource requirements were summarized statistically into four indices. Lastly, a classifier 

was constructed for future projects in the prediction of the module type.  
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The classifier, together with the resource summary, can serve as an important decision-

support tool for future projects. Upon the release of a BIM model for a new project, design 

elements can be quickly summarized and supplied to the classifier. Once module classes are 

predicted, associated resource requirements can be used for planning purposes. The proposed 

framework also developed a solid foundation to incorporate potential preliminary indirect 

labor hour planning (Wu et al. 2014).  In addition, and equally as important, the outputs of 

the proposed approach can be used as inputs for other data-driven planning tools, such as 

optimization and simulation (Pereira et al. 2020, Li et al. 2019, Wu et al. 2018), for advanced 

decision support.    

5.6. CONTRIBUTIONS AND FUTURE WORK 

This research proposes a framework to effectively use incomplete BIM and other early-on 

available project data for preliminary resource planning purposes. The proposed method 

enables the practitioners a powerful insight into historical data through unsupervised 

learning. Then, through supervised learning, the learned information from unsupervised 

learning can be trained as a prediction model for future planning purposes. As demonstrated 

through the application of the framework to a case study of data from real industrial 

construction projects, the summarized resource planning indices, together with the classifiers, 

can provide practitioners with critical decision support for future project for high-level 

resource planning. Additionally, this research demonstrated how semi-supervised learning 

can effectively parse a large amount of unlabelled, raw construction data while, at the same 

time, yielding meaningful classifiers and alleviating the need for the manual labeling of raw 

data.  
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Through the case study, this research demonstrated that 1) regardless of the data origin, 

various types construction data can be accessed easily and in real-time through a data 

adaptor; 2) valuable information can be learned from incomplete BIM data through various 

machine learning algorithms to provide critical decision support for preliminary resource 

planning; 3) unsupervised learning can effectively process a large amount of construction 

data and provide critical insight, such as natural separation, based on design elements; 4) 

based on the results of unsupervised learning, supervised learning can further enhance the 

data mining process, providing a decision support system for future projects; and 5) semi-

supervised learning significantly reduces labor-intensive processes associated with manual 

data labeling, thus increasing the efficiency with which a large amount of unlabeled data can 

be processed.  

Although the benefits of the proposed method were demonstrated using data from actual 

projects, the method itself is not limited to any specific organization or data structure. The 

implementation of the data adaptor, unsupervised learning, and supervised learning will 

largely reduce the manual effort involved in machine learning for general contractors, in turn 

encouraging usage of historical construction data for future decision support. 

In light of the contributions, this research should consider the following limitations. First, 

feature selection was conducted only at the supervised learning stage to reduce redundant or 

irrelevant features towards the class. Feature selection was not conducted at the 

unsupervised learning stage to provide as much relevant information as possible. Second, in 

the case study, experts were invited to the validation of unsupervised learning. The usage of 

expert knowledge to validate the unsupervised learning increases the explainability of the 

machine learning result, while unavoidably introduces a certain degree of subjective bias. 
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Third, the availability of the data limits the implementation of the proposed methodology to 

the data set of two projects.  
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6.1. RESEARCH SUMMARY 

This research examines the challenge of exploiting big data in construction and transforming 

into insights that can support critical project management decisions.  

Chapter 2 develops a framework to effectively process raw, fragmented construction 

data to achieve meaningful decision support metrics for construction. This framework 

serves as a cornerstone for the following research components: within the proposed 

framework, the data adaptor provides real-time database access; the DP-based longest 

common substring algorithm and the interval-based 3D objects relationship detection 

algorithm automate the two common data pre-process tasks for identifying 

relationship types between databases; SQL functions integrate information stored 

from various databases into a tidy format; and lastly, various data mining techniques 

and simulation models effectively process the tidy data and produce meaningful 

decision-support metrics. 

Both custom functions (i.e. DP-based longest common substring algorithm and the 

interval-based 3D objects relationship detection algorithm) were validated through 

randomly-generated artificial data sets and generalized as public R libraries. The 

practicality and feasibility of the framework have been demonstrated following its 

application to a mega-sized industrial construction project.  

Chapter 3 proposes a Bayesian inference-based method for systematically updating 

any given univariate continuous probability distribution input model of simulations, 

as new observations become available, and implements an MCMC-based numerical 

approximation approach to provide solutions regardless of conjugacy. An illustrative 

case study was used to demonstrate the generalizability, feasibility, and functionality 
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of the proposed Bayesian inference together with the MCMC-based numerical method 

for updating simulation input models. 

Chapter 4 proposes a numerical-based weighted geometric average method for 

effective fusion of information generated from diverse sources (both observational 

data and expert opinions) for stochastic simulation. A Monte Carlo study, as the “Proof 

of Concept,” was developed to test the proposed method against the weighted 

arithmetic average method and the mixture density samples. An illustrative case 

study was organized to demonstrate the generalizability, feasibility, and functionality 

of the proposed method for aggregating subjective and objective information to update 

simulation input models in real time. 

Chapter 5 develops a data solution for preliminary resource planning in industrial 

construction projects with incomplete, fragmented—yet early available—construction 

data. Expanding upon the proposed framework in Chapter 2, the proposed data-

driven application deploys semi-supervised machine learning techniques to parse data, 

and gain insights from a large, unlabeled, and non-integrated historical construction 

data. The proposed data solution is applied to a case study, with one historical project 

and one currently “under planning” project.  

6.2. CONTRIBUTIONS 

Compared with science and technology, engineering turns methods, algorithms, and ideas 

into something tangible that has a visible impact on society and the daily lives of people. The 

contributions of this research largely reflect this nature by responding to the current 

challenge in the construction community—how to fully exploit the value of construction data 

for informed decision-making. This research identified three bottlenecks that cause blockages 
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in information flow and limit data-driven decision-support systems in construction 

management. By adapting multi-disciplinary methods, designing domain specific 

frameworks, and developing automated functions for common tasks, this research removes 

some barriers, improves data usage, extends the boundary of existing knowledge, and 

promotes data-driven applications, thus impacting the construction industry and society. 

Specific academic and industrial contributions are subsequently discussed.  

6.2.1. Academic contributions 

The academic contributions of this work are summarized as follows: 

1) Proposing a novel framework for enhanced data-driven applications built upon 

fragmented construction data. This framework provides a universal solution for 

bridging raw, segmented construction data with various data analytics. 

2) Abstracting construction data pre-processing problems and adapting algorithms from 

computing science and applied mathematics to automate and streamline the 

otherwise manual data pre-processing steps. Additionally, generalizing these two 

custom functions into public R libraries (“Chrisfufu/LongestCommonSubString” and 

“XiaomoLing/Detect3DRelation”) for broader audience. 

3) Proposing a numerical-based Bayesian inference method for systematically updating 

input model of simulations as new observations become available. Coupled with a 

Markov chain Monte Carlo-based random sampling method, the proposed method 

extends Bayesian inference to any given univariate continuous probability 

distribution regardless of conjugacy. Additionally, the proposed method has been 

found capable of (1) accurately approximating the underlying probability distribution, 

(2) reliably fusing information from diverse sources, including subjective judgment 
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(through choice of priors) and objective observations, and (3) exhibiting robustness 

and resilience in situations where data were noisy and imbued with uncertainties. 

4) Proposing a Markov chain Monte Carlo-based weighted geometric average method to 

effectively fuse information generated from diverse sources for stochastic simulation 

inputs. The proposed method has been found capable of (1) effectively and efficiently 

updating input models given new sources of information, (2) accurately approximating 

the target probability distribution, (3) reliably fusing information from diverse sources, 

including subjective judgment and objective observations, and (4) being generalized 

and applied to combinations of any given univariate continuous probability 

distributions. Thus, this method has potential applications to the greater engineering 

and management community. 

5) Developing a data solution for scientifically planning project resources before the 

completion of engineering. The proposed data-driven framework demonstrates how 

the combined utilization of supervised and unsupervised machine learning algorithms 

can effectively parse a large amount of unlabelled, raw construction data while, at the 

same time, yielding meaningful classifiers.  

6.2.2. Industrial contributions 

The industrial contributions of this work can be summarized as follows: 

1) Development of two custom functions (DP-based longest common substring algorithm 

and interval-based 3D objects relationship detection algorithm) to automate the 

common data pre-processing steps. The generalization of these two custom functions 

(public R libraries—“Chrisfufu/LongestCommonSubString” and 

“XiaomoLing/Detect3DRelation”) frees domain experts from the periodic manual 

manipulation of non-integrated construction data and allows them to spend their time 
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understanding the data to producing meaningful matrices/indices for critical decision 

support. 

2) Development of a framework for enhanced data-driven applications built upon 

fragmented construction data. This framework works with the construction industry’s 

existing stand-alone information systems without the need for costly alterations or 

investments in a new system. This framework significantly reduces manual data 

manipulation, improves data quality, and streamlines the processing of raw, 

segmented data into data solutions. 

3) Developing and demonstrating a numerical-based Bayesian method for continued 

updating of simulation inputs when new observational data become available. This 

method enhances the practicality of simulations and extends its potential applications 

to beyond the planning stage of a construction project. As demonstrated through the 

illustrative case study, through defining the probability model and priors, the 

proposed numerical-based Bayesian inference is capable of incorporating subjective 

opinions, and reflecting the influence of such information in the final results.  

4) Developing and demonstrating a numerical-based weighted geometric average 

method to address the practical challenges associated with modeling assorted data 

origins. This method allows domain experts to effectively integrate observational data 

with expert opinion for continued updates of simulation models when project 

conditions change, thus enhancing the model’s practicality and predictability, 

especially for construction project management, where expert knowledge has a heavy 

influence on the decision-making process.  

5) Developing and demonstrating a data solution for preliminary resource planning in 

industrial construction projects with incomplete, fragmented—yet early available—

construction data. The resulting resource indices and module class predictor become 
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critical components for preliminary resource planning. The resource indices 

specifically, can be supplied to a simulation model yielding project resource charts. 

This application greatly enhances the traditional craft-oriented project resource 

planning practices, and pushes the state-of-the-art one step further towards achieving 

full scientific and data-driven decision support in construction.  

6.3. RESEARCH LIMITATIONS 

The findings and contributions of this research should be applied in consideration of the 

following limitations: 

• Although the DP-based longest common substring algorithm is simple and effective, 

it sacrifices running time. A generalized suffix tree algorithm could significantly 

reduce running time through reduced computational complexity from 𝑂(𝑚 × 𝑛)  to 

𝑂(𝑚 + 𝑛), given string lengths 𝑚 and 𝑛. 

• Among many repetitive manual data pre-processing activities, this research develops 

generalized solutions to automate two common tasks. 

• The proposed framework provides effective solutions to bridge non-integrated 

construction raw data with data solutions; however, it does not address the root causes 

nor change the status of the fragmented information systems in the construction 

industry. 

• Due to a lack of appropriate real project data, both case studies developed to 

demonstrate the input model updating methods (Chapter 3 and 4) use artificial data 

sets. Using randomly generated observations based on a known underlying 

distribution eliminates the process of testing the fit of the chosen model (i.e. 
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distribution). In both studies, the models (such as beta distribution) are chosen 

assuming they are good fit for the data.  

• Although advancing the methodology of input modeling in real-time, both methods 

(Chapter 3 and 4) do not represent a complete, decision-support system on their own.  

• While both input modeling methods address cases of univariate parametric 

continuous probability distributions, certain real-life construction data will not belong 

to this category. 

• The proposed numerical-based geometric average method itself does not guarantee 

improved accuracy. Rather, it provides a solution for fusing information from various 

sources. The predictability of the model ultimately relies on the accuracy of all source 

information and the selection of the weights—which is a complex problem that is 

beyond the scope of this research.  

• Although a quick comparison between geometric average and arithmetic average is 

briefly discussed in the Monte Carlo study, it does not provide a comprehensive 

overview of the topic and should not be used as a guide. 

• The proposed data solution for enhanced preliminary resource planning (Chapter 5) 

was applied to two projects (trained on one and validated on the second); reliability 

and accuracy can be improved with more data sets.  

• The case study of the data solution for enhanced preliminary resource planning 

(Chapter 5) should consider the following limitations: 1) a limited number of machine 

learning algorithms are deployed; 2) feature selection was not conducted at the 

unsupervised learning stage—only at the supervised learning stage; and 3) using 

expert validation for the unsupervised learning result, which has inherent benefits 

and challenges. 
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6.4. FUTURE WORK 

Beyond extending the research to address the above-listed limitations, future research can 

be carried out in the following areas: 

• Adapting the proposed framework for different construction practices aiming at 

automating manual processes and continuing the transformation from the craft-

oriented culture to a data-driven one. In this process, continue to identify specific pain 

points of the construction industry in general, explore innovative methods from other 

disciplines (e.g. applied mathematics, applied statistics, and computer science), and 

propose solutions for advancing both the academic field and construction practices. 

• Investigating various construction management processes (such as cost forecast, 

safety management, stakeholder management) and applying diverse simulation 

techniques to model the complex and dynamic construction ecosystem to achieve more 

reliable and accurate real-time decision support metrics for industry, while, at the 

same time, enhancing the simulation environment by increasing resilience, reliability, 

and adaptability. 

• A plurality of the current construction decision support systems follow a linear pattern, 

while real-world decisions follow feedback loops. Future research efforts are needed 

to 1) identify potential construction practice feedback loops; 2) construct dynamic, 

data-driven models to simulate these construction feedback loops; 3) understand the 

implications of changes over time, especially the side effects (unexpected factors and 

implications) to avoid potential pitfalls in decision making; and 4) improve mental 

models of all decision-makers involved to improve construction practices in general. 

• Exploring artificial intelligence-powered and/or machine learning algorithm-based 

simulation applications for the construction domain.   
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APPENDIX A: SUPPLYMENTRY DATA OF 

CHAPTER 3 

Table A-1 Random sample observations 

39.1117 38.1296 38.3570 39.6073 43.0557 38.4125 38.5379 42.2452 39.7328 39.4371 

37.7469 38.9056 39.2908 40.4102 41.4452 37.0880 37.1596 38.5262 41.7413 41.5174 

40.0859 40.2558 42.0594 42.5692 41.0155 40.6565 39.5214 41.7210 39.0587 43.0453 

41.4322 39.7516 42.1266 37.8114 41.7545 43.7355 36.1974 41.7388 39.2034 40.7984 

38.4779 37.5317 37.7961 40.4053 39.5397 40.0600 41.4969 37.0703 42.4494 37.9855 

39.2276 40.3603 36.6281 39.5792 39.2934 38.8898 42.8492 40.7404 38.0009 37.9231 

39.0543 40.3280 40.4806 40.9962 38.7289 40.9901 37.6877 37.6485 39.9221 39.6215 

41.6288 40.0520 42.8261 36.8715 37.6524 41.3409 40.0653 39.2155 43.0775 43.3543 

39.9616 40.4537 41.9212 40.9779 36.9697 36.6020 37.2736 41.4926 40.7506 41.3381 

37.4715 37.7115 43.3153 41.6636 36.7722 39.8993 39.6618 38.2491 39.1360 38.4436 

 

Table A-2 Random sample observations with noise 

39.3190 41.1568 40.5044 39.6062 39.5307 37.8915 38.2635 38.3171 40.8220 39.4031 

37.5139 40.2163 41.4583 40.5882 41.3203 38.7499 39.0247 41.3504 41.4560 38.2089 

39.1404 43.0789 42.2437 41.8150 37.9378 40.5490 41.0662 38.3499 40.7783 39.6539 

39.3147 41.8099 42.1317 36.6428 38.2513 38.8294 44.2813 38.0468 42.6481 40.9333 

43.2237 42.2768 37.3082 38.2448 38.0313 41.8849 40.4088 41.9140 40.1424 41.0127 

38.7793 41.5439 36.0635 39.3326 42.4370 42.7737 42.3768 41.9963 40.3113 39.8324 

41.5404 40.0366 42.0074 37.8014 40.7394 37.5615 39.3699 42.4111 41.3478 37.9244 

42.5197 38.9267 38.8029 40.1320 36.8774 42.5452 41.5832 38.5655 38.5604 39.8962 

38.6484 42.6908 40.0156 44.7790 40.5194 35.4282 40.8148 44.2883 39.4529 38.7011 

40.8539 41.8416 41.7084 39.0253 38.1635 41.4857 39.0028 40.0311 41.5266 39.9560 
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Figure A-1 Posterior histogram (upper) and trace plot (lower) of parameters a 

(left) and b (right), as well as true parameter values (red line), directly fitted 

parameter values (blue line), and mean of the MCMC posterior samples (green 

line) for Cycle 2. 
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Figure A-2 Posterior histogram (upper) and trace plot (lower) of parameters a 

(left) and b (right), as well as true parameter values (red line), directly fitted 

parameter values (blue line), and mean of the MCMC posterior samples (green 

line) for Cycle 3. 
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Figure A-3 Posterior histogram (upper) and trace plot (lower) of parameters a 

(left) and b (right), as well as true parameter values (red line), directly fitted 

parameter values (blue line), and mean of the MCMC posterior samples (green 

line) for Cycle 4. 
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Figure A-4 Posterior histogram (upper) and trace plot (lower) of parameters a 

(left) and b (right), as well as true parameter values (red line), directly fitted 

parameter values (blue line), and mean of the MCMC posterior samples (green 

line) for Cycle 5. 
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Figure A-5 Histogram of posterior predictive hauling model, as well as the true 

underlying probability distribution (red line), the input model fitted from 

cumulative observations (blue line), and the updated input model derived using 

proposed method (green line), for Cycle 2. 
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Figure A-6 Histogram of posterior predictive hauling model, as well as the true 

underlying probability distribution (red line), the input model fitted from 

cumulative observations (blue line), and the updated input model derived using 

proposed method (green line), for Cycle 3. 
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Figure A-7 Histogram of posterior predictive hauling model, as well as the true 

underlying probability distribution (red line), the input model fitted from 

cumulative observations (blue line), and the updated input model derived using 

proposed method (green line), for Cycle 4. 
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Figure A-8 Histogram of posterior predictive hauling model, as well as the true 

underlying probability distribution (red line), the input model fitted from 

cumulative observations (blue line), and the updated input model derived using 

proposed method (green line), for Cycle 5. 
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Figure A-9 Posterior histogram (upper) and trace plot (lower) of parameters a 

(left) and b (right), as well as true parameter values (red line), directly fitted 

parameter values (blue line), and mean of the MCMC posterior samples (green 

line) for Cycle 1. 
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Figure A-10 Posterior histogram (upper) and trace plot (lower) of parameters a 

(left) and b (right), as well as true parameter values (red line), directly fitted 

parameter values (blue line), and mean of the MCMC posterior samples (green 

line) for Cycle 2. 
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Figure A-11 Posterior histogram (upper) and trace plot (lower) of parameters a 

(left) and b (right), as well as true parameter values (red line), directly fitted 

parameter values (blue line), and mean of the MCMC posterior samples (green 

line) for Cycle 3. 
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Figure A-12 Posterior histogram (upper) and trace plot (lower) of parameters a 

(left) and b (right), as well as true parameter values (red line), directly fitted 

parameter values (blue line), and mean of the MCMC posterior samples (green 

line) for Cycle 4. 
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Figure A-13 Posterior histogram (upper) and trace plot (lower) of parameters a 

(left) and b (right), as well as true parameter values (red line), directly fitted 

parameter values (blue line), and mean of the MCMC posterior samples (green 

line) for Cycle 5. 
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Figure A-14 Histogram of posterior predictive hauling model, as well as the true 

underlying probability distribution (red line), the input model fitted from 

cumulative observations (blue line), and the updated input model derived using 

proposed method (green line), for Cycle 1. 
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Figure A-15 Histogram of posterior predictive hauling model, as well as the true 

underlying probability distribution (red line), the input model fitted from 

cumulative observations (blue line), and the updated input model derived using 

proposed method (green line), for Cycle 2. 
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Figure A-16 Histogram of posterior predictive hauling model, as well as the true 

underlying probability distribution (red line), the input model fitted from 

cumulative observations (blue line), and the updated input model derived using 

proposed method (green line), for Cycle 3. 
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Figure A-17 Histogram of posterior predictive hauling model, as well as the true 

underlying probability distribution (red line), the input model fitted from 

cumulative observations (blue line), and the updated input model derived using 

proposed method (green line), for Cycle 4. 
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Figure A-18 Histogram of posterior predictive hauling model, as well as the true 

underlying probability distribution (red line), the input model fitted from 

cumulative observations (blue line), and the updated input model derived using 

proposed method (green line), for Cycle 5. 
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APPENDIX B: CODE OF THE TWO 

DEVELOPED R LIBRARIES 

The R library “XiaomoLing/Detect3DRelation” captures the custom function of interval-based 

3D objects relationship detection algorithm. The R code for this function is listed as follows.  

 

#' A 3D Object relationship detection function 

#' 

#' This function allows you to compare objects saved in two list 

#' 

#' @param tablefrom, tableto are tables with; closedfrom, closedto 

#' @keywords 3D 

#' @return A table of combined the input tables with result 

#' @export 

 

 

detecte3Dr <- function (tablefrom, tableto, closedfrom, closedto) { 

 

   #### tablefrom is Check Against List, with 6 column, with column names: 

   #### c ("MIN.X","MAX.X", ("MIN.Y","MAX.Y", ("MIN.Z","MAX.Z") 

   #### closedfrom is a vector, for example c(T,T) 

 

  tableto$RNO <- seq.int(nrow(tableto)) 

 

  # INCLUDED Interval method 

 

  ## X-axis 

  ### From is Check Against List 

  tablefrom.X <- as.matrix(dplyr::select(tablefrom,MIN.X,MAX.X)) 

 

  ### convert to intervals and name each row 

  From.X <- intervals::Intervals_full(tablefrom.X, closed = closedfrom, type 

= "R") 

  rownames(From.X) <- tablefrom$RNO 

 

  ### To is Checking List 

  tableto.X <- as.matrix(dplyr::select(tableto,MIN.X,MAX.X)) 

  To.X <- intervals::Intervals_full(tableto.X,closed = closedto, type = "R") 

 

  ### Result List of X included 

  list.X <- intervals::interval_included(From.X, To.X) 

  names(list.X) <- c(seq.int(nrow(tablefrom.X))) 

  df.list.X <- data.frame(WithinRNO = rep(names(list.X), sapply(list.X, 

length)), 

                          tabletoRNO = unlist(list.X)) 

  df.list.X <- tibble::as_tibble(df.list.X) 

 

  ## Y-axis 
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  ### From is Check Against List 

  tablefrom.Y <- as.matrix(dplyr::select(tablefrom,MIN.Y,MAX.Y)) 

 

  ### convert to intervals and name each row 

  From.Y <- intervals::Intervals_full(tablefrom.Y, closed = closedfrom, type 

= "R") 

  rownames(From.Y) <- tablefrom$RNO 

 

  ### To is Checking List 

  tableto.Y <- as.matrix(dplyr::select(tableto,MIN.Y,MAX.Y)) 

  To.Y <- intervals::Intervals_full(tableto.Y,closed = closedto, type = "R") 

 

  ### Result List of Y included 

  list.Y <- intervals::interval_included(From.Y, To.Y) 

  names(list.Y) <- c(seq.int(nrow(tablefrom.X))) 

  df.list.Y <- data.frame(WithinRNO = rep(names(list.Y), sapply(list.Y, 

length)), 

                          tabletoRNO = unlist(list.Y)) 

 

  df.list.Y <- tibble::as_tibble(df.list.Y) 

   

  ## Z-axis 

  ### From is Check Against List 

  tablefrom.Z <- as.matrix(dplyr::select(tablefrom,MIN.Z,MAX.Z)) 

  From.Z <- intervals::Intervals_full(tablefrom.Z, closed = closedfrom, type 

= "R") 

  rownames(From.Z) <- tablefrom$RNO 

 

  ### To is Checking List 

  tableto.Z <-  as.matrix(dplyr::select(tableto,MIN.Z,MAX.Z)) 

  To.Z <- intervals::Intervals_full(tableto.Z,closed = closedto, type = "R") 

 

  ### Result List of Z included 

  list.Z <- intervals::interval_included(From.Z, To.Z) 

  names(list.Z) <- c(seq.int(nrow(tablefrom.X))) 

  df.list.Z <- data.frame(WithinRNO = rep(names(list.Z), sapply(list.Z, 

length)), 

                          tabletoRNO = unlist(list.Z)) 

  df.list.Z <- tibble::as_tibble(df.list.Z) 

   

  ## Bind the all result table of XYZ, then filter for count = 3 

  df.list.XYZ <- dplyr::bind_rows(df.list.X,df.list.Y,df.list.Z) 

  df.list.XYZ <- dplyr::group_by(df.list.XYZ, tabletoRNO, WithinRNO) 

  df.list.XYZ <- dplyr::summarise(df.list.XYZ, n=n()) 

  Within <- dplyr::filter(df.list.XYZ, n >2) 

 

 

  # OVERLAP Interval method 

 

  tableto.rest <- dplyr::filter(tableto,!RNO %in% Within$tabletoRNO) 

  tableto.rest$RRNO <- seq(1:nrow(tableto.rest)) 

 

  ## X-axis 

  ### To is the rest of the checkList 

  tableto.rest.X <- dplyr::select(tableto.rest,MIN.X,MAX.X) 

  To.rest.X <- intervals::Intervals(tableto.rest.X,closed = closedto, type = 

"R") 
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  ### List of X overlapped 

  list.rest.X <- intervals::interval_overlap(From.X, To.rest.X) 

   

  names(list.rest.X) <- c(seq.int(nrow(tablefrom.X))) 

  df.list.rest.X <- data.frame(OverlapRNO = rep(names(list.rest.X), 

sapply(list.rest.X, length)), 

                               tabletoRRNO = unlist(list.rest.X)) 

 

  df.list.rest.X <- tibble::as_tibble(df.list.rest.X) 

 

  ## Y-axis 

  ### To is the rest of the checkList 

  tableto.rest.Y <- dplyr::select(tableto.rest,MIN.Y,MAX.Y) 

  To.rest.Y <- intervals::Intervals(tableto.rest.Y,closed = closedto, type = 

"R") 

 

  #### List of Y overlapped 

  list.rest.Y <- intervals::interval_overlap(From.Y, To.rest.Y) 

 

  names(list.rest.Y) <- c(seq.int(nrow(tablefrom.X))) 

  df.list.rest.Y <- data.frame(OverlapRNO = rep(names(list.rest.Y), 

sapply(list.rest.Y, length)), 

                               tabletoRRNO = unlist(list.rest.Y)) 

   

  df.list.rest.Y <- tibble::as_tibble(df.list.rest.Y) 

 

  ## Z-axis 

  ### To is the rest of the checkList 

  tableto.rest.Z <- dplyr::select(tableto.rest,MIN.Z,MAX.Z) 

  To.rest.Z <- intervals::Intervals(tableto.rest.Z,closed = closedto, type = 

"R") 

 

  ### List of Z overlapped 

  list.rest.Z <- intervals::interval_overlap(From.Z, To.rest.Z) 

  names(list.rest.Z) <- c(seq.int(nrow(tablefrom.X))) 

  df.list.rest.Z <- data.frame(OverlapRNO = rep(names(list.rest.Z), 

sapply(list.rest.Z, length)), 

                               tabletoRRNO = unlist(list.rest.Z)) 

   

  df.list.rest.Z <- tibble::as_tibble(df.list.rest.Z) 

 

  ### Bind the rows of the result table of XYZ, then filter for count = 3 

  df.list.rest.XYZ <-  

dplyr::bind_rows(df.list.rest.X,df.list.rest.Y,df.list.rest.Z) 

 

  df.list.rest.XYZ <- dplyr::group_by(df.list.rest.XYZ, tabletoRRNO, 

OverlapRNO) 

  df.list.rest.XYZ <- dplyr::summarise(df.list.rest.XYZ, n = dplyr::n()) 

  Overlap <- dplyr::filter(df.list.rest.XYZ, n >2) 

 

  ## Combine overlap and included results 

  Within.Result <- dplyr::left_join(tableto, Within,by = c("RNO" = 

"tabletoRNO") ) 

 

  Overlap.R <- dplyr::left_join(tableto.rest, Overlap,by = c("RRNO" = 

"tabletoRRNO") ) 
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  Overlap.R <- dplyr::select(Overlap.R, 8:11) 

  Overlap.Result <- dplyr::left_join(tableto,Overlap.R, by = "RNO" ) 

 

  Result <- dplyr::left_join(Within.Result, Overlap.Result, by = c("MIN.X", 

"MAX.X", "MIN.Y", "MAX.Y", "MIN.Z", "MAX.Z", "Manual", "RNO")) 

 

  return(Result) 

 

} 
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The R library “Chrisfufu/LongestCommonSubString” captures the custom function of 

dynamic programming-based longest common substring algorithm. The R code for this 

function is listed as follows. 

#' Longest Common Substring 

#' 

#' it takes two strings 

#' @param aString and bString are two strings 

#' @return the Longest Common SubString. 

#' @import stringr 

#' @export 

#' 

 

 

 

LCStr <- function(aString, bString, minLen){ 

 

  LCS = matrix(data = 0,nrow = nchar(aString)+1, ncol = nchar(bString)+1) 

  lengthOfSubstring = -1 

  finalIndex = -1 

 

  for(i in 1:nchar(aString)+1){ 

    a<-stringr::str_sub(aString, i-1, i-1) 

    for (j in 1:nchar(bString)+1){ 

      b<-stringr::str_sub(bString, j-1, j-1) 

      if(a==b){ 

        LCS[i,j] = LCS[i-1,j-1]+1 

        if (lengthOfSubstring < LCS[i,j]){ 

          lengthOfSubstring = LCS[i,j] 

          finalIndex = i 

        } 

      } 

      else{ 

        LCS[i,j] = 0 

      } 

    } 

  } 

 

  if (lengthOfSubstring > minLen){ 

    return (stringr::str_sub(aString, finalIndex-lengthOfSubstring, 

finalIndex-1)) 

  } 

  else{ 

    return('no result') 

  } 

} 

 


