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Abstract

In this thesis, methods for improving needle stegriduring prostate
brachytherapy are studied. Brachytherapy is a nalyrinvasive, out-patient
therapy for prostate cancer treatment with a fasovery time. Success of
brachytherapy depends on precise placement of eewpols in pre-planned
locations inside and around the prostate. The maurces of needle steering
errors in brachytherapy are needle deflection ssii¢ deformation. Considering
these two factors, the long-term goal of reseasckoidevelop fully-automatic
robot assisted and image guided strategies forl@estelering to reduce targeting
errors, which will result in increased success raichytherapy. Toward this goal,
for enhancing the current practice of manual brdwmapy, two approaches are
proposed in this thesis. First, using Lagrangiamtdation, a novel dynamical
model of flexible needle in soft tissue is deriv8this model can be used for
fully-automatic needle steering; we have studiesgetl-loop control of the needle
in simulations. Second, focusing on semi-automagéedle steering in order to
allow for continued involvement of the brachythesapn the procedure, we
develop an experimental set up that closely resesnbhanual brachytherapy
except for an enhancement involving automatic reeetiflection adjustment.
Simulation and experimental results reveal the ta@fi the proposed approaches

and potentials for future research.
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Chapter 1

Introduction

Recent reported statistics of prostate cancer ina@a show that prostate
cancer remains as one of the most common cancargamen[1]. While 24,600
men were diagnosed with this type of cancer in 2048 number increased to
25,500 in 2011 and reached 26,500 in 2012. On diséiye side, statistics show
that in Alberta, number of deaths decreased frott44420 from 2010 to 2011
and 370 cases of death are predicted for 2012, hwhiay be attributed to
advances made in prostate cancer treatment. Neles#) there is still room for
improvement in treatment techniques and outcomes.

Among several prostate cancer treatment optionkiditg external beam
radiotherapy and hormone therapy, brachytherampomsidered to be a patient-
friendly and minimally-invasive surgery with fasteecovery time. The main
reasons for brachytherapy’s popularity are its fakte toxicity profile and its
convenience as an out-patient day procedure. Fuamtire, the ability to maintain
sexual potency is another advantage of this meijod

Brachytherapy involves using needles loaded witHioactive seeds for
eliminating cancerous tissue. Once these seediegrneedles are inserted, they
must be steered to reach planned locations in tbstgie. After the needle tip
reaches the target location, the seeds must beydzbinside the tumor during the
process of retracting the needkg. 1.1 shows the operating room setting for

brachytherapy.



Fig. 1.1. Needle insertion setting in the operating room.

Presently, brachytherapy has emerged as an effiteatment option for men
with localized prostate cancer. Despite good dihimutcomes, brachytherapy’s
performance is still less than ideal and has roam idmprovement. In
brachytherapy, seed placement is not always docarately due to various
parameters that may change from one patient tmé¢ké The surgeon’s strategy
of needle insertion (e.g., speed of insertion, bpusition, order of needles, etc.)
plays a significant role in the surgical outcomdéisTproject is concerned with
investigating new automated and semi-automatetegtes for needle steering to
improve the efficiency and accuracy of brachythgrapd make its outcomes less
dependent on the skill level of the surgeon.

Current practice is that surgeons use a template (rg. 1.2 to manually
guide needles into the prostate while 2D ultrasoimdges provide visual
feedback about the depth of insertion if the nedigieis within an acceptable
neighborhood of a target position; if not, the sy normally retracts the needle
partially and re-inserts it for a better resultisThrocedure assumes that needles
remain parallel inside the tissue as they are fedeat different positions in the
template grid. However, this is not necessarily ttese in reality, causing

somewhat significant needle tip positioning errétgevious work has shown that
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seeds can be placed at a target position with arage precision of about 5 mm,
which is substantial given that the average prestabnly 5 cm in diametdB8].
What is important is that inaccurate needle ingartieads to inaccurate seed
placement, which in turn results in delivery of ifedent radiation dose to the
prostate than planngd]-[5] and possibly inferior outcom¢§]-[7].

Fig. 1.2. Template grid used for brachytherapy.

With regards to unwanted needle tip misplaceméetet are plenty of factors
contributing to it. These include the nonlinear dabr of tissue, interaction
forces between needle and tissue in directionsrothan insertion, needle
flexibility, prostate deformation and swelling, efthe most significant factors
leading to needle tip misplacement are needle céejfte and tissue deformation.
Needle deflection is due to the flexibility of tiein needles (clinically popular
18-gauge needles are only 1.27 mm in diameter) usledhchytherapy. There is a
coupled relationship between needle deflectiontesdie deformation.

The objective of this study is to improve the e#fircy, accuracy, and
reliability of seed placement ibrachytherapyThis can happen by pursuing a
dynamic modeling approach to study the needlekissystem behavior and
implement computerized needle control strategiesbédter results in terms of
seed placement error. Surveying the literature,ldbk of generalized strategies
for steering of needle using available feedbackalgy that ensure minimized
needle deflection and tissue deformation is evidénis expected that such
strategies yield smaller seed implantation errbetthose in manual insertion,

meaning that they improve the quality and effecteas of brachytherapy. For this
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purpose, i.e., closed-loop control of needle, teaé feedback of needle
deflection and tissue deformation are necessarngéepossibly the estimation of

forces/torques acting on the needle.

1.1 Literature Survey

When a needle is inserted into tissue, modelinglleedeflection and tissue
deformation is not easy due to the coupling calmsetthe interaction forces at the
interface of the needle and tissue. Needle defileciind tissue deformation are
coupled effects; with more needle deflection, thisrenore tissue deformation.
Thus, ideally, needle deflection and tissue deftionamodelling should be done
with due consideration for this coupling. For simopy, past work has tried to
alleviate this coupling’'s influence by consideriaigher a flexible needle in rigid

tissue or a rigid needle in soft tissue.

1.1.1 Rigid Needle in Soft Tissue

Alterovitz et al.[8] assumed a rigid needle and studied the efiafcteedle tip
forces and frictional forces in their simulatiof$iey also studied the sensitivity
of seed misplacement to certain physician-contol@rameters and patient-
related factors. The conclusion was that seed pianée error was more sensitive
to the physician-controlled parameters than theeptatelated parameters such as
tissue compressibility. In their research, sofsus was modeled using a 2D
dynamic finite element method. In addition, Dimaind Salcudeaf®] considered
2D linear elastic model of a tissue into which gidineedle is penetrated and,
based on tissue deformation, calculated needleegoduring insertion. Also,
Dehghan and Salcude&tO] proposed a new method of path planning foidrig
needle insertion into soft tissue. Their method kgopased on optimization of

needle insertion point, heading, and depth inemnaitve manner.

1.1.2 Flexible Needle in Rigid Tissue
In contrast to considering a rigid needle in a tisfue, some researchers have
reduced the complexity of modeling by assumingeaiffle needle is inserted into

a rigid tissue. Flexible needles can be categorintml two subgroups, namely
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highly-flexible needles and moderately-flexible dies. For a highly-flexible
needle, even small lateral forces result in norigide bending. This type of
needle follows a constant curvature due to its b#epestructure. Webster et al.
[11] used nonholonomic bicycle and unicycle modglifor steering highly-
flexible needles. A nonholonomic model is one inickhthere is a continuous
closed circuit of the governing parameters, by Wwhite system may be
transformed from any given state to any other s#sterovitz et al[12] steered a
flexible needle with a new motion-planning algomithwhose path parameters are
obtained via 2D camera images in order to get @imap needle entry point.
Besides, they assumed an uncertainty in motioniammdduced a probabilistic
method to maximize the success of reaching theeta@milar to Alterovitzet
al.[13], Park et al[14] have also addressed the problem of steerimgghly-
flexible needle through a firm tissue. Therefofeegyt also used a nonholonomic
kinematic model and used another approach to pignoalled diffusion-based
motion planning. For the highly-flexible needleapther issue makes the control
problem harder. When one rotates the needle baseg there is a torsional
deflection along a highly-flexible needle lengthe tneedle tip and base do not
experience the same amount of rotation. Therefore,should estimate torsional

deflection and consider its effect when there msdte rotation at the ba§es].

1.1.3 Flexible Needle in Soft Tissue

The prostate tissue is soft. Common needles inhlgtherapy are neither
completely rigid nor highly flexible. In other wadthey deflect under external
lateral forces but a considerable amount of foscegaeded to deflect them. The
most common method of modeling this type of neerdléke finite elements (FE)
method. Using the FE method, Salcudean simulatedéldle as an elastic object
with geometric nonlinearity and 3-node trianguleneentq16].

Another approach to modeling flexible needles is timear beam theory.
Glozman and Shohaifi7] modeled the needle as a 2D linear beam and the
simulated it considering tissue model as a virgming net (mesh). One possible

application of their model is to detect the needileape from image processing.



Yan et al.[18] modeled a needle using linear beam elemerdatadka et al[19]
did experiments using force sensors to validatditiear beam model of a needle
by testing its force-deflection characteristicstheir experiments, they measured
the infinitesimal force per unit length and, basedthat, calculated the deflection
of the needle during insertion. Dehghan et [@aD] compared three different
models of needle bending including two FE methad#) tetrahedral elements
and nonlinear beam elements, as well as an angptarg model. Triangular or
tetrahedral FE modelling is computationally mor@ensive compared to beam
element modeling, making the latter more efficient.

The aforementioned studies stop short of fully aotimg for the coupling
between tissue deformation and needle deflectioenwha flexible needle is
inserted into soft tissue. A few papers have studie coupled interaction of
needle and tissue during insertion, which is diftico model meticulously while
it is important for accurate modeling of the se&t@ment process. For example,
Dimaio et al.[21] derived a Jacobian matrix for the needle tb&ites the tip and
base velocity vectors. For modeling the soft tissu€auchy strain model was
assumed, which leads to a linear relationship betwerce and displacement.
Besides, they considered Green-Lagrange strain Inasda non-linear model for

the force versus displacement relationship.

1.1.4 Effect of Friction and Cutting Force

There have been some research efforts at modelg needle-tissue
interaction. An example of such an interactionhe friction force between the
needle and the tissue; this is typically modeledaldprce component that exists
along the needle shaft. The modeling of this fones been done in different
ways. One approach is to measure only the insefti@e during the introduction
of the needle. Okamura et §P1], [22] used this approach for measuring the
insertion force in the bovine liver in an ex-vivaperiment. Based on the
measured force, they defined three componentsHeririsertion force as the
following: (1) a capsule stiffness force modeledaoyon-linear spring to simulate

the force before puncture of tissue capsule; (2uting force applied at the



needle tip, which depends on the type of tissud;(&8ha friction force simulated
by a modified Karnopp model applied along the neetiaft. The friction force
can be determined when the needle tip has fullgezhthrough the tissue and the
tip cutting force has become zero. Misra et al.ntbuhe relationship between
physical parameters such as rupture toughness amihear material elasticity
and the needle’s tip forces to incorporate thesameters into the FE model of
the tissue[23]. For their study, they used several soft pbarg (mimicking
chicken tissue)A significant amount of needle insertion force &ated to the
needle specifics such as length and diameter andircgatient-specific factors.
Podder et al]24] used experimental data recorded during brdergpy and
studied these effects by deriving a statistical ehaxf the force during needle
insertion. Considering patient-related factors udahg age, body mass index,
ethnicity, prior treatment, and stage of cancen@lwith needle diameter and
average needle insertion speed/acceleration, themmue force applied to a
brachytherapy needle was predicted.

Another approach to needle-tissue interaction migés to have the insertion
force data combined with the tissue deformatiomrnmition. In this scenario,
while the insertion force is simply measurable byfaice sensor, tissue
deformation measurement is not as straightforw@estking a model to describe
tissue deformation, Dimaio and Salcudean used eovehmera system to track
the position of several markers placed on the tofase of a slab of PVC tissue
phantom while the phantom was perforated by a edq8dl Afterward, a force
distribution model with a peak close to the nedigiavas considered based on the
force and displacement information. The authorstbadodify the force model to
be suitable for high-speed simulations. The modifraodel was a stick-slip
interaction mode]25]. In this method, as the needle tip reachesdenthe node
sticks to the needle tip and moves with it as lasgts reaction force is smaller
than a threshold. When the reaction force exceeelshreshold, the node’s state
will be changed to the slip state. In this state,ode slips along the needle shaft,

while a friction force is applied to it.



Towards a similar end goal of tissue deformati@eking, Crouch et a[26]
measured 3D displacement of grid markers, whichewienplanted inside a
homogeneous tissue. They chose a stereo-cametiaefoimaging system and a
transparent silicone gel as the phantom tissuen Khfferent experimental data,
they derived a force profile dependent to the ressdinsertion velocity and
distance to the needle’s tip. Another group of aedeers, Hing et al[27]
performed a similar study using two C-arm fluorggesystems and calculated
3D displacement of tissue motion. A problem witls tils that they cannot be used
in patient studies. For prostate brachytherapyasdiund imaging is the best
modality for measuring tissue displacement in aepatstudy, yet it has limited

resolution and update rate compared to regular e

1.1.5 Effect of Needle Geometry

Tip type and diameter of a needle affect the nebdtaling. A straightforward
and useful relationship is that needles with smallameters and beveled tips
experience more bendin@?2]. Besides, during insertion of a bevel-tip reed
bending is larger for smaller bevel anglg8]. In order to simulate large
deflections more precisely, Dimaio took into acdotlne effects of the non-linear

geometry of the needle in his simulation of latere¢dle deflection [29].

1.1.6 Effect of Tissue Properties

Intuitively, tissue deformation is the result ofdes (insertion force including
friction component) between needle and the tisagewell as tissue properties
such as stiffness and elasticity. [80] Mahvash et al, derived the dynamic
relationship of insertion force and needle insertigelocity with nonlinear
coefficients of tissue model (tissue has a modif@ivin model with nonlinear
damper and spring coefficients). Results of thegegiment on the pig heart tissue
showed that the insertion force response of thelladeas sharper slope when the
needle moves faster.



1.1.7 Needle Steering in Soft Tissue

There are two major categories for needle path notan and steering
algorithms. One class of algorithms optimizes ceritaitial parameters of needle
insertion. These parameters include the needleitggathgle, initial insertion
point, insertion depth, and bevel tip direction.tims class, we assume that the
needle will be inserted without any manipulation ewhthe initial insertion
parameters are set. Alterovitz et F1] introduced a sensorless path planning
algorithm that optimized the insertion parametdra dgid needle inserted inside
a 2D tissue in order to reduce the targeting dooa single target. The insertion
parameters were the insertion depth and the lotatiahe insertion point. The
algorithm used a search-based method to optimeesertion parameters.

Aside from this, steering the highly-flexible neesllhave been studied [ih3]
by Alterovitz et al. In this work, the insertion ipg insertion angle and bevel
direction were optimized for a highly-flexible néecand 2D tissue to reach the
target and avoid obstacles. First using a gradiestent method, the insertion
point and the needle initial angle were optimiz&tden, to optimize the third
factor (bevel direction), the two other parametgese optimized twice, once for
bevel left and once for bevel right. Then, the bedieection with the better
overall result was chosen as the optimal one.

The second class of needle steering algorithmsnops the manipulation of
the needle base to reach targets. For steeringidgite needle, Dimaio and
Salcudearj29] proposed manipulation of needle base durirsgifition. They used
attractive and repulsive potential fields to cadtealappropriate needle tip motion
inside the tissue. They also introduced a needtehian matrix based on the
needle base and tip velocities. Glozman and Shdi&nintroduced a needle
steering algorithm using inverse kinematics. Inithold, they used fluoroscope for
imaging feedbackl7].

Furthermore, highly flexible needle steering hasoabeen studied. For
instance, Alterovitz et a[33] used a highly flexible needle with a bevel tp
steer it while avoiding obstacles. For this aingytsuggested Markov uncertainty

and used the bevel tip direction as an input feerstg the needle. Kallem and



Cowan [34] developed a non-linear observer-based coetrahd stabilized a
highly flexible bevel-tip needle in 2D plane. Reed al. [35] combined the
methods in[33] and[34] and presented a functional needle steerintesyshat
integrates the path planning algorithm[33] and the low-level controller i[84]
to reach a target, avoid obstacles, and keep the eneedh plane during the
insertion. IN[33],[34], and[35], a nonholonomic needle model was used.

Aside from aforementioned needle steering studissme researchers
investigated the effect of specific rules of neextkering on the tip position error.
Needle insertion can happen in two ways: eithea agnple and regular insertion
or by rotating the needle while it is being insértén past studies, there are
experimental investigations using bidirectionalatmn to verify the effect of
needle rotation on needle deflection. Abolhassanale[36] applied different
rotational motions to the needle during its inggrtand compared the results. For
constant velocity along the translational (inseriaxis, they examined alternative
scenarios for needle rotation about its axis: nati@n, continuous rotation with
different speeds, partial rotation in two alterngtdirections with different speeds
and magnitudes, and needle rotation based on neasaot of lateral forces. To
regulate the velocity of needle insertion at theirdel level, they used a PID
controller. They concluded that rotational motiauridg needle insertion should
be considered as one of the important control mpirtce it leads to less frictional
force and tissue movement. Moreover, among diffeneedle rotating strategies,
the best approach is to control the rotational amtn a way to have an ideally
zero orthogonal forces to the needle’s length.niotleer work{37] the same group
proposed a model for the relationship between meeease forces/torques and the
amount of needle deflection during needle inseriimo relatively soft tissue.
Afterward, a model-based strategy for changingninedle direction by rotating it
through 180 degrees was propo§@8l. In this work, they have used a cantilever
beam model of a needle to predict the deflectiod famd the insertion depth
suitable for changing the bevel direction (i.etate the needle by 180 degrees).

Moreover, in[39] they studied the effect of rotating the neeatlsuggested needle
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depth on tissue deformation; image data was usedatoulate the tissue

deformation.

1.1.8 Needle Insertion Pre-planning

Pre-planning of needle motion has been the focusoofe research groups. In
this category, Alterovitz et dl33] employed a dynamic programming approach to
minimize a defined cost function for the optimumedle path. They assumed
there are uncertainties in needle-tissue intenactieedle deflection, and obstacle
location. Later, the same research grfilj used image feedback to estimate the
needle tip position in their simulation. Hausemak{40] proposed using a model
predictive control structure to seek the optimuradie twisting rate, minimizing
targeting distance and trying different helical hpatadius for the best
compensation of perturbations. To validate themticgler, they simulated various
situations incorporating perturbations, image nomsedle deflection, and tissue
deformation in real time. If41] Torabi et al. used a simple mass-spring model
tissue and tried to search for the best needle yatla stochastic optimization
method. Based on their simulation, they showed thiat pre-planning led to a
reasonable amount of error for the needle tip targeeven when the workspace
included obstacles. Another interesting applicai®mphysician training42]. In
that work, having a 2D physically-based model ohaiyic needle insertion,
which included a finite element model for tissuel @amodel of frictional forces
for the needle, an optimization method is usechédle insertion with minimum
tissue deformation. Last but not least is the @omdime motion planning
algorithm proposed by Duindam et g#3]. In their approach, an explicit
geometric inverse kinematics of the flexible neeadlealculated in a static and
rigid environment and, based on some simplifyinguasptions, the needle

rotation depth is estimated in order to have tluetsit path to target.

1.1.9 Needle Deflection and Tissue Deformation Feedback
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As mentioned before, needle deflection and tissferthation are known as
the two main factors of seed misplacement. Thezenzany ways for measuring
these two quantities. The following are methodsduse the context of
brachytherapy.

For needle deflection measurement, one way is tasare the position of
needle tip directly using a sensor. Fine motioKirag sensors (electromagnetic
tracking system) are currently availabjé4]. These sensors are built very
delicately with a diameter of around 0.3mm (lesantithe diameter of common
needles used in brachytherapy). For the SDOF moid#lis type of sensors, an
accuracy of 0.7mm and 0.2 degree in position andréntation is estimated,
respectively. This method of calculating needldet#ion is straightforward and
does not need any calculations. However, the co#ti® system along with its
clinical usability in brachytherapy are causesdancern.

Another technique for needle deflection measurensid take advantage of
image analysis. We can apply object-tracking atbors to find the needles tip
throughout the insertion. Selecting a proper okjextking algorithm is very
important in this scenario. Among a variety of altjons, a popular algorithm is
the generalized Hough transfor5], which is a feature extraction technique.
Hough transform involves a voting process in a jpetar space. It picks an object
candidate with most votes for the chosen propditye simplified version of this
algorithm started with line identification and wéster extended to arbitrary
shapes. To make the shape identification easie@llyssome pre-processing is
needed on the image. Such pre-processing may mckabe detection or
thresholding. While imperfections in an image cause missing points in a
shape, Hough transform performs grouping of poinitls the same properties.

Another existing idea for finding the needle ddfilec is to use a model of
needle deflection in order to relate input varigbéeich as needle base force to
needle deflection (i.e., tip position). Some presgiostudies have used static
models of the needle. It is also possible to cateuheedle deflection based on a
dynamic model of the needle assuming the contmpltirvector is known at a
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sample time. The success of such a model-basedendeflection calculation
hinges on the availability of accurate dynamic miede

In general, among these three methods for needlectien measurement,
image-based algorithm will take the longest and trecking sensor-based
solution will take the shortest time. In additiomage-based algorithms will be
less accuratelue to imaging limitations but are relatively inexgive from a
hardware perspective.

Similar to the needle deflection measurement, thaee different ways to
calculate tissue deformation. This quantity caresEmated directly using sensors
or indirectly via image processing or tissue maugliFor direct measurement of
tissue deformation, sonomicrometers can be usesh, Atudies show that one can
relate the forces applied on the tissue to thedisieformation.

Image analysis is another approach for tissue deftion calculation. In this
class, we will examine two different algorithms,midate matching and
morphological operations. For this aim, we measheedisplacement of markers
distributed in a grid pattern on the phantom tissue

In the template matching algorithm, we extract & paimage of undeformed
tissue as a template and later, in each samplitegval, search for the most
similar regions to this template in the current gmdrame. In this algorithm, it is
usually required to confine the region of searcintwease the speed of template
matching. Template matching uses the concept ofatation of images and is
easily performable on gray-scale images.

Another solution to compute tissue deformation fronmage data is to take
advantages of morphological operations. Since ingckissue deformation is
equivalent to tracking the grid of markers placedtioe tissue, we may find the
position of these grid nodes by applying morphaiabioperators on a given
image frame. Morphological theory uses set themny topology to analyze the
geometrical structures present in an image.

The third approach is to relate the lateral for@esng the needle length during
insertion to the tissue deformation. Unlike the tarevious methods, we need to

have needle-tissue interaction forces in this nektho
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Among all previous work, not much attention hasrbgaid to real-time,
closed-loop control of needle insertion for optiedmeedle steering when needle
and tissue are both flexible. While researchersehdesigned pre-planning
systems for needle insertion with the aim of tragnithere has been very little
attention paid to fully-automated or semi-automatexbot-assisted needle

steering. This fact serves as the main motivatidgh@research in this thesis.
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Chapter 2

Overview of Proposed Research

The long-term objective of this study is to ideytifeedle insertion precision
during brachytherapy by considering the most ingarfactors leading to seed
misplacement, namely needle deflection and tiseferchation. Robots can apply
control inputs such as the needle insertion foocespeed) more precisely and in a
more repeatable manner than the surgeon’s handttligxaow to apply these
control inputs, however, requires engineering asialgnd control synthesis and
that is the focus of this thesis.

As information-driven surgical tools, robots hawe tpotential to implement
needle steering strategies that are informed bytirea feedback from the needle
and the tissue and result in minimum seed placeereots. The eventual goal of
this research is developing a fully-automated reestering system. A schematic
of such a system is depictedHig. 2.1. In this thesis, we take steps to this end

Translation and rotation of needle base

Lab setup
i 11 Computer

Needle control system

Prostate

A )
Velocity

1
l l commands

Steering planning

Bladder

PHANToM 1.5A robot for translation
in three orthogonal directions

Force/torque measurements (F)

Fig. 2.1. Fully-automated needle steering in soft tissue.

In this study, we propose two different approadieisnprove needle steering.
For the purpose diilly-automated needle steerimging model-based controllers
for the needle-tissue system, a dynamical model ftéxible needle in soft tissue

is needed. While there are various static modelshe® same system derived by
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previous research groups, few dynamic models hageiqusly been reported.

The proposed dynamic model considers needle ingeidice along its length and

the torque around an axis perpendicular to the laeddflection plane as the

control inputs. Chapter 3 fully describes the dation of the proposed dynamic
model using the Lagrangian formulation. An advaeatafjthe proposed dynamic
model is that it directly involves physical parasrst of the needle. Later in

Chapter 3, controllability and observability an@gf the needle in tissue model
are conducted. Also, simulation results of the etb®op system with two model-

based controllers are reported.

For the purpose ofsemi-automated needle steeringve propose an
experimental setup that closely imitates the curpeactice of needle steering in
the clinic. In this approach, the needle is insknt@anually and a lateral force,
which is normally applied by the surgeon’s fingerthe needle at some point
between the grid template and the prostate, isaterdlby the robot end-effector in
a control loop. The control loop involves image dieack that carries needle
deflection and tissue deformation information. Té&igeriment is repeated under
two non-model based controllers. The details ofeexpents, image analysis
techniques and results are discussed in Chapter 4.

For closed-loop control of the needle, we need &asure needle deflection
and tissue deformation as the feedback signals.n§nmeany ways of measuring
needle deflection discussed in Chapter 1, an dlgurbased on Hough Transform
is selected for our experiments. There are alderéifit ways to calculate tissue
deformation. Among all options, we opt for imagesé@d measurement of tissue
deformation. Specifically, between two possibleoalipms of image analysis,
template matching and morphological theory, we skamorphological methods.

Fig. 2.2 shows a schematic of the proposed expatahsetup.
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template robot
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| Computer

Calculate a metric
from image feedback
information to
actuate the robot for
applying the required
lateral force for an
adjustment

Bed-mount stabilizer for US
probe, templates & linear

>
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Fig. 2.2. Semi-automated needle steering in soft tissue.
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Chapter 3

Fully-Robotic Needle Insertion:
Mathematical Modeling

This chapter is concerned with deriving a dynamiadel of a moderately-
flexible needle inserted into soft tissue, where thodel's output is the needle
deflection. The main advantage of this approaclth& the presented model
structure involves parameters that are all meatrab identifiable by simple
experiments. By “moderately-flexible,” we mean thhé needle is neither too
flexible to follow the non-holonomic bicycle modalesented by Webster et al. in
[11], nor too rigid given that needle deflectionridg brachytherapy is not small

and has a significant effect on the targeting aaoyr

A common assumption in previous research has bleanneedle behavior
during insertion can be adequately described hicstaodels relating the needle’s
forces and torques to its deflection. We hypotleeti|mt the needle flexibility in
soft tissue should also be studied in terms ofréssients for closed-loop control
purposes. In fact, we hypothesize that enhancirggllaeinsertion accuracy via
robot-assisted needle steering may require the leume of the dynamical
relationship between what causes the deflection Hrel deflection itself.
Therefore, the result of this chapter can be regghrals a first step for future
research on closed-loop control of flexible needbesoft tissue.

In the following, a Lagrangian-based dynamic mddelthe coupled needle-
tissue system is proposed. Afterwards, steerabilitpntrollability) and
observability analyses are performed, which arey guissible with a dynamic
model. Although inevitably more involved, the prgpd dynamic model is
expected to be more accurate than static modelsramd fully capture the rich
dynamics of needle/tissue interaction. To avoidragenplication, we ignore the
effect of different tip types (e.g., beveled omsaen) for brachytherapy needles in
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our modeling. In this chapter, we also presentesygstientification for both tissue

model and needle/tissue friction model. Simulatiesults are reported at the end.

3.1 Previously-reported Models

In the literature, there are several studies onatimogl of the needle-tissue
system using various assumptions. These model$oaraled either on Euler-
Bernoulli static beam model

92 [ 92w(x)
dx? <EI dx? ) =pk),

with the simplified version
*w(x)
EI( ppo ) = p(x).

or on the dynamic beam model derived from Eulerraage theory

2 2 2
wherew(x, t) is the needle deflection at a given positiQrE is the Young's
modulus of the beam (needlé)is the needle’s second moment of ineptias the
mass per unit length, andx) is the applied load on the needles tip. Below,esom
of the previous models are briefly reviewed.

In [46], Haddadi et al. modeled a needle in soft #sby considering three
external forces at three discrete points —FSge3.1. In their model, spatial nodes
were considered to derive the relationship betwi#enforces and the needle
displacement. By adding two pseudo joints with dagwsprings, they could
capture the flexibility of the needle in their madeeading to the following

nonlinear model for the system:
M+Cop+Kp=F—G—F,

whereg = [a, 0, y;, v2] andF is defined as a vector of inputs includifig and
Tin In Fig. 3.1. Also( is the interaction forces arfg is the friction force. They

concluded that the linearized model of the tisdarilile needle is not controllable
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while this wasot necessari the case for the nonlinear system.

Fig. 3.1. General mdel ofa flexible needle inside a FEM tissueHaddadi et ¢ [46].

Another model ipresente by Lindsey in[47]. A flexible toolgoing through ¢
trocar is modeleds shown i Fig. 3.2, in whichl; andl, are the length of flexibl
tool from trocar tadhe ends of flexible toc

: q ‘ Trocar

Flexible
Slave Robot
X Tool li

Fig. 3.2. Diagram of thdlexible tool, applied loads, and constraint (trocar).

The corresponding moderived from Euler-Bernoulli theory is
F Pl FI2 PLl, u
3 1 - 2 142 14
- — — 0
I 6EI* T 2EI" +<6EI+ 2E] 12>x * s
W(x) = P 3 + Pll 2 n Fl% n Pl]_lz up =0 )
l 6E1” " 261 T\eEI T 2E1 T ,)Y *=

6EIl,w(x) + (6EIu, — FI3)x
“Lx® + 3l px? + 3L, 2x | T

P(x) =
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which relates the tip loz P and the base loaf to the deflectiow(x) for a given

positionx.

In [48] needle deflectioris modeled afterconsidering the needlwith the
length ofL to consist otwo parts: A part that is inside the tigsandanother part
that isoutside of the tissi, with the length ofl;. Fig. 3.1shows the differer
factors consideredn the model. Th partial differential equations (PD for

w; (x, t) andw,(x, t), the deflection of the inner and tbater pais of the needle,

are
0*w;, (x,t) 02w, (x, t)
EIT+pAT=0; 0SX<11,
2*w, (x, t 2%w,(x, t ow, (x, t
2( )+pA 2( )+kfw2(x,t)=Ff%; L<x<lL,

dx* ot?
wherepA is mass per unit leng k; is the force per unit lengtiat causea unit

deflection, and is the fricton forcebetween the needle and the tis.

soft tissue Xt |

3 ¥ [ 1 [ } H x F
deflectiony \ & ¢ b 1 v.
{er) )= ! X s SRS
A '* A y
r-‘. " 4 y ' { ; H i | |

o | P!
\\"___/’ ™, esees distributed friction /
\ ' ==+ == cutting force force [torque
\ = =+ fissue clamping force SENSOr

\\ / tip defleetion nigle insertion
I"\ / i TETE \.\ bl ang {lt]f setion
n 1= 5 ) cutting
x angle
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Fig. 3.3. Effective forces acting on the curved shaft.

3.2 The ProposedDynamic Model

In this section, we aim to derive dynamic equé governin¢ a system
comprised of a moderat«-flexible needle inserted in a soft tissiThe proposed
dynamic model can serve as a cornerstonduture research into designil

dynamicsbased control strategies for clo-loop needle steering in soft tiss
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aimed at minimizing position error. To derive theupled needle-tissue model,
possible tissue models are first discussed and dheenergy-based approach for

acquiring the overall dynamic model is formulated.

3.2.1 Soft Tissue Model

Soft tissue modelling has become highly importarthe context of computer-
integrated medical intervention. For example, satars used for the minimally
invasive surgery require realistic mathematical etedf soft tissue. In addition, a
real-time monitoring system for computer-integratidervention requires a
mathematical model of the interaction forces betwedhe tissue and an
instrument. In such a case, a safety switch cah é¢bwn the system when the

interaction forces exceed set thresholds.

Given the complexity versus accuracy tradeoff #wasts for tissue models,
static/dynamic models of varying complexities halveen proposed in the
literature. In general, a tissue model is eithevoived, accurate and
computationally expensive or with a simpler stroetand faster computation
times. In practice, real-time computation constsiare more limiting than
accuracy requirements. For instance, fractional fante element models suffer
from computational expense issues and are not bdmitdor real-time

implementation.

A soft tissue possess characteristics such asrrdahbility, viscoelasticity,
heterogeneity, isotropy, etl9]. In the following, some of the tissue moddiatt
have been developed previously are reviewed. Latéssue model is selected for
our application that reasonably captures tissuerdeftion yet is compact enough

to keep the resultant coupled needle-tissue medkgively simple.

All tissue models fall within one of the followintpree categories: lumped
models, continuum-mechanical models, and a combmatdf the first two.
Lumped models are those heuristically achieved siyguithe geometry. For
instance, mass-spring-damper model, linked volumesiel, and mass-tensor
model lie in this group. Despite their limited plogd realism, thanks to their

computational simplicity, lumped models are stibed quite frequently for
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surgical simulation purposes [50]. The secondgmteof tissue models is based
on laws of continuum-mechanics and uses eithetefieiement or boundary
element methods [51]-[52] to solve them analytycaSimulators based on
lumped models may enjoy fast computation but staptsof providing realistic

feedback of tissue deformation and forces to ther.u contrast, continuum

mechanics based approaches provide higher fidalityre slower.

In the following, starting with the standard lineBlooke’s model, tissue
models of varying complexity and accuracy are prexe by incorporating
different features such as nonlinearity and visastdity. A soft biological tissue

may possess various nonlinear characteristicsllistdow.

Hyperelasticity

In a hyperelastic material, the strain eneatggsity function relates the energy
stored in the material to strain components. Tepkst form of the relation
between stress and strain is covered by Hooke’s law
Linear Elasticity

Linear elasticity amounts to a linear relationsbgiween stress and strain of a

material. This is a fair approximation in the caésmall tissue deformation.

Nonlinear Elasticity
Nonlinear elasticity is a generalisation of theeldn model for large

displacements.

Hyperelasticity vs. Viscoelasticity

A hyperelastic material returns to its originalrfoafter the applied forces are
removed. Also, in a hyperelastic material, deforamats independent of the path
followed to obtain it. In contrast, a viscoelastiaterial has a time-dependent

behaviour and its acquired deformation is histoepehdent.

Anisotropy

Mechanical properties of a biological tissue difdwng various orientations. A
pure elastic model that simulates the interactmmed with an environment by a
mesh of connected springs is a primary candidateuo application, considering

all of the real-time implementation issues with m@ophisticated models. It
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should be noted that other ne¢tissue interaction forces includgjrpuncture, cut
and friction[15]-[16], can be identified separately and eventually comsitién
our dynamic model. Further details are providethanfollowing sectionsFig. 3.4

depicts ageometric model of soft tissue under consider:in our stud.

Fig. 3.4. Schematic of a flexible needle inserted into thft 8ssue A spring mesh connectir
the bent and the unbent needle represents the tigigu which the needle interac

3.2.2 Lagrangian Formulation
A general dynamic modeling approachbased orthe extended Hamilton
principle. The extended Hamilt’s principle forrigid and deformab bodies can

be written aghe following [52]:

t2 2 4
j (8T — 6P)dt + f Z 0485y, dt = 0, 1)
tq t; k=1

where[t,, t,] is the time interval of motion arT andP are kinetic and potenti
energies of the system, respectiv In the above@, is the external force in tf
generalized coordinatds;, is the vector of corresponding displacements in

same coordinate, andis the dimension of displacements.

In aconservative syste, work done by a force is indepemi@f path, qual to
the difference between the final and al values of an energy function, a
completely reversibli If the system we would like to modil conservative, th
Hamilton’s principle is invariant under coordinate transforimas and carbe
described as
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f&(T—P)dtzf&Ldtzo. (2)
ty t1

In (2), the Lagrangian is defined as the difference between the kinetid a
potential energiest. = T — P. Applying the variation principle on (2), one can
derive the most common representation of Lagrarigas®ed dynamics §54]

d (aL) L

ac\aq) "aq =" @

in which q is the vector of generalized coordinates dhds the vector of

corresponding generalized conservative forces.

Fig. 3.5. Schematic of a flexible needle in soft tissue. ©higin of the {yz} coordinate frame
(inertial frame) is the needle entry point intcstie while that of the {YZ} frame (non-
inertial frame) is fixed to the needle base and esderward as needle is inserted.

In the needle and tissue system, we define aniaheahd a non-inertial
coordinate framedHg. 3.5). A non-inertial frame has acceleratiothwespect to
an inertial frame. Writing the Lagrangian dynamicsan inertial reference frame
is preferable because, if we use a non-inerti@regice frame, the laws vary from
frame to frame depending on the acceleration. k&taince, to explain the motion
of bodies in a non-inertial reference frame, sdedafictitious forces, which do
not arise from any physical interaction, need talbfned in such a way that the
motion observed in the non-inertial frame is thensaas that from the inertial
frame. Although sometimes stating a modeling pnobla an inertial frame is
inconvenient, dealing with fictitious forces in aminertial frame can be harder.

Given the difficulties with non-inertial frames, wéll use the inertial frame in

25



our system when writing the Lagrangian dynamica néedle-tissue system.

In the needle-tissue systethere are friction forces between the needle and
tissue that cannot be neglected in the interadbare. These friction forces make
the system non-conservative and the resulting Hamd principle based
equations will be complicated. To avoid this comfle one can first consider
only conservative forces and their correspondingrgynequations for writing the
Lagrangian dynamics, and then add friction forcesctly in the final equations.

This approach is used for deriving dynamic modéi®bots as wel[55].

Disregarding the friction forces, to derive the dymcs of the coupled needle-
tissue system, we need to find all of the kinetitl gootential energies in the
system. Suppose that the flexible needle’s basate®tby§fd about an axis
perpendicular to the plane of needle deflection mmdes forward by a distance
éd in the insertion direction — sé&g. 3.5. For simplicitywe assume that needle
deflection and tissue deformation happen only in gpace, although the

following procedure is easily extendable to theeaais3D space.

In Fig. 3.5, consider the two coordinate fran{&<} and {yz}. While the
former has its origin fixed to the needle base,l#iteer has its origin at the point
of entry of the needle into the tissue, havingyitaxis aligned with the unbent
needle’s axis. Therefore, thgz} frame, which is in inertial motion, is considered
as the reference frame in this study.Hig. 3.5, w(y,t) denotes the needle’s
deflection as a function of time and space. Afscandz are the force and torque
(applied by the robot or manually) along thexis and around the axis (found

from completing thdyz} frame using the right-hand rule), respectively.

Assumptions. The following is a list of simplifying assumptionssed in this

modeling:

1. Needle insertion and deflection are in a 2D gltrat is perpendicular to the

gravity vector.

2. Needle bending outside the tissue is negligibleomparison with that

inside the tissue.
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3. Torsional deflection of the needle can be negtec
4. The effects of needle bevel tip on needle deflecan be neglected.

Generally, the kinetic energy of a body is found as

o= | (0 dy,
along body

whereT is the kinetic energy density. Using the predefigeneralized coordinate
system, any point on the needle can be specifiethén{yz} frame by three
variablesd, w(t,y), andy, which are the length of needle outside of tisshe,
needle’s deflection along its length, and the ne@diint’s coordinate along the

axis, respectively. The quadratic form of the new&dkinetic energy is

1 l-d
T:E.[_d pA sTs dy, (4)

wherel is the total needle length (comprised of the reagigments inside and
outside the tissue) angid is the linear density. Alsa, is the position vector of
any point on the needle, which is split isto(for needle points outside the tissue)

ands, (for needle points inside the tissue).

Given the above-mentioned assumptions, thedatates of a point on the
needle can be written as follow. For the sake eity, we have denoted the

needle’s deflectiow(t,y) by w.

_ 51=%}] s —d<y <0
- sz=[3‘}/ ; 0<y<l—d ’
sl=[5’] s —d<y<«0

SZ:B}/] ;0<y<l—d'

Substituting the above in (4) leads to the following linear kinetic engripr the

needle:
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1 0 1 l-d
T, = > f_dpAs'lTél dy + E.fo pAsTs, dy (5)

1 0 1 l-d
=—pry2dy+—f pA(y2+W2)dy.
-d 0

2 2
We can split the above kinetic energy into two ®rmamely;,, the kinetic
energy related to the axial and rotational moveseftthe needle’s rigid body,
andT;,, the kinetic energy corresponding to the needledbility. It is easy to

show that
1 pl-d . 1 .
T=3J_, PAGDdy =3 pAly?,
l—-d .

In addition toT;, the rotational kinetic energy of the needle iswated by

T, —1f91 0do = 11 92
R_Z Ox _Zx .

The potential energy of the needle/tissue systeangds as the tissue deforms.
This energy generally varies due to three effegtavity, needle elasticity, and
tissue deformability. In our system, gravity doest have any effect on the
potential energy of the system since the planesetile insertion and deflection is
assumed to be parallel to the ground. The poteetirgy stored in needle
elasticity iS[56]:

1 l-d 2W
_ 6
Pne = Efo EIy (a—yz)zdy ( )

Also, one can write the potential energy storethendeformed tissue as

Pu=[ ([ Ha@owo.0aw ) o, )

in which k(d, t) is the stiffness coefficients of the spring melsat tmodels the
soft tissue. The dependencekodn d accounts for tissue non-homogeneities, and

its variation with timet allows simulation of in-vivo reaction (such as #img) of
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sensitive tissues in response to the applied fotnatis study, for simplicity, we
assume a homogeneous tissue and ignore phenomehaasuswelling in the

proposed model. Thus,

k(d,t) = k, = constant. 8
In (7), the tissue model will become even simpfegraconsidering one equivalent

spring connected at the needle’s tip.

Overall, the Lagrangian can be calculated f(6yn (8) as

1 , 1 (4 , 1.
L=—pAly2+—f pA(w?) dy + = I, 62
2 2, 2

_%fol—d El, (%)2 dy —%(ka) fol—d (f w dw) dy. ©

For tractability of the derivation of the coupledeulle-tissue Lagrangian dynamic
model, we make two additional common assumptioistlys we assume that the
needle has a constant linear dengiy, a constant Young's modulus, and

constant area moments of inefjaand I,. It is generally agreed that this
assumption is not far from reality. As a resplt, andEI, are constants that can

be moved to outside of the integrals.

Secondly, in (9), the Lagrangian depends erdgflectionw(y, t), which is a
function of two variables: time and space. The skatbwnassumed modmethod

makes the assumption that the deflection can beesged afb7]

w0 = lim > q(O0i0) = O, 0) + O, (10
i=1

whereg;(y) is a vector oh “shape modes” angl;(t) is the corresponding vector
of generalized coordinates. This means that a mootis deflection is
approximated by an infinite series composed of petgl of time-dependent and

space-dependent functions.
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In this study, to limit the complexity and démsion, two dominant first modes
are considered. The shape moggy) has the following general structure

obtained through the Euler-Bernoulli beam equab@j:

@0:(¥) = c;i[(sin(k;y) — sinh(k;y))]

sin(k;l) + sinh(k;)
~ cos(i;1) + cosh (k1) (cos(kiy) + cosh(k;y)), (12)

in which k; can be computed by solvings(k;l) cosh(k;l) + 1 = 0. Definingu
as

_ sin(k;l) + sinh(k;l)
H= cos(k;l) + cosh(k;l)

@;(y) is reduced to
@) = ci[(sin(k;y) — sinh(k;y))] — u(cos(k;y) + cosh(k;y)),

in whichc; is a normalizing constant found such that

l
jo((%(y))zdy = 1.

Simplifying the above for finding coefficients leads to

2 1
k—usin(kil)sinh(kil) + = (1= p)cos (kibsinh(e)
i i

1 1
—r (1 + u?)sin(k;Dcosh(k;l) + v (1 + u?)sinh(2k;1)
i i
1
4k,
_ 1

Ciz

+— (u? — 1)sin(2k;1) + %(cos(Zkil) — cosh(2k;1)) + u?l
i

Consequently, (9) can be rewritten as (12) whereprane denotes
differentiation with respect to the space variaglgwhereas a dot denotes

differentiation with respect to the time variable

1 Ly 1 - l-d , 1 . l-d X
L= 2 pAly “ + EPA 1 f pi(y)dy + sz qz f p5(y)dy +
0 0

30



l-d l-d

- 1 .1 "
pA qquJ P17 920y +3 1 6% - EEIyChzj (p1) dy
0 0

1 l-d
_EEIngf (92)"dy
0
l—-d Lo 1 l—d
—Elyqlqzj <p1<pzdy—5kaqff pi(y)dy —
0 0
1, o pl-d 1-d
Skl [, 030Dy —kaqiq2 [y 91 (M2 ()dy. (12)

To substitute the above in (3), we note thandF are

d fy
_16 |z
= g, |’ F= 0
q2 0

It is obvious that the two external forcgs andz, are applied along theaxis and
around thex-axis, respectively. Since no external force isliggpalong thez-axis
(i.e., in the direction ofj; andg,), the last two rows of are zero. Also, we note
that y = d. Substituting (12) into (3) followed by simplifitan and
rearrangement of the resulting terms yields thdinear dynamic equation of the

needle in the tissue (excluding non-conservatives®) in the general form of

M(q)§ + N(q,q) = F. (13

It was mentioned previously that the resulting dyitaequations will not
include friction forces. In the flexible needlesstifsue system, friction plays a
significant role. In order to make the dynamic dmma(13) represent a more
accurate model of the system, it is important tdeast approximately model
friction and include it in the dynamics. Therefotiee complete dynamics of the

system will be expressed as

M(q)§ + N(q,q) = F — F;. (14
Due to the fact that friction always acts agait& movement, it has appeared
with a negative sign in the right side. Later, ploles models for friction are

discussed.

31



Overall, our proposed dynamic model consists of types of parameters. One
group is related to measurable physical propesieh as, 1, p andA. This is
thanks to a physics-based approach to dynamic nmgglelwhich readily
incorporates known (or easily measurable) phygeahmeters such as Young's
modulus of the needle. Another group of parametdeate to the tissue model and
the needle/tissue friction force model, which cam dstimated by collecting
experimental data and using common system ideatiéic methods. This will be
discussed in sectidh2.3.3.

In summary, the Lagrangian formulation for a dynamystem comprising a
moderately-flexible needle in soft tissue in (1swearranged in the form of the
generic dynamics of a robot by defining an appatpristate vector. Similar to
robotic systems, the mass mati{q) turns out to be a symmetric matrix that
depends on the flexible needle’s physical pararsefére structure of this matrix

and the matrixV(q, ¢) are reported below.

0
N(q,q) = 0
(.9 = N1(q, )|
N2(q,9)

Appendix A shows the elements of matrices M andFkm the physical
behavior of the system, one may expect the staiablesd andé to evolve in
time independently from those states that relatthéoneedle deflection, i.eg;
andg,. This expectation is reinforced by the vedity, ¢) in which the first two
elements are equal to zero. However, in our sinaulat we see a negligible yet
nonzero dependence of the trajectorydarn the initial values of; andg,. This
deviation may be coming from the approximation eflection with only two

dominant shape modes.

On the other handy; andg, are related only to the statewhich is in the

direction of needle’s insertion. This means that thitial needle deflection
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changes during needle insertion (even though we maw considered bevel tip
effect in the dynamic model). Simulation resultstte¢ end of this chapter will

provide more description of this issue.

In the next section, parametric system identifamatmethods used for both

tissue model and needle/tissue friction force aesgnted.

3.2.3 Parameter Identification

3.2.3.1 Least Squares Parameter Estimation

Least squares parameter estimation is an optimizagprocedure for
minimizing the squared discrepancies (errors) betwealata obtained by
measurement and their expected values. In the xtoofea regression problem,
the variation in an independent variabfe|eads to changes in another variable,
whereY = h(X) + white noise. The regression functibrmaps the two sampled
data variables to each other, and is to be estinfaten n pairs of data point
(X;,Y;). Assume that the value of the functibnis known inn data points
h(Xy), i=0,1,..,n, and thath(X;) = x;;6; + -+ x;pf,. The least squares
method provides a computationally convenient fitro$ linear regression model
to the experimentally obtained data points. Thetlsguares estimat¢s are as

follows when then sampled data points are arranged in a matrix fnaorie[59]:
g =XTX)"1XTy.

An extension of linear regression is called “wegghieast squares”. In this
method, instead of minimizing the sum of squaresemhted sum of squares of
errors is minimized. An ordinary regression caltedathe parameters based on the
assumption that the white noise has a fixed vaeaht real experimental data,
various input/output measurements may experiendeuglevels of noise. Such
an inconsistency in the magnitude of noise (hekeasticity) makes the
estimation no longer optimal. In input/output chalsnwhere the noise is not
small, that portion of information should be wead@rusing a weight matrixyv.

Parameter estimation in the weighted least squaetisod follows
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f=Xwix) 1 xTw-1y,

This formulation is used later in this chapter ioth needle/tissue friction model

estimation and tissue stiffness model identifiaatio

3.2.3.2 Needle/Tissue Friction Modeling and Identification

The needle/tissue friction model is a componenthef dynamic model that
needs to be identified and incorporated into thegraagian dynamics (14).
Recently, various studies have tried to model tiwtidn force in percutaneous
procedureg22][22]. Given the complex nature of friction, it isrmamon to only
consider its dominant terms. In the analysis ofyaathic system, a complex
model of friction is rather uninformative. A simpteodel isviscous frictionin
which the friction forcef, is proportional to the needle insertion veloatyas
f, = w,d wherep, is the viscous friction constant. Another simpledal is
Coulomb frictionf;, which is constant except for a sign dependencethen
insertion velocity af; = p ; sign(d) wherep ¢ is the Coulomb friction constant.

A reasonable and simple model is to include botthese terms as

fr = ussign(d)+ud = f; + f,. (15

Thus, the vector form of friction term in (15) cha added to the other dynamic

terms derived from the energy equations as

wssign(d)]  [uvd
M@i+Nap=F-| 0 -] 0| (16
0 0

To further complete the dynamic model of the fléxibeedle in soft tissue, the
friction coefficientsp ¢ andp ,, need to be estimated. To do so, an experiment is
set up as described in the following. It is cldattduring the time that needle is
moving through the tissue, a cutting force existitha tip of the needle in addition
to the friction along the needle’s length. In ouoduling, this cutting force is
neglected. To be able to ignore this cutting feaioe deal only with the friction
force in (15), we collect experimental data whea tieedle tip has completely

passed through the tissue. Then, we begin to applysertion forcg,, starting
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from zero and increasing it by small incrementgil time needle starts to move; at
this point, the force at the needle’s base has passed the Coulomb friction
level. The needle’s base force measurement datsedstafter this point
corresponds to the sum of Coulomb friction and auscfriction. Meanwhile, the
position and velocity of the needle’s base, whigHixed to the robot, are read
from the robot while a JR3 force sensor (JR3, Wopdland, CA, USA) records
the needle base forces. This data is collected &eweral experiments. Applying

linear regression estimation to this data will gisean estimation qf_ andy. .

1.8

1.6+ measured force versus position of needls base

141

1.2+

1k

force (N)

0.8+

0.6

0.4+

0.2+

I I I I
1 1.2 1.4 1.6 1.8 2 2.2
position (mm)

Fig. 3.6. Needle base force profile recorded for friction mlodentification. Needle was initially
passed through the tissue to eliminate cuttingefarc

Following the procedure stated in above and by atipg the experiment 20
times, Table I. provides the average values anddatd deviation (STD) of
Coulomb and viscous friction coefficients. Fig6 3hows a sample profile of the

needle base force measurement in the needle msestperiment.

Table I. Friction coefficient estimation

Standard deviation and typical values for frictioncoefficients in 20 experiments
STD of g STD ofu,, Averageg Averagep ,
0.0374 0.0447 0.56 0.3
3.2.3.3 Tissue Model Identification

The tissue model that we will be identifying laier this chapter based on

certain force/displacement measurements is indha bf a stiffness matrix. An
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important question that arises is, are our expeariaiy-obtained
force/displacement measurements describing a spAngjgnificant characteristic
of a linear spring is that it stores elastic engtpg time integral of force times
displacement is zero over a closed contour. Inreeige spring, force is an explicit
function of position ag’ = F(x). Therefore, the potential function related to the

elastic energy is defined as
E,(x) =j—Fde,
or
F(x) = —grad,E,(x),

where grad, represents the gradient with respectxt@nd the bold symbols
denote vectors. In the planar Cartesian coordingtesposition and force vectors
are

_[E&y)
LB Gy

[ aEp]
~ d . | F(x')’)
grad, E,(x, Y)—|_aE |_ E,Ge, )|

1% |

The curl of the vector field is defined as

0F, OF,
[F(x,y) = —— =2,
curl F(x,y) 3y~ ox

which is directly related to the mechanical worlgquieged for movement. A
sufficient and necessary condition for spring-ldehavior of a system is to have a
vector field with zero curl, which is equivalenthiaving a conservative force field
[60].

If a vector field is nonlinear but differentlaaround an operating point, then a
Taylor series expansion might be used for it. kéfigently small displacements,
high order terms in the series can be neglectesliltieg in the following first-

order relation between the force and displacemectiovs:
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ml=10e ezl
Fy _kyx _kyy dy'

OF, OF,
T = G T =5y
dF, dF,

The above relationship defines a stiffness matrixa pure spring, the stiffness
matrix is symmetric:

__0F _ O0F,
W= oy T = o

Otherwise, the stiffness matrix is not symmetric.

We are interested in a metric that determirms blosely a given 2D stiffness
matrix describes an actual spring. The 2D stiffmaasix can be decomposed into
two parts: a symmetric matrix and an anti-symmesicew-symmetric) matrix.
This decomposition is formulated as

koyy = 1E(k+kT) + %(k—kT)
symmetricterm  anti—symmetric term

The symmetric matrix represents forces that coomedio the elastic energy
function. Since the force-displacement relatiora igsector field, the curl of this
field is a vector operator that describes the itdgimal rotation of a field. The
symmetric component of the stiffness matrix haseeo zcurl while the anti-
symmetric component possesses a non-zero cuhle I€arl of the anti-symmetric
part is small enough, the total stiffness matrixi d& assumed to describe an

actual spring; this will speak to the validity (fack thereof) of an identified
spring model.

To test the validity of the spring model for ouftdissue, it is only necessary
to make a small displacement around an equilibmaomt by applying a small
force using an indenter (e.g., a robot end-eff@corthe tissue. For this small

displacement, the force-displacement relation & tissue can be considered
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linear. To find the tissue stiffness coefficienindeed byk, in  (8), we apply
forces to the tissue in 8 directions as depict Fig. 3.7.We place the robcend-
effector in the center of our phantom tis' to avoid inaccuracies introded by
boundary conditiondetween the tissue edges and the container thds hbé
tissue The stiffness coefficient of tissue, which iswamed to be homogeneol
can be estimated by the least squares method ws@agurements of appli
forces and theicorresponding tissue displacements. Forces areedppl two
dimensions i( the plane of needle deflect), which lead to €2 x 2 stiffness
matrix. However, in the needle/tissue dynai, we need only one element of tl

matrix, corresponding to the sness along needle deflectid, (seeFig. 3.5).

Fig. 3.7. (Left) Eight directions of applied force in the tissdentification experiment.Right)
Experimental te-bed for tissue identification.

Having identified the tissueiffness coefficient as described abostandard
deviationof the estimated values of the tissue stiffnessreperted i Tablee II.
This experiment was run 20 times in different tissue tmres. From this ble, the
consistency of estimated stiffness is evidfrom the small valus of STD for
both k,, andk,,. From these experimentk, was found to £0.52 kN / m?
when the applied force w 1.5 N in magnitudeOur results confirm theeliability
of this spring model for thphantom tissue under consideratiés expected, th
anti-symmetric parhas small curl with the average valuesif anc ,, reported
in Table Il. Thismears that the spring model does capture the i-output
behavior of the tissue w. Due to some offflane movements of robot’'s e
effector in the x direction, for the bigger appliedces,k,, values are not close

thek,, values as expected for a homogenetissue.

! This phantom tissue is made of 75% liquid plasiit\®5% plastic softener from -F manufacturing Cc
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Table Il. Tissue stiffness identification statistiocumbers

Applied forces are in Newton

f=1.1 f=1.2 f=1.3 f=1.4 f=1.5

mean| STD| mean | STD | mean| STD mean STD mean STD

K| 1.26 | 0.08 0.82 0.54 1.10 0.11 1.08 0.12 0.96 0/12

kK| 1.01| 011 0.81 0.15 0.69 0.18 0.60 0.19 0.52 0,18

kv | 0.04| 0.8 0.04 0.07y 0.01 0.09 0.001 0.08 -0.005 80,0

kx| -0.10| 0.06 -0.10 0.10 -0.11 0.09 -0.11 0.09 -0.11 .090

In both identification procedures for the tissuedeloand the friction model,
data were low-pass filtered to attenuate high feegy noise coming from the

force sensor.

3.2.4 Analysis of the Dynamical System
Before designing a controller for an open-loop eyst the system

controllability must be investigated to determinéether there exists an input
signal that can force the system from an initiatesinto a particular desired state
(recall the necessity of state controllability e placement in LTI systems). To
look at the controllability of the needle/tissuestgym with the dynamics given in
(16), the state space representation of the systamquired. Let us rewrite the
system equation as

i=M"*((F-N(q7) 17)
whereN'(q,q) = E, + N(q, ¢)+ F,. By defining the state vector
X=[X; X)"=[x1 %2 X3 X4 X5 X¢ X7 Xg]T
=[d 8 &1 @2 4 6 ¢ ¢l

the state space representation of the flexiblelaesft tissue system is given as
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[N el e)
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0

lM-1x) ()]

| |

X =| I
Xg

[—M_l(X1)N'(X1,Xz)J

The output equation for the deflection of the nedlip is

Y=w(l—-d,t)=q: (e, —d)+ q()p,(l —d).

3.2.5 Linearization of the Nonlinear System

In needle insertion, it is quite reasonable to emsuhat the surgeon or the
robotic system applies small changes in inputs.sTke only need to study the
controllability of the linearized system aroundagerating point instead of that of

the nonlinear system. The linearization of the galn@onlinear system

X=f0+) a®u, ¥Y=hKU),
i=1

(whereX,Y andU are the state, the output and the input vectespactively)

aroundX, andU, is

{X = AX +BU (19
Y =CX + DU
In the above,
m m
A_i?f(X) +Zagi(X)u. B_Zagi(X)ui
)¢ L, X S ou; ’
0 i=1 Xo, Ug =1 Xo
_0h(X,U) _ 0h(X,U)
Coax g, T au y)

For a nonlinear system, the linearized systemeasglat a nominal input as well
as nominal states. Therefore, verification of thatwllability, observability and
other possible features of the nonlinear systenoalevalid around the particular

operating point of the states and the input.
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Based on (18 and (19) and for the operating point
[do 60 0 0 d, 6, 0 0], the linearized model is given by

04><4 I4><4
A= [0CEMTIEIN' K X,)) OMTIKDF| 9(=MTI(XDN' (K, Xp)) ,
X, Xy |y X, %olyg
[ 04x2 1
I oy |
B=|p/-1 0 1 ,
M (Xl) X 0 0 ‘
0 olly

8X2

C= [a(x3¢’1(l—x1)+x4(,02(l—x1))
ox

] 'D = 01><2’
Xodixg

in whichl,, is the identity matrix.

We can now study the behavior of the linearizedesgsaround a couple of

operating points for the state vectar

3.2.6 Controllability Analysis
Definition

A system is output controllable in a perig, t;) if for any givent, andt,,
any final output at; can be achieved starting with arbitrary initial ddions in
the system at,. A system is state controllable in a periag, t;) if for any given
to and t;, any final state at; can be achieved starting with arbitrary initial

conditions in the system &j.

It has been shown that a linear system describeahdtyices4, B, C andD is

output controllable if and only if the output caritability matrix Q,,,xmn

Q=[CB CAB .. CA"'B D],
has rankm, wherem is the number of inputs andis the number of the state
variables. Similar to the output controllabilitate controllability is satisfied if

and only if the controllability matrig, «mn

.unxmn:[B AB A%*B - An_lB];
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is full rank. A controllable system is not necegsantput controllable and vice

versa.

For the linearized system (19), it is found tha tieedle-tissue system is fully
controllable around some of the operating pointdeMior some others there is a
deficiency in the rank of the controllability madriln contrast, the output
controllability is not satisfied for most of the enating points, which means that
the inputs defined for the system are not ablenftuence the needle’s tip
deflection in a desired way. This result was expe:cis in the manual needle
insertion it is normally observed th# andt in Fig. 3.5 are inadequate for
maneuvering the needle; in practice, the surgeeds& apply a lateral force as
well or rotate the needle around raxis to use the bevel-tip angle for properly

controlling the needle.

3.2.7 Observability Analysis

For designing a state feedback controller, theestaf the system are assumed
to be available. Aside from a control point of vieve knowledge of the states of
the system is required for fault monitoring andegébn purposes. In practice, the
entire vector of states is rarely available becduseéng each state is equivalent to
having a physical sensor. In addition to the faeit tsensors increase the cost of
the control system, in some cases a sensor carnaohdunted in the proper
location and some of the states may not even qunesto physical signals. For
these reasons, we need to reconstruct the statenation from other measurable
input and output data. In this case, under somealitons — namely when the
system is observable — an observer can be usestitoage the states. Although
designing an observer for linear time-invarianttsys is well formulated, the

same problem for nonlinear systems is challenging.
Definition

A system is said to be observable if for any ihgitateX, and fixed time; > 0,
the knowledge of the input and output’ over [0, t;] suffices to determine the

initial stateX, unigely. Once the initial state is determined, atgte at time;,
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can be reconstructed from the dynamic equatiorhefslystem. The linear time-
invariant system with state, input and output ncasi, B andC is observable if

and only if the observability matrix
Onxmn = [C CA cA? - CAn_l]T1
has a full rank.

Analyzing the linearized needle-tissue system B),(&t is found that while there
is a rank deficiency of 2 in the observability mgtrthose states that are not

physically measurablg, andg,, are observable.

3.2.8 Controller Design

3.2.8.1 Inverse Dynamics Control
If the dynamics of a system is fully given as in7)lan inverse dynamics
controller becomes an option. For the dynamic syste (17), the inverse

dynamics controller is given by
Fo = M(q)(da + kvGetkyqe) + N'(q,9),
de £ qa — 4
de = 49a — 4,

where F; is the controller output vector, arkg and k,, are the controller gain

matrices related to the velocity and position, eespely. The closed-loop system

dynamics will be
Gd=4qq+ kv‘?e"'kpqe-
By choosing positive definite matrices fby andk,, the state errog, and its

derivativeq, will converge to zero. Later in this chapter, gh@ulation results for

this inverse dynamics controller are reported.

3.2.8.2 Proportional-Integral-Derivative Control

Among non-model based controllers, PID is famousdtéoreliable and robust
results. Here, we optimize the proportional, iné¢gr and derivative terms of the
controller by trial and error to get minimum needkflection. Understandably,
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the main issue with this controller is that adjogtits gains does not follow a

general rule and it varies from one dynamic modelrtother.

The next section compares the simulation resulistie PID and inverse

dynamic controllers.

3.2.9 Simulation Results

In the following, let us consider a reduced dynamicdel of the system in
order to verify the effect of the insertion forfeon the needle tip deflection. To
this end, the second state variaBland its corresponding torque inpuare not
considered. Accordingly, all matrix dimensions ¥) reduce from order 4 to
order 3.

Table Ill. shows the physical parameter valuesesponding to the 18-gauge

needle in our setup. The Young’'s modulus paramdesatification is reported in

Appendix B.
Table Ill. Physical system parameters
Values are for an 18 gauge
Parameter flexible needle®
Value Unit
E Young's modoulus 200 G pa
I, Cross-sectional moment of inertia 1.28 x 10713 m*
1, Cross-sectional moment of inertia 1.0626 x 107° m*
p Density 8000 kg /m3
A Effective cross sectional area 1.27 x 107 m?
[ Needle’s effective length 0.2 m
g Gravity constant 9.89 m / s?

a. Model number 102482, World Wide Medical Techgae

Fig. 3.8 and Fig. 3.9 are the simulated respotesése input force equal to 3 N
with the needle initially inserted 2 cm in the tisswith an initial deflection of 0.5
mm. For the simulation, the average values repdrtefiable | are used for the
friction model. Also, the stiffness coefficient tiie phantom tissue is set to

0.52 kN / m? as calculated experimentally in section 3.2.Br8m Fig. 3.8, it is
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concluded that the needle tip’s deflection varigshe needle passes through the
tissue.
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Fig. 3.8. Needle tip’s deflection in the open-loop model
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Fig. 3.9. State variables of the open-loop system

Fig. 3.10 and Fig. 3.11 show the needle tip’det¢ibn and the states of the
closed-loop system under the inverse dynamic chetroespectively. Also, the
PID controller’s results are depicted in Fig. 3.22 comparison between the

results of the inverse dynamic controller with ®® controller reveals that the
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former leads to zero deflection as time grows waetbe PID controller results in
a non-zero position error, which is not desireder€fore, as we expected, the
controller which is informed by the dynamic modegtlee system, can better make
the needle tip follow a desired trajectory. Non&theg, it must be noted that in
reality we will not have a zero tip positioning @ridue to the existence of noise

and inevitable open-loop model identification ina@cies.
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Fig. 3.10. State variables in the closed-loop system underse/dynamics control
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Fig. 3.11.Needle tip’s deflection in the closed-loop systemder inverse dynamics control
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Fig. 3.12.Needle tip’s deflection in the closed-loop systemder PID control

3.2.10 Conclusion

Recent studies on steering flexible needles in 8s$ue attempt to employ
computer-controlled steering in order to achieveaermecise needle positioning.
This aim may not be achievable without a complet@eustanding of the dynamic
behavior of the needle/tissue system. This motsvd&ziving dynamical equations
governing a flexible needle in soft tissue. Thigter explained the derivation of
the dynamic model of a coupled needle/tissue sydteged on the Lagrangian
formulation. The significance of this model is tlitas physics-based and includes
both the needle’s elasticity parameters such asiysunodulus and the model of
tissue deformation. This model does not considéalamced forces coming from
the needle’s bevel tip. We considered the effecheddle/tissue friction in the
dynamic model. Least square estimation method veasl dor identifying the
parameters of tissue and friction models. Steeatabilcontrollability) and
observability analyses of the linearized system d@se; the results for selected
operating points confirm the controllability of shdynamic system. Simulation
results show that the initial needle deflection ¢ena cause of further needle
deflection during insertion. Moving forward, havireg dynamic model of the

flexible needle in soft tissue, we implemented teontrollers: an inverse
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dynamics controller and a PID controller. Simulaticesults confirmed that
knowing the dynamical properties of an open-loopteay helps to get a better

performance in the closed-loop system.
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Chapter 4

Semi-automated Robot-Assisted
Needle Insertion: Preliminary
Experiments

In this chapter, we first study the advantagesdisadvantages of fully-robotic
needle insertion compared to a proposed semi-atéoimaeedle insertion
framework. The merit of the proposed approach isitg easier clinical
implementation. We begin by describing the expenitale setup used for the
proposed semi-automated needle insertion. A flowicbhthe semi-automated
procedure is provided for better understandinghef proposed needle steering

algorithm. Finally, we will discuss the resultsps&liminary experiments.

4.1 Motivation: Fully robotic versus semi-
automated insertion

The main reason for robot-assisted surgery is tprowe the surgical
outcomes. In the procedure of brachytherapy, bethisand fully-automated
needle insertions have the potential to improves thiocedure in terms of
accuracy of needle tip targeting. In fully-robotieedle insertion, there is
minimum intervention from the brachytherapist areishe plays a supervisory
role. In this case, needle insertion and most bewoneedle adjustments (e.g.,
rotating a needle to use the bevel tip effect, yppgllateral forces on the needle
to correct its path, and even retracting the néedlié be executed by the robot.
Evidently, the reliability of the fully-automatedqzedure becomes highly crucial
as the smallest hardware or software errors indghet or the associated software
code for image processing and real-time control bawe serious safety and

performance repercussions. Also, compared to themufully-manual procedure
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of needle insertion, there are abundant improvesneeeded in the operating
room to enable fully-robotic brachytherapy and mamctical issues in terms of
needle steering algorithms and real-time softwanpléementation need to be
answered.

While the final, long-term goal may be to facilgatully-automated needle
insertion, at least in the short term it is atiractto make it possible for a
brachytherapist to manually insert the needle wieleeiving robotic assistance
for adjusting other motions of the needle; we cHils semi-automated
brachytherapy. The robotic assistance may be afféoethe brachytherapist
through various inputs for needle adjustment. s thork, we try to choose the
input that is closer to the conventional needleritisn currently practiced in the
operating room. We propose that the needle is teddyy the brachytherapist’s
hand while the robot applies lateral forces onrteedle that help correct its path;

Fig. 4.1 shows a schematic of the proposed approac

Lab setup

Fixed Required compensation lateral force by
template robot
Prostate B | Computer
Linear guider Calculate a metric
from image feedback
Manual insertion information to
== D actuate the robot for
- applying the required
S . . lateral force for an
~——. Rail guide adjustment
support

Bed-mount stabilizer for US
probe, templates & linear

Fixed to patient’s bed guider

z
v - >
% Needle deflection and tissue deformation measurement from
Y image feedback

Fig. 4.1. Schematic of experiment for semi-automated neddkrigg.

Feedback information used by the robot controlesysts composed of two
components: needle deflection and tissue deformatizve chose them because
they are the most dominant contributors to seeglagement. In this preliminary
study, we ignore the effect of needle tip beveltba needle path. The robot-

provided compensation for minimizing the measureddfe deflection and tissue

50



deformation will be a lateral force applied somemhleetween the template grid
and the patient’'s body. We were inspired to chdbseneedle adjustment input
by our medical collaboratdomwho actually applies such a lateral force by hé f
hand during manual needle insertion in order taemtrthe needle path when
needed. In current manual brachytherapy, the need fateral force exertion is
decided by the brachytherapist based on intra-tigeraltrasound images in the
sagittal and lateral planes that visualize the leeagiven the time constraints, the
brachytherapist may not use this visual feedbaaly wften. Also, there is no
force measurement or computational analysis foerdehing the best magnitude
and direction of applied lateral force, and it lisexperience based. As a result, it
sometimes happens that, faced with big needle &fgeting errors, the
brachytherapist is forced to partially or totalgtract the needle to perform re-
insertion, which can bring more tissue trauma arabtpte swelling. It may be
possible to apply more accurate and appropriagedbtorces on the needle using
a robot under image-based feedback of needle diefieand tissue deformation.

In the proposed experiment, we will find the afoestioned feedback
information using image processing algorithms. Tikislone by calculating the
needle deflection at the needle tip and the tisiiermation around the needle at
every sampling time. At the same sampling rate, algorithm calculates the
lateral force to be applied by the robot on thedieeHere, we are using the same
equipment as in conventional brachytherapy treatrnmertuding a grid template
for guiding the needle. In the following, variousngponents of the experimental
setup are discussed.

4.2 Experimental setup

4.2.1 Phantom Tissue

The primary need of the experimental setup isr@sparent phantom tissue that
resembles biological tissue in terms of mechargbaracteristics. This phantom
tissue should be transparent such that the need&tion path is traceable in
images. A common material for making artificialstie is gelatin. Another option

2 Dr. Nawaid Usmani, Radiation Oncology, Cross Caimstitute, Edmonton, Alberta, Canada.
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is using a liquid plastic, which can be mixed watlsoftener in different ratios to
make tissues with different stiffnesses. Also tpamency of this material is good
enough for our approach. We mix a portion of ptadijuid and a portion of
softener from M-F Manufacturing Co. (Ft Worth, TMSA). Fig4.2 shows two

different phantom tissues made from gelatin anchfpdastic material.

Fig. 4.2. (Right) Phantom tissue made of plastic; (left) gbamtissue made of gelatin.

In practice, when making tissues from liquid plasthere are a few hard-to-
control parameters in the process of baking treei¢ighat result in tissue samples
having varying stiffnesses. For this reason, wealreeapply tissue identification
as explained in the sessiBrR2.3.2 to estimate the tissue stiffness. Duringdies
insertion experiments, we need a container forptheEntom tissue to avoid tissue

slippage; this container is seerfig. 4.2.

4.2.2 Permanent Markers

As stated, one of the feedback measurement in aperinent is tissue

deformation. For measuring this using image prangsalgorithms, we need to
embed permanent markers in a grid pattern in tla@foim tissue. This turned out
to be harder than it seems. We first tried to pkmoall beads in the middle of the
phantom tissue during the process of pouring theidi in the container. After

different trials, we concluded that the inaccuraoyning from poor visualization

of the beads will be problematic. Besides, when rikedle is inserted in the
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phantom tissue, it can collide with and move onenore beads. As a result, it
was decided that markers need to be placed orutfece of the tissue rather than
inside it. Ink markers did not work well because tissue would absorb and
spread them after a few weeks. Eventually, we exetdn markers made of

mechanical pencil lead on the tissue surfaceFgget.2 (right).

4.2.3 Digital Camera

In our experiment, we need an imaging system foasueng needle deflection
and tissue deformation. It is clear that the magbartant factor in selecting a
camera in this application is its frames-per-secondge acquisition rate. The
sampling frequency for applying the control signai depend on this image
acquisition rate. In our setup, we started withnapte USB-compatible webcam
and then upgraded to an IEEE 1394b digital cam¢€D(Sx90CR from Sony).
This camera, shown iRig. 4.3, is programmed in a multithread C++ enwinent
and is able to grab images at a rate of 30 frareesgrond. There are some other
research groups that use the same camera in #tepss Ultimately, the imaging
system available in the operating room, namely lemasound machine, has to be
integrated into our experimental setup as the imagethat remains outside the

scope of this thesis.

Fig. 4.3. XCD series digital camera

4.2.4 Force Sensor
In our experiment, the needle adjustment input ftom robot is a lateral force

applied on the needle. Although it is not necesdaryhave a force sensor
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measurement, we mount a force sensor on the robatseffector in order to
measure the applied force; the selected sensor6D@F force/torque sensor
from JR3, Inc. (Woodland, CA, USA) — sEg. 4.4. The force sensor can be used
in the future to infer the extent of needle deflattwithout using image[d.9].

Fig. 4.4. 6-DOF force/torque sensor

4.2.5 Grid Template

Before any brachytherapy procedure, there is apgmbive planning stage in
which the medical team determines desired positiotsde prostate for
depositing the radioactive seeds. In current dihpractice of brachytherapy, the
surgeon uses a grid template like the one showgn4.5 to find the right entry
point for the needle in each insertion. This tengkso helps the surgeon’s hand
to remain steady during the needle insertion. WEhei using the same template

in our experimental setup.

Fig. 4.5. Gridded template currently utilized in an OR

4.2.6 Robot

In the proposed semi-automated needle insertioararpnt, the lateral force is to
be applied by a robot. Therefore, a 3-DOF PHANTadbat from SensAble
Technologies/Geomagic, Inc. (Wilmington, MA, USA) used. This robot has
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three revolute joints that can translate its eridetdér in three orthogonal
directions.Fig. 4.6 shows the PHANToM robot with a JR3 sersttached at its

end-effector.

Fig. 4.6. PHANToM robot

4.2.7 Needle Holder
We need to attach the needle to the robot endteffdeor this reason, a small
needle holder attachment for the robot end-efferstatesigned that has a small

hole through which the needle passes.

4.2.8 Needle

We utilize standard, bevel-tip, 18-gauge needkg. (4.7) from Worldwide
Medical Technologies, Inc. (Oxford, CT, USA), whiale for clinical use. While
most other research groups use super-flexible asgdihich are not used
clinically for prostate implantation, to be able tdemonstrate tangible
performance improvements, our choice of needleske#p us aligned with the
current clinical practice. Understandably, this nayimes come at the cost of
less dramatic performance improvement going frormumb to robot-assisted

insertion.
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Fig. 4.7. 18-gauge bevel-tip brachytherapy needles.

4.2.9 OpenCV

We require real-time image processing for calcatatioth needle deflection and
tissue deformation from a live stream of video iemgFor this aim, the open
source C/C++ computer vision library (OpenCV) seengood optiorj61]. This
library is a collection of C functions along witHew C++ classes and is intended
for real-time applications. It can be used for aggg images/videos, processing
them, and data manipulations such as memory altocatlease, conversion, etc.
OpenCV accepts file and camera based inputs aedtldirvorks with matrices
and vectors. Some of basic image manipulations agdiitering, edge detection,
and corner detection possess dedicated functioils mlore image manipulations
can be done by combining these basic commandsoMamalysis (optical flow,
etc.), object recognition, and image labeling (linenic, polygon, text drawing)
are commonly used features of OpenCV. In our apptio, we use the functions
for template matching and Hough transform. In te&trsection, the algorithms
we have used for tissue deformation and needleed&fh measurement are

explained.

4.2.10 Image Processing

4.2.10.1 Hough Transform
Hough transform approximates the parameters ofapesiseen in an image
from its boundary points. For instance, a line ifirted by two normal

parametersr as the distance between the line and the origith@fcoordinate
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system, and as the angle of the vector from the origin to tiasest point on the
line; seeFig. 4.8 (left). In this way, a line is parametedzby two values in polar
coordinates; this is sometimes called the Hough cespaUsing this
parameterization, the line equation i8 = xcos@ + ysinf. The lines that go
through an arbitrary point with coordinates, (yo) on the image plane are
described byr = x,cos6 + y,sin6. Plotting this for a number of points on the
line, one can plot the relationship between the paxameters aof andé; seeFig.
4.8 (right). Evidently, the pair of parameterandf through which the maximum
number of sinusoidal curves pass represent thewmerave been interested in
detecting.

In contrast to the analytical shapes, the procetiur@aon-analytical shapes is
complicated. For this case, incremental strateggrag dynamic programming
should be applied. Readers are referref2p for more information as this is not

the case for our application.

Fig. 4.8. (Left) Parameters describing a line. (Right) A Howsgpace grapf5].

The Hough transform algorithm usually requires s@reprocessing such as
edge detection or thresholding. In our experimignthay seem that thresholding
should be enough given that we use camera image=aoh of ultrasound images.
However, there are some implementation problemstallighting (illumination)

issues.

4.2.10.2 Lighting Issues
In our experimental set up, the material that sdu®r the phantom tissue has

a very reflective surface that causes serious feremce with the image

57



thresholding stage. To solve this, we use an adaptiresholding level, which is

roughly calculated based on the average intensigyl pixels.

4.2.10.3 Template Matching

Template matching is an image processing techrfiquebject tracking. In our
experiment, to detect the points marked on a pharissue for tracking tissue
deformation, a solution is applying template matghiwhich finds areas of an
image that are similar to a template image. To@or® need two components: a
source image and a template image. The formerisntage in which we expect
to find areas that match the latter. This is dogesliding the template image,
which is commonly in a smaller size than the soumage, over the source
image. As the template moves one pixel at a tinge,(om left to right and up to
down), at each location, a similarity metric isccéééted to represent how similar
the template is to that particular area of the e®umage. After scanning the
whole source image, for each location of the tetepla matrix of similarity
metrics will be available. According to that matrtke closest match between a
particular template-size area of the source imagetlae template is located.

In OpenCV coding, the function minMaxLoc locate® thighest or lowest
value in a similarity matrix. There are differegpés of template matching based
on the definition of the similarity metric. Someaglable methods are as follows:

CV_TM_SQDIFF: sum of squared differences

CV_TM_SQDIFF_NORMED: normalized CV_TM_SQDIFF

CV_TM_CCORR: cross correlation

CV_TM_CCORR_NORMED: normalized CV_TM_CCORR

Template-matching algorithm is time consuming & #ize of the source or the
template image is big. A generalized version of tmethod, fast template

matching, can be applied instead as in the follgwin

-Both target and source image are down sampledansiiected rate.
-Regular template matching algorithm is appliedf@shrunken images.
-After the best locations are found (using a defisgnilarity metric), for

each point where a maxima was located:
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*Qriginal source image is searched at and arouatibint in both
x and y direction
-If similarity score is above a defined threshdlik location and score
are saved.

In our experiment, the phantom tissue is marked igrid pattern, which is
expected to be tracked by fast template matchiogieler, the needle path is also
visible in each image frame. For applying templatgching, we need to first get
rid of the needle’s track in the images since itynock some of the tissue
markers. Therefore, in the sequence of collecteegliback data, we first find the
track of needle and then, after subtracting thainfthe original image, we apply
the fast template matching method for trackinguesdeformationFig. 4.9 and
Fig. 4.10 show the results of template matchingtdadgh transform on a sample

frame in our experiment, respectively.

Fig. 4.9. (Left) template image. (Right) Result of templatataming on the gridded phantom
tissue. The red spots show the identified centeach marker on the tissue.
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Il Contours

Fig. 4.10.Hough transform algorithm has detected the needle.

Template matching was not very successful in opearments. The reason is
that we made the tissue marking by hand and thdtirgs markers are not all
similar to the template. Since the success of #hgorithm depends on how
similar the markers are to the template, sometifadsires happen. In the

following, another approach for tracking tissueadefation is discussed.

4.2.10.4 Morphological Techniques

Morphological operators are formulated in termsets. They accept as inputs
a binary image and a structuring element and coentsiem using a set operator
(intersection, union, inclusion, complement). Comigeused morphological
functions are dilation, erosion, opening and clgsiilation is an operation that
is used to grow or thicken an object as controldgdthe shape of structuring
element. In fact, the effect of the dilation operain a binary image is to enlarge
the boundaries of regions of foreground pixels ®/ibles within those regions

become smaller. In contrast, erosion shrinks arstbbjects in an image.
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Depending on an original image and the shape aedsity of an object that
we are searching for, the right combination andragement of morphological
operators should be found. Fig. 4.11 shows thaltre$ using morphological
method for finding the center of markers in thengben tissue.

In terms of run time, morphological methods areteiaghan the template
matching algorithm. In contrast, they are sensitovéhe structuring elements and
the sequence of applying various operators on agémFor instance, we will
have quite different results if first apply “opeginand then “erosion” as
compared with first “erosion” and then “openinffig. 4.12 shows the sequence

of operations we apply on image frames for caltudgthe feedback signal.
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Fig. 4.11.Result of morphological methods on the phantornués3he red spots are enlarged for
more visibility, showing the center of each mar&erthe tissue.

4.2.11 PHANToM Coding

The premium PHANTOM robot, which will be in chargé applying lateral
forces on the needle in our experiment, has a maxigsampling rate of 1000 Hz.
However, the camera provides images only at a oate0 frames per second.
Besides, we need some time for image analysistbthe needle deflection and
tissue deformation. Thus, we need to run the r@bcd much lower sampling

frequency.
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Fig. 4.12. Sequencesf operation on image frames ftracking the needle arissue marker

The lateral forceapplied by the robcis in only one axigerpendicular to th
needle’s lengthin the other two directions, the robot mustposition contrced
so that it does not mo. We apply proportional positionontrol in these two
directions. TheVisual Studio (C/C++) code for ouPhantom robc« can be found

in Appendix C.

4.2.12 Control Strategy

A metric representing tissue deformation is calculated fr@werage
displacement®f centes of each marker between twabsequenimage frames.
In addition, another meic is calculated based on the neeslig) distance fronan
imaginary unbentneedlt in each image frameThese two metrics are th
combinedto be used ¢ the feedback measurement (error signady the contro
strategy, we use two different approa¢ one iswhat we nameincremental
control and the othas proportione control.

The flowchart of incremental control is depictet Fig. 4.13 In this control
strategy, there are differethresholds. The lateral force anly updated in a
sampling intervaif the error signal is bigger than Thresholdid fact. if the error
signal is not bigger than Threshol, thelateral force will remaint the value in
the previoussampling interve. The reason for this that due to the nse and

image processintaccuraciescoming fromillumination discrepanci¢ discussed
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before, small error signals do not necessarilyespond to meaningful changes in
the needle deflection and tissue deformation measemts. On the other hand, if
the error signal is bigger than Threshold 1, teresignal is checked with respect
to its value in the previous sampling interval &e gf the difference exceeds
Threshold 2 or not. This margin is used for the saeason for which Threshold 1
is used. If the change in the error signal is bigugh, the lateral force will be
incremented by some constdmtMeanwhile, there is a maximum on the lateral
force (Threshold 3) which is enforced in each samgpinterval. Obviously, the
downside of this method is having too many thresheVels that are selected by

trial and error.

4.2.13 Experimental Results

In this part, the results of different experimenfssemi-automated needle
steering in a closed-loop feedback control strectre discussed. Fig. 4.14 shows
the experimental set up. All the experiments weehdane can be categorized into
two main categoriesuincontrolled experimenigvolving needle insertion without
any compensation, andontrolled experimentsvhere the robot operates in a
feedback loop and applies lateral forces. Thesegrmaps of experiments were
performed for four different conditions: constarglocity insertion with three
different speeds5(10 and15 mm/s) using a linear stage, and manual insertion.
To have a comparison between the two control agpesa (incremental control
and proportional control) the experiment with theloeity of needle insertion
equal to10 mm/s is repeated for both of them. The rest ofeerpents are
implemented using the incremental control methdg.on

In order to collect data from different conditiom®ch experiment is repeated
10 times in different locations of the grid templaDuring the manual insertion,
the human operator is asked to keep his/her insegpeed as consistent as
possible. For this study, needle is inserted teeptld of 10 cm holding the tip
bevel at 0 degrees with respect to the plane ofllaemsertion. It should be
mentioned that each sampling interval takes 150@asged on the required time for

capturing an image and processing it.
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Table 4.1 summarizes the outcomes of this studynudthbers in this table a
averages of position errors reported in [sin ten experiments. The last colul
shows the percentage of improvement with -automated, ima¢-based
feedback control with respect to uncontrolled insert

v

Previous frame
calculations

Is error signal
> threshold 1?

NO Is error signal minus

error signal in previous
sampling interval >
threshold 27

Keep the previously
applied lateral force for
the current sampling
frame

Apply the lateral
force equal to the
previous value plus

constant b

Fig. 4.13.Incremental control strategy based on the imageahi@ek

Fig. 4.14. Semiautomate needle steering setup.

For a better statistical comparison between twesas uncontrolled (ope-
loop) andcontrolled (cosed-loop) experiments, we applied &%t on theresults
of the ten experiments. -test compares the difference between two mear

relation to the variation in the di, which is often expresseay the standard
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deviation. Defining the null hypothesis a®an = mean and an alternative one
as mean > mean, where mean and mean were average errors in the
uncontrolled and controlled experiments, all thesuhs rejected the null
hypothesis except for 15 mm/s insertion, which efdilto reject the null
hypothesis. The probability of the results were 0.016 (for 5 mm/s insertion
and incremental controllerp = 0.015 (for 10 mm/s insertion and incremental
controller),p = 0.04 (for 10 mm/s insertion and proportionaltcolter), p = 0.046
(for 15 mm/s insertion and incremental controlleydp = 0.032 (for manual
insertion and incremental controller). This indestthat there is indeed a
significant difference between the two mean values.

From Table IV, it is found that increasing the \eilp of insertion leads to
lower errors. In contrast, for the controlled exments, increasing the velocity of
insertion is equivalent to less number of images,(error signal updates) across
the total time of insertion, which leads to lessgftent and timely control. The
reported percentage of error improvement repomethe third column of Table
IV shows this fact. In addition, it is concludedttihe proportional control gives
better results than the incremental control oncecarapare the second and third
rows of the table.

Table IV. Results of experiment in 10 cm needieition depth with different methods. The error
signal in pixels is shown in the table.

Robot OFF | RobotON |  hercentage of
) improvement
Insertion method (uncontrolled)| (controlled)
Linear stage with constant velocity of (5 22 8 63.63
mm/s

Linear stage with constant velocity o 12 6 50

10 mm/s
Linear stage with constant velocity o
10 mm/sec and proportional controllgr 15 4 73.33
Linear stage with constant velocity o 11 12 -9.09

15 mm/s

Manual insertion 22 17 22.72
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The objective of this project was to identify th#iaency, accuracy, and
reliability of seed placement ibrachytherapy. This requires knowledge of the
dynamic behavior of needle insertion system in otdestudy possible control
strategies for minimum seed placement errors. Toexea Lagrangian-based
approach to dynamic modeling of a flexible needlsoft tissue was proposed in
Chapter 3.

The novelty of the study in Chapter 3 is in coesiag feasible control inputs,
namely needle insertion force along its length docjue around an axis
perpendicular to the needle deflection plane. Tdteed input in template-free
robotic insertion can be argued to have a simili@ceas the lateral force applied
by the surgeon in template-based manual insertioteims of correcting the
needle path. The proposed dynamic model can bexgadato comply with
generic dynamics of serial robots and involves mlaygparameters of the needle
such as its Young's modulus as well as modelssstig# and needle/tissue friction.
This type of formulation is beneficial since it &hes one to use most of the
control strategies designed for serial robotsligs heedle insertion application. In
the proposed dynamic model, physical and modeteelgparameters can be
estimated by system identification methods. We iagpdeveral tests on phantom
tissues and extracted both a tissue model paramaetethe needle/tissue friction

model parameters.

Before any controller design for the system in Gbeea@8, we investigated
properties of the derived dynamical model includiihg controllability and
observability. We came to the conclusion that fe proposed dynamic model,

the linearization around most of operating poings bioth controllable and
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observable. Then, the closed-loop system with sevelynamics control and PID

control was simulated.

While the final, long-term goal is fully-automatededle insertion as pursued
in Chapter 3, in the short term it is attractive nwake it possible for a
brachytherapist to manually insert the needle wielgeiving robotic assistance
for adjusting other motions of the needle; we chllhis semi-automated
brachytherapy in Chapter 4. For experiments in thapter, a prototype of a
needle steering setup was built in the lab witHimoally-used needle and grid
template in order to closely follow the actual @dare of brachytherapy. We did
two groups of experiments: needle steering in @andpop manner (uncontrolled
experiments) and needle adjustment during manws#rtion in a closed-loop
control manner under image feedback (controllecearpents). The second group
of experiments was done using two different contthtegies: incremental
control and proportional control. In both contrdllexperiments (i.e., under
incremental control and under proportional contrible needle insertion was done
with constant velocities (except for one experimanthich the insertion velocity
was variable) and all other experimental conditistash as needle insertion depth,
bevel angle, and phantom tissue were kept the s@fewvere able to show that
semi-automated needle steering in a closed-loofraosystem can improve the

needle tip position accuracy compared to regularuabneedle insertion.

5.2 Future Work

Following Chapter 3, the proposed dynamical modehe flexible needle in
soft tissue can be used for various model-basettaitan designs for steering the
needle. Fig. 5.1 shows a possible framework ftururesearch on model-based
needle steering. The needle/tissue system cordfisteo blocks: the needle’s
dynamics and geometry and the prostate’s deforihalsiharacteristic. To steer
the needle, the control system uses feedback aigbdle base’s position in axial
and torsional directions. On the other hand, ttered velocity of the needle base
is calculated from an optimization routine that mmizes tissue deformation and

needle deflection — future work can focus on dewielg this optimization routine.
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Fig. 5.1. Proposed control method using the derived dynamicatel of the needle-tissue
system in Chapter 3.

In Chapter 4, while by default the PHANToM roboslesampling period of 1
ms, we had to lower the sampling rate due to tiaetasampling rates for image
acquisition and processing. This was a restricéind remains to be improved in
the future via multi-threaded C/C++ programmingtstitat the robot control loop
and the image acquisition/processing loops runaialfel. There were also other
limitations we faced in the closed-loop controltsys including the sensitivity of
the algorithm for tissue deformation measuremeiickvinvolved thresholding,
to the ambient illumination. Eventually, we opteaxt fnorphological operations
that are more robust against lighting conditionthmroom. Another experimental
setup-related limitation that requires enhancenierthe future is a repeatable
way for placing landmarks in phantom’s tissues;enity, we have to use the
same tissue for all experiments despite the faat ¢éach needle insertion makes

irreversible cuts to the tissue. Lastly, the curre@ontrol strategy in our
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experiment is based on feedback from camera im&ggsre work can focus on

using ultrasound images as used in the operatmg.ro

In Chapter 4, we concluded that automatically-gateer lateral forces on the
needle could make proper adjustments to the needliech a way that the needle
tip followed the desired straight path. For futusmerk, one can also take
advantage of the beveled tip of needles for mdieiefit deflection minimization.
Since the bevel angle is one of the causes of eegellection, changing the
rotational location of the bevel with respect te tieedle’s longitudinal axis can
be a way of compensating for unwanted needle deffex A rotary motor
mounted on the needle guide can be used for rgtdianneedle around its axis. In
this scenario, the insertion is still done manuallyile the rotary motor adjusts
the bevel location in order to minimize the neat#d@lection. Upon success of this
strategy, one can combine two compensations —atteeal force applied by the

robot and the bevel location adjustment by theryatsotor.

Eventually, for the fully-automated needle steeegnario, the framework in
Fig. 5.2 can be worked on further. In this scemaneedle insertion and all other
adjustments such as bevel rotation and/or laterakfexertions are automatically
applied by a control system. Again, imaging fee#bean be used for the needle
control. The control strategy can be model-basednon-model-based as

explained below.

5.2.1 Closed-loop Needle Control Strategies

5.2.1.1Model-based Structures

A model-based control strategy suitable for ourliappon is adaptive control
given that the tissue and the needle cannot be letbgeecisely. In fact, control
methodologies that ensure robustness are welcodigoad as there will always
be uncertainties in the modeling due to differaesue structures and needle
parameters. In most control structures, designingpraroller requires a state-

space representation of the system. In the nesdleet system, however, not all of
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the states are measurable and thus developing @gieo state observers is

recommended.

Lab setup Translation and rotation of needle base

L Forceftorque
sensor
Prostate

Velocity
commands

X ' ‘ Ultrasound
M proble ‘ DC rnolor!or

‘ axial rotation PHANTOM 1.5A robot for translation
in three orthogonal directions

|
} ‘ Force/torque measurements (F)
|

Bladder |

L Needle deflection measurement (X)
Tissue deformation measurement (D)

Fig. 5.2. Fully-automated needle steering.

5.2.1.2Non-model-based Structures
Similar to model-based controllers, this categofrycantrollers needs image-

based measurement of feedback signals. One apgprontrol approach is

fuzzy control, which is built on logical rules. AiAzy controller tries to map a

logical input variable via a membership set intéogical output variable. The

main flexibility of a fuzzy controller is that theet of rules can be changed or
adaptively updated throughout the procedure. Fueamtrollers have close

resemblance to the way a human applies control.ifidtemental control strategy
that we applied in Chapter 4 has some resemblanti@g as it tried to simulate

the way that surgeons decide about the level diexpfateral forces.

Another suitable intelligent controller is artifadi neural networks, which
demonstrate adaptability to different operatingditbons. A neural network can
learn the properties of the system. Genetic algaritant colony optimization
algorithms, etc. are other examples of non-modskda intelligent control

approaches that can be implemented for closed+#eeqle steering.

5.3 Clinical Limitations

Similar to other robot-assisted, image-guided chhi procedures, in
brachytherapy we should consider all practical thtons imposed by the
operating room settings. Further studies can bees donfind the best control
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strategy in operating room conditions. Finally, tbeation of the template, which
is placed somewhere between the surgeon’s handhangiatient’'s tissue, can be

optimized to yield minimum needle tip positioningaes.
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Appendices

Appendix A: Elements of M and N matrices

In this appendix, the elements of matriXéég) andN(q, ¢) in Section 3.2.2 are
shown. The vectar is defined as
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Appendix B: Estimation of the Young’s modulus of
a flexible needle

Following is an experimental procedure for findihg Young’s modulus of a
flexible needle used in brachytherapy. By applyiifterent weights to the distal
end of the needle that is held horizontally, déftets of the needle’s tip are
reported in the table below. We have the followief@tion between the applied
force and deflection:

_ 4mgl®
wt?

whereE is the Young's modulud, is the effective length of the needie,is the

deflection at the needles tip,= 9.89 is the gravity constant, and= 1.27 mm is
the diameter of the needle. The observed variatiorthe estimation of the
Young’s modulus E is because the theoretical mdidehot consider the fact that

the needle is hollow.

L(mm) w(mm) m (kg) E (Gpa)
19.3 10.08 0.024 242.19
18.2 11.7 0.024 188.59
17.1 11 0.024 165.90
16.1 10.3 0.024 147.40
19.3 18.3 0.033 196.78
18.2 17.5 0.033 172.87
17.1 16.7 0.033 150.55
16.1 16.7 0.033 125.66
19.3 33.3 0.083 272.22
18.2 32.5 0.083 234.13
17.1 30 0.083 210.37
16.1 25.8 0.083 203.90
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Appendix C: Phantom robot’s codes
This appendix contains the Phantom robots’ codegxperiments in Chapter

4. Each section is separated by a comment lin@lies before it starts.

Include general libraries and header files

#define WIN32_LEAN_AND_MEAN
#include “stdafx.h"

#include <iostream>

#pragma comment(lib, “winmm.lib")
#pragma comment(lib, “wsock32.lib")
#include <windows.h>

#include <mmsystem.h>

#include <fstream>

#include “conio.h"

#include “stdio.h"

#include “math.h"

HANDLE pEvent;

#include “MyRealTimeDefs.h"

#define Ts 150sampling time in mille sec
#define MIN(al,bl) (@l <=Dbl)*al + (al>bl)¥)b
#define MAX(al,bl) (@l <=bl)*bl + (al > blxl)

Include standard OpenCV headers

#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
using namespace cv;
using namespace std;

#include <sstream>
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Robot and force sensor definition

#define FORCE_SENSORS
DWORD start,startl, stop, finishO, finish, Time,, TR, T3, T4,T5, T6;
HHD hHD1, hHD2;

Initializations

int k1=0, R=0;

int counter=0;

int T=0;
int i=0, j=0;
int ii=0, v=50, L=0, ch=0;

int Datalndex = 0;

const int memlength = 200000;
float pT[memlength];

float pxm[memlength];

float pym[memlength];

float pzm[memlength];

float vxm[memlength];

float vym[memlength];

float vzm[memlength];

float fxm[memlength];

float fym[memlength];

float fzm[memlength];

float Xr[1000];

float Yr[1000];

float Xc [1000];

float Yc [1000];

const int BufferLength = 1gelay in ms
float BufferPos_m|[3][BufferLength];

float forcesensor0_x[memlength];
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float forcesensor0_y[memlength];

float forcesensor0_z[memlength];

CvMat *dots = cvCreateMat (3,2,CV_32FC1);
CvMat *dots1 = cvCreateMat (3,2,CV_32FC1);
int k=0;

Mouse handler event definition

void mouseHandler(int event, int px, int py, irdadk, void *param)
{
switch(event)

{
left button down
case CV_EVENT_LBUTTONDOWN:
CV_MAT_ELEM (*dots,float,k,0) = px;
CV_MAT_ELEM (*dots,float,k,1) = py;
if (k==0) {fprintf(stdout, “Needle entry point (%d&b6d).\n,” px, py);}
if (k==1) {fprintf(stdout, “click on one of the ds (%d, %d).\n,” px, py);}
if (k==2) {fprintf(stdout, “click on onother poimeighbor of the first dot
(%d, %d).\n,” px, py);

}

k++;

break;

switch(event)
{
case CV_EVENT_RBUTTONDOWN:
k++:
cvDestroyWindow(");
break;
}

}
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For finding the needle entry point in the croppethge

void mouseHandlerl(int event, int px, int py, ilags, void *param)
{
switch(event)
{
left button down
case CV_EVENT_LBUTTONDOWN:
CV_MAT_ELEM (*dots1,float,k,0) = px;
CV_MAT_ELEM (*dotsl,float,k,1) = py;
if (k==0) {fprintf(stdout, “Needle entry point (8o %d).\n,” px, py);}
k++;
cvDestroyWindow(™);
break;

}

switch(event)

{

case CV_EVENT_RBUTTONDOWN:
k++;

cvDestroyWindow(");

break;

}

Main loop

int _tmain(int argc, _TCHAR* argv[])

{

ofstream DataFile;
DataFile.open("c:\\NonMdICntr_Oct25.txt");
HHD hHD1;

hduVector3Dd pos1;

hduVector3Dd gimbalAngle;
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hduVector3Dd jointAngle;
hduVector3Dd v1,

hduVector3Dd forcel,

hduVector3Dd init_pos;

forcel = hduVector3Dd(0,0,0);

init_pos = hduVector3Dd(0,0,0);

float xRef=0,yRef=0,zRef=0, theta, rho;
int A=1,;

int ih=0;

Definition and initialization of local variables

Iplimage *imgo; First frame

Iplimage *img; frames in the loop

Iplimage *img_1; grayscale from img

Iplimage *img_n; normalizd

Iplimage *img_n_gama, gama normalized

Iplimage *img_n_dsp; for displaying only

Iplimage *img_op; opening

Iplimage *img_cl; closing

Iplimage *img_er; Eroded

Iplimage *img_diff; Difference

Iplimage *img_can; canny function

Iplimage *img_tr; threshlded

Iplimage *img_t; threshlded

Iplimage *img_t2; second threshold to find a needle
Iplimage *img_2; pattern as white pixels
Iplimage *color_img; used for hough transformation
Iplimage *color_img_t; colored thresholded

Iplimage *tpl;

Iplimage *res;

Iplimage *cnt;
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IplConvKernel *shape_er;

IplConvKernel *shape_di;

IplConvKernel *shape_op;

IplConvKernel *shape_cl;

IplConvKernel *shape_g;

IplConvKernel *shape_th;

Mat frameO;

Mat frame;

Mat imagMat;

Mat img_nMat;

CvMat *Xr=cvCreateMat(1,1000,CV_32FC1);

CvMat *Yr=cvCreateMat(1,1000,CV_32FC1);

CvMat *EX=cvCreateMat(1,1000,CV_32FC1);

CvMat *EY=cvCreateMat(1,1000,CV_32FC1);

CvMat *D =cvCreateMat(1,1000,CV_32FC1);

CvPoint minloc, maxloc,p, ptl, pt2;

CvMemStorage *storage;

CvMemStorage *storage_h;

CvSeq *contour,

CvSeq *lines=0;

CvScalar S,Z;

double minval, maxval,Xsum=0,Ysum=0, ex=0, eya&0), xO;
double y0, slp, e=0, ex_c=0, ey _c=0, e_c=0, etilance=0;
double total_old=0, fz_old=0.5, total=0, L_ins%0jns=10, def=0;
float w,h,C_Out_x, C_Out_y, C;

Real time performance-timer

HighPriority();
pEvent = CreateEvent(NULL, TRUE, FALSE, “Interrugtg
SetUpTimer();
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Robotprepare for actuating

hHD1 = hdInitDevice("ROBOT");
hdEnable(HD_FORCE_OUTPUT);
hdStartScheduler();

MMTIME current_time, start_time;
startl= timeGetSystemTime(&current_time, sizeof(MME));

startl= current_time.u.ms;

Open the image frame

VideoCapture capture(0);

cvNamedWindow(,” CV_WINDOW_AUTOSIZE);,
while (k<4)

{

capture >> frame;

img0 = new Iplimage(frame);

cvShowlmage(,””img0);

cvWaitKey(33);

cvSetMouseCallback( ,” mouseHandler, NULL );

}

distance=sqgrt((cvmGet(dots,1,0)-cvmGet(dots,2,8{Get(dots,1,0)-
cvmGet(dots,2,0))+(cvmGet(dots,1,1)-cvmGet(dot3)2dvmGet(dots,1,1)-

cvmGet(dots,2,1))):;

Crop and ask for the needle entry point in the pebimage

img = cvCreatelmage(cvSize(img0->width, img0->heighmgO->depth, 3 );
cvCopy(img0,img,NULL);

CvRect rect = cvRect (cvmGet(dots,0,0),cvmGet(0gt$;100,img->width-
cvmGet(dots,0,0),200);

cvSetimageROI(img,rect);
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cvCopy(img,img,NULL);
k=0;

while (k<1)

{
cvShowlmage(,
cvWaitKey(33);
cvSetMouseCallback( ,” mouseHandlerl, NULL );

}

img);

Main control loop infinite times (till needle istadly inserted)

while('kbhit())

{

T1=timeGetTime();

long status = WaitForSingleObjectEx(pEvent, Ts, B&);//(pEvent, 1 * Ts,
TRUE)

ResetEvent(pEvent);//return to non-signaled state

finish= timeGetSystemTime(&current_time, sizeof(MMIE));

finish= current_time.u.ms;

Reading camera through the loop

capture >> frame;

img0 = new Iplimage(frame);

Pre-Processing level 1

img = cvCreatelmage(cvSize(img0->width, img0->heighmgO->depth, 3 );
cvCopy(imgO0,img,NULL);

CvRect rect = cvRect (cvmGet(dots,0,0),cvmGet(8¢i3;100,img->width-
cvmGet(dots,0,0),200);

cvSetimageROI(img,rect);

cvCopy(img,img,NULL);
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cvtColor(img,imagMat,CV_RGB2GRAY,0);
img_1 = new Iplimage(imagMat);

Pre-Processing level 2

img_n = cvCreatelmage(cvSize(img_1->width, img_Zfght ),
IPL_DEPTH_32F, 1);

img_n_dsp = cvCreatelmage(cvSize(img_n->width, imgheight ),
IPL_DEPTH_32F, 1);

cvNormalize(img_1,img_n, 0.0, 255.0, CV_MINMAX);
cvConvertScale(img_n,img_n_dsp,0.003921,0.0);008921=1/255
img_n_gama = cvCreatelmage(cvSize(img_n->width, imgheight
),IPL_DEPTH_32F, 1);

cvConvertScale(img_n, img_n, -0.0031, 0.0); //0&R8/255
cvExp(img_n,img_n_gama);

cvConvertScale(img_n_gama,img_n_gama,-1.1458,1)2577

Pre-Processing level 3

cvConvertScale(img_n_gama, img_n_gama, 255, 0.0);
img_nMat=cvCreateMat(img_n->height, img_n->width,C32FC1);
img_nMat=cvarrToMat(img_n_gama);

int(img_nMat.data);

img_n_gama = new Iplimage(img_nMat);

img_t = cvCreatelmage(cvSize(img_n_gama->width, imgyama->height ),
IPL_DEPTH_8U, 1);
cvThreshold(img_n_gama,img_t,80,255,CV_THRESH_BINAR

img_tr = cvCreatelmage(cvSize(img_n_gama->widthg im gama->height ),
IPL_DEPTH_8U, 1);

cvSubRS(img_t,cvScalar(255),img_tr);

color_img_t = cvCreatelmage(cvSize(img_n_gama->wigthg n_gama->height
), IPL_DEPTH_8U, 3);
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cvCvtColor(img_tr, color_img_t, CV_GRAY2BGR );
img_2 = cvCreatelmage(cvSize(img_1->width, img_Tight ),
IPL_DEPTH_8U, 3);

cvScaleAdd(img, cvScalar(1), color_img_t, img_2);

Pre-Processing level 4

cvtColor(img_2, imagMat, CV_RGB2GRAY,0);

img_2 = new Iplimage(imagMat);

img_t2 = cvCreatelmage(cvSize(img_1->width, img_Heght ),
IPL_DEPTH_8U, 1);
cvThreshold(img_2,img_t2,130,255,CV_THRESH_BINARY);
cvSubRS(img_t2,cvScalar(255),img_t2);
img_op=cvCreatelmage(cvGetSize(img_tr), img_tr-ttdgmg_tr->nChannels);
shape_op=cvCreateStructuringElementEx(1,1,0,0,C\AFHH ELLIPSE,NULL)
cvMorphologyEx(img_t2, img_op, NULL, shape_op, CVO®_OPEN, 100);

Hough Transformation

img_can = cvCreatelmage( cvGetSize(img_1), 8, 1);
color_img = cvCreatelmage( cvGetSize(img_1), 8, 3);
cvCanny(img_op, img_can, 0, 20, 3);
cvCvtColor( img_diff, color_img, CV_GRAY2BGR );flput can be either
img_can or img_diff
storage_h = cvCreateMemStorage(0);
lines = cvHoughLines2(
img_diff,storage_h,CV_HOUGH_STANDARD,1,0.5*CV_PI4,50,0,0);
if (lines->total!=0)
{

L=5;

for(ih = O; ih < MIN(lines->total,L); ih++)

{
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float* line = (float*)cvGetSeqElem(lines,ih);
rho += line[O];
theta += line[1];
}
rho=rho/MIN(lines->total,L);
theta=theta/MIN(lines->total,L);
if (abs(theta)>0.1745) //greater than 10 degre®isallowed!

{
theta=CV_P1/2;

}

a = cos(theta), b = sin(theta);
x0 = a*rho, y0 = b*rho;
slp=-a/b;
L_ins=L_ins+Ts*v_ins*0.001;
def=L_ins*abs(a);

ptl.x = cvmGet(dotsl,0,0);
ptl.y = cvmGet(dotsl,0,1);
pt2.x = cvRound(xO0 - v*(-b));
pt2.y = cvRound(yO0 - v*(a));
cvLine( img, ptl, pt2, CV_RGB(0,255,255), 1, 8 );

else

{
def=0;

}

llreset variables

rho=0;

theta=0;

if (lines->total>0 && v<img->width-10)
{
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V +=5;

Processing for tissue deformation

img_er=cvCreatelmage(cvGetSize(img_op), img_op-tudepg_op-
>nChannels);
shape_er=cvCreateStructuringElementEx(15,15,0,083APE_ELLIPSE,NUL
L);

cvErode( img_tr,img_er,shape_er,1);
img_op=cvCreatelmage(cvGetSize(img_tr), img_tr-tdgmg_tr->nChannels);
cvMorphologyEx(img_er,img_op, NULL, shape_op, CV_MGDPEN, 100);
img_cl=cvCreatelmage(cvGetSize(img_tr), img_tr->ttieimng_tr->nChannels);
shape_cl=cvCreateStructuringlementEx(5,5,0,0,C\VABE ELLIPSE,NULL);
cvMorphologyEx(img_tr,img_cl, NULL, shape_cl, CV_NROCLOSE,3);
img_diff=cvCreatelmage(cvGetSize(img_tr), img_trepth,img_tr->nChannels);
cvScaleAdd(img_tr, cvScalar(-1), img_cl, img_diff )

Tissue Deformation

contour = 0;
cnt = cvCreatelmage( cvGetSize(img_tr), 8, 3);
storage = cvCreateMemStorage(0);
int numcont=cvFindContours( img_tr, storage, &camisizeof(CvContour),
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
int n=0;
for(; contour != 0; contour = contour->h_next )
{

int i=0;

while(i<= contour->total-1)

{

CvPoint* p = CV_GET_SEQ_ELEM(CvPoint,contour,i);

Xsum += p->X;
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Ysum += p->y;,
i++;

}

Xsum=int(Xsum/contour->total);
Ysum=int(Ysum/contour->total);

if (Xsum<img->width && Ysum<img->height)

{

cvSetAt (img,CV_RGB(255,0,0), Ysum, Xsum);
}

cvADbsDIffS(Xr,EX,cvScalar(Xsum));
minMaxLoc (EX, &minval, &maxval);
ex_c=minval*minval;

cvADbsDIffS(Yr,EY,cvScalar(Ysum));
minMaxLoc (EY, &minval, &maxval);

ey_c=minval*minval;

cvMUl(EX,EX,EX);
cvMul(EY,EY,EY);
cvAdd(EX,EY,D);
minMaxLoc(D, &minval, &maxval);

e_c=sqrt(minval);

if (e_c> distance )
{
e c=0;
}
ex += ex_c;
ey +=ey_c;
e +=e_c;

Xr->data.fl[n]=Xsum;
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Yr->data.fl[n]=Ysum;
n++;
Xsum=0;
Ysum=0;
}

cvShowlmage( “Contours,” img);
cvWaitKey(33);

BEGIN WORKING WITH PHANTOM

hdBeginFrame(hHD1);

hdGetDoublev(HD_CURRENT_POSITION, posl);
hdGetDoublev(HD_CURRENT_VELOCITY, v1);
hdGetDoublev(HD_CURRENT_JOINT_ANGLES, jointAngle);
hdGetDoublev(HD_CURRENT_GIMBAL_ANGLES, gimbalAngje)

if (I==0){
//IRESTETING THE FIRST POINT
hdGetDoublev(HD_CURRENT_POSITION, init_pos);

}

Feedback from image analysing

C_Out_x=ex/numcont;
C_Out_y=ey/numcont;
C=e/numcont;
C=C*50/16;
ex=ey=0;
e=0;
xRef=init_pos[O];
yRef=init_pos[1];
forcel[0] = 0.125*(xRef-pos1[0]);
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forcel[1] = 0.125*(yRef-pos1[1]);

“total" is the tissue deformation (square root ainsof errors of center of the

counters with respect to tipeevious frame) plus needle deflection (in pixel).

total=(C+def)/2;

Control strategy: Proportional

if ((total-total_old)>0.5 && total<4)
{

forcel[2]=1*total;
total_old=forcel[2];

}

else

{

forcel[2]=total_old;

}

cout << “D=" << def << “\t"'<< “T=" << C << “\t"'<< “Out=" << forcel[2] <<
endl,

hdSetDoublev(HD_CURRENT_FORCE, forcel);

hdEndFrame(hHD1);

i++;

counter++;

Saving the variables at every cycle

if(Datalndex < memlength)
{

pT[Datalndex] = T;
pxm[Datalndex] = pos1[0];
pym[Datalndex] = pos1[1];
pzm[Datalndex] = pos1[2];
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vxm[Datalndex] = v1[O0];
vym[Datalndex] = v1[1];
vzm[Datalndex] = v1[2];
fxm[Datalndex] = force1[0];
fym[Datalndex] = forcel[1];
fzm[Datalndex] = forcel1[2];

}

else

{
cout << “NOT WRITING TO FILE PAST THIS POINT" << eifi

}

Datalndex++;
T2=timeGetTime()-T1;

/cout << “Time =" << T2 << endl;
R++;

} end of INF loop

Find the deflection from the last image when tleaps key is pressed

kl=getch();

while (k1!="a")

{
kl=getch();

}

if (k1="a")

{
k=0;
cvWaitKey(10000);
while (k<2)
{

capture >> frame;

img = new Iplimage(frame);
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cvShowlmage(,”"img);
cvWaitKey(33);
cvSetMouseCallback( ,” mouseHandler, NULL );
}
cout << “Final Def=" << cvmGet(dots,0,1)-cvmGet(sld,1)<< endl;
cvWaitKey(100000);
}
hdStopScheduler();
hdDisableDevice(hHD1);
KillTimer();

Writing the variables into a text file when the esiment is over

int ss;

for(ss = 0; ss < min(memlength,Datalndex); ss++)

{

DataFile <<

pT[ss] <<'\t' <<
pxm[ss] <<'\t'<<
pym][ss] <<'\t'<<
pzm[ss] <<'\t'<<
vxm(ss] << '\t' <<
vym][ss] <<'\t'<<
vzm[ss] <<'\t' <<
fxm[ss] << '\t' <<
fym[ss] <<'\t'<<
fzm[ss] << \t' <<
endl;

}

return O;

}
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