
University of Alberta

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

ENTERPRISE: AN INTERACTIVE GRAPHICAL
PROGRAMMING ENVIRONMENT FOR DISTRIBUTED

SOFTWARE DEVELOPMENT

by

Enoch Chan
Paul Lu

Jimmy Mohsin
Jonathan Schaeffer

Carol Smith
Duane Szafron
Pok Sze Wong

Technical Report TR 91-17
September 1991

- 1 - Enterprise Technical Report TR91-17

Enterprise:

An Interactive Graphical Programming Environment

For Distributed Software Development

Enoch Chan
Paul Lu

Jimmy Mohsin
Jonathan Schaeffer

Carol Smith
Duane Szafron
Pok Sze Wong

Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

{duane, jonathan}@cs.UAlberta.ca

ABSTRACT

Workstation environments have been in use for more than a decade now. Although a network

of workstations together represents a large amount of aggregate computing power, single users

often cannot utilize these resources for their applications. Enterprise is a programming environment

for designing, coding, debugging, testing, monitoring, profiling and executing programs in a

distributed hardware environment. Enterprise code looks like familiar sequential code; the

parallelism is expressed graphically. The system automatically inserts the code necessary to handle

communication, synchronization and fault tolerance, allowing the rapid construction of correct

distributed programs. Enterprise programs run on a network of computers, absorbing the idle

cycles on machines. The system supports load balancing, limited process migration, and dynamic

distribution of work in environments with changing resource utilization. Enterprise offers a cost-

effective method for increasing the productivity of programmers and the throughput of existing

resources.

KEY WORDS: Distributed computing, parallel programming, programming environments,

message passing, software engineering.

- 2 - Enterprise Technical Report TR91-17

1. Introduction

Workstation environments have been in use for more than a decade now. Although a

network of workstations together represents a large amount of computing power ("the network is

the supercomputer"), single users often cannot utilize this power for their applications. In contrast

to familiar sequential software that executes on a single machine, distributed software allows user

applications to execute on many computers at once. Distributed software offers many advantages:

• programs potentially run faster, so the user spends less time waiting and more time

working,

• combining the resources of several low-cost workstations can eliminate the need for

more costly, high performance computers, and

• utilizing the processing time of idle workstations can reduce the total number of

workstations needed by an organization.

However, writing distributed software is often perceived as a complicated endeavor. The

design, implementation and testing of parallel software is considerably more difficult than

comparable sequential software. Although for a large class of problems research has been done to

develop efficient parallel algorithms, more often than not, these solutions do not find their way into

practice. Finding a good parallel solution to a problem may only be a small fraction of the cost of

implementing it. The majority of the costs usually results from taking into account concerns not

found in the sequential environment, such as synchronization, deadlock, communication,

heterogeneous computers and operating systems, and the complexity of debugging and testing

programs that may be non-deterministic due to concurrent execution.

 Further, harnessing the computing power of a network of machines poses some interesting

problems. First, the processors available to an application and their capabilities may vary from one

execution to another. Second, communication costs may be high in such an environment,

restricting the types of parallelism that can be effectively implemented. Third, users do not want to

become experts in networking or low-level communication protocols to utilize the potential

parallelism. There are few systems that are aimed at providing shared processing power in a

workstation environment, while taking into account the constraints of the environment and the

user. There is a need for a mechanism that can be used to produce parallel and distributed software

quickly, economically and reliably to take advantage of the untapped potential of idle workstations.

- 3 - Enterprise Technical Report TR91-17

This mechanism must bridge the perceived complexity gap between distributed and sequential

software, without forcing the user to undergo extensive re-training.

Enterprise is a programming environment for designing, coding, debugging, testing,

monitoring, profiling and executing programs in a distributed hardware environment. Enterprise

code looks like familiar sequential code since the parallelism is expressed graphically. The system

automatically inserts the code necessary to handle communication, synchronization and fault

tolerance, allowing the rapid construction of correct distributed programs. This bridges the

complexity gap between distributed and sequential software. Enterprise programs run on a network

of computers, absorbing the idle cycles on machines. The system supports load balancing, limited

process migration, and dynamic distribution of work in environments with changing resource

utilization. Enterprise offers a cost-effective method for increasing the productivity of

programmers and the throughput of existing resources.

The Enterprise system is built with four objectives in mind:

1) to provide a simple high-level mechanism for specifying parallelism that is

independent of low-level synchronization and communication protocols,

2) to provide transparent access to heterogeneous computers, compilers, languages,

networks and operating systems,

3) to support the parallelization of existing programs to take advantage of the investment

in the existing software legacy, and

4) to be a complete programming environment, to eliminate the overhead that arises from

switching between it and other programming environments.

Enterprise has a number of features that distinguish it from other parallel and distributed

program development tools (see Section 7):

1) Programs are written in a sequential programming language that is augmented by new

semantics for procedure calls that allows them to be executed in parallel. Users do

not deal with implementation details such as communication and synchronization.

Instead, Enterprise inserts all of the necessary communication protocols automatically

into the user's code.

2) Enterprise can generate these protocols automatically because most large-grained

parallel programs make use of a small number of regular techniques, such as

pipelines, master/slave processes, divide and conquer, etc. In Enterprise, the user

- 4 - Enterprise Technical Report TR91-17

specifies the desired technique at a high level by manipulating icons using the

graphical user interface. The user-written code that implements the parallel procedure

is independent of the parallelization technique selected (although the code generated

by Enterprise certainly is not). The de-coupling between the procedure that is to be

parallelized and the parallelization technique allows applications to be easily adapted

to a varying number and type of available processors without changing user-written

code. It also provides a simple mechanism for experimentation and evaluation of how

the various techniques fare on the user's particular application.

3) To simplify the way in which parallelism is expressed, Enterprise uses an analogy

between the structure of a parallel program and the structure of an organization. The

analogy eliminates inconsistent terminology (pipelines, master, slave, etc.) and

replaces it with a uniform set of assets (contracts, departments, individuals, etc.).

Organizations are inherently parallel and, often, have efficient parallelism. This

analogy allows the programmer a different (but familiar) model for designing parallel

programs. Although the use of analogies in computing science has both advocates

(Booth, Schaeffer and Gentleman, 1982) and detractors (Dijkstra, 1982), we believe

they will prove quite useful, as they have in object-oriented programming.

4) Several of the parallelization techniques supported by Enterprise can distribute work

dynamically in environments with changing resource utilization. For example, a

contract can be used to distribute work to a variable number of identical subordinates.

A contract uses as many idle machines as possible to help complete the task. During

peak hours, a program may only be able to use a handful of processors, while in the

evening many more may be available to help fulfill the contract.

5) In most parallel/distributed computing tools, the user is required to draw

communication graphs. The user usually draws a diagram connecting nodes

(processes) by arcs (communication paths). In Enterprise, a similar diagram is

created, but the user is spared the tedium of drawing the details. Instead, the user

need only edit the diagram by coercing and expanding nodes. Coercion allows the

user to express how a structure (asset) communicates with its neighbors; expanding a

node allows the user to explore the hierarchical structuring of the application.

6) The user can exercise a desired amount of control over the mapping of processes to

processors. Hiding hardware realities of the environment can result in major

performance degradation of distributed systems (Jones and Schwartz, 1980).

- 5 - Enterprise Technical Report TR91-17

However, Enterprise is quite flexible in this regard. Using a high-level notation, the

user can specify the processor assignments completely, partially, or leave it entirely

up to the environment.

7) Enterprise provides global system monitoring to achieve load balancing, detecting

when workstations fall idle or become heavily loaded, and monitors the system

performance for the user.

Using the graphical user interface, the user draws a diagram of the parallel computation and

writes sequential code that is devoid of any parallel constructs. Based on the user's diagram,

Enterprise automatically inserts all the necessary code for controlling the parallelism,

communication, synchronization and fault tolerance. It then compiles the routines, dynamically

assigns processes to processors and establishes the necessary connections. Processes run in the

background, taking advantage of idle machines when available and recognizing when machines

become heavily loaded. In this way we can keep the user community happy, while having

applications profitably using machines that would otherwise be idle.

Enterprise is a complete redesign and rewrite of our successful FrameWorks system (Singh,

Schaeffer and Green, 1989a, 1989b, 1991; Singh, 1991). FrameWorks was a prototype system

used to demonstrate that some of the concepts worked. Enterprise contains many of the ideas in

FrameWorks, but with major changes to the user's view of a parallel computation and major

improvements in the tools available to the user. Enterprise represents several major advances over

FrameWorks:

1) The notion of combining partial templates (input, output and body) in FrameWorks

has been replaced by a small number of complete parallelization techniques called

assets. Many of the combinations of templates in FrameWorks were illegal or

impractical. Enterprise assets are equivalent to the useful combinations of

FrameWorks templates.

2) Enterprise has removed the syntactic impositions of FrameWorks, including the use

of keywords (call and reply) and the restriction on the number of parameters that can

be passed to a process (from 1 to arbitrary). Enterprise automatically differentiates

between procedure calls and process calls (module calls) based on the asset diagram.

3) The semantics of an Enterprise routine are the same as the semantics of sequential

code. FrameWorks allowed calls to be made to processes either synchronously or

asynchronously, but the user had to explicitly handle the case of an asynchronous call

- 6 - Enterprise Technical Report TR91-17

returning a result. The Enterprise semantics hides this implicitly in the user's code,

so the user need not differentiate between a procedure and module call.

4) The use of analogies was limited in FrameWorks. Enterprise uses analogies

extensively as a means of creating a model of parallel computation that is easily

explained, readily understood and consistent.

5) Enterprise has been implemented with portability in mind, unlike FrameWorks. By

building our system using the X Window System (Scheifler and Gettys, 1986) and

ISIS (Birman et al., 1991a, 1991b), the system is more powerful and will be usable

on a wider variety of systems.

Section 2 contains a walk-through of a typical Enterprise session, illustrating the

computational model and the graphical user interface. Section 3 describes the two key components

of the Enterprise model: the semantics of the sequential code that the user writes, and the types of

parallelism (assets) supported. Section 4 describes the user interface. In Section 5, the

architecture of the system and its implementation can be found. Section 6 discusses the test suite

we are using for benchmarking parallel and distributed programs. Section 7 discusses other

parallel programming environments and contrasts them with Enterprise. Enterprise is currently

being implemented and the project's status is discussed in Section 8.

2. Program Design in Enterprise

This section presents a simple example of how Enterprise can be used to construct a

distributed program. Consider an animation program that displays a group of fish swimming

across a display screen. There are three fundamental operations in the program: Model, PolyConv

and Split with the following functionality:

• Model: Computes the location and motion of each object in a frame, stores the results

in a file, calls PolyConv to process the frame and proceeds to the next frame.

• PolyConv : Reads a frame from the disk file, performs some data format

transformations, viewing transformations, projections, sorts, back-face removal and

calls Split, passing it a transformed frame and a sequence number.

• Split: Performs hidden surface removal, anti-aliasing and stores the rendered image in

a file.

- 7 - Enterprise Technical Report TR91-17

This problem was contributed by a research group in our Department and is obviously more

complex than portrayed by our brief description. Examining the structure of the program shows

that Model consists of a loop that, for each frame in the animation, performs some work on the

frame and calls PolyConv with the results. PolyConv manipulates the image received from Model

and calls Split. Split does the final polishing of the frame and writes the final image to disk.

An Enterprise user manipulates icons that represent high-level program components called

assets (defined in the next section of this paper). For this example, assume that an asset represents

a single C-language procedure/function, called an entry procedure, together with a collection of

support procedures used by the entry procedure, all contained in a single file. A program will

consist of several assets. In this example, there will be three assets: Model, PolyConv and Split.

After starting Enterprise and choosing New Program from the main menu, a dialog box

appears asking for the name of the program. After entering the name of the program, Animation in

this case, a single asset appears that represents the entire program as shown in Figure 1.

Enterprise: Animation

3

3

3

Figure 1: A new program consisting of a single individual asset.

The Enterprise window consists of an asset palette containing one icon for each asset kind

and a canvas containing the program. A new program contains one individual asset that represents

a sequential program component. The code for the procedures Model, PolyConv and Split could

be associated with this single individual asset and run as a sequential program. However, there is

no reason why Model should wait until PolyConv completes execution of the first animation frame

to start processing the second frame. Similarly,PolyConv dows not need to wait for Split.

Therefore, the individual asset can be coerced to (replaced by) a line asset by selecting the

individual asset and then selecting the line icon from the asset palette. After entering three as the

length of the line, the individual is coerced to a three component line as shown in Figure 2.

- 8 - Enterprise Technical Report TR91-17

3

3

3

3

Enterprise: Animation

Figure 2: A collapsed line asset composed of three assets.

The line shown in the figure is collapsed; that is, its components cannot be seen. By

selecting the line and choosing Expand Asset from the menu, the line is expanded so that the three

individual assets that it contains are visible, as shown in Figure 3.

3

3

3

Enterprise: Animation

Figure 3: An expanded line asset composed of three individual assets.

- 9 - Enterprise Technical Report TR91-17

To name an asset, the user selects it, chooses Name Asset from the menu and enters the name

of the asset in the dialog box that appears. When the dialog box is closed, the name appears on the

icon. To enter the C-language code for an asset, select it, choose Edit Code from the menu and

enter the code using your favorite text editor, as shown in Figure 4. Note that Enterprise

automatically names the output file for the code you enter as the name of the asset with a ".e"

suffix. In the example, the Model code would be saved in the file Model.e.

3

3

3

Model

Enterprise: Animation

Enterprise: Animation (Model.e)
Model()
{
� float timeperframe;
� int frame;

� /* Generate the school of fish */
� MakeFish(NUMBER_FISH, 0);

� /* Loop through each frame */
� timeperframe = 1.0 / NUMBER_STEPS;
� for(frame = 0; frame < NUMBER_FRAMES; frame++)
 {
�� /* Do model computations */
�� InitModel(NUMBER_OF_FISH);
�� MoveFish(NUMBER_FISH, timeperframe);
�� DrawFish(NUMBER_FISH, timeperframe*frame);
 WriteModel(frame);
 /* Done! Send work to PolyConv */
 PolyConv(frame);
 }
}

Figure 4: Entering the code for an asset.

The code for the entry procedures Model, PolyConv and Split are shown in Appendix A. To

compile the application, the user selects Compile from a menu and the Enterprise system

automatically inserts the code to handle the distributed computation, compiles the program and

reports any errors back to the user. Appendix B shows the code that Enterprise inserts into the

application to handle the communication, synchronization and fault tolerance (using the code in

Appendix A, with the diagram in Figure 6). Once the program is compiled, the user selects the

- 10 - Enterprise Technical Report TR91-17

Execute menu item and Enterprise finds as many processors as are necessary to start the program,

initiates processes on the processors, monitors the load on the machines and (if a contract is used)

dynamically adds additional processors to the application as they become available. For this

animation example, a speed-up of 1.7 was obtained by using a line running on three processors

instead of a single individual asset (a sequential program)†. Note that any timings are subject to

large variations, depending on the number of available processors and the amount of traffic on the

network. In this particular case, the timings were done late at night when sufficient processors

were available and network traffic was light.

The strength of the Enterprise model can be seen by the ease with which it is possible to take

a program and experiment with alternate parallelization techniques without changing the C-

language source code. For example, by selecting the Split asset and selecting a contract asset from

the asset palette, the Split asset is coerced from an individual to a contract as shown in Figure 5.

3

3

3

Model

PolyConv

Split

Enterprise: Animation

Figure 5: A collapsed contract asset in a line.

In Enterprise, each asset represents at least one process. If a call is made to the individual

Split, it is executed as a process and if a subsequent call is made to Split before the first call is

† These timings were obtained with the FrameWorks system, but Enterprise should be subjectively similar.

- 11 - Enterprise Technical Report TR91-17

complete, the second call must wait for the first call to finish. However, when a contract is

executed, multiple processes can be used to execute multiple calls concurrently. That is, when

PolyConv calls Split, a process is initiated and if a subsequent call is made to Split before the first

call is done then a second process is initiated (if there is an available machine). Enterprise contracts

are dynamic so that a contract may use as many processors as are available on the network.

Coercing the Split asset to a contract results in as much as a 5.7-fold speed-up (using a

dynamically varying number of processors) compared to the sequential animation program,

depending on when the program is run†. Of course, there is no reason why the user cannot coerce

the PolyConv asset from an individual to a contract as well. However, this only resulted in a

speedup of 6.0. This implies that the Split procedure is the real bottleneck in the animation

program. That is, an individual PolyConv can almost keep up with its calls by Model but an

individual Split cannot keep up with its calls by PolyConv.

Enterprise can be used to further experiment with this application. For example, the Split

contract currently contains a single individual. By selecting Split and choosing Expand Asset

from the menu, this individual can be viewed as shown in Figure 6.

3

3

3

PolyConv

Enterprise: Animation

Split

Figure 6: An expanded contract asset.

 Note that the asset Model has been scrolled off the display and the components of the

contract asset are indented to show the scope of the contract. The ... indicates that there are

† These timings were obtained with the FrameWorks system, but Enterprise should be subjectively similar.

- 12 - Enterprise Technical Report TR91-17

multiple copies of the indented assets available since the contract contains a dynamic number of

identical assets.

If the C code for the individual Split asset contained a sequence of procedure calls (or even a

single procedure call at the end of it), the individual asset could be coerced to a line where each of

the assets in the line represented one of the procedure calls, as shown in Figure 7. To proceed

with this approach, the line would be expanded and the C-language procedure called by Split (that

is currently inside the Split asset) would be moved to the second asset in the line and become an

entry procedure of its own individual asset.

3

3

3

PolyConv

Split2

Enterprise: Animation

Figure 7: A hierarchy of assets where a line contains a contract that contains a line.

Several other asset kinds are supported by Enterprise and they can be combined in arbitrary

hierarchies. The next section details the asset kinds that are available.

3. The Enterprise Model

The overall organization of a parallel or distributed program in Enterprise is similar to the

organization of a sequential program. The structure of an application program is, in fact,

unaffected whether it is intended for sequential or distributed execution. The user views an

Enterprise program as a collection of modules. Each module consists of a single entry procedure

that can be called by other modules and a (possibly empty) collection of internal procedures that are

callable only by other procedures in that module. No common variables among modules are

- 13 - Enterprise Technical Report TR91-17

allowed. In many ways, this is analogous to programming with abstract data types, which provide

well-defined means for manipulating data structures while hiding all the underlying implementation

details from the user.

Within any module, the code is executed sequentially. For example, a sequential program

simply consists of a single module whose entry procedure is the main program. Enterprise

introduces parallelism by allowing the user to specify the way in which the modules interact.

Module interaction is specified by two factors: the role of a module and the call to a module. The

role of a module defines which one of a fixed set of parallelization techniques (asset kinds) the

module will use when it is invoked. The call to a module defines the identity of the called module,

the information passed and the information returned. The role of a module is specified graphically

while the call is specified in the code.

3.1 Module Calls

In a sequential program, procedures communicate using procedure calls. The calling

procedure, say A, contains a procedure call to a procedure, say B, that includes a list of arguments.

When the call is made, procedure A is suspended and procedure B is activated. Procedure B can

make use of the information passed as arguments. When procedure B has finished execution, it

can communicate results to procedure A via side-effects to the arguments and/or by returning a

value if the procedure is in fact a function.

Enterprise module calls are similar to sequential procedure calls. As with procedure and

function calls, it is useful to differentiate between module calls that return a result and those that do

not. Module calls that return a result are called f-calls (function calls) and module calls that do not

return a result are called p-calls (procedure calls).

Enterprise module calls differ from sequential calls in the following ways:

1) Arguments can not be pointers, nor can they contain any pointers. This implies that

in the C-language version of Enterprise, module calls cannot return values by side-

effects since the C-language uses call by value.

2) When a module, say A, calls another module, say B, module A is not suspended.

Instead, module A continues to execute. However, if the call to module B was an f-

call, then module A would suspend itself when it tried to use the function result, if

module B had not yet finished execution.

There is no syntactic difference between procedure calls and module calls. This makes it easier to

transform sequential programs to parallel ones and makes it trivial to change parallelization

techniques using the graphical user interface without making changes to the code.

- 14 - Enterprise Technical Report TR91-17

In Enterprise, an f-call is not necessarily blocking. Instead, the caller blocks only if the result

is needed and the called module has not yet returned. Consider the following example:

result = B(data);
/* some other code */
value = result + 1;

When this code is executed, the calling module, say A, only blocks when the statement "value =

result + 1;" is executed and only if module B has not completed execution. This concept is similar

to the work on futures in object-oriented programming (Chatterjee, 1989). The p-call in the

statement:

B(data);
/* some other code */

is non-blocking, so that A continues to execute concurrently with B. Of course in this case, B

does not return a result to A.

3.2 Module Roles and Assets

The role of a module is based solely on a parallelization technique and is independent of its

call. There are a fixed number of pre-defined roles corresponding to asset kinds. For example, in

the previous section, the role of the Split module was changed from an individual to a contract

without changing the call.

We have created an analogy between Enterprise programs and the structure of an organization

to help describe module roles. In general, an organization has various assets available to perform

its tasks. For example, a large task could be divided into sub-tasks where various sub-tasks are

given to different parts of the organization (divisions, departments, pools, lines and/or individuals)

to perform in parallel. Some tasks could even be completed by contract where the organization is

not directly concerned about the nature or number of individuals that perform it. In addition, an

organization usually provides many standard services (like time keeping, information storage and

retrieval, etc.) that are available on demand to improve its functionality.

Currently, Enterprise supports the roles corresponding to seven different asset kinds:

individual, line, pool, contract, department, division and service.

3.2.1 Individual

An individual contains no other assets. An individual is analogous to an individual person in

an organization. For example, a clerk in a grocery store is an individual. When called, an

individual executes its sequential code to completion. Therefore, any subsequent call to the same

individual must wait until the previous call is finished. An individual may be called by any external

asset using its name. Individuals can be viewed as a process executing a sequential program.

- 15 - Enterprise Technical Report TR91-17

3.2.2 Line

A line contains a fixed number of heterogeneous assets in a fixed order. Each asset contains

a call to the next asset in the line. A line is analogous to a construction, manufacturing or assembly

line in an organization where at each point in the line, the work of the previous asset is refined.

For example, a line might consist of an individual who takes an order, a department that fills it and

an individual that addresses the package and mails it. A subsequent call to the line waits only until

the first asset is finished its sub-task of the previous call, not until the entire line is finished. The

first asset in a line serves as the receptionist for the line and is the only asset that is externally

visible. That is, the first asset of a line is the only asset that may be called from an external asset

and it shares its name with the line asset for this purpose. Lines are more often referred to as

pipelines in the literature.

3.2.3 Pool

A pool contains a fixed number of identical assets. A pool is analogous to a pool in an

organization where each pool member performs an identical task. For example, consider a pool of

telephone operators. When a call is made to the pool, an idle asset executes the call. However, if

all assets are busy, then the call waits for one of the assets to finish. Since pool members are

externally indistinguishable, an external call cannot select a particular pool asset. Therefore, pool

assets are called by external assets using a single name that is shared with the pool asset for this

purpose. Since all assets in a pool are identical, they also share the same code. A pool is

analogous to a master-slave construct with a fixed number of slaves.

3.2.4 Contract

A contract contains a collection of identical assets, so it is similar to a pool. However, the

number of assets in a contract is dynamic and depends on the number of processors that are free at

any time. A contract is analogous to a contract that an organization lets for the performance of a

collection of identical tasks. For example, an organization might let a contract to a courier

company for the delivery of its packages. When a package must be delivered, the courier company

is informed. The organization doesn't care how many resources the courier company uses or the

route it takes to deliver the packages. The delivery time can be affected by the number of resources

used by the courier company and the amount of competing traffic. Similarly when an Enterprise

call is made to a contract, an idle asset executes the call. However, if all assets are busy, then the

call waits for one of the assets to finish. As is the case with a pool asset, a contract asset shares a

common name with the identical assets it contains and these component assets also have common

code. A contract is equivalent to a dynamic master-slave construct, where the number of slaves

varies in response to program needs (demand) and resource utilization (environment).

- 16 - Enterprise Technical Report TR91-17

3.2.5 Department

A department contains a fixed number of heterogeneous assets. Every department has a

single receptionist asset that shares its name with the department so that the department can be

called by external assets. However, unlike a line, the other assets in a department do not call each

other in a fixed sequential order. Instead, all other assets in the department are called directly by

the receptionist. A department is analogous to a department in an organization where a receptionist

is responsible for directing all incoming communications to the appropriate place. Note that in our

analogy, a department consists of a collection of assets of any kind: individuals, departments,

lines, etc. The department has no analogous term in the literature.

3.2.6 Division

A division contains a hierarchical collection of identical assets with a fixed breadth and depth

where work is divided and distributed at each level. Every division has a single receptionist asset

that shares its name with the division so that the division can be called by external assets.

Divisions can be used to parallelize divide and conquer computations.

3.2.7 Service

A service contains no other assets. However, unlike an individual that can only answer a

single call at any one time, a service may be used by more than one asset at the same time. A

service is analogous to any asset in an organization that is not consumed by use and whose order

of use is not significant. For example, a clock on the wall and a counter that records the total

number of vehicles that have passed through several service lanes can be considered services. A

service may be called by any external asset using its name.

3.2.8 Other Asset Kinds

Assimilated versions of these assets are being considered at this time. An assimilated asset is

one that has an assimilator that can be called from an external asset in addition to the receptionist.

The assimilator is called to obtain the assimilated results of the computation performed by the asset.

3.3 Enterprise Diagrams

An Enterprise diagram can be built from any combination of assets. For example, one can

construct a contract, where each asset is itself a line of individuals. The model allows the user to

coerce an asset from one kind to another without any changes to the user's source code. The only

change that might occur is the gathering or separation of functions from one file to another. For

example, if a line is used for the animation example, there would be three individuals (Model,

PolyConv and Split) each having their code in a separate file. If the line is coerced into an

individual, the code needs to be gathered together (either in the same file or by using libraries).

- 17 - Enterprise Technical Report TR91-17

There are ways that Enterprise could do this management automatically, but there are some issues

we have yet to resolve.

4. The User Interface

Enterprise's user interface was designed to allow a user to express parallelism in a simple

graphical manner. Although other parallel programming environments support graphical views,

these views are either non-editable or are edited by drawing nodes and arcs that represent processes

and communication paths (see Section 7). In Enterprise, the application graph is an asset graph

and it is constructed in a novel way. The user starts with an individual asset and constructs the

graph by coercing and expanding individual icons as illustrated in Section 2. This approach has

several advantages over an arbitrary graph structure:

1) Enterprise assets represent high-level parallelization techniques, not individual

processes. For example, contracts, pools, departments and divisions each represent

multiple processes. This allows the user to design at a higher level of abstraction.

2) Assets themselves are not drawn and connected by the user in an arbitrary manner.

Instead, assets are coerced and expanded to create a program. This reduces the

drawing errors that result from indiscriminately connecting and disconnecting nodes

using arcs.

3) The structure of an Enterprise program clearly indicates the type and degree of

parallelism. The flow of information is from top to bottom while the degree of

parallelism is from left to right. In other words, the length of the graph represents the

critical path of an application, and the width reflects the degree of the parallelism.

4) Enterprise manages program complexity by allowing assets to be expanded and

collapsed so that the program can be viewed at different levels of abstraction.

 5) Experimentation is encouraged because the parallelization technique is specified

graphically and is independent of the code.

The main Enterprise window contains a canvas and a palette. The canvas is used to display

and coerce the graphical representation of the program. The palette contains one icon for each asset

kind. Section 3 describes the asset kinds that are currently supported. When Enterprise is started a

new program is displayed, consisting of a single individual asset.

- 18 - Enterprise Technical Report TR91-17

A mouse is used to select an asset on the screen. If an asset is selected and the user clicks on

an icon in the asset palette then the selected asset is coerced to an asset of the chosen kind. If the

chosen kind is a line or a pool, then a dialog box asks the user for the number of components in the

coerced asset before the coercion takes place.

A pop-up menu can be used to choose an operation. The following operations can be

performed:

1) Name or re-name the selected asset.

2) Expand the selected asset so its component assets are displayed.

3) Collapse the selected asset so that it is no longer displayed, but its "parent" asset is.

4) Open an edit window on the Code of the selected asset.

5) Save the current program to disk.

6) Create a New program consisting of a single individual asset and display it in the

main Enterprise window. If any changes have been made to the current program then

use a dialog box to find out if the user wants to save the changes and if so, first save

them to disk.

7) Open (load) an existing program by prompting the user for the program name and

displaying it in the main Enterprise window. If any changes have been made to the

current program then use a dialog box to find out if the user wants to save the

changes and if so, first save them to disk.

8) Compile the current program.

9) Execute the current program.

10) Toggle the Animation flag. When this flag is set and the program is executed, the

graph is animated.

11) Toggle the Debug flag. When the debug flag is set, the program executes in debug

mode (allowing features such as tracing and break points).

12) Open a monitor window that displays Statistics about processor utilization.

13) Assign a Version number to the source code of the current program.

- 19 - Enterprise Technical Report TR91-17

14) Retrieve a Previous version of the selected asset's source code.

15) Specify machine Constraints for execution of the selected asset.

- 20 - Enterprise Technical Report TR91-17

5. The Architecture

5.1 System Design

As the name Enterprise implies, distributed application programs are modelled after an

organization. However, the same analogy is used for the logical components of the Enterprise

system itself. There are six logical components in the architecture of Enterprise: an interface

manager, an application manager, a code librarian, an execution manager, a monitoring/debugging

manager and a resource secretary as shown in Figure 8.

Interface
Manager

Application
Manager

Execution
Manager

Monitor/Debugger
Manager

Code
Librarian

Resource
Secretary

RECEPTIONIST

OFFICE

User

Machine
Registry

CLIENTS

Figure 8. The architecture of Enterprise.

- 21 - Enterprise Technical Report TR91-17

5.1.1 Interface Manager

The graphical interface used in Enterprise provides an environment for editing, debugging,

compiling, configuring, executing and monitoring parallel programs. The user can develop parallel

applications in a single unified programming environment. The tool includes an asset graph editor

for users to design their applications using the organization analogy.

An object-oriented design was used for the user-interface. For example, each asset is an

instance of an asset class and is responsible for knowing its name, attributes (like the length of a

line asset or the size of a pool), components (like the components of a line), code, drawing itself,

expanding itself, etc. Inheritance was used extensively since different asset classes share many

responsibilities. Of course the other interface components (windows, menus and dialogs) are also

objects.

The current implementation of the user interface was developed under the X Window System

(Scheifler and Gettys 1986) on Sun workstations. This allows the interface to be easily ported to

other workstations. The implementation was written in C++ using InterViews (Linton, Vlissides

and Calder, 1989). This combination was chosen for easy integration with the rest of Enterprise

(which is implemented in C), to remain faithful to the object-oriented design, to maintain portability

and to reduce development time by utilizing the InterViews class library of interface objects.

 Although a graphical user interface provides a simple and powerful programming

environment, a textual interface is also needed since a user may want to re-configure a program

when a graphics terminal is not available. Of course, the textual interface has limited capabilities

compared to the graphical interface; for example the user will not be able to view the dynamic

execution of a program.

5.1.2 Application Manager

The application manager is the control center for Enterprise. All of the permanent

information about an application is maintained by the application manager. This includes the asset

graph and the source code. The only way for the user to access application-specific information is

through the application manager. This manager is also responsible for ensuring information

provided by the user is correct and consistent with the current state of the program design.

5.1.3 Code Librarian

The role of the code librarian is to manage the source and object code of different modules in

a parallel application. Since Enterprise is designed with a heterogeneous network of workstations

in mind, the librarian may need to maintain multiple object codes for a variety of architectures. The

- 22 - Enterprise Technical Report TR91-17

librarian builds and executes a makefile that is incrementally maintained as the user changes the

specifications of an application, and is parameterized to support different target machines.

The librarian has to know where the source code and the corresponding object files for a

particular asset are located. When an Enterprise application is about to be started, the librarian

determines if all the required executables are available and, if not, performs the necessary

compilations for the user. Compilation requires knowledge of the kinds of assets involved, which

is available from the application manager. To compile an asset, the librarian inserts the appropriate

Enterprise code into the module, depending on the asset kind. Re-compilation of an asset is only

necessary when either the user changes the asset's code, the asset has been coerced to a different

kind, or when the asset is to be run on a machine for which an executable is not available.

Requests for compilation come from two sources. First, the user can ask the interface

manager to compile the application to reveal syntax and semantic errors. Second, the execution

manager can request executables on demand at run-time. As machines become available, the code

librarian informs the execution manager if an executable exists for that machine. If the executable

is not available, the execution manager makes the decision as to whether to request the librarian to

provide it or not.

5.1.4 Execution Manager

The execution of an Enterprise application is controlled by the execution manager. It is

responsible for creating all the processes specified by the asset graph, and setting up the required

communication channels. It uses the asset graph to discover the initial communication paths and

the presence/absence of contracts. The decision on where a process is to be executed is made by

the execution manager, implying that executables are general and do not have a specific machine

name compiled into them.

One of the attributes associated with an asset is a machine preferences list. This list specifies

any constraints on the machines to be used to run this asset. The default is that the program will

run on any machine. The user, however, may choose to constrain the choice of machine in some

way, say by execution speed or physical location. The method used to select machine preferences

is similar to the technique employed in FrameWorks.

The resource secretary is responsible for providing information to the execution manager on

which machines are available, and which machines are currently busy. Work on busy machines

should be migrated to idle machines by the execution manager since assigning processes to

machines is one of its responsibilities. In a homogeneous environment, this causes no difficulty.

In a heterogeneous environment, problems occur. Which processes do you put on the fastest

available processor? What if a very slow processor is available. Do you start using it, or wait for

- 23 - Enterprise Technical Report TR91-17

a faster one to become available? These decisions become complicated in a dynamically changing

environment and when contracts are present. We have not yet addressed these issues.

5.1.5 Resource Secretary

The list of available machines is maintained by the resource secretary in a machine registry.

The machine registry is a list of specifications on each machine in the network, such as the machine

name, its architecture and type, operating system version, compiler name and options, a speed

rating, RAM size, type of monitor, etc. Periodically (a system adjustable parameter), the secretary

receives an update on how busy each machine is. Changes in a machine's status (from idle to busy

or visa-versa) are communicated to the execution manager.

Every machine in the network has a ".enterprise" file associated with it. In it, the machine's

owner can specify when Enterprise programs are allowed to use the machine. The default is to

allow programs to run on evenings and weekends only.

5.1.6 Monitor/Debugger Manager

Monitoring and debugging facilities are very important in the domain of parallel

programming. These facilities should allow a user to identify the bottleneck in a program and to

find potential synchronization problems by monitoring the execution of the program. The

monitoring approach used in Enterprise is program animation. This is done by time stamping

every call to an asset and either sending this information to the interface (for a dynamic, real-time

portrayal of the program's execution), or saving the information in a file to allow the program to be

replayed at the user's leisure. The debugger allows the user to step through an application at the

asset call level and to set breakpoints any time an asset is called.

5.2 System Implementation

FrameWorks was built on NMP (Marsland, Breitkreutz and Sutphen, 1991), but its many

limitations forced us to consider alternatives. Enterprise uses the ISIS package to do all the low-

level communications. ISIS provides a high-level set of function calls to handle process creation

and termination, communication, synchronization and fault tolerance for a heterogeneous collection

of machines (Birman et al., 1991a, 1991b).

Enterprise is implemented as an ISIS program. Not only are the executables that Enterprise

produces ISIS programs, but the architecture of Enterprise is designed as a multiple-process

program that communicates using ISIS. All the components of the architecture described in

Section 5.1 are communicating processes, except for the Application Manager which is

conceptually a separate process, but for efficiency is implemented as part of the Interface Manager.

- 24 - Enterprise Technical Report TR91-17

In ISIS, processes are grouped together and named as a unit. A process group may contain

just a single member, but will often consist of a number of processes residing on machines

anywhere in the system. Message passing in ISIS is performed by broadcasting to a process

group as a whole, and collecting replies from the members in the same call. The broadcast can

block, waiting for the reply, or it can be made to fork off as a task in which case the caller will

rendezvous with it later to collect the results.

5.2.1 Fault Tolerance

In a distributed environment, it is desirable for a system to provide fault tolerance and

process migration for distributed applications. Fault tolerance yields a more robust application.

The ability to migrate processes from busy machines to less busy ones keeps the user community

happy without significantly increasing the execution time of the application.

ISIS has extensive support for fault tolerance. Consider the case of implementing an

individual. One approach for fault tolerance supported by ISIS is redundant computation. Several

processes undertake the same task, with the caller waiting for the first response and continuing to

execute without waiting for a response from the others. It achieves fault tolerance at the cost of

wasted CPU cycles.

Another approach in ISIS is the coordinator-cohort computation (the standby approach). The

method works by ranking the members of a process group and then labeling the lowest ranking

member as the coordinator for a request. This process will execute the request and broadcast a

reply to the caller. The other members are cohorts; they are passive unless a failure prevents the

coordinator from terminating normally, in which case they take over one by one, in rank order.

The coordinator is also able to send the cohorts a copy of the answer returned to the caller at the

termination of the computation. ISIS does not add extra cohorts to a coordinator-cohort algorithm

when it is already running, so fault tolerance is limited by the number of cohorts at the start of the

computation. If several requests arrive concurrently, the job of being coordinator will be split over

the members of the group in a uniform manner. Thus a single process may be coordinator for one

or two requests while being cohorts for others. Moreover, there may be several coordinators at

one time for different requests. The scheme thus exploits the distributed processing power of the

group in a fault tolerant way.

If an asset is a contract or a department, when some of the processes fail to complete, the

number of replies will be less than the number of broadcast messages sent. In this case, the

program needs to either recompute the missing piece, or reissue the entire request. Using this

approach, the application handles the recovery from fault.

- 25 - Enterprise Technical Report TR91-17

Both replication and standby (coordinator-cohort) approaches achieve only partial failure

resiliency. Computation results will be lost when the failure involves all the processors

responsible for the computation. In ISIS, a tool is provided to log a process' events and, when

failure occurs, to recover the state it was in from the log in the case where the process group

responsible for the computation experienced a total failure. This is done by logging a copy of the

checkpoint of the computation state onto stable storage.

5.2.2 Process Migration

Migrating a process from one machine to another involves (Eskicioglu, 1990):

1) suspending the process on the source machine,

2) transferring the process state to the destination machine, and

3) resuming its execution on the destination machine.

These operations require support from the operating system. The initial implementation of

Enterprise has been done under the Sun Operating System, which does not provide any support for

process migration. However, the development of Enterprise under an operating system which

offers process migration, such as the V-System (Cheriton and Zwaenepoel, 1983), would allow

for better load distributions. Under Sun OS, when it is necessary to relinquish a processor, it is

sometimes possible to suspend the process in the middle of execution and restart it over again on

another machine (although, obviously, some work will have been wasted). Also, in the case when

the workstation is being used as part of a contract, it can be released when its unit of work is

complete.

6. Towards A Test Suite of Parallel and Distributed Programs

It is common to demonstrate the flexibility and performance of a parallel programming

environment by implementing selected programs in the system. Although a custom test suite is a

practical way to highlight the strengths of an environment, the suite may be inappropriate for

testing a different environment. Differences in performance criteria, design goals and the level of

abstraction of alternate systems may make it pointless to simply adopt a previous program suite.

Consequently, researchers tend to reinvent test suites in order to, understandably, focus on the

advantages of their own system.

Performance evaluation, including the design of test suites, is an area of computing science

that generates much debate and discussion. Benchmarks and test suites can be abused. There is

the familiar adage that the best test is the problem that one personally wants to solve. Still, there

are benchmarks and test suites that have proven to be particularly useful, despite their

- 26 - Enterprise Technical Report TR91-17

acknowledged limitations. One well-known example is the LINPACK numerical libraries

(Dongarra et al., 1976). This work has led to de facto methods of measuring the floating point

performance of traditional supercomputers. Arguably, the success of LINPACK benchmarks is

due to the importance of numerical algorithms in the “real world” applications being solved on

supercomputers. In effect, the benchmarks are more meaningful because they are relevant to the

user community. Therefore, we adopt that proven approach in the design of our own test suite.

An important aspect of our approach is that we want the test suite to guide the development of

Enterprise, and not vice versa. Because we want a test suite that is not specific to any particular

parallel architecture, including Enterprise’s, we select our programs from a wide range of scientific

and engineering applications. We have not limited our selections to problems with large-grained

parallelism and minimal communication needs. Surely, those applications would emphasize the

strengths of Enterprise. But because we also wish to learn from the limitations of Enterprise, our

test suite is designed to define the envelope of the system’s capabilities. By constructing our test

suite at a relatively early stage of Enterprise’s design, we hope that the lessons learned will benefit

our design effort as much as it will benefit the potential users of the system.

Clearly, the test suite outlined below is preliminary and subject to change. We recognize that

the suite will evolve over time, but we feel that it is important to address the issue at this time.

6.1 Related Work in Test Suites

As we have already pointed out, there are many test suites to choose from. But because these

program suites tend to be closely tied to a particular system, they cannot easily be used as a general

test suite. Some researchers have also recognized the need for a common test suite for evaluating

different parallel systems.

The efforts of Singh, Weber and Gupta (1991) to develop the SPLASH (Stanford Parallel

Applications for Shared-Memory) test suite are notable. SPLASH currently consists of six

applications and related input files. The programs are all over 1000 lines of source code and go

beyond the “toy” applications common in other work. From Singh, Weber and Gupta's (1991)

Tables 1 and 2, we learn that the Ocean application simulates eddy currents in an ocean basin by a

grid-based method which includes the solution of a set of partial differential equations. The

application Water simulates the behavior of water molecules by an N-body method. MP3D is an

application that simulates the rarefied hypersonic flow of, say, air around an airfoil in the upper

atmosphere by particle-in-cell methods. LocusRoute uses an iterative refinement technique to route

wires as part of the computer-aided design of VLSI circuits. PTHOR is a digital logic circuit

simulation application based on distributed time discrete event simulation methods. Also, the

application Cholesky factorizes a sparse matrix by the Cholesky method.

- 27 - Enterprise Technical Report TR91-17

Although SPLASH is architecture dependent (i.e. shared-memory multiprocessing systems),

it represents a significant effort in the area. Not only does it attempt to abstract the evaluation of

parallel systems to a higher-level memory model, it also sets a standard of openness and

thoroughness in its presentation. Equally important, the developers of SPLASH have drawn their

applications from a wide scientific and engineering domain spectrum to increase the relevance of

their test suite to the high performance computer user. Furthermore, the authors describe the

behavior, implemented performance and simulated performance of each application in detail. The

C or FORTRAN source code for each application is freely available. Although the Enterprise

effort is currently not as progressed, we hope it will evolve to at least the level of SPLASH. Many

of the SPLASH applications have been incorporated into our own test suite for the time being.

6.2 Road Map for the Enterprise Test Suite

The primary design goal of the test suite is to accurately represent the problems that are

currently being solved on high performance computers. From experience, a clear pattern emerges

regarding the demands being placed on supercomputers. Firstly, it is a well-known fact that

numerical and floating-point intensive algorithms are among the most common applications on high

performance computers. Secondly, computational simulation is rapidly becoming a popular third

paradigm of science. Thirdly, there are problems in discrete mathematics and combinatorics with

large solution spaces that can utilize as much computational power as is available. Lastly, there are

computationally intensive problems in computing science. Each category represents a real world

application of high performance computers, and each presents an unique set of challenges for a

parallel programming environment.

Table 1 summarizes the algorithms and problems selected for the test suite. A more detailed

description appears below.

- 28 - Enterprise Technical Report TR91-17

Category Application

numerically

intensive

applications

systems of equations (Cholesky from SPLASH)

matrix manipulation (multiplication, eigenvalue, inversion)

Fast Fourier Transform

simulation animation of articulated bodies

N-body simulation (Water from SPLASH)

particle-in-a-cell (MP3D from SPLASH)

circuit simulation (PTHOR from SPLASH)

discrete

mathematics

convex hull

travelling salesman

alpha-beta search

retrograde analysis

computing

science

ray tracing

sorting

makefiles

Table 1. Test suite applications.

6.2.1 Numerically Intensive Applications

 The fascination that supercomputer users and manufacturers have with floating point

performance is a symptom of the numerically intensive problems that scientists have traditionally

wanted to solve on computers. Solving a system of equations, various matrix manipulation

operations and function transformations such as the Fast Fourier Transform (FFT) are typical of

the types of algorithms used by scientists. Therefore, we include a representative selection of

algorithms and problems from this area. Except for the Cholesky application from the SPLASH

suite, all of the programs are relatively short.

6.2.2 Simulation

The versatility of computers has made the simulation of phenomena based on a mature body

of theory practical for scientific research. Along with theory and physical experimentation, the

simulation of complex systems and interactions by computers is becoming a valuable scientific

tool. Although the types of simulations are as varied as the types of phenomena and the theories

that describe them, there are some standard paradigms by which the simulations are designed.

Aside from the numerical algorithms used to solve the mathematical models being simulated, the

- 29 - Enterprise Technical Report TR91-17

techniques of animation, cellular automata and discrete state transformations are common in

simulation. Therefore, the problems of animating articulated bodies, particle-in-the-cell and digital

circuit simulation have been included in the test suite. Because computer simulations are complex

applications, we have borrowed heavily from the SPLASH suite in this category

6.2.3 Discrete Mathematics

There are many problems in discrete mathematics that have large solution spaces. The

problems may require a large amount of computation due to a large amount of data, a theoretical

NP-complete or NP-hard complexity, or a large proof-tree requirement. Typically, the complexity

of the problems grow exponentially and a large amount of additional computational power must be

added to the solution in order to solve a marginally larger problem. Still, the solution may be of

such fundamental importance that any decrease in solution time or increase in the solvable problem

size is of great value. Therefore, the convex hull, travelling salesperson, alpha-beta search and

retrograde analysis problems have been added to the test suite.

6.2.4 Computing Science

Finally, there are problems that are mainly of interest to computing scientists. Ray tracing

and sorting are of fundamental interest in two areas of computing science. They are inherently

highly parallel and are popular choices for parallel programming test suites. A parallel makefile is

also a popular choice for test suites, so all three problems are included in our proposed test suite.

6.3 Future Work

Once again, it should be emphasized that the proposed test suite is preliminary. However,

because we feel that a practical approach to evaluating the usefulness of Enterprise is important, we

have laid out our plans at this relatively early stage of the system’s development. Instead of using

Enterprise to guide the development of the test suite, we are using the type of applications that we

feel should be in the test suite to guide the development of Enterprise. We hope the end result will

be a development environment that will be useful to the high performance computing community.

 7. Related Work

In the world of sequential programming, we usually program on the conceptual machine

(using a high-level language) and seldom concern ourselves with the physical architecture of the

machine. However, in the world of parallel programming conceptual machines are not as

common. The parallelism in a program is usually expressed in an architecturally specific way,

forcing the programmer to consider issues such as communication and synchronization at a low

- 30 - Enterprise Technical Report TR91-17

level. With the rapid advancement in programming environments, tools to: edit, test, debug, and

visualize parallel programs on abstract computation models are now available. Programming at the

conceptual level increases the portability and reusability of programs. It also allows the parallelism

in a program to be expressed in a natural way, implying that the programmer need only be

knowledgeable about the application, not about parallel programming. The formulation of parallel

computation can involve the following steps (Carriero and Gelernter, 1989; Browne, 1985, 1986):

1) Choose the model of computation that is most natural for the problem.

2) Write a program using the method that is most natural for that abstract machine.

3) If the resulting program is not acceptably efficient, transform it methodically into a

more efficient version by switching from a more-natural method to a more-efficient

one.

It is widely believed that the abstract computation model provided is the heart of a

programming environment. This section gives an overview of recent developments in parallel

programming environments, classifying them by their conceptual computation model and

comparing them on their strengths and weaknesses in expressing parallelism. Two related studies

offer additional insight. Bal, Steiner and Tanenbaum (1989) focus on the language issue in

distributed systems. Chang and Smith (1990) examined the features of parallel programming tools,

but the notion of the conceptual model of computation is not addressed. The Linda language

(Gelernter et al., 1985; Gelernter, 1989; Carriero and Gelernter, 1988a, 1988b) uses the concept of

a tuple space for communication between concurrent processes. Processes use atomic operations

to read, add or delete a tuple to/from the tuple space. This model is powerful but it does not

provide a high-level parallel conceptual machine to describe a parallel program. This review

therefore does not include Linda.

In Appendix C, a review of the 14 tools referenced in this section is presented. These tools

are representative of the current spectrum of parallel programming environments.

7.1 Styles of Parallel Computation

There are many ways to classify parallel computation (Bal, Steiner and Tanenbaum, 1989;

Carriero and Gelernter, 1989; Chang and Smith, 1990; King, Chou and Ni, 1990). Here we

describe the ones that we believe best summarizes the different approaches to achieve parallelism.

King, Chou and Ni (1990) characterize parallel computation from two perspectives: from the way

the computation is partitioned and distributed, and from the way the computation is executed. From

the first perspective, computations are characterized as data-parallel or function-parallel:

- 31 - Enterprise Technical Report TR91-17

1) A function-parallel view has a program divided into subprograms of different

functionality, which can be executed in parallel on different processors. Function-

parallelism is suitable for applications that can be programmed using many

independent subroutines (animation, for example).

2) A data-parallel view has the data partitioned among the processors. Processors may

execute the same program but work on different data subsets. Data-parallelism is

suitable for applications which perform the same set of operations repeatedly and

independently on a large set of data. Programs with nested loops to handle static and

regular data structures are suitable for data-parallel computation (image processing

and ray tracing, for example).

From the second perspective, execution, a parallel computation can be characterized as either

concurrent or pipelined (Hwang and Briggs, 1984):

 1) Concurrency exploits spatial parallelism by utilizing different processors executing

multiple independent tasks simultaneously. Tasks may be data-parallel or function-

parallel.

2) Pipelining exploits temporal parallelism. Each processor behaves like a filter or

transformer operating on its input data and passing output data to the succeeding

processors. Data flows through the pipeline as it is processed stage by stage. A

datum, once entering the system, will be used or modified repeatedly along the

pipeline.

By combining these two perspectives together, four different styles of parallel computation can be

identified as shown in Table 2.

Execution Partition

Function Data

Concurrent Concurrent

function-parallel

Concurrent

data-parallel

Pipelined Pipelined

function-parallel

Pipelined

data-parallel

Table 2: Different styles of parallel computation (King, Chou and Ni, 1990).

- 32 - Enterprise Technical Report TR91-17

7.1.1 Concurrent Function-Parallel Computation

In this approach, different processors perform different functions simultaneously. The

strategy is to break the original problem down into several small independent subproblems. Each

of these subproblems can be assigned to a different processor and the results received from these

processors can be combined to form a solution to the original problem. For example, in a particle-

in-a-cell application, different boundary constraint tests can be applied in parallel to the same

datum.

7.1.2 Concurrent Data-Parallel Computation

Processors perform the same operation simultaneously but on different data sets in the

concurrent data-parallel approach. This is also known as domain decomposition and is similar to

the agenda parallelism described by Carriero and Gelernter (1989). All the processors work in

parallel on the same item on the agenda and then move on the next item on the agenda. Sometimes,

the decomposition of the work can proceed dynamically and partitions can be of uneven sizes, as in

problems that use divide and conquer and state space search strategies.

7.1.3 Pipelined Function-Parallel Computation

In the pipeline different stages perform different functions. When data flows through the

stages, they are modified along the way. The fish animation application discussed in this report

illustrates an application suitable for a pipeline.

7.1.4 Pipelined Data-Parallel Computation

The data-parallel approach has a number of processors performing identical operations on

individual data elements. To carry out correct executions, different data streams have to flow along

different directions to bring appropriate data to the required processors at the right moment. The

operations are synchronized. Since the communication overhead associated with medium and

large-grained multi-computers are considerable, and a global clock is required to synchronize the

operation among the processors, this approach of parallelism is uncommon in MIMD and

distributed parallel programming environments. It is most often seen in fine-grained granularity

applications (such as systolic systems (Kung, 1979)). Carriero and Gelernter (1989) do not even

consider this approach, however, research has been underway to explore its feasibility (King,

Chou and Ni, 1990) and some programming environments support it (Segall and Rudolph, 1985).

7.2 Models of Computation

The models of computation can be described as a directed graph whose nodes represent units

of computation, and whose arcs represent the data flow, control flow or messages between nodes

(Browne, 1985). The models can be classified into three categories according to the structural

- 33 - Enterprise Technical Report TR91-17

focus employed to incorporate the parallelism (Pancake and Utter, 1989): data oriented, task

oriented and template attachment as shown in Figure 9.

Task
Oriented

Data

Oriented

Template
Attachment

Dependency Graphs

Concurrent History Graph

Control Flow Graph

Data Driven

Demand Driven

User Specified

Anthropomorphic

Virtual Architecture

Conceptual

Computational

Model

Figure 9: A classification scheme for parallel programming environment models.

7.2.1 Task Oriented Models

In these models, parallelization is achieved by partitioning the tasks to be performed into a

collection of serial processes, each processing a unique thread of control. Models in this category

can be represented by a directed graph whose nodes represent a procedure call or a synchronization

point, and whose arcs represent operations that advance the program from one state to another.

Models that fall in this category include those based on task dependencies graphs (PFG, E/SP and

HeNCE) and control flow graphs (CAPER and PAT).

7.2.2 Data Oriented Models

For data oriented models, parallelism occurs as the simultaneous execution of an operation on

multiple data elements. Whenever the size of the data warrants parallelization, activities are

replicated for execution across data subsets. Program execution is viewed as a single thread of

control which temporally diverges into parallel action sequences that later converge. Models in this

category can be represented by a directed graph whose nodes represent units of computation and

- 34 - Enterprise Technical Report TR91-17

whose arcs represent flow of data (Babb, 1984). Models can be further classified as being

demand-driven, data-driven or user-specified.

In the demand-driven model of computation, the sink node requests data from the source

node and the source node responds. The sink node is the terminating node producing the final

output. The source node is the initial node in the program which is also responsible for getting the

input data. From the sink node, each node first sends a demand for data request to its parent in the

dependency graph. The demand is then propagated toward the input of the graph. From the

source node, the result is then propagated back to the sink node. A data-driven methodology

employs a communication protocol where source nodes send results to sink nodes and perhaps

await acknowledgement of result arrival or use time-out. In both cases, the functions are

embedded in the nodes and data objects are carried on the arcs. The number of messages in the

demand-driven model is double that of the data-driven model and the size of the demand messages

are small, resulting in a poor utilization of bandwidth. Some models (CODE, for example)

integrate demand-driven and data-driven control by allowing some arcs to be data-driven and

others to be demand-driven.

 Environments that use the dataflow model or its variant includes CODE, DGL, LGDF,

TDFL, PPSE, and Paralex.

7.2.3 Template Attachment Models

In these models, entities do not uniformly represent subsets of activity or data. The model is

an orderly system of interaction among independent, self-contained entities. An entity may contain

data, operations or both. The program is a system of black boxes emitting and receiving

messages. Some environments model the computation entities after physical architecture

characteristics and provide architectural templates like systolic arrays and master/slave relationships

(PIE and PAL, for example). Some environments model the four styles of parallelism directly by

providing templates for concurrency and pipeline (FrameWorks and Enterprise, for example).

7.2.4 Explicit / Implicit Parallelism

Explicit parallelism in an application is accomplished by using a procedural language with

constructs for concurrency to specify the application. The programmer is responsible for the

interaction between parallel tasks. Implicit parallelism is accomplished by a non-procedural

language model. An application is described declaratively and viewed as a directed graph whose

vertices denote functions and edges denote dependencies between functions with which they are

incident. NMP (Marsland, Breitkreutz and Sutphen, 1991) and PVM (Sunderam) are examples of

this type of parallelism.

- 35 - Enterprise Technical Report TR91-17

7.3 Hierarchy

The data dependency graph contains redundant information for the parallelization process.

Many dependencies are generated by scalar variable references, which offers little possibility of

parallelism. Also, it is rare than every statement is involved in a compute-intensive segment. It is

wasteful to store data dependence information for a region that is not compute intensive, since its

parallelization achieves little. A model that supports hierarchies of abstraction permits the

computation to be realized with increased resolution and limits the size of the graph to a

manageable complexity. The highest level graph consists of a single node which contains the

entire program. A node of the most resolved level contains single statements.

All three categories of computation models can support hierarchical abstractions on the

computation graphs. In data-oriented and task-oriented models, the graphs are strictly hierarchical

since expanding a node gives a sub-graph with similar properties as the original node. In template

attachment models, graphs at different levels may exhibit different properties.

7.4 Mutability

Mutability refers to whether the size of a task can change dynamically at run time (Suhler et

al., 1990). If mutability is supported, the program can allocate the computation and memory

resources as required to process the current data. Otherwise, the programmer has to encapsulate all

the data set into a single, static computation structure. In most parallel programming

environments, mutability is explicit: the programmer uses commands embedded in the program to

create and remove units of computation. It directly involves the programmer in resource

management and can result in inefficiencies. On the other hand, implicit mutability makes it

difficult for the programmer to use knowledge about what granularity might be appropriate for a

given program.

Models that use fork and join or similar constructs are explicitly mutable, so task-oriented

models are generally explicitly mutable. In the data-oriented environment, parallelism is implicit.

With the availability of dependency information, a unit of computation can be partitioned into

several units, or combined with other units of computation. Therefore, a data-oriented model can

be mutable (TDFL, for example). Some task-oriented models, such as E/SP, support the

automatic detection of parallelism, in which case implicit mutability is possible. In the template

attachment model, the programmer decides the parallel template to use and the granularity of work,

so mutability is explicit. However, to some extent, implicit mutability is supported in

environments that allow dynamic allocation of worker processes to complete the work (contracts in

Enterprise and contractors in FrameWorks are examples).

- 36 - Enterprise Technical Report TR91-17

7.5 Expressive Power

Nodes in the template attachment models, by definition, may exhibit different properties. In

general, the model can express any parallelism desired by designing new templates. The other two

models, task and data oriented, are more limited because they usually support a single node type -

the computation unit. Both these models work best for expressing concurrent function-parallel

computation. It is possible to express concurrent data-parallel parallelism only when the data size

and number of processors are static. Besides, to express a simple concurrent data-parallel

computation, in which each processor takes an equal share of the tasks and works in parallel, the

programmer has to partition the data and specify the routing of data for each node. Also, most

models do not support recursive calls and dynamic concurrent data-parallel computation. Finally,

it is impossible to express pipeline computations in these models. Therefore, some environments

introduce special nodes to express the above parallelisms. In TDFL, the DoAll node is added to

the dataflow model, which takes an incoming array data token and outputs an array data token.

The size of the array determines the number of times the function is invoked. Each invocation

writes to a different element of the array. Also, the Self-Loop Arc is added to support state

retention.

7.6 Comments

In some cases, the dataflow diagram can be automatically translated from the dependency

specification in the file (makefiles are a good example). Non-procedural languages, such as Lisp

or Prolog, are better described by a data-oriented model. However, usually, dataflow diagrams are

not readily available.

Because of the extensive research in the area of automatic parallel compilers, the program call

structure and control flow information can be automatically generated in most cases. The

programmer usually need only be concerned with the unresolved dependencies. However, the

parallelism obtained by an automatic parallelizer may not be optimal since the analysis is based on

static information only.

When the information is not available, it is time consuming and error prone for the

programmer to draw a large number of nodes and edges when the data flow or call structure are

complicated. Moreover, data dependence, program control flow and program states are all low-

level information and can often be non-intuitive to the programmer. A tool that interacts with a

programmer only in terms of the above information can easily overwhelm the programmer with a

large amount of low-level information. Also, these graphs can be dense structures. For large

programs, this may pose manageability problems to the programmer.

- 37 - Enterprise Technical Report TR91-17

If the concern is to design a parallel program with the programmer in control, the best choice

would be a parallel programming environment that used the template attachment model. If

mutability and implicit parallelism are the concern, then a data-oriented environment is the choice.

Task-oriented parallelism is best used as a tool to let the programmer view and modify the program

after automatic parallel structuring has been performed.

8. Project Status

Enterprise is being implemented. The current status (August, 1991) is:

1) The Graphical Interface Manager is functional, but without all the user-friendly

features fully working. A user can edit a diagram and its attributes, as well as save

and load it. No effort has been devoted to developing the Text Interface Manager.

2) The Code Librarian manages the source and object correctly for a heterogeneous

network of machines. Currently, the insertion of Enterprise code into a user's code is

done manually; the program to do this automatically is under development.

3) The Execution Manager supports lines, pools, departments, contracts and

individuals. Other assets are under construction.

4) No effort has been made to implement the Monitor/Debugger Manager.

5) Currently, the Resource Secretary assumes all machines are idle.

We expect to have a usable system by the end of 1991, with all the features implemented by the

end of 1992.

In recent years, there has been an enormous increase in the number and quality of parallel

programming tools described in the literature. The authors of these tools have diverse opinions as

to where in the software development cycle and how these tools can increase a programmer's

productivity. The Enterprise project aims for a complete, integrated programming environment that

is suitable for the complete software development life cycle. By capturing an application's

parallelism through the use of diagrams that are simple to edit, it is not difficult for the user to make

the leap from sequential to parallel programming. Although the complexity of parallel systems, as

portrayed in the literature, has been a powerful deterrent to growth in this area, we believe that with

a simple model, all of the complexity of parallel programming can be hidden from the user. The

analogical model used in Enterprise represents a different way of viewing an old problem.

- 38 - Enterprise Technical Report TR91-17

Acknowledgements

This research was supported in part by research grants from the Central Research Fund,

University of Alberta, and the Natural Sciences and Engineering Research Council of Canada,

grants OGP-8173 and infrastructure grant 107880. Also, Rasit Eskicioglu provided us with a

number of useful references.

References

B. Appelbe and K. Smith. PAT: Interactive Conversion of Sequential to Parallel Fortran,
IEEE COMPCON, 1990, pp. 585-588.

O. Babaog
∪

lu, L. Alvisi, A. Amoroso and R. Davoli. Paralex: An Environment for Parallel
Programming in Distributed Systems, 1991, Technical Report UB-LCS-91-01,
Department of Mathematics, University of Bologna, Bologna, Italy.

R.G. Babb. Parallel Processing with Large Grain Data Flow Techniques, IEEE Computer,
1984, vol. 17, no. 7, pp. 55-61.

H.E. Bal, J.G. Steiner and A.S. Tanenbaum. Programming Languages for Distributed
Computing Systems, ACM Computing Surveys, 1989, vol. 2, no. 3, pp. 261-322.

V.A. Balasundaram. Mechanism for Keeping Useful Internal Information in Parallel
Programming Tools: The Data Access Descriptor, Journal of Parallel and Distributed
Computing, 1990, vol. 9, no. 2, pp. 154-170.

A. Beguelin, J.J. Dongarra, G.A. Geist, R. Manchek and V.S. Sunderam. The PVM and
HeNCE Projects, electronic news group comp.parallel, 1990.

K. Birman, R.Cooper and B.Gleeson. Programming with Process Groups: Group and
Multicast Semantics, 1991, Technical Report TR-91-1185, Computer Science
Department, Cornell University.

K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane, F. Schmuck
and M. Wood. The ISIS System Manual, Version 2.1, 1991, ISIS Project, Computer
Science Department, Cornell University.

K.S. Booth, J. Schaeffer and W.M. Gentleman, Anthropomorphic Programming, 1984,
Technical Report CS-82-47, Department. of Computer Science, University of
Waterloo.

J.C. Browne. Formulation and Programming of Parallel Computations: A Unified
Approach, in Proceedings of the International Conference on Parallel Processing,
1985, pp. 624-631.

J.C. Browne. Framework for Formulation and Analysis of Parallel Computation
Structures, Parallel Computing, 1986, vol. 3, pp. 1-9.

- 39 - Enterprise Technical Report TR91-17

J.C. Browne, T. Lee and J. Werth. Experimental Evaluation of a Reusability-Oriented
Parallel Programming Environment, IEEE Transactions on Software Engineering,
1990, vol. 16, no. 2, pp. 111-120.

J.C. Browne, K. Sridharan, J, Kiall, C. Denton and W. Eventoff. Parallel Structuring of
Real Time Simulation Programs, IEEE COMPCON, 1990, pp. 580-584.

J.C. Browne, J. Werth and T. Lee. Intersection of Parallel Structuring and Reuse of
Software Components: A Calculus of Composition of Components for Parallel
Programs, in Proceedings of the International Conference on Parallel Processing,
1989, pp. 126-130.

N. Carriero and D. Gelernter. Applications Experience with Linda, in Proceedings of the
ACM Symposium on Principles of Programming Languages, 1988, ACM, New
York.

N. Carriero and D. Gelernter. Linda in Context, Communications of the ACM, 1988, vol.
32, no. 4, pp. 444-458.

N. Carriero and D. Gelernter. How to Write Parallel Programs, ACM Computing Surveys,
1989, vol. 2, no. 3, pp. 323-357.

L. Chang and B.T. Smith. Classification and Evaluation of Parallel Programming Tools,
1990, Technical Report 1990-22, College of Engineering, University of New
Mexico.

A. Chatterjee. Futures: A Mechanism for Concurrency Among Objects, in Proceedings of
Supercomputing '89, 1989, pp. 562-567.

D.R. Cheriton and W. Zwaenepoel. The Distributed V Kernel and Its Performance for
Diskless Workstations, in Proceedings of the 9th ACM Symposium on Operating
Systems Principles, 1983, pp. 129-140.

E.E. Dijkstra, Selected Writings on Computing: A Personal Perspective, 1982, Springer-
Verlag, New York.

D.C. DiNucci and R.G. Babb II. Architecture of the Parallel Programming Support
Environment, IEEE COMPCON, 1989, pp. 102-107.

J.J. Dongarra, J. Bunch, C. Moler and G. Stewart. LINPACK Users’ Guide, 1976,
SIAM Publishers, Philadelphia.

M.R. Eskicioglu. Design Issues of Process Migration Facilities in Distributed Systems,
IEEE TCOS Newsletter, 1990, vol. 4, no. 2, pp. 3-13.

G.A. Geist and V.S. Sunderam. Network Based Concurrent Computing on the PVM
System, 1991, Report Number TM-11760, Oak Ridge National Laboratory.

D. Gelernter, N. Carriero, S. Chandran and S. Chang. Parallel Programming in Linda, in
Proceedings of the International Conference on Parallel Processing, 1985, pp. 255-
263.

- 40 - Enterprise Technical Report TR91-17

D. Gelernter. Information Management in Linda, in Parallel Processing and Artificial
Intelligence, 1989, John Wiley, pp. 23-34.

W. Harrison. Tools for Multiple-CPU Environments, IEEE Software, 1990, vol. 7, May,
pp. 45-51.

K. Hwang and F. Briggs. Computer Architecture and Parallel Processing, 1984, McGraw-
Hill, New York.

R. Jagannathan, A.R. Downing, W.T. Zaumen and R.K.S. Lee. Dataflow-based
Methodology for Coarse-Grain Multiprocessing on a Network of Workstations, in
Proceedings of the International Conference on Parallel Processing, 1989, pp. 54-58.

A. Jones and A. Schwarz, Experience Using Multiprocessor Systems - A Status Report,
Computing Surveys, 1980, vol. 12, no, 3, pp. 121-166.

C.T. King, W.H. Chou and L.M. Ni. Pipelined Data-Parallel Algorithms: Part I-Concept
and Modeling, IEEE Transactions on Parallel and Distributed Systems, 1990, vol. 1,
no. 4, pp. 470-485.

H.T. Kung. Lets Design Algorithms for VLSI Systems, in Proceedings of the Caltech
Conference on Very Large Scale Integration, 1979, pp. 65-90.

T.G. Lewis and W.G. Rudd. Architecture of the Parallel Programming Support
Environment, IEEE COMPCON, 1990, pp. 589-594.

M.A. Linton, J.M. Vlissides, and P.R. Calder. Composing User Interfaces with
InterViews, IEEE Computer, 1989, vol. 22, no. 2, pp. 8-22.

T.A. Marsland, T. Breitkreutz and S. Sutphen. A Network Multi-processor for
Experiments in Parallelism, Concurrency: Practice and Experience, 1991, vol. 3, in
press.

C.M. Pancake and S. Utter. Models for Visualization in Parallel Debuggers, in
Supercomputing '89, 1989, pp. 627-636.

R.W. Scheifler and J. Gettys. The X Window System, ACM Transactions on Graphics,
1986, vol. 5, pp. 79-109.

Z. Segall and L. Rudolph. Pie (A Programming and Instrumentation Environment for
Parallel Processing), IEEE Software, 1985, vol. 2, no. 6, pp. 22-37.

A. Singh. A Template-Based Approach to Structuring Distributed Algorithms Using a
Network of Workstations, 1991, Ph.D. Thesis, Department of Computing Science,
University of Alberta.

A. Singh, J. Schaeffer and M. Green. Structuring Distributed Algorithms in a Workstation
Environment: The FrameWorks Approach, in Proceedings of the International
Conference on Parallel Processing, 1989, pp. 89-97.

A. Singh, J. Schaeffer and M. Green. A Template-Based Tool for Building Applications in
a Multicomputer Network Environment, in Parallel Computing, 1989, D. Evans, G.
Joubert and F. Peters (editors), North-Holland, pp. 461-466.

- 41 - Enterprise Technical Report TR91-17

A. Singh, J. Schaeffer and M. Green. A Template-Based Approach to the Generation of
Distributed Applications Using a Network of Workstations, IEEE Transactions on
Parallel and Distributed Systems, 1991, vol. 2, no. 1, pp. 52-67.

J.P. Singh, W-D. Weber and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory, 1991, Technical Report CSL-TR-91-469, Computer Systems
Laboratory, Stanford University.

K. Smith, B. Appelbe and K. Stirewalt. Incremental Dependence Analysis for Interactive
Parallelization, in Supercomputing '90 , 1990, pp. 330-341.

K. Smith and B. Appelbe. PAT-An Interactive Fortran Parallelizing Assistant Tool, in
Proceedings of the International Conference on Parallel Processing, 1988, pp. 58-62.

S. Sobek, M. Azam and J.C. Browne. Architecture and Language Independent Parallel
Programming: A Feasibility Demonstration, in Proceedings of the International
Conference on Parallel Processing, 1988, pp. 80-83.

K. Sridharan, M. McShea, C. Denton, B. Eventoff, J. Browne, P. Newton, M. Ellis, D.
Grossbard, T. Wise and D. Clemmer. An Environment for Parallel Structuring of
Fortran Programs, in Proceedings of the International Conference on Parallel
Processing, 1989, pp. 98-106.

K. Sridharan, R. Narayanaswamy, C. Denton and B. Eventoff. Parallel Structuring of
Programs Containing I/O Statements, in Proceedings of the International Conference
on Parallel Processing, 1990, pp. 224-228.

P.D. Stotts. The PFG Language: Visual Programming for Concurrent Computation, in
Proceedings of the International Conference on Parallel Processing, 1988, vol. 2, pp.
72-79.

B. Sugla, J. Edmark and B. Robinson. An Introduction to the CAPER Application
Programming Environment, in Proceedings of the International Conference on
Parallel Processing, 1989, pp. 107-111.

P.A. Suhler. Heuristic Tuning of Parallel Loop Performance, in Proceedings of the
International Conference on Parallel Processing, 1989, pp. 184-191.

P.A. Suhler, J. Biswas and K.M. Korner. TDFL - A Task-Level Data Flow Language,
1987, Technical Report TR-87-44, Department of Computer Science, University of
Texas at Austin.

V. Sunderam. PVM: A Framework for Distributed Computing, Concurrency: Practice &
Experience, 1990, vol. 2, no. 4.

D. Vrsalovic, Z. Segall, D. Siewlorek, F. Gregorettl, E. Caplan, C. Fineman, S. Kravltz,
T. Lehr and M. Russinovich. Performance Efficient Parallel Programming in MPC,
technical report CMU-CS-88-164, Department of Computer Science, Carnegie
Mellon University, 1988.

Z. Xu and K. Hwang. Molecule: A Language Construct for Layered Development of
Parallel Programs, IEEE Transactions on Software Engineering, 1989, vol. 15, no.
5, pp. 587-599.

- 42 - Enterprise Technical Report TR91-17

Appendix A.

C Code for the Entry Procedures of the Animation Example

This appendix gives pseudo code for the Animation example. For brevity, only the main

procedure calls of Model, PolyConv and Split are shown.

Asset Code: Model

/* Model asset */

#define NUMBER_STEPS 4
#define NUMBER_FISH 10
#define NUMBER_FRAMES 20

Model()
{

float timeperframe;
int frame;

/* Generate the school of fish */
MakeFish(NUMBER_FISH, 0);

/* Loop through each frame */
timeperframe = 1.0 / NUMBER_STEPS;
for(frame = 0; frame < NUMBER_FRAMES; frame++)
{

/* Do model computations */
InitModel(NUMBER_FISH);
MoveFish(NUMBER_FISH, timeperframe);
DrawFish(NUMBER_FISH, timeperframe * frame);
WriteModel(frame);

/* Done! Send work to PolyConv process */
PolyConv(frame);

}
}

- 43 - Enterprise Technical Report TR91-17

Asset Code: PolyConv

/* PolyConv asset */

#define MAX_POLYGONS 1000

PolyConv(frame)
int frame;
{

polygon polygontable[MAX_POLYGONS];
int npoly;

/* Convert polygons and send to Split */
DoConversion(frame);
npoly = ComputePolygons(&polygontable);
Split(frame, npoly, polygontable);

}

Asset Code: Split

/* Split asset */

#define MAX_POLYGONS 1000

Split(frame, npoly, polygontable)
int frame, npoly;
polygon polygontable;
{

HiddenSurface(frame, npoly, &work.polygontable);
AntiAlias(frame, npoly, &work.polygontable);

}

- 44 - Enterprise Technical Report TR91-17

Appendix B.

C Code for the Entry Procedures of the Animation Example

The example application in Appendix A, along with the Enterprise diagram in Figure 6, is

translated automatically into an executable program. In this Appendix, the program that Enterprise

produces is given. In the code, bold text refers to inserted code, while regular text identifies the

user-written code. At the time of this writing, the ISIS implementation has not yet been finalized.

This example should be used as an illustration of what Enterprise does to the user code, without

the code necessarily being completely accurate.

Asset Code: Model

/* Model asset */

#define NUMBER_STEPS 4
#define NUMBER_FISH 10
#define NUMBER_FRAMES 20

/* ISIS code for a module in a line. Since this is the start * /
/* of the computation, this routine is not called by another * /
/* module. However it does call the next module in the line. * /

#include "isis.h" /* Header file for ISIS libraries * /
#define DONE_ENTRY 2 /* Entry id of routine handle exit. * /

#define port_nr 1612 /* ISIS port number */
address *PolyConv_pg; /* Addr of process serving the call */

/* Note, the main routine for a module without a caller (no * /
/* input parameter) is different from one with a caller (with * /
/* a parameter(s)). * /
main()
{

int Model();

isis_init(port_nr);
isis_task(Model, "Model");
isis_mainloop(Model);

}

Model()
{

float timeperframe;
int frame;

/* Generate the school of fish */
MakeFish(NUMBER_FISH, 0);

/* Loop through each frame */
timeperframe = 1.0 / NUMBER_STEPS;

- 45 - Enterprise Technical Report TR91-17

for(frame = 0; frame < NUMBER_FRAMES; frame++)
{

/* Do model computations */
InitModel(NUMBER_FISH);
MoveFish(NUMBER_FISH, timeperframe);
DrawFish(NUMBER_FISH, timeperframe*frame);
WriteModel(frame);

/* Done! Send work to PolyConv process */

/* ISIS message format is similar to that of the funct- * /
/* ion fprintf. Here, an integer argument is copied in- * /
/* to the message. The number following the argument * /
/* specifies the number of replies wanted. In this exam-

* /
/* ple, all calls are p-calls and no reply is required. * /
bcast(PolyConv_pg, CALL_ENTRY, "%d",frame, 0);

}
/* ISIS process will remain waiting to serve a message un- * /
/* less it is explicitly terminated by calling exit(). * /
/* A module needs to tell all called modules to exit too. * /
bcast(PolyConv_pg, DONE, "", 0);
exit(0);

}

Asset Code: PolyConv

/* PolyConv asset */

#define MAX_POLYGONS 1000

/* ISIS code for a module in a line. It is called by a module * /
/* and also calls a module which is in a contract. * /
#include "isis.h"

#define port_nr 1612 /* ISIS port number * /
#define CALL_ENTRY 1
#define DONE_ENTRY 2

main()
{

int PolyConv_main(), PolyConv(), term();

isis_init(port_nr);

/* Define frame format for user defined structure. The * /
/* Enterprise parser provides from its symbol table an * /
/* unused format character for the new format. Here it is * /
/* 'i', for example. It then records the assignment of * /
/* the character 'i' to the type polygon. The last * /
/* argument is a function to preserve data types across * /
/* different architectures. On machines with same byte * /
/* ordering, this can be just NULL or 0. * /
isis_define_type('i', sizeof(struct polygon), 0);

isis_task(PolyConv_main, "PolyConv_main");

/* An ISIS entry is a process which ISIS will start up in * /

- 46 - Enterprise Technical Report TR91-17

/* response to a message delivered to it. An entry is * /
/* identified by the process address (PolyConv) and its * /
/* entry number (CALL_ENTRY). A process address can have * /
/* more than one entry as shown below. * /
isis_entry(CALL_ENTRY, PolyConv, "PolyConv");
isis_entry(DONE_ENTRY, term, "term");

isis_mainloop(PolyConv_main);
}

address *PolyConv_pg;
address *Split_pg;
address *Dispatcher_pg;
groupview *Split_gv; /* Calling module of a contract * /

/* or pool include these to talk * /
/* to specific worker in pool. * /

PolyConv_main()
{

PolyConv_pg = pg_join("PolyConv_pg", 0);
Split_pg = pg_lookup("Split");
Dispatcher_pg = pg_lookup("Dispatcher_pg");
Split_gv = pg_getview(Split_pg);

/* isis_start_done tells the ISIS system that the start-up * /
/* sequence is completed and it is ready to handle incoming*/
/* message events. It is not really necessary here. ISIS * /
/* automatically invokes isis_start_done when the main task*/
/* terminates. * /
isis_start_done();

}

/* This entry when called, call exit to terminate this module * /
term(msg_p)
message *msg_p;
{

msg_get(msg_p, "");
exit(0);

}

PolyConv(msg_p)
message *msg_p;
{

int npoly;
polygon polygontable;

/* The procedure header and the input parameters are con- * /
/* verted to a call to get the parameters from an ISIS msg * /
int frame;
msg_get(msg_p, "%d", &frame);

/* Convert polygons and send to Split */
DoConversion(frame);
npoly = ComputePolygons(polygontable);

/* Obtain an idle Split member from bulter service */
fbcast(Bulter_pg, CHECK_OUT, "" ,1 ,"%d" ,&idle_member);

- 47 - Enterprise Technical Report TR91-17

/* The format items have an array version, obtained by re- * /
/* placing the lower case letter in the item by the corre- * /
/* sponding upper case letter. Note that the array format * /
/* item %I corresponds to two arguments: the address of the*/
/* first element to copy (polygontable) and the number of * /
/* elements to copy (npoly). * /
fbcast(Split_gv->gv_members[idle_member], CALL_ENTRY, "%d%I",

frame, polygontable, npoly, 0);

}

Asset Code: Split

/* Split asset */

#define MAX_POLYGONS 1000

/* ISIS code for a called module in a contract. It does not * /
/* call any module. * /

#include "isis.h"

#define port_nr 1612 /* ISIS port number * /
#define CALL_ENTRY 1
#define DONE_ENTRY 2

main()
{

int Split_main(), Split();

isis_init(port_nr);

isis_define_type('i', sizeof(struct polygon), 0);
isis_task(Split_main, "Split_main");
isis_entry(CALL_ENTRY, Split, "Split");
isis_entry(DONE_ENTRY, term, "term");
isis_mainloop(Split_main);

}

address *Split_pg;
address *Dispatcher_pg;

Split_main()
{

Split_pg = pg_join("Split_pg", 0);
Dispatcher_pg = pg_lookup("Dispatcher_pg");

/* pg_rank returns the id of this process, which is an * /
/* integer between 0 and the number of Split processes. * /
/* This broadcast tells Dispatcher that it is free. * /
fbcast(Dispatcher_pg, CHECK_IN, "%d",

pg_rank(Split_pg,&my_address), 0);
isis_start_done();

}

term(msg_p)
message *msg_p;
{

- 48 - Enterprise Technical Report TR91-17

msg_get(msg_p, "");
exit(0);

}

Split(msg_p)
message *msg_p;
{

/* After this call, the polygontable in the message will * /
/* be stored in the first npoly elements of the array, and * /
/* npoly will have the number of elements stored. * /
int frame, npoly;
polygon polygontable;
msg_get(msg_p, "%d%I", &frame, polygontable, &npoly);

HiddenSurface(frame, npoly, polygontable);
AntiAlias(frame, npoly, polygontable);

/* This processes is free to serve next call. * /
fbcast(Dispatcher_pg, CHECK_IN, "%d",

pg_rank(Split_pg,&my_address), 0);
}

The Dispatcher service maintains a list of currently available contract processes that can serve a

call. A CHECK_OUT request results in a process being removed from the list and its id returned

to the caller. A CHECK_IN request arises when a contract process is finished and its id is added

to the list. The CHECK_OUT and CHECK_IN entries are shown below:

condition idle_wait = (condition) 0; /* Sleep, waiting * /
/* for an event. * /

check_out(msg_p)
message *msg_p;
{

int idle;

if((idle = pop(idle_stack) == NONE)
{

/* if none available, wait */
idle = t_wait(&idle_wait);

}
reply(msg_p, "%d", &idle);

}

check_in(msg_p)
message *msg_p;
{

int idle;

msg_get(msg_p, "%d", &idle);
if(t_waiting(&idle_wait))/* if someone waiting, wake * /
{ /* it up and send it the num- * /

t_sig(&idle_wait,idle); /* ber of the newly available * /
} /* available process. * /
else

push(idle, idle_stack);
}

- 49 - Enterprise Technical Report TR91-17

Appendix C.

Survey of Other Parallel Programming Environments

In this appendix, a brief description of the environments mentioned in Section 7 is given.

The focus is on the conceptual models they use to represent computation.

C.1 Data Oriented Models

CODE

Computation Oriented Display Environment (CODE) uses a large-grain dataflow model.

Computations at each node can be specified as data- or demand-driven. The programmer

describes the computation by a graph of nodes and dependencies. The graph can be hierarchically

defined; a node contains a sub-graph of nodes, a filter, or a subprogram. Nodes that contain

programs are called schedulable units of computation (SUC). SUCs communicate via

dependencies. A filter node defines the transmission of some subset of data from its input

dependencies to some subset of its output dependencies.

Comments: dataflow, user specify an arc as demand- or data-driven, implicit parallelism, no

restructure support, hierarchical resolution of parallelism, software component reusable, cannot

express pipeline parallelism.

References: Suhler, Biswas, Korner and Browne, 1990; Browne, Lee and Werth, 1990.

DGL

Direct Graph Language (DGL) is a parallel programming environment based on demand-

driven, large-grain dataflow model. A vertex is associated with a function module. Each incoming

edge is associated with a parameter taken by the function. Each outgoing edge is associated with a

use of the result of the function. A function module is a function: it returns a single result and has

no side effects.

Comments: dataflow, demand-driven, implicit parallelism, no restructure support, single

level resolution of parallelism, explicitly mutable, cannot express data and pipeline parallelism.

References: Jagannathan et al., 1989.

LGDF

Large Grain Dataflow (LGDF) takes the form of a directed graph consisting of processes

(represented as circles) and datapaths (represented as vertical lines or rectangles) selectively

connected pair-wise by arcs. A process is a sequential program written in a high-level language

such as C or Fortran. Each datapath contains a (possibly zero length) data structure specified by

the programmer. For a process to read and/or write to this structure, the process and datapath must

- 50 - Enterprise Technical Report TR91-17

be connected with an arc having read and/or write permission. These permissions are represented

in the graph as arrowheads on the arc illustrating the allowed direction(s) of dataflow: toward the

process (for read permission) and/or toward the datapath (for write permission). At any moment, a

datapath can be in the state of being read from, written to or neither. A process may start execution

(fire) when it can read from all of its connected arcs. Also, by applying the reserve and grant

commands to a datapath, a process can exclude or permit other processes from accessing the

datapath.

Comments: dataflow, data-driven, implicit parallelism, no restructure support, single level

resolution of parallelism.

References: DiNucci and Babb, 1989.

Paralex

Paralex is a parallel programming environment based on a data-driven, large-grain dataflow

model. There are 2 types of nodes. At a computation node, execution begins when all links

incident at a node contain a value. The computation satisfies the functional paradigm. Data

communications are specified by drawing links to connect the nodes. Filter nodes allow data

values to be extracted on a per destination basis before they are transmitted to the next node, to

avoid the transmission of unnecessary data.

Comments: dataflow, data-driven, implicit parallelism, no restructure support, single level

resolution of parallelism, explicitly mutable, fault tolerant, cannot express data and pipeline

parallelism.

References: Babaog
∪

lu, Alvisi, Amoroso and Davoli, 1991.

PPSE

Parallel Programming Support Environment (PPSE) is an integrated set of tools for the

design and construction of parallel software. The PPSE Parallax graphical design editor supports a

hierarchical graphical description language called ELGDF (Extended Large Grain Dataflow) to

describe data and control dependencies between tasks. It offers graphical constructs such as pipes,

loops, repeated nodes, and special dataflow arcs to indicate mutually exclusive access to data.

Comments: dataflow, implicit parallelism, no restructure support, hierarchical resolution of

parallelism.

References: Lewis and Rudd, 1990.

TDFL

Task-Level Dataflow Language (TDFL) is evolved from CODE. It is the first corse-grain

dataflow language that supports the dynamic modification of graphs (implicit mutability). As

- 51 - Enterprise Technical Report TR91-17

described in Section 7, it is difficult to describe loop and do-all parallelism using the dataflow

model. TDFL introduces new constructs to support parallelism not addressed in the formal

dataflow models: Loop, DoAll, Case and EndCase nodes, and self-loop arcs.

Comments: dataflow, user specify an arc as demand- or data-driven, implicit parallelism, no

restructure support, hierarchical resolution of parallelism, implicitly mutable, software component

reusable, cannot express pipeline parallelism.

References: Sobek, Azam and Browne, 1988; Browne, Werth and Lee, 1989; Suhler,

Biswas and Korner, 1987; Suhler, 1989.

C.2 Task Oriented Models

CAPER

CAPER is an application programming environment for message passing multi-processors.

A program is specified by drawing a graph of nodes and lines. A node contains routines for

algorithm or routines or transforming data between communicating algorithms (they take care of

the distributing and restructuring of distributed data). A line represents the transfer of data between

two routines. Each node is also assigned a number which specifies how many processors are used

to run the encapsulated routine. The graph is hierarchical; nodes can be grouped together or

expanded.

Comments: control flow graph, explicit parallelism, hierarchical resolution of parallelism,

explicitly mutable, cannot express data and pipeline parallelism.

References: Sugla, Edmark and Robinson, 1989.

E/SP

E/SP is an environment for the parallel structuring of Fortran programs using a hierarchical

dependency graph. The highest level graph consists of a single node plus an entry and exit node.

A node of the most resolved level contains single statements. The next level of resolution is the

basic block or the subprogram, and the highest level is typically a segment of a call tree. The

Fortran language has been extended to include fork and join statements for expressing parallelism.

The programmer collapses or expands a node to decide the granularity of a computation unit and

the realization of the parallelism is done automatically by the tool. When dependences must be

removed to achieve parallelism, the programmer is informed of the dependency type and prompted

to change the portion of the program involved. The drawback is that only the divide and conquer

paradigm of parallel processing can be realized.

- 52 - Enterprise Technical Report TR91-17

Comments: hierarchical dependence graph, explicit parallelism, automatic structuring of

parallelism, hierarchical resolution of parallelism, explicitly mutable, cannot express data and

pipeline parallelism

References: Harrison, 1990; Sridharan, et al., 1989, 1990; Browne, Sridharan et. al., 1990.

HeNCE

The programming environment for a heterogeneous network of parallel machines, HeNCE,

supports the creation, compilation, execution, debugging, and analysis of parallel programs for a

heterogeneous group of computers. The programmer specifies the parallelism of a computation by

drawing a graph describing the dependencies between user-defined procedures. HeNCE will then

automatically execute these procedures over a user defined collection of machines on some

network.

Comments: dependence graph, explicit parallelism, explicitly mutable.

References: Beguelin et. al., 1990; Geist and Sunderam 1991.

PAT

 Parallelizing Assistant Tool (PAT) contains a parallelizer which examines a source Fortran

program and suggest parallelization modifications, a static analyzer that simulates the execution of

the source program and locates anomalies caused by the interaction of tasks and a debugger. The

program analysis is built on using a control flow graph (CFG) of the program. Each node in the

CFG represents either a basic block of the program, a branch or a merging of the program flows.

Subroutine calls in the CFG are expanded in-line for simplicity (each call is expanded individually

in context). The dependence information is extracted by tracing paths through the program, using

reference lists to construct a global dependence graph. Browsing of dependences is provided

through an interactive graphical interface at the statement or variable level.

Comments: control flow graph, explicit parallelism, static analysis to explore parallelism,

hierarchical resolution of parallelism, explicitly mutable, cannot express data and pipeline

parallelism.

References: Harrison, 1990; Smith and Appelbe, 1988; Smith, Appelbe and Stirewalt, 1990.

PFG

Program Flow Graph, PFG, has four nodes types: concurrency branch, non-deterministic

branch, join and call. The nodes are connected with arrows. A call node contains a block of

procedure call(s). A join node is the synchronization point of the incoming concurrent control

paths, merging them into one. Call and join node may have no arcs or a single arc with no label

leaving it. Each of the branch nodes contains a selector, and may have any number of arcs leaving

- 53 - Enterprise Technical Report TR91-17

it. Execution proceeds from the initial node, and nodes are executed in the order they are

encountered by following arcs. If a node contains a procedure call, the call is evaluated and the

data state is altered. If a node contain a selector, then the selector is evaluated and a choice of the

next node (or nodes) is made based on the result of evaluation. For a concurrency branch, two or

more parallel threads are created. All selected arcs are concurrently followed. For a non-

deterministic branch, one of the out-going arcs is chosen non-deterministically and followed.

Comments: explicit parallelism, no analysis to explore parallelism, single level resolution of

parallelism, explicitly mutable, cannot express data and pipeline parallelism.

References: Stotts, 1988.

C.3 Template Attachment Models

FrameWorks

In this model, an application is viewed as a graph with nodes being communicating

processes. Each node contains a sequential module or procedure. Communication and

synchronization are specified by the properties of the node through up to 3 types of attribute

bindings. The input template specifies the incoming message to a node, and can be one of the

following: initial, which accepts no input from other nodes; in_pipeline, which specifies the node

as a part of a pipeline; and assimilator, which states that the node merges the results of several

nodes. The output template specifies the outgoing message from a node, and can be one of the

following: out_pipeline, which specifies the output of the node to flow in a pipeline fashion to its

connecting nodes; manager template, which specifies that a fixed number of multiple workers will

be used to execute the called procedure; and terminal template, which specifies that the application

terminates there. The body template specifies the execution mode of the node: an executive

template causes the process to have its input, output and error streams directed to the terminal; and

a contractor specifies that multiple workers are assigned dynamically at run-time to execute the

specified node. The run-time dynamic task decomposition is supported by the language constructs

split and merge, similar to fork and join in task-oriented models.

Comments: template attachment, 8 templates modelled after communication style, explicit

parallelism, no automatic exploration of parallelism, single level resolution of parallelism, explicitly

mutable, can express all style of parallelism except pipelined data-parallel computation.

References: Singh, Schaeffer and Green, 1989a, 1989b, 1991; Singh, 1991.

 PAL

Parallel Language, PAL, is a procedural parallel language introducing the language construct,

molecule. A molecule is a set of program objects that have some common properties. A molecule

type characterizes a particular computation mode (SIMD, sequential, pipelining, array processing,

- 54 - Enterprise Technical Report TR91-17

dataflow, multiprocessing, etc.). A user can characterize a particular mode by defining

corresponding molecule types.

Comments: template attachment, system-supplied and user-defined templates modelled after a

variety of architectures, explicit parallelism, no automatic exploration of parallelism, hierarchical

resolution of parallelism, explicitly mutable, can express all styles of parallelism.

References: Xu and Hwang, 1989.

PIE

Parallel-programming and instrumentation environment, PIE, parallelism is realized by join

and detach statements. Global data, and operations on that data, are encapsulated in frames.

Frames are shared among specific tasks and/or C functions and shared abstracted data types can be

constructed using frames. The most important idea in PIE is the implementation template

construct, which defines and controls parallel computation activities and data. The pre-coded

structure of an implementation (in terms of control, communication, synchronization, and data

partition) is made available to the programmer in the form of a modifiable template. The template

provides the send/receive operation and the programmer has to provide only the sequential code.

Implementations can be nested with one implementation being a part of the other. The following

implementations are available: master-slave, recursive master-slave (same as master-slave except

that the slave could become recursively master for another set of activities), heap implementation

(in which work is distributed through data structures like queues or heaps), pipeline and systolic

multidimensional pipeline.

Comments: template attachment, 5 templates modelled after parallel and pipeline

architectures, explicit parallelism, automatic exploration of parallelism, hierarchical resolution of

parallelism, explicitly mutable, can express all style of parallelism.

References: Segall and Rudolph, 1985; Vrsalovic et al., 1988; Harrison, 1990.

