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Abstract  

The goal of this thesis work was to develop an idealized adult nasal airway geometry capably of 

mimicking average regional nasal deposition of droplets emitted from pharmaceutical nasal sprays.  

The first part of this thesis examined regional deposition within the nose for nasal sprays over a 

large and wide-ranging parameter space by using numerical simulation.  A set of seven realistic 

adult nasal airway geometries was defined based on Computed Tomography (CT) images.  

Deposition in six regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, 

posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, 

spray cone angle, spray release direction, particle injection speed, and particle injection location.  

Penetration of nasal spray particles through the airway geometries represented unintended lung 

exposure.  Penetration was found to be relatively insensitive to injection velocity, but highly 

sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 microns 

in diameter for several airway geometries studied.  Deposition in the turbinates, viewed as 

desirable for both local and systemic nasal drug delivery, was on average maximized for particles 

in the range ~20-30 microns in diameter, and for low to zero injection velocity.  Similar values of 

particle diameter and injection velocity were found to maximize deposition in the olfactory region, 

a potential target for nose-to-brain drug delivery.  However, olfactory deposition was highly 

variable between airway geometries, with maximum olfactory deposition ranging over two orders 

of magnitude between geometries.  This variability is an obstacle to overcome if consistent dosing 

between subjects is to be achieved for nose-to-brain drug delivery. 

 These simulation results were then used to establish target values of regional deposition for the 

idealized geometry.  Characteristic geometric features observed to be common to all the realistic 
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nasal airway geometries studied were extracted and included in the idealized geometry.  Additional 

geometric features and size scaling were explored at various stages of the project, in order to 

enhance deposition in specific regions based on the results of simulations done in earlier versions 

of the geometry.  In total, more than hundred thousand of simulation cases were conducted across 

a range of particle parameters and geometric shapes in order to reach the final idealized geometry 

presented herein.  The proposed idealized geometry has potential use in the development and 

testing of nasal drug delivery systems, allowing researchers to estimate in vivo regional nasal 

deposition patterns using a simple benchtop test apparatus.  
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Chapter 1: Introduction 

 

Nasal drug delivery is widespread in the treatment of allergic rhinitis  (Keith et al. 2012; Bousquet 

et al. 2008). Local delivery of corticosteroids to the nasal airways by means of nasal spray pumps 

is a mainstay for treatment of allergic rhinitis symptoms.  In addition, several classes of marketed 

products have been developed for systemic drug delivery through the nose.  Rapid and direct 

absorption of drug through the nasal epithelium to the systemic circulation enables fast onset of 

action; fittingly, marketed products in this category include those intended to treat migraine 

headaches (Tepper 2013) and break-through cancer pain (Taylor et al. 2014).  Finally, intranasal 

drug delivery has received considerable recent attention as a route of administration through which 

to target the brain (Pardeshi and Belgamwar 2013; Bahadur and Pathak 2012), and thus treat central 

nervous system diseases such as Alzheimer’s and Parkinson’s.   

For all these applications, a critical consideration is the deposition pattern of nasal spray droplets 

or aerosols within the nasal airways.  Droplets collected in the anterior nasal passages may pool 

and drip from the nostrils (Chet L. Leach et al. 2015), whereas droplets passing through the nasal 

cavity to the nasopharynx and larynx miss their site of action or absorption and cause an unpleasant 

taste upon deposition (Chet L. Leach et al. 2015; Djupesland and Skretting 2012) or may penetrate 

further to the lungs where toxicological implications must be considered (Djupesland et al. 2004; 

Suman et al. 1999).  In the case of nose-to-brain delivery, the distribution of deposited spray 

droplets over the nasal epithelium is particularly critical.  While the olfactory region of the nasal 

mucous membrane offers a potential pathway to the brain (Lehrer 2014), it represents only a small 

fraction (~5-10%) of the total human nasal mucosal surface. Drug delivered to the remaining ~90-
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95% of the nasal mucosal surface will be absorbed to the bloodstream, or removed by clearance 

mechanisms, and hence not directly available to the brain. 

In vivo data describing regional deposition of nasal sprays assessed using gamma scintigraphy is 

available for a limited number of devices and formulations, e.g. (Chet L. Leach et al. 2015; Al-

Ghananeem et al. 2008).  Unfortunately, the cost and time requirements associated with conducting 

in vivo studies are such that these studies are rarely conducted in the early stages of nasal drug 

product development, where they would provide valuable feedback to developers. In vitro 

techniques using anatomically sectioned nasal airway replicas have been explored as a means to 

predict in vivo deposition patterns (Xi et al. 2017; Hughes et al. 2008).  However, the range of 

parameters that may affect regional deposition is wide, such that a number of researchers have 

turned to in silico numerical simulation methods to investigate variation in regional deposition that 

arises as a function of, e.g., droplet size, initial droplet velocity, spray cone angle, spray cone 

direction, inhalation flow rate, nozzle insertion depth, and nasal airway geometry (Rygg et al. 

2016; Schroeter et al. 2006).    

For aerosol drug delivery to the lungs, various researchers have described in vitro methods using 

realistic or  idealized airway geometries selected  to mimic average deposition measured in in vivo 

studies (Below et al. 2013; Javaheri et al. 2013; Delvadia et al. 2012; Golshahi and Finlay 2012; 

Longest et al. 2012; Byron et al. 2010). Such geometries can function as a reference for in vitro 

experiments or in silico simulations, facilitating prediction of in vivo performance at early stages 

of drug or device development, and allowing comparable results to be obtained between 

laboratories.  For nasal drug delivery, a similar geometry mimicking in vivo regional spray 

deposition in an average sense has not been established.  
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A previous attempt to develop an idealized nasal airway geometry (Liu et al. 2009) used a 

combination of computational fluid dynamics, cross sectional averaging and two dimensional 

image processing. Such an approach may be useful for particle penetration to lung in which the 

total deposition shows a linear or nearly linear behavior (as will be shown in Chapter 2 of this 

thesis). However, the regional deposition of particles or droplets within the nose is inherently a 

nonlinear function of the shape of the geometry, making a linear superposition inherently 

inaccurate. In other words, there is no evidence that an idealized geometry based on linear 

averaging of realistic geometries would produce the average of deposition in those geometries.   

Furthermore, an idealized geometry based on cross-sectional averages could prove complicated 

and lead to manufacturing problems.  

For inhalation drug delivery to infants, which occurs through the nasal airways, an alternative 

approach has previously been taken to develop an idealized infant nasal geometry.  This approach 

focused on geometric pattern extraction in an heuristic manner (Javaheri et al. 2013; Golshahi and 

Finlay 2012). The approach resulted in a significantly simpler and smoother geometry that is also 

easier to manufacture. Although the qualitative approach toward feature extraction in these studies 

is less mathematically rigorous than that adopted by (Liu et al. 2009), it favors the important 

concept of nonlinear structures.  

The current thesis work was undertaken with the goal of developing an idealized nasal airway 

geometry that mimics regional nasal deposition of nasal spray droplets in adult subjects.  This was 

accomplished in two stages.  First, as presented in Chapter 2, regional deposition within the nose 

was examined using numerical simulation over a large and wide-ranging parameter space.  A set 

of seven realistic adult nasal airway geometries was defined based on Computed Tomography 
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(CT) images of adult subjects.  Deposition in six regions of each nasal airway geometry (the 

vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was 

determined for varying particle diameter, spray cone angle, spray release direction, particle 

injection speed, and particle injection location.   

These simulation results were then used to establish target values of regional deposition for the 

idealized geometry.  As described in Chapter 3 of this thesis, characteristic geometric features 

observed to be common to the realistic nasal airway geometries studied were extracted and 

included in the idealized geometry.  Additional geometric features and size scaling were explored 

at various stages of the project, in order to enhance deposition in specific regions based on 

simulations in earlier versions of the geometry.  In total, more than hundred thousands of 

simulation cases were conducted across a range of particle parameters and geometric shapes in 

order to reach the final idealized geometry presented in Chapter 3.  The potential impact of the 

geometry in the development and testing of nasal drug delivery systems is discussed in Chapter 4, 

where possible direction for future work are also described.  
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Chapter 2: Regional Deposition of Nasal Spray in Adults: A 

Wide Ranging Computational Study 

 

2.1 Introduction 

 
The present work was conducted to build upon previous in silico studies by implementing a large-

scale simulation set, so as to simulate regional deposition of nasal sprays over a large parameter 

space.  A set of realistic adult nasal airway geometries from seven subjects was defined based on 

Computed Tomography (CT) images. Deposition in six regions of each nasal airway geometry 

(the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was 

determined for varying particle diameter, spray cone angle, spray release direction, particle 

injection speed, and particle injection location.  Particular attention was paid to parameter 

combinations that maximized olfactory deposition, given the low olfactory deposition fractions 

simulated in previous studies (Keeler et al. 2015; Schroeter et al. 2006). 

2.2 Materials and Methods 

2.2.1 Airway Geometries 

CT images of the nasal airways from the nares to below the larynx were obtained for seven adult 

subjects averaging 60 years old (see Table 2.1).   

Anonymized CT scans were acquired retrospectively from patients scanned for clinical purposes 

at the University of Alberta Hospital, with Health Research Ethics Board approval. In addition to 
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being assessed as normal at the time of scanning, their nasal airways were confirmed to be normal 

by a radiologist reviewing the CT images. CT imaging was performed on either a Siemens 

Somatom Flash or Definition scanner, with a reconstructed slice thickness of one millimeter and 

in plane resolution of 0.035 to 0.039 mm. 

 

Table 2.1 Relevant information for the 7 subjects. See Figure 2.3 for approximate locations of the 

different listed airway regions (Vestibule, Valve, Anterior Turbinates, Posterior Turbinates, 

Olfactory and Nasopharynx). 

 

Sub 
No 

Sex Age 
(years) 

Airway Surface Area (cm2) 

 

Volume 
(?@A) 

Total 
Area 
(?@C) 

Vesti Valve Anterior Posterior Olf Naso 

1 M 60 337.6 12.6 20.6 36.7 171.8 10.0 85.8 59.6 

2 F 50 315.5 10.1 17.2 22.3 154.5 6.1 106.0 73.1 

3 M 57 320.2 14.5 18.1 22.8 192.0 7.4 90.0 59.2 

4 M 54 344.7 11.8 24.6 19.7 161.3 8.8 116.0 71.5 

6 F 72 317.8 14.3 32.0 53.6 137.7 8.6 69.3 59.0 

7 M 62 308.2 14.3 30.7 27.0 140.8 12.0 84.2 56.6 

8 M 63 323.6 14.2 20.8 31.3 163.0 10.4 81.8 61.8 
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The DICOM files from the CT images were processed using ScanIP (Simpleware, UK), which 

involved removal of the sinuses and segmentation to define the nasal airways proximal to the upper 

trachea. The segmented airways included the laryngeal region. The resulting airway surfaces were 

smoothed locally using Meshmixer (Autodesk, USA), followed by iterative global smoothing with 

3-maticSTL (Materialise, UK). The ratio of volume to surface area was recorded after each 

smoothing iteration, and smoothing was stopped once this ratio converged to 2 decimal places. 

Topological flaws (e.g. excessively high aspect ratio, missing triangles, excessive node density, 

self-intersections) in the reconstructed STL files associated with each subject’s nasal airways were 

repaired using Netfabb (Autodesk, USA) and MeshLab (Visual Computing Laboratory, Italy), 

visualised with VTK C++ and Paraview (Kitware, USA). This required a number of manual 

manipulations including closing holes, stitching triangles, fixing flipped triangles, removing 

double triangles and degenerate faces. Views of the final nasal airway walls for the seven subjects 

are shown in Figure 2.1.  
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Figure 2.1 Perspective views of the model airways used in this study. Subjects 5, 9 and 10 are 

excluded due to geometric defects observed during meshing. 

 

2.2.2 Computational Fluid Dynamics of Airflow 

The fluid dynamics in each of the subject’s nasal airways was simulated by solving the 

incompressible laminar and steady state Navier-Stokes equations using OpenFOAM version 3.0.1 

(OpenFOAM Foundation Ltd, UK). OpenFOAM solves a discretized approximation to the Navier-

Stokes equations using a finite volume method. The STL file for each subject was imported into 

OpenFOAM’s SnappyHexMesh routine to produce a mesh of hexahedral elements upon which 

numerical solution to the Navier-Stokes equations was performed. The mesh generation tool 

includes refined grid spacing in boundary regions close to the walls. Although CT images were 

obtained for 12 subjects, geometric and topological defects in the geometries produced by the 

reconstruction software for subjects 5 and 9-12 were severe enough in those subjects’ airways that 
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the segmentation and meshing software did not produce a geometry and mesh of sufficient quality 

to proceed with a CFD solution.  

For the remaining 7 subjects listed in Table 2.1, a CFD solution was obtained using OpenFOAM’s 

PIMPLE solver. PIMPLE uses SIMPLE (Semi-Implicit Method for Pressure linked Equations) 

during the inner linear solver iterations and PISO (Pressure Implicit Splitting of Operator) during 

the nonlinear outer iterations. Spatial discretization was second order (“Gauss linear” in 

OpenFOAM, with cell limiting applied to the gradient terms). Grid convergence studies were 

performed to determine the number of cells required to achieve grid independence (within 10%) 

in the value of pressure drop through the airways of each subject. The number of cells was thus 

subject dependent but ranged from 600,000 (for subject 3) up to 3,600,000 (for subjects 4 and 6).  

In order to mimic delivery of sprays delivered through a single nostril, a zero-velocity boundary 

condition was set at the entrance of one nostril. At the entrance to the other nostril, the flow rate 

was set at 15 l/min, in keeping with an assumption of laminar flow (Tu et al. 2013). For the 15 

l/min nostril, a parallel, uniform flow velocity field boundary condition was used. At the exit, a 

Neumann condition was used for velocity and pressure, coupled with the mass flow rate specified 

by the inlet velocity field. 

The fluid flow was simulated separately for 15 l/min flow through the left nostril, and then another 

simulation was performed for 15 l/min flow through the right nostril. The final set of fluid flow 

simulations thus consisted of 14 individual CFD simulations. 
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2.2.3 Measurements of Pressure Drop 

To provide partial validation of the CFD simulations, a physical replica of each subject’s nasal 

airways was built from plastic (Objet VeroGray RGD850; Stratsys, Ltd.; Eden Prairie, MN, USA) 

using a PolyJet 3D printer (Objet Eden 350V High Resolution 3D Printer; Stratsys, Ltd.; Eden 

Prairie, MN, USA) as described recently (Chen et al. 2017). The pressure drops across the nasal 

airways, from the entrance of the nares to an outlet within the trachea below the larynx, was 

measured for all seven subjects using a digital manometer (HHP-103, Omega, Canada) for flow 

rates ranging from 10-90 litres/minute, measured with a TSI 4000 flow meter (TSI, USA). 

2.2.4 Lagrangian Particle Tracking 

Particles were injected over a variety of positions and velocities within the entrance region of the 

nares. These particles were assumed to be stable (i.e. non-evaporating) with no bounce (i.e. they 

stick) upon deposition with an airway surface. A particle density of 1000 kg/m3 was assumed. 

Particle trajectories and their deposition locations were then calculated by solving Newton’s 

second law for each particle using OpenFOAM’s IcoUncoupledKinematicParcelFoam solver. This 

solver assumes one-way momentum coupling between the particles and the fluid. It was assumed 

that the only forces acting on the particles are gravity and fluid drag, the latter specified by the 

Schiller-Neumann drag coefficient: 

DE =
CF

GHI
(1 + 0.17	LMN

O.PP)   (2.1) 

where Rep is the particle Reynolds number based on its velocity relative to the fluid velocity, 

particle diameter, and a kinematic viscosity of air	Q = 1.5 × 10ST@C/U.  
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The previously calculated fluid velocity field was interpolated to particle positions using second 

order interpolation via OpenFOAM’s Mean Value Coordinate (MVC) method. Particle positions 

were advanced in time using a first order implicit Euler method. Grid convergence studies (both 

in space and time) were performed with respect to the value of regional deposition to determine 

grid resolution and time step.  

In addition, convergence studies were performed to determine the number of particles needed. 

Particles were injected within the nostril from a planar disk region with 1mm diameter; the position 

of this disk was varied within the nares using Grasshopper (Rhinoceros, USA) to define 200 

random positions for each subject and nostril side (left or right). The injection location was varied 

from a little inside the entrance of the nares to a little after the entrance of the nasal valve region, 

with these insertion depths varying approximately in the range of 0.2 to 1.5 cm from the inlet. 

Figure 2.2 shows the central positions of the injection cones for one nostril of one subject.  
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Figure 2.2 The yellow points indicate the center of the spray injection release disk in one nostril 

of one subject. The shaded purple region shows the approximate defined volume within which 

these injection locations were randomly placed. For each subject, 200 such injection locations were 

simulated in each nostril (i.e. 400 points total between the right and left nostrils). 

 

For each disk position, 10,000 particles were injected within the disk. Particle injection velocities 

were specified to give a cone shape to the injection plume with specified half-angle.  

After examining literature values and published data for commercial nasal spray devices, as well 

as a small number of preliminary simulations over a wide range of parameter values, a subset of 



 9 

parameters and their values were chosen as being most relevant and applicable. Table 2.2 shows 

these parameters and the range of values for which simulations were performed in each of the 

seven subjects.  

 

Table 2.2 Parameter values for particle tracking simulations performed in all seven subjects. 

Parameter Number of Parameter 
Values Simulated 

Range of Values 

Particle diameter 5 5 – 40 microns  

Spray half cone angle 2 17.5 and 30 degrees from 
spray cone direction 

Spray cone direction 2 Upward (i.e. vertical) and 
semi-upward (aimed at the 
nasal valve entrance, 
approximately 750 from 
vertical) 

Particle injection velocity 4 0-20 m/s 

Position of injection disk 200 Generated randomly within a 
defined boundary 

Nasal airway geometries 7 Normal airway geometries 
derived from CT scans (see 
Table 2.1) 

Spray Injection Side 2 Left and right nostrils 
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Despite having narrowed the parameter space to what was believed to be the most relevant 

subspace, the parameter ranges in Table 2.2 still required performing a total of 224,000 simulations 

associated with each individual parameter value. Because of the large computational time of these 

simulations, they were done in parallel on a computing cluster (SGI Altix XE, 400 nodes, 4160 

cores, Compute Canada). To allow assessment of regional deposition, the nasal airway walls were 

divided into the following regions in each subject: vestibule, valve, anterior turbinate, posterior 

turbinate, olfactory and nasopharynx. Figure 2.3 shows these regions as defined for one of the 

subjects. Table 2.1 gives the surface area of these regions for each subject. The regions were 

defined following the common approach in previous studies (Schroeter et al. 2006) . Furthermore, 

the criteria for defining regions was approved by an expert radiologist.  

 

 

 

Figure 2.3 The six anatomical regions of the nose as defined in one of the subjects. 
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2.3 Results 

2.3.1 Validation 

Calculated pressure drops in the seven subjects were found to be within 12.5% of the values 

measured experimentally at 15 l/min in physical replicas of these same subjects’ nasal airways 

(average ±standard deviation in ΔX = 29.6 ± 	10.4\] measured vs. ΔX = 25.9 ± 	9.7\] 

calculated). Total deposition calculated in the nose of the present subjects is shown in Figure 2.4 

with particle injection velocity set to zero and a flow rate of 15 l/min.  

Similar data from various in vivo studies is also shown. Given the well-known large intersubject 

variability, reasonable agreement with in vivo data is seen between calculated total nasal deposition 

in our seven subjects and total deposition measured in vivo in other subjects. 
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Figure 2.4 Total deposition versus impaction parameter from our CFD particle tracking 

simulations (solid black symbols) in our seven subjects with 15 L/min through a single nostril is 

shown along with data from previous in vivo studies in different subjects. 
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2.3.2 Regional Deposition 

Because of the sheer volume of the data, it is difficult to summarily present results from the nearly 

¼ million individual runs performed. However, Figures 2.5-2.8 present regional deposition data 

averaged over all particle injections points (which are randomly distributed like that shown in 

Figure 2.3) and averaged over both cone angles given in Table 2.2, but with only a vertically 

upward injection considered (as the results for other injection directions did not show interesting 

or unexpected differences) is shown for injection occurring separately in the left and right nostrils 

of each subject.  

Figure 2.5 shows deposition in the vestibule and the valve regions combined, which unsurprisingly 

is seen to be highest for the largest particles injected at the highest speeds. 

Figure 2.6 combines both anterior and posterior turbinate deposition and is seen to peak in most 

subjects at a middling particle size and drops off at the higher particle injection speeds.   

Figure 2.7 shows the fraction of particles exiting the simulation via the outlet distal to the larynx; 

these are particles that penetrate the nasal region and enter the lungs. Particle injection speed is 

seen to have little effect on the fraction of particles penetrating the nose; for all subjects, maximal 

nasal penetration occurs for the smallest value of particle diameter considered by us (i.e. 5 

micrometers). Figure 2.8 shows olfactory deposition in each of the subjects.  

Figure 2.8 only shows deposition for upward injection, since this injection direction consistently 

gave somewhat higher olfactory deposition than semi-upward injection (overall average 1.8% 

olfactory deposition for upward vs 1.4% for semi-upward for the range of parameter values in 

Table 2.2).   
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While Figure 2.8 shows olfactory deposition averaged over all 200 injection locations in each 

nostril, examination of the data for the individual injection locations shows that some injection 

locations have much higher olfactory deposition than others.  

In particular, there is a distinct region within the vestibule that was found to give considerably 

higher olfactory deposition. This region is located close to the upper wall of the vestibule region 

and is highlighted in Figure 2.9 for two of the subjects. Figure 2.9 shows the maximum olfactory 

deposition that occurs for each different injection point maximized over all the other parameters 

in Table 2.2. Similar results were seen in all subjects.  

Table 2.3 gives absolute maximum values of olfactory deposition occurring in each subject, 

maximized over all parameter values in Table 2.2 (including injection location). This table shows 

that with a narrow, subject-specific choice of parameter values it is sometimes possible to have 

high values of olfactory deposition, despite overall average olfactory deposition being 1.6% for 

the parameter value range of Table 2.2.  

While 100% olfactory deposition is achieved in a few runs, it should be noted that this results from 

a rare (one out of thousands) combination of the parameter values in Table 2.2 e.g. a very specific 

release position and initial velocity. Such a precise combination of parameter values is likely not 

practical to achieve in vivo. 
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Figure 2.5 Deposition in the vestibule and valve regions (combined) of each subject is shown with 

injection in an upward direction via the left and right nostrils shown separately. The y-axis is 

particle diameter in micrometers. The x-axis is particle injection velocity in @/U. The data is 

averaged over 200 injection locations (see Table 2.2 and Figure 2.3) and two cone angles (see 

Table 2.2).  
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Figure 2.6 Deposition in the turbinates (both anterior and posterior) of each subject is shown with 

injection in an upward direction via the left and right nostrils shown separately. The y-axis is 

particle diameter in micrometers. The x-axis is particle injection velocity in m/s. The data is 

averaged over 200 injection locations (see Table 2.2 and Figure 2.3) and two cone angles (see 

Table 2.2). 
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Figure 2.7 Percentage of the particles entering the lungs (i.e. exiting the simulation outlet distal to 

the larynx) of each subject is shown with injection in an upward direction via the left and right 

nostrils shown separately. The y-axis is particle diameter in micrometers. The x-axis is particle 

injection velocity in m/s. The data is averaged over 200 injection locations (see Table 2 and Figure 

2.3) and two cone angles (see Table 2). 
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Figure 2.8. Deposition in the olfactory region of each subject is shown with injection in an upward 

direction via the left and right nostrils shown separately. The y-axis is particle diameter in 

micrometers. The x-axis is particle injection velocity in m/s. The data is averaged over 200 

injection locations (see Table 2.2 and Figure 2.3) and two cone angles (see Table 2.2). 
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Table 2.3 Global maximum values of olfactory deposition values occurring in each subject for 

either right or left nostril injection when the injection location and parameter values in Table 2.2 

are chosen to maximize olfactory deposition. 

 

Subject Nostril Olfactory deposition (%) 

1 Left 38.8 

1 Right 4.1 

2 Left 98.5 

2 Right 6.4 

3 Left 88.4 

3 Right 53.3 

4 Left 100 

4 Right 100 

6 Left 15.8 

6 Right 26.6 

7 Left 100 

7 Right 100 

8 Left 95.4 

8 Right 36.9 
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Figure 2.9 Perspective views of the entrance region (both left and right nostrils are shown) of 

subjects 4 and 7. The dots show the 200 injection locations in each nostril colored, as denoted in 

the color bars, by the amount of olfactory deposition occurring when the injection disk is centered 

at that location (averaged over all other parameter values in Table 2.2). To the left of the color bars 

the view is side view, while to the right the view is from below the nares. The shaded region 

indicates the region closer to upper section of the nostril wall. It is observed that the shaded region 

contains release positions that lead to higher olfactory depositions. 
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2.4 Discussion 

The present study was conducted to explore regional deposition of nasal sprays in the airways of 

the nose and throat across a wide-ranging parameter space.  Numerical simulation was a practical 

approach to use in conducting such an exploration due primarily to the large number of possible 

input parameter combinations.  In the present work, nearly ¼ million individual simulations were 

performed. It would clearly not be feasible to conduct the same number of individual experiments 

using in vivo or in vitro methods.   

A level of confidence in the present results may be gained through comparison with available in 

vivo data describing total nasal deposition of inhaled aerosol particles (Swift 1991; Heyder and 

Rudolf 1975; Hounam et al. 1971; Pattle 1961; Landahl and Black 1947).   

As seen in Figure 2.4, when plotted against the impaction parameter, simulated total deposition 

data from the present study (for cases with zero particle injection velocity relative to the inspiratory 

flow) broadly overlap previously reported in vivo data.  We note that the simulation data is 

restricted to the upper range of impaction parameter spanned by the in vivo data in Figure 2.4 due 

to the larger size range of nasal spray droplets (5 to 40 µm in diameter) investigated in the present 

study as compared to typical particle sizes used in in vivo aerosol exposure studies (< 10 µm in 

diameter).  Even so, simulated total deposition in the present nasal airway geometries was well 

below 100% for a significant number of cases (Figure 2.4).  This is non-ideal for nasal sprays, 

where the intention is to delivery drug locally to the nasal airways.   

Particles that penetrate the airways of the nose and throat will enter the conducting airways of the 

lungs, and unintended lung exposure may occur (Djupesland and Skretting 2012; Suman et al. 

1999).   
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Simulated penetration of particles to the lungs is shown in further detail in Figure 2.7.    

Several comments can be made.  First, it can be noted in view of Figure 2.7 that the percentage of 

particles reaching the lungs is relatively insensitive to the injection velocity.  Second, the influence 

of particle size on particle penetration to the lungs in pronounced in all 14 geometries.  Combined, 

these observations suggest that in designing nasal delivery devices to avoid lung exposure, 

emphasis should be placed on the emitted particle size distribution, with details of velocity 

distribution of emitted particles of secondary importance.  Further, while data reported in Figure 

2.7 is in broad agreement with European guidelines to limit the fraction of sub 10 µm particles 

emitted from nasal drug products (Canada 2006), variability between geometries in the percentage 

of particles penetrating to the lungs is high.  In several cases, penetration remains at or above 30% 

for particles in the range of 10 to 15 µm in diameter. 

In addition to the fraction of particles penetrating to the lungs, regional deposition within the nasal 

airways is of considerable interest.  Droplets that deposit in the vestibule and valve may pool and 

drip from the nostrils (Chet L. Leach et al. 2015).  As the nasal mucosa in these proximal regions 

is non-ciliated, any particles or droplets that do not drip or rapidly absorb will remain in place (Al-

Ghananeem et al. 2008) and are subject to mechanical removal, e.g., by wiping or blowing the 

nose.  In contrast, droplets that reach the nasopharynx and larynx miss their target, are subject to 

rapid clearance (Al-Ghananeem et al. 2008), and may cause an unpleasant taste upon deposition 

(Chet L. Leach et al. 2015).  Accordingly, the intermediate region consisting primarily of the 

anterior and posterior turbinates would appear to be a preferential target for both local and systemic 

nasal drug delivery.   
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Figure 2.6 displays simulated deposition fractions in the combined anterior and posterior 

turbinates.  For all 14 geometries studied, maximum deposition in the turbinates occurred at 

intermediate particle size, typically between ~20 and ~30 μm.  This result is broadly in agreement 

with results of simulations reported by (Keeler et al. 2015), where for a constant particle injection 

velocity of 1 m/s deposition in the turbinates peaked between particle sizes of 25 and 30 μm in the 

majority of subject geometries studied.  In addition, in the present study, maximum deposition 

occurred with zero injection velocity for 10 of the 14 geometries studied, and in all cases, 

deposition fell off as injection velocity increased above ~5-10 m/s.  It appears therefore that 

combinations of large particle size and high initial velocity relative to the inspiratory air flow 

promote deposition by impaction in the vestibule and valve, whereas small particles (below ~10-

20 μm depending on the individual geometry) are carried past the turbinates to deposit in the 

nasopharynx, larynx, or the lungs.  

Finally, deposition in the olfactory region is of interest for exploratory nose-to-brain delivery (Xi 

et al. 2016, 2017; Lehrer 2014; Pardeshi and Belgamwar 2013; Bahadur and Pathak 2012) 

(Warnken et al. 2016; Djupesland 2013).  Previous in vitro and in silico studies have reported low 

deposition fractions in the olfactory region for nasal sprays, with maximum olfactory deposition 

between 3-14% (Xi et al. 2016; Schroeter et al. 2006).  The present results reported in Figure 2.8 

are reasonably consistent with these past studies, although a broader range was observed, in that 

maximum olfactory deposition averaged over all injection locations ranged from ~ 0.1% up to 

~25%. As was the case for turbinate deposition, maximum olfactory deposition occurred at 

intermediate particle sizes and was associated with low to zero injection velocity for the majority 

of geometries.    
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In addition, previous researchers have proposed that olfactory deposition be further increased by 

limiting injection of particles to sub-regions of the nasal vestibule, specifically to locations near 

the upper, or front, wall of the vestibule (Xi et al. 2016; Schroeter et al. 2006). Consistent with 

these previous observations, Figure 2.9 indicates very low to zero olfactory deposition for particles 

injected into a region approximating the lower half of the vestibule, but considerably higher 

olfactory deposition for particles injected into the upper half of the vestibule.    

While similar trends were observed in all geometries studied in the present work, the variability in 

olfactory deposition between geometries is notable.  This is a considerable obstacle to overcome 

if consistent dosing between subjects is to be achieved for nose to brain drug delivery.  

2.5 Conclusions 

The present numerical simulations were conducted to provide a data set describing regional 

deposition of nasal sprays over a wide-ranging parameter space.  Penetration of nasal spray 

particles through the airways of the nose and throat was found to be relatively insensitive to 

injection velocity, but highly sensitive to particle size.  Penetration remained at or above 30% for 

particles exceeding 10 µm in diameter for several airway geometries studied.   

Deposition in the turbinates, viewed here as desirable for both local and systemic nasal drug 

delivery, was on average maximized for particles ranging from ~20-30 µm in diameter, and for 

low to zero injection velocity.  Similar values of particle diameter and injection velocity were 

found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug 

delivery.  However, olfactory deposition was highly variable between airway geometries, with 

maximum olfactory deposition averaged over all injection locations ranging over two orders of 

magnitude between geometries. 
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Chapter 3: An Idealized Geometry that Mimics Average 

Spray Deposition in Adult Nasal Airway 

 

3.1 Introduction 

As described in the preceding chapter, the adult nasal airway geometry exhibits complex 

morphology and intersubject variability (Garcia et al. 2009; Churchill et al. 2004). Particle 

deposition within the nasal airways is an important consideration in the design and evaluation of 

intranasal drug delivery systems. In particular, the regional deposition pattern of drugs 

administered intranasally is expected to impact their therapeutic effectiveness. Many aspects of 

regional deposition are thought to play a role. For instance, droplets collected in the anterior nasal 

passages may pool and drip from the nostrils.  Conversely, droplets passing through the nasal 

cavity to the throat miss their site of action, and might penetrate on to reach the lungs, where 

adverse side-effects could occur.   

Numerous in vivo and in vitro experimental studies have been performed in order to measure 

particle deposition in the nasal airways (Schroeter et al. 2015; Javaheri et al. 2013; Shah et al. 

2013; Byron et al. 2010; Liu et al. 2010; Heyder 2004; Hahn et al. 1993; Heyder and Rudolf 1975). 

Several computational studies have also been performed using realistic nasal airway geometries 

(Keeler et al. 2015; Patel et al. 2015; Schroeter et al. 2010, 2012, 2015; Wang et al. 2012; Rhee et 

al. 2011; Weinhold and Mlynski 2004). 
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Just as therapeutic benefit can be related to the regional deposition pattern in the nasal airway, so 

too can unwanted side effects or the outright failure of inhaled sprays to achieve their intended 

effect. As noted above, spray droplets deposited at the beginning of entrance region (i.e. the nasal 

vestibule) can drip from the nostrils (Chet L Leach et al. 2015). Droplets depositing distal to the 

turbinate region will either fail to have the desired treatment effects or end up in regions where 

they are considered potentially harmful (Chet L Leach et al. 2015; Djupesland and Skretting 2012; 

Djupesland et al. 2004; Suman et al. 1999).  

As seen in Chapter 2 of this thesis, many factors can influence regional deposition of nasal sprays.  

These include, but are not limited to, the distributions of size and velocity of droplets emitted from 

nasal spray pumps, the spray cone angle, the orientation angle of the spray with respect to the nasal 

inlet, and the insertion depth of the spray tip into the nostril.  Adding to these the numerous 

geometric features of the nasal airway that can influence regional deposition patterns, the scope of 

numerical or experimental studies of regional deposition can become very large.  For this reason, 

a reference idealized geometry would be extremely beneficial in reducing the computational or 

experimental burden, provided that measurements made using that idealized geometry could, with 

confidence, be expected to anticipate average values in a larger set of nasal airway geometries. 

Furthermore, the simplicity of such a geometry would make these analyses more feasible. In 

experiments, fewer small-scale features or extreme convolutions in a given region makes assay 

and cleaning easier. In simulations, an idealized geometry makes the discretization less 

complicated and hence the simulation is less expensive1.  

                                                
1 This can be seen specifically in faster process and simpler outcome for the computational grid. 
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The above considerations motivate development of an idealized geometry which mimics the 

average deposition in a target population of adult subjects with normal (non-pathological) nasal 

airways. The current study seeks a geometry that mimics the average regional nasal spray 

deposition observed in the realistic geometries reported in Chapter 2. 

 

3.2 Methods 

3.2.1 Idealization of Airway Geometries 

As described in chapter 1, ten individual subjects’ nasal airway geometries were obtained using a 

sectional Computational Tomography (CT) scans (Figure 3.1). Segmentation and reconstruction 

of the cross sections produced three-dimensional surfaces. The subjects ranged in age from 27-72 

years old, included 7 males and 3 females, and resulting scans covered from the nares to below the 

larynx regions. The medical imaging procedure was approved by the Health Research Ethics Board 

at University of Alberta.  
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Figure 3.1 Side view of the ten geometries used in this study. CFD results of seven of these 

geometries (subjects 1, 2, 3, 4, 6, 7 and 8) using both nostrils (one at a time) are given in chapter 

1. 

 

We denoted these 10 geometries as realistic geometries. Since the right and left sides of the realistic 

geometries were nearly independent (Bates et al. 2015; Wen et al. 2007), it was possible to treat 

them separately as independent case studies, thus essentially doubling the number of reference 

realistic geometries to twenty. For the purpose of creating an idealized airway, the right and left 

sides were made symmetrical, consisting of two identical half upper airways, with each half of the 

airway started from an individual nostril and converging at the beginning of nasopharynx. The two 

half airways were assumed to be separated proximal to the nasopharynx.  
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The realistic geometries were all complex, containing numerous features at different scales. From 

the twenty geometries, fourteen were previously selected for a wide ranging computational 

parameter space exploration (chapter 1 of thesis). The resultant regional deposition pattern sets a 

target for evaluating the suitability of the present idealized geometry. The geometry of the 

remaining six realistic nasal airway realizations was also helpful for the purposes of qualitative 

observation. 

The realistic geometries were available in three dimensions as stereolithography (STL)2 files, and 

the global coordinate system was chosen as right handed and Euclidean. The +^ direction was 

defined toward the back of the head and tangent to the inlet surface of the nostril. The +_	direction 

was defined upwardly and normal to the inlet and was called “up”.  

Slicing the surface geometries on the `_ plane resulted in a set of curves containing one or more 

components, each of which was a simply connected curve.  Without loss of generality, we denoted 

each set as one cross section. 

Cross sections were seen to undergo considerable changes in shape when proceeding the y 

direction. In particular, a shape bifurcation was seen to occur within the turbinates, with the 

additional branch eventually turnings back to the upper turbinates and creating a semi-circular 

cross section at the junction between the posterior turbinate and the nasopharynx. 

                                                
2 STL files contain information from the triangulated surface geometry. Three vertices and a 

normal vector from each triangle are stored sequentially in a list. In this study, the STL files contain 

tens of thousands of triangles. 
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This second branch contains many small features. The center of area of the cross section produces 

a nearly flat line in the ^ axis. However, the bifurcation branch reduces its _ components in a 

nearly linear manner and fades away in the +^ direction. The lower part of the cross section rolls 

upward within the posterior turbinate and becomes further convoluted. The resulting Y-shape cross 

section vanishes as the nasopharynx is approached. Figure 3.2 shows this so-called Y-shape 

concha. These observations suggest a special role of the turbinate region in the particle deposition 

behavior.  

 

 

 

Figure 3.2 Portions of the turbinate region in subjects 1, 2 and 4 are shown (left to right) around 

the same cut plane. A significant common feature in all geometries is the Y-shaped concha. As is 

pointed out by the arrow for these examples the position of this Y-shape varies in different subjects. 
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Figure 3.3 Blue curves show cross sections of subject 4 as an example. The red wireframe shows 

an idealized sketch drawn in OpenFOAM’s BlockMesh. The idealized curve considers all subjects’ 

common features. 

 

Figure 3.3 shows the development of cross sections in the +^ direction. The entrance region is 

defined as the appended inlet, vestibule and valve regions. The shape of the entrance region is 

important, both because it presents an obstruction that yields deposition of high momentum 

particles and because of this region’s role in guiding the flow (and lower momentum particles) 

toward the turbinate region.  

The shape and area of the inlet of the idealized geometry were chosen to reflect those of the realistic 

geometries. Obviously, a different inlet could cause a different boundary condition and tend toward 

a wrong dynamic and hence a wrong idealized geometry. The entrance regions share similar 
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characteristics across the realistic geometries, with some of these features having a direct effect on 

the particle deposition. As an example, some of the important features of entrance region can be 

seen in Figure 3.4.  

 

 

 

Figure 3.4 The entrance regions for subject 1 and 4 are depicted. Entrance regions in all realistic 

geometries show similar features. Two examples of these features are pointed out by arrows here. 

Note the shrinkage and expansion the red arrows illustrate in the +z direction. The blue arrow 

shows an important cross section between the valve and the turbinate regions. This cross section 

has a vertically stretched S-curve shape. The cyan arrow shows how the cross section shrinks in 

the vestibule-to-valve interface from the red to the yellow cross section and expands from the 

yellow to the blue cross section in the +z direction. The maroon-coloured section on the left of 

each entrance shows the inlet surface. Note the bean shape of the inlet surface. 
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The air flow through the nasal airway enters from the nostril and passes the vestibule region, 

afterward being directed toward the turbinates region through the valve. The valve is usually the 

narrowest part of the nasal airway geometry; hence fluid velocity increases dramatically in this 

region3. Obviously, the exit orientation of the valve would have a tremendous effect on where the 

flow is directed in the turbinate region.  

The turbinates are known to be associated with an increase in turbulent intensity. Nevertheless, it 

has been pointed out by previous studies that the flow regimen of the adult nasal airway typically 

remains mainly laminar for common inhalation flow rates (Keyhani et al. 1995; Hahn et al. 1993; 

Schreck et al. 1993) 

The level of geometric complexity rises dramatically at the turbinate region. For the vestibule, 

valve, olfactory and nasopharynx regions, the cross section mostly stays simply connected (i.e. a 

cross-section curve set has only one component).  

The cross section shape gradually changes in the +^	direction. Naturally, constructing and 

connecting each approximated cross section and connecting them would create an interpolated 

idealized geometry that is also manifold4 in two dimensions (in the local coordinate system). 

However, the geometry becomes more complicated in the turbinate region. The three-dimensional 

                                                
3 This is an obvious result for a steady incompressible flow. In this type of flow the volumetric 
flow rate stays nearly constant through cross sections (ab

ac
≈ 0).  

4 A surface geometry is manifold in the neighborhood of a point if in its topological space it 

resembles a local Euclidean space. 
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development of geometric structures in this region creates cross sections that are not simply 

connected5.  

Figure 3.5 shows the explained difference in a simplified manner.  On the left case, a ribbon can 

be created by a set of ruled surfaces. Each ruled surface is made by connecting the corresponding 

points between the cross sections while procedure with similar outcome is not so trivial for the 

right case. An example of the aforementioned behaviour in a realistic geometry can be observed 

in Figure 3.6. 

The appearance of the non-simply connected curves in one cross section of realistic geometry can 

be addressed in several ways. One solution would be to introduce an independent three-

dimensional surface geometry within the turbinate region. Moreover, this surface would emulate 

the abrupt expansions, shrinkages and steep curves of the realistic turbinate region. 

 

                                                
5 In topology, simply-connected curves are often called homeomorphic. The simply-connected and 

none-simply-connected cross sections are topologically different (none-homeomorphic). i.e. there 

is no valid topological transformation between the two. Non-homeomorphism can be a source of 

substantial fluid mechanical (and particle deposition) differences between the surfaces constructed 

by these two types of cross sections. 
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Figure 3.5 Development of black into red cross section is depicted in two simplified cases. Left 

shows a simply-connected cross section distorting into another simply-connected curve. Right 

shows a simply connected cross section followed by a non-simply-connected cross section as the 

geometry develops in the +y direction. 
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Figure 3.6 Some cross sections in the realistic geometry of subject 4 are shown. Different cross 

sections are shown in different colors. Note the sudden conversion of the blue cross section where 

it becomes non-simply connected. The unconnected portion of the curve develops further in the 

+y direction as the cross-section changes. 
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Since this object plays the role of a major obstacle in front of the flow coming from the valve, it is 

also referred to as such. Figure 3.7 shows the idea of the obstacle. 

 

 

 

Figure 3.7 Top part of the figure visualizes subject 4 using small amount of opacity. Cross sections 

in different colors are from different `^ planes. The obstacle structure is highlighted by the drawn 

black ellipse. Bottom shows an implementation of the same idea in the form of an obstacle object 

within the turbinate region in an idealized airway geometry. 



 38 

The turbinate region in the realistic geometries shows many small-scale features in the branch. The 

deposition of micrometer-sized particles in the extrathoracic airway is dominated by inertial 

impaction. Thus, as the Stokes number increases, the probability of the deposition also increases. 

In simplified terms, this means smaller particles require sharper corners to deposit. The smaller 

scale features are expected to trap the smaller size particles. To achieve both simplicity and 

abruptness, the small-scale structures could be mimicked by set of generic small objects. This 

approach was found necessary for the idealized geometry to match average deposition in the 

turbinates. To this end, as a possible approach, a set of equal-sized rods has been implemented.  

This idea is inspired by to the widely used mesh filters to capture particles from a flow. A detailed 

analysis of the most efficient composition of the generic object would be rigorous and outside of 

scope of this study. However, in practice there is a maximum size of mesh which can be used 

efficiently to filter particles with certain minimum aerodynamic diameters (Kawara et al. 2016). 

Similarly, here the size of the rods is crucial and should be chosen small enough. 

Observations from CFD results in the realistic geometries in chapter 1 also suggest an additional 

mechanism for particle deposition in the turbinates region. In particular, at the anterior turbinates, 

the flow is separated into two branches consisting of a major and minor flow. The minor flow stays 

nearly straight and has a smaller cross-sectional area.  The major flow turns toward the side and 

exhibits a larger cross section. This branching of the flow partially separates the smaller particles 

from larger ones, with the major flow carrying only the small particles.  

This particle separation mechanism resembles that in a virtual impactor.  As in the case of virtual 

impactors, large particles follow the straight path. By contrast, small particles diverge with the 

major flow. In our case, a fraction of the small particles should be collected by the aforementioned 
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rods to mimic the dynamics of realistic nasal airway turbinates. Figure 3.8 shows the basic scheme 

of a virtual impactor.  

 

 

 

Figure 3.8 A simple sketch of a virtual impactor is shown on the left part of the figure. Note that 

small particles follow the major flow stream. On the other hand, a simple sketch of a conventional 

impactor is shown on the right. Particles may hit the obstacle based on the value of their Stokes 

number. Stokes number can be calculated e^	fgh = gi	jk/lm in which gi = no	poC	(18q)Sr	 is the 

relaxation time, jk is the velocity of the fluid and lm is the characteristic length of the obstacle. 
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Moreover, the boundary between the minor and major flows is an obstacle and functions as a 

conventional inertial impactor. The idealized geometry cross sections in the neighborhood of the 

turbinate obstacle and rods is depicted in Figure 3.9. 

 

 

 

Figure 3.9 	`_-plane slices of the turbinate region of the idealized geometry are shown. Different 

colors are assigned to different planes. The obstacle object (shown in blue on the left and green on 

the right) is depicted in three dimensions. The front face of the obstacle acts as a conventional 

impactor. Rods are shown in grey as they connect the obstacle +` face to the turbinates +` outer 

wall. These act as barriers against the small particles which are carried by the major flow. 
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Furthermore, the section area and overall volume were kept close to the realistic geometry and can 

be seen in Table 3.1. 

 

Table 3.3 Relevant information for the 7 subjects and idealized geometry. See Figure 2.3 for 

approximate locations of the different listed airway regions (Vestibule, Valve, Anterior Turbinates, 

Posterior Turbinates, Olfactory and Nasopharynx). 

 

Sub No Sex Age 
(years) 

Airway Surface Area (cm2) 

 

Vol. 
(?@A) 

Total 
Area 
(?@C) 

Vesti Valve Anter. Poster. Olf. Naso. 

1 M 60 337.6 12.6 20.6 36.7 171.8 10.0 85.8 59.6 

2 F 50 315.5 10.1 17.2 22.3 154.5 6.1 106.0 73.1 

3 M 57 320.2 14.5 18.1 22.8 192.0 7.4 90.0 59.2 

4 M 54 344.7 11.8 24.6 19.7 161.3 8.8 116.0 71.5 

6 F 72 317.8 14.3 32.0 53.6 137.7 8.6 69.3 59.0 

7 M 62 308.2 14.3 30.7 27.0 140.8 12.0 84.2 56.6 

8 M 63 323.6 14.2 20.8 31.3 163.0 10.4 81.8 61.8 

Idealized -- -- 300.7 12.6 23.8 20.8 153.0 8.6 81.9 72.4 
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3.2.2 Computational Fluid Dynamics of Airflow 

Fluid motion in the idealized nasal airways was simulated by solving the incompressible, laminar 

Navier-Stokes equations. This was accomplished by using the Open-Source Field Operation and 

Manipulation (OpenFOAM) version 3.0.1 (OpenFOAM Foundation Ltd, UK). OpenFOAM is a 

collection of libraries and applications written in C++ and covers a broad range of applications in 

the field of scientific computing. Specifically, OpenFOAM can solve the Navier-Stokes equations 

of the fluid motion using the finite volume method.  

OpenFOAM’s BlockMesh tool was applied to automate the block generation. This was performed 

by creating a set of control points and edges as shown in Figure 3.10.  

Each block contains eight patches. A patch is defined by four boundary curves which are created 

by skeleton splines. A spline is created by defining start and end points. Moreover, a spline can be 

adjusted by the addition of control points that create a curved edge between the start and end points. 

The surface geometry of the main wall was defined as a function of chosen patches of all blocks.  

Analogously, the obstacle surface was constructed within the turbinate region. For simplicity, the 

corners of the obstacle were chosen to define a box. Additionally, splines were defined as edges 

of the box. Furthermore, constraints were defined to ensure the consistency of the box topology. 

This measure was necessary to ensure a functional iterative process within which the shape of the 

obstacle was modified. 

Alongside BlockMesh, most geometric manipulations were carried out using Visualization Toolkit 

(VTK) version 8.1.1 (Kitware Inc, USA). VTK is an open-source library for computational 

geometry, visualization and graphical methods. It supports various efficient and state of the art 
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algorithms for handling several types of data structures. Moreover, VTK supports techniques for 

manipulation of STL files.  

 

 

 

Figure 3.10 The idealized geometry is created via OpenFOAM BlockMesh tool. The red block in 

the middle is the obstacle and is created by using the same tool. Start and endpoints of splines are 

shown by numbers. Splines are curved edges connecting the points. The visualization is performed 

by using the ParaFOAM application. 
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Since both the main wall and obstacle geometries are created parametrically, they can overlap 

within the iterative process. Additional constraints were defined to avoid extreme cases. However, 

within these limits, there are numerous combinations that result in extremely sharp angles. Even a 

slight overlap can produce intersection edges that result in poor quality of the CFD mesh. Various 

in-house codes were developed in VTK to resolve this problem in an input-output (IO) approach. 

These codes included methods for smoothing, clipping, closing holes with distance, closing with 

cap, subdivision, decimation and triangulation. 

VTK was also instrumental in generating the rods, which are meant to collect only the smaller 

particles. Hence, they are inserted from the +` side of the airway and are clipped by the nearest 

plane of the obstacle box. This procedure was also implemented in VTK. In a trial and error 

approach, four rows of rods were created, each containing rods with the same ^ and angle s	with 

which they intersect the obstacle. Rods in different rows have different s and ^. Modifiable 

parameters for rods are the diameter of each rod pi, the start point of the rods grid ( t̂, _t), the 

number of rods vw and vx and the distance between the center lines of the rods  yw and yx in each 

direction. 

The STL surfaces from BlockMesh underwent further repair and smoothing before being imported 

into OpenFOAM’s SnappyHexMesh meshing tool6. SnappyHexMesh offers several methods to 

control the refinement level in specific regions. By default, refinement regions are explicitly 

defined for surfaces. Moreover, extra regions are added according to the calculated feature edges. 

                                                
6 More strictly, SnappyHexMesh does not mesh from scratch. Instead it should be provided with 

a mesh, e.g. from BlockMesh to produce the desired mesh by accurate boundary specifications. It 

accomplishes the meshing by mean of various transformations.  
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Feature edges belong to a class of objects in VTK that defines special edges such as boundaries 

and large surface normal gradients. OpenFOAM’s surfaceFeatureExtract method extracts the 

features of the geometry.  

SnappyHexMesh implements quality checks to ensure the validity of the computational grid. These 

checks included, but were not limited to, cell skewness, minimum volume, volume ratio, 

orthogonality and twist. The result was a mesh with three to five million hexahedral cells 

depending on the size of the feature edges set. As the size of this set increases, further refinement 

was essential.  Figure 3.11 shows ^ and _ clips of a sample mesh. 

With the mesh prepared, the steady state flow equations were solved for velocity and pressure 

fields in space.  

The Semi-Implicit Method for Pressure-Linked equations (SIMPLE) was used for the nonlinear 

outer iterations. SIMPLE is known to be an efficient solver for steady state cases. Within SIMPLE, 

each field is solved by a specific algorithm within the linear inner iterations. The velocity field was 

solved by the Gauss-Seidel method. The pressure field was solved by the Geometrically Algebraic 

Multigrid (GAMG) method, which uses the Diagonally Incomplete Cholesky (DIC) method. 

GAMG is a quick method that begins with a coarse mesh. The level of detail in the mesh increases 

until the convergence in the pressure field is reached.  
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Figure 3.11 Parts of the computational grid resulting from the SnappyHexMesh tool. The hollow 

space created by the obstacle shows the absence of fluid in that region.  The left panel shows a `^-

plane clip and the right panel a `_-plane clip. The rods are seen in the mesh. Note how the mesh 

is refined in these regions. 

 

Spatial discretization was second order using Gauss linear with cell limiting. Grid convergence 

was studied to determine the number of cells required to achieve the convergence (within 10%) 

for the value of the pressure drop through the airway. The boundary conditions were the same as 

in the realistic simulations of chapter1 and are shown in Table 3.2. Each of these conditions is 

defined according to boundary condition specifications provided by OpenFOAM. Special attention 
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was paid to the boundary conditions to ensure the numerical stability of the SIMPLE iterations. 

The flow rate at the inlet was fixed at 15 l/min and the flow was considered to remain laminar 

throughout the geometry.  

 

Table 3.2 Boundary conditions in the CFD calculations. Each italic term is a B.C. class in 

OpenFOAM. The pressureInletOutletVelocity condition is typically paired with the totalPressure. 

This is known to improve the stability of simulation by allowing the minor backflows at the outlet. 

Boundary  Pressure Velocity 

Inlet zeroGradient (z{
|c
= 0) flowRateInletVelocity (} = 15	~/@�v) 

Outlet totalPressure (XO = 0) pressureInletOutletVelocity 

Other regions  Same as Inlet boundary noSlip (Ä = Å) 

 

3.2.3 Lagrangian Particle Tracking 

After solution of the velocity and pressure fields, particle tracking was performed. The particles 

were assumed to be non-evaporating and were assumed to stick to all boundary surfaces. Stuck 

and escaped particles were labeled by OpenFOAM and were no longer updated during the rest of 

the particle tracking iterations. This approach saves considerable amount of memory and 

computational power.  
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The momentum of the particles was assumed to be one-way coupled with that of the fluid. In other 

words, the particles do not disturb the flow. Particle position was updated using Newton’s second 

law 

 

 
 

(3.1) 

 

where fÇ  and fo  are called the overall explicit and implicit contributions to the particle force at 

time-step �ÉÑ on the XÉÑ particle respectively. In steady one-way coupling, the velocity field jk 

remains constant at a given location, with velocity-dependent forces acting on the particle as an 

implicit drag force. The gravity-dependent buoyancy force is an explicit contribution7.   

The velocity of the fluid was interpolated to the location of the particle using the linear cell method. 

The implicit Euler method was used for time integration of particle trajectory. The implicit Euler 

method is known to be unconditionally stable; however, due to nonlinearity of the flow field, extra 

caution is exercised by performing time step size analysis. Furthermore, a convergence analysis of 

the number of injected particles was conducted to ensure that the number of particles was 

satisfactory. The drag coefficient employed was the Schiller-Neumann (equation 2.1), and the 

viscosity of the air was set to Q	 = 1.5 × 10ST@C/U. 

                                                
7 Terms and notations in this equation are strictly following the ones used in OpenFOAM’s source 

code and documentation. 

mp(
∂up
∂t )i = Sp(uf − u ip) + Su
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Lagrangian particle tracking was accomplished using the IcoUncoupledKinematicParcelFoam 

(IUKPF) application of OpenFOAM. IUKPF was further customized by compiling a local code 

via OpenFOAM’s WMake utility. IUKPF utilizes a simplified version of the general Kinematic 

Cloud (KC) objects for particles and assumes them to be uncoupled with respect to each other. The 

main OpenFOAM required dictionary file name is KC-Properties and contains necessary values 

used by IUKPF. Since IUKPF is a very simplified particle tracking method, most entries of KC-

Properties were not set. 

To explore the possibility of different injection positions and their impact on the deposition results, 

the tip of the particle spray injection was placed at various locations. One approach in this regard 

was to specify random locations within the entrance region and average the deposition results 

among all these random locations. In order to generate random locations for the tip of the injector, 

a VTK location generator code was used. Particles were injected within the nostril from a planar 

disk region with 1mm diameter; the position of the disk was varied within the nares to define 200 

random positions.  

Particle injection occurred at a constant velocity. Because of one-way coupled assumption, the 

injection volumetric flow rate did not determine anything and was arbitrary. In other words, the 

values of initial velocity and number of the particles were utilized only to identify the initial 

condition of the particles. The injection location was varied from a little inside the entrance of the 

nares to a little after the entrance of the nasal valve region, with these insertion depths varying 

approximately in the range of 0.1 to 1.5 cm from the inlet. Figure 3.12 shows the randomly 

generated injection disks within the nares.  
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Figure 3.12 Positions of particle injection at the entrance are shown. Circles show the location and 

alignment of the tip of the injector. Centers of circles were randomly chosen and were offset a 

minimum of 1mm from the walls. Particles were introduced randomly on the surface of each disk. 

The injection half-cone inner and outer angles were set at 0° (+z direction) and 15°. The injection 

direction for an individual particle is interpolated between the inner and outer half cone angle 

based on the location at which it appears on the injection disk. 

 

Ten thousand particles were injected through each disk, with the particles initial velocity in the +_ 

direction. Particle injection velocities produced a cone shape with specified inner and outer angles 

of 0 and 15 degrees. These parameters were chosen from a subset of the ones used for the realistic 

geometry simulations in chapter 1 and they were based on common practice with inhaler devices. 
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Table 3.3 shows the combination of parameters used for particle tracking simulations in this study. 

Because of the iterative process used in designing the idealized geometry, the number of injection 

positions was kept low during iteration of the geometry shape; a total of 80 particle tracking 

simulations per idealized geometry parametrization were performed. However, for the final 

idealized geometry, 4000 simulations were performed. The latter is consistent with the parameter 

set used in the realistic geometry study of chapter 1. 

 

Table 3.3 Particle parameters. These are used in idealized geometry particle tracking simulations. 

For the validation case the number of particle tracking cases is 4000.  

 

Parameter Number of Parameter  Values 

Particle diameter 5 {5, 10, 15, 20, 40} microns 

Injection cone angle 2 0° inner and 15° outer  

Injection direction 1 Upward (+_) 

Particle injection velocity 4 0-20 m/s 

Position of injection disk 

(Only for the validation 
case) 

200 Random on 1@@ diameter disk 
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Several Bourne Again Shell (Bash) scripts were developed to detect idle CPU threads for use in 

simultaneous particle tracking simulations. The simulations were done in parallel on a local 

Beowulf cluster8 which is based on the Network File System (NFS) (Sun Microsystem, USA) 

protocol. This cluster contains 20 Threads overclocked at 4.2 GHz, 24 threads 2.4 GHz and 4 

threads at 3.5 GHz, for a total of 48 threads. Memory in use was 200 GB. To calculate the regional 

deposition, the geometry was divided into the regions of vestibule, valve, turbinates, olfactory, 

nasopharynx and outlet.  Additionally, the turbinates were subdivided into main wall, rods and 

obstacle. The diagram of the full iterative process is shown in Figure 3.13 

 

Figure 3.13 The complete iterative procedure used in the development of the idealized airway.  

                                                
8 A Beowulf cluster is a cluster of consumer-grade computers that uses Local Area Network (LAN) 

protocols to share processing, memory and storage among them. 

Geometry �

Manager 
Code

(C++, BASH)

BlockMesh

VTK

Geometry � + 1
Wall, Obs, Rods

Flow 
Simulation 
(OpenFOAM)

Particle 
Tracking 
Parameters 
Exploration 
(OpenFOAM)

Evaluate

� ≔ � + 1



 53 

3.2.4 Evaluation of the Quality of an Idealized Geometry 

In this study the development of the idealized geometry was based on a few iterations that involved 

starting with an initial idealized geometry and iteratively distorting this geometry with the aim of 

achieving a closer and closer match to average deposition seen in the different regions of the 

realistic geometries. In order to evaluate each geometry modification, a norm is needed. For this 

purpose, let á be a functional associated with the CFD results and à a functional associated with 

the Lagrangian particle tracking fields, â is the functional representing a regional average 

deposition matrix, with its rows based on particle diameters and its columns based on particle 

initial velocity: 

â(ä) = à ãáåç(ä)éè 

With the formalism, an objective function can be defined as ê(ä) = ëâ(ä) − âiHkë in which |	. | 

denotes a norm, and the optimization problem in design space î devolves to finding ç: 

argmin
ä∈î

ê(ç) 

The latter equation describes a multi-objective optimization problem; i.e. there is no unified 

solution capable of minimizing all components of ê simultaneously. Using the weighted scalarizing 

method and Einstein notation, the objective function can be represented as 

ê(ö) = õúùûûã@aÇ
ú (ä) − @aÇ

ú

iHk
è
C

T

aür

F

Çür

 



 54 

By assuming õú = 1, the previous expression becomes the sum of ~C norms of the regional 

deposition. This value of the norm provides a measure for evaluating whether or not a given 

realization of the idealized geometry is close to giving the target values of average deposition in 

the realistic geometries. 

 

3.3 Results and Discussion 

3.3.1 Monolithic Surface 

The main wall of the surface geometry was constructed by arranging skeleton splines. The number 

of possible geometries is infinite. The cross sections are homeomorphic in this case. A slight 

modification in a control point of a spline results in a smooth change of the surface geometry. 

Through iterations over the control points of the main wall, many geometry versions are created. 

Figure 3.14 shows one of these geometries that provides reasonable regional deposition values. 

Figure 3.15 shows the regional deposition results. Although the overall behaviour is good, the 

small particles are not captured in the turbinates. Consequently, the nasopharynx and outlet 

experience more particle deposition and escape, respectively. This behaviour contradicts the 

average behaviour in the realistic geometries which is shown in the right column of Figure 3.15.  
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Figure 3.14 The Y-shaped cross sections of the idealized geometry are shown on the left. The 

surface of the geometry is shown on the right. This specific geometry is called the monolithic 

surface because (1) the geometry is made solely with sequences of blocks in BlockMesh and (2) 

the cross sections remain homeomorphic with respect to each other. The cross sections in colors 

show the simply-connected behavior of curves in the turbinate region of this geometry. 
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Figure 3.15. Each row denotes a certain region (in order: Vestibule, Valve, Olfactory, Turbinates, 

Nasopharynx, Outlet). The deposition fraction in the monolithic idealized geometry (plots in left 

column) and averaged over the realistic geometries (plots in right column) from chapter 1 are 

shown. The vertical axis in each plot denotes the particle diameter (5-40 micron) while the 

horizontal axes are the particle initial velocities (0-20 m/s). Note that small particles are not well 

captured at lower spray velocities by the turbinate region of the idealized geometry in this case. 

The color scale is interpolated and shows the deposition fraction (0-1) out of total particles. 
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3.3.2 Rods  

With the intention of capturing more of the small particles, rods were introduced in the turbinates 

of the geometry. After careful evaluation of different sizes of rods, a diameter of 0.2 mm was 

chosen. Figure 3.16 shows a grid of rods distributed over the idealized geometry aligned on the ` 

axis. As shown in Figure 3.17, turbinate deposition improved for the small particles. However, too 

many mid-sized particles were deposited in the turbinates. This suggests that adding a mechanism 

capable of separating the particles by size could be used to improve the regional deposition results. 

 

 

 

 

Figure 3.16 A penultimate version of the idealized geometry is shown. A grid of rods (shown in 

the brighter color) is penetrates the turbinate region side. The rods protrude in the x-direction 

across the full breadth of the turbinates airway. 
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Figure 3.17. Each row denotes a certain region (in order: Vestibule, Valve, Olfactory, Turbinates, 

Nasopharynx, Outlet). The deposition fraction in the idealized geometry with rods (plots in left 

column) and averaged over realistic geometries (plots in right column) are shown. The vertical 

axis in each plot denotes the particle diameter (5-40 micron) while the horizontal axes are the 

particle initial velocities (0-20 m/s). Note that particle deposition is too great in the turbinates in 

this case. The color scale is interpolated and shows the deposition fraction (0-1) out of total 

particles. 
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3.3.3 Virtual Impactor 

Two impactor type deposition mechanisms were inspired by observations of the realistic 

geometries. In particular, the previously noted obstacle feature (Figure 3.9) had a trivial 

equivalence in the complex realistic geometries, and small scale geometric traps for the smaller 

particles were mimicked using small rods in the idealized geometry. Adding the obstacle in the 

middle of the turbinate region created two paths, resulting in a virtual impactor, while adding the 

rods to the major flow branch further improved the regional deposition. Figure 3.18 shows the 

regional deposition results for this case. Since the results were a very good match, the same 200 

random injection positions at the entrance in the realistic geometries were then applied to this final 

geometry. As a result, the deposition matrices9 smoothed further and resulted in nearly identical 

turbinate deposition. Figure 3.19 shows the deposition values in the final idealized geometry versus 

all realistic geometries. The deposition in the idealized geometry is typically in the middle of the 

range of those in the realistic geometries. While certain subjects do have deposition that is 

reasonably close to the average of all subjects in various regions, no single subject matches average 

deposition accurately in all regions for all parameter values. 

 

For further validation, many of the cases were visualized through animations, which also verified 

the explained behaviour of conventional and virtual impactor mechanisms. The animations were 

made utilizing OpenFOAM’s ParaFOAM application, an extension of Paraview (Kitware Inc, 

USA) visualization software. Paraview is based on VTK. 

                                                
9 Each average deposition matrix corresponds to a region in the geometry. Rows are particle sizes 

and columns are particle initial velocities. There are six deposition matrices for each geometry. 

Each matrix has five columns and four rows (twenty components). 
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Figure 3.18. Each row denotes a certain region (in order: Vestibule, Valve, Olfactory, Turbinates, 

Nasopharynx, Outlet). The deposition fraction in the virtual impactor idealized geometry (plots in 

left column) and averaged over realistic geometries (plots in right column) are shown. The vertical 

axis in each plot denotes the particle diameter (5-40 micron) while the horizontal axes are the 

particle initial velocities (0-20 m/s). The color scale is interpolated and shows the deposition 

fraction (0-1) out of total particles. 
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Figure 3.19. Each triple plot in a row denotes a certain region (in order: Vestibule, Valve, 

Olfactory, Turbinates, Nasopharynx, Outlet). Each column shows an initial particle velocity (from 

left to right 0, 20 and 40 m/s). The color markers show average regional deposition in different 

individual realistic subjects (from chapter 1) while the red marker shows the regional deposition 

in the final idealized geometry. The vertical axis is the fraction (0-1) of 10000 particles. The data 

is averaged over 200 injection locations defined randomly within entrance region. 
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3.3.4 Further Discussion 

The largest deposition in the turbinate regions occurs for to intermediate particle sizes. This result 

is in agreement with CFD simulations in chapter 1 as well as with the majority of cases studied by  

others (Keeler et al. 2015). 

(Keeler et al. 2015). Turbinate deposition is also largest for zero spray velocity. This result is 

explained by the fact that if the particle is too large, or its velocity is too high, it will impact the 

entrance wall due to high inertia. In the opposite case, particles will penetrate and escape the outlet. 

Hence the zero-velocity intermediate sized particles are the ones deposited in the turbinate region. 

The average olfactory deposition was nearly zero, as expected. This result was previously reported 

by previous studies (Kiaee et al. 2018; Xi et al. 2016; Schroeter et al. 2006). Penetration remained 

mostly as observed in the average realistic geometries.   

Two main impactor mechanisms were necessary to mimic deposition in the turbinate region. 

Conventional impaction is the main mechanism responsible for the medium and large particle 

deposition occurring at front face and −` side of the obstacle. However, a virtual impactor 

mechanism functions at +` the side of the obstacle. A fraction of the remaining small particles 
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that escaped the obstacle were deposited on the rods on this side. The 0.2 mm diameter chosen for 

the rods was near the optimum value for collecting the small particles. Larger diameters (e.g. 1 

mm) tended to disturb the flow too much causing particles to follow a path around the larger rods. 

On the other hand, smaller rods diameters would make manufacturing more difficult. Furthermore, 

the rods’ angle of inclination plays an effective role in collecting more of small particles. The 

angles achieve this goal by reducing the rods’ overlap.  

3.3.5 Optimization Framework 

The overall structure used in this study was part of a numerical optimization framework. The 

complete framework was built upon parametric geometries and was successfully tested. The 

iterations themselves were performed within this optimization framework. However, because of 

numerous local minimums and an extremely expensive objective function that required meshing, 

flow simulation and several particle tracking for each evaluation, it was not possible to perform a 

successful optimization convergence during the current study. Nevertheless, with the optimization 

framework in place, it may be possible to achieve the full optimization loop if enough interactive10 

computational resources were made available.  

This optimization framework was established using Dakota (Sandia Labs, USA) software. Dakota 

is an optimization solver under active development by Sandia National Labs since 1997 and is 

                                                
10 The computational resource is needed to remain interactive. This is due to the requirement of 

manual verifications with regard to the topologic validity. Furthermore, many VTK applications 

were modified as soon as a local minimum was passed. 
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written in Fortran and C++. It provides an interface between solvers and external iterative methods. 

Dakota works by setting the input file “dakota.in”.  

A vector of design parameters ä was defined. Using the definition of objective function as before, 

the constraints were 

†ä = Å 

° < £ä < § 

in which † and £ are the equality and inequality constraint matrices. Furthermore, and ° and § are 

lower and upper bound vectors respectively. By using Taylor expansion, a second order Newton 

method can be written as 

êc•r ≈ 	 êc + ∇	êcß	Δäc +
1

2
Δäc®	©ê	Δäc 

in which © is the Hessian of operator on ê. This method requires inversion of the Hessian matrix 

at each iteration. Evaluation of ê requires computational resources on the order of teraflops, 

resulting in extreme computational cost. Hence, a Quasi-Newtonian method (Hessian-free method) 

is beneficial. A general Quasi-Newtonian method follows an approximation of Hessian method 

instead. If we denote this estimation as ™, the following constraint needs to be satisfied  

äc•r = äc − ™cSr∇êc 

Furthermore, the implicit calculation of gradients is also expensive and will therefore not be 

requested externally by the optimization procedure. The optimization tool uses a forward 

difference method to calculate the gradient vector explicitly. The merit function is the Argaez-
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Tapia function. A line search method in this way is called value based and only satisfies the 

sufficient decrease condition.  

If ê is convex or nearly convex, a reasonable number of iterations would result in convergence.  

As noted, the above optimization method was implemented, but did not successfully converge. 

3.4 Conclusions 

The aim of this study was to use computational methods to develop an idealized nasal airway 

geometry capable of mimicking the regional deposition pattern observed in a set of realistic 

geometries. Regional deposition in the idealized geometry was found to be in good agreement with 

the median of that seen for regional depositions in the realistic geometries. The present idealized 

geometry may be as a useful benchtop tool for in vitro research and development of nasal spray 

formulations.  



 67 

Chapter 4: Conclusions 

4.1 Summary 

This thesis was divided in two parts, with the overarching objective to provide an idealized adult 

nasal airway geometry. This geometry was intended to mimic the average regional nasal deposition 

pattern in adults using pharmaceutical nasal sprays. 

During the first part of the thesis, described in Chapter 2, a comprehensive computational 

parameter exploration was performed. Using computer simulations, regional particle deposition 

was calculated over a wide range of parameters. These results were substantiated through 

comparison with previous experimental and computational studies. A particular focus of Chapter 

2 was to explore combinations of parameters that targeted deposition to the olfactory region. 

Although with a specific combination of parameters (which included a very localized droplet 

injection location) deposition as high as 100 percent was observed in the olfactory region of some 

subjects, the average deposition was very low.  Furthermore, olfactory deposition was found to be 

highly variable between different realistic nasal airway geometries.  When averaged over all 

injection locations, maximum olfactory deposition ranged over two orders of magnitude between 

geometries.  This level of intersubject variability in dosing poses a significant obstacle to the 

development of nose-to-brain drug delivery devices that target olfactory deposition. 

The second part of thesis, described in Chapter 3, was focused on the design and development of 

an idealized adult nasal airway geometry. In numerical simulations, this idealized geometry was 

able to mimic the average deposition observed in realistic geometries reported in Chapter 2. The 

idealized geometry has the potential to be used as a reference geometry in modelling, simulations 
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and experiments performed using   pharmaceutical nasal sprays and other intranasal drug delivery 

devices. 

4.2 Future Work  

Although the thesis work presented herein met the goal of developing an idealized adult nasal 

airway geometry for testing pharmaceutical nasal sprays, several aspects might be refined or 

explored further in future work.  First and foremost, confirmation through in vitro experiments that 

deposition in the proposed idealized geometry predicts average deposition in the realistic 

geometries is warranted.  This confirmation will be an important and necessary step before the 

idealized geometry proposed here is adopted for wider testing. 

Additionally, although the methodology adopted in Chapter 3 did ultimately result in a satisfactory 

idealized geometry (as assessed by numerical simulation), depending solely on qualitative feature 

extraction and manual simplification could have resulted in a sub-optimal geometry, especially 

when a larger number of subjects is involved. More rigorous methods are available to provide finer 

settings within the design space. Gradient-based optimization and artificial neural networks are 

both widely utilized for shape optimization in many fields (Bandara et al. 2016; Masters et al. 

2016; Kim 2006; Song and Keane 2004; Yildiz et al. 2003; Song et al. 2002). A quasi-Newtonian 

method demanding low recourses has also  proven robust and affordable (Andrew 2008; Xu and 

Zhang 2001).  In the present thesis a complete functional optimization framework was built. 

Although it did not produce a converged optimization loop, it prepares the ground for future 

attempts. The evaluation function in this study was extremely expensive. Furthermore, because 

several nonlinear geometric features affected the particle dynamics in realistic airways, several 

local minimums were possible. This means the complete iterative process would require extreme 
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computational power. Nevertheless, there are qualitative observations which could improve the 

overly simplified surface, bypass many local traps and potentially converge to the desired optimal 

case. 
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1 /*
2 * -----
3 * start of opt_manager
4 * -----
5 */
6  
7 /* 
8 opt_manager C++ application for postprocessing
9  

10 author : milad kiaee darunkola
11  
12 Appendix of PhD Thesis
13  
14 kiaeedar@ualberta.ca
15  
16 -- 2018 -- 
17 */
18  
19 #ifndef GENNEWPOINTS_POINT_H
20 #define GENNEWPOINTS_POINT_H
21  
22 #include <cstdio>
23 #include <iostream>
24  
25 class Point {
26 private:
27     std::string flag; // only points with postive flags are 

considered to be control points
28     double x;
29     double y;
30     double z;
31 public:
32     Point(std::string, double, double, double);
33     double getX();
34     double getY();
35     double getZ();
36     std::string getFlag();
37     void setFlag(std::string);
38     void setX(double);
39     void setY(double);
40     void setZ(double);
41     void print();
42 };
43  
44 #endif //GENNEWPOINTS_POINT_H
45  
46 #include "Point.h"
47  
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48 Point::Point (std::string f, double xx, double yy, double 
zz) {

49     flag = f;
50     x = xx;
51     y = yy;
52     z = zz;
53 }
54  
55 double Point::getX() {
56     return x;
57 }
58  
59 double Point::getY() {
60     return y;
61 }
62  
63 double Point::getZ() {
64     return z;
65 }
66  
67 std::string Point::getFlag() {
68 return flag;
69 }
70  
71 void Point::setFlag(std::string f) {
72     flag = f;
73 }
74  
75 void Point::setX(double xx){
76     x = xx;
77 }
78  
79 void Point::setY(double yy){
80     y = yy;
81 }
82  
83 void Point::setZ(double zz){
84     z = zz;
85 }
86  
87 void Point::print(){
88     std::cout << "Point: " << x
89               << " " << y
90               << " " << z << std::endl;
91 }
92  
93 /

******************************************************************************/
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94  
95 #ifndef GENNEWPOINTS_PTSLIS_H

96 #define GENNEWPOINTS_PTSLIS_H

97  

98 #include <fstream>

99 #include <sstream>

100 #include <utility>

101 #include <vector>

102 #include "Point.h"

103  

104 class PtsLis {
105 private:
106     std::string input_file_name;

107     std::string output_file_name;

108     std::vector<Point> points;

109     size_t n_points;

110     //std::vector<BSpline> bsplines;
111 public:
112     PtsLis & operator= (PtsLis);
113     void setInputFileName(std::string);

114     std::string getInputFileName();

115 void setOutputFileName(std::string);

116     std::string getOutputFileName();

117     size_t getNumPoints();

118     void setNumPoints(size_t);

119     //std::vector <BSpline> getBSplines();
120     std::vector <Point> getPoints();

121     void setPoints(std::vector<Point>);

122     //void setBSplines(std::vector<BSpline>);
123     void differOnePoint(size_t, double);

124     void readFile();

125     void printFile();

126 };

127  

128 #endif //GENNEWPOINTS_PTSLIS_H
129  

130 #include "PtsLis.h"

131  

132 PtsLis & PtsLis::operator=(PtsLis A) {
133     input_file_name = A.getInputFileName();

134     output_file_name = A.getOutputFileName();

135     points = A.getPoints();

136     n_points = A.getNumPoints();

137     return *this;
138 }

139  

140 void PtsLis::setPoints(std::vector <Point> cps) {

141     points = cps;
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142 }
143  
144 void PtsLis::setInputFileName(std::string s) {
145     input_file_name = s;
146 }
147  
148 std::string PtsLis::getInputFileName() {
149     return input_file_name;
150 }
151  
152 void PtsLis::setOutputFileName(std::string s) {
153     output_file_name = s;
154 }
155  
156 std::string PtsLis::getOutputFileName() {
157     return output_file_name;
158 }
159  
160 size_t PtsLis::getNumPoints() {
161     return n_points;
162 }
163
164 void PtsLis::setNumPoints(size_t n) {
165     n_points = n;
166 }
167  
168 void PtsLis::readFile() {
169     std::ifstream myInFile;
170     myInFile.open(input_file_name.c_str());
171     std::string line;
172     std::vector<Point> cps;
173  
174     n_points=0;
175     if (myInFile.is_open()) {
176         while (std::getline(myInFile, line)) {
177             //store the lines
178             std::stringstream ss(line);
179             Point tmp_pt("",0,0,0);
180             std::string tmp_f;
181             double x, y, z;
182             ss >> tmp_f >> x >> y >> z;
183             tmp_pt.setX(x);
184             tmp_pt.setY(y);
185             tmp_pt.setZ(z);
186             tmp_pt.setFlag(tmp_f);
187             cps.push_back(tmp_pt);
188             n_points++;
189         }
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190     }
191     else {
192         std::cout << "Error! check if the pts.files 

can be opened ..."
193                   << std::endl;
194     }
195     n_points = cps.size();
196     this->setPoints(cps);
197     myInFile.close();
198 }
199  
200 void PtsLis::printFile() {
201     std::ofstream myOutFile;
202     myOutFile.open(output_file_name.c_str());
203     for (size_t i=0; i< points.size(); i++) {
204         myOutFile << points[i].getFlag() << " "
205                 << points[i].getX() << " "
206                 << points[i].getY() << " "
207                 << points[i].getZ() << std::endl;
208     }
209     myOutFile.close();
210 }
211  
212 std::vector <Point> PtsLis::getPoints() {
213     return points;
214 }
215  
216 void PtsLis::differOnePoint(size_t i, double dx){
217     double xold = points[i].getX();
218     points[i].setX(xold + dx);
219 }
220  
221 /

******************************************************************************/
222  
223 #ifndef GENNEWPOINTS_RESULTMATRIX_H
224 #define GENNEWPOINTS_RESULTMATRIX_H
225  
226 #include <iostream>
227 #include <vector>
228  
229 class ResultMatrix {
230 private:
231     size_t m; // number of rows
232     size_t n; // number of columns
233     std::vector< std::vector<double> > a;
234 public:
235     ResultMatrix();
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236     ResultMatrix(size_t, size_t);
237     size_t getM();
238     size_t getN();
239     void setM(size_t);
240     void setN(size_t);
241     double getA(size_t, size_t);
242     void setA(size_t, size_t, double);
243     void addToA(size_t, size_t, double);
244     void printA(std::string);
245     void devideABy(double);
246 };
247  
248 #endif //GENNEWPOINTS_RESULTMATRIX_H
249  
250 #include "ResultMatrix.h"
251  
252 ResultMatrix::ResultMatrix() {
253     m=5;
254     n=4;
255     a = std::vector <std::vector <double> > (m, 

std::vector<double> (n));
256 }
257  
258 ResultMatrix::ResultMatrix(size_t mm, size_t nn) {
259     m = mm;
260     n = nn;
261     a = std::vector <std::vector <double> > (m, 

std::vector<double> (n));
262 }
263  
264 size_t ResultMatrix::getM() {
265     return m;
266 }
267  
268 size_t ResultMatrix::getN() {
269     return n;
270 }
271  
272 void ResultMatrix::setM(size_t mm) {
273     m = mm;
274 }
275  
276 void ResultMatrix::setN(size_t nn) {
277     n = nn;
278 }
279  
280 double ResultMatrix::getA(size_t i, size_t j) {
281     return a[i][j];
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282 }
283  
284 void ResultMatrix::setA(size_t i, size_t j, double b) {
285     a[i][j] = b;
286 }
287  
288 void ResultMatrix::addToA(size_t i, size_t j, double b) {
289     a[i][j] += b;
290 }
291  
292 void ResultMatrix::printA(std::string name) {
293     std::cout << " - - - " << std::endl;
294     std::cout << name << " matrix = " << std::endl;
295     for (size_t i=0; i<m; i++){
296         for (size_t j=0; j<n; j++){
297             std::cout << " " << a[i][j];
298          }
299         std::cout << std::endl;
300     }
301     std::cout << " - - - " << std::endl;
302 }
303
304 void ResultMatrix::devideABy(double k) {
305  
306     for (size_t i=0; i<m; i++){
307         for (size_t j=0; j<n; j++){
308             a[i][j] = a[i][j]/k;
309         }
310     }
311  
312 }
313  
314 /

******************************************************************************/
315  
316 /*
317  * regions: 1-Vestibule 2-Valve 3-Olfactory 4-Anterior 5-

Posterior 6-Naso
318  * fractions
319  */
320  
321 #ifndef GENNEWPOINTS_DEPRESULT_H
322 #define GENNEWPOINTS_DEPRESULT_H
323  
324 #include "PtsLis.h"
325 #include "ResultMatrix.h"
326  
327 class DepResult {
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328 private:
329     
330     // number of position of particle injector tip
331     size_t n_injection_points;
332  
333     // average contains 6 regional deposition matrices
334     std::vector< ResultMatrix > regional_deps; 
335     
336     std::vector< ResultMatrix > ref_regional_deps_ave;
337  
338     // contains 6 regional reference deposition matrices
339     std::vector< std::vector< ResultMatrix > > 

ref_regional_deps; 
340  
341     std::vector< ResultMatrix > 

ref_sub1_right_regional_deps;
342     std::vector< ResultMatrix > 

ref_sub2_right_regional_deps;
343     std::vector< ResultMatrix > 

ref_sub3_right_regional_deps;
344     std::vector< ResultMatrix > 

ref_sub4_right_regional_deps;
345     std::vector< ResultMatrix > 

ref_sub6_right_regional_deps;
346     std::vector< ResultMatrix > 

ref_sub7_right_regional_deps;
347     std::vector< ResultMatrix > 

ref_sub8_right_regional_deps;
348  
349     std::vector< ResultMatrix > ref_sub1_left_regional_deps;
350     std::vector< ResultMatrix > ref_sub2_left_regional_deps;
351     std::vector< ResultMatrix > ref_sub3_left_regional_deps;
352     std::vector< ResultMatrix > ref_sub4_left_regional_deps;
353     std::vector< ResultMatrix > ref_sub6_left_regional_deps;
354     std::vector< ResultMatrix > ref_sub7_left_regional_deps;
355     std::vector< ResultMatrix > ref_sub8_left_regional_deps;
356  
357     double norm;
358     double norm_turb;
359  
360     double norm_sub1_left;
361     double norm_sub2_left;
362     double norm_sub3_left;
363     double norm_sub4_left;
364     double norm_sub6_left;
365     double norm_sub7_left;
366     double norm_sub8_left;
367  
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368     double norm_sub1_right;
369     double norm_sub2_right;
370     double norm_sub3_right;
371     double norm_sub4_right;
372     double norm_sub6_right;
373     double norm_sub7_right;
374     double norm_sub8_right;
375  
376     size_t num_particle;
377 public:
378     DepResult();
379     DepResult &operator=(DepResult);
380     std::vector<ResultMatrix> getRegionalDep();
381     std::vector<ResultMatrix> getRefRegionalDep();
382     //std::vector<ResultMatrix> getRefRegionalDep_sub4();
383     void setNumberOfInjectionPoints(size_t);
384     void readFiles(std::string, std::vector<ResultMatrix>&);
385     void readRefFiles();
386     void findnAdd(std::vector<std::string>, size_t, size_t);
387     void readLogFiles(std::string);
388     void setNumParticle(size_t);
389 size_t getNumParticle();
390     void calc_norm();
391     void calc_norm_turb();
392     void calc_norm_subs();
393     void addToNormFile(std::string);
394     void addToTurbNormFile(std::string);
395     void print_norms();
396     void print();
397     void test();
398     void printRegDepFiles();
399     void printMinMaxDepFiles( int );
400     void printDepFilesFixVel( int );
401 };
402  
403  
404 #endif //GENNEWPOINTS_DEPRESULT_H
405  
406 #include "DepResult.h"
407 #include "math.h"
408 #include <stdlib.h>
409  
410 DepResult::DepResult() {
411     size_t REFS=14;
412     size_t N = 6;
413     regional_deps = std::vector<ResultMatrix> (N);
414     ref_regional_deps_ave = std::vector<ResultMatrix> (N);
415  
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416     ref_sub1_right_regional_deps = std::vector< 
ResultMatrix > (N);

417     ref_sub2_right_regional_deps = std::vector< 
ResultMatrix > (N);

418     ref_sub3_right_regional_deps = std::vector< 
ResultMatrix > (N);

419     ref_sub4_right_regional_deps = std::vector< 
ResultMatrix > (N);

420     ref_sub6_right_regional_deps = std::vector< 
ResultMatrix > (N);

421     ref_sub7_right_regional_deps = std::vector< 
ResultMatrix > (N);

422     ref_sub8_right_regional_deps = std::vector< 
ResultMatrix > (N);

423  
424     ref_sub1_left_regional_deps = std::vector< ResultMatrix 

> (N);
425     ref_sub2_left_regional_deps = std::vector< ResultMatrix 

> (N);
426     ref_sub3_left_regional_deps = std::vector< ResultMatrix 

> (N);
427     ref_sub4_left_regional_deps = std::vector< ResultMatrix 

> (N);
428     ref_sub6_left_regional_deps = std::vector< ResultMatrix 

> (N);
429     ref_sub7_left_regional_deps = std::vector< ResultMatrix 

> (N);
430     ref_sub8_left_regional_deps = std::vector< ResultMatrix 

> (N);
431  
432     num_particle = 10000;
433     norm = 0;
434     norm_turb = 0;
435  
436     norm_sub1_left = 0;
437     norm_sub2_left = 0;
438     norm_sub3_left = 0;
439     norm_sub4_left = 0;
440     norm_sub6_left = 0;
441     norm_sub7_left = 0;
442     norm_sub8_left = 0;
443  
444     norm_sub1_right = 0;
445     norm_sub2_right = 0;
446     norm_sub3_right = 0;
447     norm_sub4_right = 0;
448     norm_sub6_right = 0;
449     norm_sub7_right = 0;
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450     norm_sub8_right = 0;
451 }
452  
453 // read .txt files logs
454 void DepResult::readFiles(std::string name, 

std::vector<ResultMatrix>& M) {
455  
456     std::vector <std::string> rgs = {"vesti", "valve", 

"olf", "turbinates", 
457      "naso", "outlet"};
458     std::cout << "reading " << name << " files " << 

std::endl;
459  
460     ResultMatrix totalTraced;
461  
462     for (size_t m=0; m<5; m++){
463 for (size_t n=0; n<4; n++){
464 totalTraced.setA(m, n, 0);
465     }
466     }
467  
468 for (size_t i = 0; i < 6; i++){ /* loop over regions */
469  
470         std::ifstream f;
471         std::string s;
472         std::ostringstream oss;
473         oss << name.c_str() << rgs[i] << ".txt";
474         s = oss.str();
475  
476         f.open(s.c_str());
477  
478         double x0, x1, x2, x3;
479         std::string ln;
480  
481         size_t l = 0;
482  
483         while (f.is_open() && l<5) {
484             getline(f, ln);
485             std::stringstream ss(ln);
486             ss >> x0 >> x1 >> x2 >> x3;
487             x0 *= 100; //change percentage to number of 

particles out of 10000
488             x1 *= 100;
489             x2 *= 100;
490             x3 *= 100;
491             M[i].setA(l, 0, x0);
492             M[i].setA(l, 1, x1);
493             M[i].setA(l, 2, x2);
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494             M[i].setA(l, 3, x3);
495  
496
497     totalTraced.addToA(l, 0, x0);
498     totalTraced.addToA(l, 1, x1);
499     totalTraced.addToA(l, 2, x2);
500     totalTraced.addToA(l, 3, x3);
501
502             l++;
503         }
504         f.close();
505     }
506  
507     for (size_t i=0; i<6; i++){
508  
509 for (size_t m=0; m<5; m++){
510 for (size_t n=0; n<4; n++){
511
512 //totalTraced.getA(m, n);
513 double tmp = M[i].getA(m, 

n)/10000.0;
514 std::cout << "region " << rgs[i] 

<<  
515 " index [" << m << ", " << n  <<  
516 "] of ref deviding by total " << 

tmp << std::endl;
517 M[i].setA(m, n, tmp);
518 //M[i].printA("refread_update");
519 }
520 }
521
522     }
523 }
524  
525 void DepResult::readRefFiles(){
526     std::cout << "####################### " << std::endl;
527     readFiles("ref_", ref_regional_deps_ave);
528  
529 readFiles("ref_sub1_right_", 

ref_sub1_right_regional_deps);
530 readFiles("ref_sub2_right_", 

ref_sub2_right_regional_deps);
531 readFiles("ref_sub3_right_", 

ref_sub3_right_regional_deps);
532 readFiles("ref_sub4_right_", 

ref_sub4_right_regional_deps);
533 readFiles("ref_sub6_right_", 

ref_sub6_right_regional_deps);
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534 readFiles("ref_sub7_right_", 
ref_sub7_right_regional_deps);

535 readFiles("ref_sub8_right_", 
ref_sub8_right_regional_deps);

536 readFiles("ref_sub1_left_", 
ref_sub1_left_regional_deps);

537 readFiles("ref_sub2_left_", 
ref_sub2_left_regional_deps);

538 readFiles("ref_sub3_left_", 
ref_sub3_left_regional_deps);

539 readFiles("ref_sub4_left_", 
ref_sub4_left_regional_deps);

540 readFiles("ref_sub6_left_", 
ref_sub6_left_regional_deps);

541 readFiles("ref_sub7_left_", 
ref_sub7_left_regional_deps);

542 readFiles("ref_sub8_left_", 
ref_sub8_left_regional_deps);

543  
544 ref_regional_deps.push_back

(ref_sub1_right_regional_deps);
545 ref_regional_deps.push_back

(ref_sub2_right_regional_deps);
546 ref_regional_deps.push_back

(ref_sub3_right_regional_deps);
547 ref_regional_deps.push_back

(ref_sub4_right_regional_deps);
548 ref_regional_deps.push_back

(ref_sub6_right_regional_deps);
549 ref_regional_deps.push_back

(ref_sub7_right_regional_deps);
550 ref_regional_deps.push_back

(ref_sub8_right_regional_deps);
551 ref_regional_deps.push_back

(ref_sub1_left_regional_deps);
552 ref_regional_deps.push_back

(ref_sub2_left_regional_deps);
553 ref_regional_deps.push_back

(ref_sub3_left_regional_deps);
554 ref_regional_deps.push_back

(ref_sub4_left_regional_deps);
555 ref_regional_deps.push_back

(ref_sub6_left_regional_deps);
556 ref_regional_deps.push_back

(ref_sub7_left_regional_deps);
557 ref_regional_deps.push_back

(ref_sub8_left_regional_deps);
558  
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559 /*
560 for (size_t m=0; m<5; m++){
561 for(size_t n=0; n<4; n++){
562 for (size_t region=0; region<6; 

region++){
563 for (size_t ref=0; ref<14; 

ref++){
564

ref_regional_deps_ave[
565       

region
566      

].addToA(
567      

m, n, 
568 ref_regional_deps.at(ref).at

(region).getA(m, n)
569      

);
570 }
571 }
572 }
573 }
574  
575 for (size_t region=0; region<6; region++){
576 ref_regional_deps_ave[region].devideABy(14);
577 }
578 */
579     std::cout << "#######################" << std::endl;
580 }
581  
582 void DepResult::findnAdd(std::vector<std::string> SV, 

size_t m, size_t n) {
583  
584     int v;
585     char c;
586     std::string S;
587     std::vector <std::string> rgs = {"VESTIBULE", "VALVE", 

"OLF", 
588      "TURBINATES", "RODS", 

"OBS",  
589      "NASO", "OUTLET"};
590     std::vector <std::string> actualRgs = {"VESTIBULE", 

"VALVE", "OLF", 
591    "TURBINATES", 

"NASO", "OUTLET"};
592     int index=0;
593  
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594     /* for each region loop through deposition log file */
595  
596     double totalTraced = 0;
597  
598     std::vector<ResultMatrix> tmpResult;
599  
600     for (size_t i=0; i<6; i++){
601 ResultMatrix tmpMat;
602 tmpResult.push_back(tmpMat);
603         for (size_t m=0; m<5; m++){
604        for (size_t n=0; n<4; n++){
605 tmpResult[i].setA(m, n, 0);
606 if (i == 5){
607 tmpResult[i].setA(m, n, 10000);
608 }
609         }
610         }
611     }
612     
613     for (int j = 0; j < 8; j++) { // regions
614         for (int k = SV.size() - 1; k > 0; k--) { // lines
615
616             if (SV[k].find(rgs[j].c_str()) != 

std::string::npos) {
617  
618 int ind = 0;
619
620 if ( j == 7 ) {
621 ind = k + 1;
622 } else {
623 ind = k + 2;
624 }
625  
626                 std::stringstream ss(SV[ind]);
627                 ss >> c >> S >> c >> S;
628                 std::stringstream ss2(S);
629                 std::getline(ss2, S, ',');
630                 v = atoi(S.c_str());
631  
632  /* set to 10,000 ususally, varies 
633     based of simulation (set in main) */
634 double dn = double(num_particle);
635  
636 double dv = double(v);
637  
638 totalTraced += dv;
639  
640 /* only be used if other normalization is 
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not used */
641                 //dv = double(v) / dn; 
642  
643                 if (j == 4 || j == 5) {
644                   index --;
645                 }
646  
647 double tempValue = -1 * dv;
648
649 if (index != 5) {
650
651 tmpResult[5].addToA(m, n,  

tempValue);
652
653  /* adds the stick counts to regdep 

matrix */
654 tmpResult[index].addToA(m, n, dv);
655  
656 }
657  
658                 index ++;
659 break;
660             }
661         }
662     }
663  
664     // this should go to the superfunction
665     /* only be used if no other normalization 
666 is used in this or the caller function */
667     for (int j = 0; j < 6; j++) { 
668 //std::cout << "deviding by total traced " << 

totalTraced << std::endl;
669 double tmp = tmpResult[j].getA(m, n) / 10000.0;//

double(totalTraced); 
670  
671 regional_deps[j].addToA(m, n, tmp);
672  
673 //std::cout << "matrix " << actualRgs[j] << 

std::endl;
674 regional_deps[j].printA("log_update");
675     }
676 }
677  
678 void DepResult::readLogFiles(std::string logName) {
679  
680     std::vector<double> u0 = {0, 5, 10, 20};
681     std::vector<double> diam = {5e-06, 1e-05, 1.5e-05, 

2e-05, 4e-05};
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682     std::ifstream f;

683     //std::cout << "reading log files .." << std::endl;
684  

685     for (size_t i=1; i<=n_injection_points; i++) {
686  

687         for (size_t m=0; m<5; m++) {
688             for (size_t n=0; n<4; n++) {
689  

690                 std::string ln, fileName;

691                 std::vector<std::string> lns;

692                 std::ostringstream oss;

693                 oss << "_" << i << "_" << diam[m] << "_" << 

u0[n];

694                 fileName = logName + oss.str();

695                 f.open(fileName.c_str());

696  

697                 if (f.is_open())
698                     while (std::getline(f, ln))
699                         lns.push_back(ln);

700  

701                 //std::cout << "file " << fileName << " ... 
" << std::endl;

702  

703                 findnAdd(lns, m, n);

704                 f.close();

705  

706             }

707         }

708     }

709  

710     // calculate fraction over all injection positions
711     for (int j = 0; j < 6; j++) {
712 std::cout << "deviding by " << n_injection_points 

<< std::endl;

713 regional_deps[j].devideABy(double

(n_injection_points));

714     }

715     

716  

717     std::cout << "#######################" << std::endl;

718 }

719  

720 void DepResult::calc_norm() {

721     size_t m = regional_deps[0].getM();

722     size_t n = regional_deps[0].getN();

723  

724     //homogeneous scalarization using ferobenous as 
objective function
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725     for (size_t q=0; q<regional_deps.size(); q++) {
726         for (size_t i = 0; i < m; i++) {
727             for (size_t j = 0; j < n; j++) {
728                 norm += pow(regional_deps[q].getA(i, j) 
729 - ref_regional_deps_ave[q].getA(i, 

j), 2);
730             }
731         }
732     }
733     norm = sqrt(norm);
734     norm = norm / 6 / ( 4 * 5 );
735 }
736  
737 void DepResult::calc_norm_turb() {
738     size_t m = regional_deps[0].getM();
739     size_t n = regional_deps[0].getN();
740     //homogeneous scalarization using ferobenous as 

objective function
741     size_t q = 3;
742     for (size_t i = 0; i < m; i++) {
743       for (size_t j = 0; j < n; j++) {
744         norm_turb += pow(regional_deps[q].getA(i, j) 
745 - ref_regional_deps_ave[q].getA(i, 

j), 2);
746       }
747     }
748     norm_turb = sqrt(norm_turb);
749     norm_turb = norm_turb / ( 4 * 5 );
750 }
751  
752 void DepResult::calc_norm_subs() {
753     size_t m = regional_deps[0].getM();
754     size_t n = regional_deps[0].getN();
755  
756     //homogeneous scalarization using ferobenous as 

objective function
757     for (size_t q=0; q<regional_deps.size(); q++) {
758         for (size_t i = 0; i < m; i++) {
759             for (size_t j = 0; j < n; j++) {
760                 norm_sub1_right += pow

(ref_sub1_right_regional_deps[q].getA(i, j) 
761 - 

ref_regional_deps_ave[q].getA(i, j), 2);
762                 norm_sub2_right += pow

(ref_sub2_right_regional_deps[q].getA(i, j) 
763 - 

ref_regional_deps_ave[q].getA(i, j), 2);
764                 norm_sub3_right += pow
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(ref_sub3_right_regional_deps[q].getA(i, j) 
765 - 

ref_regional_deps_ave[q].getA(i, j), 2);
766                 norm_sub4_right += pow

(ref_sub4_right_regional_deps[q].getA(i, j) 
767 - 

ref_regional_deps_ave[q].getA(i, j), 2);
768                 norm_sub6_right += pow

(ref_sub6_right_regional_deps[q].getA(i, j) 
769 - 

ref_regional_deps_ave[q].getA(i, j), 2);
770                 norm_sub7_right += pow

(ref_sub7_right_regional_deps[q].getA(i, j) 
771 - 

ref_regional_deps_ave[q].getA(i, j), 2);
772                 norm_sub8_right += pow

(ref_sub8_right_regional_deps[q].getA(i, j) 
773 - 

ref_regional_deps_ave[q].getA(i, j), 2);
774  
775                 norm_sub1_left += pow

(ref_sub1_left_regional_deps[q].getA(i, j) 
776 - 

ref_regional_deps_ave[q].getA(i, j), 2);
777                 norm_sub2_left += pow

(ref_sub2_left_regional_deps[q].getA(i, j) 
778 - 

ref_regional_deps_ave[q].getA(i, j), 2);
779                 norm_sub3_left += pow

(ref_sub3_left_regional_deps[q].getA(i, j) 
780 - 

ref_regional_deps_ave[q].getA(i, j), 2);
781                 norm_sub4_left += pow

(ref_sub4_left_regional_deps[q].getA(i, j) 
782 - 

ref_regional_deps_ave[q].getA(i, j), 2);
783                 norm_sub6_left += pow

(ref_sub6_left_regional_deps[q].getA(i, j) 
784 - 

ref_regional_deps_ave[q].getA(i, j), 2);
785                 norm_sub7_left += pow

(ref_sub7_left_regional_deps[q].getA(i, j) 
786 - 

ref_regional_deps_ave[q].getA(i, j), 2);
787                 norm_sub8_left += pow

(ref_sub8_left_regional_deps[q].getA(i, j) 
788 - 

ref_regional_deps_ave[q].getA(i, j), 2);
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789             }
790         }
791     }
792     norm_sub1_right = sqrt(norm_sub1_right);
793     norm_sub1_right = norm_sub1_right / 6 / (4*5);
794     norm_sub2_right = sqrt(norm_sub2_right);
795     norm_sub2_right = norm_sub2_right / 6 / (4*5);
796     norm_sub3_right = sqrt(norm_sub3_right);
797     norm_sub3_right = norm_sub3_right / 6 / (4*5);
798     norm_sub4_right = sqrt(norm_sub4_right);
799     norm_sub4_right = norm_sub4_right / 6 / (4*5);
800     norm_sub6_right = sqrt(norm_sub6_right);
801     norm_sub6_right = norm_sub6_right / 6 / (4*5);
802     norm_sub7_right = sqrt(norm_sub7_right);
803     norm_sub7_right = norm_sub7_right / 6 / (4*5);
804     norm_sub8_right = sqrt(norm_sub8_right);
805     norm_sub8_right = norm_sub8_right / 6 / (4*5);
806  
807     norm_sub1_left = sqrt(norm_sub1_left);
808     norm_sub1_left = norm_sub1_left / 6 / (4*5);
809     norm_sub2_left = sqrt(norm_sub2_left);
810     norm_sub2_left = norm_sub2_left / 6 / (4*5);
811     norm_sub3_left = sqrt(norm_sub3_left);
812     norm_sub3_left = norm_sub3_left / 6 / (4*5);
813     norm_sub4_left = sqrt(norm_sub4_left);
814     norm_sub4_left = norm_sub4_left / 6 / (4*5);
815     norm_sub6_left = sqrt(norm_sub6_left);
816     norm_sub6_left = norm_sub6_left / 6 / (4*5);
817     norm_sub7_left = sqrt(norm_sub7_left);
818     norm_sub7_left = norm_sub7_left / 6 / (4*5);
819     norm_sub8_left = sqrt(norm_sub8_left);
820     norm_sub8_left = norm_sub8_left / 6 / (4*5);
821 }
822  
823 void DepResult::addToNormFile( std::string K) {
824  
825     // write down to the result.out file which is for the 

dakota code
826     std::ofstream dakf; //dakota file
827     dakf.open(K.c_str(), std::fstream::app);
828     calc_norm();
829     std::ostringstream oss;
830     oss << "norm";
831     std::string s = oss.str();
832     dakf << norm << " " << s << std::endl;
833     dakf.close();
834  
835     // write appending norm.tmp file for future analysis
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836     std::ofstream f;
837     f.open("norm.tmp", std::fstream::app);
838     f << norm << std::endl;
839     f.close();
840 }
841  
842 void DepResult::addToTurbNormFile( std::string K) {
843  
844     // write down to the result.out file which is for the 

dakota code
845     std::ofstream dakf; //dakota file
846     dakf.open(K.c_str(), std::fstream::app);
847     calc_norm_turb();
848     std::ostringstream oss;
849     oss << "norm";
850     std::string s = oss.str();
851     dakf << norm_turb << " " << s << std::endl;
852     dakf.close();
853  
854     // write appending norm.tmp file for future analysis
855     std::ofstream f;
856     f.open("norm.tmp", std::fstream::app);
857     f << norm_turb << std::endl;
858     f.close();
859 }
860  
861 void DepResult::print_norms(){
862     std::cout << "----------" << std::endl;
863     calc_norm_subs();
864  
865     std::cout << "Current geometry error is <<" << 100*norm 
866       << " %>> of total <<" << num_particle
867               << ">> particles" << std::endl;
868     std::cout << "Subject 1 left error is <<" << 

100*norm_sub1_left  
869       << " %>> of total <<" << num_particle
870               << ">> praticles" << std::endl;
871     std::cout << "Subject 2 left error is <<" << 

100*norm_sub2_left  
872       << " %>> of total <<" << num_particle
873               << ">> praticles" << std::endl;
874     std::cout << "Subject 3 left error is <<" << 

100*norm_sub3_left  
875       << " %>> of total <<" << num_particle
876               << ">> praticles" << std::endl;
877     std::cout << "Subject 4 left error is <<" << 

100*norm_sub4_left  
878       << " %>> of total <<" << num_particle
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879               << ">> praticles" << std::endl;
880     std::cout << "Subject 6 left error is <<" << 

100*norm_sub6_left  
881       << " %>> of total <<" << num_particle
882               << ">> praticles" << std::endl;
883     std::cout << "Subject 7 left error is <<" << 

100*norm_sub7_left  
884       << " %>> of total <<" << num_particle
885               << ">> praticles" << std::endl;
886     std::cout << "Subject 8 left error is <<" << 

100*norm_sub8_left  
887       << " %>> of total <<" << num_particle
888               << ">> praticles" << std::endl;
889  
890     std::cout << "Subject 1 right error is <<" << 

100*norm_sub1_right  
891       << " %>> of total <<" << num_particle
892               << ">> praticles" << std::endl;
893     std::cout << "Subject 2 right error is <<" << 

100*norm_sub2_right  
894       << " %>> of total <<" << num_particle
895               << ">> praticles" << std::endl;
896     std::cout << "Subject 3 right error is <<" << 

100*norm_sub3_right  
897       << " %>> of total <<" << num_particle
898               << ">> praticles" << std::endl;
899     std::cout << "Subject 4 right error is <<" << 

100*norm_sub4_right  
900           << " %>> of total <<" << num_particle
901               << ">> praticles" << std::endl;
902     std::cout << "Subject 6 right error is <<" << 

100*norm_sub6_right  
903       << " %>> of total <<" << num_particle
904               << ">> praticles" << std::endl;
905     std::cout << "Subject 7 right error is <<" << 

100*norm_sub7_right  
906       << " %>> of total <<" << num_particle
907               << ">> praticles" << std::endl;
908     std::cout << "Subject 8 right error is <<" << 

100*norm_sub8_right  
909       << " %>> of total <<" << num_particle
910               << ">> praticles" << std::endl;
911  
912     std::cout << "----------" << std::endl;
913 }
914  
915 void DepResult::test(){
916  
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917     std::cout << "this is a test: " << std::endl;
918     std::string s = "ref sub4";
919  
920     for (size_t i=0; i<6; i++)
921         ref_sub4_left_regional_deps[i].printA(s);
922  
923     s = "ref";
924  
925     for (size_t i=0; i<6; i++)
926         ref_regional_deps_ave[i].printA(s);
927  
928     std::cout << "end of test" << std::endl;
929 }
930  
931 void DepResult::printRegDepFiles(){
932     std::ofstream f;
933     std::vector <std::string> rgs = {"vesti.txt", 

"valve.txt", "olf.txt", 
934      "turbinates.txt", 

"naso.txt", 
935      "outlet.txt"};
936 for (size_t i=0; i<6; i++){
937 regional_deps[i].printA("Average deposition in " + 

rgs[i]);
938         f.open(rgs[i].c_str());
939         for (size_t m=0; m<5; m++){
940             for (size_t n=0; n<4; n++){
941                 f << regional_deps[i].getA(m, n) << " ";
942             }
943             f << std::endl;
944         }
945         f.close();
946     }
947 }
948  
949 void DepResult::printMinMaxDepFiles(int velIndex){
950 // prints a file for a specific velocity with this 

format:
951 // diameter deposition min max
952 std::ofstream f;
953 std::vector <std::string> rgs = {"vestiEr.txt", 

"valveEr.txt", 
954  "olfEr.txt" , 

"turbinatesEr.txt", 
955  "nasoEr.txt", 

"outletEr.txt"};
956  
957 for (size_t region=0; region<6; region++){
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958  
959 std::string s(rgs[region]);
960 f.open(s.c_str());
961 f << "0 0 0 0" << std::endl;
962  
963 for (size_t diameter=0; diameter<5; diameter

++){
964  
965 double min = ref_regional_deps.at

(0).at(region).
966 getA

(diameter, velIndex);
967 double max = ref_regional_deps.at

(0).at(region).
968 getA

(diameter, velIndex);
969  
970 for (size_t ref=1; ref<14; ref++){
971 double tmp = 

ref_regional_deps.at(ref).
972 at(region).getA

(diameter, velIndex) ;
973  
974 if ( min > tmp ) {
975 min = tmp;
976 }
977 if ( max < tmp) {
978 max = tmp;
979 }
980  
981 }
982  
983 f << diameter+1 << " " << 

regional_deps[region].
984 getA(diameter, velIndex) 
985 << " " << min << " " << max;
986 f << std::endl;
987 }
988
989 f.close();
990 }
991 }
992  
993 void DepResult::printDepFilesFixVel(int velIndex){
994 // prints a file for a specific velocity with this 

format:
995 // diameter deposition min max
996 std::ofstream f;
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997 std::vector <std::string> rgs = { "vesti", "valve", 
"olf" , 

998   "turbinates", 
"naso", "outlet" };

999 std::vector<double> diam = { 5e-06, 1e-05, 1.5e-05, 
2e-05, 4e-05 };

1000 std::vector<double> diam_micron = { 5, 10, 15, 20, 
40 };

1001  
1002 for (size_t region=0; region<6; region++){
1003
1004 std::string s = rgs[region] ;
1005 s.append("vel");
1006 s.append(std::to_string(velIndex));
1007 s.append(".txt");
1008 f.open(s.c_str());
1009 //f << "" << std::endl;
1010  
1011 for (size_t diameter=0; diameter<5; diameter

++){
1012  
1013 for (size_t ref=0; ref<14; ref++){
1014 double tmp = 

ref_regional_deps.at(ref).
1015 at(region).getA

(diameter, velIndex) ;
1016 f << diam_micron[diameter] 

<< " " << tmp 
1017 << 

" 1" << std::endl;
1018  
1019 }
1020  
1021 f << diam_micron[diameter] << " " 
1022 << regional_deps

[region].getA(diameter, velIndex) 
1023 << 

" 2" << std::endl;
1024 f << std::endl;
1025 }
1026
1027 f.close();
1028 }
1029 }
1030  
1031 std::vector <ResultMatrix> DepResult::getRegionalDep() {
1032     return regional_deps;
1033 }
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1034  
1035 std::vector <ResultMatrix> DepResult::getRefRegionalDep() {
1036     return ref_regional_deps_ave;
1037 }
1038  
1039 void DepResult::setNumberOfInjectionPoints(size_t n) {
1040     n_injection_points = n;
1041 }
1042  
1043 void DepResult::setNumParticle(size_t n) {
1044     num_particle = n;
1045 }
1046  
1047 size_t DepResult::getNumParticle() {
1048     return num_particle;
1049 }
1050  
1051 /

******************************************************************************/
1052  
1053 #include "PtsLis.h"
1054 #include "DepResult.h"
1055 #include <cmath>
1056  
1057 int main(int argc, char* argv[]) {
1058  
1059     std::string input = argv[1];
1060     if (input == "append_norm")
1061     {
1062         std::cout << "appending norm" << std::endl;
1063         std::string s = argv[2];
1064         DepResult d;
1065 size_t numPoints = 200;
1066         d.setNumberOfInjectionPoints(numPoints);
1067  
1068 std::cout << "Reading Reference Files .. " << 

std::endl;
1069         d.readRefFiles(); //reads the reference values
1070 std::cout << "Reading Reference Files Done" << 

std::endl;
1071  
1072 std::cout << "Reading Log Files .. " << std::endl;
1073         d.readLogFiles("plog");
1074 std::cout << "Reading Log Files Done" << std::endl;
1075
1076         d.addToNormFile(s);
1077         d.print_norms();
1078 d.printRegDepFiles();
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1079  
1080 d.printMinMaxDepFiles(0); //velocity index
1081  
1082 d.printDepFilesFixVel(0); // print all vel based 

dep files
1083 d.printDepFilesFixVel(2);
1084 d.printDepFilesFixVel(3);
1085     }
1086  
1087     else if (input == "append_norm_turb")
1088     {
1089         std::cout << "appending norm" << std::endl;
1090         std::string s = argv[2];
1091         DepResult d;
1092 size_t numPoints = 4;
1093         d.setNumberOfInjectionPoints(numPoints);
1094         d.readRefFiles(); //reads the reference values
1095         d.readLogFiles("plog");
1096         d.addToNormFile(s);
1097 // d.print_norms();
1098 d.printRegDepFiles();
1099 // d.test();
1100     } else {
1101       std::cout << "unknown input argument." << std::endl;
1102     }
1103  
1104     return 0;
1105 }
1106  
1107 /*
1108 * -----
1109 * end of opt_manager
1110 * -----
1111 */
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Appendix B: Visualization Toolkit (VTK) 
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1 /**
2 ** start of VTK codes
3 **/
4 /*
5 Several VTK codes for different functions
6 to execute choose a main method and include headers
7 to create a suitable object. Operations include:
8 closeClip, closeAtFeature, fillHoles, flipNormals
9 pointsInside, girdSTL, puncher, scaleSTL

10  
11 version of code: 3.0
12  
13 Author: Milad Kiaee Darunkola kiaeedar@ualberta.ca
14 Appendix to Thesis
15  
16 */
17  
18 #include <vtkVersion.h>
19 #include <vtkSmartPointer.h>
20  
21 #include <vtkClipDataSet.h>
22 #include <vtkImplicitPolyDataDistance.h>
23 #include <vtkConeSource.h>
24 #include <vtkPointData.h>
25 #include <vtkUnstructuredGrid.h>
26 #include <vtkFloatArray.h>
27 #include <vtkRectilinearGrid.h>
28 #include <vtkPolyDataMapper.h>
29 #include <vtkProperty.h>
30 #include <vtkActor.h>
31 #include <vtkCamera.h>
32 #include <vtkRectilinearGridGeometryFilter.h>
33 #include <vtkDataSetMapper.h>
34 #include <vtkRenderer.h>
35 #include <vtkRenderWindow.h>
36 #include <vtkRenderWindowInteractor.h>
37 #include <vtkSTLReader.h>
38 #include <vtkSTLWriter.h>
39 #include <vtkXMLPolyDataReader.h>
40 #include <vtkXMLPolyDataWriter.h>
41 #include <vtkPLYWriter.h>
42 #include <vtkPolyDataWriter.h>
43 #include <vtkDataSetWriter.h>
44 #include <vtkUnstructuredGridGeometryFilter.h>
45 #include <vtkDataSetSurfaceFilter.h>
46 #include <vtkCubeSource.h>
47 #include <vtkSphereSource.h>
48 #include <vtkTableBasedClipDataSet.h>
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49 #include <vtkTriangleFilter.h>
50 #include <map>
51  
52 #include <sstream>
53 #include <vector>
54 #include <stdlib.h> /* srand, rand */
55 #include <time.h> /* time */
56  
57 #include <vtkCleanPolyData.h>
58 #include <vtkAppendPolyData.h>
59 #include <vtkAppendFilter.h>
60 #include <vtkDelaunay2D.h>
61 #include <vtkConnectivityFilter.h>
62 #include <vtkPolyDataConnectivityFilter.h>
63 #include <vtkSelectionNode.h>
64 #include <vtkInformation.h>
65 #include <vtkFillHolesFilter.h>
66  
67 #include <vtkTransformPolyDataFilter.h>
68 #include <vtkTransform.h>
69 #include <vtkTransformPolyDataFilter.h>
70
71  
72 int main (int argc, char *argv[])
73 {
74   std::cout << "argc = " << argc << std::endl;
75   // Create polydata to slice the grid with. 
76   // In this case, use a cone. This could
77   // be any polydata including a stl file.
78  
79   // PolyData to process
80   std::string input_name1(argv[1]);
81   std::cout << "Reading stl file : " << input_name1 << 

std::endl;
82   vtkSmartPointer<vtkSTLReader> stlReader1 =
83     vtkSmartPointer<vtkSTLReader>::New();
84   stlReader1->SetFileName(input_name1.c_str());
85   stlReader1->Update();
86   vtkSmartPointer<vtkPolyData> pd1;
87   pd1 = stlReader1->GetOutput();
88  
89   // Implicit function that will be used to slice the mesh
90   vtkSmartPointer<vtkImplicitPolyDataDistance> 

implicitPolyDataDistance =
91     vtkSmartPointer<vtkImplicitPolyDataDistance>::New();
92   implicitPolyDataDistance->SetInput(pd1);
93  
94   // PolyData to process
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95   std::string input_name2(argv[2]);
96   std::cout << "Reading stl file : " << input_name2 << 

std::endl;
97   vtkSmartPointer<vtkSTLReader> stlReader2 =
98     vtkSmartPointer<vtkSTLReader>::New();
99   stlReader2->SetFileName(input_name2.c_str());

100   stlReader2->Update();
101   vtkSmartPointer<vtkPolyData> pd2;
102   pd2 = stlReader2->GetOutput();
103  
104   // Create an array to hold distance information
105   vtkSmartPointer<vtkFloatArray> signedDistances =
106     vtkSmartPointer<vtkFloatArray>::New();
107   signedDistances->SetNumberOfComponents(1);
108   signedDistances->SetName("SignedDistances");
109  
110   double extra = -0.0005;
111  
112   if ( argc  > 4){
113     extra = 0.0005;
114   }
115
116   // Evaluate the signed distance function at all of the 

grid points
117   for (vtkIdType pointId = 0; pointId < pd2-

>GetNumberOfPoints(); ++pointId)
118   {
119     double p[3];
120     pd2->GetPoint(pointId, p);
121     double signedDistance = implicitPolyDataDistance-

>EvaluateFunction(p) + extra;
122     signedDistances->InsertNextValue(signedDistance);
123   }
124  
125   // Add the SignedDistances to the grid
126   pd2->GetPointData()->SetScalars(signedDistances);
127  
128   // Use vtkClipDataSet to slice the grid with the polydata
129   vtkSmartPointer<vtkTableBasedClipDataSet> clipper =
130     vtkSmartPointer<vtkTableBasedClipDataSet>::New();
131  
132   clipper->SetInputData(pd2);
133   if ( argc  > 4){
134     std::cout << "InsideOut is ON." << std::endl;
135     clipper->InsideOutOn();
136   }
137   clipper->SetValue(0.00);
138   //clipper->SetOutputPointsPrecision(20);
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139   clipper->GenerateClippedOutputOn();

140   clipper->Update();

141  

142 /*
143   vtkSmartPointer<vtkUnstructuredGridGeometryFilter> uggf =
144     vtkSmartPointer<vtkUnstructuredGridGeometryFilter>::New

();
145   uggf->SetInputData(clipper->GetOutput());
146   uggf->Update();
147 */
148  
149   vtkSmartPointer<vtkDataSetSurfaceFilter> dssf =

150     vtkSmartPointer<vtkDataSetSurfaceFilter>::New();

151   dssf->SetInputData(clipper->GetOutput());

152   dssf->Update();

153  

154   vtkSmartPointer<vtkTriangleFilter> tf =

155     vtkSmartPointer<vtkTriangleFilter>::New();

156   tf->SetInputData(dssf->GetOutput());

157   tf->Update();

158  

159   std::string outname(argv[3]);

160  

161 /*
162   std::string outPly = outname + ".ply";
163   // write the detected boundary edges
164   vtkSmartPointer<vtkXMLPolyDataWriter> writer 
165 = vtkSmartPointer<vtkXMLPolyDataWriter>::New();
166   writer->SetInputConnection(tf->GetOutputPort());
167   writer->SetFileName(outPly.c_str());
168   writer->Write();
169 */
170  
171   std::string outSTL = outname;

172   vtkSmartPointer<vtkSTLWriter> sw2 

173 = vtkSmartPointer<vtkSTLWriter>::New();

174   sw2->SetFileName(outSTL.c_str());

175   std::cout << "writing stl .. " << std::endl;

176   sw2->SetInputData(tf->GetOutput());

177   sw2->Write();

178  

179   // ********************************************************
180   // Uncomment to Generate a report
181 /*
182   vtkIdType numberOfCells = clipper->GetOutput()-

>GetNumberOfCells();
183   std::cout << "------------------------" << std::endl;
184   std::cout << "The clipped dataset(inside) contains a " << 
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std::endl
185             << clipper->GetOutput()->GetClassName()
186             <<  " that has " << numberOfCells << " cells" << 

std::endl;
187   typedef std::map<int,int> CellContainer;
188   CellContainer cellMap;
189   for (vtkIdType i = 0; i < numberOfCells; i++)
190   {
191     cellMap[clipper->GetOutput()->GetCellType(i)]++;
192   }
193  
194   CellContainer::const_iterator it = cellMap.begin();
195   while (it != cellMap.end())
196   {
197     std::cout << "\tCell type "
198               << vtkCellTypes::GetClassNameFromTypeId(it-

>first)
199               << " occurs " << it->second << " times." << 

std::endl;
200     ++it;
201   }
202
203   numberOfCells = clipper->GetClippedOutput()-

>GetNumberOfCells();
204   std::cout << "------------------------" << std::endl;
205   std::cout << "The clipped dataset(outside) contains a " << 

std::endl
206             << clipper->GetClippedOutput()->GetClassName()
207             <<  " that has " << numberOfCells << " cells" << 

std::endl;
208   typedef std::map<int,int> OutsideCellContainer;
209   CellContainer outsideCellMap;
210   for (vtkIdType i = 0; i < numberOfCells; i++)
211   {
212     outsideCellMap[clipper->GetClippedOutput()->GetCellType

(i)]++;
213   }
214  
215   it = outsideCellMap.begin();
216   while (it != outsideCellMap.end())
217   {
218     std::cout << "\tCell type "
219               << vtkCellTypes::GetClassNameFromTypeId(it-

>first)
220               << " occurs " << it->second << " times." << 

std::endl;
221     ++it;
222   }
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223 */
224  
225   return EXIT_SUCCESS;
226 }
227  
228 int main (int argc, char *argv[])
229 {
230   // PolyData to process
231   std::string inputName1(argv[1]);
232   std::cout << "Reading stl file : " << inputName1 << 

std::endl;
233   vtkSmartPointer<vtkSTLReader> stlReader1 =
234     vtkSmartPointer<vtkSTLReader>::New();
235   stlReader1->SetFileName(inputName1.c_str());
236   stlReader1->Update();
237   vtkSmartPointer<vtkPolyData> polyData1;
238   polyData1 = stlReader1->GetOutput();
239  
240   // PolyData to process
241   std::string inputName2(argv[2]);
242   std::cout << "Reading stl file : " << inputName2 << 

std::endl;
243   vtkSmartPointer<vtkSTLReader> stlReader2 =
244     vtkSmartPointer<vtkSTLReader>::New();
245   stlReader2->SetFileName(inputName2.c_str());
246   stlReader2->Update();
247   vtkSmartPointer<vtkPolyData> polyData2;
248   polyData2 = stlReader2->GetOutput();
249  
250 // ********
251 vtkSmartPointer<vtkFeatureEdges> boundaryEdges1 =
252 vtkSmartPointer<vtkFeatureEdges>::New();
253 boundaryEdges1->SetInputData(polyData1);
254 boundaryEdges1->BoundaryEdgesOn();
255 boundaryEdges1->FeatureEdgesOff();
256 boundaryEdges1->NonManifoldEdgesOff();
257 boundaryEdges1->ColoringOff();
258 boundaryEdges1->Update();
259  
260 vtkSmartPointer<vtkFeatureEdges> boundaryEdges2 =
261 vtkSmartPointer<vtkFeatureEdges>::New();
262 boundaryEdges2->SetInputData(polyData2);
263 boundaryEdges2->BoundaryEdgesOn();
264 boundaryEdges2->FeatureEdgesOff();
265 boundaryEdges2->NonManifoldEdgesOff();
266 boundaryEdges2->ColoringOff();
267 boundaryEdges2->Update();
268  
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269 // ********
270  
271 vtkSmartPointer<vtkPolyDataConnectivityFilter> 

connectivityFilter1 = 
272

vtkSmartPointer<vtkPolyDataConnectivityFilter>::New();
273 connectivityFilter1->SetInputData(boundaryEdges1-

>GetOutput());
274 connectivityFilter1-

>SetExtractionModeToSpecifiedRegions();
275 connectivityFilter1->AddSpecifiedRegion(0);
276 connectivityFilter1->Update();
277  
278
279  
280 vtkSmartPointer<vtkPolyDataConnectivityFilter> 

connectivityFilter2 = 
281

vtkSmartPointer<vtkPolyDataConnectivityFilter>::New();
282 connectivityFilter2->SetInputData(boundaryEdges2-

>GetOutput());
283 connectivityFilter2-

>SetExtractionModeToSpecifiedRegions();
284 connectivityFilter2->AddSpecifiedRegion(0);
285 connectivityFilter2->Update();
286  
287 // *********
288  
289 vtkSmartPointer<vtkCleanPolyData> cleanPolyData1 = 
290 vtkSmartPointer<vtkCleanPolyData>::New();
291 cleanPolyData1->SetInputData(connectivityFilter1-

>GetOutput());
292 cleanPolyData1->Update();
293  
294     // Write the file
295   vtkSmartPointer<vtkXMLPolyDataWriter> writer1 =  
296     vtkSmartPointer<vtkXMLPolyDataWriter>::New();
297   writer1->SetFileName("test1.vtp");
298   writer1->SetInputData(cleanPolyData1->GetOutput());
299   // Optional - set the mode. The default is binary.
300   //writer->SetDataModeToBinary();
301   //writer->SetDataModeToAscii();
302   writer1->Write();
303  
304 vtkSmartPointer<vtkCleanPolyData> cleanPolyData2 = 
305 vtkSmartPointer<vtkCleanPolyData>::New();
306 cleanPolyData2->SetInputData(connectivityFilter2-

>GetOutput());
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307 cleanPolyData2->Update();
308
309     // Write the file
310   vtkSmartPointer<vtkXMLPolyDataWriter> writer2 =  
311     vtkSmartPointer<vtkXMLPolyDataWriter>::New();
312   writer2->SetFileName("test2.vtp");
313   writer2->SetInputData(cleanPolyData2->GetOutput());
314   // Optional - set the mode. The default is binary.
315   //writer->SetDataModeToBinary();
316   //writer->SetDataModeToAscii();
317   writer2->Write();
318  
319 // ********
320  
321 vtkSmartPointer<vtkAppendPolyData> 

appendPolyDataFilter =
322     vtkSmartPointer<vtkAppendPolyData>::New();
323  appendPolyDataFilter->AddInputData( cleanPolyData1-

>GetOutput() );
324 appendPolyDataFilter->AddInputData( cleanPolyData2-

>GetOutput() );
325 appendPolyDataFilter->Update();
326  
327 // ********
328  
329 vtkSmartPointer<vtkDelaunay2D> delauny =
330     vtkSmartPointer<vtkDelaunay2D>::New();
331   delauny->SetInputData(appendPolyDataFilter->GetOutput

());
332   delauny->SetProjectionPlaneMode

(VTK_BEST_FITTING_PLANE);
333   delauny->Update();
334  
335 /*
336 std::ostringstream ss;
337         std::string out (argv[1]);
338         ss << out << ".stl";
339         out  = ss.str();
340  
341 std::string name1(out);
342 vtkSmartPointer<vtkSTLWriter> writer =  
343     vtkSmartPointer<vtkSTLWriter>::New();
344   writer1->SetFileName(name1.c_str());
345   std::cout << "writing .. " << std::endl;
346   writer->SetInputData(delauny->GetOutput());
347   writer->Write();
348  
349 */
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350   return EXIT_SUCCESS;
351 }
352  
353 int main(int argc, char *argv[])
354 {
355   // defaults to be changed 
356   std::string input_name(argv[1]);
357   std::cout << "filling holes of : " << input_name << 

std::endl;  
358   // read two stls 
359   vtkSmartPointer<vtkSTLReader> sr = 

vtkSmartPointer<vtkSTLReader>::New();
360   sr->SetFileName(input_name.c_str());
361   sr->Update();;
362   // store then in polydata files
363   vtkSmartPointer<vtkPolyData> input;
364   input = sr->GetOutput(); //or try shallowcopy
365  
366   vtkSmartPointer<vtkFillHolesFilter> fhf = 

vtkSmartPointer<vtkFillHolesFilter>::New();
367   fhf->SetInputData(input);
368
369   fhf->SetHoleSize(0.1);
370  
371   // Make the triangle windong order consistent
372   vtkSmartPointer<vtkPolyDataNormals> normals = 

vtkSmartPointer<vtkPolyDataNormals>::New();
373   normals->SetInputConnection(fhf->GetOutputPort());
374   normals->ConsistencyOn();
375   normals->SplittingOff();
376   normals->Update();
377  
378   // Restore the original normals
379   normals->GetOutput()->GetPointData()->SetNormals(input-

>GetPointData()->GetNormals());
380  
381   vtkSmartPointer<vtkDataSetSurfaceFilter> sf = 

vtkSmartPointer<vtkDataSetSurfaceFilter>::New();
382   sf->SetInputConnection(fhf->GetOutputPort());
383   sf->Update();
384  
385   // stl writer
386   std::cout << "fill holes: stl writer starting .. " << 

std::endl;  
387   vtkSmartPointer<vtkSTLWriter> sw = 

vtkSmartPointer<vtkSTLWriter>::New();
388   sw->SetFileName(argv[2]);
389   sw->SetInputConnection(sf->GetOutputPort()); 
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390   sw->SetFileTypeToBinary();
391   std::cout << "fill holes: writing .. " << std::endl;
392   sw->Write();
393  
394   return EXIT_SUCCESS;
395 }
396  
397 int main ( int argc, char *argv[] )
398 {
399   std::cout << "grid std: usuage: ./obj input ox oy oz dy dz 

ny nz" << std::endl;
400  
401   std::string input_name_1 = argv[1];
402  
403   vtkSmartPointer<vtkSTLReader> sr_1 =
404     vtkSmartPointer<vtkSTLReader>::New();
405   std::string in (input_name_1 + ".stl");
406   sr_1->SetFileName(input_name_1.c_str());
407   sr_1->Update();
408  
409   // convert unstructured grid to polydata
410   vtkSmartPointer<vtkDataSetSurfaceFilter> sf =
411     vtkSmartPointer<vtkDataSetSurfaceFilter>::New();
412   sf->SetInputData(sr_1->GetOutput());
413   sf->Update();
414  
415  
416   ///////
417  
418   double ox = atof (argv[2]);
419   double oy = atof (argv[3]);
420   double oz = atof (argv[4]);
421  
422   double dy = atof (argv[5]);//0.01;
423   double dz = atof (argv[6]);
424   int n = atoi(argv[7]);
425   int m = atoi(argv[8]);
426  
427   vtkSmartPointer<vtkAppendPolyData> af =
428   vtkSmartPointer<vtkAppendPolyData>::New();
429  
430   for (int i=0; i<n; i++){
431     for (int j=0; j<m; j++){
432  
433       vtkSmartPointer<vtkTransform> translation =
434         vtkSmartPointer<vtkTransform>::New();
435       translation->Translate(0 + ox - 0.3*j*dz , i*dy + oy, 

j*dz + oz );
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436  
437       vtkSmartPointer<vtkTransformPolyDataFilter> 

transformFilter =
438         vtkSmartPointer<vtkTransformPolyDataFilter>::New();
439       transformFilter->SetInputConnection( sf->GetOutputPort

() );
440       transformFilter->SetTransform( translation );
441       transformFilter->Update();
442  
443       af->AddInputData(transformFilter->GetOutput());  
444       af->Update();
445     }
446   }
447  
448    vtkSmartPointer<vtkSTLWriter> sw =
449         vtkSmartPointer<vtkSTLWriter>::New();
450    sw->SetFileName( "RODS.stl" );
451    sw->SetInputData( af->GetOutput() );
452    sw->SetFileTypeToBinary();
453    sw->Write();
454  
455 return EXIT_SUCCESS;
456 }
457  
458 void Other();
459 void Sphere();
460 void Cone();
461 void Ellipsoid();
462 void Cylinder();
463 void HyperboloidOneSheet();
464 void HyperboloidTwoSheets();
465 void HyperbolicParaboloid();
466 void EllipticParaboloid();
467  
468 void PlotFunction(vtkQuadric* quadric, double value);
469  
470  
471 int main (int, char *[])
472 {
473  
474   Cylinder();
475  
476   return 0;
477 }
478  
479 void Cylinder()
480 {
481   // create the quadric function definition
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482   vtkSmartPointer<vtkQuadric> quadric = 
vtkSmartPointer<vtkQuadric>::New();

483   quadric->SetCoefficients(1,1,0,0,0,0,0,0,0,0);
484  
485   // F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z + 

a5*x*z + a6*x + a7*y + a8*z + a9
486   // F(x,y,z) = 1*x^2 + 1*y^2
487  
488   PlotFunction(quadric, 1);
489 }
490  
491 void PlotFunction(vtkQuadric* quadric, double value)
492 {
493  
494   // sample the quadric function
495   vtkSmartPointer<vtkSampleFunction> sample = 

vtkSmartPointer<vtkSampleFunction>::New();
496   sample->SetSampleDimensions(25,25,1000);
497   sample->SetImplicitFunction(quadric);
498   //double xmin = 0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1;
499   double xmin = -1, xmax=1, ymin=-1, ymax=1, zmin=0, 

zmax=200;
500   //double xmin = -10, xmax=10, ymin=-10, ymax=10, zmin=-10, 

zmax=10;
501   sample->SetModelBounds(xmin, xmax, ymin, ymax, zmin, zmax);
502  
503   // Create five surfaces F(x,y,z) = constant between range 

specified
504   /*
505   vtkContourFilter *contours = vtkContourFilter::New();
506   contours->SetInput(sample->GetOutput());
507   contours->GenerateValues(5, 0.0, 1.2);
508   */
509  
510   //create the 0 isosurface
511   vtkSmartPointer<vtkContourFilter> contours = 

vtkSmartPointer<vtkContourFilter>::New();
512   contours->SetInputConnection(sample->GetOutputPort());
513   contours->GenerateValues(1, value, value);
514  
515   // write the detected boundary edges
516   vtkSmartPointer<vtkSTLWriter> writer = 

vtkSmartPointer<vtkSTLWriter>::New();
517   writer->SetInputConnection(contours->GetOutputPort());
518   writer->SetFileName("kin.stl");
519   writer->Write();
520  
521 }
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522  
523 int main (int argc, char *argv[])
524 {
525   std::cout << "argc = " << argc << std::endl;
526  
527   // PolyData to process
528   std::string input_name1(argv[1]);
529   std::cout << "Reading stl file : " << input_name1 << 

std::endl;
530   vtkSmartPointer<vtkSTLReader> stlReader1 =
531     vtkSmartPointer<vtkSTLReader>::New();
532   stlReader1->SetFileName(input_name1.c_str());
533   stlReader1->Update();
534   vtkSmartPointer<vtkPolyData> pd1;
535   pd1 = stlReader1->GetOutput();
536  
537   // Implicit function that will be used to slice the mesh
538   vtkSmartPointer<vtkImplicitPolyDataDistance> 

implicitPolyDataDistance =
539     vtkSmartPointer<vtkImplicitPolyDataDistance>::New();
540   implicitPolyDataDistance->SetInput(pd1);
541
542   // generate random points inside a box around the 

vestibule and valve
543   // random points should be inside a cube of center (0.00 

0.008 0.015)
544   // and cube has length x=0.02 y=0.03 z=0.03 
545   srand(time(NULL)); // initialize random seed 
546   double lX = 0.02;
547   double lY = 0.03;
548   double lZ = 0.03;
549   double centX = 0.0;
550   double centY = 0.008;
551   double centZ = 0.015;
552  
553   double sX = centX - lX/2;
554   double sY = centY - lY/2;
555   double sZ = centZ - lZ/2;
556  
557   std::ofstream pointsFile;
558   pointsFile.open("injectionPoistions.txt");
559   int count = 0;
560   int evaluation = 0;
561  
562   while (count < 200 ) {
563  
564 std::cout << "evaluating " << evaluation <<  " .. " 

<< std::endl;
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565  
566 double randX = ((double) rand() / (RAND_MAX)); // 

random number between zero and one
567     double randY = ((double) rand() / (RAND_MAX));
568 double randZ = ((double) rand() / (RAND_MAX));
569  
570 double x = sX + randX*lX;
571 double y = sY + randY*lY;
572 double z = sZ + randZ*lZ;
573  
574 std::cout << x << " " << y << " " << z << std::endl;
575 double p[3];
576 p[0] = x;
577 p[1] = y;
578 p[2] = z;
579  
580 double signedDistance = implicitPolyDataDistance-

>EvaluateFunction(p);
581  
582 if ( signedDistance < -0.001 ){
583 // add this point to the point list
584 std::cout << "this point is inside! " << 

std::endl;
585 pointsFile << x << " " << y << " " << z << 

std::endl; 
586 count ++;
587 }
588  
589 evaluation ++;
590   
591   }
592   // ********************************************************
593   return EXIT_SUCCESS;
594 }
595  
596 int main ( int argc, char *argv[] )
597 {
598   std::cout << "grid std: usuage: ./obj input ox oy oz dy dz 

ny nz" << std::endl;
599  
600   std::string input_name_1 = argv[1];
601  
602   vtkSmartPointer<vtkSTLReader> sr_1 =
603     vtkSmartPointer<vtkSTLReader>::New();
604   std::string in (input_name_1 + ".stl");
605   sr_1->SetFileName(input_name_1.c_str());
606   sr_1->Update();
607  
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608   // convert unstructured grid to polydata
609   vtkSmartPointer<vtkDataSetSurfaceFilter> sf =
610     vtkSmartPointer<vtkDataSetSurfaceFilter>::New();
611   sf->SetInputData(sr_1->GetOutput());
612   sf->Update();
613  
614  
615   ///////
616  
617   double scale = atof (argv[2]);
618  
619   vtkSmartPointer<vtkTransform> translation =
620         vtkSmartPointer<vtkTransform>::New();
621   translation->Scale(1 , scale, scale );
622  
623   vtkSmartPointer<vtkTransformPolyDataFilter> 

transformFilter =
624         vtkSmartPointer<vtkTransformPolyDataFilter>::New();
625   transformFilter->SetInputConnection( sf->GetOutputPort() );
626   transformFilter->SetTransform( translation );
627   transformFilter->Update();
628
629    vtkSmartPointer<vtkSTLWriter> sw =
630         vtkSmartPointer<vtkSTLWriter>::New();
631    sw->SetFileName( argv[3] );
632    sw->SetInputData( transformFilter->GetOutput() );
633    sw->SetFileTypeToBinary();
634    sw->Write();
635  
636   return EXIT_SUCCESS;
637 }
638  
639 int main (int argc, char *argv[])
640 {
641   // PolyData to process
642   std::string inputName1(argv[1]);
643   std::cout << "Reading stl file : " << inputName1 << 

std::endl;
644   vtkSmartPointer<vtkSTLReader> stlReader1 =
645     vtkSmartPointer<vtkSTLReader>::New();
646   stlReader1->SetFileName(inputName1.c_str());
647   stlReader1->Update();
648   vtkSmartPointer<vtkPolyData> polyData1;
649   polyData1 = stlReader1->GetOutput();
650  
651   // PolyData to process
652   std::string inputName2(argv[2]);
653   std::cout << "Reading stl file : " << inputName2 << 
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std::endl;
654   vtkSmartPointer<vtkSTLReader> stlReader2 =
655     vtkSmartPointer<vtkSTLReader>::New();
656   stlReader2->SetFileName(inputName2.c_str());
657   stlReader2->Update();
658   vtkSmartPointer<vtkPolyData> polyData2;
659   polyData2 = stlReader2->GetOutput();
660  
661 // ********
662 vtkSmartPointer<vtkFeatureEdges> boundaryEdges1 =
663 vtkSmartPointer<vtkFeatureEdges>::New();
664 boundaryEdges1->SetInputData(polyData1);
665 boundaryEdges1->BoundaryEdgesOn();
666 boundaryEdges1->FeatureEdgesOff();
667 boundaryEdges1->NonManifoldEdgesOff();
668 boundaryEdges1->ColoringOff();
669 boundaryEdges1->Update();
670  
671 vtkSmartPointer<vtkFeatureEdges> boundaryEdges2 =
672 vtkSmartPointer<vtkFeatureEdges>::New();
673 boundaryEdges2->SetInputData(polyData2);
674 boundaryEdges2->BoundaryEdgesOn();
675 boundaryEdges2->FeatureEdgesOff();
676 boundaryEdges2->NonManifoldEdgesOff();
677 boundaryEdges2->ColoringOff();
678 boundaryEdges2->Update();
679  
680 // ********
681  
682 vtkSmartPointer<vtkPolyDataConnectivityFilter> 

connectivityFilter1 = 
683

vtkSmartPointer<vtkPolyDataConnectivityFilter>::New();
684 connectivityFilter1->SetInputData(boundaryEdges1-

>GetOutput());
685 connectivityFilter1-

>SetExtractionModeToSpecifiedRegions();
686 connectivityFilter1->AddSpecifiedRegion(0);
687 connectivityFilter1->Update();
688  
689
690  
691 vtkSmartPointer<vtkPolyDataConnectivityFilter> 

connectivityFilter2 = 
692

vtkSmartPointer<vtkPolyDataConnectivityFilter>::New();
693 connectivityFilter2->SetInputData(boundaryEdges2-

>GetOutput());
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694 connectivityFilter2-
>SetExtractionModeToSpecifiedRegions();

695 connectivityFilter2->AddSpecifiedRegion(0);
696 connectivityFilter2->Update();
697  
698 // *********
699  
700 vtkSmartPointer<vtkCleanPolyData> cleanPolyData1 = 
701 vtkSmartPointer<vtkCleanPolyData>::New();
702 cleanPolyData1->SetInputData(connectivityFilter1-

>GetOutput());
703 cleanPolyData1->Update();
704  
705     // Write the file
706   vtkSmartPointer<vtkXMLPolyDataWriter> writer1 =  
707     vtkSmartPointer<vtkXMLPolyDataWriter>::New();
708   writer1->SetFileName("test1.vtp");
709   writer1->SetInputData(cleanPolyData1->GetOutput());
710   // Optional - set the mode. The default is binary.
711   //writer->SetDataModeToBinary();
712   //writer->SetDataModeToAscii();
713   writer1->Write();
714  
715 vtkSmartPointer<vtkCleanPolyData> cleanPolyData2 = 
716 vtkSmartPointer<vtkCleanPolyData>::New();
717 cleanPolyData2->SetInputData(connectivityFilter2-

>GetOutput());
718 cleanPolyData2->Update();
719
720     // Write the file
721   vtkSmartPointer<vtkXMLPolyDataWriter> writer2 =  
722     vtkSmartPointer<vtkXMLPolyDataWriter>::New();
723   writer2->SetFileName("test2.vtp");
724   writer2->SetInputData(cleanPolyData2->GetOutput());
725   // Optional - set the mode. The default is binary.
726   //writer->SetDataModeToBinary();
727   //writer->SetDataModeToAscii();
728   writer2->Write();
729  
730 // ********
731  
732 vtkSmartPointer<vtkAppendPolyData> 

appendPolyDataFilter =
733     vtkSmartPointer<vtkAppendPolyData>::New();
734  appendPolyDataFilter->AddInputData( cleanPolyData1-

>GetOutput() );
735 appendPolyDataFilter->AddInputData( cleanPolyData2-

>GetOutput() );
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736 appendPolyDataFilter->Update();
737  
738 // ********
739  
740 vtkSmartPointer<vtkDelaunay2D> delauny =
741     vtkSmartPointer<vtkDelaunay2D>::New();
742   delauny->SetInputData(appendPolyDataFilter->GetOutput

());
743   delauny->SetProjectionPlaneMode

(VTK_BEST_FITTING_PLANE);
744   delauny->Update();
745  
746 /*
747 std::ostringstream ss;
748         std::string out (argv[1]);
749         ss << out << ".stl";
750         out  = ss.str();
751  
752 std::string name1(out);
753 vtkSmartPointer<vtkSTLWriter> writer =  
754     vtkSmartPointer<vtkSTLWriter>::New();
755 writer1->SetFileName(name1.c_str());
756   std::cout << "writing .. " << std::endl;
757   writer->SetInputData(delauny->GetOutput());
758   writer->Write();
759  
760 */
761   return EXIT_SUCCESS;
762 }
763  
764 int main(int argc, char * argv[])
765 {
766     std::cout << "reversing normals .." << std::endl;
767     // PolyData to process
768     std::string input_name1(argv[1]);
769     std::cout << "reading stl file : " << input_name1 << 

std::endl;
770     vtkSmartPointer<vtkSTLReader> stlReader1 =
771     vtkSmartPointer<vtkSTLReader>::New();
772     stlReader1->SetFileName(input_name1.c_str());
773     stlReader1->Update();
774     vtkSmartPointer<vtkPolyData> pd1;
775     pd1 = stlReader1->GetOutput();
776  
777  
778   vtkSmartPointer<vtkReverseSense> reverseSense =
779     vtkSmartPointer<vtkReverseSense>::New();
780   reverseSense->SetInputData(pd1);
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781   reverseSense->ReverseNormalsOn();

782   reverseSense->Update();

783  

784     /////
785     std::string outname(argv[2]);

786     std::string outSTL = outname;

787     vtkSmartPointer<vtkSTLWriter> sw2 = 

vtkSmartPointer<vtkSTLWriter>::New();

788     sw2->SetFileName(outSTL.c_str());

789     std::cout << "writing stl .. " << std::endl;

790     sw2->SetInputData(reverseSense->GetOutput());

791     sw2->Write();

792  

793   return EXIT_SUCCESS;
794 }

795  

796 /**

797 ** end of VTK codes

798 **/

799  
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Appendix C: Scripts (BASH) 
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1 #!/bin/bash
2  
3 ################################################################################
4 # main script which starts the optimization iteration
5 # this script is called by dakota as part of evaluation 

process
6 # the "|| true" to ensure iteration will not stop for minor 

errors
7 ################################################################################
8  
9 set -e

10 set -o errexit
11  
12 echo "----------------------------------------"
13 echo "MAIN-dak ..."
14 echo "----------------------------------------"
15  
16 START_LINE_NUM=1;
17 N_LINES=1;
18 N_LINES_OBS=14;
19 N_LINES_RODS=1;
20 MODE=1;
21  
22 # addresses are absolute to ensure the correctness in alpha 

phase
23 # they should be changed to relative for robustness
24  
25 HOME_DIR="/media/milad/ssd0/master_folder/Optimization"
26 FLUID_DIR="$HOME_DIR/Fluid"
27 PARTICLE_DIR="$HOME_DIR/Particle"
28  
29 # method from dakota for text parsing
30 #creating init for main geom
31 dprepro $1 INITIATE.template INITIATE 
32  
33 # creating init for obstacle 0
34 dprepro $1 INITIATE_OBS.template INITIATE_OBS 
35  
36 #creating init for rods
37 dprepro $1 INITIATE_RODS.template INITIATE_RODS 
38  
39 cp $HOME_DIR/INITIATE $HOME_DIR/pts.lis
40 cp pts.lis pts.lis.$2
41  
42 cp $HOME_DIR/INITIATE_OBS $HOME_DIR/pts_obs.lis
43 cp pts_obs.lis pts_obs.lis.$2
44  
45 cp $HOME_DIR/INITIATE_RODS $HOME_DIR/pts_rods.lis
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46 cp pts_rods.lis pts_rods.lis.$2
47  
48 touch ${HOME_DIR}/norm.tmp
49 touch ${HOME_DIR}/results.out
50  
51 $FLUID_DIR/CREATE_NEW_FLOW_CASE.sh
52  
53 # loop over variables
54 for L in `seq 1 $N_LINES`
55 do
56 LINE=`(cat pts.lis | head -$L | tail -1)`
57 P_FLAG=`echo $LINE |cut -d " " -f1`
58 NEW_X=`echo $LINE |cut -d " " -f2`
59 NEW_Y=`echo $LINE |cut -d " " -f3`
60 NEW_Z=`echo $LINE |cut -d " " -f4`
61 $FLUID_DIR/CHANGE_A_POINT.sh $P_FLAG $NEW_X 

blockMeshDict_I 
62 done
63  
64 #rm obs_points.txt || true
65 for L in `seq 1 $N_LINES_OBS`
66 do
67 LINE=`(cat pts_obs.lis | head -$L | tail -1)`
68 P_FLAG=`echo $LINE |cut -d " " -f1`
69 NEW_X=`echo $LINE |cut -d " " -f2`
70 $FLUID_DIR/CHANGE_A_POINT.sh $P_FLAG $NEW_X 

blockMeshDict_OBS 
71         #echo "$NEW_X" >> obs_points.txt
72 done
73  
74 rm clipPlane.txt || true
75  
76 $HOME_DIR/obs_manager "gen_clip_plane"
77  
78 for L in `seq 1 $N_LINES_RODS`
79 do
80 LINE=`(cat pts_rods.lis | head -$L | tail -1)`
81 FLAG=`echo $LINE |cut -d " " -f1`
82 NEW=`echo $LINE |cut -d " " -f2`
83 $FLUID_DIR/TMP_CASE/constant/triSurface
84 > /CHANGE_STH.sh $FLAG $NEW makeRods.sh 
85 done
86  
87 cp clipPlane.txt $HOME_DIR/CASE/constant/triSurface/
88  
89 # | tee $HOME_DIR/flog_$PTS_LIS_I
90 $FLUID_DIR/PERFORM_FLOW_CASE.sh $MODE 
91  
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92 #save a copy of flow case
93 cp -r CASE CASE_$2 || true
94  
95 # this removes residuals from previous step if any
96 rm -rf plog* PCASE* || true 
97  
98 $PARTICLE_DIR/PARTICLE_MAIN.sh
99  

100 mv CASE_$2 "/media/milad/Seagate Backup Plus Drive/
OPT_CASES" || true

101  
102 echo "Adding norm ... "
103  
104 # postproc
105 $HOME_DIR/opt_manager "append_norm" $2
106  
107 # preparing result of this iteration for postprocessing code
108  
109 mv vesti.txt vesti.$2 || true
110 mv valve.txt valve.$2 || true
111 mv olf.txt olf.$2 || true
112 mv turbinates.txt turbinates.$2 || true
113 mv naso.txt naso.$2 || true
114 mv outlet.txt outlet.$2 || true
115  
116 mv vestiEr.txt vestiEr.$2 || true
117 mv valveEr.txt valveEr.$2 || true
118 mv olfEr.txt olfEr.$2 || true
119 mv turbinatesEr.txt turbinatesEr.$2 || true
120 mv nasoEr.txt nasoEr.$2 || true
121 mv outletEr.txt outletEr.$2 || true
122  
123 mv vestivel0.txt vestivel0.$2 || true
124 mv valvevel0.txt valvevel0.$2 || true
125 mv olfvel0.txt olfvel0.$2 || true
126 mv turbinatesvel0.txt turbinatesvel0.$2 || true
127 mv nasovel0.txt nasovel0.$2 || true
128 mv outletvel0.txt outletvel0.$2 || true
129  
130 mv vestivel2.txt vestivel2.$2 || true
131 mv valvevel2.txt valvevel2.$2 || true
132 mv olfvel2.txt olfvel2.$2 || true
133 mv turbinatesvel2.txt turbinatesvel2.$2 || true
134 mv nasovel2.txt nasovel2.$2 || true
135 mv outletvel2.txt outletvel2.$2 || true
136  
137 mv vestivel3.txt vestivel3.$2 || true
138 mv valvevel3.txt valvevel3.$2 || true
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139 mv olfvel3.txt olfvel3.$2 || true
140 mv turbinatesvel3.txt turbinatesvel3.$2 || true
141 mv nasovel3.txt nasovel3.$2 || true
142 mv outletvel3.txt outletvel3.$2 || true
143  
144  
145 rm -rf CASE
146  
147 rm norm.tmp
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1 #!/bin/bash
2  
3 ################################################################################
4 # perform stl manipulation and CFD cases
5 ################################################################################
6 # FILE: PERFORM_FLOW_CASE.sh
7 # Bash script for creating new case from template, go 

through vtk, run flow case
8 # blockmesh to extract surface
9  

10 set -e
11 set -o errexit
12  
13 END_T=80;
14 DIREC="/media/milad/ssd0/master_folder/Optimization/CASE"
15 P_HOME="/media/milad/ssd0/master_folder/Optimization"
16 TRI="/media/milad/ssd0/master_folder/Optimization/CASE/

constant/triSurface"
17  
18 MODE=$1
19  
20 if [ $MODE -lt 0 ]
21 then
22 cp $P_HOME/ready.stl $TRI/smooth.stl
23 fi
24  
25 if [ $MODE -gt 0 ]
26 then
27 mv $DIREC/0 $DIREC/0.org
28  
29 echo "creating obstacle "
30 cp $DIREC/system/blockMeshDict_OBS $DIREC/system/

blockMeshDict
31 blockMesh -case $DIREC
32 foamToVTK -case $DIREC
33 cp $DIREC/VTK/OBS/OBS_0.vtk $DIREC/constant/

triSurface/
34  
35 echo "Changing blockMesh dicttionary file for main 

branch .."
36 rm $DIREC/system/blockMeshDict
37 cp $DIREC/system/blockMeshDict_I $DIREC/system/

blockMeshDict
38 blockMesh -case $DIREC
39         echo "Running foamToVTK"
40         foamToVTK -case $DIREC
41  
42 # convert vtk files to stl files
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43 echo "Copying vtk files into triSurface"
44 cp $DIREC/VTK/VESTIBULE/VESTIBULE_0.vtk $DIREC/

constant/triSurface/
45 cp $DIREC/VTK/VALVE/VALVE_0.vtk $DIREC/constant/

triSurface/
46 cp $DIREC/VTK/ANTERIOR/ANTERIOR_0.vtk $DIREC/

constant/triSurface/
47 cp $DIREC/VTK/POSTERIOR/POSTERIOR_0.vtk $DIREC/

constant/triSurface/
48 cp $DIREC/VTK/OLF/OLF_0.vtk $DIREC/constant/

triSurface/
49 cp $DIREC/VTK/NASO/NASO_0.vtk $DIREC/constant/

triSurface/
50 cp $DIREC/VTK/INLET/INLET_0.vtk $DIREC/constant/

triSurface/
51 cp $DIREC/VTK/OUTLET/OUTLET_0.vtk $DIREC/constant/

triSurface/
52
53 echo "appending, smoothing and clipping .."
54 cd $TRI
55  
56 ITER=10000;
57  
58 ./makeSTLs.sh .   ## makes stl files from vtk files 

generated by blockMesh
59  
60 ./append_IO INLET.stl VESTIBULE.stl t1.stl
61 ./append_IO t1.stl VALVE.stl t2.stl
62 ./append_IO t2.stl ANTERIOR.stl t3.stl
63 ./append_IO t3.stl OLF.stl t4.stl 
64 ./append_IO t4.stl POSTERIOR.stl t5.stl
65 ./append_IO t5.stl NASO.stl t6.stl
66 ./append_IO t6.stl OUTLET.stl all.stl
67  
68 cp all.stl all-bkp.stl 
69  
70 ./smoothAll all.stl all.stl 2000 0.01
71  
72 ./smoothAll OBS.stl OBS.stl 2000 0.01
73 cp OBS.stl OBS-bkp.stl
74  
75 cp all.stl smooth-ini.stl
76  
77 ./punchClose.sh all.stl OBS.stl
78  
79 ./makeRods.sh
80  
81  cp RODS.stl RODS-bkp.stl
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82  
83  ./CapClip RODS.stl "clipPlane.txt" # clip rods to 

stay within the obs
84  
85 ./fillHoles RODS.stl RODS.stl
86  
87 # rm clipPlane.txt
88  
89 mv all.stl smooth.stl
90 fi
91  
92 cd $TRI
93 ./clips #this defines the patch stls finally
94 ./append_IO POSTERIOR.stl ANTERIOR.stl TURBINATES.stl
95  
96 #./scaleSTL VESTIBULE.stl 0.9 VESTIBULE.stl
97 #./scaleSTL VALVE.stl 0.9 VALVE.stl
98 #./scaleSTL OLF.stl 0.9 OLF.stl
99 #./scaleSTL TURBINATES.stl 0.9 TURBINATES.stl

100 #./scaleSTL NASO.stl 0.9 NASO.stl
101 #./scaleSTL OUTLET.stl 0.9 OUTLET.stl
102 #./scaleSTL INLET.stl 0.9 INLET.stl
103 #./scaleSTL OBS.stl 0.9 OBS.stl
104 #./scaleSTL RODS.stl 0.9 RODS.stl
105  
106 cd $P_HOME
107  
108 echo "Removing vtk files from triSurface"
109 #rm $TRI/*vtk
110  
111 echo "Changing blockMesh dicttionary file for 

snappyHexMesh.."
112 mv $DIREC/system/blockMeshDict $DIREC/system/

blockMeshDict_surf
113 mv $DIREC/system/blockMeshDict_snappy $DIREC/system/

blockMeshDict
114  
115 # this blockmesh is for snappyhexmesh boundaries
116 echo "Removing VTK directory"
117 rm -rf $DIREC/VTK
118  
119 #echo "Renaming 0 to 0.org"
120 #mv $DIREC/0 $DIREC/0.org
121  
122 echo "Running blockMesh"
123 blockMesh -case $DIREC 
124  
125 echo "Running surfaceFeatureExtract"
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126 surfaceFeatureExtract -case $DIREC
127  

128 echo "decomposing case for meshing"
129 decomposePar -case $DIREC
130  

131 echo "Running snappyHexMesh"
132 foamJob -case $DIREC -p -s snappyHexMesh 
133 reconstructParMesh -case $DIREC
134 rm -rf $DIREC/proc*
135  
136 echo "Removing previous polyMesh data "
137 rm -rf $DIREC/constant/polyMesh/*
138  
139 echo "Copying snappyHexMesh data to polyMesh directory"
140 cp $DIREC/2/polyMesh/* $DIREC/constant/polyMesh/
141  
142 echo "Removing 1 and 2 directories"
143 rm -rf $DIREC/1 $DIREC/2
144  
145 echo "Renaming 0.org to 0 "
146 mv $DIREC/0.org $DIREC/0
147
148 echo "Running flow case: simpleFoam .."
149 decomposePar -case $DIREC
150 foamJob -case $DIREC -p -s simpleFoam
151  

152 # foamMonitor -l postProcessing/residuals/0/residuals.dat
153  
154 reconstructPar -case $DIREC -latestTime
155  

156 rm -rf $DIREC/proc*
157 rm -rf $DIREC/0 $DIREC/$END_T/uniform
158 mv $DIREC/$END_T $DIREC/0
159  
160 echo "foamToVTK"
161 foamToVTK -case $DIREC -latestTime
162  

163 mv $DIREC/system/controlDict $DIREC/system/controlDict_fluid
164 mv $DIREC/system/controlDict_particles $DIREC/system/

controlDict
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1 #!/bin/bash
2  
3 ################################################################################
4 # main script for handeling particle tracking in parallel
5 ################################################################################
6  
7 # File: PARTICLE_MAIN.sh
8 # $1 flow case number which this particle tracking is 

performed on 
9 # this script utilize the idle threads

10  
11 set -e
12 set -o errexit
13  
14 unset NPROC N_RUN_PER_PROC START_
15 unset LINE_NUM MAXRUN HOME_DIR PARTICLE_
16 unset DIR LINE LINE_NUM 
17 unset SIZE VEL POSITION_LABEL 
18 unset POSITIONX POSITIONY POSITIONZ DIREC
19 unset U G Y pid waitForIdleProc foundIdle
20  
21 echo "Performing particle tracking cases .."
22  
23 N_RUN_PER_PROC=1;
24 START_LINE_NUM=10; # line start of the parameters
25 NPROC=15; # number of processors to be involved
26 N1=$NPROC;
27 NN1=$(($N1));
28 MAXRUNS=4000; # maximum number of cases
29  
30 HOME_DIR="/media/milad/ssd0/master_folder/Optimization"
31 PARTICLE_DIR="$HOME_DIR/Particle"
32  
33 #initializing process ids
34 for G in `seq 1 $NPROC`
35 do
36 pid[$G]=0;
37 done
38  
39 function waitForIdleProc {
40 echo "searching ..."        
41 foundIdle=0;
42 while [ $foundIdle -eq 0 ]
43 do
44 for Y in `seq 1 ${NN1}`
45 do
46 if [ ${pid[$Y]} -eq 0 ] || ! ps -p 

${pid[$Y]} 
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47 > /dev/null; then
48 foundIdle=1;
49

icoUncoupledKinematicParcelFoam -case $1 
50 > $2/plog_$3 2>&1 &
51 pid[$Y]=$!
52 echo "found idle!" && 

hostname 
53 && echo "job pi $Y bg $! id $

$"
54 break

55 fi

56 done

57  
58 [ $foundIdle == 1 ] && break
59 echo "waiting ..." && sleep 60;
60 done

61 }

62  

63 for U in `seq 1 $MAXRUNS`
64 do

65 # get rid of large stuff which are hanging around 
for too long (15 min)

66 find $HOME_DIR -type d -name "*PCASE*" 
67 > -mmin +15 -exec rm -rf {} +
68  
69 LINE_NUM=$(( $U - 1 + $START_LINE_NUM))
70 LINE=`(cat $PARTICLE_DIR/particleParameters.lis 
71 | head -$LINE_NUM | tail -1)`

72  

73 SIZE=`echo $LINE |cut -d " " -f1`
74 VEL=`echo $LINE |cut -d " " -f2`
75 POSITION_LABEL=`echo $LINE |cut -d " " -f3`
76 POSITIONX=`echo $LINE |cut -d " " -f4`
77 POSITIONY=`echo $LINE |cut -d " " -f5`
78 POSITIONZ=`echo $LINE |cut -d " " -f6`
79 T="${POSITION_LABEL}_${SIZE}_${VEL}"
80 DIREC="/media/milad/ssd0/master_folder/Optimization/

PCASE_$T"
81 cp -r "$HOME_DIR/CASE" $DIREC
82  
83 $PARTICLE_DIR/PARTICLE_SIZE_SET.sh $SIZE $DIREC
84 $PARTICLE_DIR/PARTICLE_U0_SET.sh $VEL $DIREC
85 $PARTICLE_DIR/PARTICLE_POSITION_SET.sh $POSITIONX 

$POSITIONY $POSITIONZ $DIREC
86 echo "d $SIZE u0 $VEL posi $POSITION_LABEL"
87 echo "case $U of $MAXRUNS ready"
88 waitForIdleProc $DIREC $HOME_DIR $T $NPROC
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89 echo "- - - - - - - - - -"
90 done
91  
92 echo "waiting for all background jobs to finish ..." && wait
93 echo "finished!" && echo "- - - - - - - - -"
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1 #######################
2 # start of dakota input
3 #######################
4 # manually generated
5 # # sign shows is comment line
6 # # endofline character should be assigned as "\" 
7 environment \
8 tabular_graphics_data \
9 \

10 method \
11 #conmin_mfd \
12 optpp_q_newton \
13 max_iterations = 3000 \
14 convergence_tolerance = 1e-7 \
15 search_method value_based_line_search \
16 merit_function argaez_tapia \
17 model \
18 single \
19 \
20 variables, \
21 continuous_design = 15 \
22 \
23 initial_point \
24 \
25 # ( 0.0035 0.028 0.026 )  // 0 

--> 17
26 # ( 0.005 0.044 0.026 )  // 1 

--> 80
27 0.002 0.044 0.026 \
28 0.002 0.028 0.026 \
29 \
30 # ( -0.0025 0.028 0.046 )  // 4
31 # ( 0.000 0.044 0.046 )  // 5
32 -0.001 0.044 0.046 \
33 -0.004 0.028 0.048 \
34 -0.003 \
35 -0.001 \
36 1 \
37 \
38 upper_bounds \
39 \
40 # 0.009 0.034 0.032 \
41 # 0.012 0.047 0.032 \
42 0.005 0.046 0.032 \
43 0.006 0.034 0.032 \
44 \
45 # 0.01 0.034 0.055 \
46 # 0.01 0.044 0.055 \
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47 0.005 0.044 0.055 \
48 0.005 0.034 0.055 \
49 0.000 \
50 -0.001 \
51 5 \
52 lower_bounds \
53 \
54 #                              0.001 0.028 0.023 \
55 #                               0.004 0.040 0.023 \
56                                 -0.005 0.040 0.023 \
57                                 -0.004 0.028 0.023 \
58 \
59 #                               -0.004 0.028 0.040 \
60 #                               -0.004 0.038 0.040 \
61                                 -0.006  0.038 0.040 \
62                                 -0.006 0.028 0.040 \
63 -0.007 \
64 -0.007 \
65 0.5 \
66 \
67 descriptors \
68 \
69 # 'obi0' 'obj0' 'obk0' \
70 # 'obi1' 'obj1' 'obk1' \
71 'obi2' 'obj2' 'obk2' \
72 'obi3' 'obj3' 'obk3' \
73 \
74 # 'obi4' 'obj4' 'obk4' \
75 # 'obi5' 'obj5' 'obk5' \
76 'obi6' 'obj6' 'obk6' \
77 'obi7' 'obj7' 'obk7' \
78 'obspi0307'
79 'obspi0602'
80 'rscaleFactor'
81 \
82 #linear_inequality_constraint_matrix = \
83                 # x constraints for the valid wall geometry 

Vertices
84 # 1  0  0  0    0  0  0  0    -1  0  0  0    0  0  0  0     

0 0 0   0 0 0   0 0 0  0 0 0     0 0 0   0 0 0   0 0 0  0 0 
0   0\

85 # 0  0  0  0    1  0  0  0    0  0  0  0    -1  0  0  0     
0 0 0   0 0 0   0 0 0  0 0 0     0 0 0   0 0 0   0 0 0  0 0 
0   0\

86 # 0  1  0  0    0  0  0  0    0  -1  0  0    0  0  0  0     
0 0 0   0 0 0   0 0 0  0 0 0     0 0 0   0 0 0   0 0 0  0 0 
0   0\

87 # 0  0  0  0    0  1  0  0    0  0  0  0    0  -1  0  0     
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0 0 0   0 0 0   0 0 0  0 0 0     0 0 0   0 0 0   0 0 0  0 0 
0   0\

88 \
89     # x constraints for wall 

geometry Splines     
90                             # constraints for obs wihtin its 

geometry
91                             # x
92                             #1 0 0   0 0 0   0 0 0  -1 0 

0     0 0 0   0 0 0   0 0 0  0 0 0   0\
93                             #0 0 0   1 0 0   -1 0 0  0 0 

0     0 0 0   0 0 0   0 0 0  0 0 0   0\
94                             #0 0 0   0 0 0   0 0 0  0 0 

0     1 0 0   0 0 0   0 0 0  -1 0 0   0\
95                             #0 0 0   0 0 0   0 0 0  0 0 

0     0 0 0   1 0 0   -1 0 0  0 0 0   0\
96                             # y
97                             #0 -1 0   0 1 0   0 0 0  0 0 

0     0 0 0   0 0 0   0 0 0  0 0 0   0\
98                             #0 0 0   0 0 0   0 1 0  0 -1 

0     0 0 0   0 0 0   0 0 0  0 0 0   0\
99                             #0 0 0 0 0 0 0 0 0 0 0

0     0 -1 0   0 1 0   0 0 0  0 0 0   0\
100                             #0 0 0   0 0 0   0 0 0  0 0 

0     0 0 0   0 0 0   0 1 0  0 -1 0   0\
101                             # z
102                             #0 0 -1   0 0 0   0 0 0  0 0 

0     0 0 1   0 0 0   0 0 0  0 0 0   0\
103                             #0 0 0   0 0 -1   0 0 0  0 0 

0     0 0 0   0 0 1   0 0 0  0 0 0   0\
104                             #0 0 0   0 0 0   0 0 -1  0 0 

0     0 0 0   0 0 0   0 0 1  0 0 0   0\
105                             #0 0 0   0 0 0   0 0 0  0 0 

-1     0 0 0   0 0 0   0 0 0  0 0 1   0\
106 \
107 \
108 #linear_inequality_upper_bounds =    0.03 

0.03 0.03 0.03   0.03 0.03 0.03 0.03   0.03 0.03 0.03 0.03 \
109 #linear_inequality_lower_bounds =    0.001 

0.001 0.001 0.001   0.001 0.001 0.001 0.001   0.001 0.001 
0.001 0.001 \

110 \
111 interface, \
112 fork \
113 analysis_drivers = 'MAIN-dak.sh' \
114 parameters_file  = 'params.in' \
115   results_file     = 'results.out' \
116   file_tag \
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117   file_save \
118 \
119 responses \
120 objective_functions = 1 \
121 descriptors = 'norm' \
122 numerical_gradients \
123 method_source dakota \
124     interval_type forward \
125     fd_gradient_step_size = 5e-2 # was 1e-4 \
126 # no_gradient
127   no_hessians
128 #
129 #######################
130 # end of dakota input
131 #######################
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Appendix D: Postprocessing (BASH, Python) 
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1 #!/bin/bash
2  
3 ################################################################################
4 # automated plot generator
5 # milad kiaee darunkola kiaeedar@ualberta.ca
6 ################################################################################
7  
8 rm *png 
9 rm Snap*

10  
11 cp ../ref_vesti.txt refvesti.dlt
12 cp ../ref_valve.txt refvalve.dlt
13 cp ../ref_olf.txt refolf.dlt
14 cp ../ref_turbinates.txt refturbinates.dlt
15 cp ../ref_naso.txt refnaso.dlt
16 cp ../ref_outlet.txt refoutlet.dlt
17  
18 ./runPlot.sh refvesti.dlt matplot.plt
19 mv tmp.png refvesti.png
20 convert refvesti.png -resize 200x200 refvesti.png
21  
22 ./runPlot.sh refvalve.dlt matplot.plt
23 mv tmp.png refvalve.png
24 convert refvalve.png -resize 200x200 refvalve.png
25  
26 ./runPlot.sh refolf.dlt matplot.plt
27 mv tmp.png refolf.png
28 convert refolf.png -resize 200x200 refolf.png
29  
30 ./runPlot.sh refturbinates.dlt matplot.plt
31 mv tmp.png refturbinates.png
32 convert refturbinates.png -resize 200x200 refturbinates.png
33  
34 ./runPlot.sh refnaso.dlt matplot.plt
35 mv tmp.png refnaso.png
36 convert refnaso.png -resize 200x200 refnaso.png
37  
38 ./runPlot.sh refoutlet.dlt matplot.plt
39 mv tmp.png refoutlet.png
40 convert refoutlet.png -resize 200x200 refoutlet.png
41  
42 for i in `seq 1 $1`
43 do
44 python snap.py $i
45
46 convert -size 1000x1800 'Snap_'$i'.png'
47  
48 # convert -size 1000x1800 white 'Snap_'$i'.png'
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49  
50 line=`(cat ../results.out.$i | head -1 | tail -1)`
51 norm=`echo $line |cut -d " " -f1`
52 tmp=$norm
53 norm=$(bc <<< "scale=2;$tmp*100")
54  
55 TEXT1="iteration $i , deviation = $norm %"
56  
57 convert -font helvetica -fill white -pointsize 20 
58 > -draw "text 10,30 '$TEXT1'/6.0"  
59 > 'Snap_'$i.png 'Snap_'$i.png
60  
61 ./runPlot.sh ../vesti.results.out.$i matplot.plt
62 mv tmp.png vesti$i.png
63 convert vesti$i.png -resize 800x800 vesti$i.png
64  
65 ./runPlot.sh ../valve.results.out.$i matplot.plt
66         mv tmp.png valve$i.png
67 convert valve$i.png -resize 800x800 valve$i.png
68  
69 ./runPlot.sh ../olf.results.out.$i matplot.plt
70 mv tmp.png olf$i.png
71 convert olf$i.png -resize 800x800 olf$i.png
72  
73 ./runPlot.sh ../turbinates.results.out.$i matplot.plt
74         mv tmp.png turbinates$i.png
75 convert turbinates$i.png -resize 800x800 turbinates

$i.png
76  
77 ./runPlot.sh ../naso.results.out.$i matplot.plt
78         mv tmp.png naso$i.png
79 convert naso$i.png -resize 800x800 naso$i.png
80  
81 ./runPlot.sh ../outlet.results.out.$i matplot.plt
82         mv tmp.png outlet$i.png
83 convert outlet$i.png -resize 800x800 outlet$i.png
84  
85 ### Eror plot ###
86 #./runPlot.sh ../vestiEr.results.out.$i errorplot.plt
87 #mv tmp.png vestiEr$i.png
88 #convert vestiEr$i.png -resize 300x300 vestiEr$i.png
89  
90 #./runPlot.sh ../valveEr.results.out.$i errorplot.plt
91         #mv tmp.png valveEr$i.png
92 #convert valveEr$i.png -resize 300x300 valveEr$i.png
93  
94 #./runPlot.sh ../olfEr.results.out.$i errorplot.plt
95         #mv tmp.png olfEr$i.png
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96 #convert olfEr$i.png -resize 300x300 olfEr$i.png
97  
98 #./runPlot.sh ../turbinatesEr.results.out.$i 

errorplot.plt
99         #mv tmp.png turbinatesEr$i.png

100 #convert turbinatesEr$i.png -resize 300x300 
turbinatesEr$i.png

101  
102 #./runPlot.sh ../nasoEr.results.out.$i errorplot.plt
103         #mv tmp.png nasoEr$i.png
104 #convert nasoEr$i.png -resize 300x300 nasoEr$i.png
105  
106 #./runPlot.sh ../outletEr.results.out.$i 

errorplot.plt
107         #mv tmp.png outletEr$i.png
108 #convert outletEr$i.png -resize 300x300 outletEr

$i.png
109  
110 ######
111 ### scatter plot ###
112 ./runPlot.sh ../vestivel0.results.out.$i 

scatterplot.plt
113 mv tmp.png vestivel0$i.png
114 convert vestivel0$i.png -resize 800x800 vestivel0

$i.png
115  
116 ./runPlot.sh ../valvevel0.results.out.$i 

scatterplot.plt
117         mv tmp.png valvevel0$i.png
118 convert valvevel0$i.png -resize 800x800 valvevel0

$i.png
119  
120 ./runPlot.sh ../olfvel0.results.out.$i 

scatterplot.plt
121         mv tmp.png olfvel0$i.png
122 convert olfvel0$i.png -resize 800x800 olfvel0$i.png
123  
124 ./runPlot.sh ../turbinatesvel0.results.out.$i 

scatterplot.plt
125         mv tmp.png turbinatesvel0$i.png
126 convert turbinatesvel0$i.png -resize 800x800 

turbinatesvel0$i.png
127  
128 ./runPlot.sh ../nasovel0.results.out.$i 

scatterplot.plt
129         mv tmp.png nasovel0$i.png
130 convert nasovel0$i.png -resize 800x800 nasovel0$i.png
131  
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132 ./runPlot.sh ../outletvel0.results.out.$i 
scatterplot.plt

133         mv tmp.png outletvel0$i.png
134 convert outletvel0$i.png -resize 800x800 outletvel0

$i.png
135 ######
136 ./runPlot.sh ../vestivel2.results.out.$i 

scatterplot.plt
137 mv tmp.png vestivel2$i.png
138 convert vestivel2$i.png -resize 800x800 vestivel2

$i.png
139  
140 ./runPlot.sh ../valvevel2.results.out.$i 

scatterplot.plt
141         mv tmp.png valvevel2$i.png
142 convert valvevel2$i.png -resize 800x800 valvevel2

$i.png
143  
144 ./runPlot.sh ../olfvel2.results.out.$i 

scatterplot.plt
145         mv tmp.png olfvel2$i.png
146 convert olfvel2$i.png -resize 800x800 olfvel2$i.png
147  
148 ./runPlot.sh ../turbinatesvel2.results.out.$i 

scatterplot.plt
149         mv tmp.png turbinatesvel2$i.png
150 convert turbinatesvel2$i.png -resize 800x800 

turbinatesvel2$i.png
151  
152 ./runPlot.sh ../nasovel2.results.out.$i 

scatterplot.plt
153         mv tmp.png nasovel2$i.png
154 convert nasovel2$i.png -resize 800x800 nasovel2$i.png
155  
156 ./runPlot.sh ../outletvel2.results.out.$i 

scatterplot.plt
157         mv tmp.png outletvel2$i.png
158 convert outletvel2$i.png -resize 800x800 outletvel2

$i.png
159 ######
160 ./runPlot.sh ../vestivel3.results.out.$i 

scatterplot.plt
161 mv tmp.png vestivel3$i.png
162 convert vestivel3$i.png -resize 800x800 vestivel3

$i.png
163  
164 ./runPlot.sh ../valvevel3.results.out.$i 

scatterplot.plt
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165         mv tmp.png valvevel3$i.png
166 convert valvevel3$i.png -resize 800x800 valvevel3

$i.png
167  
168 ./runPlot.sh ../olfvel3.results.out.$i 

scatterplot.plt
169         mv tmp.png olfvel3$i.png
170 convert olfvel3$i.png -resize 800x800 olfvel3$i.png
171  
172 ./runPlot.sh ../turbinatesvel3.results.out.$i 

scatterplot.plt
173         mv tmp.png turbinatesvel3$i.png
174 convert turbinatesvel3$i.png -resize 800x800 

turbinatesvel3$i.png
175  
176 ./runPlot.sh ../nasovel3.results.out.$i 

scatterplot.plt
177         mv tmp.png nasovel3$i.png
178 convert nasovel3$i.png -resize 800x800 nasovel3$i.png
179  
180 ./runPlot.sh ../outletvel3.results.out.$i 

scatterplot.plt
181         mv tmp.png outletvel3$i.png
182 convert outletvel3$i.png -resize 800x800 outletvel3

$i.png
183 ######
184  
185 convert Snap_$i.png vesti$i.png -geometry 
186 > 150x150+0+50 -composite Snap_$i.png
187 convert Snap_$i.png refvesti.png -geometry 
188 > 150x150+200+50 -composite Snap_$i.png
189 # convert Snap_$i.png vestiEr$i.png -geometry 250x250

+1100+0 -composite Snap_$i.png
190 convert Snap_$i.png vestivel0$i.png -geometry 
191 > 250x250+1100+0 -composite Snap_$i.png
192 convert Snap_$i.png vestivel2$i.png -geometry 
193 > 250x250+1400+0 -composite Snap_$i.png
194 convert Snap_$i.png vestivel3$i.png -geometry 
195 > 250x250+1700+0 -composite Snap_$i.png
196  
197 convert Snap_$i.png valve$i.png -geometry 
198 > 150x150+0+200 -composite Snap_$i.png
199 convert Snap_$i.png refvalve.png -geometry 
200 > 150x150+200+200 -composite Snap_$i.png
201 # convert Snap_$i.png valveEr$i.png -geometry 250x250

+1100+200 -composite Snap_$i.png
202 convert Snap_$i.png valvevel0$i.png -geometry 
203 > 250x250+1100+200 -composite Snap_$i.png
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204 convert Snap_$i.png valvevel2$i.png -geometry 
205 > 250x250+1400+200 -composite Snap_$i.png
206 convert Snap_$i.png valvevel3$i.png -geometry 
207 > 250x250+1700+200 -composite Snap_$i.png
208  
209 convert Snap_$i.png olf$i.png -geometry 
210 > 150x150+0+400 -composite Snap_$i.png
211 convert Snap_$i.png refolf.png -geometry 
212 > 150x150+200+400 -composite Snap_$i.png
213 # convert Snap_$i.png olfEr$i.png -geometry 250x250

+1100+400 -composite Snap_$i.png
214 convert Snap_$i.png olfvel0$i.png -geometry 
215 > 250x250+1100+400 -composite Snap_$i.png
216 convert Snap_$i.png olfvel2$i.png -geometry 
217 > 250x250+1400+400 -composite Snap_$i.png
218 convert Snap_$i.png olfvel3$i.png -geometry 
219 > 250x250+1700+400 -composite Snap_$i.png
220  
221 convert Snap_$i.png turbinates$i.png -geometry 
222 > 150x150+0+600 -composite Snap_$i.png
223 convert Snap_$i.png refturbinates.png -geometry 
224 > 150x150+200+600 -composite Snap_$i.png
225 # convert Snap_$i.png turbinatesEr$i.png -geometry 

250x250+1100+600 -composite Snap_$i.png
226 convert Snap_$i.png turbinatesvel0$i.png -geometry 
227 > 250x250+1100+600 -composite Snap_$i.png
228 convert Snap_$i.png turbinatesvel2$i.png -geometry 
229 > 250x250+1400+600 -composite Snap_$i.png
230 convert Snap_$i.png turbinatesvel3$i.png -geometry 
231 > 250x250+1700+600 -composite Snap_$i.png
232
233 convert Snap_$i.png naso$i.png -geometry 
234 > 150x150+0+800 -composite Snap_$i.png
235 convert Snap_$i.png refnaso.png -geometry 
236 > 150x150+200+800 -composite Snap_$i.png
237 # convert Snap_$i.png nasoEr$i.png -geometry 250x250

+1100+800 -composite Snap_$i.png
238 convert Snap_$i.png nasovel0$i.png -geometry 
239 > 250x250+1100+800 -composite Snap_$i.png
240 convert Snap_$i.png nasovel2$i.png -geometry 
241 > 250x250+1400+800 -composite Snap_$i.png
242 convert Snap_$i.png nasovel3$i.png -geometry 
243 > 250x250+1700+800 -composite Snap_$i.png
244  
245 convert Snap_$i.png outlet$i.png -geometry 
246 > 150x150+0+1000 -composite Snap_$i.png
247 convert Snap_$i.png refoutlet.png -geometry 
248 > 150x150+200+1000 -composite Snap_$i.png
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249 # convert Snap_$i.png outletEr$i.png -geometry 250x250
+1100+1000 -composite Snap_$i.png

250 convert Snap_$i.png outletvel0$i.png -geometry 
251 > 250x250+1100+1000 -composite Snap_$i.png
252 convert Snap_$i.png outletvel2$i.png -geometry 
253 > 250x250+1400+1000 -composite Snap_$i.png
254 convert Snap_$i.png outletvel3$i.png -geometry 
255 > 250x250+1700+1000 -composite Snap_$i.png
256  
257 mv Snap_$i.png Snapshot_$i.png
258 done
259  
260 rm *dlt
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1 #!/bin/bash 
2  
3 reset
4 set palette maxcolors 2
5 set palette defined (1 "green", 1.49 "green", 1.51 "red", 2 

"red")
6  
7 #unset grid
8 set key below horizontal noreverse enhanced autotitle box 

dashtype solid
9 set tics out nomirror

10 set border 3 front linetype black linewidth 4.0 dashtype 
solid

11  
12 set grid
13  
14 #set title 'var'
15  
16 set xlabel "d (micron)" 
17 set xlabel font "Helvetica,20"
18 set ylabel "depo" 
19 set ylabel font "Helvetica,20"
20  
21 set xrange [0:50]
22 set yrange [0:1]
23  
24 set tics font ", 18"
25 set xtics 0,10,40
26 set ytics 0,0.5,1
27  
28 set terminal png enhanced
29 set output 'tmp.png'
30  
31 set pointsize 3
32  
33 unset colorbox
34  
35 plot filename with points pointtype 22 ps 4 palette notitle
36  
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1 #!/usr/bin/python
2  
3 # vtk python script for screen shoting
4  
5 import glob, string, os, commands, sys
6 from paraview.simple import *
7  
8 index = sys.argv[1]
9  

10 LoadState("/media/milad/ssd0/master_folder/Optimization/
postproc/STATE.pvsm")

11  
12 pm = servermanager.ProxyManager()
13  
14 s = '/media/milad/Seagate Backup Plus Drive/OPT_CASES'
15  
16 readerWall = pm.GetProxy('sources', 'smooth.stl')
17 readerWall.FileNames = s + '/CASE_results.out.' + index + '/

constant/triSurface/smooth.stl'
18 readerWall.FileNameChanged()
19 readerWall.UpdatePipeline()
20
21 #readerObs = pm.GetProxy('sources', 'OBS.stl')
22 #readerObs.FileNames = s + '/CASE_results.out.' + index + '/

constant/triSurface/OBS.stl'
23 #readerObs.FileNameChanged()
24 #readerObs.UpdatePipeline()
25  
26 readerRods = pm.GetProxy('sources', 'RODS.stl')
27 readerRods.FileNames = s + '/CASE_results.out.' + index + '/

constant/triSurface/RODS.stl'
28 readerRods.FileNameChanged()
29 readerRods.UpdatePipeline()
30  
31 view = servermanager.GetRenderView()
32 #view.Render()
33 view.StillRender()
34  
35 #save screenshot
36 WriteImage("Snap_" + index + ".png")
37  
38 Delete(readerWall)
39 #Delete(readerObs)
40 Delete(readerRods)
41 Delete(view)
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Appendix E: Grid Convergence 
 

 

 

 

 

Figure E.1 shows CFD grid convergence study that was performed on subject 1. Due to the 

computational cost, a few cases were studied. Vertical axis shows the calculated pressure 

difference between the inlet and the outlet while the horizontal axis shows the number of cells in 

the grid. 


