

Simulation of Spray Deposition in Adults Nasal Airway

by

Milad Kiaee Darunkola

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering
University of Alberta

© Milad Kiaee Darunkola, 2018

 ii

Abstract

The goal of this thesis work was to develop an idealized adult nasal airway geometry capably of

mimicking average regional nasal deposition of droplets emitted from pharmaceutical nasal sprays.

The first part of this thesis examined regional deposition within the nose for nasal sprays over a

large and wide-ranging parameter space by using numerical simulation. A set of seven realistic

adult nasal airway geometries was defined based on Computed Tomography (CT) images.

Deposition in six regions of each nasal airway geometry (the vestibule, valve, anterior turbinate,

posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter,

spray cone angle, spray release direction, particle injection speed, and particle injection location.

Penetration of nasal spray particles through the airway geometries represented unintended lung

exposure. Penetration was found to be relatively insensitive to injection velocity, but highly

sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 microns

in diameter for several airway geometries studied. Deposition in the turbinates, viewed as

desirable for both local and systemic nasal drug delivery, was on average maximized for particles

in the range ~20-30 microns in diameter, and for low to zero injection velocity. Similar values of

particle diameter and injection velocity were found to maximize deposition in the olfactory region,

a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly

variable between airway geometries, with maximum olfactory deposition ranging over two orders

of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing

between subjects is to be achieved for nose-to-brain drug delivery.

 These simulation results were then used to establish target values of regional deposition for the

idealized geometry. Characteristic geometric features observed to be common to all the realistic

 iii

nasal airway geometries studied were extracted and included in the idealized geometry. Additional

geometric features and size scaling were explored at various stages of the project, in order to

enhance deposition in specific regions based on the results of simulations done in earlier versions

of the geometry. In total, more than hundred thousand of simulation cases were conducted across

a range of particle parameters and geometric shapes in order to reach the final idealized geometry

presented herein. The proposed idealized geometry has potential use in the development and

testing of nasal drug delivery systems, allowing researchers to estimate in vivo regional nasal

deposition patterns using a simple benchtop test apparatus.

 iv

Preface

This thesis consists of two main parts (chapter 2&3) and is accomplished by me, Milad Kiaee

Darunkola. The style of the thesis is in manuscript format.

The second chapter has been published as a journal paper in which I am the primary author in a

peer reviewed publication. It is published as Milad Kiaee, Herbert Wachtel, Michelle L Noga,

Andrew R Martin, Warren H Finlay, 2018. “Regional deposition of nasal sprays in adults: A wide

ranging computational study,” International Journal for Numerical Methods in Biomedical

Engineering, volume 34 issue 5. I was responsible for modeling, simulation and visualization. I

also prepared the related materials to be written. Dr. Michelle Noga provided the realistic CT scan

geometries. Anonymized CT scans were acquired retrospectively from patients scanned for

clinical purposed at the University of Alberta Hospital, with Health Research Ethics Board

approval. The CT Scan reconstruction was accomplished by John Chen and readied for 3D printing

by Eric Bracke. Drs. Warren Finlay and Andrew Martin assisted with writing the manuscript.

Moreover, some of the text from Chapter 1 is taken from this published paper.

The third part of thesis is going to be submitted for publication in Journal of Biomechanics. I was

responsible for modelling, simulation and visualization. Luba Slabyj, Drs. Warren H Finlay and

Andrew R Martin assisted me with writing the manuscript.

 v

Dedicated to my beloved Hye Rin

 vi

Acknowledgment

This thesis would have not been possible if it was not due to the continuous support of my PhD

supervisors.

Dr. Professor Warren H. Finlay with his wisdom and insight was very helpful. His extraordinary

background provided crucial guidance while his modest attitude provided the space for me to be

creative. Furthermore, he was perfectly supportive of my research facility demands. Dr. Finlay’s

vast knowledge in the field of respiratory drug delivery and his solid reasoning skills were the

main support of this thesis. Working under Dr. Finlay will always remain as an honor in my

resume. Dr. Andrew R. Martin was my second supervisor. His brilliant suggestions initiated many

building blocks of the thesis. His professional attitude, precession and kindness motivated me

during the hardest challenges of my PhD studies. The high technical and ethical level I witnessed

in Dr. Martin, both as superior and instructor, is a milestone for my future career. I am grateful to

Dr. Alexandra Kormakova to accept to be part of my supervisory committee. Her questions and

suggestions during my candidacy exam were very helpful.

I would also like to thank the aerosol lab technician: Helena Orszanska and my lab mates: Scott

Tavernini, Conor Rusycki, Alvin Ly, John Chen and Tyler Paxman. They were all capable, friendly

and cooperative.

Last but not least, I would like to thank the University of Alberta and the Department of

Mechanical Engineering for providing the opportunity of PhD studies since January 2015. The

peaceful environment, friendly staff and useful facilities made my studies more pleasant.

 vii

Table of Contents

Abstract ... ii

Preface .. iv

Acknowledgment ... vi

Table of Contents .. vii

List of Tables .. x

List of Figures .. xi

Chapter 1: Introduction ... 1

Chapter 2: Regional Deposition of Nasal Spray in Adults: A Wide Ranging Computational

Study 1

2.1 Introduction ... 1

2.2 Materials and Methods .. 1

2.2.1 Airway Geometries ... 1

2.2.2 Computational Fluid Dynamics of Airflow .. 4

2.2.3 Measurements of Pressure Drop ... 6

2.2.4 Lagrangian Particle Tracking .. 6

2.3 Results ... 11

2.3.1 Validation .. 11

2.3.2 Regional Deposition .. 13

 viii

2.4 Discussion .. 21

2.5 Conclusions ... 24

Chapter 3: An Idealized Geometry that Mimics Average Spray Deposition in Adult Nasal

Airway 25

3.1 Introduction ... 25

3.2 Methods ... 27

3.2.1 Idealization of Airway Geometries ... 27

3.2.2 Computational Fluid Dynamics of Airflow .. 42

3.2.3 Lagrangian Particle Tracking .. 47

3.2.4 Evaluation of the Quality of an Idealized Geometry .. 53

3.3 Results and Discussion .. 54

3.3.1 Monolithic Surface .. 54

3.3.2 Rods .. 57

3.3.3 Virtual Impactor .. 59

3.3.4 Further Discussion .. 63

3.3.5 Optimization Framework .. 64

3.4 Conclusions ... 66

Chapter 4: Conclusions ... 67

4.1 Summary .. 67

4.2 Future Work ... 68

 ix

Bibliography ... 70

Appendix A: Preprocessing (C++) ... 76

Appendix B: Visualization Toolkit (VTK) ... 104

Appendix C: Scripts (BASH).. 124

Appendix D: Postprocessing (BASH, Python) ... 140

Appendix E: Grid Convergence .. 150

 x

List of Tables

Table 2.1 Relevant information for the 7 subjects. See Figure 2.3 for approximate locations of the

different listed airway regions (Vestibule, Valve, Anterior Turbinates, Posterior Turbinates,

Olfactory and Nasopharynx). .. 2

Table 2.2 Parameter values for particle tracking simulations performed in all seven subjects. 9

Table 2.3 Global maximum values of olfactory deposition values occurring in each subject for

either right or left nostril injection when the injection location and parameter values in Table 2.2

are chosen to maximize olfactory deposition. ... 19

Furthermore, the section area and overall volume were kept close to the realistic geometry and can

be seen in Table 3.1. ... 41

Table 3.1 Relevant information for the 7 subjects and idealized geometry. See Figure 2.3 for

approximate locations of the different listed airway regions (Vestibule, Valve, Anterior Turbinates,

Posterior Turbinates, Olfactory and Nasopharynx). ... 41

Table 3.2 Boundary conditions in the CFD calculations. Each italic term is a B.C. class in

OpenFOAM. The pressureInletOutletVelocity condition is typically paired with the totalPressure.

This is known to improve the stability of simulation by allowing the minor backflows at the outlet.

... 47

Table 3.3 Particle parameters. These are used in idealized geometry particle tracking simulations.

For the validation case the number of particle tracking cases is 4000. ... 51

 xi

List of Figures

Figure 2.1 Perspective views of the model airways used in this study. Subjects 5, 9 and 10 are

excluded due to geometric defects observed during meshing. -- 4

Figure 2.2 The yellow points indicate the center of the spray injection release disk in one nostril

of one subject. The shaded purple region shows the approximate defined volume within which

these injection locations were randomly placed. For each subject, 200 such injection locations were

simulated in each nostril (i.e. 400 points total between the right and left nostrils). ------------------ 8

Figure 2.3 The six anatomical regions of the nose as defined in one of the subjects. ------------- 10

Figure 2.4 Total deposition versus impaction parameter from our CFD particle tracking

simulations (solid black symbols) in our seven subjects with 15 L/min through a single nostril is

shown along with data from previous in vivo studies in different subjects. ------------------------- 12

Figure 2.5 Deposition in the vestibule and valve regions (combined) of each subject is shown with

injection in an upward direction via the left and right nostrils shown separately. The y-axis is

particle diameter in micrometers. The x-axis is particle injection velocity in m/s. The data is

averaged over 200 injection locations (see Table 2.2 and Figure 2.3) and two cone angles (see

Table 2.2). -- 15

Figure 2.6 Deposition in the turbinates (both anterior and posterior) of each subject is shown with

injection in an upward direction via the left and right nostrils shown separately. The y-axis is

particle diameter in micrometers. The x-axis is particle injection velocity in m/s. The data is

 xii

averaged over 200 injection locations (see Table 2.2 and Figure 2.3) and two cone angles (see

Table 2.2). -- 16

Figure 2.7 Percentage of the particles entering the lungs (i.e. exiting the simulation outlet distal to

the larynx) of each subject is shown with injection in an upward direction via the left and right

nostrils shown separately. The y-axis is particle diameter in micrometers. The x-axis is particle

injection velocity in m/s. The data is averaged over 200 injection locations (see Table 2 and Figure

2.3) and two cone angles (see Table 2). -- 17

Figure 2.8. Deposition in the olfactory region of each subject is shown with injection in an upward

direction via the left and right nostrils shown separately. The y-axis is particle diameter in

micrometers. The x-axis is particle injection velocity in m/s. The data is averaged over 200

injection locations (see Table 2.2 and Figure 2.3) and two cone angles (see Table 2.2). --------- 18

Figure 2.9 Perspective views of the entrance region (both left and right nostrils are shown) of

subjects 4 and 7. The dots show the 200 injection locations in each nostril colored, as denoted in

the color bars, by the amount of olfactory deposition occurring when the injection disk is centered

at that location (averaged over all other parameter values in Table 2.2). To the left of the color bars

the view is side view, while to the right the view is from below the nares. The shaded region

indicates the region closer to upper section of the nostril wall. It is observed that the shaded region

contains release positions that lead to higher olfactory depositions. --------------------------------- 20

Figure 3.1 Side view of the ten geometries used in this study. CFD results of seven of these

geometries (subjects 1, 2, 3, 4, 6, 7 and 8) using both nostrils (one at a time) are given in chapter

1. --- 28

 xiii

Figure 3.2 Portions of the turbinate region in subjects 1, 2 and 4 are shown (left to right) around

the same cut plane. A significant common feature in all geometries is the Y-shaped concha. As is

pointed out by the arrow for these examples the position of this Y-shape varies in different subjects.

 --- 30

Figure 3.3 Blue curves show cross sections of subject 4 as an example. The red wireframe shows

an idealized sketch drawn in OpenFOAM’s BlockMesh. The idealized curve considers all subjects’

common features. --- 31

Figure 3.4 The entrance regions for subject 1 and 4 are depicted. Entrance regions in all realistic

geometries show similar features. Two examples of these features are pointed out by arrows here.

Note the shrinkage and expansion the red arrows illustrate in the +z direction. The blue arrow

shows an important cross section between the valve and the turbinate regions. This cross section

has a vertically stretched S-curve shape. The cyan arrow shows how the cross section shrinks in

the vestibule-to-valve interface from the red to the yellow cross section and expands from the

yellow to the blue cross section in the +z direction. The maroon-coloured section on the left of

each entrance shows the inlet surface. Note the bean shape of the inlet surface. ------------------- 32

Figure 3.5 Development of black into red cross section is depicted in two simplified cases. Left

shows a simply-connected cross section distorting into another simply-connected curve. Right

shows a simply connected cross section followed by a non-simply-connected cross section as the

geometry develops in the +y direction. -- 35

Figure 3.6 Some cross sections in the realistic geometry of subject 4 are shown. Different cross

sections are shown in different colors. Note the sudden conversion of the blue cross section where

it becomes non-simply connected. The unconnected portion of the curve develops further in the

+y direction as the cross-section changes. --- 36

 xiv

Figure 3.7 Top part of the figure visualizes subject 4 using small amount of opacity. Cross sections

in different colors are from different xy planes. The obstacle structure is highlighted by the drawn

black ellipse. Bottom shows an implementation of the same idea in the form of an obstacle object

within the turbinate region in an idealized airway geometry. --- 37

Figure 3.8 A simple sketch of a virtual impactor is shown on the left part of the figure. Note that

small particles follow the major flow stream. On the other hand, a simple sketch of a conventional

impactor is shown on the right. Particles may hit the obstacle based on the value of their Stokes

number. Stokes number can be calculated by	Stk = tr	uf/lO in which tr = ρp	dp2	18µ-1	 is the

relaxation time, uf is the velocity of the fluid and lO is the characteristic length of the obstacle. 39

Figure 3.9 	xz-plane slices of the turbinate region of the idealized geometry are shown. Different

colors are assigned to different planes. The obstacle object (shown in blue on the left and green on

the right) is depicted in three dimensions. The front face of the obstacle acts as a conventional

impactor. Rods are shown in grey as they connect the obstacle +x face to the turbinates +x outer

wall. These act as barriers against the small particles which are carried by the major flow. ----- 40

Figure 3.10 The idealized geometry is created via OpenFOAM BlockMesh tool. The red block in

the middle is the obstacle and is created by using the same tool. Start and endpoints of splines are

shown by numbers. Splines are curved edges connecting the points. The visualization is performed

by using the ParaFOAM application. --- 43

Figure 3.11 Parts of the computational grid resulting from the SnappyHexMesh tool. The hollow

space created by the obstacle shows the absence of fluid in that region. The left panel shows a xy-

plane clip and the right panel a xz-plane clip. The rods are seen in the mesh. Note how the mesh is

refined in these regions. -- 46

 xv

Figure 3.12 Positions of particle injection at the entrance are shown. Circles show the location and

alignment of the tip of the injector. Centers of circles were randomly chosen and were offset a

minimum of 1mm from the walls. Particles were introduced randomly on the surface of each disk.

The injection half-cone inner and outer angles were set at 0° (+z direction) and 15°. The injection

direction for an individual particle is interpolated between the inner and outer half cone angle

based on the location at which it appears on the injection disk. -------------------------------------- 50

Figure 3.13 The complete iterative procedure used in the development of the idealized airway. 52

Figure 3.14 The Y-shaped cross sections of the idealized geometry are shown on the left. The

surface of the geometry is shown on the right. This specific geometry is called the monolithic

surface because (1) the geometry is made solely with sequences of blocks in BlockMesh and (2)

the cross sections remain homeomorphic with respect to each other. The cross sections in colors

show the simply-connected behavior of curves in the turbinate region of this geometry. -------- 55

Figure 3.15. Each row denotes a certain region (in order: Vestibule, Valve, Olfactory, Turbinates,

Nasopharynx, Outlet). The deposition fraction in the monolithic idealized geometry (plots in left

column) and averaged over the realistic geometries (plots in right column) from chapter 1 are

shown. The vertical axis in each plot denotes the particle diameter (5-40 micron) while the

horizontal axes are the particle initial velocities (0-20 m/s). Note that small particles are not well

captured at lower spray velocities by the turbinate region of the idealized geometry in this case.

The color scale is interpolated and shows the deposition fraction (0-1) out of total particles. --- 56

Figure 3.16 A penultimate version of the idealized geometry is shown. A grid of rods (shown in

the brighter color) is penetrates the turbinate region side. The rods protrude in the x-direction

across the full breadth of the turbinates airway. -- 57

 xvi

Figure 3.17. Each row denotes a certain region (in order: Vestibule, Valve, Olfactory, Turbinates,

Nasopharynx, Outlet). The deposition fraction in the idealized geometry with rods (plots in left

column) and averaged over realistic geometries (plots in right column) are shown. The vertical

axis in each plot denotes the particle diameter (5-40 micron) while the horizontal axes are the

particle initial velocities (0-20 m/s). Note that particle deposition is too great in the turbinates in

this case. The color scale is interpolated and shows the deposition fraction (0-1) out of total

particles. -- 58

Figure 3.18. Each row denotes a certain region (in order: Vestibule, Valve, Olfactory, Turbinates,

Nasopharynx, Outlet). The deposition fraction in the virtual impactor idealized geometry (plots in

left column) and averaged over realistic geometries (plots in right column) are shown. The vertical

axis in each plot denotes the particle diameter (5-40 micron) while the horizontal axes are the

particle initial velocities (0-20 m/s). The color scale is interpolated and shows the deposition

fraction (0-1) out of total particles. --- 60

Figure 3.19. Each triple plot in a row denotes a certain region (in order: Vestibule, Valve,

Olfactory, Turbinates, Nasopharynx, Outlet). Each column shows an initial particle velocity (from

left to right 0, 20 and 40 m/s). The green marker shows average regional deposition in different

individual realistic subjects (from chapter 1) while the red marker shows the regional deposition

in the final idealized geometry. The vertical axis is the fraction (0-1) of 10000 particles. -------- 61

Figure E.1 shows CFD grid convergence study that was performed on subject 1. Due to the

computational cost, a few cases were studied. Vertical axis shows the calculated pressure

difference between the inlet and the outlet while the horizontal axis shows the number of cells in

the grid. --- 150

 1

Chapter 1: Introduction

Nasal drug delivery is widespread in the treatment of allergic rhinitis (Keith et al. 2012; Bousquet

et al. 2008). Local delivery of corticosteroids to the nasal airways by means of nasal spray pumps

is a mainstay for treatment of allergic rhinitis symptoms. In addition, several classes of marketed

products have been developed for systemic drug delivery through the nose. Rapid and direct

absorption of drug through the nasal epithelium to the systemic circulation enables fast onset of

action; fittingly, marketed products in this category include those intended to treat migraine

headaches (Tepper 2013) and break-through cancer pain (Taylor et al. 2014). Finally, intranasal

drug delivery has received considerable recent attention as a route of administration through which

to target the brain (Pardeshi and Belgamwar 2013; Bahadur and Pathak 2012), and thus treat central

nervous system diseases such as Alzheimer’s and Parkinson’s.

For all these applications, a critical consideration is the deposition pattern of nasal spray droplets

or aerosols within the nasal airways. Droplets collected in the anterior nasal passages may pool

and drip from the nostrils (Chet L. Leach et al. 2015), whereas droplets passing through the nasal

cavity to the nasopharynx and larynx miss their site of action or absorption and cause an unpleasant

taste upon deposition (Chet L. Leach et al. 2015; Djupesland and Skretting 2012) or may penetrate

further to the lungs where toxicological implications must be considered (Djupesland et al. 2004;

Suman et al. 1999). In the case of nose-to-brain delivery, the distribution of deposited spray

droplets over the nasal epithelium is particularly critical. While the olfactory region of the nasal

mucous membrane offers a potential pathway to the brain (Lehrer 2014), it represents only a small

fraction (~5-10%) of the total human nasal mucosal surface. Drug delivered to the remaining ~90-

 2

95% of the nasal mucosal surface will be absorbed to the bloodstream, or removed by clearance

mechanisms, and hence not directly available to the brain.

In vivo data describing regional deposition of nasal sprays assessed using gamma scintigraphy is

available for a limited number of devices and formulations, e.g. (Chet L. Leach et al. 2015; Al-

Ghananeem et al. 2008). Unfortunately, the cost and time requirements associated with conducting

in vivo studies are such that these studies are rarely conducted in the early stages of nasal drug

product development, where they would provide valuable feedback to developers. In vitro

techniques using anatomically sectioned nasal airway replicas have been explored as a means to

predict in vivo deposition patterns (Xi et al. 2017; Hughes et al. 2008). However, the range of

parameters that may affect regional deposition is wide, such that a number of researchers have

turned to in silico numerical simulation methods to investigate variation in regional deposition that

arises as a function of, e.g., droplet size, initial droplet velocity, spray cone angle, spray cone

direction, inhalation flow rate, nozzle insertion depth, and nasal airway geometry (Rygg et al.

2016; Schroeter et al. 2006).

For aerosol drug delivery to the lungs, various researchers have described in vitro methods using

realistic or idealized airway geometries selected to mimic average deposition measured in in vivo

studies (Below et al. 2013; Javaheri et al. 2013; Delvadia et al. 2012; Golshahi and Finlay 2012;

Longest et al. 2012; Byron et al. 2010). Such geometries can function as a reference for in vitro

experiments or in silico simulations, facilitating prediction of in vivo performance at early stages

of drug or device development, and allowing comparable results to be obtained between

laboratories. For nasal drug delivery, a similar geometry mimicking in vivo regional spray

deposition in an average sense has not been established.

 3

A previous attempt to develop an idealized nasal airway geometry (Liu et al. 2009) used a

combination of computational fluid dynamics, cross sectional averaging and two dimensional

image processing. Such an approach may be useful for particle penetration to lung in which the

total deposition shows a linear or nearly linear behavior (as will be shown in Chapter 2 of this

thesis). However, the regional deposition of particles or droplets within the nose is inherently a

nonlinear function of the shape of the geometry, making a linear superposition inherently

inaccurate. In other words, there is no evidence that an idealized geometry based on linear

averaging of realistic geometries would produce the average of deposition in those geometries.

Furthermore, an idealized geometry based on cross-sectional averages could prove complicated

and lead to manufacturing problems.

For inhalation drug delivery to infants, which occurs through the nasal airways, an alternative

approach has previously been taken to develop an idealized infant nasal geometry. This approach

focused on geometric pattern extraction in an heuristic manner (Javaheri et al. 2013; Golshahi and

Finlay 2012). The approach resulted in a significantly simpler and smoother geometry that is also

easier to manufacture. Although the qualitative approach toward feature extraction in these studies

is less mathematically rigorous than that adopted by (Liu et al. 2009), it favors the important

concept of nonlinear structures.

The current thesis work was undertaken with the goal of developing an idealized nasal airway

geometry that mimics regional nasal deposition of nasal spray droplets in adult subjects. This was

accomplished in two stages. First, as presented in Chapter 2, regional deposition within the nose

was examined using numerical simulation over a large and wide-ranging parameter space. A set

of seven realistic adult nasal airway geometries was defined based on Computed Tomography

 4

(CT) images of adult subjects. Deposition in six regions of each nasal airway geometry (the

vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was

determined for varying particle diameter, spray cone angle, spray release direction, particle

injection speed, and particle injection location.

These simulation results were then used to establish target values of regional deposition for the

idealized geometry. As described in Chapter 3 of this thesis, characteristic geometric features

observed to be common to the realistic nasal airway geometries studied were extracted and

included in the idealized geometry. Additional geometric features and size scaling were explored

at various stages of the project, in order to enhance deposition in specific regions based on

simulations in earlier versions of the geometry. In total, more than hundred thousands of

simulation cases were conducted across a range of particle parameters and geometric shapes in

order to reach the final idealized geometry presented in Chapter 3. The potential impact of the

geometry in the development and testing of nasal drug delivery systems is discussed in Chapter 4,

where possible direction for future work are also described.

 1

Chapter 2: Regional Deposition of Nasal Spray in Adults: A

Wide Ranging Computational Study

2.1 Introduction

The present work was conducted to build upon previous in silico studies by implementing a large-

scale simulation set, so as to simulate regional deposition of nasal sprays over a large parameter

space. A set of realistic adult nasal airway geometries from seven subjects was defined based on

Computed Tomography (CT) images. Deposition in six regions of each nasal airway geometry

(the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was

determined for varying particle diameter, spray cone angle, spray release direction, particle

injection speed, and particle injection location. Particular attention was paid to parameter

combinations that maximized olfactory deposition, given the low olfactory deposition fractions

simulated in previous studies (Keeler et al. 2015; Schroeter et al. 2006).

2.2 Materials and Methods

2.2.1 Airway Geometries

CT images of the nasal airways from the nares to below the larynx were obtained for seven adult

subjects averaging 60 years old (see Table 2.1).

Anonymized CT scans were acquired retrospectively from patients scanned for clinical purposes

at the University of Alberta Hospital, with Health Research Ethics Board approval. In addition to

 2

being assessed as normal at the time of scanning, their nasal airways were confirmed to be normal

by a radiologist reviewing the CT images. CT imaging was performed on either a Siemens

Somatom Flash or Definition scanner, with a reconstructed slice thickness of one millimeter and

in plane resolution of 0.035 to 0.039 mm.

Table 2.1 Relevant information for the 7 subjects. See Figure 2.3 for approximate locations of the

different listed airway regions (Vestibule, Valve, Anterior Turbinates, Posterior Turbinates,

Olfactory and Nasopharynx).

Sub
No

Sex Age
(years)

Airway Surface Area (cm2)

Volume
(?@A)

Total
Area
(?@C)

Vesti Valve Anterior Posterior Olf Naso

1 M 60 337.6 12.6 20.6 36.7 171.8 10.0 85.8 59.6

2 F 50 315.5 10.1 17.2 22.3 154.5 6.1 106.0 73.1

3 M 57 320.2 14.5 18.1 22.8 192.0 7.4 90.0 59.2

4 M 54 344.7 11.8 24.6 19.7 161.3 8.8 116.0 71.5

6 F 72 317.8 14.3 32.0 53.6 137.7 8.6 69.3 59.0

7 M 62 308.2 14.3 30.7 27.0 140.8 12.0 84.2 56.6

8 M 63 323.6 14.2 20.8 31.3 163.0 10.4 81.8 61.8

 3

The DICOM files from the CT images were processed using ScanIP (Simpleware, UK), which

involved removal of the sinuses and segmentation to define the nasal airways proximal to the upper

trachea. The segmented airways included the laryngeal region. The resulting airway surfaces were

smoothed locally using Meshmixer (Autodesk, USA), followed by iterative global smoothing with

3-maticSTL (Materialise, UK). The ratio of volume to surface area was recorded after each

smoothing iteration, and smoothing was stopped once this ratio converged to 2 decimal places.

Topological flaws (e.g. excessively high aspect ratio, missing triangles, excessive node density,

self-intersections) in the reconstructed STL files associated with each subject’s nasal airways were

repaired using Netfabb (Autodesk, USA) and MeshLab (Visual Computing Laboratory, Italy),

visualised with VTK C++ and Paraview (Kitware, USA). This required a number of manual

manipulations including closing holes, stitching triangles, fixing flipped triangles, removing

double triangles and degenerate faces. Views of the final nasal airway walls for the seven subjects

are shown in Figure 2.1.

 4

Figure 2.1 Perspective views of the model airways used in this study. Subjects 5, 9 and 10 are

excluded due to geometric defects observed during meshing.

2.2.2 Computational Fluid Dynamics of Airflow

The fluid dynamics in each of the subject’s nasal airways was simulated by solving the

incompressible laminar and steady state Navier-Stokes equations using OpenFOAM version 3.0.1

(OpenFOAM Foundation Ltd, UK). OpenFOAM solves a discretized approximation to the Navier-

Stokes equations using a finite volume method. The STL file for each subject was imported into

OpenFOAM’s SnappyHexMesh routine to produce a mesh of hexahedral elements upon which

numerical solution to the Navier-Stokes equations was performed. The mesh generation tool

includes refined grid spacing in boundary regions close to the walls. Although CT images were

obtained for 12 subjects, geometric and topological defects in the geometries produced by the

reconstruction software for subjects 5 and 9-12 were severe enough in those subjects’ airways that

 5

the segmentation and meshing software did not produce a geometry and mesh of sufficient quality

to proceed with a CFD solution.

For the remaining 7 subjects listed in Table 2.1, a CFD solution was obtained using OpenFOAM’s

PIMPLE solver. PIMPLE uses SIMPLE (Semi-Implicit Method for Pressure linked Equations)

during the inner linear solver iterations and PISO (Pressure Implicit Splitting of Operator) during

the nonlinear outer iterations. Spatial discretization was second order (“Gauss linear” in

OpenFOAM, with cell limiting applied to the gradient terms). Grid convergence studies were

performed to determine the number of cells required to achieve grid independence (within 10%)

in the value of pressure drop through the airways of each subject. The number of cells was thus

subject dependent but ranged from 600,000 (for subject 3) up to 3,600,000 (for subjects 4 and 6).

In order to mimic delivery of sprays delivered through a single nostril, a zero-velocity boundary

condition was set at the entrance of one nostril. At the entrance to the other nostril, the flow rate

was set at 15 l/min, in keeping with an assumption of laminar flow (Tu et al. 2013). For the 15

l/min nostril, a parallel, uniform flow velocity field boundary condition was used. At the exit, a

Neumann condition was used for velocity and pressure, coupled with the mass flow rate specified

by the inlet velocity field.

The fluid flow was simulated separately for 15 l/min flow through the left nostril, and then another

simulation was performed for 15 l/min flow through the right nostril. The final set of fluid flow

simulations thus consisted of 14 individual CFD simulations.

 6

2.2.3 Measurements of Pressure Drop

To provide partial validation of the CFD simulations, a physical replica of each subject’s nasal

airways was built from plastic (Objet VeroGray RGD850; Stratsys, Ltd.; Eden Prairie, MN, USA)

using a PolyJet 3D printer (Objet Eden 350V High Resolution 3D Printer; Stratsys, Ltd.; Eden

Prairie, MN, USA) as described recently (Chen et al. 2017). The pressure drops across the nasal

airways, from the entrance of the nares to an outlet within the trachea below the larynx, was

measured for all seven subjects using a digital manometer (HHP-103, Omega, Canada) for flow

rates ranging from 10-90 litres/minute, measured with a TSI 4000 flow meter (TSI, USA).

2.2.4 Lagrangian Particle Tracking

Particles were injected over a variety of positions and velocities within the entrance region of the

nares. These particles were assumed to be stable (i.e. non-evaporating) with no bounce (i.e. they

stick) upon deposition with an airway surface. A particle density of 1000 kg/m3 was assumed.

Particle trajectories and their deposition locations were then calculated by solving Newton’s

second law for each particle using OpenFOAM’s IcoUncoupledKinematicParcelFoam solver. This

solver assumes one-way momentum coupling between the particles and the fluid. It was assumed

that the only forces acting on the particles are gravity and fluid drag, the latter specified by the

Schiller-Neumann drag coefficient:

DE =
CF

GHI
(1 + 0.17	LMN

O.PP) (2.1)

where Rep is the particle Reynolds number based on its velocity relative to the fluid velocity,

particle diameter, and a kinematic viscosity of air	Q = 1.5 × 10ST@C/U.

 7

The previously calculated fluid velocity field was interpolated to particle positions using second

order interpolation via OpenFOAM’s Mean Value Coordinate (MVC) method. Particle positions

were advanced in time using a first order implicit Euler method. Grid convergence studies (both

in space and time) were performed with respect to the value of regional deposition to determine

grid resolution and time step.

In addition, convergence studies were performed to determine the number of particles needed.

Particles were injected within the nostril from a planar disk region with 1mm diameter; the position

of this disk was varied within the nares using Grasshopper (Rhinoceros, USA) to define 200

random positions for each subject and nostril side (left or right). The injection location was varied

from a little inside the entrance of the nares to a little after the entrance of the nasal valve region,

with these insertion depths varying approximately in the range of 0.2 to 1.5 cm from the inlet.

Figure 2.2 shows the central positions of the injection cones for one nostril of one subject.

 8

Figure 2.2 The yellow points indicate the center of the spray injection release disk in one nostril

of one subject. The shaded purple region shows the approximate defined volume within which

these injection locations were randomly placed. For each subject, 200 such injection locations were

simulated in each nostril (i.e. 400 points total between the right and left nostrils).

For each disk position, 10,000 particles were injected within the disk. Particle injection velocities

were specified to give a cone shape to the injection plume with specified half-angle.

After examining literature values and published data for commercial nasal spray devices, as well

as a small number of preliminary simulations over a wide range of parameter values, a subset of

 9

parameters and their values were chosen as being most relevant and applicable. Table 2.2 shows

these parameters and the range of values for which simulations were performed in each of the

seven subjects.

Table 2.2 Parameter values for particle tracking simulations performed in all seven subjects.

Parameter Number of Parameter
Values Simulated

Range of Values

Particle diameter 5 5 – 40 microns

Spray half cone angle 2 17.5 and 30 degrees from
spray cone direction

Spray cone direction 2 Upward (i.e. vertical) and
semi-upward (aimed at the
nasal valve entrance,
approximately 750 from
vertical)

Particle injection velocity 4 0-20 m/s

Position of injection disk 200 Generated randomly within a
defined boundary

Nasal airway geometries 7 Normal airway geometries
derived from CT scans (see
Table 2.1)

Spray Injection Side 2 Left and right nostrils

 10

Despite having narrowed the parameter space to what was believed to be the most relevant

subspace, the parameter ranges in Table 2.2 still required performing a total of 224,000 simulations

associated with each individual parameter value. Because of the large computational time of these

simulations, they were done in parallel on a computing cluster (SGI Altix XE, 400 nodes, 4160

cores, Compute Canada). To allow assessment of regional deposition, the nasal airway walls were

divided into the following regions in each subject: vestibule, valve, anterior turbinate, posterior

turbinate, olfactory and nasopharynx. Figure 2.3 shows these regions as defined for one of the

subjects. Table 2.1 gives the surface area of these regions for each subject. The regions were

defined following the common approach in previous studies (Schroeter et al. 2006) . Furthermore,

the criteria for defining regions was approved by an expert radiologist.

Figure 2.3 The six anatomical regions of the nose as defined in one of the subjects.

 11

2.3 Results

2.3.1 Validation

Calculated pressure drops in the seven subjects were found to be within 12.5% of the values

measured experimentally at 15 l/min in physical replicas of these same subjects’ nasal airways

(average ±standard deviation in ΔX = 29.6 ± 	10.4\] measured vs. ΔX = 25.9 ± 	9.7\]

calculated). Total deposition calculated in the nose of the present subjects is shown in Figure 2.4

with particle injection velocity set to zero and a flow rate of 15 l/min.

Similar data from various in vivo studies is also shown. Given the well-known large intersubject

variability, reasonable agreement with in vivo data is seen between calculated total nasal deposition

in our seven subjects and total deposition measured in vivo in other subjects.

 12

Figure 2.4 Total deposition versus impaction parameter from our CFD particle tracking

simulations (solid black symbols) in our seven subjects with 15 L/min through a single nostril is

shown along with data from previous in vivo studies in different subjects.

 13

2.3.2 Regional Deposition

Because of the sheer volume of the data, it is difficult to summarily present results from the nearly

¼ million individual runs performed. However, Figures 2.5-2.8 present regional deposition data

averaged over all particle injections points (which are randomly distributed like that shown in

Figure 2.3) and averaged over both cone angles given in Table 2.2, but with only a vertically

upward injection considered (as the results for other injection directions did not show interesting

or unexpected differences) is shown for injection occurring separately in the left and right nostrils

of each subject.

Figure 2.5 shows deposition in the vestibule and the valve regions combined, which unsurprisingly

is seen to be highest for the largest particles injected at the highest speeds.

Figure 2.6 combines both anterior and posterior turbinate deposition and is seen to peak in most

subjects at a middling particle size and drops off at the higher particle injection speeds.

Figure 2.7 shows the fraction of particles exiting the simulation via the outlet distal to the larynx;

these are particles that penetrate the nasal region and enter the lungs. Particle injection speed is

seen to have little effect on the fraction of particles penetrating the nose; for all subjects, maximal

nasal penetration occurs for the smallest value of particle diameter considered by us (i.e. 5

micrometers). Figure 2.8 shows olfactory deposition in each of the subjects.

Figure 2.8 only shows deposition for upward injection, since this injection direction consistently

gave somewhat higher olfactory deposition than semi-upward injection (overall average 1.8%

olfactory deposition for upward vs 1.4% for semi-upward for the range of parameter values in

Table 2.2).

 14

While Figure 2.8 shows olfactory deposition averaged over all 200 injection locations in each

nostril, examination of the data for the individual injection locations shows that some injection

locations have much higher olfactory deposition than others.

In particular, there is a distinct region within the vestibule that was found to give considerably

higher olfactory deposition. This region is located close to the upper wall of the vestibule region

and is highlighted in Figure 2.9 for two of the subjects. Figure 2.9 shows the maximum olfactory

deposition that occurs for each different injection point maximized over all the other parameters

in Table 2.2. Similar results were seen in all subjects.

Table 2.3 gives absolute maximum values of olfactory deposition occurring in each subject,

maximized over all parameter values in Table 2.2 (including injection location). This table shows

that with a narrow, subject-specific choice of parameter values it is sometimes possible to have

high values of olfactory deposition, despite overall average olfactory deposition being 1.6% for

the parameter value range of Table 2.2.

While 100% olfactory deposition is achieved in a few runs, it should be noted that this results from

a rare (one out of thousands) combination of the parameter values in Table 2.2 e.g. a very specific

release position and initial velocity. Such a precise combination of parameter values is likely not

practical to achieve in vivo.

 15

Figure 2.5 Deposition in the vestibule and valve regions (combined) of each subject is shown with

injection in an upward direction via the left and right nostrils shown separately. The y-axis is

particle diameter in micrometers. The x-axis is particle injection velocity in @/U. The data is

averaged over 200 injection locations (see Table 2.2 and Figure 2.3) and two cone angles (see

Table 2.2).

 16

Figure 2.6 Deposition in the turbinates (both anterior and posterior) of each subject is shown with

injection in an upward direction via the left and right nostrils shown separately. The y-axis is

particle diameter in micrometers. The x-axis is particle injection velocity in m/s. The data is

averaged over 200 injection locations (see Table 2.2 and Figure 2.3) and two cone angles (see

Table 2.2).

 17

Figure 2.7 Percentage of the particles entering the lungs (i.e. exiting the simulation outlet distal to

the larynx) of each subject is shown with injection in an upward direction via the left and right

nostrils shown separately. The y-axis is particle diameter in micrometers. The x-axis is particle

injection velocity in m/s. The data is averaged over 200 injection locations (see Table 2 and Figure

2.3) and two cone angles (see Table 2).

 18

Figure 2.8. Deposition in the olfactory region of each subject is shown with injection in an upward

direction via the left and right nostrils shown separately. The y-axis is particle diameter in

micrometers. The x-axis is particle injection velocity in m/s. The data is averaged over 200

injection locations (see Table 2.2 and Figure 2.3) and two cone angles (see Table 2.2).

	 	 	 	

	 	 	 	

	 	 	 	

	 	

	
	

	
Deposition	(%)	

	
								

	

 19

Table 2.3 Global maximum values of olfactory deposition values occurring in each subject for

either right or left nostril injection when the injection location and parameter values in Table 2.2

are chosen to maximize olfactory deposition.

Subject Nostril Olfactory deposition (%)

1 Left 38.8

1 Right 4.1

2 Left 98.5

2 Right 6.4

3 Left 88.4

3 Right 53.3

4 Left 100

4 Right 100

6 Left 15.8

6 Right 26.6

7 Left 100

7 Right 100

8 Left 95.4

8 Right 36.9

 20

Figure 2.9 Perspective views of the entrance region (both left and right nostrils are shown) of

subjects 4 and 7. The dots show the 200 injection locations in each nostril colored, as denoted in

the color bars, by the amount of olfactory deposition occurring when the injection disk is centered

at that location (averaged over all other parameter values in Table 2.2). To the left of the color bars

the view is side view, while to the right the view is from below the nares. The shaded region

indicates the region closer to upper section of the nostril wall. It is observed that the shaded region

contains release positions that lead to higher olfactory depositions.

 21

2.4 Discussion

The present study was conducted to explore regional deposition of nasal sprays in the airways of

the nose and throat across a wide-ranging parameter space. Numerical simulation was a practical

approach to use in conducting such an exploration due primarily to the large number of possible

input parameter combinations. In the present work, nearly ¼ million individual simulations were

performed. It would clearly not be feasible to conduct the same number of individual experiments

using in vivo or in vitro methods.

A level of confidence in the present results may be gained through comparison with available in

vivo data describing total nasal deposition of inhaled aerosol particles (Swift 1991; Heyder and

Rudolf 1975; Hounam et al. 1971; Pattle 1961; Landahl and Black 1947).

As seen in Figure 2.4, when plotted against the impaction parameter, simulated total deposition

data from the present study (for cases with zero particle injection velocity relative to the inspiratory

flow) broadly overlap previously reported in vivo data. We note that the simulation data is

restricted to the upper range of impaction parameter spanned by the in vivo data in Figure 2.4 due

to the larger size range of nasal spray droplets (5 to 40 µm in diameter) investigated in the present

study as compared to typical particle sizes used in in vivo aerosol exposure studies (< 10 µm in

diameter). Even so, simulated total deposition in the present nasal airway geometries was well

below 100% for a significant number of cases (Figure 2.4). This is non-ideal for nasal sprays,

where the intention is to delivery drug locally to the nasal airways.

Particles that penetrate the airways of the nose and throat will enter the conducting airways of the

lungs, and unintended lung exposure may occur (Djupesland and Skretting 2012; Suman et al.

1999).

 22

Simulated penetration of particles to the lungs is shown in further detail in Figure 2.7.

Several comments can be made. First, it can be noted in view of Figure 2.7 that the percentage of

particles reaching the lungs is relatively insensitive to the injection velocity. Second, the influence

of particle size on particle penetration to the lungs in pronounced in all 14 geometries. Combined,

these observations suggest that in designing nasal delivery devices to avoid lung exposure,

emphasis should be placed on the emitted particle size distribution, with details of velocity

distribution of emitted particles of secondary importance. Further, while data reported in Figure

2.7 is in broad agreement with European guidelines to limit the fraction of sub 10 µm particles

emitted from nasal drug products (Canada 2006), variability between geometries in the percentage

of particles penetrating to the lungs is high. In several cases, penetration remains at or above 30%

for particles in the range of 10 to 15 µm in diameter.

In addition to the fraction of particles penetrating to the lungs, regional deposition within the nasal

airways is of considerable interest. Droplets that deposit in the vestibule and valve may pool and

drip from the nostrils (Chet L. Leach et al. 2015). As the nasal mucosa in these proximal regions

is non-ciliated, any particles or droplets that do not drip or rapidly absorb will remain in place (Al-

Ghananeem et al. 2008) and are subject to mechanical removal, e.g., by wiping or blowing the

nose. In contrast, droplets that reach the nasopharynx and larynx miss their target, are subject to

rapid clearance (Al-Ghananeem et al. 2008), and may cause an unpleasant taste upon deposition

(Chet L. Leach et al. 2015). Accordingly, the intermediate region consisting primarily of the

anterior and posterior turbinates would appear to be a preferential target for both local and systemic

nasal drug delivery.

 23

Figure 2.6 displays simulated deposition fractions in the combined anterior and posterior

turbinates. For all 14 geometries studied, maximum deposition in the turbinates occurred at

intermediate particle size, typically between ~20 and ~30 μm. This result is broadly in agreement

with results of simulations reported by (Keeler et al. 2015), where for a constant particle injection

velocity of 1 m/s deposition in the turbinates peaked between particle sizes of 25 and 30 μm in the

majority of subject geometries studied. In addition, in the present study, maximum deposition

occurred with zero injection velocity for 10 of the 14 geometries studied, and in all cases,

deposition fell off as injection velocity increased above ~5-10 m/s. It appears therefore that

combinations of large particle size and high initial velocity relative to the inspiratory air flow

promote deposition by impaction in the vestibule and valve, whereas small particles (below ~10-

20 μm depending on the individual geometry) are carried past the turbinates to deposit in the

nasopharynx, larynx, or the lungs.

Finally, deposition in the olfactory region is of interest for exploratory nose-to-brain delivery (Xi

et al. 2016, 2017; Lehrer 2014; Pardeshi and Belgamwar 2013; Bahadur and Pathak 2012)

(Warnken et al. 2016; Djupesland 2013). Previous in vitro and in silico studies have reported low

deposition fractions in the olfactory region for nasal sprays, with maximum olfactory deposition

between 3-14% (Xi et al. 2016; Schroeter et al. 2006). The present results reported in Figure 2.8

are reasonably consistent with these past studies, although a broader range was observed, in that

maximum olfactory deposition averaged over all injection locations ranged from ~ 0.1% up to

~25%. As was the case for turbinate deposition, maximum olfactory deposition occurred at

intermediate particle sizes and was associated with low to zero injection velocity for the majority

of geometries.

 24

In addition, previous researchers have proposed that olfactory deposition be further increased by

limiting injection of particles to sub-regions of the nasal vestibule, specifically to locations near

the upper, or front, wall of the vestibule (Xi et al. 2016; Schroeter et al. 2006). Consistent with

these previous observations, Figure 2.9 indicates very low to zero olfactory deposition for particles

injected into a region approximating the lower half of the vestibule, but considerably higher

olfactory deposition for particles injected into the upper half of the vestibule.

While similar trends were observed in all geometries studied in the present work, the variability in

olfactory deposition between geometries is notable. This is a considerable obstacle to overcome

if consistent dosing between subjects is to be achieved for nose to brain drug delivery.

2.5 Conclusions

The present numerical simulations were conducted to provide a data set describing regional

deposition of nasal sprays over a wide-ranging parameter space. Penetration of nasal spray

particles through the airways of the nose and throat was found to be relatively insensitive to

injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for

particles exceeding 10 µm in diameter for several airway geometries studied.

Deposition in the turbinates, viewed here as desirable for both local and systemic nasal drug

delivery, was on average maximized for particles ranging from ~20-30 µm in diameter, and for

low to zero injection velocity. Similar values of particle diameter and injection velocity were

found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug

delivery. However, olfactory deposition was highly variable between airway geometries, with

maximum olfactory deposition averaged over all injection locations ranging over two orders of

magnitude between geometries.

 25

Chapter 3: An Idealized Geometry that Mimics Average

Spray Deposition in Adult Nasal Airway

3.1 Introduction

As described in the preceding chapter, the adult nasal airway geometry exhibits complex

morphology and intersubject variability (Garcia et al. 2009; Churchill et al. 2004). Particle

deposition within the nasal airways is an important consideration in the design and evaluation of

intranasal drug delivery systems. In particular, the regional deposition pattern of drugs

administered intranasally is expected to impact their therapeutic effectiveness. Many aspects of

regional deposition are thought to play a role. For instance, droplets collected in the anterior nasal

passages may pool and drip from the nostrils. Conversely, droplets passing through the nasal

cavity to the throat miss their site of action, and might penetrate on to reach the lungs, where

adverse side-effects could occur.

Numerous in vivo and in vitro experimental studies have been performed in order to measure

particle deposition in the nasal airways (Schroeter et al. 2015; Javaheri et al. 2013; Shah et al.

2013; Byron et al. 2010; Liu et al. 2010; Heyder 2004; Hahn et al. 1993; Heyder and Rudolf 1975).

Several computational studies have also been performed using realistic nasal airway geometries

(Keeler et al. 2015; Patel et al. 2015; Schroeter et al. 2010, 2012, 2015; Wang et al. 2012; Rhee et

al. 2011; Weinhold and Mlynski 2004).

 26

Just as therapeutic benefit can be related to the regional deposition pattern in the nasal airway, so

too can unwanted side effects or the outright failure of inhaled sprays to achieve their intended

effect. As noted above, spray droplets deposited at the beginning of entrance region (i.e. the nasal

vestibule) can drip from the nostrils (Chet L Leach et al. 2015). Droplets depositing distal to the

turbinate region will either fail to have the desired treatment effects or end up in regions where

they are considered potentially harmful (Chet L Leach et al. 2015; Djupesland and Skretting 2012;

Djupesland et al. 2004; Suman et al. 1999).

As seen in Chapter 2 of this thesis, many factors can influence regional deposition of nasal sprays.

These include, but are not limited to, the distributions of size and velocity of droplets emitted from

nasal spray pumps, the spray cone angle, the orientation angle of the spray with respect to the nasal

inlet, and the insertion depth of the spray tip into the nostril. Adding to these the numerous

geometric features of the nasal airway that can influence regional deposition patterns, the scope of

numerical or experimental studies of regional deposition can become very large. For this reason,

a reference idealized geometry would be extremely beneficial in reducing the computational or

experimental burden, provided that measurements made using that idealized geometry could, with

confidence, be expected to anticipate average values in a larger set of nasal airway geometries.

Furthermore, the simplicity of such a geometry would make these analyses more feasible. In

experiments, fewer small-scale features or extreme convolutions in a given region makes assay

and cleaning easier. In simulations, an idealized geometry makes the discretization less

complicated and hence the simulation is less expensive1.

1 This can be seen specifically in faster process and simpler outcome for the computational grid.

 27

The above considerations motivate development of an idealized geometry which mimics the

average deposition in a target population of adult subjects with normal (non-pathological) nasal

airways. The current study seeks a geometry that mimics the average regional nasal spray

deposition observed in the realistic geometries reported in Chapter 2.

3.2 Methods

3.2.1 Idealization of Airway Geometries

As described in chapter 1, ten individual subjects’ nasal airway geometries were obtained using a

sectional Computational Tomography (CT) scans (Figure 3.1). Segmentation and reconstruction

of the cross sections produced three-dimensional surfaces. The subjects ranged in age from 27-72

years old, included 7 males and 3 females, and resulting scans covered from the nares to below the

larynx regions. The medical imaging procedure was approved by the Health Research Ethics Board

at University of Alberta.

 28

Figure 3.1 Side view of the ten geometries used in this study. CFD results of seven of these

geometries (subjects 1, 2, 3, 4, 6, 7 and 8) using both nostrils (one at a time) are given in chapter

1.

We denoted these 10 geometries as realistic geometries. Since the right and left sides of the realistic

geometries were nearly independent (Bates et al. 2015; Wen et al. 2007), it was possible to treat

them separately as independent case studies, thus essentially doubling the number of reference

realistic geometries to twenty. For the purpose of creating an idealized airway, the right and left

sides were made symmetrical, consisting of two identical half upper airways, with each half of the

airway started from an individual nostril and converging at the beginning of nasopharynx. The two

half airways were assumed to be separated proximal to the nasopharynx.

 29

The realistic geometries were all complex, containing numerous features at different scales. From

the twenty geometries, fourteen were previously selected for a wide ranging computational

parameter space exploration (chapter 1 of thesis). The resultant regional deposition pattern sets a

target for evaluating the suitability of the present idealized geometry. The geometry of the

remaining six realistic nasal airway realizations was also helpful for the purposes of qualitative

observation.

The realistic geometries were available in three dimensions as stereolithography (STL)2 files, and

the global coordinate system was chosen as right handed and Euclidean. The +^ direction was

defined toward the back of the head and tangent to the inlet surface of the nostril. The +_	direction

was defined upwardly and normal to the inlet and was called “up”.

Slicing the surface geometries on the `_ plane resulted in a set of curves containing one or more

components, each of which was a simply connected curve. Without loss of generality, we denoted

each set as one cross section.

Cross sections were seen to undergo considerable changes in shape when proceeding the y

direction. In particular, a shape bifurcation was seen to occur within the turbinates, with the

additional branch eventually turnings back to the upper turbinates and creating a semi-circular

cross section at the junction between the posterior turbinate and the nasopharynx.

2 STL files contain information from the triangulated surface geometry. Three vertices and a

normal vector from each triangle are stored sequentially in a list. In this study, the STL files contain

tens of thousands of triangles.

 30

This second branch contains many small features. The center of area of the cross section produces

a nearly flat line in the ^ axis. However, the bifurcation branch reduces its _ components in a

nearly linear manner and fades away in the +^ direction. The lower part of the cross section rolls

upward within the posterior turbinate and becomes further convoluted. The resulting Y-shape cross

section vanishes as the nasopharynx is approached. Figure 3.2 shows this so-called Y-shape

concha. These observations suggest a special role of the turbinate region in the particle deposition

behavior.

Figure 3.2 Portions of the turbinate region in subjects 1, 2 and 4 are shown (left to right) around

the same cut plane. A significant common feature in all geometries is the Y-shaped concha. As is

pointed out by the arrow for these examples the position of this Y-shape varies in different subjects.

 31

Figure 3.3 Blue curves show cross sections of subject 4 as an example. The red wireframe shows

an idealized sketch drawn in OpenFOAM’s BlockMesh. The idealized curve considers all subjects’

common features.

Figure 3.3 shows the development of cross sections in the +^ direction. The entrance region is

defined as the appended inlet, vestibule and valve regions. The shape of the entrance region is

important, both because it presents an obstruction that yields deposition of high momentum

particles and because of this region’s role in guiding the flow (and lower momentum particles)

toward the turbinate region.

The shape and area of the inlet of the idealized geometry were chosen to reflect those of the realistic

geometries. Obviously, a different inlet could cause a different boundary condition and tend toward

a wrong dynamic and hence a wrong idealized geometry. The entrance regions share similar

 32

characteristics across the realistic geometries, with some of these features having a direct effect on

the particle deposition. As an example, some of the important features of entrance region can be

seen in Figure 3.4.

Figure 3.4 The entrance regions for subject 1 and 4 are depicted. Entrance regions in all realistic

geometries show similar features. Two examples of these features are pointed out by arrows here.

Note the shrinkage and expansion the red arrows illustrate in the +z direction. The blue arrow

shows an important cross section between the valve and the turbinate regions. This cross section

has a vertically stretched S-curve shape. The cyan arrow shows how the cross section shrinks in

the vestibule-to-valve interface from the red to the yellow cross section and expands from the

yellow to the blue cross section in the +z direction. The maroon-coloured section on the left of

each entrance shows the inlet surface. Note the bean shape of the inlet surface.

 33

The air flow through the nasal airway enters from the nostril and passes the vestibule region,

afterward being directed toward the turbinates region through the valve. The valve is usually the

narrowest part of the nasal airway geometry; hence fluid velocity increases dramatically in this

region3. Obviously, the exit orientation of the valve would have a tremendous effect on where the

flow is directed in the turbinate region.

The turbinates are known to be associated with an increase in turbulent intensity. Nevertheless, it

has been pointed out by previous studies that the flow regimen of the adult nasal airway typically

remains mainly laminar for common inhalation flow rates (Keyhani et al. 1995; Hahn et al. 1993;

Schreck et al. 1993)

The level of geometric complexity rises dramatically at the turbinate region. For the vestibule,

valve, olfactory and nasopharynx regions, the cross section mostly stays simply connected (i.e. a

cross-section curve set has only one component).

The cross section shape gradually changes in the +^	direction. Naturally, constructing and

connecting each approximated cross section and connecting them would create an interpolated

idealized geometry that is also manifold4 in two dimensions (in the local coordinate system).

However, the geometry becomes more complicated in the turbinate region. The three-dimensional

3 This is an obvious result for a steady incompressible flow. In this type of flow the volumetric
flow rate stays nearly constant through cross sections (ab

ac
≈ 0).

4 A surface geometry is manifold in the neighborhood of a point if in its topological space it

resembles a local Euclidean space.

 34

development of geometric structures in this region creates cross sections that are not simply

connected5.

Figure 3.5 shows the explained difference in a simplified manner. On the left case, a ribbon can

be created by a set of ruled surfaces. Each ruled surface is made by connecting the corresponding

points between the cross sections while procedure with similar outcome is not so trivial for the

right case. An example of the aforementioned behaviour in a realistic geometry can be observed

in Figure 3.6.

The appearance of the non-simply connected curves in one cross section of realistic geometry can

be addressed in several ways. One solution would be to introduce an independent three-

dimensional surface geometry within the turbinate region. Moreover, this surface would emulate

the abrupt expansions, shrinkages and steep curves of the realistic turbinate region.

5 In topology, simply-connected curves are often called homeomorphic. The simply-connected and

none-simply-connected cross sections are topologically different (none-homeomorphic). i.e. there

is no valid topological transformation between the two. Non-homeomorphism can be a source of

substantial fluid mechanical (and particle deposition) differences between the surfaces constructed

by these two types of cross sections.

 35

Figure 3.5 Development of black into red cross section is depicted in two simplified cases. Left

shows a simply-connected cross section distorting into another simply-connected curve. Right

shows a simply connected cross section followed by a non-simply-connected cross section as the

geometry develops in the +y direction.

 36

Figure 3.6 Some cross sections in the realistic geometry of subject 4 are shown. Different cross

sections are shown in different colors. Note the sudden conversion of the blue cross section where

it becomes non-simply connected. The unconnected portion of the curve develops further in the

+y direction as the cross-section changes.

 37

Since this object plays the role of a major obstacle in front of the flow coming from the valve, it is

also referred to as such. Figure 3.7 shows the idea of the obstacle.

Figure 3.7 Top part of the figure visualizes subject 4 using small amount of opacity. Cross sections

in different colors are from different `^ planes. The obstacle structure is highlighted by the drawn

black ellipse. Bottom shows an implementation of the same idea in the form of an obstacle object

within the turbinate region in an idealized airway geometry.

 38

The turbinate region in the realistic geometries shows many small-scale features in the branch. The

deposition of micrometer-sized particles in the extrathoracic airway is dominated by inertial

impaction. Thus, as the Stokes number increases, the probability of the deposition also increases.

In simplified terms, this means smaller particles require sharper corners to deposit. The smaller

scale features are expected to trap the smaller size particles. To achieve both simplicity and

abruptness, the small-scale structures could be mimicked by set of generic small objects. This

approach was found necessary for the idealized geometry to match average deposition in the

turbinates. To this end, as a possible approach, a set of equal-sized rods has been implemented.

This idea is inspired by to the widely used mesh filters to capture particles from a flow. A detailed

analysis of the most efficient composition of the generic object would be rigorous and outside of

scope of this study. However, in practice there is a maximum size of mesh which can be used

efficiently to filter particles with certain minimum aerodynamic diameters (Kawara et al. 2016).

Similarly, here the size of the rods is crucial and should be chosen small enough.

Observations from CFD results in the realistic geometries in chapter 1 also suggest an additional

mechanism for particle deposition in the turbinates region. In particular, at the anterior turbinates,

the flow is separated into two branches consisting of a major and minor flow. The minor flow stays

nearly straight and has a smaller cross-sectional area. The major flow turns toward the side and

exhibits a larger cross section. This branching of the flow partially separates the smaller particles

from larger ones, with the major flow carrying only the small particles.

This particle separation mechanism resembles that in a virtual impactor. As in the case of virtual

impactors, large particles follow the straight path. By contrast, small particles diverge with the

major flow. In our case, a fraction of the small particles should be collected by the aforementioned

 39

rods to mimic the dynamics of realistic nasal airway turbinates. Figure 3.8 shows the basic scheme

of a virtual impactor.

Figure 3.8 A simple sketch of a virtual impactor is shown on the left part of the figure. Note that

small particles follow the major flow stream. On the other hand, a simple sketch of a conventional

impactor is shown on the right. Particles may hit the obstacle based on the value of their Stokes

number. Stokes number can be calculated e^	fgh = gi	jk/lm in which gi = no	poC	(18q)Sr	 is the

relaxation time, jk is the velocity of the fluid and lm is the characteristic length of the obstacle.

 40

Moreover, the boundary between the minor and major flows is an obstacle and functions as a

conventional inertial impactor. The idealized geometry cross sections in the neighborhood of the

turbinate obstacle and rods is depicted in Figure 3.9.

Figure 3.9 	`_-plane slices of the turbinate region of the idealized geometry are shown. Different

colors are assigned to different planes. The obstacle object (shown in blue on the left and green on

the right) is depicted in three dimensions. The front face of the obstacle acts as a conventional

impactor. Rods are shown in grey as they connect the obstacle +` face to the turbinates +` outer

wall. These act as barriers against the small particles which are carried by the major flow.

 41

Furthermore, the section area and overall volume were kept close to the realistic geometry and can

be seen in Table 3.1.

Table 3.3 Relevant information for the 7 subjects and idealized geometry. See Figure 2.3 for

approximate locations of the different listed airway regions (Vestibule, Valve, Anterior Turbinates,

Posterior Turbinates, Olfactory and Nasopharynx).

Sub No Sex Age
(years)

Airway Surface Area (cm2)

Vol.
(?@A)

Total
Area
(?@C)

Vesti Valve Anter. Poster. Olf. Naso.

1 M 60 337.6 12.6 20.6 36.7 171.8 10.0 85.8 59.6

2 F 50 315.5 10.1 17.2 22.3 154.5 6.1 106.0 73.1

3 M 57 320.2 14.5 18.1 22.8 192.0 7.4 90.0 59.2

4 M 54 344.7 11.8 24.6 19.7 161.3 8.8 116.0 71.5

6 F 72 317.8 14.3 32.0 53.6 137.7 8.6 69.3 59.0

7 M 62 308.2 14.3 30.7 27.0 140.8 12.0 84.2 56.6

8 M 63 323.6 14.2 20.8 31.3 163.0 10.4 81.8 61.8

Idealized -- -- 300.7 12.6 23.8 20.8 153.0 8.6 81.9 72.4

 42

3.2.2 Computational Fluid Dynamics of Airflow

Fluid motion in the idealized nasal airways was simulated by solving the incompressible, laminar

Navier-Stokes equations. This was accomplished by using the Open-Source Field Operation and

Manipulation (OpenFOAM) version 3.0.1 (OpenFOAM Foundation Ltd, UK). OpenFOAM is a

collection of libraries and applications written in C++ and covers a broad range of applications in

the field of scientific computing. Specifically, OpenFOAM can solve the Navier-Stokes equations

of the fluid motion using the finite volume method.

OpenFOAM’s BlockMesh tool was applied to automate the block generation. This was performed

by creating a set of control points and edges as shown in Figure 3.10.

Each block contains eight patches. A patch is defined by four boundary curves which are created

by skeleton splines. A spline is created by defining start and end points. Moreover, a spline can be

adjusted by the addition of control points that create a curved edge between the start and end points.

The surface geometry of the main wall was defined as a function of chosen patches of all blocks.

Analogously, the obstacle surface was constructed within the turbinate region. For simplicity, the

corners of the obstacle were chosen to define a box. Additionally, splines were defined as edges

of the box. Furthermore, constraints were defined to ensure the consistency of the box topology.

This measure was necessary to ensure a functional iterative process within which the shape of the

obstacle was modified.

Alongside BlockMesh, most geometric manipulations were carried out using Visualization Toolkit

(VTK) version 8.1.1 (Kitware Inc, USA). VTK is an open-source library for computational

geometry, visualization and graphical methods. It supports various efficient and state of the art

 43

algorithms for handling several types of data structures. Moreover, VTK supports techniques for

manipulation of STL files.

Figure 3.10 The idealized geometry is created via OpenFOAM BlockMesh tool. The red block in

the middle is the obstacle and is created by using the same tool. Start and endpoints of splines are

shown by numbers. Splines are curved edges connecting the points. The visualization is performed

by using the ParaFOAM application.

 44

Since both the main wall and obstacle geometries are created parametrically, they can overlap

within the iterative process. Additional constraints were defined to avoid extreme cases. However,

within these limits, there are numerous combinations that result in extremely sharp angles. Even a

slight overlap can produce intersection edges that result in poor quality of the CFD mesh. Various

in-house codes were developed in VTK to resolve this problem in an input-output (IO) approach.

These codes included methods for smoothing, clipping, closing holes with distance, closing with

cap, subdivision, decimation and triangulation.

VTK was also instrumental in generating the rods, which are meant to collect only the smaller

particles. Hence, they are inserted from the +` side of the airway and are clipped by the nearest

plane of the obstacle box. This procedure was also implemented in VTK. In a trial and error

approach, four rows of rods were created, each containing rods with the same ^ and angle s	with

which they intersect the obstacle. Rods in different rows have different s and ^. Modifiable

parameters for rods are the diameter of each rod pi, the start point of the rods grid (t̂, _t), the

number of rods vw and vx and the distance between the center lines of the rods yw and yx in each

direction.

The STL surfaces from BlockMesh underwent further repair and smoothing before being imported

into OpenFOAM’s SnappyHexMesh meshing tool6. SnappyHexMesh offers several methods to

control the refinement level in specific regions. By default, refinement regions are explicitly

defined for surfaces. Moreover, extra regions are added according to the calculated feature edges.

6 More strictly, SnappyHexMesh does not mesh from scratch. Instead it should be provided with

a mesh, e.g. from BlockMesh to produce the desired mesh by accurate boundary specifications. It

accomplishes the meshing by mean of various transformations.

 45

Feature edges belong to a class of objects in VTK that defines special edges such as boundaries

and large surface normal gradients. OpenFOAM’s surfaceFeatureExtract method extracts the

features of the geometry.

SnappyHexMesh implements quality checks to ensure the validity of the computational grid. These

checks included, but were not limited to, cell skewness, minimum volume, volume ratio,

orthogonality and twist. The result was a mesh with three to five million hexahedral cells

depending on the size of the feature edges set. As the size of this set increases, further refinement

was essential. Figure 3.11 shows ^ and _ clips of a sample mesh.

With the mesh prepared, the steady state flow equations were solved for velocity and pressure

fields in space.

The Semi-Implicit Method for Pressure-Linked equations (SIMPLE) was used for the nonlinear

outer iterations. SIMPLE is known to be an efficient solver for steady state cases. Within SIMPLE,

each field is solved by a specific algorithm within the linear inner iterations. The velocity field was

solved by the Gauss-Seidel method. The pressure field was solved by the Geometrically Algebraic

Multigrid (GAMG) method, which uses the Diagonally Incomplete Cholesky (DIC) method.

GAMG is a quick method that begins with a coarse mesh. The level of detail in the mesh increases

until the convergence in the pressure field is reached.

 46

Figure 3.11 Parts of the computational grid resulting from the SnappyHexMesh tool. The hollow

space created by the obstacle shows the absence of fluid in that region. The left panel shows a `^-

plane clip and the right panel a `_-plane clip. The rods are seen in the mesh. Note how the mesh

is refined in these regions.

Spatial discretization was second order using Gauss linear with cell limiting. Grid convergence

was studied to determine the number of cells required to achieve the convergence (within 10%)

for the value of the pressure drop through the airway. The boundary conditions were the same as

in the realistic simulations of chapter1 and are shown in Table 3.2. Each of these conditions is

defined according to boundary condition specifications provided by OpenFOAM. Special attention

 47

was paid to the boundary conditions to ensure the numerical stability of the SIMPLE iterations.

The flow rate at the inlet was fixed at 15 l/min and the flow was considered to remain laminar

throughout the geometry.

Table 3.2 Boundary conditions in the CFD calculations. Each italic term is a B.C. class in

OpenFOAM. The pressureInletOutletVelocity condition is typically paired with the totalPressure.

This is known to improve the stability of simulation by allowing the minor backflows at the outlet.

Boundary Pressure Velocity

Inlet zeroGradient (z{
|c
= 0) flowRateInletVelocity (} = 15	~/@�v)

Outlet totalPressure (XO = 0) pressureInletOutletVelocity

Other regions Same as Inlet boundary noSlip (Ä = Å)

3.2.3 Lagrangian Particle Tracking

After solution of the velocity and pressure fields, particle tracking was performed. The particles

were assumed to be non-evaporating and were assumed to stick to all boundary surfaces. Stuck

and escaped particles were labeled by OpenFOAM and were no longer updated during the rest of

the particle tracking iterations. This approach saves considerable amount of memory and

computational power.

 48

The momentum of the particles was assumed to be one-way coupled with that of the fluid. In other

words, the particles do not disturb the flow. Particle position was updated using Newton’s second

law

(3.1)

where fÇ and fo are called the overall explicit and implicit contributions to the particle force at

time-step �ÉÑ on the XÉÑ particle respectively. In steady one-way coupling, the velocity field jk

remains constant at a given location, with velocity-dependent forces acting on the particle as an

implicit drag force. The gravity-dependent buoyancy force is an explicit contribution7.

The velocity of the fluid was interpolated to the location of the particle using the linear cell method.

The implicit Euler method was used for time integration of particle trajectory. The implicit Euler

method is known to be unconditionally stable; however, due to nonlinearity of the flow field, extra

caution is exercised by performing time step size analysis. Furthermore, a convergence analysis of

the number of injected particles was conducted to ensure that the number of particles was

satisfactory. The drag coefficient employed was the Schiller-Neumann (equation 2.1), and the

viscosity of the air was set to Q	 = 1.5 × 10ST@C/U.

7 Terms and notations in this equation are strictly following the ones used in OpenFOAM’s source

code and documentation.

mp(
∂up
∂t)i = Sp(uf − u ip) + Su

 49

Lagrangian particle tracking was accomplished using the IcoUncoupledKinematicParcelFoam

(IUKPF) application of OpenFOAM. IUKPF was further customized by compiling a local code

via OpenFOAM’s WMake utility. IUKPF utilizes a simplified version of the general Kinematic

Cloud (KC) objects for particles and assumes them to be uncoupled with respect to each other. The

main OpenFOAM required dictionary file name is KC-Properties and contains necessary values

used by IUKPF. Since IUKPF is a very simplified particle tracking method, most entries of KC-

Properties were not set.

To explore the possibility of different injection positions and their impact on the deposition results,

the tip of the particle spray injection was placed at various locations. One approach in this regard

was to specify random locations within the entrance region and average the deposition results

among all these random locations. In order to generate random locations for the tip of the injector,

a VTK location generator code was used. Particles were injected within the nostril from a planar

disk region with 1mm diameter; the position of the disk was varied within the nares to define 200

random positions.

Particle injection occurred at a constant velocity. Because of one-way coupled assumption, the

injection volumetric flow rate did not determine anything and was arbitrary. In other words, the

values of initial velocity and number of the particles were utilized only to identify the initial

condition of the particles. The injection location was varied from a little inside the entrance of the

nares to a little after the entrance of the nasal valve region, with these insertion depths varying

approximately in the range of 0.1 to 1.5 cm from the inlet. Figure 3.12 shows the randomly

generated injection disks within the nares.

 50

Figure 3.12 Positions of particle injection at the entrance are shown. Circles show the location and

alignment of the tip of the injector. Centers of circles were randomly chosen and were offset a

minimum of 1mm from the walls. Particles were introduced randomly on the surface of each disk.

The injection half-cone inner and outer angles were set at 0° (+z direction) and 15°. The injection

direction for an individual particle is interpolated between the inner and outer half cone angle

based on the location at which it appears on the injection disk.

Ten thousand particles were injected through each disk, with the particles initial velocity in the +_

direction. Particle injection velocities produced a cone shape with specified inner and outer angles

of 0 and 15 degrees. These parameters were chosen from a subset of the ones used for the realistic

geometry simulations in chapter 1 and they were based on common practice with inhaler devices.

 51

Table 3.3 shows the combination of parameters used for particle tracking simulations in this study.

Because of the iterative process used in designing the idealized geometry, the number of injection

positions was kept low during iteration of the geometry shape; a total of 80 particle tracking

simulations per idealized geometry parametrization were performed. However, for the final

idealized geometry, 4000 simulations were performed. The latter is consistent with the parameter

set used in the realistic geometry study of chapter 1.

Table 3.3 Particle parameters. These are used in idealized geometry particle tracking simulations.

For the validation case the number of particle tracking cases is 4000.

Parameter Number of Parameter Values

Particle diameter 5 {5, 10, 15, 20, 40} microns

Injection cone angle 2 0° inner and 15° outer

Injection direction 1 Upward (+_)

Particle injection velocity 4 0-20 m/s

Position of injection disk

(Only for the validation
case)

200 Random on 1@@ diameter disk

 52

Several Bourne Again Shell (Bash) scripts were developed to detect idle CPU threads for use in

simultaneous particle tracking simulations. The simulations were done in parallel on a local

Beowulf cluster8 which is based on the Network File System (NFS) (Sun Microsystem, USA)

protocol. This cluster contains 20 Threads overclocked at 4.2 GHz, 24 threads 2.4 GHz and 4

threads at 3.5 GHz, for a total of 48 threads. Memory in use was 200 GB. To calculate the regional

deposition, the geometry was divided into the regions of vestibule, valve, turbinates, olfactory,

nasopharynx and outlet. Additionally, the turbinates were subdivided into main wall, rods and

obstacle. The diagram of the full iterative process is shown in Figure 3.13

Figure 3.13 The complete iterative procedure used in the development of the idealized airway.

8 A Beowulf cluster is a cluster of consumer-grade computers that uses Local Area Network (LAN)

protocols to share processing, memory and storage among them.

Geometry �

Manager
Code

(C++, BASH)

BlockMesh

VTK

Geometry � + 1
Wall, Obs, Rods

Flow
Simulation
(OpenFOAM)

Particle
Tracking
Parameters
Exploration
(OpenFOAM)

Evaluate

� ≔ � + 1

 53

3.2.4 Evaluation of the Quality of an Idealized Geometry

In this study the development of the idealized geometry was based on a few iterations that involved

starting with an initial idealized geometry and iteratively distorting this geometry with the aim of

achieving a closer and closer match to average deposition seen in the different regions of the

realistic geometries. In order to evaluate each geometry modification, a norm is needed. For this

purpose, let á be a functional associated with the CFD results and à a functional associated with

the Lagrangian particle tracking fields, â is the functional representing a regional average

deposition matrix, with its rows based on particle diameters and its columns based on particle

initial velocity:

â(ä) = à ãáåç(ä)éè

With the formalism, an objective function can be defined as ê(ä) = ëâ(ä) − âiHkë in which |	. |

denotes a norm, and the optimization problem in design space î devolves to finding ç:

argmin
ä∈î

ê(ç)

The latter equation describes a multi-objective optimization problem; i.e. there is no unified

solution capable of minimizing all components of ê simultaneously. Using the weighted scalarizing

method and Einstein notation, the objective function can be represented as

ê(ö) = õúùûûã@aÇ
ú (ä) − @aÇ

ú

iHk
è
C

T

aür

F

Çür

 54

By assuming õú = 1, the previous expression becomes the sum of ~C norms of the regional

deposition. This value of the norm provides a measure for evaluating whether or not a given

realization of the idealized geometry is close to giving the target values of average deposition in

the realistic geometries.

3.3 Results and Discussion

3.3.1 Monolithic Surface

The main wall of the surface geometry was constructed by arranging skeleton splines. The number

of possible geometries is infinite. The cross sections are homeomorphic in this case. A slight

modification in a control point of a spline results in a smooth change of the surface geometry.

Through iterations over the control points of the main wall, many geometry versions are created.

Figure 3.14 shows one of these geometries that provides reasonable regional deposition values.

Figure 3.15 shows the regional deposition results. Although the overall behaviour is good, the

small particles are not captured in the turbinates. Consequently, the nasopharynx and outlet

experience more particle deposition and escape, respectively. This behaviour contradicts the

average behaviour in the realistic geometries which is shown in the right column of Figure 3.15.

 55

Figure 3.14 The Y-shaped cross sections of the idealized geometry are shown on the left. The

surface of the geometry is shown on the right. This specific geometry is called the monolithic

surface because (1) the geometry is made solely with sequences of blocks in BlockMesh and (2)

the cross sections remain homeomorphic with respect to each other. The cross sections in colors

show the simply-connected behavior of curves in the turbinate region of this geometry.

 56

Figure 3.15. Each row denotes a certain region (in order: Vestibule, Valve, Olfactory, Turbinates,

Nasopharynx, Outlet). The deposition fraction in the monolithic idealized geometry (plots in left

column) and averaged over the realistic geometries (plots in right column) from chapter 1 are

shown. The vertical axis in each plot denotes the particle diameter (5-40 micron) while the

horizontal axes are the particle initial velocities (0-20 m/s). Note that small particles are not well

captured at lower spray velocities by the turbinate region of the idealized geometry in this case.

The color scale is interpolated and shows the deposition fraction (0-1) out of total particles.

 57

3.3.2 Rods

With the intention of capturing more of the small particles, rods were introduced in the turbinates

of the geometry. After careful evaluation of different sizes of rods, a diameter of 0.2 mm was

chosen. Figure 3.16 shows a grid of rods distributed over the idealized geometry aligned on the `

axis. As shown in Figure 3.17, turbinate deposition improved for the small particles. However, too

many mid-sized particles were deposited in the turbinates. This suggests that adding a mechanism

capable of separating the particles by size could be used to improve the regional deposition results.

Figure 3.16 A penultimate version of the idealized geometry is shown. A grid of rods (shown in

the brighter color) is penetrates the turbinate region side. The rods protrude in the x-direction

across the full breadth of the turbinates airway.

 58

Figure 3.17. Each row denotes a certain region (in order: Vestibule, Valve, Olfactory, Turbinates,

Nasopharynx, Outlet). The deposition fraction in the idealized geometry with rods (plots in left

column) and averaged over realistic geometries (plots in right column) are shown. The vertical

axis in each plot denotes the particle diameter (5-40 micron) while the horizontal axes are the

particle initial velocities (0-20 m/s). Note that particle deposition is too great in the turbinates in

this case. The color scale is interpolated and shows the deposition fraction (0-1) out of total

particles.

 59

3.3.3 Virtual Impactor

Two impactor type deposition mechanisms were inspired by observations of the realistic

geometries. In particular, the previously noted obstacle feature (Figure 3.9) had a trivial

equivalence in the complex realistic geometries, and small scale geometric traps for the smaller

particles were mimicked using small rods in the idealized geometry. Adding the obstacle in the

middle of the turbinate region created two paths, resulting in a virtual impactor, while adding the

rods to the major flow branch further improved the regional deposition. Figure 3.18 shows the

regional deposition results for this case. Since the results were a very good match, the same 200

random injection positions at the entrance in the realistic geometries were then applied to this final

geometry. As a result, the deposition matrices9 smoothed further and resulted in nearly identical

turbinate deposition. Figure 3.19 shows the deposition values in the final idealized geometry versus

all realistic geometries. The deposition in the idealized geometry is typically in the middle of the

range of those in the realistic geometries. While certain subjects do have deposition that is

reasonably close to the average of all subjects in various regions, no single subject matches average

deposition accurately in all regions for all parameter values.

For further validation, many of the cases were visualized through animations, which also verified

the explained behaviour of conventional and virtual impactor mechanisms. The animations were

made utilizing OpenFOAM’s ParaFOAM application, an extension of Paraview (Kitware Inc,

USA) visualization software. Paraview is based on VTK.

9 Each average deposition matrix corresponds to a region in the geometry. Rows are particle sizes

and columns are particle initial velocities. There are six deposition matrices for each geometry.

Each matrix has five columns and four rows (twenty components).

 60

Figure 3.18. Each row denotes a certain region (in order: Vestibule, Valve, Olfactory, Turbinates,

Nasopharynx, Outlet). The deposition fraction in the virtual impactor idealized geometry (plots in

left column) and averaged over realistic geometries (plots in right column) are shown. The vertical

axis in each plot denotes the particle diameter (5-40 micron) while the horizontal axes are the

particle initial velocities (0-20 m/s). The color scale is interpolated and shows the deposition

fraction (0-1) out of total particles.

 61

Figure 3.19. Each triple plot in a row denotes a certain region (in order: Vestibule, Valve,

Olfactory, Turbinates, Nasopharynx, Outlet). Each column shows an initial particle velocity (from

left to right 0, 20 and 40 m/s). The color markers show average regional deposition in different

individual realistic subjects (from chapter 1) while the red marker shows the regional deposition

in the final idealized geometry. The vertical axis is the fraction (0-1) of 10000 particles. The data

is averaged over 200 injection locations defined randomly within entrance region.

1-left 1-right 2-left 2-right

3-left 3-right 4-left 4-right

6-left 6-right 7-left 7-right

8-left 8-right

 62

 63

3.3.4 Further Discussion

The largest deposition in the turbinate regions occurs for to intermediate particle sizes. This result

is in agreement with CFD simulations in chapter 1 as well as with the majority of cases studied by

others (Keeler et al. 2015).

(Keeler et al. 2015). Turbinate deposition is also largest for zero spray velocity. This result is

explained by the fact that if the particle is too large, or its velocity is too high, it will impact the

entrance wall due to high inertia. In the opposite case, particles will penetrate and escape the outlet.

Hence the zero-velocity intermediate sized particles are the ones deposited in the turbinate region.

The average olfactory deposition was nearly zero, as expected. This result was previously reported

by previous studies (Kiaee et al. 2018; Xi et al. 2016; Schroeter et al. 2006). Penetration remained

mostly as observed in the average realistic geometries.

Two main impactor mechanisms were necessary to mimic deposition in the turbinate region.

Conventional impaction is the main mechanism responsible for the medium and large particle

deposition occurring at front face and −` side of the obstacle. However, a virtual impactor

mechanism functions at +` the side of the obstacle. A fraction of the remaining small particles

 64

that escaped the obstacle were deposited on the rods on this side. The 0.2 mm diameter chosen for

the rods was near the optimum value for collecting the small particles. Larger diameters (e.g. 1

mm) tended to disturb the flow too much causing particles to follow a path around the larger rods.

On the other hand, smaller rods diameters would make manufacturing more difficult. Furthermore,

the rods’ angle of inclination plays an effective role in collecting more of small particles. The

angles achieve this goal by reducing the rods’ overlap.

3.3.5 Optimization Framework

The overall structure used in this study was part of a numerical optimization framework. The

complete framework was built upon parametric geometries and was successfully tested. The

iterations themselves were performed within this optimization framework. However, because of

numerous local minimums and an extremely expensive objective function that required meshing,

flow simulation and several particle tracking for each evaluation, it was not possible to perform a

successful optimization convergence during the current study. Nevertheless, with the optimization

framework in place, it may be possible to achieve the full optimization loop if enough interactive10

computational resources were made available.

This optimization framework was established using Dakota (Sandia Labs, USA) software. Dakota

is an optimization solver under active development by Sandia National Labs since 1997 and is

10 The computational resource is needed to remain interactive. This is due to the requirement of

manual verifications with regard to the topologic validity. Furthermore, many VTK applications

were modified as soon as a local minimum was passed.

 65

written in Fortran and C++. It provides an interface between solvers and external iterative methods.

Dakota works by setting the input file “dakota.in”.

A vector of design parameters ä was defined. Using the definition of objective function as before,

the constraints were

†ä = Å

° < £ä < §

in which † and £ are the equality and inequality constraint matrices. Furthermore, and ° and § are

lower and upper bound vectors respectively. By using Taylor expansion, a second order Newton

method can be written as

êc•r ≈ 	 êc + ∇	êcß	Δäc +
1

2
Δäc®	©ê	Δäc

in which © is the Hessian of operator on ê. This method requires inversion of the Hessian matrix

at each iteration. Evaluation of ê requires computational resources on the order of teraflops,

resulting in extreme computational cost. Hence, a Quasi-Newtonian method (Hessian-free method)

is beneficial. A general Quasi-Newtonian method follows an approximation of Hessian method

instead. If we denote this estimation as ™, the following constraint needs to be satisfied

äc•r = äc − ™cSr∇êc

Furthermore, the implicit calculation of gradients is also expensive and will therefore not be

requested externally by the optimization procedure. The optimization tool uses a forward

difference method to calculate the gradient vector explicitly. The merit function is the Argaez-

 66

Tapia function. A line search method in this way is called value based and only satisfies the

sufficient decrease condition.

If ê is convex or nearly convex, a reasonable number of iterations would result in convergence.

As noted, the above optimization method was implemented, but did not successfully converge.

3.4 Conclusions

The aim of this study was to use computational methods to develop an idealized nasal airway

geometry capable of mimicking the regional deposition pattern observed in a set of realistic

geometries. Regional deposition in the idealized geometry was found to be in good agreement with

the median of that seen for regional depositions in the realistic geometries. The present idealized

geometry may be as a useful benchtop tool for in vitro research and development of nasal spray

formulations.

 67

Chapter 4: Conclusions

4.1 Summary

This thesis was divided in two parts, with the overarching objective to provide an idealized adult

nasal airway geometry. This geometry was intended to mimic the average regional nasal deposition

pattern in adults using pharmaceutical nasal sprays.

During the first part of the thesis, described in Chapter 2, a comprehensive computational

parameter exploration was performed. Using computer simulations, regional particle deposition

was calculated over a wide range of parameters. These results were substantiated through

comparison with previous experimental and computational studies. A particular focus of Chapter

2 was to explore combinations of parameters that targeted deposition to the olfactory region.

Although with a specific combination of parameters (which included a very localized droplet

injection location) deposition as high as 100 percent was observed in the olfactory region of some

subjects, the average deposition was very low. Furthermore, olfactory deposition was found to be

highly variable between different realistic nasal airway geometries. When averaged over all

injection locations, maximum olfactory deposition ranged over two orders of magnitude between

geometries. This level of intersubject variability in dosing poses a significant obstacle to the

development of nose-to-brain drug delivery devices that target olfactory deposition.

The second part of thesis, described in Chapter 3, was focused on the design and development of

an idealized adult nasal airway geometry. In numerical simulations, this idealized geometry was

able to mimic the average deposition observed in realistic geometries reported in Chapter 2. The

idealized geometry has the potential to be used as a reference geometry in modelling, simulations

 68

and experiments performed using pharmaceutical nasal sprays and other intranasal drug delivery

devices.

4.2 Future Work

Although the thesis work presented herein met the goal of developing an idealized adult nasal

airway geometry for testing pharmaceutical nasal sprays, several aspects might be refined or

explored further in future work. First and foremost, confirmation through in vitro experiments that

deposition in the proposed idealized geometry predicts average deposition in the realistic

geometries is warranted. This confirmation will be an important and necessary step before the

idealized geometry proposed here is adopted for wider testing.

Additionally, although the methodology adopted in Chapter 3 did ultimately result in a satisfactory

idealized geometry (as assessed by numerical simulation), depending solely on qualitative feature

extraction and manual simplification could have resulted in a sub-optimal geometry, especially

when a larger number of subjects is involved. More rigorous methods are available to provide finer

settings within the design space. Gradient-based optimization and artificial neural networks are

both widely utilized for shape optimization in many fields (Bandara et al. 2016; Masters et al.

2016; Kim 2006; Song and Keane 2004; Yildiz et al. 2003; Song et al. 2002). A quasi-Newtonian

method demanding low recourses has also proven robust and affordable (Andrew 2008; Xu and

Zhang 2001). In the present thesis a complete functional optimization framework was built.

Although it did not produce a converged optimization loop, it prepares the ground for future

attempts. The evaluation function in this study was extremely expensive. Furthermore, because

several nonlinear geometric features affected the particle dynamics in realistic airways, several

local minimums were possible. This means the complete iterative process would require extreme

 69

computational power. Nevertheless, there are qualitative observations which could improve the

overly simplified surface, bypass many local traps and potentially converge to the desired optimal

case.

 70

Bibliography

Al-Ghananeem, A.M., Sandefer, E.P., Doll, W.J., Page, R.C., Chang, Y., and Digenis, G.A.
(2008). Gamma scintigraphy for testing bioequivalence: A case study on two cromolyn
sodium nasal spray preparations. Int. J. Pharm., 357(1–2):70–76.

Andrew, G. (2008). Overview of Quasi-Newton optimization methods. Numer. Optim., 1–5.

Bahadur, S. and Pathak, K. (2012). Physicochemical and physiological considerations for efficient
nose-to-brain targeting. Expert Opin Drug Deliv, 9(1):19–31.

Bandara, K., Rüberg, T., and Cirak, F. (2016). Shape optimisation with multiresolution subdivision
surfaces and immersed finite elements. Comput. Methods Appl. Mech. Eng., 300:510–539.

Bates, A.J., Doorly, D.J., Cetto, R., Calmet, H., Gambaruto, A.M., Tolley, N.S., Houzeaux, G.,
and Schroter, R.C. (2015). Dynamics of airflow in a short inhalation. J. R. Soc. Interface,
12(102):20140880.

Below, A., Bickmann, D., and Breitkreutz, J. (2013). Assessing the performance of two dry powder
inhalers in preschool children using an idealized pediatric upper airway model. Int. J. Pharm.,
444(1–2):169–174.

Bousquet, J., Khaltaev, N., Cruz, A.A., Denburg, J., Fokkens, W.J., Togias, A., Zuberbier, T.,
Baena-Cagnani, C.E., Canonica, G.W., Van Weel, C., Agache, I., Aït-Khaled, N., Bachert,
C., Blaiss, M.S., Bonini, S., Boulet, L.P., Bousquet, P.J., Camargos, P., Carlsen, K.H., Chen,
Y., Custovic, A., Dahl, R., Demoly, P., Douagui, H., Durham, S.R., Van Wijk, R.G., Kalayci,
O., Kaliner, M.A., Kim, Y.Y., Kowalski, M.L., Kuna, P., Le, L.T.T., Lemiere, C., Li, J.,
Lockey, R.F., Mavale-Manuel, S., Meltzer, E.O., Mohammad, Y., Mullol, J., Naclerio, R.,
O’Hehir, R.E., Ohta, K., Ouedraogo, S., Palkonen, S., Papadopoulos, N., Passalacqua, G.,
Pawankar, R., Popov, T.A., Rabe, K.F., Rosado-Pinto, J., Scadding, G.K., Simons, F.E.R.,
Toskala, E., Valovirta, E., Van Cauwenberge, P., Wang, D.Y., Wickman, M., Yawn, B.P.,
Yorgancioglu, A., Yusuf, O.M., Zar, H., Annesi-Maesano, I., Bateman, E.D., Kheder, A. Ben,
Boakye, D.A., Bouchard, J., Burney, P., Busse, W.W., Chan-Yeung, M., Chavannes, N.H.,
Chuchalin, A., Dolen, W.K., Emuzyte, R., Grouse, L., Humbert, M., Jackson, C., Johnston,
S.L., Keith, P.K., Kemp, J.P., Klossek, J.M., Larenas-Linnemann, D., Lipworth, B., Malo,
J.L., Marshall, G.D., Naspitz, C., Nekam, K., Niggemann, B., Nizankowska-Mogilnicka, E.,
Okamoto, Y., Orru, M.P., Potter, P., Price, D., Stoloff, S.W., Vandenplas, O., Viegi, G., and
Williams, D. (2008). Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in
collaboration with the World Health Organization, GA2LEN and AllerGen). Allergy Eur. J.
Allergy Clin. Immunol.,.

 71

Byron, P.R., Hindle, M., Lange, C.F., Longest, P.W., McRobbie, D., Oldham, M.J., Olsson, B.,
Thiel, C.G., Wachtel, H., and Finlay, W.H. (2010). In Vivo–In Vitro Correlations: Predicting
Pulmonary Drug Deposition from Pharmaceutical Aerosols. J. Aerosol Med. Pulm. Drug
Deliv., 23(S2):S-59-S-69.

Canada, H. (2006). Pharmaceutical Quality of Inhalation and Nasal Products. Heal. Canada,
2(613).

Chen, J.Z., Katz, I.M., Pichelin, M., Zhu, K., Caillibotte, G., Noga, M.L., Finlay, W.H., and
Martin, A.R. (2017). Comparison of pulsed versus continuous oxygen delivery using realistic
adult nasal airway replicas. Int. J. COPD, 12:2559–2571.

Churchill, S.E., Shackelford, L.L., Georgi, J.N., and Black, M.T. (2004). Morphological variation
and airflow dynamics in the human nose. Am. J. Hum. Biol., 16(6):625–638.

Delvadia, R.R., Longest, P.W., and Byron, P.R. (2012). In Vitro Tests for Aerosol Deposition. I:
Scaling a Physical Model of the Upper Airways to Predict Drug Deposition Variation in
Normal Humans. J. Aerosol Med. Pulm. Drug Deliv., 25(1):32–40.

Djupesland, P.G. (2013). Nasal drug delivery devices: characteristics and performance in a clinical
perspective—a review. Drug Deliv. Transl. Res., 3(1):42–62.

Djupesland, P.G. and Skretting, A. (2012). Nasal Deposition and Clearance in Man: Comparison
of a Bidirectional Powder Device and a Traditional Liquid Spray Pump. J. Aerosol Med.
Pulm. Drug Deliv., 25(5):280–289.

Djupesland, P.G., Skretting, A., Winderen, M., and Holand, T. (2004). Bi-directional nasal
delivery of aerosols can prevent lung deposition. J. Aerosol Med., 17(3):249–59.

Garcia, G.J.M., Tewksbury, E.W., Wong, B.A., and Kimbell, J.S. (2009). Interindividual
Variability in Nasal Filtration as a Function of Nasal Cavity Geometry. J. Aerosol Med. Pulm.
Drug Deliv., 22(2):139–156.

Golshahi, L. and Finlay, W.H. (2012). An Idealized Child Throat that Mimics Average Pediatric
Oropharyngeal Deposition. Aerosol Sci. Technol., 46(5):i–iv.

Hahn, I., Scherer, P.W., and Mozell, M.M. (1993). Velocity profiles measured for airflow through
a large-scale model of the human nasal cavity. J. Appl. Physiol., 75:2273–2287.

Heyder, J. (2004). Deposition of Inhaled Particles in the Human Respiratory Tract and
Consequences for Regional Targeting in Respiratory Drug Delivery. Proc. Am. Thorac. Soc.,
1(4):315–320.

Heyder, J. and Rudolf, G. (1975). Deposition of aerosol particles in the human nose. Inhaled Part,
4 Pt 1:107–126.

 72

Hounam, R.F., Black, A., and Walsh, M. (1971). The deposition of aerosol particles in the
nasopharyngeal region of the human respiratory tract. J. Aerosol Sci., 2(1):47–61.

Hughes, R., Watterson, J., Dickens, C., Ward, D., and Banaszek, A. (2008). Development of a
nasal cast model to test medicinal nasal devices. Proc. Inst. Mech. Eng. Part H-Journal Eng.
Med., 222(H7):1013–1022.

Javaheri, E., Golshahi, L., and Finlay, W.H. (2013). An idealized geometry that mimics average
infant nasal airway deposition. J. Aerosol Sci., 55:137–148.

Kawara, N., Kumita, M., Kurachi, H., Seto, T., Kamba, S., Kondo, T., and Otani, Y. (2016).
Sieving of aerosol particles with metal screens. Aerosol Sci. Technol., 50(6):535–541.

Keeler, J.A., Patki, A., Woodard, C.R., and Frank-Ito, D.O. (2015). A Computational Study of
Nasal Spray Deposition Pattern in Four Ethnic Groups. J. Aerosol Med. Pulm. Drug Deliv.,
28(0):1–14.

Keith, P.K., Desrosiers, M., Laister, T., Schellenberg, R.R., and Waserman, S. (2012). The burden
of allergic rhinitis (AR) in Canada: perspectives of physicians and patients. Allergy Asthma.
Clin. Immunol., 8(1):7.

Keyhani, K., Scherer, P.W., and Mozell, M.M. (1995). Numerical Simulation of Airflow in the
Human Nasal Cavity. J. Biomech. Eng., 117(4):429.

Kiaee, M., Wachtel, H., Noga, M.L., Martin, A.R., and Finlay, W.H. (2018). Regional deposition
of nasal sprays in adults: A wide ranging computational study. Int. j. numer. method. biomed.
eng., 34(5):e2968.

Kim, S. (2006). Gradient-based simulation optimization., in Proceedings - Winter Simulation
Conference, pp. 159–167.

Landahl, H.D. and Black, S. (1947). Penetration of Airborne Particulates through the Human Nose.
J. Ind. Hyg. Toxicol., 29(4):269–77.

Leach, C.L., Kuehl, P.J., Chand, R., and McDonald, J.D. (2015). Nasal Deposition of HFA-
Beclomethasone, Aqueous Fluticasone Propionate and Aqueous Mometasone Furoate in
Allergic Rhinitis Patients. J. Aerosol Med. Pulm. Drug Deliv., 28(5):334–340.

Leach, C.L., Kuehl, P.J., Chand, R., and McDonald, J.D. (2015). Nasal Deposition of HFA-
Beclomethasone, Aqueous Fluticasone Propionate and Aqueous Mometasone Furoate in
Allergic Rhinitis Patients. J. Aerosol Med. Pulm. Drug Deliv., 28(0):1–7.

Lehrer, S. (2014). Nasal NSAIDs for Alzheimer’s Disease. Am. J. Alzheimer’s Dis. Other
Dementias®, 29(5):401–403.

Liu, Y., Johnson, M.R., Matida, E.A., Kherani, S., and Marsan, J. (2009). Creation of a

 73

standardized geometry of the human nasal cavity. J. Appl. Physiol., 106(3):784–795.

Liu, Y., Matida, E.A., and Johnson, M.R. (2010). Experimental measurements and computational
modeling of aerosol deposition in the Carleton-Civic standardized human nasal cavity. J.
Aerosol Sci., 41(6):569–586.

Longest, P.W., Tian, G., Walenga, R.L., and Hindle, M. (2012). Comparing MDI and DPI Aerosol
Deposition Using In Vitro Experiments and a New Stochastic Individual Path (SIP) Model of
the Conducting Airways. Pharm. Res., 29(6):1670–1688.

Masters, D.A., Poole, D.J., Taylor, N.J., Rendall, T., and Allen, C.B. (2016). Impact of Shape
Parameterisation on Aerodynamic Optimisation of Benchmark Problem., in 54th AIAA
Aerospace Sciences Meeting, .

Pardeshi, C.V. and Belgamwar, V.S. (2013). Direct nose to brain drug delivery via integrated nerve
pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert
Opin. Drug Deliv., 10(7):957–972.

Patel, R.G., Garcia, G.J.M., Frank-Ito, D.O., Kimbell, J.S., and Rhee, J.S. (2015). Simulating the
nasal cycle with computational fluid dynamics. Otolaryngol. Head. Neck Surg., 152(2):353–
60.

Pattle, R.E. (1961). The retention of gases and particles in the human nose. C N Davies, Ed. Inhaled
Part. Vapours p,.

Rhee, J.S., Pawar, S.S., Garcia, G.J.M., and Kimbell, J.S. (2011). Toward Personalized Nasal
Surgery Using Computational Fluid Dynamics. Arch. Facial Plast. Surg., 13(5):305.

Rygg, A., Hindle, M., and Longest, P.W. (2016). Linking Suspension Nasal Spray Drug
Deposition Patterns to Pharmacokinetic Profiles: A Proof-of-Concept Study Using
Computational Fluid Dynamics. J. Pharm. Sci., 105(6):1995–2004.

Schreck, S., Sullivan, K.J., Ho, C.M., and Chang, H.K. (1993). Correlations between flow
resistance and geometry in a model of the human nose. J. Appl. Physiol., 75(4):1767–1775.

Schroeter, J.D., Garcia, G.J.M., and Kimbell, J.S. (2010). A computational fluid dynamics
approach to assess interhuman variability in hydrogen sulfide nasal dosimetry. Inhal.
Toxicol., 22(4):277–286.

Schroeter, J.D., Kimbell, J.S., and Asgharian, B. (2006). Analysis of particle deposition in the
turbinate and olfactory regions using a human nasal computational fluid dynamics model. J.
Aerosol Med., 19(3):301–313.

Schroeter, J.D., Kimbell, J.S., Asgharian, B., Tewksbury, E.W., and Singal, M. (2012).
Computational fluid dynamics simulations of submicrometer and micrometer particle
deposition in the nasal passages of a Sprague-Dawley rat. J. Aerosol Sci., 43(1):31–44.

 74

Schroeter, J.D., Tewksbury, E.W., Wong, B.A., and Kimbell, J.S. (2015). Experimental
Measurements and Computational Predictions of Regional Particle Deposition in a Sectional
Nasal Model. J. Aerosol Med. Pulm. Drug Deliv., 28(1):20–29.

Shah, S. a, Dickens, C.J., Ward, D.J., Banaszek, A. a, George, C., and Horodnik, W. (2013). Design
of Experiments to Optimize an In Vitro Cast to Predict Human Nasal Drug Deposition. J.
Aerosol Med. Pulm. Drug Deliv., 26(1):1–9.

Song, W. and Keane, A. (2004). A Study of Shape Parameterisation Methods for Airfoil
Optimisation., in 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, .

Song, W., Keane, A., Rees, J., Bhaskar, A., and Bagnall, S. (2002). Turbine blade fir-tree root
design optimisation using intelligent CAD and finite element analysis. Comput. Struct.,
80(24):1853–1867.

Suman, J.D., Laube, B.L., and Dalby, R. (1999). Comparison of nasal deposition and clearance of
aerosol generated by a nebulizer and an aqueous spray pump. Pharm. Res., 16(10):1648–
1652.

Swift, D.L. (1991). Inspiratory Inertial Deposition of Aerosols in Human Nasal Airway Replicate
Casts: Implication for the Proposed NCRP Lung Model. Radiat. Prot. Dosimetry, 38(1–
3):29–34.

Taylor, D., Radbruch, L., Revnic, J., Torres, L.M., Ellershaw, J.E., and Perelman, M. (2014). A
report on the long-term use of fentanyl pectin nasal spray in patients with recurrent
breakthrough pain. J. Pain Symptom Manage., 47(6):1001–1007.

Tepper, D.E. (2013). Nasal sprays for the treatment of migraine. Headache,.

Tu, J., Inthavong, K., and Ahmadi, G. (2013). The Human Respiratory System. Comput. Fluid
Part. Dyn. Hum. Respir. Syst., 3883.

Wang, D.Y., Lee, H.P., and Gordon, B.R. (2012). Impacts of fluid dynamics simulation in study
of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose
models. Clin. Exp. Otorhinolaryngol., 5(4):181–7.

Warnken, Z.N., Smyth, H.D.C., Watts, A.B., Weitman, S., Kuhn, J.G., and Williams, R.O. (2016).
Formulation and device design to increase nose to brain drug delivery. J. Drug Deliv. Sci.
Technol.,.

Weinhold, I. and Mlynski, G. (2004). Numerical simulation of airflow in the human nose. Eur.
Arch. Oto-Rhino-Laryngology, 261(8):452–455.

Wen, J., Inthavong, K., Tian, Z., Tu, J., Xue, C., and Li, C. (2007). Airflow patterns in both sides
of a realistic human nasal cavity for laminar and turbulent conditions. 16th Australas. Fluid

 75

Mech. Conf., (December):68–74.

Xi, J., Wang, Z., Nevorski, D., White, T., and Zhou, Y. (2017). Nasal and Olfactory Deposition
with Normal and Bidirectional Intranasal Delivery Techniques: In Vitro Tests and Numerical
Simulations. J. Aerosol Med. Pulm. Drug Deliv., 30(2):118–131.

Xi, J., Yuan, J.E., Zhang, Y., Nevorski, D., Wang, Z., and Zhou, Y. (2016). Visualization and
Quantification of Nasal and Olfactory Deposition in a Sectional Adult Nasal Airway Cast.
Pharm. Res., 33(6):1527–1541.

Xu, C. and Zhang, J. (2001). A Survey of Quasi-Newton Equations and Quasi-Newton Methods
for Optimization. Ann. Oper. Res., 103(1–4):213–234.

Yildiz, A.R., Öztürk, N., Kaya, N., and Öztürk, F. (2003). Integrated optimal topology design and
shape optimization using neural networks. Struct. Multidiscip. Optim., 25(4):251–260.

 76

Appendix A: Preprocessing (C++)

 77

1 /*
2 * -----
3 * start of opt_manager
4 * -----
5 */
6
7 /*
8 opt_manager C++ application for postprocessing
9

10 author : milad kiaee darunkola
11
12 Appendix of PhD Thesis
13
14 kiaeedar@ualberta.ca
15
16 -- 2018 --
17 */
18
19 #ifndef GENNEWPOINTS_POINT_H
20 #define GENNEWPOINTS_POINT_H
21
22 #include <cstdio>
23 #include <iostream>
24
25 class Point {
26 private:
27 std::string flag; // only points with postive flags are

considered to be control points
28 double x;
29 double y;
30 double z;
31 public:
32 Point(std::string, double, double, double);
33 double getX();
34 double getY();
35 double getZ();
36 std::string getFlag();
37 void setFlag(std::string);
38 void setX(double);
39 void setY(double);
40 void setZ(double);
41 void print();
42 };
43
44 #endif //GENNEWPOINTS_POINT_H
45
46 #include "Point.h"
47

 78

48 Point::Point (std::string f, double xx, double yy, double
zz) {

49 flag = f;
50 x = xx;
51 y = yy;
52 z = zz;
53 }
54
55 double Point::getX() {
56 return x;
57 }
58
59 double Point::getY() {
60 return y;
61 }
62
63 double Point::getZ() {
64 return z;
65 }
66
67 std::string Point::getFlag() {
68 return flag;
69 }
70
71 void Point::setFlag(std::string f) {
72 flag = f;
73 }
74
75 void Point::setX(double xx){
76 x = xx;
77 }
78
79 void Point::setY(double yy){
80 y = yy;
81 }
82
83 void Point::setZ(double zz){
84 z = zz;
85 }
86
87 void Point::print(){
88 std::cout << "Point: " << x
89 << " " << y
90 << " " << z << std::endl;
91 }
92
93 /

**/

 79

94
95 #ifndef GENNEWPOINTS_PTSLIS_H

96 #define GENNEWPOINTS_PTSLIS_H

97

98 #include <fstream>

99 #include <sstream>

100 #include <utility>

101 #include <vector>

102 #include "Point.h"

103

104 class PtsLis {
105 private:
106 std::string input_file_name;

107 std::string output_file_name;

108 std::vector<Point> points;

109 size_t n_points;

110 //std::vector<BSpline> bsplines;
111 public:
112 PtsLis & operator= (PtsLis);
113 void setInputFileName(std::string);

114 std::string getInputFileName();

115 void setOutputFileName(std::string);

116 std::string getOutputFileName();

117 size_t getNumPoints();

118 void setNumPoints(size_t);

119 //std::vector <BSpline> getBSplines();
120 std::vector <Point> getPoints();

121 void setPoints(std::vector<Point>);

122 //void setBSplines(std::vector<BSpline>);
123 void differOnePoint(size_t, double);

124 void readFile();

125 void printFile();

126 };

127

128 #endif //GENNEWPOINTS_PTSLIS_H
129

130 #include "PtsLis.h"

131

132 PtsLis & PtsLis::operator=(PtsLis A) {
133 input_file_name = A.getInputFileName();

134 output_file_name = A.getOutputFileName();

135 points = A.getPoints();

136 n_points = A.getNumPoints();

137 return *this;
138 }

139

140 void PtsLis::setPoints(std::vector <Point> cps) {

141 points = cps;

 80

142 }
143
144 void PtsLis::setInputFileName(std::string s) {
145 input_file_name = s;
146 }
147
148 std::string PtsLis::getInputFileName() {
149 return input_file_name;
150 }
151
152 void PtsLis::setOutputFileName(std::string s) {
153 output_file_name = s;
154 }
155
156 std::string PtsLis::getOutputFileName() {
157 return output_file_name;
158 }
159
160 size_t PtsLis::getNumPoints() {
161 return n_points;
162 }
163
164 void PtsLis::setNumPoints(size_t n) {
165 n_points = n;
166 }
167
168 void PtsLis::readFile() {
169 std::ifstream myInFile;
170 myInFile.open(input_file_name.c_str());
171 std::string line;
172 std::vector<Point> cps;
173
174 n_points=0;
175 if (myInFile.is_open()) {
176 while (std::getline(myInFile, line)) {
177 //store the lines
178 std::stringstream ss(line);
179 Point tmp_pt("",0,0,0);
180 std::string tmp_f;
181 double x, y, z;
182 ss >> tmp_f >> x >> y >> z;
183 tmp_pt.setX(x);
184 tmp_pt.setY(y);
185 tmp_pt.setZ(z);
186 tmp_pt.setFlag(tmp_f);
187 cps.push_back(tmp_pt);
188 n_points++;
189 }

 81

190 }
191 else {
192 std::cout << "Error! check if the pts.files

can be opened ..."
193 << std::endl;
194 }
195 n_points = cps.size();
196 this->setPoints(cps);
197 myInFile.close();
198 }
199
200 void PtsLis::printFile() {
201 std::ofstream myOutFile;
202 myOutFile.open(output_file_name.c_str());
203 for (size_t i=0; i< points.size(); i++) {
204 myOutFile << points[i].getFlag() << " "
205 << points[i].getX() << " "
206 << points[i].getY() << " "
207 << points[i].getZ() << std::endl;
208 }
209 myOutFile.close();
210 }
211
212 std::vector <Point> PtsLis::getPoints() {
213 return points;
214 }
215
216 void PtsLis::differOnePoint(size_t i, double dx){
217 double xold = points[i].getX();
218 points[i].setX(xold + dx);
219 }
220
221 /

**/
222
223 #ifndef GENNEWPOINTS_RESULTMATRIX_H
224 #define GENNEWPOINTS_RESULTMATRIX_H
225
226 #include <iostream>
227 #include <vector>
228
229 class ResultMatrix {
230 private:
231 size_t m; // number of rows
232 size_t n; // number of columns
233 std::vector< std::vector<double> > a;
234 public:
235 ResultMatrix();

 82

236 ResultMatrix(size_t, size_t);
237 size_t getM();
238 size_t getN();
239 void setM(size_t);
240 void setN(size_t);
241 double getA(size_t, size_t);
242 void setA(size_t, size_t, double);
243 void addToA(size_t, size_t, double);
244 void printA(std::string);
245 void devideABy(double);
246 };
247
248 #endif //GENNEWPOINTS_RESULTMATRIX_H
249
250 #include "ResultMatrix.h"
251
252 ResultMatrix::ResultMatrix() {
253 m=5;
254 n=4;
255 a = std::vector <std::vector <double> > (m,

std::vector<double> (n));
256 }
257
258 ResultMatrix::ResultMatrix(size_t mm, size_t nn) {
259 m = mm;
260 n = nn;
261 a = std::vector <std::vector <double> > (m,

std::vector<double> (n));
262 }
263
264 size_t ResultMatrix::getM() {
265 return m;
266 }
267
268 size_t ResultMatrix::getN() {
269 return n;
270 }
271
272 void ResultMatrix::setM(size_t mm) {
273 m = mm;
274 }
275
276 void ResultMatrix::setN(size_t nn) {
277 n = nn;
278 }
279
280 double ResultMatrix::getA(size_t i, size_t j) {
281 return a[i][j];

 83

282 }
283
284 void ResultMatrix::setA(size_t i, size_t j, double b) {
285 a[i][j] = b;
286 }
287
288 void ResultMatrix::addToA(size_t i, size_t j, double b) {
289 a[i][j] += b;
290 }
291
292 void ResultMatrix::printA(std::string name) {
293 std::cout << " - - - " << std::endl;
294 std::cout << name << " matrix = " << std::endl;
295 for (size_t i=0; i<m; i++){
296 for (size_t j=0; j<n; j++){
297 std::cout << " " << a[i][j];
298 }
299 std::cout << std::endl;
300 }
301 std::cout << " - - - " << std::endl;
302 }
303
304 void ResultMatrix::devideABy(double k) {
305
306 for (size_t i=0; i<m; i++){
307 for (size_t j=0; j<n; j++){
308 a[i][j] = a[i][j]/k;
309 }
310 }
311
312 }
313
314 /

**/
315
316 /*
317 * regions: 1-Vestibule 2-Valve 3-Olfactory 4-Anterior 5-

Posterior 6-Naso
318 * fractions
319 */
320
321 #ifndef GENNEWPOINTS_DEPRESULT_H
322 #define GENNEWPOINTS_DEPRESULT_H
323
324 #include "PtsLis.h"
325 #include "ResultMatrix.h"
326
327 class DepResult {

 84

328 private:
329
330 // number of position of particle injector tip
331 size_t n_injection_points;
332
333 // average contains 6 regional deposition matrices
334 std::vector< ResultMatrix > regional_deps;
335
336 std::vector< ResultMatrix > ref_regional_deps_ave;
337
338 // contains 6 regional reference deposition matrices
339 std::vector< std::vector< ResultMatrix > >

ref_regional_deps;
340
341 std::vector< ResultMatrix >

ref_sub1_right_regional_deps;
342 std::vector< ResultMatrix >

ref_sub2_right_regional_deps;
343 std::vector< ResultMatrix >

ref_sub3_right_regional_deps;
344 std::vector< ResultMatrix >

ref_sub4_right_regional_deps;
345 std::vector< ResultMatrix >

ref_sub6_right_regional_deps;
346 std::vector< ResultMatrix >

ref_sub7_right_regional_deps;
347 std::vector< ResultMatrix >

ref_sub8_right_regional_deps;
348
349 std::vector< ResultMatrix > ref_sub1_left_regional_deps;
350 std::vector< ResultMatrix > ref_sub2_left_regional_deps;
351 std::vector< ResultMatrix > ref_sub3_left_regional_deps;
352 std::vector< ResultMatrix > ref_sub4_left_regional_deps;
353 std::vector< ResultMatrix > ref_sub6_left_regional_deps;
354 std::vector< ResultMatrix > ref_sub7_left_regional_deps;
355 std::vector< ResultMatrix > ref_sub8_left_regional_deps;
356
357 double norm;
358 double norm_turb;
359
360 double norm_sub1_left;
361 double norm_sub2_left;
362 double norm_sub3_left;
363 double norm_sub4_left;
364 double norm_sub6_left;
365 double norm_sub7_left;
366 double norm_sub8_left;
367

 85

368 double norm_sub1_right;
369 double norm_sub2_right;
370 double norm_sub3_right;
371 double norm_sub4_right;
372 double norm_sub6_right;
373 double norm_sub7_right;
374 double norm_sub8_right;
375
376 size_t num_particle;
377 public:
378 DepResult();
379 DepResult &operator=(DepResult);
380 std::vector<ResultMatrix> getRegionalDep();
381 std::vector<ResultMatrix> getRefRegionalDep();
382 //std::vector<ResultMatrix> getRefRegionalDep_sub4();
383 void setNumberOfInjectionPoints(size_t);
384 void readFiles(std::string, std::vector<ResultMatrix>&);
385 void readRefFiles();
386 void findnAdd(std::vector<std::string>, size_t, size_t);
387 void readLogFiles(std::string);
388 void setNumParticle(size_t);
389 size_t getNumParticle();
390 void calc_norm();
391 void calc_norm_turb();
392 void calc_norm_subs();
393 void addToNormFile(std::string);
394 void addToTurbNormFile(std::string);
395 void print_norms();
396 void print();
397 void test();
398 void printRegDepFiles();
399 void printMinMaxDepFiles(int);
400 void printDepFilesFixVel(int);
401 };
402
403
404 #endif //GENNEWPOINTS_DEPRESULT_H
405
406 #include "DepResult.h"
407 #include "math.h"
408 #include <stdlib.h>
409
410 DepResult::DepResult() {
411 size_t REFS=14;
412 size_t N = 6;
413 regional_deps = std::vector<ResultMatrix> (N);
414 ref_regional_deps_ave = std::vector<ResultMatrix> (N);
415

 86

416 ref_sub1_right_regional_deps = std::vector<
ResultMatrix > (N);

417 ref_sub2_right_regional_deps = std::vector<
ResultMatrix > (N);

418 ref_sub3_right_regional_deps = std::vector<
ResultMatrix > (N);

419 ref_sub4_right_regional_deps = std::vector<
ResultMatrix > (N);

420 ref_sub6_right_regional_deps = std::vector<
ResultMatrix > (N);

421 ref_sub7_right_regional_deps = std::vector<
ResultMatrix > (N);

422 ref_sub8_right_regional_deps = std::vector<
ResultMatrix > (N);

423
424 ref_sub1_left_regional_deps = std::vector< ResultMatrix

> (N);
425 ref_sub2_left_regional_deps = std::vector< ResultMatrix

> (N);
426 ref_sub3_left_regional_deps = std::vector< ResultMatrix

> (N);
427 ref_sub4_left_regional_deps = std::vector< ResultMatrix

> (N);
428 ref_sub6_left_regional_deps = std::vector< ResultMatrix

> (N);
429 ref_sub7_left_regional_deps = std::vector< ResultMatrix

> (N);
430 ref_sub8_left_regional_deps = std::vector< ResultMatrix

> (N);
431
432 num_particle = 10000;
433 norm = 0;
434 norm_turb = 0;
435
436 norm_sub1_left = 0;
437 norm_sub2_left = 0;
438 norm_sub3_left = 0;
439 norm_sub4_left = 0;
440 norm_sub6_left = 0;
441 norm_sub7_left = 0;
442 norm_sub8_left = 0;
443
444 norm_sub1_right = 0;
445 norm_sub2_right = 0;
446 norm_sub3_right = 0;
447 norm_sub4_right = 0;
448 norm_sub6_right = 0;
449 norm_sub7_right = 0;

 87

450 norm_sub8_right = 0;
451 }
452
453 // read .txt files logs
454 void DepResult::readFiles(std::string name,

std::vector<ResultMatrix>& M) {
455
456 std::vector <std::string> rgs = {"vesti", "valve",

"olf", "turbinates",
457 "naso", "outlet"};
458 std::cout << "reading " << name << " files " <<

std::endl;
459
460 ResultMatrix totalTraced;
461
462 for (size_t m=0; m<5; m++){
463 for (size_t n=0; n<4; n++){
464 totalTraced.setA(m, n, 0);
465 }
466 }
467
468 for (size_t i = 0; i < 6; i++){ /* loop over regions */
469
470 std::ifstream f;
471 std::string s;
472 std::ostringstream oss;
473 oss << name.c_str() << rgs[i] << ".txt";
474 s = oss.str();
475
476 f.open(s.c_str());
477
478 double x0, x1, x2, x3;
479 std::string ln;
480
481 size_t l = 0;
482
483 while (f.is_open() && l<5) {
484 getline(f, ln);
485 std::stringstream ss(ln);
486 ss >> x0 >> x1 >> x2 >> x3;
487 x0 *= 100; //change percentage to number of

particles out of 10000
488 x1 *= 100;
489 x2 *= 100;
490 x3 *= 100;
491 M[i].setA(l, 0, x0);
492 M[i].setA(l, 1, x1);
493 M[i].setA(l, 2, x2);

 88

494 M[i].setA(l, 3, x3);
495
496
497 totalTraced.addToA(l, 0, x0);
498 totalTraced.addToA(l, 1, x1);
499 totalTraced.addToA(l, 2, x2);
500 totalTraced.addToA(l, 3, x3);
501
502 l++;
503 }
504 f.close();
505 }
506
507 for (size_t i=0; i<6; i++){
508
509 for (size_t m=0; m<5; m++){
510 for (size_t n=0; n<4; n++){
511
512 //totalTraced.getA(m, n);
513 double tmp = M[i].getA(m,

n)/10000.0;
514 std::cout << "region " << rgs[i]

<<
515 " index [" << m << ", " << n <<
516 "] of ref deviding by total " <<

tmp << std::endl;
517 M[i].setA(m, n, tmp);
518 //M[i].printA("refread_update");
519 }
520 }
521
522 }
523 }
524
525 void DepResult::readRefFiles(){
526 std::cout << "####################### " << std::endl;
527 readFiles("ref_", ref_regional_deps_ave);
528
529 readFiles("ref_sub1_right_",

ref_sub1_right_regional_deps);
530 readFiles("ref_sub2_right_",

ref_sub2_right_regional_deps);
531 readFiles("ref_sub3_right_",

ref_sub3_right_regional_deps);
532 readFiles("ref_sub4_right_",

ref_sub4_right_regional_deps);
533 readFiles("ref_sub6_right_",

ref_sub6_right_regional_deps);

 89

534 readFiles("ref_sub7_right_",
ref_sub7_right_regional_deps);

535 readFiles("ref_sub8_right_",
ref_sub8_right_regional_deps);

536 readFiles("ref_sub1_left_",
ref_sub1_left_regional_deps);

537 readFiles("ref_sub2_left_",
ref_sub2_left_regional_deps);

538 readFiles("ref_sub3_left_",
ref_sub3_left_regional_deps);

539 readFiles("ref_sub4_left_",
ref_sub4_left_regional_deps);

540 readFiles("ref_sub6_left_",
ref_sub6_left_regional_deps);

541 readFiles("ref_sub7_left_",
ref_sub7_left_regional_deps);

542 readFiles("ref_sub8_left_",
ref_sub8_left_regional_deps);

543
544 ref_regional_deps.push_back

(ref_sub1_right_regional_deps);
545 ref_regional_deps.push_back

(ref_sub2_right_regional_deps);
546 ref_regional_deps.push_back

(ref_sub3_right_regional_deps);
547 ref_regional_deps.push_back

(ref_sub4_right_regional_deps);
548 ref_regional_deps.push_back

(ref_sub6_right_regional_deps);
549 ref_regional_deps.push_back

(ref_sub7_right_regional_deps);
550 ref_regional_deps.push_back

(ref_sub8_right_regional_deps);
551 ref_regional_deps.push_back

(ref_sub1_left_regional_deps);
552 ref_regional_deps.push_back

(ref_sub2_left_regional_deps);
553 ref_regional_deps.push_back

(ref_sub3_left_regional_deps);
554 ref_regional_deps.push_back

(ref_sub4_left_regional_deps);
555 ref_regional_deps.push_back

(ref_sub6_left_regional_deps);
556 ref_regional_deps.push_back

(ref_sub7_left_regional_deps);
557 ref_regional_deps.push_back

(ref_sub8_left_regional_deps);
558

 90

559 /*
560 for (size_t m=0; m<5; m++){
561 for(size_t n=0; n<4; n++){
562 for (size_t region=0; region<6;

region++){
563 for (size_t ref=0; ref<14;

ref++){
564

ref_regional_deps_ave[
565

region
566

].addToA(
567

m, n,
568 ref_regional_deps.at(ref).at

(region).getA(m, n)
569

);
570 }
571 }
572 }
573 }
574
575 for (size_t region=0; region<6; region++){
576 ref_regional_deps_ave[region].devideABy(14);
577 }
578 */
579 std::cout << "#######################" << std::endl;
580 }
581
582 void DepResult::findnAdd(std::vector<std::string> SV,

size_t m, size_t n) {
583
584 int v;
585 char c;
586 std::string S;
587 std::vector <std::string> rgs = {"VESTIBULE", "VALVE",

"OLF",
588 "TURBINATES", "RODS",

"OBS",
589 "NASO", "OUTLET"};
590 std::vector <std::string> actualRgs = {"VESTIBULE",

"VALVE", "OLF",
591 "TURBINATES",

"NASO", "OUTLET"};
592 int index=0;
593

 91

594 /* for each region loop through deposition log file */
595
596 double totalTraced = 0;
597
598 std::vector<ResultMatrix> tmpResult;
599
600 for (size_t i=0; i<6; i++){
601 ResultMatrix tmpMat;
602 tmpResult.push_back(tmpMat);
603 for (size_t m=0; m<5; m++){
604 for (size_t n=0; n<4; n++){
605 tmpResult[i].setA(m, n, 0);
606 if (i == 5){
607 tmpResult[i].setA(m, n, 10000);
608 }
609 }
610 }
611 }
612
613 for (int j = 0; j < 8; j++) { // regions
614 for (int k = SV.size() - 1; k > 0; k--) { // lines
615
616 if (SV[k].find(rgs[j].c_str()) !=

std::string::npos) {
617
618 int ind = 0;
619
620 if (j == 7) {
621 ind = k + 1;
622 } else {
623 ind = k + 2;
624 }
625
626 std::stringstream ss(SV[ind]);
627 ss >> c >> S >> c >> S;
628 std::stringstream ss2(S);
629 std::getline(ss2, S, ',');
630 v = atoi(S.c_str());
631
632 /* set to 10,000 ususally, varies
633 based of simulation (set in main) */
634 double dn = double(num_particle);
635
636 double dv = double(v);
637
638 totalTraced += dv;
639
640 /* only be used if other normalization is

 92

not used */
641 //dv = double(v) / dn;
642
643 if (j == 4 || j == 5) {
644 index --;
645 }
646
647 double tempValue = -1 * dv;
648
649 if (index != 5) {
650
651 tmpResult[5].addToA(m, n,

tempValue);
652
653 /* adds the stick counts to regdep

matrix */
654 tmpResult[index].addToA(m, n, dv);
655
656 }
657
658 index ++;
659 break;
660 }
661 }
662 }
663
664 // this should go to the superfunction
665 /* only be used if no other normalization
666 is used in this or the caller function */
667 for (int j = 0; j < 6; j++) {
668 //std::cout << "deviding by total traced " <<

totalTraced << std::endl;
669 double tmp = tmpResult[j].getA(m, n) / 10000.0;//

double(totalTraced);
670
671 regional_deps[j].addToA(m, n, tmp);
672
673 //std::cout << "matrix " << actualRgs[j] <<

std::endl;
674 regional_deps[j].printA("log_update");
675 }
676 }
677
678 void DepResult::readLogFiles(std::string logName) {
679
680 std::vector<double> u0 = {0, 5, 10, 20};
681 std::vector<double> diam = {5e-06, 1e-05, 1.5e-05,

2e-05, 4e-05};

 93

682 std::ifstream f;

683 //std::cout << "reading log files .." << std::endl;
684

685 for (size_t i=1; i<=n_injection_points; i++) {
686

687 for (size_t m=0; m<5; m++) {
688 for (size_t n=0; n<4; n++) {
689

690 std::string ln, fileName;

691 std::vector<std::string> lns;

692 std::ostringstream oss;

693 oss << "_" << i << "_" << diam[m] << "_" <<

u0[n];

694 fileName = logName + oss.str();

695 f.open(fileName.c_str());

696

697 if (f.is_open())
698 while (std::getline(f, ln))
699 lns.push_back(ln);

700

701 //std::cout << "file " << fileName << " ...
" << std::endl;

702

703 findnAdd(lns, m, n);

704 f.close();

705

706 }

707 }

708 }

709

710 // calculate fraction over all injection positions
711 for (int j = 0; j < 6; j++) {
712 std::cout << "deviding by " << n_injection_points

<< std::endl;

713 regional_deps[j].devideABy(double

(n_injection_points));

714 }

715

716

717 std::cout << "#######################" << std::endl;

718 }

719

720 void DepResult::calc_norm() {

721 size_t m = regional_deps[0].getM();

722 size_t n = regional_deps[0].getN();

723

724 //homogeneous scalarization using ferobenous as
objective function

 94

725 for (size_t q=0; q<regional_deps.size(); q++) {
726 for (size_t i = 0; i < m; i++) {
727 for (size_t j = 0; j < n; j++) {
728 norm += pow(regional_deps[q].getA(i, j)
729 - ref_regional_deps_ave[q].getA(i,

j), 2);
730 }
731 }
732 }
733 norm = sqrt(norm);
734 norm = norm / 6 / (4 * 5);
735 }
736
737 void DepResult::calc_norm_turb() {
738 size_t m = regional_deps[0].getM();
739 size_t n = regional_deps[0].getN();
740 //homogeneous scalarization using ferobenous as

objective function
741 size_t q = 3;
742 for (size_t i = 0; i < m; i++) {
743 for (size_t j = 0; j < n; j++) {
744 norm_turb += pow(regional_deps[q].getA(i, j)
745 - ref_regional_deps_ave[q].getA(i,

j), 2);
746 }
747 }
748 norm_turb = sqrt(norm_turb);
749 norm_turb = norm_turb / (4 * 5);
750 }
751
752 void DepResult::calc_norm_subs() {
753 size_t m = regional_deps[0].getM();
754 size_t n = regional_deps[0].getN();
755
756 //homogeneous scalarization using ferobenous as

objective function
757 for (size_t q=0; q<regional_deps.size(); q++) {
758 for (size_t i = 0; i < m; i++) {
759 for (size_t j = 0; j < n; j++) {
760 norm_sub1_right += pow

(ref_sub1_right_regional_deps[q].getA(i, j)
761 -

ref_regional_deps_ave[q].getA(i, j), 2);
762 norm_sub2_right += pow

(ref_sub2_right_regional_deps[q].getA(i, j)
763 -

ref_regional_deps_ave[q].getA(i, j), 2);
764 norm_sub3_right += pow

 95

(ref_sub3_right_regional_deps[q].getA(i, j)
765 -

ref_regional_deps_ave[q].getA(i, j), 2);
766 norm_sub4_right += pow

(ref_sub4_right_regional_deps[q].getA(i, j)
767 -

ref_regional_deps_ave[q].getA(i, j), 2);
768 norm_sub6_right += pow

(ref_sub6_right_regional_deps[q].getA(i, j)
769 -

ref_regional_deps_ave[q].getA(i, j), 2);
770 norm_sub7_right += pow

(ref_sub7_right_regional_deps[q].getA(i, j)
771 -

ref_regional_deps_ave[q].getA(i, j), 2);
772 norm_sub8_right += pow

(ref_sub8_right_regional_deps[q].getA(i, j)
773 -

ref_regional_deps_ave[q].getA(i, j), 2);
774
775 norm_sub1_left += pow

(ref_sub1_left_regional_deps[q].getA(i, j)
776 -

ref_regional_deps_ave[q].getA(i, j), 2);
777 norm_sub2_left += pow

(ref_sub2_left_regional_deps[q].getA(i, j)
778 -

ref_regional_deps_ave[q].getA(i, j), 2);
779 norm_sub3_left += pow

(ref_sub3_left_regional_deps[q].getA(i, j)
780 -

ref_regional_deps_ave[q].getA(i, j), 2);
781 norm_sub4_left += pow

(ref_sub4_left_regional_deps[q].getA(i, j)
782 -

ref_regional_deps_ave[q].getA(i, j), 2);
783 norm_sub6_left += pow

(ref_sub6_left_regional_deps[q].getA(i, j)
784 -

ref_regional_deps_ave[q].getA(i, j), 2);
785 norm_sub7_left += pow

(ref_sub7_left_regional_deps[q].getA(i, j)
786 -

ref_regional_deps_ave[q].getA(i, j), 2);
787 norm_sub8_left += pow

(ref_sub8_left_regional_deps[q].getA(i, j)
788 -

ref_regional_deps_ave[q].getA(i, j), 2);

 96

789 }
790 }
791 }
792 norm_sub1_right = sqrt(norm_sub1_right);
793 norm_sub1_right = norm_sub1_right / 6 / (4*5);
794 norm_sub2_right = sqrt(norm_sub2_right);
795 norm_sub2_right = norm_sub2_right / 6 / (4*5);
796 norm_sub3_right = sqrt(norm_sub3_right);
797 norm_sub3_right = norm_sub3_right / 6 / (4*5);
798 norm_sub4_right = sqrt(norm_sub4_right);
799 norm_sub4_right = norm_sub4_right / 6 / (4*5);
800 norm_sub6_right = sqrt(norm_sub6_right);
801 norm_sub6_right = norm_sub6_right / 6 / (4*5);
802 norm_sub7_right = sqrt(norm_sub7_right);
803 norm_sub7_right = norm_sub7_right / 6 / (4*5);
804 norm_sub8_right = sqrt(norm_sub8_right);
805 norm_sub8_right = norm_sub8_right / 6 / (4*5);
806
807 norm_sub1_left = sqrt(norm_sub1_left);
808 norm_sub1_left = norm_sub1_left / 6 / (4*5);
809 norm_sub2_left = sqrt(norm_sub2_left);
810 norm_sub2_left = norm_sub2_left / 6 / (4*5);
811 norm_sub3_left = sqrt(norm_sub3_left);
812 norm_sub3_left = norm_sub3_left / 6 / (4*5);
813 norm_sub4_left = sqrt(norm_sub4_left);
814 norm_sub4_left = norm_sub4_left / 6 / (4*5);
815 norm_sub6_left = sqrt(norm_sub6_left);
816 norm_sub6_left = norm_sub6_left / 6 / (4*5);
817 norm_sub7_left = sqrt(norm_sub7_left);
818 norm_sub7_left = norm_sub7_left / 6 / (4*5);
819 norm_sub8_left = sqrt(norm_sub8_left);
820 norm_sub8_left = norm_sub8_left / 6 / (4*5);
821 }
822
823 void DepResult::addToNormFile(std::string K) {
824
825 // write down to the result.out file which is for the

dakota code
826 std::ofstream dakf; //dakota file
827 dakf.open(K.c_str(), std::fstream::app);
828 calc_norm();
829 std::ostringstream oss;
830 oss << "norm";
831 std::string s = oss.str();
832 dakf << norm << " " << s << std::endl;
833 dakf.close();
834
835 // write appending norm.tmp file for future analysis

 97

836 std::ofstream f;
837 f.open("norm.tmp", std::fstream::app);
838 f << norm << std::endl;
839 f.close();
840 }
841
842 void DepResult::addToTurbNormFile(std::string K) {
843
844 // write down to the result.out file which is for the

dakota code
845 std::ofstream dakf; //dakota file
846 dakf.open(K.c_str(), std::fstream::app);
847 calc_norm_turb();
848 std::ostringstream oss;
849 oss << "norm";
850 std::string s = oss.str();
851 dakf << norm_turb << " " << s << std::endl;
852 dakf.close();
853
854 // write appending norm.tmp file for future analysis
855 std::ofstream f;
856 f.open("norm.tmp", std::fstream::app);
857 f << norm_turb << std::endl;
858 f.close();
859 }
860
861 void DepResult::print_norms(){
862 std::cout << "----------" << std::endl;
863 calc_norm_subs();
864
865 std::cout << "Current geometry error is <<" << 100*norm
866 << " %>> of total <<" << num_particle
867 << ">> particles" << std::endl;
868 std::cout << "Subject 1 left error is <<" <<

100*norm_sub1_left
869 << " %>> of total <<" << num_particle
870 << ">> praticles" << std::endl;
871 std::cout << "Subject 2 left error is <<" <<

100*norm_sub2_left
872 << " %>> of total <<" << num_particle
873 << ">> praticles" << std::endl;
874 std::cout << "Subject 3 left error is <<" <<

100*norm_sub3_left
875 << " %>> of total <<" << num_particle
876 << ">> praticles" << std::endl;
877 std::cout << "Subject 4 left error is <<" <<

100*norm_sub4_left
878 << " %>> of total <<" << num_particle

 98

879 << ">> praticles" << std::endl;
880 std::cout << "Subject 6 left error is <<" <<

100*norm_sub6_left
881 << " %>> of total <<" << num_particle
882 << ">> praticles" << std::endl;
883 std::cout << "Subject 7 left error is <<" <<

100*norm_sub7_left
884 << " %>> of total <<" << num_particle
885 << ">> praticles" << std::endl;
886 std::cout << "Subject 8 left error is <<" <<

100*norm_sub8_left
887 << " %>> of total <<" << num_particle
888 << ">> praticles" << std::endl;
889
890 std::cout << "Subject 1 right error is <<" <<

100*norm_sub1_right
891 << " %>> of total <<" << num_particle
892 << ">> praticles" << std::endl;
893 std::cout << "Subject 2 right error is <<" <<

100*norm_sub2_right
894 << " %>> of total <<" << num_particle
895 << ">> praticles" << std::endl;
896 std::cout << "Subject 3 right error is <<" <<

100*norm_sub3_right
897 << " %>> of total <<" << num_particle
898 << ">> praticles" << std::endl;
899 std::cout << "Subject 4 right error is <<" <<

100*norm_sub4_right
900 << " %>> of total <<" << num_particle
901 << ">> praticles" << std::endl;
902 std::cout << "Subject 6 right error is <<" <<

100*norm_sub6_right
903 << " %>> of total <<" << num_particle
904 << ">> praticles" << std::endl;
905 std::cout << "Subject 7 right error is <<" <<

100*norm_sub7_right
906 << " %>> of total <<" << num_particle
907 << ">> praticles" << std::endl;
908 std::cout << "Subject 8 right error is <<" <<

100*norm_sub8_right
909 << " %>> of total <<" << num_particle
910 << ">> praticles" << std::endl;
911
912 std::cout << "----------" << std::endl;
913 }
914
915 void DepResult::test(){
916

 99

917 std::cout << "this is a test: " << std::endl;
918 std::string s = "ref sub4";
919
920 for (size_t i=0; i<6; i++)
921 ref_sub4_left_regional_deps[i].printA(s);
922
923 s = "ref";
924
925 for (size_t i=0; i<6; i++)
926 ref_regional_deps_ave[i].printA(s);
927
928 std::cout << "end of test" << std::endl;
929 }
930
931 void DepResult::printRegDepFiles(){
932 std::ofstream f;
933 std::vector <std::string> rgs = {"vesti.txt",

"valve.txt", "olf.txt",
934 "turbinates.txt",

"naso.txt",
935 "outlet.txt"};
936 for (size_t i=0; i<6; i++){
937 regional_deps[i].printA("Average deposition in " +

rgs[i]);
938 f.open(rgs[i].c_str());
939 for (size_t m=0; m<5; m++){
940 for (size_t n=0; n<4; n++){
941 f << regional_deps[i].getA(m, n) << " ";
942 }
943 f << std::endl;
944 }
945 f.close();
946 }
947 }
948
949 void DepResult::printMinMaxDepFiles(int velIndex){
950 // prints a file for a specific velocity with this

format:
951 // diameter deposition min max
952 std::ofstream f;
953 std::vector <std::string> rgs = {"vestiEr.txt",

"valveEr.txt",
954 "olfEr.txt" ,

"turbinatesEr.txt",
955 "nasoEr.txt",

"outletEr.txt"};
956
957 for (size_t region=0; region<6; region++){

 100

958
959 std::string s(rgs[region]);
960 f.open(s.c_str());
961 f << "0 0 0 0" << std::endl;
962
963 for (size_t diameter=0; diameter<5; diameter

++){
964
965 double min = ref_regional_deps.at

(0).at(region).
966 getA

(diameter, velIndex);
967 double max = ref_regional_deps.at

(0).at(region).
968 getA

(diameter, velIndex);
969
970 for (size_t ref=1; ref<14; ref++){
971 double tmp =

ref_regional_deps.at(ref).
972 at(region).getA

(diameter, velIndex) ;
973
974 if (min > tmp) {
975 min = tmp;
976 }
977 if (max < tmp) {
978 max = tmp;
979 }
980
981 }
982
983 f << diameter+1 << " " <<

regional_deps[region].
984 getA(diameter, velIndex)
985 << " " << min << " " << max;
986 f << std::endl;
987 }
988
989 f.close();
990 }
991 }
992
993 void DepResult::printDepFilesFixVel(int velIndex){
994 // prints a file for a specific velocity with this

format:
995 // diameter deposition min max
996 std::ofstream f;

 101

997 std::vector <std::string> rgs = { "vesti", "valve",
"olf" ,

998 "turbinates",
"naso", "outlet" };

999 std::vector<double> diam = { 5e-06, 1e-05, 1.5e-05,
2e-05, 4e-05 };

1000 std::vector<double> diam_micron = { 5, 10, 15, 20,
40 };

1001
1002 for (size_t region=0; region<6; region++){
1003
1004 std::string s = rgs[region] ;
1005 s.append("vel");
1006 s.append(std::to_string(velIndex));
1007 s.append(".txt");
1008 f.open(s.c_str());
1009 //f << "" << std::endl;
1010
1011 for (size_t diameter=0; diameter<5; diameter

++){
1012
1013 for (size_t ref=0; ref<14; ref++){
1014 double tmp =

ref_regional_deps.at(ref).
1015 at(region).getA

(diameter, velIndex) ;
1016 f << diam_micron[diameter]

<< " " << tmp
1017 <<

" 1" << std::endl;
1018
1019 }
1020
1021 f << diam_micron[diameter] << " "
1022 << regional_deps

[region].getA(diameter, velIndex)
1023 <<

" 2" << std::endl;
1024 f << std::endl;
1025 }
1026
1027 f.close();
1028 }
1029 }
1030
1031 std::vector <ResultMatrix> DepResult::getRegionalDep() {
1032 return regional_deps;
1033 }

 102

1034
1035 std::vector <ResultMatrix> DepResult::getRefRegionalDep() {
1036 return ref_regional_deps_ave;
1037 }
1038
1039 void DepResult::setNumberOfInjectionPoints(size_t n) {
1040 n_injection_points = n;
1041 }
1042
1043 void DepResult::setNumParticle(size_t n) {
1044 num_particle = n;
1045 }
1046
1047 size_t DepResult::getNumParticle() {
1048 return num_particle;
1049 }
1050
1051 /

**/
1052
1053 #include "PtsLis.h"
1054 #include "DepResult.h"
1055 #include <cmath>
1056
1057 int main(int argc, char* argv[]) {
1058
1059 std::string input = argv[1];
1060 if (input == "append_norm")
1061 {
1062 std::cout << "appending norm" << std::endl;
1063 std::string s = argv[2];
1064 DepResult d;
1065 size_t numPoints = 200;
1066 d.setNumberOfInjectionPoints(numPoints);
1067
1068 std::cout << "Reading Reference Files .. " <<

std::endl;
1069 d.readRefFiles(); //reads the reference values
1070 std::cout << "Reading Reference Files Done" <<

std::endl;
1071
1072 std::cout << "Reading Log Files .. " << std::endl;
1073 d.readLogFiles("plog");
1074 std::cout << "Reading Log Files Done" << std::endl;
1075
1076 d.addToNormFile(s);
1077 d.print_norms();
1078 d.printRegDepFiles();

 103

1079
1080 d.printMinMaxDepFiles(0); //velocity index
1081
1082 d.printDepFilesFixVel(0); // print all vel based

dep files
1083 d.printDepFilesFixVel(2);
1084 d.printDepFilesFixVel(3);
1085 }
1086
1087 else if (input == "append_norm_turb")
1088 {
1089 std::cout << "appending norm" << std::endl;
1090 std::string s = argv[2];
1091 DepResult d;
1092 size_t numPoints = 4;
1093 d.setNumberOfInjectionPoints(numPoints);
1094 d.readRefFiles(); //reads the reference values
1095 d.readLogFiles("plog");
1096 d.addToNormFile(s);
1097 // d.print_norms();
1098 d.printRegDepFiles();
1099 // d.test();
1100 } else {
1101 std::cout << "unknown input argument." << std::endl;
1102 }
1103
1104 return 0;
1105 }
1106
1107 /*
1108 * -----
1109 * end of opt_manager
1110 * -----
1111 */

 104

Appendix B: Visualization Toolkit (VTK)

 105

1 /**
2 ** start of VTK codes
3 **/
4 /*
5 Several VTK codes for different functions
6 to execute choose a main method and include headers
7 to create a suitable object. Operations include:
8 closeClip, closeAtFeature, fillHoles, flipNormals
9 pointsInside, girdSTL, puncher, scaleSTL

10
11 version of code: 3.0
12
13 Author: Milad Kiaee Darunkola kiaeedar@ualberta.ca
14 Appendix to Thesis
15
16 */
17
18 #include <vtkVersion.h>
19 #include <vtkSmartPointer.h>
20
21 #include <vtkClipDataSet.h>
22 #include <vtkImplicitPolyDataDistance.h>
23 #include <vtkConeSource.h>
24 #include <vtkPointData.h>
25 #include <vtkUnstructuredGrid.h>
26 #include <vtkFloatArray.h>
27 #include <vtkRectilinearGrid.h>
28 #include <vtkPolyDataMapper.h>
29 #include <vtkProperty.h>
30 #include <vtkActor.h>
31 #include <vtkCamera.h>
32 #include <vtkRectilinearGridGeometryFilter.h>
33 #include <vtkDataSetMapper.h>
34 #include <vtkRenderer.h>
35 #include <vtkRenderWindow.h>
36 #include <vtkRenderWindowInteractor.h>
37 #include <vtkSTLReader.h>
38 #include <vtkSTLWriter.h>
39 #include <vtkXMLPolyDataReader.h>
40 #include <vtkXMLPolyDataWriter.h>
41 #include <vtkPLYWriter.h>
42 #include <vtkPolyDataWriter.h>
43 #include <vtkDataSetWriter.h>
44 #include <vtkUnstructuredGridGeometryFilter.h>
45 #include <vtkDataSetSurfaceFilter.h>
46 #include <vtkCubeSource.h>
47 #include <vtkSphereSource.h>
48 #include <vtkTableBasedClipDataSet.h>

 106

49 #include <vtkTriangleFilter.h>
50 #include <map>
51
52 #include <sstream>
53 #include <vector>
54 #include <stdlib.h> /* srand, rand */
55 #include <time.h> /* time */
56
57 #include <vtkCleanPolyData.h>
58 #include <vtkAppendPolyData.h>
59 #include <vtkAppendFilter.h>
60 #include <vtkDelaunay2D.h>
61 #include <vtkConnectivityFilter.h>
62 #include <vtkPolyDataConnectivityFilter.h>
63 #include <vtkSelectionNode.h>
64 #include <vtkInformation.h>
65 #include <vtkFillHolesFilter.h>
66
67 #include <vtkTransformPolyDataFilter.h>
68 #include <vtkTransform.h>
69 #include <vtkTransformPolyDataFilter.h>
70
71
72 int main (int argc, char *argv[])
73 {
74 std::cout << "argc = " << argc << std::endl;
75 // Create polydata to slice the grid with.
76 // In this case, use a cone. This could
77 // be any polydata including a stl file.
78
79 // PolyData to process
80 std::string input_name1(argv[1]);
81 std::cout << "Reading stl file : " << input_name1 <<

std::endl;
82 vtkSmartPointer<vtkSTLReader> stlReader1 =
83 vtkSmartPointer<vtkSTLReader>::New();
84 stlReader1->SetFileName(input_name1.c_str());
85 stlReader1->Update();
86 vtkSmartPointer<vtkPolyData> pd1;
87 pd1 = stlReader1->GetOutput();
88
89 // Implicit function that will be used to slice the mesh
90 vtkSmartPointer<vtkImplicitPolyDataDistance>

implicitPolyDataDistance =
91 vtkSmartPointer<vtkImplicitPolyDataDistance>::New();
92 implicitPolyDataDistance->SetInput(pd1);
93
94 // PolyData to process

 107

95 std::string input_name2(argv[2]);
96 std::cout << "Reading stl file : " << input_name2 <<

std::endl;
97 vtkSmartPointer<vtkSTLReader> stlReader2 =
98 vtkSmartPointer<vtkSTLReader>::New();
99 stlReader2->SetFileName(input_name2.c_str());

100 stlReader2->Update();
101 vtkSmartPointer<vtkPolyData> pd2;
102 pd2 = stlReader2->GetOutput();
103
104 // Create an array to hold distance information
105 vtkSmartPointer<vtkFloatArray> signedDistances =
106 vtkSmartPointer<vtkFloatArray>::New();
107 signedDistances->SetNumberOfComponents(1);
108 signedDistances->SetName("SignedDistances");
109
110 double extra = -0.0005;
111
112 if (argc > 4){
113 extra = 0.0005;
114 }
115
116 // Evaluate the signed distance function at all of the

grid points
117 for (vtkIdType pointId = 0; pointId < pd2-

>GetNumberOfPoints(); ++pointId)
118 {
119 double p[3];
120 pd2->GetPoint(pointId, p);
121 double signedDistance = implicitPolyDataDistance-

>EvaluateFunction(p) + extra;
122 signedDistances->InsertNextValue(signedDistance);
123 }
124
125 // Add the SignedDistances to the grid
126 pd2->GetPointData()->SetScalars(signedDistances);
127
128 // Use vtkClipDataSet to slice the grid with the polydata
129 vtkSmartPointer<vtkTableBasedClipDataSet> clipper =
130 vtkSmartPointer<vtkTableBasedClipDataSet>::New();
131
132 clipper->SetInputData(pd2);
133 if (argc > 4){
134 std::cout << "InsideOut is ON." << std::endl;
135 clipper->InsideOutOn();
136 }
137 clipper->SetValue(0.00);
138 //clipper->SetOutputPointsPrecision(20);

 108

139 clipper->GenerateClippedOutputOn();

140 clipper->Update();

141

142 /*
143 vtkSmartPointer<vtkUnstructuredGridGeometryFilter> uggf =
144 vtkSmartPointer<vtkUnstructuredGridGeometryFilter>::New

();
145 uggf->SetInputData(clipper->GetOutput());
146 uggf->Update();
147 */
148
149 vtkSmartPointer<vtkDataSetSurfaceFilter> dssf =

150 vtkSmartPointer<vtkDataSetSurfaceFilter>::New();

151 dssf->SetInputData(clipper->GetOutput());

152 dssf->Update();

153

154 vtkSmartPointer<vtkTriangleFilter> tf =

155 vtkSmartPointer<vtkTriangleFilter>::New();

156 tf->SetInputData(dssf->GetOutput());

157 tf->Update();

158

159 std::string outname(argv[3]);

160

161 /*
162 std::string outPly = outname + ".ply";
163 // write the detected boundary edges
164 vtkSmartPointer<vtkXMLPolyDataWriter> writer
165 = vtkSmartPointer<vtkXMLPolyDataWriter>::New();
166 writer->SetInputConnection(tf->GetOutputPort());
167 writer->SetFileName(outPly.c_str());
168 writer->Write();
169 */
170
171 std::string outSTL = outname;

172 vtkSmartPointer<vtkSTLWriter> sw2

173 = vtkSmartPointer<vtkSTLWriter>::New();

174 sw2->SetFileName(outSTL.c_str());

175 std::cout << "writing stl .. " << std::endl;

176 sw2->SetInputData(tf->GetOutput());

177 sw2->Write();

178

179 // **
180 // Uncomment to Generate a report
181 /*
182 vtkIdType numberOfCells = clipper->GetOutput()-

>GetNumberOfCells();
183 std::cout << "------------------------" << std::endl;
184 std::cout << "The clipped dataset(inside) contains a " <<

 109

std::endl
185 << clipper->GetOutput()->GetClassName()
186 << " that has " << numberOfCells << " cells" <<

std::endl;
187 typedef std::map<int,int> CellContainer;
188 CellContainer cellMap;
189 for (vtkIdType i = 0; i < numberOfCells; i++)
190 {
191 cellMap[clipper->GetOutput()->GetCellType(i)]++;
192 }
193
194 CellContainer::const_iterator it = cellMap.begin();
195 while (it != cellMap.end())
196 {
197 std::cout << "\tCell type "
198 << vtkCellTypes::GetClassNameFromTypeId(it-

>first)
199 << " occurs " << it->second << " times." <<

std::endl;
200 ++it;
201 }
202
203 numberOfCells = clipper->GetClippedOutput()-

>GetNumberOfCells();
204 std::cout << "------------------------" << std::endl;
205 std::cout << "The clipped dataset(outside) contains a " <<

std::endl
206 << clipper->GetClippedOutput()->GetClassName()
207 << " that has " << numberOfCells << " cells" <<

std::endl;
208 typedef std::map<int,int> OutsideCellContainer;
209 CellContainer outsideCellMap;
210 for (vtkIdType i = 0; i < numberOfCells; i++)
211 {
212 outsideCellMap[clipper->GetClippedOutput()->GetCellType

(i)]++;
213 }
214
215 it = outsideCellMap.begin();
216 while (it != outsideCellMap.end())
217 {
218 std::cout << "\tCell type "
219 << vtkCellTypes::GetClassNameFromTypeId(it-

>first)
220 << " occurs " << it->second << " times." <<

std::endl;
221 ++it;
222 }

 110

223 */
224
225 return EXIT_SUCCESS;
226 }
227
228 int main (int argc, char *argv[])
229 {
230 // PolyData to process
231 std::string inputName1(argv[1]);
232 std::cout << "Reading stl file : " << inputName1 <<

std::endl;
233 vtkSmartPointer<vtkSTLReader> stlReader1 =
234 vtkSmartPointer<vtkSTLReader>::New();
235 stlReader1->SetFileName(inputName1.c_str());
236 stlReader1->Update();
237 vtkSmartPointer<vtkPolyData> polyData1;
238 polyData1 = stlReader1->GetOutput();
239
240 // PolyData to process
241 std::string inputName2(argv[2]);
242 std::cout << "Reading stl file : " << inputName2 <<

std::endl;
243 vtkSmartPointer<vtkSTLReader> stlReader2 =
244 vtkSmartPointer<vtkSTLReader>::New();
245 stlReader2->SetFileName(inputName2.c_str());
246 stlReader2->Update();
247 vtkSmartPointer<vtkPolyData> polyData2;
248 polyData2 = stlReader2->GetOutput();
249
250 // ********
251 vtkSmartPointer<vtkFeatureEdges> boundaryEdges1 =
252 vtkSmartPointer<vtkFeatureEdges>::New();
253 boundaryEdges1->SetInputData(polyData1);
254 boundaryEdges1->BoundaryEdgesOn();
255 boundaryEdges1->FeatureEdgesOff();
256 boundaryEdges1->NonManifoldEdgesOff();
257 boundaryEdges1->ColoringOff();
258 boundaryEdges1->Update();
259
260 vtkSmartPointer<vtkFeatureEdges> boundaryEdges2 =
261 vtkSmartPointer<vtkFeatureEdges>::New();
262 boundaryEdges2->SetInputData(polyData2);
263 boundaryEdges2->BoundaryEdgesOn();
264 boundaryEdges2->FeatureEdgesOff();
265 boundaryEdges2->NonManifoldEdgesOff();
266 boundaryEdges2->ColoringOff();
267 boundaryEdges2->Update();
268

 111

269 // ********
270
271 vtkSmartPointer<vtkPolyDataConnectivityFilter>

connectivityFilter1 =
272

vtkSmartPointer<vtkPolyDataConnectivityFilter>::New();
273 connectivityFilter1->SetInputData(boundaryEdges1-

>GetOutput());
274 connectivityFilter1-

>SetExtractionModeToSpecifiedRegions();
275 connectivityFilter1->AddSpecifiedRegion(0);
276 connectivityFilter1->Update();
277
278
279
280 vtkSmartPointer<vtkPolyDataConnectivityFilter>

connectivityFilter2 =
281

vtkSmartPointer<vtkPolyDataConnectivityFilter>::New();
282 connectivityFilter2->SetInputData(boundaryEdges2-

>GetOutput());
283 connectivityFilter2-

>SetExtractionModeToSpecifiedRegions();
284 connectivityFilter2->AddSpecifiedRegion(0);
285 connectivityFilter2->Update();
286
287 // *********
288
289 vtkSmartPointer<vtkCleanPolyData> cleanPolyData1 =
290 vtkSmartPointer<vtkCleanPolyData>::New();
291 cleanPolyData1->SetInputData(connectivityFilter1-

>GetOutput());
292 cleanPolyData1->Update();
293
294 // Write the file
295 vtkSmartPointer<vtkXMLPolyDataWriter> writer1 =
296 vtkSmartPointer<vtkXMLPolyDataWriter>::New();
297 writer1->SetFileName("test1.vtp");
298 writer1->SetInputData(cleanPolyData1->GetOutput());
299 // Optional - set the mode. The default is binary.
300 //writer->SetDataModeToBinary();
301 //writer->SetDataModeToAscii();
302 writer1->Write();
303
304 vtkSmartPointer<vtkCleanPolyData> cleanPolyData2 =
305 vtkSmartPointer<vtkCleanPolyData>::New();
306 cleanPolyData2->SetInputData(connectivityFilter2-

>GetOutput());

 112

307 cleanPolyData2->Update();
308
309 // Write the file
310 vtkSmartPointer<vtkXMLPolyDataWriter> writer2 =
311 vtkSmartPointer<vtkXMLPolyDataWriter>::New();
312 writer2->SetFileName("test2.vtp");
313 writer2->SetInputData(cleanPolyData2->GetOutput());
314 // Optional - set the mode. The default is binary.
315 //writer->SetDataModeToBinary();
316 //writer->SetDataModeToAscii();
317 writer2->Write();
318
319 // ********
320
321 vtkSmartPointer<vtkAppendPolyData>

appendPolyDataFilter =
322 vtkSmartPointer<vtkAppendPolyData>::New();
323 appendPolyDataFilter->AddInputData(cleanPolyData1-

>GetOutput());
324 appendPolyDataFilter->AddInputData(cleanPolyData2-

>GetOutput());
325 appendPolyDataFilter->Update();
326
327 // ********
328
329 vtkSmartPointer<vtkDelaunay2D> delauny =
330 vtkSmartPointer<vtkDelaunay2D>::New();
331 delauny->SetInputData(appendPolyDataFilter->GetOutput

());
332 delauny->SetProjectionPlaneMode

(VTK_BEST_FITTING_PLANE);
333 delauny->Update();
334
335 /*
336 std::ostringstream ss;
337 std::string out (argv[1]);
338 ss << out << ".stl";
339 out = ss.str();
340
341 std::string name1(out);
342 vtkSmartPointer<vtkSTLWriter> writer =
343 vtkSmartPointer<vtkSTLWriter>::New();
344 writer1->SetFileName(name1.c_str());
345 std::cout << "writing .. " << std::endl;
346 writer->SetInputData(delauny->GetOutput());
347 writer->Write();
348
349 */

 113

350 return EXIT_SUCCESS;
351 }
352
353 int main(int argc, char *argv[])
354 {
355 // defaults to be changed
356 std::string input_name(argv[1]);
357 std::cout << "filling holes of : " << input_name <<

std::endl;
358 // read two stls
359 vtkSmartPointer<vtkSTLReader> sr =

vtkSmartPointer<vtkSTLReader>::New();
360 sr->SetFileName(input_name.c_str());
361 sr->Update();;
362 // store then in polydata files
363 vtkSmartPointer<vtkPolyData> input;
364 input = sr->GetOutput(); //or try shallowcopy
365
366 vtkSmartPointer<vtkFillHolesFilter> fhf =

vtkSmartPointer<vtkFillHolesFilter>::New();
367 fhf->SetInputData(input);
368
369 fhf->SetHoleSize(0.1);
370
371 // Make the triangle windong order consistent
372 vtkSmartPointer<vtkPolyDataNormals> normals =

vtkSmartPointer<vtkPolyDataNormals>::New();
373 normals->SetInputConnection(fhf->GetOutputPort());
374 normals->ConsistencyOn();
375 normals->SplittingOff();
376 normals->Update();
377
378 // Restore the original normals
379 normals->GetOutput()->GetPointData()->SetNormals(input-

>GetPointData()->GetNormals());
380
381 vtkSmartPointer<vtkDataSetSurfaceFilter> sf =

vtkSmartPointer<vtkDataSetSurfaceFilter>::New();
382 sf->SetInputConnection(fhf->GetOutputPort());
383 sf->Update();
384
385 // stl writer
386 std::cout << "fill holes: stl writer starting .. " <<

std::endl;
387 vtkSmartPointer<vtkSTLWriter> sw =

vtkSmartPointer<vtkSTLWriter>::New();
388 sw->SetFileName(argv[2]);
389 sw->SetInputConnection(sf->GetOutputPort());

 114

390 sw->SetFileTypeToBinary();
391 std::cout << "fill holes: writing .. " << std::endl;
392 sw->Write();
393
394 return EXIT_SUCCESS;
395 }
396
397 int main (int argc, char *argv[])
398 {
399 std::cout << "grid std: usuage: ./obj input ox oy oz dy dz

ny nz" << std::endl;
400
401 std::string input_name_1 = argv[1];
402
403 vtkSmartPointer<vtkSTLReader> sr_1 =
404 vtkSmartPointer<vtkSTLReader>::New();
405 std::string in (input_name_1 + ".stl");
406 sr_1->SetFileName(input_name_1.c_str());
407 sr_1->Update();
408
409 // convert unstructured grid to polydata
410 vtkSmartPointer<vtkDataSetSurfaceFilter> sf =
411 vtkSmartPointer<vtkDataSetSurfaceFilter>::New();
412 sf->SetInputData(sr_1->GetOutput());
413 sf->Update();
414
415
416 ///////
417
418 double ox = atof (argv[2]);
419 double oy = atof (argv[3]);
420 double oz = atof (argv[4]);
421
422 double dy = atof (argv[5]);//0.01;
423 double dz = atof (argv[6]);
424 int n = atoi(argv[7]);
425 int m = atoi(argv[8]);
426
427 vtkSmartPointer<vtkAppendPolyData> af =
428 vtkSmartPointer<vtkAppendPolyData>::New();
429
430 for (int i=0; i<n; i++){
431 for (int j=0; j<m; j++){
432
433 vtkSmartPointer<vtkTransform> translation =
434 vtkSmartPointer<vtkTransform>::New();
435 translation->Translate(0 + ox - 0.3*j*dz , i*dy + oy,

j*dz + oz);

 115

436
437 vtkSmartPointer<vtkTransformPolyDataFilter>

transformFilter =
438 vtkSmartPointer<vtkTransformPolyDataFilter>::New();
439 transformFilter->SetInputConnection(sf->GetOutputPort

());
440 transformFilter->SetTransform(translation);
441 transformFilter->Update();
442
443 af->AddInputData(transformFilter->GetOutput());
444 af->Update();
445 }
446 }
447
448 vtkSmartPointer<vtkSTLWriter> sw =
449 vtkSmartPointer<vtkSTLWriter>::New();
450 sw->SetFileName("RODS.stl");
451 sw->SetInputData(af->GetOutput());
452 sw->SetFileTypeToBinary();
453 sw->Write();
454
455 return EXIT_SUCCESS;
456 }
457
458 void Other();
459 void Sphere();
460 void Cone();
461 void Ellipsoid();
462 void Cylinder();
463 void HyperboloidOneSheet();
464 void HyperboloidTwoSheets();
465 void HyperbolicParaboloid();
466 void EllipticParaboloid();
467
468 void PlotFunction(vtkQuadric* quadric, double value);
469
470
471 int main (int, char *[])
472 {
473
474 Cylinder();
475
476 return 0;
477 }
478
479 void Cylinder()
480 {
481 // create the quadric function definition

 116

482 vtkSmartPointer<vtkQuadric> quadric =
vtkSmartPointer<vtkQuadric>::New();

483 quadric->SetCoefficients(1,1,0,0,0,0,0,0,0,0);
484
485 // F(x,y,z) = a0*x^2 + a1*y^2 + a2*z^2 + a3*x*y + a4*y*z +

a5*x*z + a6*x + a7*y + a8*z + a9
486 // F(x,y,z) = 1*x^2 + 1*y^2
487
488 PlotFunction(quadric, 1);
489 }
490
491 void PlotFunction(vtkQuadric* quadric, double value)
492 {
493
494 // sample the quadric function
495 vtkSmartPointer<vtkSampleFunction> sample =

vtkSmartPointer<vtkSampleFunction>::New();
496 sample->SetSampleDimensions(25,25,1000);
497 sample->SetImplicitFunction(quadric);
498 //double xmin = 0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1;
499 double xmin = -1, xmax=1, ymin=-1, ymax=1, zmin=0,

zmax=200;
500 //double xmin = -10, xmax=10, ymin=-10, ymax=10, zmin=-10,

zmax=10;
501 sample->SetModelBounds(xmin, xmax, ymin, ymax, zmin, zmax);
502
503 // Create five surfaces F(x,y,z) = constant between range

specified
504 /*
505 vtkContourFilter *contours = vtkContourFilter::New();
506 contours->SetInput(sample->GetOutput());
507 contours->GenerateValues(5, 0.0, 1.2);
508 */
509
510 //create the 0 isosurface
511 vtkSmartPointer<vtkContourFilter> contours =

vtkSmartPointer<vtkContourFilter>::New();
512 contours->SetInputConnection(sample->GetOutputPort());
513 contours->GenerateValues(1, value, value);
514
515 // write the detected boundary edges
516 vtkSmartPointer<vtkSTLWriter> writer =

vtkSmartPointer<vtkSTLWriter>::New();
517 writer->SetInputConnection(contours->GetOutputPort());
518 writer->SetFileName("kin.stl");
519 writer->Write();
520
521 }

 117

522
523 int main (int argc, char *argv[])
524 {
525 std::cout << "argc = " << argc << std::endl;
526
527 // PolyData to process
528 std::string input_name1(argv[1]);
529 std::cout << "Reading stl file : " << input_name1 <<

std::endl;
530 vtkSmartPointer<vtkSTLReader> stlReader1 =
531 vtkSmartPointer<vtkSTLReader>::New();
532 stlReader1->SetFileName(input_name1.c_str());
533 stlReader1->Update();
534 vtkSmartPointer<vtkPolyData> pd1;
535 pd1 = stlReader1->GetOutput();
536
537 // Implicit function that will be used to slice the mesh
538 vtkSmartPointer<vtkImplicitPolyDataDistance>

implicitPolyDataDistance =
539 vtkSmartPointer<vtkImplicitPolyDataDistance>::New();
540 implicitPolyDataDistance->SetInput(pd1);
541
542 // generate random points inside a box around the

vestibule and valve
543 // random points should be inside a cube of center (0.00

0.008 0.015)
544 // and cube has length x=0.02 y=0.03 z=0.03
545 srand(time(NULL)); // initialize random seed
546 double lX = 0.02;
547 double lY = 0.03;
548 double lZ = 0.03;
549 double centX = 0.0;
550 double centY = 0.008;
551 double centZ = 0.015;
552
553 double sX = centX - lX/2;
554 double sY = centY - lY/2;
555 double sZ = centZ - lZ/2;
556
557 std::ofstream pointsFile;
558 pointsFile.open("injectionPoistions.txt");
559 int count = 0;
560 int evaluation = 0;
561
562 while (count < 200) {
563
564 std::cout << "evaluating " << evaluation << " .. "

<< std::endl;

 118

565
566 double randX = ((double) rand() / (RAND_MAX)); //

random number between zero and one
567 double randY = ((double) rand() / (RAND_MAX));
568 double randZ = ((double) rand() / (RAND_MAX));
569
570 double x = sX + randX*lX;
571 double y = sY + randY*lY;
572 double z = sZ + randZ*lZ;
573
574 std::cout << x << " " << y << " " << z << std::endl;
575 double p[3];
576 p[0] = x;
577 p[1] = y;
578 p[2] = z;
579
580 double signedDistance = implicitPolyDataDistance-

>EvaluateFunction(p);
581
582 if (signedDistance < -0.001){
583 // add this point to the point list
584 std::cout << "this point is inside! " <<

std::endl;
585 pointsFile << x << " " << y << " " << z <<

std::endl;
586 count ++;
587 }
588
589 evaluation ++;
590
591 }
592 // **
593 return EXIT_SUCCESS;
594 }
595
596 int main (int argc, char *argv[])
597 {
598 std::cout << "grid std: usuage: ./obj input ox oy oz dy dz

ny nz" << std::endl;
599
600 std::string input_name_1 = argv[1];
601
602 vtkSmartPointer<vtkSTLReader> sr_1 =
603 vtkSmartPointer<vtkSTLReader>::New();
604 std::string in (input_name_1 + ".stl");
605 sr_1->SetFileName(input_name_1.c_str());
606 sr_1->Update();
607

 119

608 // convert unstructured grid to polydata
609 vtkSmartPointer<vtkDataSetSurfaceFilter> sf =
610 vtkSmartPointer<vtkDataSetSurfaceFilter>::New();
611 sf->SetInputData(sr_1->GetOutput());
612 sf->Update();
613
614
615 ///////
616
617 double scale = atof (argv[2]);
618
619 vtkSmartPointer<vtkTransform> translation =
620 vtkSmartPointer<vtkTransform>::New();
621 translation->Scale(1 , scale, scale);
622
623 vtkSmartPointer<vtkTransformPolyDataFilter>

transformFilter =
624 vtkSmartPointer<vtkTransformPolyDataFilter>::New();
625 transformFilter->SetInputConnection(sf->GetOutputPort());
626 transformFilter->SetTransform(translation);
627 transformFilter->Update();
628
629 vtkSmartPointer<vtkSTLWriter> sw =
630 vtkSmartPointer<vtkSTLWriter>::New();
631 sw->SetFileName(argv[3]);
632 sw->SetInputData(transformFilter->GetOutput());
633 sw->SetFileTypeToBinary();
634 sw->Write();
635
636 return EXIT_SUCCESS;
637 }
638
639 int main (int argc, char *argv[])
640 {
641 // PolyData to process
642 std::string inputName1(argv[1]);
643 std::cout << "Reading stl file : " << inputName1 <<

std::endl;
644 vtkSmartPointer<vtkSTLReader> stlReader1 =
645 vtkSmartPointer<vtkSTLReader>::New();
646 stlReader1->SetFileName(inputName1.c_str());
647 stlReader1->Update();
648 vtkSmartPointer<vtkPolyData> polyData1;
649 polyData1 = stlReader1->GetOutput();
650
651 // PolyData to process
652 std::string inputName2(argv[2]);
653 std::cout << "Reading stl file : " << inputName2 <<

 120

std::endl;
654 vtkSmartPointer<vtkSTLReader> stlReader2 =
655 vtkSmartPointer<vtkSTLReader>::New();
656 stlReader2->SetFileName(inputName2.c_str());
657 stlReader2->Update();
658 vtkSmartPointer<vtkPolyData> polyData2;
659 polyData2 = stlReader2->GetOutput();
660
661 // ********
662 vtkSmartPointer<vtkFeatureEdges> boundaryEdges1 =
663 vtkSmartPointer<vtkFeatureEdges>::New();
664 boundaryEdges1->SetInputData(polyData1);
665 boundaryEdges1->BoundaryEdgesOn();
666 boundaryEdges1->FeatureEdgesOff();
667 boundaryEdges1->NonManifoldEdgesOff();
668 boundaryEdges1->ColoringOff();
669 boundaryEdges1->Update();
670
671 vtkSmartPointer<vtkFeatureEdges> boundaryEdges2 =
672 vtkSmartPointer<vtkFeatureEdges>::New();
673 boundaryEdges2->SetInputData(polyData2);
674 boundaryEdges2->BoundaryEdgesOn();
675 boundaryEdges2->FeatureEdgesOff();
676 boundaryEdges2->NonManifoldEdgesOff();
677 boundaryEdges2->ColoringOff();
678 boundaryEdges2->Update();
679
680 // ********
681
682 vtkSmartPointer<vtkPolyDataConnectivityFilter>

connectivityFilter1 =
683

vtkSmartPointer<vtkPolyDataConnectivityFilter>::New();
684 connectivityFilter1->SetInputData(boundaryEdges1-

>GetOutput());
685 connectivityFilter1-

>SetExtractionModeToSpecifiedRegions();
686 connectivityFilter1->AddSpecifiedRegion(0);
687 connectivityFilter1->Update();
688
689
690
691 vtkSmartPointer<vtkPolyDataConnectivityFilter>

connectivityFilter2 =
692

vtkSmartPointer<vtkPolyDataConnectivityFilter>::New();
693 connectivityFilter2->SetInputData(boundaryEdges2-

>GetOutput());

 121

694 connectivityFilter2-
>SetExtractionModeToSpecifiedRegions();

695 connectivityFilter2->AddSpecifiedRegion(0);
696 connectivityFilter2->Update();
697
698 // *********
699
700 vtkSmartPointer<vtkCleanPolyData> cleanPolyData1 =
701 vtkSmartPointer<vtkCleanPolyData>::New();
702 cleanPolyData1->SetInputData(connectivityFilter1-

>GetOutput());
703 cleanPolyData1->Update();
704
705 // Write the file
706 vtkSmartPointer<vtkXMLPolyDataWriter> writer1 =
707 vtkSmartPointer<vtkXMLPolyDataWriter>::New();
708 writer1->SetFileName("test1.vtp");
709 writer1->SetInputData(cleanPolyData1->GetOutput());
710 // Optional - set the mode. The default is binary.
711 //writer->SetDataModeToBinary();
712 //writer->SetDataModeToAscii();
713 writer1->Write();
714
715 vtkSmartPointer<vtkCleanPolyData> cleanPolyData2 =
716 vtkSmartPointer<vtkCleanPolyData>::New();
717 cleanPolyData2->SetInputData(connectivityFilter2-

>GetOutput());
718 cleanPolyData2->Update();
719
720 // Write the file
721 vtkSmartPointer<vtkXMLPolyDataWriter> writer2 =
722 vtkSmartPointer<vtkXMLPolyDataWriter>::New();
723 writer2->SetFileName("test2.vtp");
724 writer2->SetInputData(cleanPolyData2->GetOutput());
725 // Optional - set the mode. The default is binary.
726 //writer->SetDataModeToBinary();
727 //writer->SetDataModeToAscii();
728 writer2->Write();
729
730 // ********
731
732 vtkSmartPointer<vtkAppendPolyData>

appendPolyDataFilter =
733 vtkSmartPointer<vtkAppendPolyData>::New();
734 appendPolyDataFilter->AddInputData(cleanPolyData1-

>GetOutput());
735 appendPolyDataFilter->AddInputData(cleanPolyData2-

>GetOutput());

 122

736 appendPolyDataFilter->Update();
737
738 // ********
739
740 vtkSmartPointer<vtkDelaunay2D> delauny =
741 vtkSmartPointer<vtkDelaunay2D>::New();
742 delauny->SetInputData(appendPolyDataFilter->GetOutput

());
743 delauny->SetProjectionPlaneMode

(VTK_BEST_FITTING_PLANE);
744 delauny->Update();
745
746 /*
747 std::ostringstream ss;
748 std::string out (argv[1]);
749 ss << out << ".stl";
750 out = ss.str();
751
752 std::string name1(out);
753 vtkSmartPointer<vtkSTLWriter> writer =
754 vtkSmartPointer<vtkSTLWriter>::New();
755 writer1->SetFileName(name1.c_str());
756 std::cout << "writing .. " << std::endl;
757 writer->SetInputData(delauny->GetOutput());
758 writer->Write();
759
760 */
761 return EXIT_SUCCESS;
762 }
763
764 int main(int argc, char * argv[])
765 {
766 std::cout << "reversing normals .." << std::endl;
767 // PolyData to process
768 std::string input_name1(argv[1]);
769 std::cout << "reading stl file : " << input_name1 <<

std::endl;
770 vtkSmartPointer<vtkSTLReader> stlReader1 =
771 vtkSmartPointer<vtkSTLReader>::New();
772 stlReader1->SetFileName(input_name1.c_str());
773 stlReader1->Update();
774 vtkSmartPointer<vtkPolyData> pd1;
775 pd1 = stlReader1->GetOutput();
776
777
778 vtkSmartPointer<vtkReverseSense> reverseSense =
779 vtkSmartPointer<vtkReverseSense>::New();
780 reverseSense->SetInputData(pd1);

 123

781 reverseSense->ReverseNormalsOn();

782 reverseSense->Update();

783

784 /////
785 std::string outname(argv[2]);

786 std::string outSTL = outname;

787 vtkSmartPointer<vtkSTLWriter> sw2 =

vtkSmartPointer<vtkSTLWriter>::New();

788 sw2->SetFileName(outSTL.c_str());

789 std::cout << "writing stl .. " << std::endl;

790 sw2->SetInputData(reverseSense->GetOutput());

791 sw2->Write();

792

793 return EXIT_SUCCESS;
794 }

795

796 /**

797 ** end of VTK codes

798 **/

799

 124

Appendix C: Scripts (BASH)

 125

1 #!/bin/bash
2
3 ##
4 # main script which starts the optimization iteration
5 # this script is called by dakota as part of evaluation

process
6 # the "|| true" to ensure iteration will not stop for minor

errors
7 ##
8
9 set -e

10 set -o errexit
11
12 echo "--"
13 echo "MAIN-dak ..."
14 echo "--"
15
16 START_LINE_NUM=1;
17 N_LINES=1;
18 N_LINES_OBS=14;
19 N_LINES_RODS=1;
20 MODE=1;
21
22 # addresses are absolute to ensure the correctness in alpha

phase
23 # they should be changed to relative for robustness
24
25 HOME_DIR="/media/milad/ssd0/master_folder/Optimization"
26 FLUID_DIR="$HOME_DIR/Fluid"
27 PARTICLE_DIR="$HOME_DIR/Particle"
28
29 # method from dakota for text parsing
30 #creating init for main geom
31 dprepro $1 INITIATE.template INITIATE
32
33 # creating init for obstacle 0
34 dprepro $1 INITIATE_OBS.template INITIATE_OBS
35
36 #creating init for rods
37 dprepro $1 INITIATE_RODS.template INITIATE_RODS
38
39 cp $HOME_DIR/INITIATE $HOME_DIR/pts.lis
40 cp pts.lis pts.lis.$2
41
42 cp $HOME_DIR/INITIATE_OBS $HOME_DIR/pts_obs.lis
43 cp pts_obs.lis pts_obs.lis.$2
44
45 cp $HOME_DIR/INITIATE_RODS $HOME_DIR/pts_rods.lis

 126

46 cp pts_rods.lis pts_rods.lis.$2
47
48 touch ${HOME_DIR}/norm.tmp
49 touch ${HOME_DIR}/results.out
50
51 $FLUID_DIR/CREATE_NEW_FLOW_CASE.sh
52
53 # loop over variables
54 for L in `seq 1 $N_LINES`
55 do
56 LINE=`(cat pts.lis | head -$L | tail -1)`
57 P_FLAG=`echo $LINE |cut -d " " -f1`
58 NEW_X=`echo $LINE |cut -d " " -f2`
59 NEW_Y=`echo $LINE |cut -d " " -f3`
60 NEW_Z=`echo $LINE |cut -d " " -f4`
61 $FLUID_DIR/CHANGE_A_POINT.sh $P_FLAG $NEW_X

blockMeshDict_I
62 done
63
64 #rm obs_points.txt || true
65 for L in `seq 1 $N_LINES_OBS`
66 do
67 LINE=`(cat pts_obs.lis | head -$L | tail -1)`
68 P_FLAG=`echo $LINE |cut -d " " -f1`
69 NEW_X=`echo $LINE |cut -d " " -f2`
70 $FLUID_DIR/CHANGE_A_POINT.sh $P_FLAG $NEW_X

blockMeshDict_OBS
71 #echo "$NEW_X" >> obs_points.txt
72 done
73
74 rm clipPlane.txt || true
75
76 $HOME_DIR/obs_manager "gen_clip_plane"
77
78 for L in `seq 1 $N_LINES_RODS`
79 do
80 LINE=`(cat pts_rods.lis | head -$L | tail -1)`
81 FLAG=`echo $LINE |cut -d " " -f1`
82 NEW=`echo $LINE |cut -d " " -f2`
83 $FLUID_DIR/TMP_CASE/constant/triSurface
84 > /CHANGE_STH.sh $FLAG $NEW makeRods.sh
85 done
86
87 cp clipPlane.txt $HOME_DIR/CASE/constant/triSurface/
88
89 # | tee $HOME_DIR/flog_$PTS_LIS_I
90 $FLUID_DIR/PERFORM_FLOW_CASE.sh $MODE
91

 127

92 #save a copy of flow case
93 cp -r CASE CASE_$2 || true
94
95 # this removes residuals from previous step if any
96 rm -rf plog* PCASE* || true
97
98 $PARTICLE_DIR/PARTICLE_MAIN.sh
99

100 mv CASE_$2 "/media/milad/Seagate Backup Plus Drive/
OPT_CASES" || true

101
102 echo "Adding norm ... "
103
104 # postproc
105 $HOME_DIR/opt_manager "append_norm" $2
106
107 # preparing result of this iteration for postprocessing code
108
109 mv vesti.txt vesti.$2 || true
110 mv valve.txt valve.$2 || true
111 mv olf.txt olf.$2 || true
112 mv turbinates.txt turbinates.$2 || true
113 mv naso.txt naso.$2 || true
114 mv outlet.txt outlet.$2 || true
115
116 mv vestiEr.txt vestiEr.$2 || true
117 mv valveEr.txt valveEr.$2 || true
118 mv olfEr.txt olfEr.$2 || true
119 mv turbinatesEr.txt turbinatesEr.$2 || true
120 mv nasoEr.txt nasoEr.$2 || true
121 mv outletEr.txt outletEr.$2 || true
122
123 mv vestivel0.txt vestivel0.$2 || true
124 mv valvevel0.txt valvevel0.$2 || true
125 mv olfvel0.txt olfvel0.$2 || true
126 mv turbinatesvel0.txt turbinatesvel0.$2 || true
127 mv nasovel0.txt nasovel0.$2 || true
128 mv outletvel0.txt outletvel0.$2 || true
129
130 mv vestivel2.txt vestivel2.$2 || true
131 mv valvevel2.txt valvevel2.$2 || true
132 mv olfvel2.txt olfvel2.$2 || true
133 mv turbinatesvel2.txt turbinatesvel2.$2 || true
134 mv nasovel2.txt nasovel2.$2 || true
135 mv outletvel2.txt outletvel2.$2 || true
136
137 mv vestivel3.txt vestivel3.$2 || true
138 mv valvevel3.txt valvevel3.$2 || true

 128

139 mv olfvel3.txt olfvel3.$2 || true
140 mv turbinatesvel3.txt turbinatesvel3.$2 || true
141 mv nasovel3.txt nasovel3.$2 || true
142 mv outletvel3.txt outletvel3.$2 || true
143
144
145 rm -rf CASE
146
147 rm norm.tmp

 129

1 #!/bin/bash
2
3 ##
4 # perform stl manipulation and CFD cases
5 ##
6 # FILE: PERFORM_FLOW_CASE.sh
7 # Bash script for creating new case from template, go

through vtk, run flow case
8 # blockmesh to extract surface
9

10 set -e
11 set -o errexit
12
13 END_T=80;
14 DIREC="/media/milad/ssd0/master_folder/Optimization/CASE"
15 P_HOME="/media/milad/ssd0/master_folder/Optimization"
16 TRI="/media/milad/ssd0/master_folder/Optimization/CASE/

constant/triSurface"
17
18 MODE=$1
19
20 if [$MODE -lt 0]
21 then
22 cp $P_HOME/ready.stl $TRI/smooth.stl
23 fi
24
25 if [$MODE -gt 0]
26 then
27 mv $DIREC/0 $DIREC/0.org
28
29 echo "creating obstacle "
30 cp $DIREC/system/blockMeshDict_OBS $DIREC/system/

blockMeshDict
31 blockMesh -case $DIREC
32 foamToVTK -case $DIREC
33 cp $DIREC/VTK/OBS/OBS_0.vtk $DIREC/constant/

triSurface/
34
35 echo "Changing blockMesh dicttionary file for main

branch .."
36 rm $DIREC/system/blockMeshDict
37 cp $DIREC/system/blockMeshDict_I $DIREC/system/

blockMeshDict
38 blockMesh -case $DIREC
39 echo "Running foamToVTK"
40 foamToVTK -case $DIREC
41
42 # convert vtk files to stl files

 130

43 echo "Copying vtk files into triSurface"
44 cp $DIREC/VTK/VESTIBULE/VESTIBULE_0.vtk $DIREC/

constant/triSurface/
45 cp $DIREC/VTK/VALVE/VALVE_0.vtk $DIREC/constant/

triSurface/
46 cp $DIREC/VTK/ANTERIOR/ANTERIOR_0.vtk $DIREC/

constant/triSurface/
47 cp $DIREC/VTK/POSTERIOR/POSTERIOR_0.vtk $DIREC/

constant/triSurface/
48 cp $DIREC/VTK/OLF/OLF_0.vtk $DIREC/constant/

triSurface/
49 cp $DIREC/VTK/NASO/NASO_0.vtk $DIREC/constant/

triSurface/
50 cp $DIREC/VTK/INLET/INLET_0.vtk $DIREC/constant/

triSurface/
51 cp $DIREC/VTK/OUTLET/OUTLET_0.vtk $DIREC/constant/

triSurface/
52
53 echo "appending, smoothing and clipping .."
54 cd $TRI
55
56 ITER=10000;
57
58 ./makeSTLs.sh . ## makes stl files from vtk files

generated by blockMesh
59
60 ./append_IO INLET.stl VESTIBULE.stl t1.stl
61 ./append_IO t1.stl VALVE.stl t2.stl
62 ./append_IO t2.stl ANTERIOR.stl t3.stl
63 ./append_IO t3.stl OLF.stl t4.stl
64 ./append_IO t4.stl POSTERIOR.stl t5.stl
65 ./append_IO t5.stl NASO.stl t6.stl
66 ./append_IO t6.stl OUTLET.stl all.stl
67
68 cp all.stl all-bkp.stl
69
70 ./smoothAll all.stl all.stl 2000 0.01
71
72 ./smoothAll OBS.stl OBS.stl 2000 0.01
73 cp OBS.stl OBS-bkp.stl
74
75 cp all.stl smooth-ini.stl
76
77 ./punchClose.sh all.stl OBS.stl
78
79 ./makeRods.sh
80
81 cp RODS.stl RODS-bkp.stl

 131

82
83 ./CapClip RODS.stl "clipPlane.txt" # clip rods to

stay within the obs
84
85 ./fillHoles RODS.stl RODS.stl
86
87 # rm clipPlane.txt
88
89 mv all.stl smooth.stl
90 fi
91
92 cd $TRI
93 ./clips #this defines the patch stls finally
94 ./append_IO POSTERIOR.stl ANTERIOR.stl TURBINATES.stl
95
96 #./scaleSTL VESTIBULE.stl 0.9 VESTIBULE.stl
97 #./scaleSTL VALVE.stl 0.9 VALVE.stl
98 #./scaleSTL OLF.stl 0.9 OLF.stl
99 #./scaleSTL TURBINATES.stl 0.9 TURBINATES.stl

100 #./scaleSTL NASO.stl 0.9 NASO.stl
101 #./scaleSTL OUTLET.stl 0.9 OUTLET.stl
102 #./scaleSTL INLET.stl 0.9 INLET.stl
103 #./scaleSTL OBS.stl 0.9 OBS.stl
104 #./scaleSTL RODS.stl 0.9 RODS.stl
105
106 cd $P_HOME
107
108 echo "Removing vtk files from triSurface"
109 #rm $TRI/*vtk
110
111 echo "Changing blockMesh dicttionary file for

snappyHexMesh.."
112 mv $DIREC/system/blockMeshDict $DIREC/system/

blockMeshDict_surf
113 mv $DIREC/system/blockMeshDict_snappy $DIREC/system/

blockMeshDict
114
115 # this blockmesh is for snappyhexmesh boundaries
116 echo "Removing VTK directory"
117 rm -rf $DIREC/VTK
118
119 #echo "Renaming 0 to 0.org"
120 #mv $DIREC/0 $DIREC/0.org
121
122 echo "Running blockMesh"
123 blockMesh -case $DIREC
124
125 echo "Running surfaceFeatureExtract"

 132

126 surfaceFeatureExtract -case $DIREC
127

128 echo "decomposing case for meshing"
129 decomposePar -case $DIREC
130

131 echo "Running snappyHexMesh"
132 foamJob -case $DIREC -p -s snappyHexMesh
133 reconstructParMesh -case $DIREC
134 rm -rf $DIREC/proc*
135
136 echo "Removing previous polyMesh data "
137 rm -rf $DIREC/constant/polyMesh/*
138
139 echo "Copying snappyHexMesh data to polyMesh directory"
140 cp $DIREC/2/polyMesh/* $DIREC/constant/polyMesh/
141
142 echo "Removing 1 and 2 directories"
143 rm -rf $DIREC/1 $DIREC/2
144
145 echo "Renaming 0.org to 0 "
146 mv $DIREC/0.org $DIREC/0
147
148 echo "Running flow case: simpleFoam .."
149 decomposePar -case $DIREC
150 foamJob -case $DIREC -p -s simpleFoam
151

152 # foamMonitor -l postProcessing/residuals/0/residuals.dat
153
154 reconstructPar -case $DIREC -latestTime
155

156 rm -rf $DIREC/proc*
157 rm -rf $DIREC/0 $DIREC/$END_T/uniform
158 mv $DIREC/$END_T $DIREC/0
159
160 echo "foamToVTK"
161 foamToVTK -case $DIREC -latestTime
162

163 mv $DIREC/system/controlDict $DIREC/system/controlDict_fluid
164 mv $DIREC/system/controlDict_particles $DIREC/system/

controlDict

 133

1 #!/bin/bash
2
3 ##
4 # main script for handeling particle tracking in parallel
5 ##
6
7 # File: PARTICLE_MAIN.sh
8 # $1 flow case number which this particle tracking is

performed on
9 # this script utilize the idle threads

10
11 set -e
12 set -o errexit
13
14 unset NPROC N_RUN_PER_PROC START_
15 unset LINE_NUM MAXRUN HOME_DIR PARTICLE_
16 unset DIR LINE LINE_NUM
17 unset SIZE VEL POSITION_LABEL
18 unset POSITIONX POSITIONY POSITIONZ DIREC
19 unset U G Y pid waitForIdleProc foundIdle
20
21 echo "Performing particle tracking cases .."
22
23 N_RUN_PER_PROC=1;
24 START_LINE_NUM=10; # line start of the parameters
25 NPROC=15; # number of processors to be involved
26 N1=$NPROC;
27 NN1=$(($N1));
28 MAXRUNS=4000; # maximum number of cases
29
30 HOME_DIR="/media/milad/ssd0/master_folder/Optimization"
31 PARTICLE_DIR="$HOME_DIR/Particle"
32
33 #initializing process ids
34 for G in `seq 1 $NPROC`
35 do
36 pid[$G]=0;
37 done
38
39 function waitForIdleProc {
40 echo "searching ..."
41 foundIdle=0;
42 while [$foundIdle -eq 0]
43 do
44 for Y in `seq 1 ${NN1}`
45 do
46 if [${pid[$Y]} -eq 0] || ! ps -p

${pid[$Y]}

 134

47 > /dev/null; then
48 foundIdle=1;
49

icoUncoupledKinematicParcelFoam -case $1
50 > $2/plog_$3 2>&1 &
51 pid[$Y]=$!
52 echo "found idle!" &&

hostname
53 && echo "job pi $Y bg $! id $

$"
54 break

55 fi

56 done

57
58 [$foundIdle == 1] && break
59 echo "waiting ..." && sleep 60;
60 done

61 }

62

63 for U in `seq 1 $MAXRUNS`
64 do

65 # get rid of large stuff which are hanging around
for too long (15 min)

66 find $HOME_DIR -type d -name "*PCASE*"
67 > -mmin +15 -exec rm -rf {} +
68
69 LINE_NUM=$(($U - 1 + $START_LINE_NUM))
70 LINE=`(cat $PARTICLE_DIR/particleParameters.lis
71 | head -$LINE_NUM | tail -1)`

72

73 SIZE=`echo $LINE |cut -d " " -f1`
74 VEL=`echo $LINE |cut -d " " -f2`
75 POSITION_LABEL=`echo $LINE |cut -d " " -f3`
76 POSITIONX=`echo $LINE |cut -d " " -f4`
77 POSITIONY=`echo $LINE |cut -d " " -f5`
78 POSITIONZ=`echo $LINE |cut -d " " -f6`
79 T="${POSITION_LABEL}_${SIZE}_${VEL}"
80 DIREC="/media/milad/ssd0/master_folder/Optimization/

PCASE_$T"
81 cp -r "$HOME_DIR/CASE" $DIREC
82
83 $PARTICLE_DIR/PARTICLE_SIZE_SET.sh $SIZE $DIREC
84 $PARTICLE_DIR/PARTICLE_U0_SET.sh $VEL $DIREC
85 $PARTICLE_DIR/PARTICLE_POSITION_SET.sh $POSITIONX

$POSITIONY $POSITIONZ $DIREC
86 echo "d $SIZE u0 $VEL posi $POSITION_LABEL"
87 echo "case $U of $MAXRUNS ready"
88 waitForIdleProc $DIREC $HOME_DIR $T $NPROC

 135

89 echo "- - - - - - - - - -"
90 done
91
92 echo "waiting for all background jobs to finish ..." && wait
93 echo "finished!" && echo "- - - - - - - - -"

 136

1 #######################
2 # start of dakota input
3 #######################
4 # manually generated
5 # # sign shows is comment line
6 # # endofline character should be assigned as "\"
7 environment \
8 tabular_graphics_data \
9 \

10 method \
11 #conmin_mfd \
12 optpp_q_newton \
13 max_iterations = 3000 \
14 convergence_tolerance = 1e-7 \
15 search_method value_based_line_search \
16 merit_function argaez_tapia \
17 model \
18 single \
19 \
20 variables, \
21 continuous_design = 15 \
22 \
23 initial_point \
24 \
25 # (0.0035 0.028 0.026) // 0

--> 17
26 # (0.005 0.044 0.026) // 1

--> 80
27 0.002 0.044 0.026 \
28 0.002 0.028 0.026 \
29 \
30 # (-0.0025 0.028 0.046) // 4
31 # (0.000 0.044 0.046) // 5
32 -0.001 0.044 0.046 \
33 -0.004 0.028 0.048 \
34 -0.003 \
35 -0.001 \
36 1 \
37 \
38 upper_bounds \
39 \
40 # 0.009 0.034 0.032 \
41 # 0.012 0.047 0.032 \
42 0.005 0.046 0.032 \
43 0.006 0.034 0.032 \
44 \
45 # 0.01 0.034 0.055 \
46 # 0.01 0.044 0.055 \

 137

47 0.005 0.044 0.055 \
48 0.005 0.034 0.055 \
49 0.000 \
50 -0.001 \
51 5 \
52 lower_bounds \
53 \
54 # 0.001 0.028 0.023 \
55 # 0.004 0.040 0.023 \
56 -0.005 0.040 0.023 \
57 -0.004 0.028 0.023 \
58 \
59 # -0.004 0.028 0.040 \
60 # -0.004 0.038 0.040 \
61 -0.006 0.038 0.040 \
62 -0.006 0.028 0.040 \
63 -0.007 \
64 -0.007 \
65 0.5 \
66 \
67 descriptors \
68 \
69 # 'obi0' 'obj0' 'obk0' \
70 # 'obi1' 'obj1' 'obk1' \
71 'obi2' 'obj2' 'obk2' \
72 'obi3' 'obj3' 'obk3' \
73 \
74 # 'obi4' 'obj4' 'obk4' \
75 # 'obi5' 'obj5' 'obk5' \
76 'obi6' 'obj6' 'obk6' \
77 'obi7' 'obj7' 'obk7' \
78 'obspi0307'
79 'obspi0602'
80 'rscaleFactor'
81 \
82 #linear_inequality_constraint_matrix = \
83 # x constraints for the valid wall geometry

Vertices
84 # 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0\

85 # 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0\

86 # 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0\

87 # 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0

 138

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0\

88 \
89 # x constraints for wall

geometry Splines
90 # constraints for obs wihtin its

geometry
91 # x
92 #1 0 0 0 0 0 0 0 0 -1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0\
93 #0 0 0 1 0 0 -1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0\
94 #0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 -1 0 0 0\
95 #0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 -1 0 0 0 0 0 0\
96 # y
97 #0 -1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0\
98 #0 0 0 0 0 0 0 1 0 0 -1

0 0 0 0 0 0 0 0 0 0 0 0 0 0\
99 #0 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 1 0 0 0 0 0 0 0 0\
100 #0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 -1 0 0\
101 # z
102 #0 0 -1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0\
103 #0 0 0 0 0 -1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0\
104 #0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0\
105 #0 0 0 0 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0 0 0 0 0 1 0\
106 \
107 \
108 #linear_inequality_upper_bounds = 0.03

0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 \
109 #linear_inequality_lower_bounds = 0.001

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 \

110 \
111 interface, \
112 fork \
113 analysis_drivers = 'MAIN-dak.sh' \
114 parameters_file = 'params.in' \
115 results_file = 'results.out' \
116 file_tag \

 139

117 file_save \
118 \
119 responses \
120 objective_functions = 1 \
121 descriptors = 'norm' \
122 numerical_gradients \
123 method_source dakota \
124 interval_type forward \
125 fd_gradient_step_size = 5e-2 # was 1e-4 \
126 # no_gradient
127 no_hessians
128 #
129 #######################
130 # end of dakota input
131 #######################

 140

Appendix D: Postprocessing (BASH, Python)

 141

1 #!/bin/bash
2
3 ##
4 # automated plot generator
5 # milad kiaee darunkola kiaeedar@ualberta.ca
6 ##
7
8 rm *png
9 rm Snap*

10
11 cp ../ref_vesti.txt refvesti.dlt
12 cp ../ref_valve.txt refvalve.dlt
13 cp ../ref_olf.txt refolf.dlt
14 cp ../ref_turbinates.txt refturbinates.dlt
15 cp ../ref_naso.txt refnaso.dlt
16 cp ../ref_outlet.txt refoutlet.dlt
17
18 ./runPlot.sh refvesti.dlt matplot.plt
19 mv tmp.png refvesti.png
20 convert refvesti.png -resize 200x200 refvesti.png
21
22 ./runPlot.sh refvalve.dlt matplot.plt
23 mv tmp.png refvalve.png
24 convert refvalve.png -resize 200x200 refvalve.png
25
26 ./runPlot.sh refolf.dlt matplot.plt
27 mv tmp.png refolf.png
28 convert refolf.png -resize 200x200 refolf.png
29
30 ./runPlot.sh refturbinates.dlt matplot.plt
31 mv tmp.png refturbinates.png
32 convert refturbinates.png -resize 200x200 refturbinates.png
33
34 ./runPlot.sh refnaso.dlt matplot.plt
35 mv tmp.png refnaso.png
36 convert refnaso.png -resize 200x200 refnaso.png
37
38 ./runPlot.sh refoutlet.dlt matplot.plt
39 mv tmp.png refoutlet.png
40 convert refoutlet.png -resize 200x200 refoutlet.png
41
42 for i in `seq 1 $1`
43 do
44 python snap.py $i
45
46 convert -size 1000x1800 'Snap_'$i'.png'
47
48 # convert -size 1000x1800 white 'Snap_'$i'.png'

 142

49
50 line=`(cat ../results.out.$i | head -1 | tail -1)`
51 norm=`echo $line |cut -d " " -f1`
52 tmp=$norm
53 norm=$(bc <<< "scale=2;$tmp*100")
54
55 TEXT1="iteration $i , deviation = $norm %"
56
57 convert -font helvetica -fill white -pointsize 20
58 > -draw "text 10,30 '$TEXT1'/6.0"
59 > 'Snap_'$i.png 'Snap_'$i.png
60
61 ./runPlot.sh ../vesti.results.out.$i matplot.plt
62 mv tmp.png vesti$i.png
63 convert vesti$i.png -resize 800x800 vesti$i.png
64
65 ./runPlot.sh ../valve.results.out.$i matplot.plt
66 mv tmp.png valve$i.png
67 convert valve$i.png -resize 800x800 valve$i.png
68
69 ./runPlot.sh ../olf.results.out.$i matplot.plt
70 mv tmp.png olf$i.png
71 convert olf$i.png -resize 800x800 olf$i.png
72
73 ./runPlot.sh ../turbinates.results.out.$i matplot.plt
74 mv tmp.png turbinates$i.png
75 convert turbinates$i.png -resize 800x800 turbinates

$i.png
76
77 ./runPlot.sh ../naso.results.out.$i matplot.plt
78 mv tmp.png naso$i.png
79 convert naso$i.png -resize 800x800 naso$i.png
80
81 ./runPlot.sh ../outlet.results.out.$i matplot.plt
82 mv tmp.png outlet$i.png
83 convert outlet$i.png -resize 800x800 outlet$i.png
84
85 ### Eror plot ###
86 #./runPlot.sh ../vestiEr.results.out.$i errorplot.plt
87 #mv tmp.png vestiEr$i.png
88 #convert vestiEr$i.png -resize 300x300 vestiEr$i.png
89
90 #./runPlot.sh ../valveEr.results.out.$i errorplot.plt
91 #mv tmp.png valveEr$i.png
92 #convert valveEr$i.png -resize 300x300 valveEr$i.png
93
94 #./runPlot.sh ../olfEr.results.out.$i errorplot.plt
95 #mv tmp.png olfEr$i.png

 143

96 #convert olfEr$i.png -resize 300x300 olfEr$i.png
97
98 #./runPlot.sh ../turbinatesEr.results.out.$i

errorplot.plt
99 #mv tmp.png turbinatesEr$i.png

100 #convert turbinatesEr$i.png -resize 300x300
turbinatesEr$i.png

101
102 #./runPlot.sh ../nasoEr.results.out.$i errorplot.plt
103 #mv tmp.png nasoEr$i.png
104 #convert nasoEr$i.png -resize 300x300 nasoEr$i.png
105
106 #./runPlot.sh ../outletEr.results.out.$i

errorplot.plt
107 #mv tmp.png outletEr$i.png
108 #convert outletEr$i.png -resize 300x300 outletEr

$i.png
109
110 ######
111 ### scatter plot ###
112 ./runPlot.sh ../vestivel0.results.out.$i

scatterplot.plt
113 mv tmp.png vestivel0$i.png
114 convert vestivel0$i.png -resize 800x800 vestivel0

$i.png
115
116 ./runPlot.sh ../valvevel0.results.out.$i

scatterplot.plt
117 mv tmp.png valvevel0$i.png
118 convert valvevel0$i.png -resize 800x800 valvevel0

$i.png
119
120 ./runPlot.sh ../olfvel0.results.out.$i

scatterplot.plt
121 mv tmp.png olfvel0$i.png
122 convert olfvel0$i.png -resize 800x800 olfvel0$i.png
123
124 ./runPlot.sh ../turbinatesvel0.results.out.$i

scatterplot.plt
125 mv tmp.png turbinatesvel0$i.png
126 convert turbinatesvel0$i.png -resize 800x800

turbinatesvel0$i.png
127
128 ./runPlot.sh ../nasovel0.results.out.$i

scatterplot.plt
129 mv tmp.png nasovel0$i.png
130 convert nasovel0$i.png -resize 800x800 nasovel0$i.png
131

 144

132 ./runPlot.sh ../outletvel0.results.out.$i
scatterplot.plt

133 mv tmp.png outletvel0$i.png
134 convert outletvel0$i.png -resize 800x800 outletvel0

$i.png
135 ######
136 ./runPlot.sh ../vestivel2.results.out.$i

scatterplot.plt
137 mv tmp.png vestivel2$i.png
138 convert vestivel2$i.png -resize 800x800 vestivel2

$i.png
139
140 ./runPlot.sh ../valvevel2.results.out.$i

scatterplot.plt
141 mv tmp.png valvevel2$i.png
142 convert valvevel2$i.png -resize 800x800 valvevel2

$i.png
143
144 ./runPlot.sh ../olfvel2.results.out.$i

scatterplot.plt
145 mv tmp.png olfvel2$i.png
146 convert olfvel2$i.png -resize 800x800 olfvel2$i.png
147
148 ./runPlot.sh ../turbinatesvel2.results.out.$i

scatterplot.plt
149 mv tmp.png turbinatesvel2$i.png
150 convert turbinatesvel2$i.png -resize 800x800

turbinatesvel2$i.png
151
152 ./runPlot.sh ../nasovel2.results.out.$i

scatterplot.plt
153 mv tmp.png nasovel2$i.png
154 convert nasovel2$i.png -resize 800x800 nasovel2$i.png
155
156 ./runPlot.sh ../outletvel2.results.out.$i

scatterplot.plt
157 mv tmp.png outletvel2$i.png
158 convert outletvel2$i.png -resize 800x800 outletvel2

$i.png
159 ######
160 ./runPlot.sh ../vestivel3.results.out.$i

scatterplot.plt
161 mv tmp.png vestivel3$i.png
162 convert vestivel3$i.png -resize 800x800 vestivel3

$i.png
163
164 ./runPlot.sh ../valvevel3.results.out.$i

scatterplot.plt

 145

165 mv tmp.png valvevel3$i.png
166 convert valvevel3$i.png -resize 800x800 valvevel3

$i.png
167
168 ./runPlot.sh ../olfvel3.results.out.$i

scatterplot.plt
169 mv tmp.png olfvel3$i.png
170 convert olfvel3$i.png -resize 800x800 olfvel3$i.png
171
172 ./runPlot.sh ../turbinatesvel3.results.out.$i

scatterplot.plt
173 mv tmp.png turbinatesvel3$i.png
174 convert turbinatesvel3$i.png -resize 800x800

turbinatesvel3$i.png
175
176 ./runPlot.sh ../nasovel3.results.out.$i

scatterplot.plt
177 mv tmp.png nasovel3$i.png
178 convert nasovel3$i.png -resize 800x800 nasovel3$i.png
179
180 ./runPlot.sh ../outletvel3.results.out.$i

scatterplot.plt
181 mv tmp.png outletvel3$i.png
182 convert outletvel3$i.png -resize 800x800 outletvel3

$i.png
183 ######
184
185 convert Snap_$i.png vesti$i.png -geometry
186 > 150x150+0+50 -composite Snap_$i.png
187 convert Snap_$i.png refvesti.png -geometry
188 > 150x150+200+50 -composite Snap_$i.png
189 # convert Snap_$i.png vestiEr$i.png -geometry 250x250

+1100+0 -composite Snap_$i.png
190 convert Snap_$i.png vestivel0$i.png -geometry
191 > 250x250+1100+0 -composite Snap_$i.png
192 convert Snap_$i.png vestivel2$i.png -geometry
193 > 250x250+1400+0 -composite Snap_$i.png
194 convert Snap_$i.png vestivel3$i.png -geometry
195 > 250x250+1700+0 -composite Snap_$i.png
196
197 convert Snap_$i.png valve$i.png -geometry
198 > 150x150+0+200 -composite Snap_$i.png
199 convert Snap_$i.png refvalve.png -geometry
200 > 150x150+200+200 -composite Snap_$i.png
201 # convert Snap_$i.png valveEr$i.png -geometry 250x250

+1100+200 -composite Snap_$i.png
202 convert Snap_$i.png valvevel0$i.png -geometry
203 > 250x250+1100+200 -composite Snap_$i.png

 146

204 convert Snap_$i.png valvevel2$i.png -geometry
205 > 250x250+1400+200 -composite Snap_$i.png
206 convert Snap_$i.png valvevel3$i.png -geometry
207 > 250x250+1700+200 -composite Snap_$i.png
208
209 convert Snap_$i.png olf$i.png -geometry
210 > 150x150+0+400 -composite Snap_$i.png
211 convert Snap_$i.png refolf.png -geometry
212 > 150x150+200+400 -composite Snap_$i.png
213 # convert Snap_$i.png olfEr$i.png -geometry 250x250

+1100+400 -composite Snap_$i.png
214 convert Snap_$i.png olfvel0$i.png -geometry
215 > 250x250+1100+400 -composite Snap_$i.png
216 convert Snap_$i.png olfvel2$i.png -geometry
217 > 250x250+1400+400 -composite Snap_$i.png
218 convert Snap_$i.png olfvel3$i.png -geometry
219 > 250x250+1700+400 -composite Snap_$i.png
220
221 convert Snap_$i.png turbinates$i.png -geometry
222 > 150x150+0+600 -composite Snap_$i.png
223 convert Snap_$i.png refturbinates.png -geometry
224 > 150x150+200+600 -composite Snap_$i.png
225 # convert Snap_$i.png turbinatesEr$i.png -geometry

250x250+1100+600 -composite Snap_$i.png
226 convert Snap_$i.png turbinatesvel0$i.png -geometry
227 > 250x250+1100+600 -composite Snap_$i.png
228 convert Snap_$i.png turbinatesvel2$i.png -geometry
229 > 250x250+1400+600 -composite Snap_$i.png
230 convert Snap_$i.png turbinatesvel3$i.png -geometry
231 > 250x250+1700+600 -composite Snap_$i.png
232
233 convert Snap_$i.png naso$i.png -geometry
234 > 150x150+0+800 -composite Snap_$i.png
235 convert Snap_$i.png refnaso.png -geometry
236 > 150x150+200+800 -composite Snap_$i.png
237 # convert Snap_$i.png nasoEr$i.png -geometry 250x250

+1100+800 -composite Snap_$i.png
238 convert Snap_$i.png nasovel0$i.png -geometry
239 > 250x250+1100+800 -composite Snap_$i.png
240 convert Snap_$i.png nasovel2$i.png -geometry
241 > 250x250+1400+800 -composite Snap_$i.png
242 convert Snap_$i.png nasovel3$i.png -geometry
243 > 250x250+1700+800 -composite Snap_$i.png
244
245 convert Snap_$i.png outlet$i.png -geometry
246 > 150x150+0+1000 -composite Snap_$i.png
247 convert Snap_$i.png refoutlet.png -geometry
248 > 150x150+200+1000 -composite Snap_$i.png

 147

249 # convert Snap_$i.png outletEr$i.png -geometry 250x250
+1100+1000 -composite Snap_$i.png

250 convert Snap_$i.png outletvel0$i.png -geometry
251 > 250x250+1100+1000 -composite Snap_$i.png
252 convert Snap_$i.png outletvel2$i.png -geometry
253 > 250x250+1400+1000 -composite Snap_$i.png
254 convert Snap_$i.png outletvel3$i.png -geometry
255 > 250x250+1700+1000 -composite Snap_$i.png
256
257 mv Snap_$i.png Snapshot_$i.png
258 done
259
260 rm *dlt

 148

1 #!/bin/bash
2
3 reset
4 set palette maxcolors 2
5 set palette defined (1 "green", 1.49 "green", 1.51 "red", 2

"red")
6
7 #unset grid
8 set key below horizontal noreverse enhanced autotitle box

dashtype solid
9 set tics out nomirror

10 set border 3 front linetype black linewidth 4.0 dashtype
solid

11
12 set grid
13
14 #set title 'var'
15
16 set xlabel "d (micron)"
17 set xlabel font "Helvetica,20"
18 set ylabel "depo"
19 set ylabel font "Helvetica,20"
20
21 set xrange [0:50]
22 set yrange [0:1]
23
24 set tics font ", 18"
25 set xtics 0,10,40
26 set ytics 0,0.5,1
27
28 set terminal png enhanced
29 set output 'tmp.png'
30
31 set pointsize 3
32
33 unset colorbox
34
35 plot filename with points pointtype 22 ps 4 palette notitle
36

 149

1 #!/usr/bin/python
2
3 # vtk python script for screen shoting
4
5 import glob, string, os, commands, sys
6 from paraview.simple import *
7
8 index = sys.argv[1]
9

10 LoadState("/media/milad/ssd0/master_folder/Optimization/
postproc/STATE.pvsm")

11
12 pm = servermanager.ProxyManager()
13
14 s = '/media/milad/Seagate Backup Plus Drive/OPT_CASES'
15
16 readerWall = pm.GetProxy('sources', 'smooth.stl')
17 readerWall.FileNames = s + '/CASE_results.out.' + index + '/

constant/triSurface/smooth.stl'
18 readerWall.FileNameChanged()
19 readerWall.UpdatePipeline()
20
21 #readerObs = pm.GetProxy('sources', 'OBS.stl')
22 #readerObs.FileNames = s + '/CASE_results.out.' + index + '/

constant/triSurface/OBS.stl'
23 #readerObs.FileNameChanged()
24 #readerObs.UpdatePipeline()
25
26 readerRods = pm.GetProxy('sources', 'RODS.stl')
27 readerRods.FileNames = s + '/CASE_results.out.' + index + '/

constant/triSurface/RODS.stl'
28 readerRods.FileNameChanged()
29 readerRods.UpdatePipeline()
30
31 view = servermanager.GetRenderView()
32 #view.Render()
33 view.StillRender()
34
35 #save screenshot
36 WriteImage("Snap_" + index + ".png")
37
38 Delete(readerWall)
39 #Delete(readerObs)
40 Delete(readerRods)
41 Delete(view)

 150

Appendix E: Grid Convergence

Figure E.1 shows CFD grid convergence study that was performed on subject 1. Due to the

computational cost, a few cases were studied. Vertical axis shows the calculated pressure

difference between the inlet and the outlet while the horizontal axis shows the number of cells in

the grid.

