

CMPUT 657 – Heuristics Search
Project Report

Evaluation of the search algorithms in Multiple Sequence Alignment

Students: Tommy Chu & Xiang Wan
Professor: Dr. Jonathan Schaeffer

Contents
1. Introduction ...1
2. Literature review ...1

2.1 Dynamic Programming Approach..1
2.2 Heuristic Search Approach..2

2.2.1 A* Algorithm..2
2.2.2 Divide-and-Conquer Bi-directional Search (DCBA*)3
2.2.3 Divide-and-Conquer Frontier Search (DCFA*)......................................4
2.2.4 A* with partial expansion...4

3. Objectives ...5
4. Implementation Issues ..6

4.1 A* Heuristic Search (A*) ..6
4.2 Divide-and-Conquer Frontier Search (DCFA*) ..7
4.3 A* with Partial Expansion (PEA*) ..8
4.4 Improved A* with Partial Expansion (Improve PEA*)...................................8
4.5 Statistical Measurements: ...8

5. Experiment Results...8
5.1 Is there any node revisiting in the CLOSE region?......................................9
5.2 Is the size of OPEN list larger than the CLOSE list?9
5.3 Evaluation of Different Algorithms: ..10
5.4 PEA* Improvement..11
5.5 Transposition Table Performance ...11

6. Conclusion ..12
7. Future Works ..12
8. Acknowledge...12
9. References: ..13

List of Figures

Figure 1: Divide-and-Conquer path construction[5]...3
Figure 2: Computed area of frontier search [6]. ..4
Figure 3: Computed area of bi-directional search. ..4
Figure 4: the evolution of finding the h-value for each node from (a) dynamic

approach to compute pairwise sequence alignment to (b) transpose of h-
value table and then to (c) h-value table. ...7

Figure 5 Size of OPEN list vs. CLOSE List solving by A*9
Figure 6: Improvement of our version ...11
Figure 7: Average Number of nodes need to search in the TT in order to obtain

the result. ...12

 List of Tables
Table 1: Performance Comparison for 3-sequence alignment............................10

 Page 1

1. Introduction
Multiple sequence alignment (MSA) is a controversial problem in
computational biology. This particular problem computes the similarity based
on the biological properties of nuclei acid (or amino acid) among the DNA
strands (or protein sequences). When this biological problem is mapped to a
computing science problem, the formulation becomes finding the similarity
between multiple strings. The similarity of two aligned characters relies on the
cost function, which will return a distance (or score value). The similarity of
the alignment, then, is the sum of all pair aligned characters’ distances (or all
pair scores). The optimal pair-wise alignment is referred to align two strings
and spaces could be inserted into each string to obtain the optimal similarity.
MSA is a generalized version, which aligns multiple strings (we refer the
number of strings is d) simultaneously. In this project, we will use the
distance as similarity measurement like in [5]. That is, when two characters
match, mismatch, or aligning with space, its distance is 0, 1, and 2
respectively. Then the optimal alignment should have the minimal distance.

The report is organized as follows. Next section, we will present the previous
work and techniques from computational biology to artificial intelligence.
Then, section 3 reveals our objective of this project, and section 4 will explain
the implementation issues of three implemented algorithms. After that,
section 5 will discuss the results we obtain and evaluate each implemented
algorithm. At last, we will conclude the comparison study we have learnt from
this project.

2. Literature review

2.1 Dynamic Programming Approach
Needleman and Wunsch’s algorithm [1] is the first one that formulates the
optimal pair-wise sequence alignment problem. Given two length-N
sequences, say S1 and S2, the algorithm initializes a matrix of size (N+1) x
(N+1). Each entry will store the optimal alignment score for two sub-strings.
For instance, entry with column i and row j, will store the optimal score for the
alignment between S1[0…i-1] and S2[0…j-1]. Therefore, the first row and first
column are initialized the distance of total number of spaces that can be
inserted in front if aligning to another string. Then, computing from left to right
and from top to bottom, each entry can be optimized by looking at the current
character of each string. There exist three possibilities of looking at current
entry, which are aligning S1[i] to a space, S2[j] to a space, or S1[j] to S2[j].

Multiple sequence alignment, moreover, is a similar problem. MSA requires
aligning d sequences simultaneously. With same dynamic programming
approach, the algorithm increases the dimension of the matrix to d, which
increases the space complexity. Then, for each entry, there will be 2d

 Page 2

possibilities to align the last character of each sting. Therefore, the dynamic
programming approach has time and space complexity of O(nd).

Since the DNA sequence can be thousands to millions bytes long and the
number of strings we like to align simultaneously increases day by day, the
time and space complexity of dynamic programming are not sufficient, and
researchers improve the algorithm by reducing the search space of the matrix.
Hischberg’s algorithm [2] reduces the space complexity from O(nd) to O(nd-1).
The idea is to use divide and conquer approach on top of the dynamic
programming. To divide the problem into two sub problems, it finds a point k
that separates the sequences into two parts, and then recursively build the
path from upper left corner of the matrix to k, and the path from k to the lower
right corner of the matrix. Although D.S. Hirschberg introduced an O(nd-1)
space algorithm in [2], the time necessitated to solve this problem requires
twice amount efforts as the original dynamic programming approach.

2.2 Heuristic Search Approach
Turning the dynamic programming approach to a path-finding problem in a d-
dimensional matrix, we may apply the existing heuristic search techniques in
artificial intelligence. In the formulation of dynamic programming, a d-
dimensional matrix is created and to find the optimal alignment is to find the
optimal path from a initial node (located at the first entry where its value is
always initialized to 0) to a goal node (located at the last entry where its
stores the optimal alignment score when the computation is completed). For
instance, aligning 3 length-N strings, we will find the optimal path from
dimensional the matrix entry M[0][0][0] to M[N][N][N].

Path finding problem can be solved using greedy algorithm, such as Dijkstra’s
shortest path algorithm and A* algorithm. However, because of the huge
search space due to large number of short cycle and the requirement of
storing distinct path in each node, the memory limitation turns out to be a
major problem when solve the general problem using these techniques. Take
a simple pair-wise optimal alignment as an example. If two strings S1 and S2
are given and the length of both strings is N, it will initial a 2 dimensional
matrix with size (N+1) x (N+1). Between the source node and goal node, if
we ignore the diagonal moves, there is N!/(N!)2 number of distinct paths.

2.2.1 A* Algorithm
A* eventually is a best first search algorithm. Each node consists of an f-
value defined as f = g + h, in which g-value is the known distance for aligned
between each sub-string from the first to its current aligned character while h
value is the estimated distance for the alignment for each sub-string from the
current aligned character to its last character. The g-value builds up
recursively where h-value is generated from a heuristic function. A popular
admissible heuristic function used in MSA problem is the sum of optimal pair-
wise alignments. The heuristic value is a lower bound since the cost of the

 Page 3

actual alignment of each pair is at least as good as the cost of the optimal
pair-wise alignment.

The algorithm will first put the initial node into the OPEN list, which stores the
nodes that are not fully considered. Then, at each step, it will select the best
f-value node from the OPEN list to explore, and the algorithm terminates
when the goal node is found (or no solution when OPEN list becomes empty).
If the solution cannot be found after such node is explored, we will put it into
the CLOSE list, which prevents the repeated search

2.2.2 Divide-and-Conquer Bi-directional Search (DCBDA*)
In 1999, Korf introduced a technique, forbidden operator, and applied divide
and conquer and bi-directional search techniques as A* enhancement [8],
namely Divide and Conquer Bi-directional Search (or DCBDA*). The space
requirement reduces to O(nd-1), and the most significant result is that the time
complexity will not be twice as original dynamic programming (like
Hischberg’s algorithm does), but increase by constant amount of time [8].
Indeed, DCBDA* is a variant of A* algorithm; however, applying it to MSA
problem, the author claims only storing the OPEN list is enough when
forbidden operator is introduced into each node. The forbidden operator
indicates which direction(s) of this node has been searched before. With the
forbidden operator, DCBDA* will not repeatedly expand those nodes that
have been explored.

Figure 1: Divide-and-Conquer path construction [5].

Furthermore, divide-and-conquer approach is similar to Hischberg’s idea, and
it divides the problem into two halves at first. When the search finishes, we
can get a roughly intermediate point in the optimal path. Then, we can use
this point to divide the whole problem into two sub-problems and recursively
apply the same algorithm to solve sub problems until the whole optimal path
is constructed. Figure 1 illustrates the divide-and-conquer approach. In
general problem, we believe that the computed area in each search is roughly
half of the computed area in the previous search. So, the extra computation
cost for path constructions is approximately equal to the computation cost in
the first iteration. Moreover, bi-directional search allows simultaneously
searching both forward from the initial state node and from the goal node.
Nonetheless, two conditions must be satisfied if this algorithm is applied in

 Page 4

general case. One is that the heuristic function must be consistent and the
other is that the problem space should be polynomial. The details analysis is
described in [5].

2.2.3 Divide-and-Conquer Frontier Search (DCFA*)

Figure 2: Computed area of frontier search
[6].

Figure 3: Computed area of bi-directional
search.

A year later, Korf and Zhang, extended DCBDA* work and showed that
unidirectional search with forbidden operator can be successfully applied to
this problem. The new designed algorithm called Divide and Conquer Frontier
Search (DCFA*), which employs the same idea as DCBDA*, i.e forbidden
operator and ignorance of CLOSE list, but use unidirectional search instead
(from initial state node to goal node). Their analysis indicated that DCFA is
better than DCBDA* in terms among number of node search, time and
memory usage. Our general understanding to this result is that the closer the
search to the goal node, the more accurate the heuristic function and the
smaller the search space. Therefore, more extra search work is done at the
beginning than that at the end. Figure 2 is borrowed from Aaron Davidson’s
paper, which displays the computed area of frontier search in two-sequence
alignment. It can be seen that most search work is done at the beginning. If
the search starts from two directions, as shown in Figure 3, the work will be
double. This explain why the performance of DCFA* is better than the DCBA*
in MSA problem.

2.2.4 A* with partial expansion
In the same year, 2000, Yoshizumi and et al proposed A* with partial
expansion to solve MSA (or perhaps general problem with large branching
factor) [7]. It is also a variant of A*, which proposed new enhancement to
solve the huge branching problem like MSA. The idea is to store only
promising nodes for finding an optimal solution. To determine a promising
node, authors introduce a parameter C, which is a predefined and
nonnegative cutoff value, and F-value, which is the priority of node expansion,
to A* algorithm. When expanding the best node in the OPEN list, the
corresponding children are referred as promising nodes and will be stored in
the OPEN list where the f-value of the children node is less than the C value
plus the F-value of the expanding node. The F-value of a node is equal to f-
value at the beginning. If the expanding node contains any unpromising child,

 Page 5

it will put back to the OPEN list after expansion and set the F-value to the
lowest f-value among its unpromising child nodes. Therefore, when C is equal
to infinite the algorithm becomes A*, but unlike A* expanding in the order of f-
value, the introduced parameter C and F-value decides the priority of nodes
for expansion.

3. Objectives
The conflict accusation from [5] and [7] attracts our interest. In 1999, [5]
demonstrates that the forbidden operator allows A* only storing the OPEN list.
Korf believed that using this technique could overcome the memory problem
of A* because he concluded that the size of CLOSE list was much larger than
open list when applying to the MSA problem. Nevertheless, [7] argued that
the size of open list was much larger than the CLOSE list and forbidden
operator could not prevent search from leaking back into CLOSE region.

Because both believes do not follow with any reasoning, the goal of our
project is to justify the following two questions.

(1) Is there any node revisiting in the CLOSE region?
(2) Is the size of OPEN list larger than the CLOSE list?

The next objective of our project is to evaluate the existing heuristic search
algorithms that target on MSA problem. We want to see which one is much
better than the other in the general case.

 Page 6

4. Implementation Issues
We have implemented two main algorithms, DCFA* and PEA*, which are
variants of A*. When we set the C value of PEA* to infinity, it eventually
becomes A*. Because A* is the basic building block of these two algorithms,
we will discuss the main implementation issues in A* in this section.

4.1 A* Heuristic Search (A*)

The most critical issue in the implementation of A* is how to efficiently design
the data structure of OPEN list and CLOSE list. An efficient way is to use the
heap structure since the complexity of insertion and deletion in a heap is
O(log n). However, only using the heap is not efficient enough. When a node
is expanding, all its successors ensure that they do not exist in both OPEN list
and CLSOE list, which in turn search for both lists. The branching factor of
MSA is very large, as explained in the second section, so the search
efficiency in list becomes a bottleneck in the MSA program. In our
implementation, we incorporated the Transposition Table (TT) into A*
algorithm. Each entry of TT saves two pointers. One pointer stores the
address of a node in the open list and the other pointer saves the address of
a node in the close list in which both pointers point at the first visited node
with the same hash key. If there are collisions in a TT entry, nodes with same
hash key will be chained together and this is done by adding an extra pointer
in each node. Figure 3 illustrates our design. Even though the TT allocates a
significant amount of memory, the efficiency of our implementation is
improved by order of magnitudes (shown in next section).

Another issue for A* is to determine the heuristics value. As described in
section 2.2.1, the h-value estimates the distance from current node to the

 ……
 …… TT

1 2 3 4

Open
list

Close
List

… 4 … 2 … 4 … 2 … 2 … 4

… 3 … 4 … 3

Figure 4: Transposition Table in A*

 Page 7

goal node. If we compute all h-values in real time, there are d(d-1)/2
combination of pair sequences and the computational complexity to compute
the optimal distance between two sequences is, causing O(d2 N2) time for
each node and resulting in high granularity. Hence, we introduce the pre-
computation tables. Each pre-computation table stores the h-value of each
pair-wise sequence at any given position, and hence it consists of O(d2)
number of tables.

Figure 5: the evolution of finding the h-value for each node from (a) dynamic approach
to compute pair-wise sequence alignment to (b) reversed pair-wise sequence
alignment and then to (c) h-value table.

Figure 5(a) shows a simple example to compute the pair-wise optimal
sequence alignment using dynamic programming approach. The first
impression is that each cell, saying that the position is i-th column and j-th row,
computes the optimal alignment distance between two sub-strings, S1[0…i –
1] and S2[0…j – 1]. In other words, it computes the g value of the
corresponding node. In order to compute the h-value, then, each cell should
compute the optimal alignment distance between S1 [i…N–1] and S2[j…N-1].
In other words, as shown in Figure 5(b), we can compute the optimal
sequence alignment for two reversed sequences. Then, by swapping the
value of the i-th row and j-th column to (|S1| - i)-th row and (|S2| - j)-th column
entry, we may obtain the matrix is shown in Figure 5(c), which gives the h-
value. To simplified this process, we implement it using he dynamic
programming approach with the initial node locate at |S1|-th row and |S2|-th
column entry to the goal node which is 0-th row and column entry. Using this
method, the pre-computation stage requires O(d2N2) extra memory; however,
once the collection of tables is computed, the time needed to calculate the h-
value for each node is reduced from O(d2N2) to O(d2).

4.2 Divide-and-Conquer Frontier Search (DCFA*)
The implementation of this algorithm is similar to A*, which also uses
transposition table. Since forbidden operator is introduced, we use one bit to
represent an operator. All right operators and wrong operators should be
saved. Therefore, for a 5-sequences problem, we need 8 bytes for forbidden
operators in each node.

 A G T C
 0 2 4 6 8

C 2 1 3 5 6
G 4 3 1 3 5
A 6 4 3 2 4
G 8 6 4 4 3

(a)

 C T G A
 0 2 4 6 8

G 2 1 3 4 6
A 4 3 3 4 4
G 6 5 4 3 5
C 8 6 6 5 4

(b)

 A G T C
C 4 5 6 6 8
G 5 3 4 5 6
A 4 3 3 4 4
G 6 4 3 1 2
 8 6 4 2 0

(c)

 Page 8

4.3 A* with Partial Expansion (PEA*)
The algorithm [7] is published in AAAI-2000, and it also attempts to solve the
memory problem of A*. The solution of this algorithm is to save only
promising nodes in open list. When a node is being expanded, only promising
nodes are generated and this node is still in open list if it has unpromising
nodes. The node in open list is ordered by its F value, which is the least value
of unpromising children nodes.

4.4 Improved A* with Partial Expansion (Improve PEA*)
There is a drawback of PEA*, which is regarding to use the single C value to
differentiate promising nodes and unpromising nodes. In the second
expansion of a node, the nodes generated in the first expansion will be
generated again since these nodes are still promising nodes. Therefore, if the
re-expansion happens frequently, the performance of this algorithm will be
decreased largely.

One straight-ward solution is to use a window to separate the children nodes
into three sets, which are expanded, promising and unpromising node sets.
However, this solution can’t get much improvement because it just prevent
the duplicate search but doesn’t prevent duplicate node generation and
duplicate computation of heuristic value. An efficient solution is an efficient
design to remember the expanded nodes. Our implementation uses one bit to
represent one child node and for a 5-sequences problem, 4 bytes in each
node are needed to remember the expanded children nodes.

4.5 Statistical Measurements:
In order to measure the performance, the implementation is incorporated with
some statistical variables or functions. Search_Nodes is a variable storing the
number of nodes has searched in TT table, and Search_Time is another
variable storing the number of time we initiate the TT search. A function
Check_Node_Existence in list.C allows us to check whether the fully explore
node leaking back to the CLOSE region (comment out for the actual time
performance). Similar to [8], we also check the size of OPEN and CLOSE list
and the time used to solve each problem.

5. Experiment Results
Our evaluation is base on the experiments done in [8]. We use the same
heuristic function as stated in [8]. Each experiment computes the optimal
alignment for three strings, and each string is uniformly randomly generated
from 20 characters. The length of each string is ranged from 500 to 3000
characters long, and it increases by 500 characters each string for each
experiment.

In this section, we will first present the results that follow up the questions we
ask in section 3. Then, we will discuss the general comparison of each

 Page 9

algorithm, and last but not least we will explain how much improvement we
made for the improve PEA* algorithm,

5.1 Is there any node revisiting in the CLOSE region?
From our experiment result, it indicates that the idea of forbidden operator is
correct and it successfully prevents the search leaking back into close region.
Our test program set the CLOSE list aside and checks the existence of the
node to be expanded; however, we do not find any existence of such node
leaking back to the CLOSE region.

5.2 Is the size of OPEN list larger than the CLOSE list?
Figure 6 demonstrates the result obtain from A*. Although the size of OPEN
list is larger than the CLOSE list when the length of each sequence is 500,
when we linear increase the length of sequences, the size of CLOSE list is
actually larger than the OPEN list in general. Hence, general speaking, Korf’s
conclusion in [5] is proved.

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

Length of the string

N
um

be
r o

f N
od

es

Open List Close List

Open List 10,983 78,547 220,150 452,602 734,348 995,955
Close List 1,178 119,383 601,012 3,540,03 6,878,16 9,919,94

500 1000 1500 2000 2500 3000

Figure 6 Size of OPEN list vs. CLOSE List solving by A*

 Page 10

5.3 Evaluation of Different Algorithms:

Sequence
Length

Nodes Running
Time
(Sec)

Nodes Running
Time
(Sec)

Nodes Runnin
g Time
(Secs)

Nodes Running
Time
(Secs)

500 19,476 0.36 71,509 0.58 8,495 0.40 8,495 0.40
1000 292,006 3.30 488,719 3.44 213,461 7.22 213,461 6.13
1500 1,110,200 14.67 1,682,644 12.95 890,050 36.48 890,050 29.91
2000 4,632,028 80.50 6,595,645 65.03 4,180,098 227.03 4,180,098 177.93
2500 8,662,163 168.00 12,411,315 129.35 7,932,095 478.32 7,932,095 368.10
3000 12,414,071 262.00 30,711,483 372.69 11,419,491 737.61 11,419,491 556.25

DCFA* PEA*(C=0)A* Improved PEA*(C=0)

Table 1: Performance Comparison for 3-sequence alignment.

Table 1 reports the result obtaining from A* DCFA* PEA* and PEA*’s
improvement. The nodes columns is actually the size of OPEN list plus
CLOSE list, and from all of these tests, the data looks A* is the best algorithm
of all in terms of searching time. Nevertheless, our implemented A* can’t
solve the problem when the sequence length is larger than 3000. DCFA*, on
the other hand, spends more time on its A* enhancement; in turn, it results in
solving much harder problem. In other words, the current version of our
DCFA* program can solve up to 3 strings and each string can be at most
5000 characters. Another observation is that PEA* doesn’t search much less
nodes than those of A*. Therefore, our implemented PEA* also can’t solve the
problem with sequence length longer than 3000.The reason is that the data is
randomly generated and three strings have little similarity. Of course, we
believe that the performance of PEA* will be much better if actual data and
distance matrix are tested. But this result shows that the performance of PEA*
is not as good as DCFA* in the general domain. DCFA* then is the one that
can solve a general path finding problem with large amount of short cycle in
the grid.

 Page 11

5.4 PEA* Improvement

0%

5%

10%

15%

20%

25%

30%

35%

Sequence Length

Ti
m

e
Im

pr
ov

em
en

t

0.00% 17.78% 21.97% 27.60% 29.94% 32.60%

500 1000 1500 2000 2500 3000

Figure 7: Improvement of our version

After looking at three different algorithms, we will focus on our improvement in
partial A*. From Table 1, we may look at the actual value. The actual
improvement is referred to the time efficiency. Looking at Figure 7, it
compares the PEA* with our improved version. It indicates that when the
sequence length increases the computation time reduction can reach 32.60%.
If the real score matrix is used, the time reduction can be more significant
because the re-expansion would happen more frequently.

5.5 Transposition Table Performance
The last result we obtain is the performance of transposition table. Figure 8
indicates the average number of node need to be accessed in order to check
the existence of a new generated node in the list. As the length increase by
500, the average number of accessed node in one search is less than 3
attempts. Thus, the performance of the transposition table is acceptable to as
an enhancement in A* for this problem.

 Page 12

0

0.5

1

1.5

2

2.5

3

Sequence Length

N
um

be
r o

f N
od

e

A* 1.07 1.33 1.57 1.96 2.18 2.38
500 1000 1500 2000 2500 3000

Figure 8: Average Number of nodes need to search in the TT in order to obtain the
result.

6. Conclusion
In this project, we study several algorithms in artificial intelligence to solve the
multiple sequence alignment, a problem from the computational biology, and
we implement two interesting algorithms published in 2000, divide and
conquer frontier search and A* with partial expansion. Our final conclusion is
that DCFA* can solve the problem in a general area while PEA* may perform
better when similar data are used.

7. Future Works
Current algorithm solving hard MSA problem requires exponential time and
space. This project summarizes some techniques to reduce the time
complexity as well as memory usage. However, to solve the problem with
exponentially increase number of branching factor is also a challenging work
in our future.

8. Acknowledge
We gratefully give our thanks to Matthew McNaughton and Dr. Jonathan
Schaeffer for their creative comments.

 Page 13

9. References:
[1] S.B. Needleman and C.D. Wunsch, “A General Method Applicable to the

Search for Similarities in the Amino Acid Sequences of Two Proteins”,
Journal of Molecular Biology, Vol. 48, 1970, pp. 443-453.

[2] D.S. Hirschberg, “A Linear Space Algorithm for Computing Maximal
Common Subsequences”, Communication of the ACM, Vol. 18, No. 6,
June, 1975, pp. 341-343.

[3] J.L. Spogue, “Speeding up Dynamic Programming Algorithms for Finding
Optimal Lattice Paths”, SIAM Journal of Applied Math, Vol. 49, No. 5,
1989, pp. 1552-1566.

[4] E. Ukkonen, “ Algorithms for approximate string matching”, Information
and Control, Vol. 64, 1985, pp. 100-118.

[5] R.E. Korf , “Divide and Conquer Bidirectional Search: First Results”, Proc.
of IJCAI-99, Stockholm, Sweden, August 1999, pp. 1184-1189.

[6] A. Davidson, “A Fast Pruning Algorithm for Optimal Sequence Alignment”,
Proc. BIBE’2001, November 2001.

[7] T. Yoshizumi, T. Miura, and T. Ishida, “A* with partial expansion for large
branching factor problems”, AAAI-00, pp.923-929.

[8] R.E., Korf, W. Zhang, “Divide-and-Conquer Frontier Search Applied to
Optimal Sequence Alignment”, AAAI National Conference, 910-916, 2000.

