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1. Introduction 
Multiple sequence alignment (MSA) is a controversial problem in 
computational biology.  This particular problem computes the similarity based 
on the biological properties of nuclei acid (or amino acid) among the DNA 
strands (or protein sequences). When this biological problem is mapped to a 
computing science problem, the formulation becomes finding the similarity 
between multiple strings. The similarity of two aligned characters relies on the 
cost function, which will return a distance (or score value).  The similarity of 
the alignment, then, is the sum of all pair aligned characters’ distances (or all 
pair scores). The optimal pair-wise alignment is referred to align two strings 
and spaces could be inserted into each string to obtain the optimal similarity. 
MSA is a generalized version, which aligns multiple strings (we refer the 
number of strings is d) simultaneously.  In this project, we will use the 
distance as similarity measurement like in [5].  That is, when two characters 
match, mismatch, or aligning with space, its distance is 0, 1, and 2 
respectively. Then the optimal alignment should have the minimal distance. 

The report is organized as follows.  Next section, we will present the previous 
work and techniques from computational biology to artificial intelligence.  
Then, section 3 reveals our objective of this project, and section 4 will explain 
the implementation issues of three implemented algorithms.  After that, 
section 5 will discuss the results we obtain and evaluate each implemented 
algorithm.  At last, we will conclude the comparison study we have learnt from 
this project. 

2. Literature review 

2.1 Dynamic Programming Approach 
Needleman and Wunsch’s algorithm [1] is the first one that formulates the 
optimal pair-wise sequence alignment problem. Given two length-N 
sequences, say S1 and S2, the algorithm initializes a matrix of size (N+1) x 
(N+1). Each entry will store the optimal alignment score for two sub-strings. 
For instance, entry with column i and row j, will store the optimal score for the 
alignment between S1[0…i-1] and S2[0…j-1]. Therefore, the first row and first 
column are initialized the distance of total number of spaces that can be 
inserted in front if aligning to another string.  Then, computing from left to right 
and from top to bottom, each entry can be optimized by looking at the current 
character of each string.  There exist three possibilities of looking at current 
entry, which are aligning S1[i] to a space, S2[j] to a space, or S1[j] to S2[j].   

Multiple sequence alignment, moreover, is a similar problem.  MSA requires 
aligning d sequences simultaneously.  With same dynamic programming 
approach, the algorithm increases the dimension of the matrix to d, which 
increases the space complexity.  Then, for each entry, there will be 2d 
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possibilities to align the last character of each sting.  Therefore, the dynamic 
programming approach has time and space complexity of O(nd). 

Since the DNA sequence can be thousands to millions bytes long and the 
number of strings we like to align simultaneously increases day by day, the 
time and space complexity of dynamic programming are not sufficient, and 
researchers improve the algorithm by reducing the search space of the matrix.  
Hischberg’s algorithm [2] reduces the space complexity from O(nd) to O(nd-1).  
The idea is to use divide and conquer approach on top of the dynamic 
programming.  To divide the problem into two sub problems, it finds a point k 
that separates the sequences into two parts, and then recursively build the 
path from upper left corner of the matrix to k, and the path from k to the lower 
right corner of the matrix.  Although D.S. Hirschberg introduced an O(nd-1) 
space algorithm in [2], the time necessitated to solve this problem requires 
twice amount efforts as the original dynamic programming approach. 

2.2 Heuristic Search Approach 
Turning the dynamic programming approach to a path-finding problem in a d-
dimensional matrix, we may apply the existing heuristic search techniques in 
artificial intelligence.  In the formulation of dynamic programming, a d-
dimensional matrix is created and to find the optimal alignment is to find the 
optimal path from a initial node (located at the first entry where its value is 
always initialized to 0) to a goal node (located at the last entry where its 
stores the optimal alignment score when the computation is completed).  For 
instance, aligning 3 length-N strings, we will find the optimal path from 
dimensional the matrix entry M[0][0][0] to M[N][N][N]. 

Path finding problem can be solved using greedy algorithm, such as Dijkstra’s 
shortest path algorithm and A* algorithm.  However, because of the huge 
search space due to large number of short cycle and the requirement of 
storing distinct path in each node, the memory limitation turns out to be a 
major problem when solve the general problem using these techniques. Take 
a simple pair-wise optimal alignment as an example. If two strings S1 and S2 
are given and the length of both strings is N, it will initial a 2 dimensional 
matrix with size (N+1) x (N+1).  Between the source node and goal node, if 
we ignore the diagonal moves, there is N!/(N!)2 number of distinct paths.  

2.2.1 A* Algorithm 
A* eventually is a best first search algorithm.  Each node consists of an f-
value defined as f = g + h, in which g-value is the known distance for aligned 
between each sub-string from the first to its current aligned character while h 
value is the estimated distance for the alignment for each sub-string from the 
current aligned character to its last character. The g-value builds up 
recursively where h-value is generated from a heuristic function. A popular 
admissible heuristic function used in MSA problem is the sum of optimal pair-
wise alignments. The heuristic value is a lower bound since the cost of the 
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actual alignment of each pair is at least as good as the cost of the optimal 
pair-wise alignment.  

The algorithm will first put the initial node into the OPEN list, which stores the 
nodes that are not fully considered.  Then, at each step, it will select the best 
f-value node from the OPEN list to explore, and the algorithm terminates 
when the goal node is found (or no solution when OPEN list becomes empty).  
If the solution cannot be found after such node is explored, we will put it into 
the CLOSE list, which prevents the repeated search  

2.2.2 Divide-and-Conquer Bi-directional Search (DCBDA*) 
In 1999, Korf introduced a technique, forbidden operator, and applied divide 
and conquer and bi-directional search techniques as A* enhancement [8], 
namely Divide and Conquer Bi-directional Search (or DCBDA*).  The space 
requirement reduces to O(nd-1), and the most significant result is that the time 
complexity will not be twice as original dynamic programming (like 
Hischberg’s algorithm does), but increase by constant amount of time [8].  
Indeed, DCBDA* is a variant of A* algorithm; however, applying it to MSA 
problem, the author claims only storing the OPEN list is enough when 
forbidden operator is introduced into each node. The forbidden operator 
indicates which direction(s) of this node has been searched before. With the 
forbidden operator, DCBDA* will not repeatedly expand those nodes that 
have been explored. 

 

 
Figure 1: Divide-and-Conquer path construction [5]. 

Furthermore, divide-and-conquer approach is similar to Hischberg’s idea, and 
it divides the problem into two halves at first. When the search finishes, we 
can get a roughly intermediate point in the optimal path.  Then, we can use 
this point to divide the whole problem into two sub-problems and recursively 
apply the same algorithm to solve sub problems until the whole optimal path 
is constructed. Figure 1 illustrates the divide-and-conquer approach. In 
general problem, we believe that the computed area in each search is roughly 
half of the computed area in the previous search. So, the extra computation 
cost for path constructions is approximately equal to the computation cost in 
the first iteration. Moreover, bi-directional search allows simultaneously 
searching both forward from the initial state node and from the goal node. 
Nonetheless, two conditions must be satisfied if this algorithm is applied in 
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general case. One is that the heuristic function must be consistent and the 
other is that the problem space should be polynomial. The details analysis is 
described in [5].  

2.2.3 Divide-and-Conquer Frontier Search (DCFA*) 

Figure 2: Computed area of frontier search 
[6].     

Figure 3: Computed area of bi-directional 
search. 

A year later, Korf and Zhang, extended DCBDA* work and showed that 
unidirectional search with forbidden operator can be successfully applied to 
this problem. The new designed algorithm called Divide and Conquer Frontier 
Search (DCFA*), which employs the same idea as DCBDA*, i.e forbidden 
operator and ignorance of CLOSE list, but use unidirectional search instead 
(from initial state node to goal node).  Their analysis indicated that DCFA is 
better than DCBDA* in terms among number of node search, time and 
memory usage.  Our general understanding to this result is that the closer the 
search to the goal node, the more accurate the heuristic function and the 
smaller the search space. Therefore, more extra search work is done at the 
beginning than that at the end. Figure 2 is borrowed from Aaron Davidson’s 
paper, which displays the computed area of frontier search in two-sequence 
alignment. It can be seen that most search work is done at the beginning. If 
the search starts from two directions, as shown in Figure 3, the work will be 
double.  This explain why the performance of DCFA* is better than the DCBA* 
in MSA problem. 

2.2.4 A* with partial expansion 
In the same year, 2000, Yoshizumi and et al proposed A* with partial 
expansion to solve MSA (or perhaps general problem with large branching 
factor) [7].   It is also a variant of A*, which proposed new enhancement to 
solve the huge branching problem like MSA.  The idea is to store only 
promising nodes for finding an optimal solution.  To determine a promising 
node, authors introduce a parameter C, which is a predefined and 
nonnegative cutoff value, and F-value, which is the priority of node expansion, 
to A* algorithm.  When expanding the best node in the OPEN list, the 
corresponding children are referred as promising nodes and will be stored in 
the OPEN list where the f-value of the children node is less than the C value 
plus the F-value of the expanding node.  The F-value of a node is equal to f-
value at the beginning.  If the expanding node contains any unpromising child, 
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it will put back to the OPEN list after expansion and set the F-value to the 
lowest f-value among its unpromising child nodes. Therefore, when C is equal 
to infinite the algorithm becomes A*, but unlike A* expanding in the order of f-
value, the introduced parameter C and F-value decides the priority of nodes 
for expansion.  

3. Objectives 
The conflict accusation from [5] and [7] attracts our interest.  In 1999, [5] 
demonstrates that the forbidden operator allows A* only storing the OPEN list.  
Korf believed that using this technique could overcome the memory problem 
of A* because he concluded that the size of CLOSE list was much larger than 
open list when applying to the MSA problem.  Nevertheless, [7] argued that 
the size of open list was much larger than the CLOSE list and forbidden 
operator could not prevent search from leaking back into CLOSE region. 

Because both believes do not follow with any reasoning, the goal of our 
project is to justify the following two questions. 

(1) Is there any node revisiting in the CLOSE region? 
(2) Is the size of OPEN list larger than the CLOSE list? 

The next objective of our project is to evaluate the existing heuristic search 
algorithms that target on MSA problem.  We want to see which one is much 
better than the other in the general case. 
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4. Implementation Issues 
We have implemented two main algorithms, DCFA* and PEA*, which are 
variants of A*.  When we set the C value of PEA* to infinity, it eventually 
becomes A*.  Because A* is the basic building block of these two algorithms, 
we will discuss the main implementation issues in A* in this section. 

4.1 A* Heuristic Search (A*) 

The most critical issue in the implementation of A* is how to efficiently design 
the data structure of OPEN list and CLOSE list. An efficient way is to use the 
heap structure since the complexity of insertion and deletion in a heap is 
O(log n). However, only using the heap is not efficient enough. When a node 
is expanding, all its successors ensure that they do not exist in both OPEN list 
and CLSOE list, which in turn search for both lists. The branching factor of 
MSA is very large, as explained in the second section, so the search 
efficiency in list becomes a bottleneck in the MSA program. In our 
implementation, we incorporated the Transposition Table (TT) into A* 
algorithm. Each entry of TT saves two pointers. One pointer stores the 
address of a node in the open list and the other pointer saves the address of 
a node in the close list in which both pointers point at the first visited node 
with the same hash key. If there are collisions in a TT entry, nodes with same 
hash key will be chained together and this is done by adding an extra pointer 
in each node. Figure 3 illustrates our design.  Even though the TT allocates a 
significant amount of memory, the efficiency of our implementation is 
improved by order of magnitudes (shown in next section).  

Another issue for A* is to determine the heuristics value.  As described in 
section 2.2.1, the h-value estimates the distance from current node to the 

                         …… 
                         …… TT 

1   2    3    4 

Open  
list 

Close 
List 

…    4 …    2 …    4 …    2 …    2 …    4

…    3 …    4 …    3

Figure 4: Transposition Table in A* 
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goal node. If we compute all h-values in real time, there are d(d-1)/2 
combination of pair sequences and the computational complexity to compute 
the optimal distance between two sequences is, causing O(d2 N2) time for 
each node and resulting in high granularity.   Hence, we introduce the pre-
computation tables.  Each pre-computation table stores the h-value of each 
pair-wise sequence at any given position, and hence it consists of O(d2) 
number of tables.   

Figure 5: the evolution of finding the h-value for each node from (a) dynamic approach 
to compute pair-wise sequence alignment to (b) reversed pair-wise sequence 
alignment and then to (c) h-value table. 

 
Figure 5(a) shows a simple example to compute the pair-wise optimal 
sequence alignment using dynamic programming approach.  The first 
impression is that each cell, saying that the position is i-th column and j-th row, 
computes the optimal alignment distance between two sub-strings, S1[0…i – 
1] and S2[0…j – 1]. In other words, it computes the g value of the 
corresponding node.  In order to compute the h-value, then, each cell should 
compute the optimal alignment distance between S1 [i…N–1] and S2[j…N-1].  
In other words, as shown in Figure 5(b), we can compute the optimal 
sequence alignment for two reversed sequences.  Then, by swapping the 
value of the i-th row and j-th column to (|S1| - i)-th row and (|S2| - j)-th column 
entry, we may obtain the matrix is shown in Figure 5(c), which gives the h-
value.  To simplified this process, we implement it using he dynamic 
programming approach with the initial node locate at |S1|-th row and |S2|-th 
column entry to the goal node which is 0-th row and column entry. Using this 
method, the pre-computation stage requires O(d2N2) extra memory; however, 
once the collection of tables is computed, the time needed to calculate the h-
value for each node is reduced from  O(d2N2) to O(d2). 

4.2 Divide-and-Conquer Frontier Search (DCFA*) 
The implementation of this algorithm is similar to A*, which also uses 
transposition table. Since forbidden operator is introduced, we use one bit to 
represent an operator. All right operators and wrong operators should be 
saved. Therefore, for a 5-sequences problem, we need 8 bytes for forbidden 
operators in each node.  

 
  A G T C 
 0 2 4 6 8 

C 2 1 3 5 6 
G 4 3 1 3 5 
A 6 4 3 2 4 
G 8 6 4 4 3 

( a ) 

 
  C T G A
 0 2 4 6 8

G 2 1 3 4 6
A 4 3 3 4 4
G 6 5 4 3 5
C 8 6 6 5 4

( b ) 

 
 A G T C  
C 4 5 6 6 8 
G 5 3 4 5 6 
A 4 3 3 4 4 
G 6 4 3 1 2 
 8 6 4 2 0 

( c ) 
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4.3 A* with Partial Expansion (PEA*) 
The algorithm [7] is published in AAAI-2000, and it also attempts to solve the 
memory problem of A*. The solution of this algorithm is to save only 
promising nodes in open list. When a node is being expanded, only promising 
nodes are generated and this node is still in open list if it has unpromising 
nodes. The node in open list is ordered by its F value, which is the least value 
of unpromising children nodes.  

4.4 Improved A* with Partial Expansion (Improve PEA*) 
There is a drawback of PEA*, which is regarding to use the single C value to 
differentiate promising nodes and unpromising nodes. In the second 
expansion of a node, the nodes generated in the first expansion will be 
generated again since these nodes are still promising nodes. Therefore, if the 
re-expansion happens frequently, the performance of this algorithm will be 
decreased largely.  

One straight-ward solution is to use a window to separate the children nodes 
into three sets, which are expanded, promising and unpromising node sets. 
However, this solution can’t get much improvement because it just prevent 
the duplicate search but doesn’t prevent duplicate node generation and 
duplicate computation of heuristic value. An efficient solution is an efficient 
design to remember the expanded nodes. Our implementation uses one bit to 
represent one child node and for a 5-sequences problem, 4 bytes in each 
node are needed to remember the expanded children nodes. 

4.5 Statistical Measurements: 
In order to measure the performance, the implementation is incorporated with 
some statistical variables or functions. Search_Nodes is a variable storing the 
number of nodes has searched in TT table, and Search_Time is another 
variable storing the number of time we initiate the TT search. A function 
Check_Node_Existence in list.C allows us to check whether the fully explore 
node leaking back to the CLOSE region (comment out for the actual time 
performance).  Similar to [8], we also check the size of OPEN and CLOSE list 
and the time used to solve each problem. 

5. Experiment Results 
Our evaluation is base on the experiments done in [8].  We use the same 
heuristic function as stated in [8].  Each experiment computes the optimal 
alignment for three strings, and each string is uniformly randomly generated 
from 20 characters.  The length of each string is ranged from 500 to 3000 
characters long, and it increases by 500 characters each string for each 
experiment.   

In this section, we will first present the results that follow up the questions we 
ask in section 3. Then, we will discuss the general comparison of each 
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algorithm, and last but not least we will explain how much improvement we 
made for the improve PEA* algorithm, 

5.1 Is there any node revisiting in the CLOSE region? 
From our experiment result, it indicates that the idea of forbidden operator is 
correct and it successfully prevents the search leaking back into close region. 
Our test program set the CLOSE list aside and checks the existence of the 
node to be expanded; however, we do not find any existence of such node 
leaking back to the CLOSE region. 

5.2 Is the size of OPEN list larger than the CLOSE list? 
Figure 6 demonstrates the result obtain from A*.  Although the size of OPEN 
list is larger than the CLOSE list when the length of each sequence is 500, 
when we linear increase the length of sequences, the size of CLOSE list is 
actually larger than the OPEN list in general.  Hence, general speaking, Korf’s 
conclusion in [5] is proved.  
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500 1000 1500 2000 2500 3000

 

Figure 6 Size of OPEN list vs. CLOSE List solving by A* 
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5.3 Evaluation of Different Algorithms: 

Sequence 
Length

Nodes Running 
Time 
(Sec)

Nodes Running 
Time 
(Sec)

Nodes Runnin
g Time 
(Secs)

Nodes Running 
Time 
(Secs)

500 19,476 0.36 71,509 0.58 8,495 0.40 8,495 0.40
1000 292,006 3.30 488,719 3.44 213,461 7.22 213,461 6.13
1500 1,110,200 14.67 1,682,644 12.95 890,050 36.48 890,050 29.91
2000 4,632,028 80.50 6,595,645 65.03 4,180,098 227.03 4,180,098 177.93
2500 8,662,163 168.00 12,411,315 129.35 7,932,095 478.32 7,932,095 368.10
3000 12,414,071 262.00 30,711,483 372.69 11,419,491 737.61 11,419,491 556.25

DCFA* PEA*(C=0)A* Improved PEA*(C=0)

 

Table 1: Performance Comparison for 3-sequence alignment. 

Table 1 reports the result obtaining from A* DCFA* PEA* and PEA*’s 
improvement.  The nodes columns is actually the size of OPEN list plus 
CLOSE list, and from all of these tests, the data looks A* is the best algorithm 
of all in terms of searching time.  Nevertheless, our implemented A* can’t 
solve the problem when the sequence length is larger than 3000. DCFA*, on 
the other hand, spends more time on its A* enhancement; in turn, it results in 
solving much harder problem.  In other words, the current version of our 
DCFA* program can solve up to 3 strings and each string can be at most 
5000 characters. Another observation is that PEA* doesn’t search much less 
nodes than those of A*. Therefore, our implemented PEA* also can’t solve the 
problem with sequence length longer than 3000.The reason is that the data is 
randomly generated and three strings have little similarity. Of course, we 
believe that the performance of PEA* will be much better if actual data and 
distance matrix are tested. But this result shows that the performance of PEA* 
is not as good as DCFA* in the general domain. DCFA* then is the one that 
can solve a general path finding problem with large amount of short cycle in 
the grid. 
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5.4 PEA* Improvement 
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Figure 7: Improvement of our version 

After looking at three different algorithms, we will focus on our improvement in 
partial A*.   From Table 1, we may look at the actual value.  The actual 
improvement is referred to the time efficiency. Looking at Figure 7, it 
compares the PEA* with our improved version.  It indicates that when the 
sequence length increases the computation time reduction can reach 32.60%. 
If the real score matrix is used, the time reduction can be more significant 
because the re-expansion would happen more frequently.   

5.5 Transposition Table Performance 
The last result we obtain is the performance of transposition table.  Figure 8 
indicates the average number of node need to be accessed in order to check 
the existence of a new generated node in the list.  As the length increase by 
500, the average number of accessed node in one search is less than 3 
attempts. Thus, the performance of the transposition table is acceptable to as 
an enhancement in A* for this problem. 
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Figure 8: Average Number of nodes need to search in the TT in order to obtain the 
result. 

 

6. Conclusion 
In this project, we study several algorithms in artificial intelligence to solve the 
multiple sequence alignment, a problem from the computational biology, and 
we implement two interesting algorithms published in 2000, divide and 
conquer frontier search and A* with partial expansion. Our final conclusion is 
that DCFA* can solve the problem in a general area while PEA* may perform 
better when similar data are used. 

7. Future Works 
Current algorithm solving hard MSA problem requires exponential time and 
space. This project summarizes some techniques to reduce the time 
complexity as well as memory usage.  However, to solve the problem with 
exponentially increase number of branching factor is also a challenging work 
in our future. 
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