
Imagination is more important than knowledge. For knowledge is limited, whereas imagination
embraces the entire world, stimulating progress, giving birth to evolution.

-Albert Einstein, (1929)
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Abstract

Computers have been used in diagnostic imaging for decades, but High-Performance Computing

(HPC) in diagnostic imaging is rather rare because of the high cost associated with traditional HPC.

Recent advancements in shared memory computers and the large market for commodity graphic

cards have provided the means for technological evolution at a more rapid pace and decreased cost.

These improvements can provide a detailed 3D view of the human body, near instantaneous recon-

struction for Computed Tomography (CT), more intricate reconstruction algorithms, and reduced

radiation exposure to patients through the use of iterative reconstruction techniques. The use of

HPC in diagnostic imaging is realizable with current commodity hardware. For this reason a new

reconstruction, visualization, and interaction environment has been constructed to decrease recon-

struction time, decrease radiation exposure, and reconstruct images from raw attenuation values in

medical-CT. The thesis explores the use of different computational tools in the Advanced Recon-

struction Environment for Medical Imaging (AREMI). AREMI uses multi-core and multi-GPU pro-

gramming for reconstruction of real-world clinical raw attenuation values from Siemens Definition

Flash CT scanners. The use of this environment, analysis of various reconstruction techniques, and

the ability to output High Dynamic Range (HDR) has provided a means to analyze various aspects

of CT reconstruction in medical applications. The thesis also provides a concise review of filtered

back-projection and algebraic methods in CT-reconstruction and provides insight into programming

advanced CT-reconstruction concepts in a serial, multi-CPU, GPU, and multi-GPU environment

that are not formally explained in literature; therefore, making this topic accessible and valuable to

a broad audience.
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Chapter 1

Introduction

The ability to produce a volumetric depiction of the inner properties of an object was a revolutionary

achievement for industry and medicine. There are many modalities that these digital images can be

acquired from, and each has strengths and weaknesses. The modality of choice for this thesis is

fan-beam Computed Tomography (CT), as it is widely used in medical imaging and has a number

of difficult problems that can be addressed through the use of High-Performance Computing (HPC).

In this thesis we show the difficulties in modelling a real-world problem, as in our problem much

of the information is unavailable. A solution is outlined, and many different aspects of fan-beam

CT-reconstruction are evaluated. This implementation has the ability to reconstruct raw-attenuation

values in a timely fashion by specific algorithm choices and an implementation targeted at multi-

GPU environments is described. We are then able to perform qualitative and quantitative analysis

on all methods implemented. The ultimate goal is to construct a valid 2D or 3D model of X-ray

attenuation given a series of measurements, at various angles, of a specific resolution, and varying

levels of noise. The task is a difficult problem computationally. Likewise, much of the information

is typically not available from specific scanning mediums. In this chapter we discuss some of the

ethical and theoretical motivation, contributions to the research community, and applicability to

different readers.

1.1 Ethical Motivation

The introduction of medical-CT in the 1970s was revolutionary as it changed diagnostic medicine.

Surgeons could now see problems in the brain and body on diagnostic scans prior to operating,

whereas formerly they had to operate to see what was wrong with the patient. It is now widely

used in the developed world with close to 70 million CT scans per year acquired in the United

States alone [2, 7]. However, there are apparent risks associated with CT because X-rays are used to

acquire the volumetric depiction of the inner anatomy of the patient and the radiation used is linked

to cancer. Furthermore, clinical use of CT exposes the patient to comparatively high levels of X-ray

radiation [54]. Specifically, an X-ray beam is composed of photons of various energies in the range
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of kilowatts. The photons are attenuated by different materials encountered. Based on the level

of attenuation, one can create an image representing the inner properties encountered by the X-ray

beam. The attenuation can be thought of as absorption, and this absorption, when significant, can be

linked to cancer if DNA is damaged.

Figure 1.1: Multidetector helical CT acquisition [7].

The radiation exposure in CT is classified as high when compared to traditional X-ray technolo-

gies. This is understandable because CT acquires a volumetric representation of the body, see Figure

1.1, rather than just a single image as seen in a typical chest X-ray. For instance, when comparing

a typical adult abdominal CT, and the relevant organ dose, to dental or lateral chest radiography,

the abdominal CT has a relevant dose of 200x more than dental radiography and 67x more than the

lateral chest radiography [7]. The larger amount of radiation used in CT, and the escalating use of

CT in clinical environments (3-fold since 1993), have led to many studies that show cancer rates do

increase substantially with the exposure to CT [2, 7]. Given the high risk associated with a CT study,

the research in this thesis has been devoted to reducing the amount of radiation needed (up to 50%

in iterative techniques), providing reasonable runtime, and providing a good visual reconstruction

environment to build highly detailed images of the inner properties of the body.

1.2 Problem Statement

Although there are many details described in this thesis, the core problem that is modelled is that of

the Radon transform, and the use of this transformation information to reconstruct the original im-
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(a) Sinogram of 1.2c

(b) Projection of angle 90◦ through image

(c) Reconstructed Phantom

Figure 1.2: (1.2a) represents the sinogram of 1.2c, known numerically as p(γ, β), for fan-beam
geometry where γ represents the offset in the detector fan or channel and β represents the offset of
the X-ray source and l and k are the rectilinear coordinates of the sinogram; (1.2b) single projection
of angle 90◦ through reconstruction region; (1.2c) complete back-projection of l=1152 projections
and k=736 radial channels, representing a complete sampling of sinogram, also known numerically
as f(x, y) where m and n are the rectilinear coordinates of the image.
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Figure 1.3: Representation of basic fan-beam CT geometry. Where γ = angle index of sensor
array for given red pixel location, θ = angle of pixel from origin, D = distance from isocenter
to source, β = angle of source, l = distance from isocenter to pixel location, f(x, y) location in
reconstruction region, m and n designates y and x-axis of reconstruction region, k number of radial
detector channels, and the red circle designates angular projections (2π/θl).
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Figure 1.4: Simplified Radon transform for heterogeneous (having different weights) image consist-
ing of nine pixels. The Radon transform is seen involving three rays at 90◦ and 270◦, with resultant
sums.

age [79]. The main difference from the mathematical model is that the Radon transform is typically

a continuously sampled domain, but it can only be modelled discretely when using real data. There-

fore, the discrete input data for reconstruction algorithms is a sinogram with rectilinear coordinates

k and l, as seen in Figure 1.2a. The figure depicts k representing the radial detector channels of the

scanner and l as the projection data at a specific β-angle. The sinogram is the discrete output of the

Radon transform of f(x, y), as seen in Figure 1.2c, where the basic line-intergration principle of the

Radon transform is seen in Figure 1.4. Therefore, the resolution and noise properties contained in

the sinogram can impact the quality of a reconstruction.

The output of the algorithm is typically a reconstructed image f(x, y) with rectilinear coordi-

nates n andm respectively. The definition of f(x, y) can heavily influence the quality of reconstruc-

tion as it controls the sampling of the sinogram in reconstruction algorithms. Therefore, adjusting

the size, definition of pixels, ray-width, and interpolation method used can impact the reconstruction,

as they are all related to either the image (f(x, y)) or the sinogram (p(γ, β)).

1.2.1 Fan-Beam Geometry

Figure 1.3 depicts fan-beam medical-CT geometry, which is the modality of choice for this thesis.

The dimension of the reconstruction region can be seen where m and n represent the rectilinear

reconstruction coordinates of the image (f(x, y)). A given pixel location (f(x, y)) is seen and is

defined by the location (γ) in the radial arc of detector channels, which ranges from (±k/2), and

the angle of the source (β) during the sample that ranges from 0→ 2π.
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1.2.2 Parameters

There are a number of algorithmic parameters that are presented in this thesis, such as:

1. number of projections (l),

2. projection ordering,

3. relaxation of algebraic methods,

4. constraints of maximal and minimal value of line-integrals from the Radon transform,

5. reconstruction region (square or circular),

6. pixel or voxel size,

7. parallel workload policies (blocking structures, threads, etc),

8. number of ART-iterations,

9. distance metric reconstruction region (number of pixels or physical length based),

10. definition of convergence.

This only represents a subset of the available parameters, but illustrates some of the more important

ones for reconstruction techniques. We will investigate some of these parameter choices and how

they influence a reconstruction, qualitatively and quantitatively.

1.2.3 Reconstruction Methods

The ability to provide an accurate reconstruction is heavily influenced by the reconstruction method

used. There are methods that have reduced computational complexity and can reconstruct images

faster at the expense of accuracy or amplification of noise. Likewise, there are methods that are

computationally slow, but accurate at representing the physical system. These methods provide

superior reconstructions, but are computationally expensive. We investigate the use of algorithms

designed for parallel computational devices to make the problems more manageable and provide

quicker reconstructions. Specifically, we analyze how the complexity of reconstruction methods

varies based on the number of processors or GPUs used.

1.3 Theoretical Motivation

There are a wide variety of problems that face the medical imaging community relating to CT.

Mainly:

1. acquisition of good quality scans,

2. choosing the most reasonable frequency kernels,
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3. applying frequency kernels in a timely manner,

4. choosing a reconstruction type,

5. reconstruction of scan in a timely manner,

6. choosing the most reasonable spatial kernels,

7. applying spatial kernels in a timely manner,

8. reduction of artifacts,

9. and translation of visual perception of acquired images into a mental conceptual understanding

of the anatomy.

These issues are never independent and, in reality, are usually directly dependent on each other.

That is to say, without a good acquisition medium, coupled with good quality frequency and spatial

kernels, and a quick reconstruction with minimal artifacts, a mental model of the depicted anatomy,

with high confidence, is not possible. Likewise, we mention timely manner, as without reasonably

fast computation time, in terms of seconds or minutes, in items 3, 5, and 7, the personnel costs and

throughput of the scanning modality is decreased. The techniques implemented in this document

tend to focus more on the enhancement of items 2 to 9. By focusing the attention to these areas we

are able to provide a dynamic visualization environment for those reviewing the reconstructions or

trying to understand the qualitative and quantitative impact of parameters.

Item 4 in the above list is important to the correct representation of the material encountered

by X-rays. There are two variations of reconstruction methods in CT, which will be reviewed in

Section 2.6 and Section 2.12.5. The most commercially used reconstruction scheme is Filtered

Back-Projection (FBP), and variations, proposed initially by Feldkamp, Davis, and Kress (FDK)

[20]. The less common technique is referred to as the algebraic method to solve the inverse Radon

transform and will be shown to be computationally intensive. There are also variations that use an

approximation to the solution to converge on a reasonable result through an iterative update method.

The complexity of the simplest reconstruction algorithms, FDK, is O(n4), where n is the the

rectilinear coordinate of the reconstruction region and approximately equal to the number of pro-

jections, and considered to be the least computationally demanding method [61]. From the view

of computational analysis, the simplest is already challenging and, until the advent of Field Pro-

grammable Gate Arrays (FPGAs), reconstruction often took more than ten minutes for a 2563 vol-

ume [61], and even several hours to reconstruct hi-res multi-slice volumes. Looking inside today’s

commercial-CT machines, one can generally find specialty devices such as the ASIC chip from Ter-

arecon Inc. or FPGAs, as these boards were designed for fast execution of the FDK type algorithms

[61]. The use of the specialty hardware devices was groundbreaking, as reconstruction times of

tens of minutes were reduced to seconds for 2563 volumes. These devices are expensive and lacked
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Figure 1.5: Left image: Siemens Definition Flash+ 128, image size (m = n = 256), reconstruc-
tion with standard grid and unknown interpolation scheme. Right image: implemented fine-grid
reconstruction, equal image size, linear interpolation. Obvious aliasing is seen in the left image, less
noticeable in the right image. No edge enhancing kernels were used during reconstruction.

the ability to change algorithmic procedures because the hardware was specifically designed for a

specific algorithm. Also, commercial-CT algorithms appear to lack fine-grid sampling and have

possibly relied upon proprietary interpolation schemes and filters to reconstruct at high quality. This

is likely as even the simple higher order interpolation scheme seen in Figure 1.5 seems to provides

a better quality, less apparent aliasing, reconstruction than the commercial algorithm. These coarser

grained grids are most likely used to cut down reconstruction time, though a solid answer is diffi-

cult to find as most of the commercial techniques are proprietary and closely guarded secrets. The

Nyquist-Shannon sampling theorem shows that, although we are reconstructing an (m × n image),

there should generally be a more computationally expensive finer grid used that is based upon the

detector spacing and image size [69, 90]. The benefits of the finer grid can be seen in Figure 1.5.

Oversampling in a continuous domain should never introduce aliasing, which is only introduced

when one under-samples without reducing spatial frequencies. Full review of the various FBP tech-

niques will be discussed in Chapter 2.2, and an exploration of the techniques implemented in this

document will be discussed in Chapter 3-6.

The class of FBP algorithms are only approximate solutions to the inverse Radon transform and

are, as noted, computationally complex. However, linear algebra techniques and iterative techniques

are substantially more elaborate. The complexity stems mainly from the forward-projection of rays

through pixel locations, seen in Figure 1.6. A lookup table can be used for this process, but the most

expensive process is the solving of the linear system. For example, using linear algebra techniques,

a reconstruction of a (4 ∗ (m × n = 256)) image, 736 detectors, fine grid technique that follows

Nyquist-Shannon Sampling theorem, and 1152 projections would require a transformation matrix

with dimensions,m = 256∗4, n = 256∗4, k = 736, and l = 1152 projections for one reconstructed

image. In this example, m, and n are the rectilinear coordinates of the reconstruction region seen
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Figure 1.6: Linear method in CT, four projection angles at 90◦, 180◦, 270◦, and 0◦. Likewise, four
rays cast through each discretized image with intersecting pixels is depicted.
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later as the x, and y coordinates of Figure 2.3c. Likewise, Figure 2.3a shows a sinogram that has

rectilinear coordinates k, and l. The radial channel detectors (k) are represented by the x coordinate

and the projection angular samples (l) are seen as the y coordinate of the sinogram. This does not

initially look like a large matrix, but the actual reconstruction requires a matrix with dimensions

(mn× kl). Considering 64 to 256 images are usually being reconstructed makes for a considerable

amount of computation.

Although the linear methods are accurate, computationally they are expensive, requiring iterative

techniques to solve a large linear system. Traditional methods to solve systems of linear equations

break down as the problem size increases, as in the problem size previously considered. Solving

large sparse matrices is a research topic in itself and is generally not real-time. For this reason,

approximate methods have been proposed, these methods are typically referred to as iterative meth-

ods in CT. The iterative method tries to satisfy a given condition of accuracy, tolerance value, or set

number of iterations. If the condition is not met another iteration is completed, and so forth, until the

condition is met. However, the determination of when convergence has been fulfilled is difficult to

understand when using real data, as the true solution is not known. These techniques are beginning

to be implemented in current CT machines such as Siemens IRIS reconstruction technique [28] or

GE ASIR. There has been little use of these iterative methods in clinical-CT, as the results have not

been accepted and no guidelines for dose reduction have been established at this time. Likewise, the

ability to use reduced projection count is not possible because commercial-CT machines typically

have a continuous source and intermittent exposure is not possible. In essence, there are no methods

to strobe the continuous source of X-rays.

FBP and Algebraic Reconstruction Techniques (ART) used for reconstruction in CT will be

investigated thoroughly in this document. The ability to test these techniques with a highly optimized

multi-CPU (64 cores) and multi-GPU (2 Nvidia Quadro 4000) hardware architecture provides a

good test platform for the development and analysis of a highly optimized real-time environment for

CT reconstruction. The research conducted is unique as we investigate one of the most complicated

imaging modalities, fan-beam CT. As there are no standard qualitative or quantitative metrics defined

previously we introduce a few. We also are able to show the process of taking real scanner specifics

and incorporating those specifics into a reconstruction environment. The results show a enhancement

is available to clinical-CT when more robust image quality is needed and real-time manipulation

ability must be used to gain a clearer image of the inner anatomy represented by the data acquired.

The use of HPC in medical imaging is rather rare because of the associated costs. The closest relation

to the techniques proposed in this document is from Partners Research group based in Massachusetts

General Hospital and North Eastern University where a NVIDIA Tesla S870 that contains four

independent GPUs was used to perform reconstructions [42]. However, their paper is really only a

preliminary report and has no specifics on algorithm design or quantitative noise analysis. Likewise,

the problem explored is much smaller than what is to be investigated in this thesis. We will show
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this is the norm in the field as there is very little algorithmic details in publications.

The ultimate goal of the methods established is to reconstruct raw-attenuation values from fan-

beam CT in an efficient manner. Specifically, achieving high-quality reconstructions in a timely

fashion. This is important for two reasons, mainly: analysis of the techniques can be performed in a

more timely fashion and to facilitate the use of low-dose techniques in clinical-CT fast and accurate

reconstruction are required.

1.4 Contributions

There are several contributions contained in this thesis. Six formal contributions are included,

mainly:

1. we present a concise literature review of the Radon transform and provide many solutions

to the inverse problem when considering current HPC for the reconstruction of fan-beam

CT. Although there are a number of publications concerning the reconstruction of CT, there

lacked a good source of information on current implementation techniques and comparison of

methods. Therefore, the production of a concise literature review detailing these methods is a

substantial contribution to the research community by itself.

2. a detailed description of the Advanced Reconstruction Environment for Medical Imaging

(AREMI), which is based on a multi-core and multi-GPU C++ implementation that contains

a decoupled visualization and reconstruction routine. The environment is used to investigate

the use of parallel computation on conventionally unmanageable problems in an attempt to

make them tractable. The environment is capable of High Dynamic Range (HDR) output, and

can be used to reconstruct raw attenuation data from medical-CT. We illustrate some of the

difficulties encountered with reconstruction from raw-data and show a 3D version of Siddon’s

algorithm developed specifically for a GPU or multi-GPU environment.

3. we establish qualitative and quantitative metrics for evaluation of reconstruction techniques.

These evaluation techniques analyze the specific frequency space noise, convergence of iter-

ative algorithms, and the importance of projection ordering for iterative methods. We show

an alternative projection ordering technique that is able to achieve faster convergence in our

implementation. We establish that different reconstruction regions result in difference levels

of convergence and noise.

4. we have investigated the use of an open multi-GPU environment that does allow faster

reconstructions when compared to our CPU or single GPU implementations. In this, we

present a GPU distributable SART algorithm with an evaluation of different forward and

backward-projection techniques. We illustrate the importance of data ordering on the GPU

with a approximation to the back-projection algorithm that requires no mutually-exclusive
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write-operation. There are no practical implementation details of a multi-GPU environment

for fan-beam CT-reconstruction and, because of the computational problems associated with

algebraic reconstruction, a complete overview of the framework is given.

5. we use AREMI through a multi-GPU implementation to analyze a computationally complex

complete system matrix derivation, O(n × m), on current hardware and compare to Toft’s

previous implementation. This complete system matrix derivation required for ART, from

Toft’s dissertation, was deemed to be too computationally expensive at the time [97]. We also

provide an investigation into automated blocking-strategies for GPU task delegation that can

realize substantial improvements in our test environment.

6. we show a comparison of a DirectX implementation of Convoluted Weight Back-Projection

(CWBP) with a serial, parallel, GPU, and multi-GPU CUDA based implementations. The

comparison highlights runtime, noise analysis, and the effects of numerical precision on each

technique.

1.5 Applicability

We believe the document compiled is useful to many people in different disciplines, mainly:

1. Computing Scientists interested in the use of GPUs for real-world problems, as seen in Chap-

ter 3 and Chapter 6. The techniques discussed for GPU implementation considers the numeri-

cal precision of technique, efficient GPU programming, blocking strategies, data sharing, and

multi-GPU development.

2. Engineer, Computing Scientists, and Mathematicians requiring to solve large systems of

equations as these are very computationally-demanding tasks and using the GPU can reduce

runtime. Likewise, those interested in solving similar matrices that are sparse, overdeter-

mined, or underdetermined, as seen Chapter 2.

3. Medical Imaging Physicists who are interested in reconstruction techniques from

raw-attenuation values and some of the difficulties involved, seen in Chapter 3.

4. Radiology and Diagnostic Imaging Specialists who are interesting in low-dose CT methods.

These techniques are detailed in Chapters 3 - 6 and can provide the basis for understanding

concepts and complexity of reconstruction in medical-CT.

The ideas implemented have provided a solid foundation for future research in all modalities of

medical imaging and are not restricted to CT. The algorithms, and enhancements, show improve-

ments in runtime, image resolution, dose reduction, noise reduction, and artifact removal in our

implementation. Likewise, they provide a concise review of techniques and difficulties concerning

implementation. The ethical benefits are based upon the reduction of radiation dose in CT, in turn
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reducing the cases of cancers attributed to CT-studies, while still constructing high quality images

for diagnosis. Through the use of the developed environment more computationally demanding fil-

ters, reconstruction grids, numerical precision levels, and computationally expensive reconstruction

routines can be utilized. Through the use of these more computationally demanding techniques im-

plemented in AREMI, radiation dosage can be reduced, because these methods do not require the

same number of projections as typical FBP. The exact reduction in the likelihood of developing

cancer, given the use of methods that require less projections, is not well established. However, we

believe it is reasonable to postulate there would be a reduction in the occurrences of cancer given

the use of these methods as they require less radiation. Eventually, we believe these computationally

expensive methods, based on reduced projection count, will be useful to clinical-CT.

1.6 Organization and Reading Guidelines

The thesis is organized in a linear fashion and is intended to be read from beginning to end, as

we assume in later chapters the reader has read the previous chapters. The remainder of the thesis

is organized as follows: Chapter 2 provides the necessary background to understand the physical

process that occurs during a fan-beam CT scan. The focus of this chapter is on the development

of conceptual understanding of FBP and algebraic techniques to solve the inverse Radon transform.

We then outline the multi-GPU reconstruction environment AREMI in Chapter 3. Next, in Chapter 4,

we establish: qualitative and quantitative metrics, along with a method to realize when convergence

has been reached, various projection ordering techniques and how they affect convergence, and il-

lustrate the effects of reconstruction region on convergence and noise. Chapter 5 describes methods

to align Flying Focal Spot (FFS) modes and we illustrate the importance of various methods for

understanding ray and pixel interaction in our model. Chapter 6 represents the some experimental

results and provides three unique evaluations. We assess SART techniques in a multi-GPU environ-

ment using the information learned from the previous chapters. We then analyze a approach to a

complete method in ART, not based on ray-tracing, and compare to a previous complete technique

from Toft [97]. Last, we compare various implementations of FBP techniques in an attempt to un-

derstand the effects of HPC modality, and numerical precision, on runtime and noise. Chapter 7

provides the conclusion and reiterates some of the results, contributions, and future work.
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Chapter 2

Literature Review

2.1 Introduction to Computed Tomography

The advent of computed tomography in the 1970s has revolutionized diagnostic medicine. The abil-

ity to depict a good, although approximate, computer image of the inner structure of the human body

aids in the ability to diagnose various ailments. Recently it has been brought to the attention of the

medical imaging community that the radiation a patient is exposed to, originally thought to be low,

has been found to be high enough to cause cancer. For this reason, research into alternative recon-

struction techniques that require less radiation exposure could be beneficial. There are a number

of factors that are attributed to greater risk of cancer development from CT, namely: the age of the

patient, and the total amount of radiation dose. If the patient is young, there is a longer manifestation

time for cancer development [6, 7]. Likewise, if total dose reaches even moderate exposure levels,

cancer is more evident, as seen in Figure 2.1. There are many supporting publications dealing with

increased cancer risk with low dosage of radiation, as similar levels of radiation have been studied

for those who work in nuclear facilities and from Japanese cancer rates resulting from the atomic

bombs in WWII. For further reading on the affects of radiation and CT on cancer rates please see

All Solid Cancer Leukemia
Females Males Females Males

Excess cases (including
non-fatal cases) from 800 1300 100 70
exposure to 100 mSv (400–1600) (690–2500) (30–300) (20–250)

Number of cases in the
absence of exposure 455500 36900 830 590
Excess deaths from 410 610 70 50

exposure to 100 mSv (200-830) (300-1200) (20-220) (10-190)
Number of deaths in the

absence of exposure 22100 17500 710 530

Figure 2.1: Depicts the estimated cancer cases and deaths expected to result in 100,000 people
exposed to 100 mSv of radiation. Where 95% confidence intervals are shown in parentheses. The
confidence intervals are important because they include statistical variations, uncertainty in dose
reduction results, see [99] for more details.
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[78, 2, 9, 76, 75, 99].

The investigation into image quality and noise reduction has led to the ability to lower CT dose

and still construct good quality CT images for diagnostic purposes. Techniques, such as iterative

reconstruction, linear methods, enhanced display technology, HPC on shared memory computers,

and HPC using GPUs all provide the means to enhance image quality and reduce reconstruction

time. In the following chapter, we will review current techniques in CT reconstruction and provide

a clear picture of the current research and development in computed tomography. Many of these

techniques have been implemented, modified, and investigated in the development of this thesis,

and are truly instrumental to this investigation.

Figure 2.2: Simplified Radon transform for heterogeneous (having different weights) image consist-
ing of nine pixels. The Radon transform is seen involving three rays at 90◦ and 270◦, with resultant
sums.

2.2 Problem Description and Representation

Figure 2.2 depicts the basic principle of all CT acquisitions and reconstruction techniques. The

figure shows the basic Radon transform with the integration of values encountered by each ray at

a specific angle. These values are what constructs a sinogram (g(l, θ)) that has rectilinear coor-

dinates k, and l. Where k, the x dimension of the sinogram, defines the radial detector channels

and l, y dimension of the sinogram, defines the angular projections. The inverse of this problem

is what we wish to solve and is a computationally demanding task. That is, given the sinogram of

measured attenuation values, we wish to reconstruct a 2D model (f(x, y)) that accurately repre-

sents the measured attenuation values. Where the reconstruction has rectilinear coordinates (n,m).
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The reconstruction should consider noise, machine geometry, sensor width, and prior knowledge

concerning what is being imaged can all help in the goal of accurate reconstructions.

In this thesis we investigate how the reconstruction problem can be made tractable using parallel

processing. That is, given an algorithm designed for parallel computation, how runtime, conver-

gence, and noise can be affected. We investigate the use of the Graphics Processing Unit (GPU) and

conventional High-Performance Computing (HPC) in the form of shared-memory parallel comput-

ing.

There are generally three forms of reconstruction techniques currently in CT. They are classified

into classical and mainstream FBP methods, linear reconstruction tactics and iterative methods, and

statistical approaches. This document thoroughly explores the first two, mainly: FBP and iterative

reconstruction techniques for linear methods.

The following sections begin with the basis of reconstruction, the Fourier method and the pro-

jection slice theorem, which helps derive FBP and Convolution Weighted Back-Projection (CWBP)

algorithm [20]. We discuss the basic methodology behind linear and iterative methods, mainly the

forward and back-projection of rays through pixel locations. Although the linear methods are not

new, they are becoming popular as they have the ability to better reduce noise than conventional

FBP techniques[47, 97]. Previously those techniques were too computationally expensive and not

widely used, but with the advent of the GPU they are slowly becoming feasible. One should also

note that although iterative techniques are now being researched, and some commercial software

from Siemens and the General Electric Company use these methods, the procedures for iteration

count and dose reduction are not well defined and generally only being used in research.

This chapter is organized as following,

1. complete review of the Radon transform, FBP, and the implementation in parallel environ-

ments,

2. a detailed review of linear algebra formulation of Radon transform, Algebraic Reconstruction

Technique (ART) [27], Simultaneous Algebraic Reconstruction Technique (SART) [1], and a

implementation in parallel environments.

The Radon transform provides the basis for all reconstruction techniques as it represents the data

available to be reconstructed into an image [79]. For this reason, we will start with some basic

principles of CT, then move onto the Fourier slice theorem, and finally conventional FBP as these

techniques provide the core understanding to the final review section on linear algebra and iterative

reconstruction methods. The following section provides an introduction to the inner workings and

complexity involved with reconstruction in CT from simulated and raw data.
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(a) Sinogram of 2.3c

(b) Projection of angle 90◦ through image

(c) Reconstructed Phantom

Figure 2.3: (2.3a) represents the sinogram of a phantom, known numerically as p(γ, β), for fan-beam
geometry where γ represents the offset in the detector fan or channel and β represents the offset of
the X-ray source; (2.3b) single projection of angle 90◦ through image; (2.3c) complete reconstruc-
tion of 1152 projections representing complete sampling of sinogram also known numerically as
f(x, y). All data is raw format from Siemens 128 slice Definition Flash+ CT scanner.
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2.3 Fundamental Concepts of CT-Reconstruction

Given a 2D slice f(x, y) seen in Figure 2.3c, and given an angle θ relative to a coordinate system

in the x-y plane, g(l, θ) represents the 2D Radon transform, Figure 2.3a, for the slice f(x, y) and

can be thought of as representing an individual projection at angle θ of f(x, y), where l is the pa-

rameterization of the line, seen in Figure 2.4. In reality, the 2D Radon transform actually represents

the attenuation values measured by the sensor array and f(x, y) represents the unknown function

or slice one wishes to reconstruct [47, 77, 24]. A sinogram is the pictorial representation of g(l, θ)

with l and θ as the rectilinear coordinates of the image, scene in Figure 2.3a. Simply put, an image

representation of the Radon transform of f(x, y).

This measured attenuation values are characterized by the following equations:

g(l, θ) = − ln

(
Id
I0

)
, (2.1)

Id =

Emax∫
0

S0(E) exp

− d∫
0

µ(s;E)ds

dE, (2.2)

where Id represents the integrated X-ray intensity for a given detector, S0(E) is the X-ray spectrum,

and µ(s;E) is the linear attenuation coefficient along the line between the X-ray source and a given

detector for an incident photon energy E [77]. Likewise, I0 is characterized as the reference inten-

sity of a given detector. The reference values for the entire detector assembly is usually performed in

a calibration step [77] and can fluctuate with the X-ray tube age. For this reason frequent calibration

is required for optimal reconstructions.

Although Equation 2.2 is correct, it is a mathematically intractable for CT reconstruction pur-

poses [77]. The intractability stems from the maximal energy integration that is computationally

difficult. Referring to the definition of intractability, complexity theory shows that the solution can-

not be solved in polynomial time [40]. For this reason, the energy term in Equation 2.2 is replaced

by an effective energy (Ē) term and the outer integral is replaced with the reference detector I0 seen

here:

Id = I0 exp

− d∫
0

µ(s; Ē)ds

 . (2.3)

The goal of the abstraction is simpler computation, this is accomplished by the fact Ē, for a

given material, will produce the same measured intensity from a monoenergetic source as would be

measured using the actual polyenergetic source [77]. For this reason, the importance of calibra-

tion of I0 for each detector is crucial. Commonly, for fan-beam CT machines there is a reference

detector that is situated at the end of the detector array in order to guarantee that only air is be-

tween the specific detector and source. The reference detector measured value is used along with

the pre-calibrated values for the active detectors in order to determine the reference intensity for
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each detector [77]. Using this method, the machine is able to constantly adjust this ratio to adapt to

a dynamic environment of temperature, air density, etc, giving more robust and consistent scans.

Figure 2.4: Siemens 128 Definition Flash+ raw sensor attenuation values for slice one, 90◦ source.
These values represent individual g(l, θ) of a physical calibration phantom seen in Figure 2.3c.

The raw attenuated values obtained from a Siemens 128 Slice Definition Flash+ can be seen in

Figure 2.4. The data used in much of the research community is typically the simulated Shepp-

Logan phantom data, as seen in Figure 2.5 [91]. There are a number of significant differences

between simulated data and actual raw data obtained from a machine. For instance, the Radon

transform computes line integration as accurately as the computer’s precision, and results in a near

perfect plot with relatively smooth representation of the projection as seen in Figure 2.6. This plot

depicts, on the outer sides of the graph, the air portion of the scan, black outside border. A perfect

representation of this region is seen with a flat zero for this section depicted by detector channels

0-190 and 550-736 of Figure 2.6. In comparison, referring to Figure 2.4, one can see evidence in

channel locations 85-195 and 540-690 a noisy representation of air space from the physical scan

of the calibration phantom seen reconstructed in Figure 2.3c. This creates a number of challenges

because the data is relatively noisy when reconstructing from actual sensor data.
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Figure 2.5: Left Image: Typical simulated Shepp-Logan Phantom usually defined according to
hounsfield units, Right: Simulated Shepp-Logan data in our simulator. The contrast is slightly
different given our ability to illustrate the ability of AREMI to output HDR.

2.4 Projection or Fourier Slice Theorem

The Fourier Slice theorem is instrumental to the development of both 3D helical reconstruction and

the simpler 2D reconstruction in CT. The principle is derived from Bracewell’s, originally in 1956,

for radio astronomy problems, but best captured in his book on Fourier transforms (FT) and the

applicability of the transform in many domains [4]. Conceptually, the transform states that if a two-

dimensional function f(x, y) is projected onto a line (one-dimensional space) a Fourier transform

of that projection is equivalent to doing a 2D Fourier transform of the original function f(x, y) and

taking a slice in the Fourier domain at the origin and parallel to the projection line.

The 1D Fourier transform of a projection is equivalent to a line going through the origin of

the 2D Fourier transform of the complete image at a specific angle corresponding to the projection

angle. As an example, the left image from Figure 2.7, represents the projection of the data onto

a line with the source at 135◦. Applying the 1D Fourier transform to the raw data, seen as the

blue graph for this projection, results in the equivalence relation with the 2D Fourier transform of

the complete function and the depicted red line through the origin that represents the identical data

in the 2D domain. This relation is referred to as the Central Section or Projection Slice theorem.

Reviewing the mathematical proof is useful as it develops the formal Projection Slice theorem we

will use for the formulation of the conventional FBP, originally developed by Bracewell and Riddle

[5] and later separately developed by Ramanchandran and Lakshminarayanan [81] with additional
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Figure 2.6: Radon transform of simulated Shepp-Logan Phantom analogous to the beam intensity
integration along a line from the X-ray source to the detector in typical physical CT. Notice relatively
smooth function with perfect zero value for detector channels 0-190 and 550-736, which represent
airspace in the phantom model.
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Figure 2.7: The left image represents the 1D transform and the result g(l, θ) at angle θ and the
corresponding 2D Fourier transform of f(x, y) and line at angle θ representing equal slice. Images
generated from actual raw data at 135◦ and resulting 2D Fourier transform of f(x, y) image.
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contributions such as CWBP. The equation is:

G(%, θ) = F1D{g(l, θ)}, (2.4)

=

∞∫
−∞

g(l, θ)e−j2π%l dl, (2.5)

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

f(x, y)δ(x cos θ + y sin θ − l)e−j2π%l dxdydl, (2.6)

where, % represents the spatial frequency and F1D is the 1D Fourier components along l.

We can pull the integration of f(x, y) out as it is not dependent on l, the result is:

G(%, θ) =

∞∫
−∞

∞∫
−∞

f(x, y)

∞∫
−∞

δ(x cos θ + y sin θ − l)e−j2π%l dldxdy, (2.7)

This step is accomplished using the shifting invariant property of the delta function, refer to [77]

for details. Equation 2.7 is now simplified to:

G(%, θ) =

∞∫
−∞

∞∫
−∞

f(x, y)e−j2π%(x cos θ+y sin θ) dxdy. (2.8)

The final Equation is similar to the 2D Fourier transform of f(x, y):

F (u, v) =

∞∫
−∞

∞∫
−∞

f(x, y)e−j2π(xu+yv) dxdy. (2.9)

Let u = % cos θ, v = % sin θ, and the equivalency equation is:

G(%, θ) = F (% cos θ, % sin θ). (2.10)

2.5 Fourier Reconstruction Method

The Projection Slice theorem is instrumental in the development of the Fourier method for recon-

struction and is the base of FBP and CWBP algorithm. The reconstruction process could take place

directly now with sampling of the Fourier space values in either form, 1D or 2D, and creating a 2D

Fourier based image, having decreased computational complexity of O(n×m log n). The final step

consists of taking the inverse 2D Fourier transform for this image to construct the image space repre-

sentation. However, most of the literature shows the difficulty involved with interpolating frequency

based polar data onto the Cartesian grid of the image of the domain [47, 77, 24]. This observation is

evident when analyzing the 2D Fourier image on the right of Figure 2.7. Sampling the single projec-

tion seen along the line of the 2D spectrum image is expensive as it would require non-contiguous
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reads of memory, i.e. row major order or column major can be made coalesced and contiguous, and

interpolating values from polar to cartesian grids would not be row or column major reads. Obvi-

ously the storage could be manipulated to provide contiguous reads for this type of memory fetch, it

would, nonetheless, require those non-contiguous memory read to form this data structure as the raw

data from the machine is in row major order. In general, sampling row major or column major lines

is more effective at providing a high rate of cache hits in main memory and/or GPU memories as the

sensor data acquired is generally stored in this manner. Likewise, as the sampling is non-uniform,

and actually has decreased sampling as one moves from the centre of acquisition out, numerical

error and interpolation error increase resulting in numerical stability issues. For this reason, there

is an increased amount of error due to the 2D interpolation in the calculation when moving from

low frequency to high frequency samples [47, 97, 102, 103]. Although mathematically the tech-

nique is sound in a continuous domain, i.e. continuous sampling over the domain, in practice, the

technique suffers from a number of issues that prevent the practical applicability in a computational

environment, see Toft’s PhD dissertation for more details [97].

2.6 Filtered Back-Projection (FBP)

The basic back-projection algorithm can easily be inferred from the Projection Slice theorem and

has increased computational complexity of O(n × m × l) when compared to the Fourier method

but does not suffer from the numerical stability issues found in the Fourier method. The back-

projection operation is known as the most expensive operation in the reconstruction process. As

every projection is literally smeared over the entire image space as depicted in Figure 2.3b where

the single β = 90◦ projection is sampled by all pixels in the image. Given that, typically, 1152

projections need to be applied over the entire image space accounts for significant computational

costs for just one slice and reconstructions range from 12 slices to 256. We shall now construct the

FBP method, beginning with the inverse FT of F (u, v) in respect to polar coordinates, we have:

f(x, y) =

2π∫
0

∞∫
0

F (% cos θ, % sin θ)ej2π%(x cos θ+y sin θ)% d%dθ, (2.11)

incorporating the Projection Slice theorem equivalency equation derived in Equation 2.10 and sub-

stituting accordingly, we derive:

f(x, y) =

2π∫
0

∞∫
0

G(%, θ)ej2π%(x cos θ+y sin θ)% d%dθ. (2.12)

One can reduce the outer integral to 180◦ as the symmetric properties of the scan would be

duplicated if we covered the whole 360◦ of rotation of the source angle β in the parallel beam

reconstruction case. However, for the process of developing a CWBP algorithm for fan-beam recon-

struction, originally from Lakshminarayanan [52], we will keep the 360◦ of rotation as we require
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it for a complete reconstruction using fan-beam sensor data. One can also limit the inner integration

of % to only the image space we are interested in, eventually yielding the inner integration between

± γ that represents the sensor array and the maximal radius of the focal spot circle produced by the

scanner. One can limit this value even further in the implementation stage by restricting the radius

to an even smaller area of interest, one designates this restriction by ± τ on the inner integration as

in:

f(x, y) =

2π∫
0

+γ−τ∫
−γ+τ

G(%, θ)ej2π%(x cos θ+y sin θ)% d%dθ. (2.13)

The integration over % of (x cos θ + y sin θ) is a constant term and can be be substituted with l =

(x cos θ+ y sin θ) showing that the inner integral is simply the 1D Fourier transform, as depicted in

Equations 2.4 - 2.5, and expressed by:

f(x, y) =

2π∫
0

( +γ−τ∫
−γ+τ

G(%, θ)ej2π%l% d%

)
dθ. (2.14)

Although Equation 2.14 represents back-projection, and a significant improvement over the previ-

ously mentioned Fourier reconstruction technique, it is missing a important filtering value, namely,

|%|. The filter is required because of over sampling of low-frequencies, Figure 2.8 shows the effect

when no filter is used on the projection data.

Figure 2.8: Depicts conventional FBP reconstruction with no ramp filter, still contains Hamming
filter. The reconstruction with ramp filter can be seen in Figure 2.3c.

Adding a filter |%| to Equation 2.14, we have:
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f(x, y) =

2π∫
0

( +γ−τ∫
−γ+τ

|%|G(%, θ)ej2π%l% d%

)
dθ. (2.15)

The results of the filtering can plainly be seen in Figure 2.3c versus the unfiltered reconstruction

in Figure 2.8. The basic insight into filtering in the reconstruction process is twofold. First, the use

of the ramp filter (|%|) in Equation 2.15 is used to deal with the higher sampling at lower frequencies.

Therefore, one needs to add appropriate weight to the high frequency samples or decrease the weight

of the lower frequency samples. Second, filters used on the raw data, in addition to the ramp filter,

have the ability to preserve edge features, prevent aliasing, apply different regularization parameters,

and more depending on the required reconstruction. The foundations for the equations in this section

were based on those found in [47, 77, 24].

2.7 Special Consideration – Fourier Transform

In this section, we will review the effects of the 1D FT from the spatial domain to frequency domain

and the inverse FT from frequency domain to spatial domain, as we will be using these techniques to

facilitate more efficient computation in Fourier frequency domain, which has complexityO(k log k),

as the filtering operation is simply a point-wise multiplication, rather than a more expensive sym-

metric convolution in the spatial domain having complexity O(k2). There are some notable issues

one should account for if one wants to transform a spatial filter or projection data to the frequency

domain. In general, if a 1D filter is constructed in the spatial domain and has a sampling size n,

transforming the filter to the frequency domain, for the more computationally efficient point-wise

multiplication, can have side effects. Mainly, due to the finite space available during the transforma-

tion of 1D filter of size n, there can be a loss of high frequency information during the transform, as

the intervals in the frequency domain are smaller than that in the spatial domain. To decrease these

effects, the literature often suggests to pad the data with zeros up to the next power of two, given

the original data was of size n [47, 77, 24]. However, experimentally padding with zeros tends

to increase high frequency drop-offs where the padding begins. There are mainly three successful

techniques found to alleviate this problem in raw CT reconstruction. One can choose to repeat the

last value, as this does not create any high frequency anomalies. Second, one can linearly decrease

the values from the boundary points of the measured sensor values to zero and then zero pad the

data. This also alleviates the problem of adding noise to the measured data, as the outer boundary

of the sensor array typically measures air values and provides no meaningful information for re-

construction. Last, the most effective method is to apply, when possible, the filter in the frequency

domain directly.

Likewise, transformation of projection data to and from the frequency domain should be handled

by either filling the last measured value up to the next power of two of the original size or linearly
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decreasing from the last value to zero and appending zeros.

For further discussion on this topic please refer to [47, 102, 97] as a more comprehensive review

is conducted.

Figure 2.9: Representation of basic fan-beam CT geometry. Where γ = angle index of sensor array
for given red pixel location, θ = angle of pixel from origin, D = distance from isocenter to source,
β = angle of source, and l = distance from isocenter to pixel location.

2.8 Fan-Beam Convolution Weighted Back-projection (CWBP)

Equation 2.15 was chosen as it makes the transition to CWBP, in the Fan-Beam case, easier as we

limit the bounds of the inner integral to only those required for the reconstruction from actual discrete

data where only a finite amount of measurements are seen. The Equation is slightly different than

our previous derivation. Mainly, the equations are defined with the geometry of fan-beam machines

accounted for, where the pixel locations f(x, y) of the reconstruction image is defined as:

f(x, y) =
1

2

2π∫
0

+γ−τ∫
−γ+τ

p(γ, β)c(D′ sin[γ′ − γ])D cos γ dγdβ, (2.16)
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where, γ is the valid discrete locations on the sensor array, β is the discrete measured angles as seen

in Figure 2.9, D is the distance from iso-centre to the source, D′ is the distance from voxel or pixel

location to source, and l is the euclidean distance from isocenter to the given pixel location. Let ± τ

be the sensor values one wishes to omit given the absolute values of x and y needed in the recon-

struction; there is no benefit in including these values as they are never sampled given the angles that

are visited during the reconstruction. The maximal reconstruction size is determined by the effective

area of the sensor array. Secondly, remembering the definition of g(l, θ) from Equation 2.1, one can

change from parallel beam to fan-beam geometry easily. Specifically, θ = β + γ and l = D sin γ,

where D is the distance from isocenter to the source. The Jacobian of the coordinate transformation

is simply D cos γ and the fan-beam formula is now given by Equation 2.16. The third instrumental

change from Equation 2.15 in Equation 2.16 is the transformation of the convolution integral C(?).

The convolution theorem states that the product of the Fourier transform of two signals f(x, y) and

g(x, y), namely F (u, v) and G(u, v), is equal to the Fourier transform of the convolution of the two

signals in the spatial domain F2D(f(x, y) ? g(x, y)) = F (u, v)G(u, v) [77, 24]. The computa-

tional attractiveness of this theorem is that the high efficiency of the Fourier transform can be used

to speed up the required convolution by a simple point-wise multiplication in the frequency domain

rather than on expensive convolution in the spatial domain. The following Equations will lead to

separation of the back-projection process from the convolution process c(γ):

c(D′ sin γ) =

(
γ

D′ sin γ

)2

c(γ), (2.17)

cf (γ) =
1

2

(
γ

sin γ

)2

c(γ), (2.18)

where D′ represents the distance of the pixel to the source.

Using Equation 2.17 and 2.18, we are able to isolate the convolution into one efficient step in

the Fourier domain by:

f(x, y) =

2π∫
0

1

(D′)2

+γ−τ∫
−γ+τ

p̃(γ, β)cf (γ − γ′) dγ dβ, (2.19)

where s = p̃(γ, β) = cos γ D p(γ, β) and t = cf (γ − γ′).

Computationally this equation is too expensive as the convolution requires a O(k2) algorithm

versus the FFT method with computational complexity O(k log k). Therefore, we manipulate this

equation to bring a more efficient computational model. Since the convolution in the spatial domain

is expensive even though the convolution is symmetric, as the filter is a reflection of itself, one can

reduce it to a simpler correlation operation. The process is still too costly considering the amount
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of projections. For this reason, we will exploit the previously defined convolution theorem and

perform the convolution in the frequency domain with a simple point-wise multiplication. Mainly,

S = F1D(s) , T = F1D(t), and q = F−11D [S D] being the inverse Fourier transform of the point-

wise multiplication of S and D. This process eliminates the inner integral and we are left with a

relatively simple equation:

f(x, y) =

2π∫
0

1

(D′)2
q(γ, β) dβ. (2.20)

The equation is called Convolution Weighted Back-Projection, and is appropriate as D′ is de-

fined as the distance of the pixel location from the iso-centre and, hence, the weighting is inversely

proportional, as the distance from iso-centre increases, seen in Equation 2.20. Likewise, the convo-

lution q(γ, β) is applied as coarser sampling is seen in fan-beam data in higher frequency areas and

is filtered appropriately using a standard ramp filter. Other frequency-based filters can be applied

at this point in the frequency domain such as the Hamming filter that is often used to smooth out

aliasing problem and is similar to a cosine filter [18]. Likewise, any frequency based filter can be

used, even those that are not appropriately defined in the spatial domains.

2.9 Variations of FBP Algorithms

As we have seen, there are many different algorithms to compute the inverse Radon transform.

Likewise, there are many commercial algorithmic variations of FBP, but they generally are not pub-

lished works and cannot be implemented for comparison basis. These techniques are regarded as

proprietary techniques in CT reconstruction and will only be lightly discussed in this thesis. For this

reason, this review focuses on published works that give some algorithmic insight into the technique.

2.10 Kernels used in FBP Algorithms

The filtering process in FBP is one of the most important stages in reconstruction. Generally, most

research is spent in the image domain, where the DICOM image is modified using available com-

mercial image-space kernels, these techniques take place after the image is reconstructed with a

conventional ramp-filter coupled with a Hamming filter to give a smoother image with less aliasing.

However, there is a lot of potential if one uses novel filters in the reconstruction stage on the raw

attenuation values in the frequency or spatial domains. Shtok et al. 2008 publications depicts the

use of an adaptive, spatially-variant linear filter instead of the typical ramp filter [92]. The tech-

nique uses three novel kernels, specifically the author argues that the use of neighboring projections

kernels, angle dependence kernels, and distant dependent convolution kernels. Shtok et al. accounts

for some of the inadequacies of the discrete nature of scanning, as the FBP is built in a continuous

domain and apparent problems are seen when implemented in discrete settings. Shtok et al. was

29



(a) Right-angle symmetry

(b) Complement symmetry

Figure 2.10: (2.10a) depicts typical cartesian similarities of angle γ and length L for four differ-
ent pixel locations. Namely, P1(xp, yp), P2(−yp, xp), P3(−xp,−yp), P4(yp,−xp). (2.10b) shows
that the two pixel locations P1(xp, yp) and Pcomp(yp, xp) share the same L value and the γ, the sign
of γ is only negative [113].
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able to reduce the Signal to Noise Ratio (SNR) ratio by approximately 7 dB. The whole technique

is interesting and novel in particular the training stage on desired family of attenuation images is

always difficult as, in a clinical setting patients differ widely. The goals of this thesis is to use paral-

lel processing to enhance image quality and runtime for raw data reconstruction not to explore new

filters.

2.11 Multi-core Parallel Reconstruction

Zeng et al. [113], discuss a number of computational improvements in CWBP. The techniques touch

upon four main points. First, two points exploit symmetric properties of cartesian coordinates seen in

Figure 2.10. The next enhancement uses a multi-core algorithm to distribute work among processors.

Last, a proprietary Intel optimized compiler for C++ is used to improve the speed. Using the parallel

computation, symmetric properties, and the optimized compiler the technique is able to accomplish

a 40x speedup over conventional CWBP. Although impressive, the technique suffers from many

limitations.

The symmetry exploited in this algorithm is impressive as approximately only 1/8 of the calcu-

lations are needed as the values for L and γ are reused for different pixel locations. The complexity

of the computation of L and γ can be seen in the following equations:

Lset1 =
√
D2 + (x2p + y2p)− 2Dr cos(β − tan−1(xp, yp)),

=

√
D2 + (x2p + y2p)− 2Dr cos(β +

π

2
− tan−1(yp,−xp)),

= Lset2,

=
√
D2 + (x2p + y2p)− 2Dr cos(β + π − tan−1(−xp,−yp)), (2.21)

= Lset3,

=

√
D2 + (x2p + y2p)− 2Dr cos(β +

3π

2
− tan−1(−yp, xp)),

= Lset4.
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γ0,set1 = sin−1

(
r sin(tan−1(xp, yp)− β)

Lset1

)
,

= sin−1

(
r sin(tan−1(−yp, xp)− β − π

2 )

Lset1

)
,

= γ0,set2, (2.22)

= sin−1

(
r sin(tan−1(−xp, yp)− β − π)

Lset1

)
,

= γ0,set3,

= sin−1

(
r sin(tan−1(−yp, xp)− β − 3π

2 )

Lset1

)
,

= γ0,set4.

There are computationally expensive square-roots, divisions, arcsin, arctan operations. Figure 2.10

shows the right angle symmetry for the four pixel locations are equivalent. Likewise, the comple-

ment symmetry is equivalent for depicted pixels when the sign of γ is reversed. The derivations

of these equivalences can be seen in Equations 2.21 - 2.22. Although the technique is theoretically

valid, in order to make the technique computationally efficient one would require the data to be

reordered as the technique would require coalesced reads to be efficient, as non-coalesced reads are

computationally inefficient. In general, this technique reads from different projections, β-angles,

that are 45◦ and 90◦ apart in memory and would require the data to be reordered to provide efficient

reading of data. Likewise, Zeng’s paper assumes the projection data is completely available, they

perform a costly data reordering routine to improve cache hits when reading from different projec-

tions (β-angles). This routine is expensive and is not practical for a real-world system where the data

is acquired one projection at a time. A fair argument for this technique, that was not mentioned in the

paper, would be post-acquisition filtering where knowledge of the complete system is necessary to

make an educated guess concerning noise, artifacts, or any filters that requires complete knowledge

of the data before processing. The paper also makes note of a required re-binning of helical data to

single slice data. This process is also costly in terms of runtime and it is a rough approximation.

Considering the discrete nature of the measured data and the fact that it is already an approximation

to the continuous system, further approximation is generally not desired.

Secondly, using specialized proprietary compilers is expensive and typically reserved for indus-

try application as one cannot really claim algorithmic enhancement or speedups based on using a

more effective compiler for a specific hardware. The more substantial claim would be concerning

the compiler and the speedups based on the compiler.

Last, the paper does use the classical Shepp-Logan phantom, seen in Figure 2.5. The research

community typically does use the Shepp-Logan phantom as real attenuation values are difficult to

obtain; however, the goal of research is to produce an effective technique to solve real problems,
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and using the Shepp-Logan phantom does not reflect real-world problems, such as those previously

discussed concerning measured versus actual air values, seen in Figure 2.4.

Although Zeng et al. provide novel enhancements to the CWBP reconstruction algorithm, the

most important contributions are the realization that data reordering is not the optimal solution.

Second, the understanding that, with the addition of more processing cores, a substantial speedup

can be achieved.

2.12 FBP Parallel Techniques

There are generally three forms of parallel techniques used in FBP algorithms. There are those

based on multi-core parallel approaches that are designed for the CPU, such as those from Zeng et

al. discussed previously [113]. The second parallel strategy is the graphics processing unit (GPU)

as a parallel processor as seen in Scherl et al.’s work from 2007 [84]. Finally, there are Field

Programmable Gate Arrays (FPGA) based parallel techniques. For this reason, we will first discuss

parallel approaches designed for CPUs and then move on to parallel techniques formulated for GPUs

and then we will give a brief overview of methods that use FPGAs.

2.12.1 CPU-based Parallel Techniques for FBP

The FBP code is parallelizable, as the outer integral in Equation 2.20 is the summation of rays and

can be distributed easily over many processors. The allotment of work can be influenced by a variety

of design choices, such as work queues, automated optimized blocking strategies, and divide and

conquer techniques. Work queues are favorable on large or diverse systems where there is often

a variety of processors working and no optimal blocking strategy is used to control the workload

per process. Each node may have a different processor and/or cache sizes and could be competing

for resources with other local processes. The work queue scenario usually employs a management

routine that controls the allocation of available work. When a thread is launched it requests work

from the queue, if work is available the management thread issues a workload; if not, the thread

waits for work or is possibly terminated if no work exists. Large, diverse work schedulers often

have the choice to issue the same work to multiple systems, in the hope the work will be completed

sooner, as in Google’s commodity computing mentality [23, 14]. System discovery techniques can

be used on a system sharing the same type of processors. This technique often finds a near-optimal

solution to workload distribution, given the available memory, cache, and registers on the system,

and is seldom competing for resources with other processes. Divide and conquer techniques are

usually the simplest, as these techniques look at how much work is required and divide that work

evenly over the number of available workers. All techniques are feasible for the FBP, as the work

required to compute the integrals is easily distributed.

Zeng et al. uses the simpler divide and conquer technique as their method of choice for paral-

lelism [113]. They choose to assign specific threads a range of values for the outer integral seen in
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Equation 2.20. The method was effective and resulted in a runtime speedup of approximately 1.89x.

The speedup is reasonable, but more interesting would to test concurrent execution on greater than

two processors, as this would provide more information on the level of parallelization available for

their algorithm. This thesis provides more extensive testing with processor count greater than two.

2.12.2 GPU Based Parallel Techniques for FBP

The work from Vlček provides an algorithm for the inverse Radon transform on the GPU [100]. As

mentioned previously, the Radon transform is the primary method used for forward and backward

projection in CT-reconstruction. The inverse Radon transform is specifically the method used for

development of CWBP algorithms. Vlček publication used the more primitive hardware shaders

to carry out the inverse Radon transform. Specifically, the technique used the CPU to perform the

1D Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) filtering operations,

as the convolution is too computationally expensive to perform serially on a CPU. Likewise Vlček,

performed the outer integration (FBP) using a hardware shader. The hardware shader was limited

in the size of execution code, dynamic loops were impossible to program, and video memory was

limited. Nonetheless, this technique was able to accomplish a 29x speedup over a single CPU version

of the inverse Radon transform on a matrix of 1024 elements [100]. The technique provided the

foundation and future development of the field and proved that a substantial speedup was possible

for FBP if video memory size increased and dynamic loops were possible. The constant writing of

data to the same texture output is expensive in hardware shaders and a considerable improvement

to this method is now available through the use of CUDA, where writing to the same location, as in

the outer integration or summation process’ is made much more efficient. The publication lacked

usability as the FFT and IFFT code was performed on the CPU and was costly.

Vlček’s 2004 work on the inverse Radon transform performed on the GPU naturally led to the

publication from Vlček in 2005 [101] that detailed the programming of FBP, FFT, and IFFT on the

GPU using hardware shaders. The main difference over the previous publication was the addition

of the FFT and IFFT filtering on the GPU instead of the traditional CPU implementations. Overall,

the method, almost completely implemented on the primitive GPU, was 4x faster than the serial

execution on a CPU.

The significant oversight of the two publications from Vlček [100, 101] was a discussion con-

cerning numerical precision of the GPU results when compared to the CPU results. The hardware

based shaders, at the time, used glorified hardware accelerated mathematical operations and were

not following the IEEE-754 standards. Luckily, GPUs have progressed over time and the use of non-

fastmath can be specified on the GPU for numerically sensitive computation. User studies would

need to be conducted to analyze the effect on image quality with radiologists when differences,

based on numerical precision, are too large. Difference maps are important to the evaluation of

image quality as they show concretely where the distinction, based on numerical precision of the
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computation, is depicted for image processing. However, they are not that useful as a qualitative

metric unless there is a known image.

Scherl et al. discuss the implementation of the FDK algorithm on a volume-based reconstruction

on both cell-processors and a CUDA enabled GPU [84]. This technique was developed for cone-

beam reconstruction and not fan-beam. Generally, cone beam reconstruction techniques are simpler

as they mostly do not deal with table transitions. Nonetheless, the technique showed the GPU

was approximately 13% faster than an optimized Cell Broadband Engine Architecture developed

by Scherl et al. [85]. As with most publications in the area, there is little focus on difference maps,

image quality, and relative error between techniques. Likewise, the design overview of all techniques

was never explicitly described. There was a general overview in a previous publication of Scherl

from 2008 [83] with some small code snippets. These pieces of code simply show rudimentary

initialization of worker threads for a given task. What is more interesting is the design changes to

standard serial FBP or FDK volume-based reconstruction algorithms when efficiently implementing

on multi-core CPUs, GPUs, or Cell Broadband Engine Architecture (CBEA) [74] that are used in

their reconstruction framework.

Despres et al. poster presentation from the 35th conference in Medical Physics shows a brief

discussion of a 100x speedup using GPUs for FDK type algorithms, but does not detail results and

no formal publication record can be found on his CV [15]. For this reason, no extensive evaluation

or discussion of the techniques can be included.

Okitsu et al. made a significant publication to the research community, as they provide a thor-

ough comparison of implementations on various GPU hardware [70]. The implementation is com-

mon and unique at the same time, as it does use the typical FDK algorithm, but does so in a multi-

GPU environment where data sharing and updating is required. The technique follows typical im-

plementation where filtering is achieved through the conventional Shepp-Logan filter [91], and the

laborious task is the back-projection to the slice or volume. As seen in the previous description

there is no data dependence between projections or pixel/voxels. Likewise, projection ordering is

not relevant. For this reason an efficient distribution can be accomplished through simple divide and

conquer technique. The authors also attempt to limit the amount of data for GPU storage, as they

like to use true low cost commodity cards with low memory, approximately 512MB. For this reason

they choose to only store the volume data and update the projection data when required. Although

this technique has performed well on commodity GPUs, current mid-range GPUs have much larger

memory, approximately 6GB on a Tesla c2070, and huge performance gains can be realized through

storage of both the projection data and the volume data.

2.12.3 ATI Stream Processors and FBP

Wang et al. show a novel use of ATI’s stream processing pipeline in the reconstruction stage of

FBP [105]. Wang et al. was able to conclude that an optimized Computer Abstract Layer (CAL)
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implementation on ATI hardware represents approximately the same runtime characteristics of a

reasonable Nvidia CUDA implementation [105, 111]. One should note, the CAL implementation is

a low-level programming model that is more complex to code than the high-level CUDA Application

Programming Interface (API). When comparing ATI’s high-level programming model Brook+, the

runtime was almost 4x slower than the CUDA technique implemented in Wang et al. and originally

found in [111]. Wang’s et al. publication lacks any comparison concerning error, or quality, and;

therefore, is difficult to evaluate. Likewise, the exact implementation of FBP is unavailable and

simply represents a comparison of runtime of the same technique implemented in different hardware

settings. The ATI stream processor architecture is impressive, as they have a large amount of stream

processors. There appears to be a lot of potential for ATI GPUs in the near future as the advent of

OpenCL has made programming ATI GPU devices easier in non-pipeline scenarios.

2.12.4 FPGA Based Parallel Techniques for FBP

There is a rather large body of publications on FPGAs and the speedups obtainable using this spe-

cialized hardware. However, the FPGA technology was revolutionary in 2002 when the publication

by Leeser et al. was conducted, but rather outdated now, when comparing against current GPUs

[12]. Specifically, the techniques were about 100x faster than serial processing on the CPU. The pa-

per showed that, using specialized FPGAs, they were able to produce a worst-case relative error of

0.015% when compared to the pre IEEE-754-2008 floating-point implementation IEEE-754-1985

on the CPU. There is a wealth of publications in the last five years that compare FPGA and GPU

implementations. The general argument is, FPGAs are expensive to produce and are only benefi-

cial if the algorithm requires detailed low-level hardware control operations and is complicated in

nature [93]. Even with these requirements, GPUs have still been shown to outperform FPGA in

some implementations, as seen in [93], if the GPU implementation can be optimized through the

use of cached memory or other GPU memory tricks such as page-locking, see Appendix A for more

details. However, specialized FPGA implementations are efficient, providing almost 3x the perfor-

mance when compared to a GPU in [96]. This publication also explores the intricacies involved

with programming each of the hardware architectures, FPGAs, GPUs, and CPUs. This is important

as efficient algorithm design on the CPU is different than that on the GPU and of that for a FPGA.

2.12.5 Summary of Parallel Techniques for FBP

There are many techniques for parallelizing runtime for FBP. Generally, most techniques try to har-

ness either multicore CPUs, GPUs, FPGAs, or cell-processors. However, many of the techniques

never really exploit all available computational power. They often neglect the use of CPUs when

developing for GPUs, and likewise neglect GPUs when developing for CPUs. Furthermore, most

techniques seldom perform adequate error analysis and provide little comparison of techniques be-

sides runtime. Most important to clinical settings is, not specifically how long the reconstruction
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takes, but how accurately does the reconstructed image represent the actual inner properties of the

object. As long as the runtime is reasonable, meaning not exceptionally long, clinical settings would

prefer the most accurate depiction rather than the fastest. The techniques often lack the required

details for implementation and are generally technical overviews of research. Although there have

been many articles published concerning FBP using parallel machines, most miss the complete eval-

uation of the technique. For this reason, the techniques shown in this thesis have been thoroughly

analyzed in terms of error, runtime, noise, and use in a clinical settings. The data used for evaluation

are raw attenuation values from CT-scanners and simulated data. This provides the research com-

munity a substantial contribution, as the results shown are more applicable to real-world settings and

the problems encountered under those environments.

2.12.6 Alternative to FBP Algorithm

Although FBP is the most widely used reconstruction technique in commercial-CT, there is an alter-

native method to reconstruction, known as linear algebraic techniques [47]. The algebraic techniques

can also be used to compute the inverse of the Radon transform. Specifically, the direct inverse

techniques, as seen in Section 2.2, represent only direct inverse formulas to the Radon transform.

Although these techniques work well, they are based on a continuous domain, and one typically only

uses discrete sampling in real-world problems. Therefore, these solutions are only approximations

to the true sampled system. Likewise, the sampling is more sparse as one moves from isocenter to

the outer diameter of the image area. Also, when working with the direct inverse techniques, noise

is not easily modelled. Last, they typically require longer acquisition time because of the required

oversampling of the interior to have adequate sampling of the periphery.

The alternative discussed here, algebraic techniques, rest on the fact the Radon transform is a

linear transform and the discrete version of the Radon transform is also a linear transform [97]. The

algebraic techniques are not new, reviewing literature from early CT development in the 1970s, it is

evident that these technique were well developed [97, 27, 25, 34, 35]. The number of projections

required for algebraic reconstructions can be greatly reduced when compared to FBP [30, 64, 65].

Guan et al. showed that the required number of projections for FBP is 1.57 ∗ n and ART requires

0.67∗n, where n represents the required radial sample ((2∗L)/π) [30]. This requires consideration

of a determined matrix rather than in FBP where minimum sampling rate on the periphery must

be maintained. The decreased number of projections means the table translation along z can be

increased. This results in less radiation exposure, decreased scan time, and increased throughput of

the device. Therefore, the investigation into these methods is important as they can reduce radiation

exposure to patients and provide a greater image quality for diagnosis.
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2.13 Realization of a Linear Algebra Representation of the Radon
Transform

Linear techniques attempt to model the Radon transform of the image R{f(x, y)}, where f(x, y) is

the original image, or in the case of a CT acquisition scan this would be the 2D slice of the object

scanned. Remembering the relation of attenuation values, g(l, θ), from Equation 2.1 and p(γ, β) we

see:

g(l, θ) = R{f(x, y)},

↓ ↓ ↓ (2.23)

b = A f .

As these attenuation values are simply the Radon transform of the image f(x, y). Where R is

the forward Radon transform, f(x, y) is the 2D image slice, and p(γ, β) represents the sinogram

of the attenuation values. Likewise, the relation to the algebraic methods can be seen from Equa-

tion 2.23, originally formulated by Gordon [27] and reproduced by many authors [34, 35, 97, 102],

where the vector b is the non-square sinogram p(γ, β), which is the result of the Radon transform of

the 2D image, f(x, y) is the image we wish to reconstruct represented by f in linear vector formu-

lation, and A is the system matrix that represents the transformation of f and is the relation to the

Radon transform. For an easier conceptual understanding we restrict the definition to parallel beam

geometry, as the fan-beam case is complex and will be detailed in the methodology Section 3.2.2.

When considering this transition from fan-beam, one should remember that rebinning adds more

non-uniformity into the projection space [36, 37, 3]. However, interpolation can be used to obtain a

uniformly sampled domain. This interpolation can actually reduce the image quality as the fan-beam

data is already a discrete representation of the continuous transformation [39].

However, as we are using real-world sampling, only a discrete representation of Equation 2.23

is possible, mainly ḡ(k, l) = g(lk, θl). The same can be said of the discrete samples of the image

f̄(m,n) = f(xm, yn). Now only considering discrete samples of Equation 2.23, one quickly notices

that b is a vector and not a non-square matrix or sinogram, as shown in Figure 2.3a. The vector b

represents the sinogram stored in vector form as defined by:

bkl = p(ρ, θ)k×l, (2.24)

b = {a1, a2, a3, a4, b1, b2, b3, b4 ... , o1, o2, o3, o4}, (2.25)

bi = bkL+l, (2.26)

where k and l are the dimensions of the sinogram in matrix form, as seen in Figure 2.11. Therefore,

vector b always has dimension I = k × l. Likewise, the vector f , seen in Equation 2.27, correlates
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to the image f(x, y), seen in Figure 2.11c, and the mapping is:

fmn = f(x, y)m×n, (2.27)

f = {a1, a2, ... , a8, a9, b1, b2, ... , b8, b9, ... , i1, i2, ... i8, i9}, (2.28)

fj = xmN+n. (2.29)

Therefore, vector f always has a dimension (m × n) where m and n are the dimensions of the

reconstructed image.

(a) Pixelated sinogram of 2.11c

(b) f(x, y) or image

(c) Pixelated f(x, y) used to construct vector x for lin-
ear algebra techniques

Figure 2.11: Linear method in CT, (2.11a) shows the simplified decomposition of non-square sino-
gram p(γ, β), this decomposition is used in the vector representation b for linear algebra techniques
seen in Equation (2.24). Likewise, (2.11c) represents the pixelated decomposition of (2.11b).

The final step in a linear algebra representation is the realization that the transformation matrix A

is actually the discrete Radon transform operation. The transformation matrix is large, specifically

defined by the dimensions of vectors f and b. Therefore, the transformation matrix A has dimension

I × J and, in turn, a total of m× n× k × l elements [97, 102]. Although a simplified explanation,
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one should always account for sensor geometry on the physical acquisition modality. The sensor

size and geometry have a direct correlation to accurate reconstructions. For instance, although most

clinical-CT reconstructions are m × n = 512 × 512, in reality, a finer grid should be used. The

derivation of the transformation matrix A, defined as:

f(x, y) =
∑
m

∑
n

f(m,n) φ(x− xm, y − yn). (2.30)

Taking the Radon transform of the interpolated image f(x, y) from Equation 2.30 leads to:

ĝ(k, l) =

∞∫
−∞

∞∫
−∞

f(x, y) δ(ρk − x cos θl − y sin θl)dx dy. (2.31)

By substituting the expansion functions from Equation 2.30 into Equation 2.31, we have

ĝ(k, l) =

∞∫
−∞

∞∫
−∞

∑
m

∑
n

f(m,n) φ(x− xm, y − yn)

δ(ρk − x cos θl − y sin θl)dx dy, (2.32)

=
∑
m

∑
n

f(m,n)

∞∫
−∞

∞∫
−∞

φ(x− xm, y − yn)

δ(ρk − x cos θl − y sin θl)dx dy. (2.33)

The matrix elements of A, i = k×L+ l and j = n×M +m, for the transformation matrix A are

calculated by,

ai,j = akL+l,nM+m, (2.34)

=

∞∫
−∞

∞∫
−∞

φ(x− xm, y − yn) δ(ρk − x cos θl − y sin θl)dx dy, (2.35)

=

∞∫
−∞

∞∫
−∞

δ((ρk − xm cos θl − yn sin θl)− x cos θl − y sin θl)

φ(x, y)dx dy, (2.36)

= φ̂(ρk − xm cos θl − yn sin θl, θl). (2.37)

in Equations 2.30 - 2.37, is originally found in Toft’s 1996 work on the Radon transform [97], and

later from Vlček [102]. Equation 2.30 is an interpolation function function for a given image f(x, y)

by a discrete value f̂(m,n) with an interpolation function, the expansion function directly models

the interpolation scheme used and can be seen, as only a discrete number of samples are possibly,

mainly f(m,n). A is now defined in terms of discrete values of the interpolation function.

Example: Referring to Linear Technique depicted in 2.12 for realization of b = Af equation

setup.
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Figure 2.12: Linear method in CT: four projection angles at 90◦ , 180◦ , 270◦ , and 0◦. Likewise, four
rays cast through each image with intersecting pixels is seen. One can see from the ray P1a there is
an intersection with pixels 1, 4, 5, 8, and 12. The pixel intersections for this ray are represented by
the value one, in expanded notation found in below.
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P1 = {a1, b1, c1, d1},where,

a1 = {0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0},

b1 = {0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0},

c1 = {0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0},

d1 = {0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1}.

P2 = {a2, b2, c2, d2},where,

a2 = {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1},

b2 = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},

c2 = {0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},

d2 = {0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}. (2.38)

P3 = {a3, b3, c3, d3},where,

a3 = {0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0},

b3 = {0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0},

c3 = {0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0},

d3 = {1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}.

P4 = {a4, b4, c4, d4},where,

a4 = {1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},

b4 = {0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},

c4 = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},

d4 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0}.

2.14 Derivation of the Discrete Matrix Elements of A

As A is a representation of the discrete Radon transformation, there are many ways to discretize

the image f̂(m,n). A viable solution to the estimation is a classical nearest neighbour approxima-

tion [10, 97, 102]. Four interpolation techniques were evaluated, mainly Nearest Neighbour Ap-

proximation (NNA), Fast Nearest Neighbour Approximation (FNNA), approximation by the Radon

transform of a square, and sinc interpolation. FNNA provided the best approximation of the ma-

trix A with lower error relative to the source image f̄(m,n) [102]. Likewise, it had the least error

for an individual projection. We will now continue with our review of the literature concerning

discretization techniques from [97, 102].
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Discretization of the System Matrix A Using a Nearest Neighbour Approximation

An example of simplified NNA and the resultant vector entries can be seen in Figure 2.12 and

Equation 2.38. The simplified techniques for NNA described in Yair’s early work [10], and later in

Toft’s dissertation [97], and Vlček dissertation [102], describes a binary approach. The simplified

method states that if a pixel and a ray are incident then 1 is used, if not a 0 is recorded for the entry in

the system matrix A. The problem is evident when P1 = 90◦ and ray a in the simplified depiction

in Figure 2.12. In particular, the same weight is given to pixels that are incident with ray a, namely

pixels 1, 4, 5, 8, and 12. However, it is shown that pixel-four’s mid-point is far from P1a, and that

pixel twelve’s mid-point is much closer to the finite-width ray (P1a). For this reason we know this

simplified technique found in the literature has significant shortcomings. One should also consider

when using a binary scheme for incident and non-incident pixel/ray interaction, that a rescaling is

required and one must solve the modified system 4fAf = b, where 4f represents the size of the

pixel in the image f(x, y) [102]. For completeness, we show the simple process involved in the

calculation for matrix elements of A by:

ρ
′

= ρr − xm cos θl − yn sin θl, (2.39)

if,
4x
2

> |ρ
′
cos θl| and

4x
2

> |ρ
′
sin θl| ⇒ ai,j = 4x, (2.40)

else, ai,j = 0. (2.41)

A depiction of NNA can be seen in Figure 2.13. This figure represents a pixel and ray interaction,

one can see that ρ
′

is the distance of the ray from the p = [xm, yn]. If ρ
′

is within the bounds set

by Equation 2.40, the ray is incident with the pixel. This technique can efficiently be implemented,

row-by-row or column-by-column, to build the system matrix A.

Figure 2.13: Nearest neighbour approximation is shown with pixel p = [xm, yn]. Each pixel is
defined by a center point and the size that is represented by4X . Where ρk represents the offset on
the detector, θl represents the angle of the source, ρ

′
represents the distance of the p to the ray [97].
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Discretization of the System Matrix A Using a Discrete Radon Transform

The discrete Radon transform provides a novel way to discretize the image; given that a p = [xm, yn]

can be represented by a square pixel of size ∆x2 and a constant amplitude of 1. Assuming a square

centered at (0, 0) and of size 2 × 2, then using the rules for scaling and translation, see [97, 102]

Sections B.6, and Theorem 2.5 respectively, one can represent the discretized value through the

simple formula:

ai,j =
4x
2
ĝsquare

(
2
ρk − xm cos θl − yn sin θl

4x
, θl

)
, (2.42)

where, ĝsquare = ĝ(r, t) is the discrete Radon transform of the 2×2 square pixels centered at (0, 0).

There are variations to this interpolation scheme that uses several rays and average the results from

each ray. The ability to closely model the real geometry of the machine used during acquisition, such

as real detector size, can be incorporated into this discretization scheme [97]. The approximation

by the Radon transform of a square provides a novel technique for the discretization and lower error

than NNA. Toft’s dissertation showed the technique performs well and does not suffer from storage

problems and long computational time as does the Sinc interpolation method. Likewise, similar

results were found in [102], where the Radon Kernel performed better, in terms of L2-error, than

NNA and is slightly better than a Sinc interpolation techniques defined by:

sinc(x) =
sin(x)

x
. (2.43)

Discretization of the System Matrix A Using Sinc Interpolation

The Sinc interpolation scheme is naturally derived from signal processing and representation of the

signal in terms of sampling rate up to the optimal Nyquist sampling level. The Sinc interpolation

method will not be used in this thesis as there is a large amount of processing time associated with

the generation of A with this method. Likewise, when creating a finer discretization, the memory

requirements double. Furthermore, the technique has the ability to produce negative entries, which

is physically impossible [97, 102]. Last, the technique does not perform well in terms of error when

compared to the discrete Radon or FNNA techniques. For further reading on the Sinc interpolation

method, see Toft’s dissertation [97].

Discretization of the System Matrix A Using Fast Nearest Neighbour Interpolation (FNNA)

The most interesting interpolation technique is FNNA [102], as it performs well compared to the

most common techniques like NNA, discrete Radon, and Sinc interpolation. Vlček’s description

uses some different variable definition. Mainly, R and T are anogalous to our K and L. The FNNA

approach is based on the direct Radon transform found in [102] and is expressed by:
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T = 2 tmin + 1, (2.44)

originx = bM − 1

2
c, (2.45)

originy = bN − 1

2
c, (2.46)

tmin = d((M − 1− originx)2 + (N − 1− originy)2)
1
2 + 1e, (2.47)

where [originx, originy] represent the center of the image, tmin is the minimal value of t.

As discussed previously, the system matrix A has dimension IJ = m × n × k × l, where

m × n is the dimension of the source image and k × l is the dimension of the sinogram. For this

reason, the system matrix size is directly correlated with the size of the source image and sinogram.

Furthermore, because of this correlation the speedup in FNNA is attributed to the fact that the loop

over the variable t is omitted and directly calculated. This does limit the arbitrary choice of t and

therefore the value needs to be calculated as seen in Equations 2.44 - 2.47.

Vlček provides experiments that show a further discretization of the pixels is not beneficial to the

reconstruction in terms of maximal error of approximation. The results in Vlček’s publication are

likely attributed to the use of the float data type and the limited precision available. We assert that the

use of double precision data type, and more accurate modelling of the numerical error, would result

in less maximal error with great pixel subdivision. This assertion is feasible as increased sampling

of any function does not create aliasing as suggested by the analysis by Vlček. The basic algorithm

from Vlček is included in Algorithm 2.1, as it completes the definition of the FNNA interpolation

technique.

Algorithm 2.1 Calculate System Matrix A by FNNA Interpolation [102]

for r = 0 to R− 1 do
for m = 0 to M − 1 do

cm := (xm − originx) cos θr
end for
for n = 0 to N − 1 do

sn := (yn − originy) sin θr
end for
for m = 0 to M − 1 do

for n = 0 to N − 1 do
t̄ = cm + sn − tmin
t = bt̂c
δ = t̂− t
ArT+t,nM+m = ArT+t,nM+m + 1−δ

sizeofsub−pixel
ArT+t+1,nM+m = ArT+t+1,nM+m + δ

sizeofsub−pixel
end for

end for
end for

45



Bresenham’s Line Algorithm, an Alternative to a System Matrix Representation

Although specific models can account for the development of various interpolation schemes, they are

expensive to produce, even in parallel, when considering constructing the complete system matrix

A. The system matrix hasm×n×k× l elements, which is a huge matrix. One can notably produce

a sparse representation of the system matrix, as only 0.1% of the entries are non-zero [97, 102].

However, when the scanner geometry changes, the type of scan changes in terms collimation, ta-

ble movement, dual source, etc and one must recreate the system matrix at a great cost. Produc-

ing all possible system matrices would be too costly and possibly more expensive than storing the

non-sparse representation of one system matrix. The main cost associated with the process is the

interaction of a ray with the pixel or voxel. In the case of voxels, one can imagine the extra com-

plexity when considering a volume vs. a 2D image or pixel as this would add an even greater level

of computation, as more voxels would need to be visited to correctly determine the row entry of

the system matrix to accurately define the process. An alternative method that is fast is based on

Bresenham’s line algorithm for digital plotters [8]. Although the technique is slightly modified in

this thesis, it plays an instrumental role in the development of a fast method for iterative techniques

used to solve the linear equations, the basic line plotting algorithm can be seen in Algorithm 2.2.

Although the technique cannot be used directly in CT reconstruction, it can be modified to suit our

interest. The modified algorithm will be presented in Chapter 3 and analysis in Chapter 6. As seen

in Figure 2.14, only those pixels in 2D, or voxels in 3D, visited by the ray are sampled. Conversely,

in the standard techniques, all m × n elements are visited in the 2D case, and each voxel in the 3D

case. The basic Bresenham’s algorithm was adopted by Siddon in 1985 to calculate pixel interaction

with rays in a more efficient manner [94]. Jacob’s et al. publication revisited the implementation

details of Siddon’s algorithm and was able to speed-up the technique substantially [41]. As iterative

methods for reconstruction rely on efficient implementations, these techniques have truly shown to

be instrumental in the development of fast iterative algorithms for CT. As shown by Xu et al., the

Siddon method produces the most accurate forward and backward-projections [19] and, for this rea-

son, it is the principle method used for forward and backward ray-driven techniques used in this

thesis.

2.14.1 Summary of Interpolation Methods

The discretization of the system matrix A through interpolation is important to accurately recon-

struct the image f(x, y) because, without a valid representation of the forward-projection process,

a high quality reconstruction is impossible. Implementation of the various techniques were con-

sistent with previous conclusions in [97, 102] and basic linear interpolation has been shown to be

adequate [47, 82, 19, 51]. The focus in this thesis is to development of an efficient parallel en-

vironment for CT reconstruction of raw attenuation values from clinical-CT, outlining differences

in programming methodologies in the various environments, comparison of error of implemented
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Figure 2.14: A ray is cast, the x-index and y-index are set at the location of interception with the
square. The x-index is incremented three times as the 4x > 4y. Once the 4y > 4x then the
y-index is decremented once followed by two more increments of the x-index. This continues until
the ray exits the square, volume, or screen. [8]
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Algorithm 2.2 Bresenham’s Line Algorithm [8]

procedure BRESENHAM(x0, y0, x1, y1)
dx := abs(x1− x0)
dy := abs(y1− y0)
sx := sy := 1
if x0 > x1 then

sx := −1
end if
if y0 > y1 then

sy := −1
end if
err := dx-dy
while x0 ! = x1 && y0 ! = y1 do

WRITEPIXEL(x0, y0)
e2 := 2*err
if e2 > −dy then

err := err -dy
x0 := x0 +sx

end if
if e2 > dx then

err := err + dx
y0 := y0 +sy

end if
end while

end procedure

techniques, and adding insight as there are more efficient programming techniques that make use

of parallel architectures, multi-GPU development, and HI-RES display technology. Nonetheless,

some of the most common interpolation schemes have been shown. Although, the subject has been

revisited in an attempt to use the large complete system matrix, the results show, even with current

techniques such as parallel and multi-GPU computing, these algorithms are still computationally

challenging with current hardware and will likely be challenging far into the future as advancement

in processor speeds, memory speeds, and overall computing have been slow from 2003 to 2011.

Luckily, the advent of the GPU has provided a new parallel framework for programming in a highly

concurrent manner and, for this reason, iterative ray-tracing implementation have been successful.

As previously discussed, linear interpolation has been deemed accurate and current GPUs have lin-

ear interpolation and trilinear interpolation built-in through hardware accelerated operations and, for

this reason we exclusively show results using linear interpolation when possible.

2.15 Methods to Solve Linear System in CT Reconstruction

The system matrix A dimensions are defined in terms of the reconstruction region or source image

(m and n) and the sinogram (k and l). The large system matrix A creates a number of difficulties for

solving the linear equations Af = b. For instance, consider a typical reconstruction with a source

image f(x, y) (m = n = 512), and a sinogram ḡ(k, l) = g(lk, θl) size k = 736 and l = 1152.
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This represents a typical clinical reconstruction for a single axial slice, and a system matrix A with

231,928,233,984 elements. Assuming typical four byte entries for the sparse matrix, one would

have four bytes per element and approximately 900GB of storage requirement for a single slice. This

example is incredibly unrealistic on current and near-future computer hardware, as one generally has

128 or more slices per scan. Likewise, denser interpolation techniques are required and one could

likely quadruple this memory requirements. Therefore, techniques to solve the linear equations

need to be efficient in terms of memory and computation, as without efficient storage techniques,

the major time in computation is spent transferring data. Likewise, one could almost remove the

storage requirement and simply calculate the entries of A as needed. This process would result in

redundant work as these entries are needed many times over when solving the system. Luckily, as

previously mentioned, A is known to be sparse. Given the above example, and FNNA interpolation,

it is shown that less than 0.1% of the entries in A are non-zero: approximately 231,928,234 non-zero

entries and approximately 900 MB [102]. Therefore, sparse matrix storage techniques are a good

choice as they have lower memory requirements and the computation time for correct indexing is

good. Remembering the considerations set forth by the large size of A, the following sections review

common techniques for solving the linear system Af = b after a quick primer on the connections

between common matrix operations and the Radon transform.

2.16 Duality of Matrix Operations and the Radon Transform

Toft’s dissertation, Section 9.3, describes a close correlation between matrix operations and the

Radon transform [97]. We describe some of them here, but Toft deserves credit, as most literature

does not recognize these simple relations and they are truly essential in the complete understanding

of how the mathematical techniques are linked and the methodology’s soundness.

In the previous section, we described in detail the steps involved in the alternate representation

of the Radon transform in a more common linear algebra framework where matrix and vector oper-

ations can be used to reconstruct f(x, y). Formally, Equation 2.23 shows the transformation from

g(l, θ) = R{f(x, y)} to the linear system Af = b. Therefore, common matrix operations have

correlating Radon operations. For instance, the Equation Af = b is the Radon transform (A) of

the discrete image f(x, y) to discrete sinogram b. Another common operation is the scalar prod-

uct between a row of A, namely ai with the discrete image f , i.e. aTi f . This is equivalent to the

Radon transform of the source image at a specific angle into the parameter domain or one row of the

sinogram. This duality makes the transition to vector form relatively straight forward, seen by:

bi = aTi f ↔ Radon transform of image, at one angle,

to one row in sinogram. (2.48)

Another common operation is the back-projection from the sinogram into the image domain. The
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matrix operation is f̃ = ATf , the transpose correlates to the back-projection operation.

f̃ = ATb ↔ Adjoint Radon transform of sinogram into image domain. (2.49)

The correlation between the forward and backward projections can now be seen. Toft also shows

how, under the non-valid assumption of full-rank of A, FBP can be modelled. One cannot assume

the full-rank of A because of non-zero mean values in the frequency spectrum are set to zero during

filtering. The mathematical model is nonetheless accurate. Interested readers should consult [97]

for a more detailed review.

Figure 2.15: The left image shows the reconstruction region in purple with non-constant length
rays are evident after rotation. Likewise, consider a right-triangle, Pythagorean theorem shows the
red rays (hypotenuse) are obviously longer than the blue central ray. The right image shows non-
constant ray-length reconstruction where each ray does not have equal intersection length with the
circular reconstruction region depicted in purple

2.17 Algebraic Reconstruction Technique (ART)

ART represents one of the earliest methods used to solve the inverse Radon transform. The technique

was developed by Gordon et al. in 1970 and relies on an iterative method to update the solution to

the large system of linear equations [27]. The general algorithm found in ART is actually originally

developed by Kaczmarz in 1937, see Kacsmarz’s algorithm for more details [46]. The general idea

of the algorithm is the ability to satisfy each equation of the linear system Af = b in the sub kth

iteration [27, 97, 102]. Iterations in ART are not typical iterations, so two iterations would equate to

2× rows of the system matrix A. One complete iteration of ART is completed once all rays and all

projections have been forward-projected, relaxed, and back-projected. One update rule for f(x, y)
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is defined as:

fk+1 = fk + λ ∗
(
bi − aTi f

k

aTi ai

)
ai, (2.50)

where, fk+1 represents the update image after one ray is forward-projected aTi f
k, relaxed by λ, and

back-projected ai, to produce the update image fk+1. Recalling from the previous section that aTi
represents the row in the system matrix and fk is the current image being projected through. For

the remainder of the text the term ART-iteration will be used when referring ART-type iterations.

The relaxation parameter λ is usually constrained between (0, 1] and can suppress noise as λ→ 0 at

the cost of slower convergence [47]. Last, the denominator (aTi ai) represents the length of the ray

through the reconstruction region.

There are some authors that consider this length to be a constant and choose to ignore it. Al-

though, this is not entirely true as it is only constant length from source to detector. Figure 2.15

depicts this rather well as one can see in the first image with a square reconstruction region and two

projections from the source. It is evident that ray-b is shorter than rays-a and ray-c. Secondly, after

rotation from 90◦ to 330◦ rays a′, b′, c′ have different lengths than their counter parts a, b, c at 90◦.

The second image is where the lengths of all rays are non-equal when using a circular arc detector

array and a circular reconstruction region, as any rotation around the reconstruction region would

result in equal length from source to detector but the intersection length is still not equal. Although

the Keck’s et al. do not explicitly state this assumption, the authors do note this assumption in a later

paper on the topic [48] and was further validated through correspondence. We will demonstrate in

this thesis that this assumption is invalid. Measuring an accurate pixel length is relatively expensive,

but it does provide slightly more accurate results and should be considered when defining a parallel

reconstruction algorithm. Specifically there are two forms of length that were considered in this

thesis, mainly those pixels that were intersected which gives a pixel count, and the actual length of

the intersect with the reconstruction region. Take for instance the ray with γ = 0◦, this would be the

central ray on the fan, or central channel, and would be directly along the x-axis if the source was

at 0◦. This ray has region intersection length that is constant throughout all projections, but when

the source is at 45◦ there is a great number of pixels across the diagonal that the projection value

is distributed across. One should consider these metrics when designing the algorithm and should

formally describe what method is used.

ART is accurate for reconstruction when modelled in a precise way [27]. We will show that a

naive implementation will result in poor performance and poor reconstructions in Section 4.1.3. For

instance there are two methods considered in both Toft’s and Vlček dissertations for ART-iteration

ordering, mainly cyclic and random. The cyclic is based on the model of the actual machine and

in fact it acquires attenuation values for each projection in a cyclic manner. The random technique

simply chooses a random projection among the available projections, assuring every projection is

used only once. They note the random choice is experimentally better for convergence and provides

51



reasonable output in only one complete ART-iteration. Reviewing the literature, it is evident that

choosing projection rays that are maximally orthogonal to each other is the best choice and provides

much faster convergence [29]. The original publication, from Guan et al., was in 1994, several

years before either dissertation was produced. The justification for maximal orthogonality between

updates is considering basic ART in a cyclic manner will update low frequency content first and

high frequency components are recovered late and slowly [29]. Using projections that are of greater

angular distance from each other results in faster convergence, which is depicted in Figure 2.16. As

the angular distances increase, less ART-iterations are required and faster convergence is realized.

Figure 2.16: Four images are shown with increasing angle of orthogonality between rays. Four
angles are depicted and the number of steps to reach the intersecting point can be seen in blue,
decreasing as the angle increases until orthogonal.

ART is a good reconstruction algorithm for low projection-count, noisy, and reduced X-ray

radiation exposure and will consistently provide better reconstructions under these conditions [97].

The decreased number of projections, and/or decreased X-ray radiation level, for a given CT scan

has a drastic correlation on the reduction of the lifetime risk of cancer associated with a CT scan.

That being said, there are a number of problems encountered during implementation. First, the

number of ART-iterations required is not well defined, as it is defined by the scanning geometry

and no specific criteria has yet been set for dosage levels. Second, as the number of ART-iterations

increase so can the noise. Therefore, careful relaxation and regularization parameters need to be

considered. ART has computational complexityO(k×l×n×m), where k is the number of channels

in the sinogram, l is the number of projections, and n and m are the square reconstruction region
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of f(x,y); and therefore making the technique challenging. ART has provided a strong algorithm for

underdetermined scans in the goal of high quality CT reconstruction and has led to the development

of the Simultaneous Algebraic Reconstruction Technique (SART) [1].

2.18 Simultaneous Algebraic Reconstruction Technique (SART)

An important consideration in any reconstruction scheme is the scanner geometry used during ac-

quisition. Today’s CT scanners rely on multi-channel and multi-row detector to create a volume of

x-rays that has exactly channels × rows of detectors. Therefore, satisfying a given equation in

the kth sub-ART-iteration, as in ART, does not closely model the current hardware because a given

detector value would be the summation of attenuation values of neighboring rays. Therefore, an al-

ternative scheme to model the system is SART [1]. The technique relies on a projection-wise update

to the reconstructed image or volume, rather than a ray-wise update to the reconstructed image and

can formally be described as:

f̂k+1
j = f̂kj + λ ∗


∑
i aij

(
bi−

∑
j aij f̂

k
j∑

j aij

)
∑
i aij

 , (2.51)

where f̂ represents the estimated image of the true reconstruction f(x, y), rather than the previous

definition where f̂ was an estimate to the true sinogram. The parameter λ is a relaxation parameter

that, as in ART, is constrained to (0, 1] and has the ability to suppress noise at the expense of a speedy

convergence. The
∑
i aij represents the number of rays contributing to a given pixel estimate, and

the
∑
j aij represents the length of a ray and can only be considered constant for a given ray when

one considers the physical distance from source to detector. The non-constant length between rays,

given different reconstruction regions, can be seen in Figure 2.15. b represents the true sensor values

for a given projection.

The updates to the image estimate f̂ are performed on a projection basis instead of ray-by-ray

as in ART. Therefore, noise is drastically reduced and convergence is generally quicker. The global

convergence of SART was proved by Jiang et al. when one assumes the attenuation values are

non-negative [43]. However, there is no method to estimate, for a given reconstruction based on

raw attenuation values, how many ART-iterations will be required to converge on a solution. This

makes the computational complexity of the algorithm difficult to assess. Nonetheless, given one

ART-iteration of SART the computational complexity is O(k × l × n×m).

2.19 Heuristic in ART or SART

One can provide a heuristic to the algorithm, if knowledge about the domain can effectively be mod-

elled. The back-projection of correction terms in the reconstruction region can be modelled by a

Hamming window as seen in Figure 2.17. The uniformly back-projected value is replaced by the
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Figure 2.17: The Hamming window for circular reconstruction region based on ray length [47].

weighted Hamming window based on length through the reconstruction region [47]. The heuris-

tic can help achieve faster convergence, as it more accurately models the ray attenuation through

materials.

2.20 Relaxation, Constraints, and Regularization for ART-Type
Algorithms

As discussed previously, the relaxation parameter λ in Equation 2.51 and 2.50 has the ability to

suppress noise as it approaches 0 [47]. However, this leads to a slower convergence and is specific

to a given scan. Let us consider the simple example where λ = 1. This would effectively update the

solution space to satisfy the given ray in ART or the given projection in SART. However, it is easy to

understand that in later iterations this absolute satisfaction could disrupt other rays or projections in

the solution space. Therefore, a relaxed update where λ approaches zero can provide a less dramatic

update to the solution space and better ability to satisfy alternative rays, or projections, depending on

the update scheme. Therefore, the careful consideration of λ is important to convergence. Testing

will show large dramatic updates, where higher λ values are used, can provide faster convergence if

used in early iterations. Likewise, lower λ values in later iterations have the ability to refine higher

frequency data as the updates are less dramatic.

Constraints can play another important roll as the ability to produce negative attenuation values

is not physically possible. As previously mentioned, the system if often underdetermined and has

an infinite number of solutions. Therefore, constraining the negativity of possible solutions helps

create a more stable and viable solution, given the prior knowledge of the scanner characteristics.
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Likewise, an upper bound is possible and constraining solutions to this upper bound will ultimately

stabilize the solution with less error. Regularization in SART is advantageous for noisy data or

limited projections [73]. Pan’s et al. uses a single GPU SART implementation with total variation

regularization [73]. The technique preserves straight, and sharp edges, making the regularization

technique applicable to CT reconstruction. The technique is evaluated on rather limited datasets

and small reconstruction sizes. Nonetheless, regularization has been shown to help reconstruction

to suppress noise.

2.21 Singular Value Decomposition (SVD) and Conjugate Gra-
dient Method

Toft’s dissertation shows a description of why SVD and Conjugate Gradient methods are ill suited

for CT reconstruction [97]. Specifically, the SVD method is too computationally demanding, com-

putational complexity O(4I2J + 8J2I) [97]. Remembering the derivation of I and J implies

an approximate computational complexity of O(n6). This means even for simple problems in

CT-reconstruction, computational advancements are required in order to use the technique in CT-

reconstruction. Likewise, the conjugate gradient method generally relies on the storage of ATA,

which is not a sparse matrix, requiring approximately 3.3TB for a 1024x1024 reconstruction using a

single-source scanner with 1152 projections and 736 channels. Adding FFS-modes and dual-source

technology further increases the size. As mentioned, there are other conjugate gradient methods that

do not require this computation and storage. The low storage Conjugate Gradient methods are a

research topic entirely on their own, for further reading see [97, 72].

2.22 Recent Parallel Computational Techniques for Linear Al-
gebra Methods in CT

2.22.1 Parallel Implementations of ART-Class
Algorithms

Melvin et al. provides two good parallel implementations of ART type algorithms [57, 58]. The

problem is decomposed and implemented on a shared-memory machine with 6-processors in the

2008 publication. The reconstruction time was reduced significantly and the authors showed ra-

diation dose could be reduced greatly, with no loss to reconstruction detail versus a typical serial

implementation. One consideration of parallel computing under HPC environments is that the cost

associated with double precision versus single precision is not significant. However, in GPU imple-

mentations this cost is significant and warrants investigation.
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2.22.2 GPU Implementations of ART-Class Algorithms

The GPU has brought advancements to many disciplines in recent years, as it provides parallel com-

putation at commodity hardware costs. Using the GPU effectively in an iterative reconstruction

algorithm is a challenging task as the data size is large and GPUs typically have small amounts

of memory. Specifically, current GPU hardware has a maximal memory size of 6GB on a Nvidia

Quadro 6000. Likewise, divergence in algorithms severely effects performance, as does atomic

writing to memory, non-coalesced reads, host-to-device memory transfers, and device-to-host mem-

ory transfers, see Appendix A for further reading on these subjects. For these reasons, careful and

generally non-conventional algorithm design is needed.

There are three large and active research groups in iterative reconstruction on the GPU, mainly

Mueller et al. [61, 109, 110], Keck et al. [49, 50, 48], and Pien et al. from Partner’s Research Group

of Massachusetts General Hospital, in collaboration with North Eastern University and Siemens

Advanced Imaging [42].

All groups typically do not give their exact forward or backward ray-projection techniques, but

one could argue they are generally using some form of Siddon’s algorithm, as it can model the

ray-projection and grid traversal accurately [94, 41], or possibly Joseph’s [44].

There are two forms of the back-projection technique used, ray-driven or voxel/pixel driven

back-projection. Using a ray-driven forward-projection (RD-FP) and a ray-driven backward-project-

ion (RD-BP) is considered a matched pair [112]. However, it has been shown by Zeng et al. that

an unmatched pair, where the back-projection is less constrained, can produce a faster algorithm

and still keep a valid reconstruction [112, 49]. Typically, the unmatched pair is constructed by

a RD-FP and voxel-driven back-projection (VD-BP). The benefits of a VD-BP is twofold. First,

the VD-BP does not require atomic writing, which drastically slows down iterative methods, as a

pixel is projected onto the sensor array and the sensor array is linearly interpolated or bilinearly

interpolated. Atomic writing, as previously used, is the process of serially updating a value and is

costly as threads must wait and obtain locks on registers before updating a value. Second, the VD-

BP has only m × n lookups, where m and n are the width and height of the reconstructed image.

On the contrary the RD-BP approximately has numberOfRays × ((ray length)/(voxel size))

and the ray and volume, or slice, intersection is costly, not to mention the requirement of atomic

writes as many rays can update one voxel element. Having an unmatched pair also removes ringing

artifacts that are typically found in matched-pair implementations [112].

There are performance enhancements possible from tuning the blocking strategy used to perform

work on the problem [106]. Significant performance gains can be achieved if a good blocking strat-

egy is used. For instance, Weinlich et al. showed, when using the NVIDIA GEFORCE 8800GTX,

best runtime was seen at 16x16 computational blocks on the GPU . These blocks can be thought of

as workgroups for a given volume. If the data requested are relatively localized in the same area of

memory for all workers then the chance of data already being loaded is greater.
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Xu presents a fast forward-projection algorithm programmed on the GPU through the OpenGL

Shading Language (GLSL) [108]. The technique uses a GPU accelerated forward-ray tracing algo-

rithm based on Siddon’s algorithm and a voxel driven technique for the back-projection technique.

The technique speaks of a number of operations required but no specifics on the actual forward-

projection or backward-projection technique for GLSL. Therefore, making comparison difficult.

The technique is also not analyzed in terms of noise, error, or convergence. These metrics are im-

portant as creating a faster reconstruction is only beneficial if the reconstruction is accurate. Finally,

the technique is only built for using one GPU.

Last, for completeness, we again mention Despres’s et al. presentation, as it does describe

a ray-tracing algorithm that achieved a 47x speedup. However, as previously mentioned in the

back-projection portion of this thesis, the article lacks implementation details and no subsequent

publication was found on the groups’ CVs [15].

The use of a multi-GPU environment is currently relatively rare for iterative reconstruction en-

vironments because sharing data among GPUs is expensive, and the cost associated with efficient

multi-GPU environments is higher. However, Jang’s et al. work from the Northeastern Univer-

sity realized substantial performance increases from a multi-GPU environment consisting of four

GPUs [42]. The difficulty with this work is that there are no implementation details only results.

Therefore, this publication is in the same domain as commercial-CT reconstruction algorithms, as

there is no way to duplicate or analyze the algorithms.

2.22.3 Summary of Parallel Techniques in Iterative Reconstruction

Parallel techniques in iterative reconstruction are important as they provide a means to reduce com-

putation time to a computationally intense problem. By reducing computation time, the method is

made more usable for clinical-CT as scan reconstruction is needed rather quickly. If the compu-

tational time is reduced, the method will be used more, as it has been shown to require less than

50% of the number of projections required for FBP [63, 64, 65]. Although the techniques shown are

computationally demanding, using parallel techniques can reduce runtime dramatically. There are

a number of problems with storage of the large system matrix A on current hardware, but Siddon’s

algorithm, or those that provide good indexing schemes to grids, can produce fast ray-tracing tech-

niques that build on the previously mentioned ray-driven forward and backward projection methods.

Although multi-GPU environments are not common, we are able to show their applicability in this

problem domain and present an efficient implementation in Chapter 6 which dramatically affects

runtime.

2.23 Conclusion

The concepts presented in this chapter have been instrumental in the development of a CT-

reconstruction environment based on serial, multi-CPU, GPU, and multi-GPU programming. Al-
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though the concepts seem relatively complex, programming the methods to avoid common prob-

lems such as serial writes, data sharing, data and workload distribution, and the sheer scale of data

is notably more complicated. The key conceptual idea one must grasp from the described methods

is that FBP is the method of choice on commercial-CT. FBP relies on oversampling the interior

frequency region to get reasonable reconstruction of the outer edge, or perimeter, of the reconstruc-

tion region because the slice theorem positions the projections in a polar grid layout in frequency

space [63, 64, 65]. This oversampling equates to increased radiation exposure to patients [2, 7].

ART type algorithms require less than 50% of the projections when compared to FBP, equating

to approximately half of the radiation exposure. The computational problems with ART are often

an underdetermined matrix, resulting in an infinite number of solutions, and difficulty constructing

efficient forward and back-projection algorithms. Also, the computational model requires a large

system matrix A that is difficult to store on current computers. Furthermore, parallel sparse rep-

resentations are difficult to produce and precomputing all possible system and scan geometries is

near impossible. There are a number of iterative reconstruction publications but they typically lack

the detail for reproducing the results. Some key concepts, such as specific ray-tracing techniques

and grid interpolation schemes are often missed and only pseudocode is given which is generally

not useful. The attractiveness of ART type algorithms is clear, but truly fast reconstruction, when

compared to FBP, is still not common. In the following chapters we will show a thorough analysis

of these concepts, implemented on current technology, and show some unconventional methods to

solve many of these computational problems in a fast manner.
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Chapter 3

Advanced Reconstruction
Environment for Medical Imaging
(AREMI)

Through extensive research and development an advanced parallel reconstruction and visualization

environment has been created. The environment is specialized, because of the parallel nature of the

design, and has a number of computational control parameters, such as the number of cores to use,

the use of the GPU, and/or multi-GPU. Likewise, the environment has many algorithmic control

parameters, such as relaxation, Field-Of-View (FOV), geometry layout, regularization, padding,

filtering, and more. As there is no publication that gives a clear and concise depiction of current

implementation details and shortfalls, this thesis provides an original and substantial contribution

to the fields of CT-reconstruction, parallel, GPU, and multi-GPU development. Likewise, there are

many subtleties concerning reconstruction from raw attenuation values that are never discussed, such

as effectively handling of FFS scans, non-parallel beam data, table movement, noise estimation, etc.

All of these points have been addressed in this thesis through the development of the Advanced

Reconstruction Environment for Medical Imaging (AREMI), this alone being a notable contribution

for any research group or person wishing to understand or implement reconstruction algorithms from

actual attenuation values from different manufacturers. The following sections detail the structural

layout of AREMI, the use and layout of raw-scanner data and understanding scanner geometry. There

are a number of implementation details for single-core, multi-core, single-GPU, and multi-GPU

templated reconstruction environments for CWBP and algebraic techniques for reconstruction. The

fine detail of implementations will be explained and the results of some parameter settings will be

outlined.

3.0.1 Data, Runtime, and Analysis

As this is the first chapter where analysis is conducted we introduce some specifics concerning data,

runtime, analysis, and iterations.
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Data

The data used for all experiments is raw-attenuation values from a Siemens Definition Flash+ 64 or

128 slice scanner. The attenuation values are typically interlaced depending on FFS modes, which

will be discussed in Section 3.2. To keep consistent in the document we use 1152 projections,

and 736 detector channels unless otherwise noted. This corresponds to a sinogram (g(lk, θl)) with

rectilinear coordinates of k = 736 and l = 1152, respectively. Last, various reconstruction sizes are

evaluated and are typically square with N = M .

Runtime and Analysis

Wall-clock time was used for all testing where runtime was analyzed because I/O operations can

dramatically influence the results. Runtime results were always conducted over five experiments

and averaged. The machines used were dedicated machines and the standard deviation was typically

negligible. Nonetheless, is depicted with error bars or specified with ±value after average runtime,

when greater than two.

Iterations

Iterations in this document are in respect to ART-iteration as seen in Chapter 2.1, Section 2.17. As

a reminder, one ART-iteration is completed once all rays and all projections have been forward-

projected, relaxed, and back-projected.

3.1 AREMI, a Multi-Core, Multi-GPU Reconstruction and Visu-
alization Environment

AREMI is a multi-core and multi-GPU C++ based visualization workspace for evaluation of vari-

ous reconstruction or visualization techniques. In order to provide universal programming access to

AREMI, the Open Graphics Library (OpenGL) was chosen for visualization. As the actual visual-

ization process is not considered demanding, only one CPU-core and one GPU is designated to this

task. However, the ability to use more CPU cores or GPUs dedicated to visualization is possible

for more demanding visualizations, such as stereo or temporal datasets. The remaining CPU cores

and GPUs are used for reconstruction and can be specified at runtime by parameters. The visual-

ization routine is a decoupled visualizer. This means the hardware resources used for visualization

purposes can be temporarily suspended in order to facilitate faster or more precise reconstructions.

This temporary suspension can result in significant speedups in some cases and, for this reason, is

considered an important feature of AREMI. For instance, the ability to show how the projections are

acquired and the resulting sinogram built is incredibly important and a real-time visualization of this

process is most important, not the runtime. On the other hand, in the reconstruction of an infant at

low radiation dose, the highest detail and the quickest time is most important, not the visualization
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process. These two scenarios justify the ability to decouple the visualization from the reconstruction

process.

The computational data flow and hardware utilization diagram is presented in Figure 3.1. The

Reconstruction Manager (RM) is the distributor of workload to threads and GPUs. The workload

is generally the input data and the output is stored to the output data, but has the ability to work

on the output data if required. The RM also has the ability to launch standard threads to work

on problems or subproblems if required. The Visualization Manager (VM) has the ability to work

on output data or the original data and be decoupled if the GPUs are required for reconstruction.

To enable decoupling of the VM a parameter is set at runtime. We found a consistent decrease in

reconstruction time when using the decoupled visualization routine with methods that employed the

GPU. The justification is rather obvious: the hardware resource used to speed up computation is

the parallel architecture of the GPU. When the GPU is used as a graphics pipeline by OpenGL for

visualization some of this hardware is in use, and the contention for the hardware is what causes

the increased runtime for GPU-based reconstructions. The contention for resources is not limited

to only the GPU, without decoupling there is contention for the PCI and main-memory bandwidth.

Therefore, reducing the contention for these limited resources can increase throughput and reduced

computation time.

3.1.1 AREMI Reconstruction Manager (RM)

The AREMI RM has the ability to delegate tasks or workload to GPUs and specific threads if re-

quired. The RM has control parameters that define the size of workload per GPU or thread. These

parameters define the workload based on the actual reconstruction algorithm. For instance, CWBP

is a super parallelizable algorithm because there is no contention for data and no need for sharing

of data or atomicity for reads or writes. For this reason, distributing the workload across GPUs is

simpler and breaks down to a near-optimal blocking strategy that can either be set or learned. One

hypothesis that we investigated was the use of a mixed CPU and GPU environment to speed-up

reconstruction believing the extra computational resources would aid throughput. A job estimate

is given to the processing power available on the available CPUs and GPUs by hardware queries.

The algorithm then distributes workload to each thread, based on the previous estimate. Threads

that use CPU resources for partial computation are launched and alternate threads that will use GPU

resources are launched. This technique was not effective as the joining of results from various com-

putational engines was too expensive. Nonetheless, distribution of the workload across many GPUs

uses most of the available computational power, in terms of gigaflops, of the machine and can pro-

vide significant speedups. This will be shown in Chapter 6, where the runtime analyzed for various

algorithms and levels of precision in a multi-GPU environment. As one can see, the runtime is only

significantly affected by this use of multiple GPUs if the actual workload is large enough. When

the workload can be distributed and achieve full-concurrency, full blocks of workload per sequential
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Figure 3.1: AREMI can manage up to eight-GPUs, current limit on one shared memory system.
The reconstruction manager (RM) delegates tasks to threads and GPUs. The Visualization Man-
ager (VM) delegates visualization duties to threads and can be decoupled, seen in the perimeter of
the VM and the Visual Output, if faster reconstruction is required.
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multi-processor (SM), on the GPU will the additional use of CPU resources help reduce the compu-

tational runtime. However, the overall runtime was typically slower as merging results was costly.

See Appendix A.2 for more details on SMs. When the problem fits computationally on one GPU

there is actually a performance decrease by scaling across multiple GPUs and/or CPUs. One can also

notice that the error is stable when using a GPU, multi-GPU, and CPU. For this reason, we believe

this type of mixed-mode is justifiable for larger problems. We believe this to be the only work that

provides analysis of numerical stability given precision, noise, and runtime for various reconstruc-

tion algorithms on raw-attenuation values for CWBP, making the results a substantial contribution

to research and development as better spatial resolution scanners, with increasingly larger datasets,

become more prevalent, as this technique can create faster reconstruction without affecting image

quality under our test environment.

Lee et al. uses a hybrid CPU and GPU method for different reasons, mainly to find air regions

in the scan and omit them from GPU computation through a CPU based K-means clustering algo-

rithm [53]. This is not a true mixed-mode algorithm as the CPU and GPU are not working on the

same problem, or even concurrently, as in the mixed-mode CWBP algorithm.

3.1.2 AREMI Visualization Manager (VM)

The AREMI VM is important to the visualization of reconstructions. The VM provides an efficient

framework to easily add or remove features through keyboard and mouse based input. The VM is

important as it provides the ability to adjust image windowing, control image fidelity, dynamic ART-

iteration control, and adjust scanner parameters which reflect the geometry of the scanner. These

concepts will be reviewed in the remainder of this section.

Image Windowing

The VM provides a windowing feature that works on the reconstructed image and is essential to

clinical-CT use, as windowing provides the ability to conceptualize subtle features or materials based

on a specific window-size (WS) and window start point (WSP). Each material encountered by an

X-ray attenuates the response. Using image-windowing one can narrow the visual representation to

only a limited number of attenuation values. This is important as only a limited amount of grayscale

is available on the display medium and materials that are very close in attenuation response could

not be seen without this feature. The basic formula to compute the resulting value based on the WS

and WSP is given by:

f(l) = max(0,min(1, (l −WSP )/WS)). (3.1)

The windowing feature is implemented in the CG shader environment and manipulates 32-bit float-

ing point numbers to the requested WS and WSP via a pass-through vertex program and computa-

tional fragment program. The pass-through vertex program simply passes vertices to the fragment
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(a) AREMI VM FBP window= 4.55 and windowSP= 1.91

(b) AREMI VM FBP window= 0.68 and windowSP= 2.48

(c) AREMI VM FBP window= 7.73 and windowSP= 5.55

Figure 3.2: Three different window sizes and window start points (WSP) are depicted. Different
features are suppressed or enhanced depending on interest.
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program after applying the current model-view projection matrix, the graphics pipeline can be seen

in Figure A.5. The computational fragment program normalizes the data to the interval [0,1] after

applying the WS and WSP. For those GPUs with NVIDIA’s High Precision High Dynamic Range

(HDR) technology, output of the full size 32-bit number results in HDR output on capable display

devices.

Better Image Fidelity

The conceptual development of a mental model of the reconstructions is important and, in order to

facilitate better image understanding, the user has the ability to remove toolbars to decrease the level

of background light interference with the actual reconstruction. This aids image fidelity because the

dynamic range of the reconstructed image is represented better.

Dynamic ART-iteration Control

For iterative reconstruction methods, the VM gives the user the ability to add more ART-iterations

to the reconstruction. This feature is important to real clinical scans because the actual image is not

known, and for the underdetermined system, there is an infinite number of solutions; therefore, the

exact solution needed is not known and numerous sources of noise exist. For this reason, the user

can then specify more ART-iterations if required. The ability to use output data in the form of a

reconstruction image, and provide more ART-iterations to enhance details, is an example of the RM

dynamic input parameters.

Control of Scanner Geometry Parameters

The scanner geometry often changes or is somewhat different than what the actual scanner defini-

tions specify. The VM gives the ability to change the isocenter detector bin parameter value on the

fly. This feature gives the ability to correct scans or learn the optimal isocenter bin parameter. For

instance, Siemens technical document entitled ”Somatom Definition Format Description”, which is

not publicly available, but can be requested, specifies the center channel of the detector array to be

channel number 367.125 for a Definition Flash CT-scanner and results in a reconstruction as seen

in Figure 3.3b. The geometry is obviously not correct, as can be seen by the blurriness on edges

and double rings on circular objects, more evident in Figure 3.4b. The user must incrementally

adjust, through the keyboard, the reconstruction until the desired calibration is achieved, the cali-

brated results can be seen in Figure 3.3a and Figure 3.4b. Although the image based reconstruction

show a qualitative improvement we also wanted to show a quantitative metric to describe the need

for calibration. Therefore, we sampled 24 pixels where a significant transition between air and a

highly-attenuated region is seen. We then plotted the results to establish a quantitative metric as

seen in Figure 3.4. The area between the estimated-ideal plot and the ISO-calibrated red plot is

much less than that of the ISO-uncalibrated green plot. This shows a quantitative metric if one were
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(a) AREMI VM calibrated isocenter detector bin 367.224994

(b) AREMI VM uncalibrated Siemens specified isocenter detector bin 367.125

Figure 3.3: The calibrated isocenter detector bin provides a much sharper reconstruction (3.3a),
using the Siemens specified detector bin value provides a reconstruction that is not as sharp and an
obvious misalignment is seen (3.3b).
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(a) Pixel Sampling

(b) Graph of Pixel Samples

Figure 3.4: The pixels sampled for (3.4b) are designated by the white line in (3.3b). Ringing is
notable in the ISO-uncalibrated reconstruction seen in Figure 3.3b. The ringing is more noticeable
when graphed as seen in the green two step plot in (3.4b).
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to consider the squared-error between each technique and the estimated-ideal plot as the larger area

would cause an increase squared error value.

We found the best method, under AREMI, was to disable any interpolation used during the cal-

ibration step as the interpolation can mask the double step found for the uncalibrated example in

Figure 3.4b. The manual calibration of the scan is not ideal, but it does have the ability to obtain

more precise calibration, as in the previous example, and could eventually lead to the ability to mod-

ify other scanner attributes, preventing the need to repeat a scan and the patient being exposed to

more radiation. The reconstruction framework developed in this thesis is more than just a method to

quickly reconstruct images, it also provides the visualization environment and toolset to work with

the reconstruction that is beneficial and necessary. The noted calibration issue is just one use and a

subtlety that is often overlooked when describing implementation details.

3.2 AREMI CT Reconstruction Techniques

The following section defines the raw data layout, the description of Flying Focal Spot (FFS) from

Siemens [21, 45], and the 2D algorithm, modified from Siddon [94], responsible for ray and slice in-

tersection. The description and considerations of these topics are essential to the understanding and

implementation of good reconstruction algorithms on computer hardware and these are investigated

below.

3.2.1 Flying Focal Spot (FFS) and Raw Attenuation Data

Let us start with the basic description of the raw data obtained from current fan-beam CT machines.

The fan-beam geometry is based on the geometrical layout found in Figure 3.5. There are a number

of challenges that must be addressed in the algorithmic implementation, as the attenuation values

obtained in raw data format can be interlaced FFS or noninterlaced scan data, as seen in Figure 3.6.

The purpose of the FFS mode is to give increased spatial resolution or a thinner slice for reconstruc-

tion without requiring the sensor array to decrease detector size and increase sensor density, both

being technically difficult for manufacturing. For instance, a Siemens 64-slice Definition Flash+

CT machine has 32 detectors, but, with FFS, is advertised as 64-slice machine as the deflection of

the X-ray beam enables finer 64-slice functionality in the longitudinal direction [21]. The actual

angular movement of the focal spot is proprietary information and depends on machine specifics yet

there are analytical methods for calculating the value for cone-beam CT [45]. The accuracy in the

definition of this value enables better reconstruction. For this reason, special attention is needed for

this process and methods are borrowed from [45]. The methods for the estimation of the deflection

in FFS-mode will likely become more readily available or released from manufacturers overtime.

The algorithms implemented in AREMI easily adapt to encompass these natural progressions.

The deflection of the electron beam results in, not only longitudinal movement in the z-direction,

but also movement in the radial direction. The radial direction is equal to movement in the projection
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Figure 3.5: Fan-beam geometry (adapted from [47]): the nondiffracting source S emits X-ray radi-
ation, which is dimmed when passing the patient (at the origin of the coordinate system, not shown)
and then reaches the detectors on the opposite side. These are arranged on a circular fan, such that
each individual detector is uniquely identified via its fan-angle γ. During the scan, the whole geom-
etry rotates around the patient, i.e., the rotation angle β traverses 360◦. We identify each ray pβ(γ)
by β and γ.

slices’ center detector channel, as seen in Figures 3.7 and 3.8. The raw data layout for non-FFS and

FFS modes can be seen respectively in Figure 3.6b and 3.6c. The layout has a simple odd and even

indexing, where the odd index equates to a non-FFS scan and the even index relates to a FFS scan.

We hypothesized that, for efficient computation, it would be beneficial to reduce the number of

conditional statements and branches in the algorithm design for all methods by resorting the data

to be contiguous non-FFS projections and contiguous FFS projection before computation on the

GPU, as suggested by [13]. However, testing showed that this layout was not beneficial in runtime

because of the limited size of the radial detector array for a projection, also known as detector

channels. A typical reconstruction of f(x, y) where m = n = 512, would create a maximal lateral,

or hypotenuse, length of
√
m2 + n2 = 724 which is approximately the number of required detector
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(a) Basic depiction of FFS machine [21]

(b) Raw projection data non-FFS mode

(c) Raw projection data with FFS mode

Figure 3.6: Raw Projection Data with and without FFS. FFS has alternating data layout with blue
and white sensor values representing FFS mode and red and black representing non-FFS mode.

70



Figure 3.7: Basic depiction of FFS in the longitudinal direction. A continuous electromagnetic
deflection of the electron beam results in the focal spot wobbling between two different positions
[21]. Sampling at this exact frequency results in higher spatial resolution and the reduction of ring
artifacts [21].

channels needed for a complete scan. In the case of the Siemens Definition Flash+ scanner, one has

736 detector channels. For ray-driven forward or backward process 736 threads can be distributed

on the GPU maximally for SART, as each thread is associated with one of the 736 detector channels

and would be ray-traced through the reconstruction region. The update’ formula requires periodic

updates to the volume or image after a complete projection update. However, there was no speedup

with the data contiguously ordered and one can remove branch statements in the GPU algorithm.

The justification for the results is the basis for the discussion in Appendix A.3. Formally, if an

algorithm can achieve a fully active warp, that is 32 active threads, the algorithm will perform

efficiently. However, if the warp is not fully active, less than 32 active threads in a warp, the

algorithm will not be as efficient because of the branch and limited threads on that branch that would

be contained in the not fully-active warp as there are idle CUDA-Cores. Processing is scheduled

in groups of 32 threads in a warp. When there are not enough threads on a branch to fill a warp

it is inefficient because there are idle CUDA-cores. In the simplest form, the data is already well

organized, ensuring a near-fully active warp. For example, consider the distribution of the 736

threads, one for each ray/detector, on two Nvidia Tesla c2070 GPUs, each containing 448 CUDA-

Cores and 14 SMs. An efficient implementation would be to have all 14 SM’s on the first GPU,

which equates to 14 × 32 = 448 threads or ray-tracing forward or backward projectors. There

would be a remaining 288 rays needing projection through the volume, equating to 9 SM’s active on

the second GPU. At any point, all warps would be completely active because the conditional branch

would never be performed, because all data is specific to one projection and 736 detector channels in

non-FFS mode. Only after the GPU computation is completed for a given projection would data be
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(a) Non-FFS mode Detector Layout

(b) FFS mode Detector Layout

Figure 3.8: The non-FFS centre channel, blue line, can be seen in (3.8a) and the FFS mode centre
channel is seen in (3.8b) by the red line. There is deflection in the Radial direction the centre detector
channel changes from 0.625 for non-FFS to 0.125 for FFS. Likewise, there is also longitudinal
movement in the z-direction that is not depicted. (This information was gathered from the Siemens
Somatom Definition VA30 Data Format Description for Definition Flash+ scanner)
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loaded that would activate the conditional branch because of the FFS mode. Only fully-active warps

are used because all 736 channels are FFS mode data, and the method to calculate the distribution

of workload to GPUs ensures this. The switch between non-FFS data and FFS data continues until

all ART-iterations are completed. Although branches are frowned upon in GPU programming, they

are often needed and do not affect the efficiency of the algorithm drastically, provided the algorithm

ensures a good data layout and a good balance between thread processing time in each warp. Finally,

one typically wishes to achieve higher occupancy through scheduling more threads than cores. This

is only beneficial if threads are accessing memory frequently. If threads are not accessing memory

frequently, as in the forward-projection, scheduling more threads to get higher occupancy does not

hide memory latencies.

Considering the FFS mode in FBP and algebraic methods is as follows, the FFS causes a shift

in the longitudinal-direction and radial-direction. The exact shift angles are proprietary information

from each manufacturer and are usually not available. However, Kachelrie et al. provides a descrip-

tion of how to obtain a good estimate to these shifts [45]. Two new symbols will be introduced,

αFFS that defines the radial directional shift or channel shift and zFFS that defines the longitudinal

shift or detector row shift. As the formal acronym FFS stands for Flying Focal Spot, there is no

geometric changes in the definition of the detector in either fan-beam or parallel-beam cases. This

can be seen in the three-dimensional derivation of the detector defined by:

x1 = −(R̄F + R̄D) ∗ cos(β + γ) + R̄F ∗ cos(β), (3.2)

y1 = −(R̄F + R̄D) ∗ sin(β + γ) + R̄F ∗ sin(β), (3.3)

z1 = ζ + Tmz, (3.4)

where R̄F and R̄D correspond to the distance from isocentre for the source and detector respec-

tively, β defines the angle of the source and γ defines the offset angle of the detector in the channel

array, and ζ + Tmz represents the longitudinal coordinate in the detector array and the table move-

ment, see Figure 2.9 for a definition in the case of the simpler 2D-geometry. The definition of the

source is reformulated from [45] and defined by:

x0 = (R̄F +4R̄F ) ∗ cos(β +4β̄), (3.5)

y0 = (R̄F +4R̄F ) ∗ sin(β +4β̄), (3.6)

z0 = ZS +4z̄, (3.7)

where4R̄F represents small variation to the deflected focal spot to isocenter, and4β̄ and4z̄ being

the deflection angle and length as from [45]. The equations for non-FFS mode,4β̄ = 4z̄ = 0, and
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is defined by:

x0 = R̄F ∗ cos(β), (3.8)

y0 = R̄F ∗ sin(β), (3.9)

z0 = TMz. (3.10)

The previous derivations have formally defined a ray’s starting and ending point. This is essential

for reconstruction methods where the accurate intersection of this ray with a given volume, or slice,

defines the preciseness of the reconstruction. The exact method to estimate these changes due to

FFS will be described later in, Chapter 5, as this method only provides a good starting point.

3.2.2 Ray-Driven Forward and/or Backward Projection by Siddon’s Algo-
rithm

The following section describes Siddon’s Algorithm and a slightly faster implementation from Ja-

cob et al. [94, 41]. Specifically, the algorithms define the ray intersection with a volume in 3D

or slice in 2D and the associated numerical indexes, i, j, k for a given volume, or i, j for a given

slice. The technique is incredibly efficient because it does not visit each pixel or voxel as with other

interpolation techniques. The ability to not visit each pixel, and consequently test it based on the

interpolation method used, significantly enhances the forward and backward ray projection process.

Jacob’s et al. describes an algorithm that does not require an ordered list of index points, as in the

classical Siddon’s algorithm; rather, the technique calculates only the first i, j, and k index points

then incrementally updates the positions. The enhancements result in a 7.5x speedup when calculat-

ing radiological paths and a 5x speedup when considering total reconstruction time [41]. Jacob’s et

al. [41] provides a novel improvement to Siddon’s algorithm [94], which is related to Bresenham’s

line algorithm [8]. As the Siddon-type exact solution is considered the gold-standard for interpo-

lation of ray intersection with a volume or grid [19], the following addresses the description of the

algorithm in a fan-beam 3D reconstruction that includes FFS mode and shows subtle performance

and image quality-based enhancements to the technique. The use of the method and derivation of the

technique has never been explicitly given for a fan-beam 3D reconstruction incorporating FFS. This

technique is formulated for parallel computation as it has the ability to reformulate the computation

for a specific ROI or rays. The break-down of the algorithm is formulated into three parts that would

all be contained in one kernel call or one thread’s serial execution on the CPU. The technique given

is based on an implementation in any shader-based pipeline, OpenCL, or CUDA.

Derivation of Ray Endpoints with FFS

The pseudocode presented in Algorithm 3.1 represents the definition of the end-points of a ray and

shows the use of FFS modes in both the radial and longitudinal directions, seen in lines 7-12. The

definition is for that of fan-beam geometry, as lines 10-11 show the required angle γ is needed for
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Algorithm 3.1 Enhanced Siddon’s 3D fan-beam ray-tracing algorithm to define ray endpoints pseu-
docode [94]. The parameters are defined as β the angle of the source, γD[] angle of detector cell in
the XY-coordinate, zD[] angle of the detector cell in the Z-coordinate, {x0,xN,y0,yN,z0,zN} numer-
ical endpoints of the ROI for reconstruction, {numX,numY,numZ} are the number of elements in
each direction respectively, {voxX,voxY,voxZ} are the voxel size for each dimension respectively,
4R̄F FFS radial deflection, and4z̄ longitudinal deflection.

1: procedure BACKWARDPROJECTIONENDPOINTS
2: ix := blockDim.x ∗ blockIdx.x+ threadIdx.x . channel id in radial direction
3: if ix > nChannels then
4: return
5: end if . ensures when nonPow2 channels, the extra threads exit gracefully
6: projV al := projRay[ix] . hide load of projection value

→ Definition of the Source under FFS, endpoint 1.
7: X1 := (RF +4R̄F ) ∗ cos(β +4β̄)
8: Y 1 := (RF +4R̄F ) ∗ sin(β +4β̄)
9: Z1 := ZS +4z̄

→ Definition of γ, loading should be avoided. If possible, do not load, as in the second
definition of γ. Not always possible,

10: γ := γD[ix]
11: γ := (halfDetector−ix)∗machineSpecs.angleGridSeparationRadians→Definition

of the Detector under FFS, endpoint 2.
12: X2 := RF ∗ cos(β + γ)
13: Y 2 := RF ∗ sin(β + γ)
14: Z2 := TMz
15: xu := yu := zu := 1
16: if X1 > X2 then
17: xu := −1
18: end if
19: if Y 1 > Y 2 then
20: yu := −1
21: end if
22: if Z1 > Z2 then
23: zu := −1
24: end if
25: end procedure
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precise definition of the detector. These values are pre-calculated and stored in an array. However,

in line 11 the value is calculated. In the basic example, either method works, but the calculated

method is much faster as no loading from memory is required. Therefore, if possible calculate and

if the calculation is too complex store the value. The small code-snip has subtle, but important,

ordering of calculation and loads that can realize substantial improvements in runtime versus a

typical implementation.

First, the pseudocode can be used by a single or multi-GPU system, as the number of projections

distributed to a given kernel call, or GPU, is dictated by the calling thread. Second, by specifying

the memory load of the ray value early, namely the first call, one actually hides the load behind

the computation of numerical values. This means, the value is not required initially after the load,

and; therefore, much computation can be completed during the latency of the load. Finally, in the

third code snippet in Algorithm 3.3, the value loaded is used. This technique, of early load, is

rather simple, but prevents all threads waiting for the load of required data, consequently prevent-

ing idle stream processors waiting for data to continue computation. Specifically, testing showed

a 2% reduction in computation time on a multi-GPU SART algorithm, ray-driven matched pair

with five ART-iterations using dual Nvidia Quadro 4000 GPUs and 1024x1024x32 volume. One

initially would postulate that the Nvidia CUDA 4.0 compiler would order this load in a more respec-

tive manner, to prevent the idle stream processor waiting for the data, but testing shows consistent

improvement using this technique of early load. One should also note, although the forward and

back-projection ray-driven techniques are similar, the early load can only be realized in the ray-

driven back-projection process as the loaded projection value is smeared over pixels encountered

during the ray-tracing algorithm. In the forward-projection process, seen in Algorithm 3.3, the loads

are completed when needed because, as the ray visits a pixel, the value encountered is needed for

the ray-sum. The direction of the ray, in terms of x, y, and z, is important as it dictates the increment

value for the indices of the 3D matrix representation of the volume. Lines 15-24 define the direction

of the ray in terms of x, y, and z. For instance, ifX1 > X2, one knows when tracing the ray through

the volume from X1 → X2 the associated index through the volume will cause the index pointer

to move down not up; therefore, requiring a negative value for the xu and hence the redefinition of

the increment value to −1. Only if X1 < X2 would one use a position xu, as the x− index would

grow, not decrease, as the ray moves through the volume from X1→ X2.

Calculation of Initial Indexes and Incremental Updates

The incremental description of backward-projection continues, and the main differences from Sid-

don’s algorithm and Jacob’s et al. enhancements are now apparent. There are some important con-

siderations in the definition. First, as the pseudocode is formulated for the GPU, branches should

be avoided when possible as they cause divergence in the algorithm and warps that are possibly not

fully active, see the CUDA guide for more details [13]. Careful initialization of variables to avoid if
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Figure 3.9: Although all rays have equivalent length, the number of pixels intersected is not equiva-
lent. The red rays intersect six pixels and the blue ray only intersects five.

and else statements is important as it decreases the likelihood of threads diverging. Obviously this

is not always possible. Second, there are three choices for ray-length, seen in line 18 from Algo-

rithm 3.2, mainly the length of the ray can be considered from source-to-detector and constant for

all rays because of the detector-array is on an arc and has equal distance to the source and is what

is used in the pseudocode. Two alternative definitions for length that can and should, be considered

and the resulting conclusions of these alternative ray lengths are now explained. The first alternative

ray length can be based on pixel interactions as in Toft’s dissertation [97]; therefore, if we consider

past points, there is no guarantee that the same amount of pixels are encountered in the discrete

representation. For instance, consider Figure 3.9 which shows that the number of pixel interactions

are not equivalent among all rays, only the geometric length of each ray is equivalent. The second

alternative ray length to be evaluated is the length of the ray with the ROI. This length is obviously

not constant among rays and also varies depending on the angle of the source. Likewise, the number

of pixel interactions is not constant and varies, based upon the source angle. The increased com-

putational complexity is based on the requirement to store/write the number of pixel interactions in

a separate array, this requires another read from memory, as well as a mutually-exclusive writing

operation. The pseudocode given is for the basic ray-length, as insightful ray-lengths can lead to

faster convergence and/or less noise in the reconstruction under our implementation, but has been

found to be very subjective, and thus no absolute conclusion should be drawn.

Ray-based Walk Through Region of Interest (ROI)

The ray-based walk through the ROI, whether square or circular as seen in Figure 2.15, and the

GPU is really what makes the computationally demanding iterative methods feasible. The code

snippet in Algorithm 3.3 demonstrates the walk of the ray through the ROI. Like the previous two

code snippets, there are some important points to be discussed. First, the basic task is the walking
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Algorithm 3.2
1: procedure BACKWARDPROJECTIONENTRYEXITPNTS
2: αx0 := αy0 := αz0 := 0
3: αxN := αyN := αzN := 1
4: αxu := αyu := αzu := 0
5: if X1! = X2 then
6: αx0 := (x0−X1)/(X2−X1)
7: αxN := (xN −X1)/(X2−X1)
8: αxu := voxX/abs(X2−X1)
9: end if

10: → similar for Y and Z
11: αxmin := min(αx0, αxN ); αxmax := max(αx0, αxN );
12: → similar for Y and Z
13: αmin := max(αxmin,max(αymin, αzmin))
14: αmax := min(αxmax,max(αymax, αzmax))
15: if αmin < 0||αmax > 1||αmax < 0||αmax > 1||αmax > αmin then
16: return . ray does not intersect region
17: end if

→ calculate distance of ray
18: length := sqrt((X2-X1)*(X2-X1) + (Y2-Y1)*(Y2-Y1) + (Z2-Z1)*(Z2-Z1))
19: → only the pseudocode for the definition of x is included
20: αx := αy := αz := αmin
21: αx+ = αxu; αy+ = αyu; αz+ = αzu;
22: minX := minY := minZ := 0
23: if X1 < X2 then
24: if αmin! = αxmin then
25: minX = d((X1 + αmin ∗ (X2−X1)− x0)/voxX)e;
26: αx := (minX ∗ voxX −X1 + x0)/(X2−X1)
27: end if
28: else if X1 > X2 then
29: if αmin! = αxmin then
30: maxX = b((X1 + αmin ∗ (X2−X1)− x0)/voxX)c;
31: αx := (maxX ∗ voxX −X1 + x0)/(X2−X1)
32: else
33: maxX := numX
34: end if
35: else
36: maxX := b(X2− x0)/voxXc
37: minX := maxX + 1
38: αx := αmax+ voxX
39: end if
40: → similar for Y and Z
41: αmid := (min(αx,min(αy, αz) + αmin)/2
42: xIdx := (X1 + αmid ∗ (X2−X1)− x0)/voxX
43: → similar for Y and Z
44: end procedure
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through indices that represent the walk of the line from αc → αmax. A naive implementation would

simply write the value of the projection to reconstructed image pixel. However, this results in poor

reconstruction quality. Two enhancements are possible. First, the variable αD defines the length of

intersection with the pixel. Therefore, as seen in line 28, the projection value is scaled by this length

of intersection. This technique more closely represents the actual area-based detector and the region

a ray intersects from beginning to end from source to detector. The second improvement is the

application of a heuristic, namely using a Hamming filter on the ray-length as seen in Figure 2.17,

where the Hamming filter for the circular reconstruction region is scaled by the typical Hamming

filter function w(n) = 0.54 − 0.46 ∗ cos((2πn)/(N − 1)). This filter effectively enhances the

contribution to the points closest to isocenter and deemphasizes those points towards the perimeter

of reconstruction.

Algorithm 3.3
1: procedure BACKWARDPROJECTIONRAYWALK
2: projVal *= length;
3: αc := αmin
4: while αc <= αmax do
5: if xIdx < 0||xIdx > numX − 1||yIdx < 0||yIdx > numY − 1||zIdx < 0zIdx >
numZ − 1 then

6: imageIdx := -1
7: else
8: imageIdx := numX*numY*zIdx + numX*xIdx + yIdx . 3D index in volume
9: end if

10: min := min(αx,min(αy, αz))
11: if min == αx then
12: αD := αx − αc . distance of ray intersect with pixel or voxel
13: xIdx := xIdx+ xu
14: αc := αx
15: αx := αx + αxu
16: else if min == αy then
17: αD := αy − αc
18: yIdx := yIdx+ yu
19: αc := αy
20: αy := αy + αyu
21: else
22: αD := αz − αc
23: zIdx := zIdx+ zu
24: αc := αz
25: αz := αz + αzu
26: end if
27: if imageIdx > −1 then
28: atomicAdd(reconImage[imgIdx], αD ∗ projV al)
29: end if
30: end while
31: end procedure
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Summary of Implementation of Siddon’s Algorithm

The previous sections represent the computational involvement and efficient programming of a ray-

driven forward and backward-projection through a volume in 3D or an image in 2D. The technique is

formally based on Siddon’s algorithm [94], uses some of the enhancements from Jacob’s et al. [41],

and our noted refinements to further accelerate the ray-projection process in a multi-GPU envi-

ronment. These techniques substantially reduce runtime in our implementation when applied and

compared on current hardware, as seen in Section 6.2. When compared to complete techniques, such

as those from Toft [97], we see a huge decrease in run-time. The implementation included is for that

of the backward-projected ray, as it is more complicated and requires an atomic addition operation

because many threads may write to the same location. This is evident because many rays may inter-

sect a given pixel. This situation is more likely, as the distance of a pixel-to-source decreases, as seen

in Figure 3.9 where three rays intersect the pixel closest to the source and, as the distance from the

source increases, the likelihood of multi-ray pixel interaction decreases. The number of rays con-

tributing to a given pixel value in the back-projection process is important and must be accounted

for. This value is realized in the denominator of the back-projection equation, mainly
∑
i aij , and

should not be omitted. The forward-projection is similar, luckily there is no need for atomic opera-

tors that slow the computation and the extra storage requirements are not needed to save the number

of ray intersections, remembering that atomic operations require parallel threads to behave in a serial

manner. Mainly line 6 is not required from Algorithm 3.1 and line 28 from Algorithm 3.3 is replaced

with the summation or accumulation value accum = accum + αD ∗ image[imgIdx]. After the

while loop in Algorithm 3.3 is completed, the accumulation value is written to projection array at the

specific γ[ix] index, proj[γ[ix]] = accum ∗ rayLength which represents the forward-projection

and estimation of the ray through the volume or image. An official definition has never been given

for the exact method to represent the ray projection for fan-beam geometry layout with FFS, and the

subtleties required for efficient computation on a GPU or multi-GPU environment and; hence, is a

significant contribution to the research community. The formal evaluation of these techniques will

be done in Chapter 6. AREMI in itself is a significant contribution, as the environment demonstrates

the use of multi-core and multi-GPU programming in an efficient way.

Through the use of AREMI, algorithmic enhancements, and the many computational resources

available, a huge speedup can be realized for CWBP, iterative techniques, filtering, and visualization

and will be explicitly shown in Chapter 6. The speedups in these areas means faster results are

obtained and qualitative and quantitative analysis based on parameters can be completed quicker.

Likewise, in a clinical settings quick results are needed for maximal throughput and efficiency of

resources.
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3.3 Summary

AREMI represents a framework that is suitable when large computational resources are required for

more computationally expensive CT reconstruction methods. This framework uses non-traditional

HPC hardware resources to provide HPC level computational performance. We presented an open

implementation of the AREMI framework and a detailed, enhanced FFS-mode Siddon’s algorithm

for the GPU that will be shown to perform well in a multi-GPU environment. This chapter was

required to conduct the analysis in the following chapter. In the next chapter we will demonstrate a

quantitative metric to measure noise, establish some criteria for determining convergence for itera-

tive algorithms, and finally detail effects of different reconstruction regions in terms of convergence

and noise.
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Chapter 4

Noise, Convergence, and Projection
Ordering

4.1 Evaluation of Techniques

The following chapter is used to define a quantitative metric for evaluation of reconstructions in

AREMI. First, a metric is established to measure the noise in a homogenous region of a reconstructed

image. The method proposed has the ability to isolate the noise in specific frequencies. Second, we

demonstrate the limited range of Hounsfield Units (HU), and how with raw attenuation values one

can extend this range to promote better image fidelity on capable devices. We also investigate

what convergence means to iterative algorithms and a method to realize when convergence has been

reached. Last, we illustrate the importance of projection ordering to iterative methods in a qualitative

and quantitative study with numerous projection ordering techniques. These methods are all used in

Chapter 6 where further experimental analysis is conducted. We remind the reader of the definition

of the data used, runtime, and analysis detailed in Section 3.0.1 as they are not explicitly repeated in

this chapter.

4.1.1 Establishing a Quantitative Noise Metric

The ability to estimate noise in a scan is useful as it provides a quantitative metric for the recon-

struction algorithm. Two techniques will be described: first the use of the noise power spectrum

(NPS), and the peak signal-to-noise ratio (PSNR) in a discrete setting. Typically PSNR is used in

signal compression as a metric to evaluate how closely the compressed signal represents the true

signal. However, it can be used in alternate settings. However, as one is not reconstructing from a

known image, the noise and quality of reconstruction is subjective and the ability to use the PSNR is

not possible for raw data, as no known image is available and; therefore, PSNR formula is not well

defined. However, as the common practice is reconstructing simulated data where a known image

is available, the use of PSNR is practical and can be useful and is mentioned for that reason. As we

target reconstruction from raw attenuation values, the utilization of the NPS metric is useful as no

82



Figure 4.1: The estimation of noise is accomplished through the use of nine homogenous locations
in the scan and varying radius for homogenous section. Two smaller outer homogenous areas, (8,9),
are specified by the white circles and represent air. Seven internal homogenous sections are used, the
three depicted in blue, (5,6,7), represent an internal homogenous area and the red circles, (1,2,3,4),
represent four different internal homogenous areas. The square sample of each homogenous section
is taken, typically 16× 16, in order not to sample the boundary of the homogenous area and corrupt
the estimated-NPS.

known image is required. By exploiting homogenous areas in the scan, one can estimate the noise

in a relatively precise manner.

Noise Estimation

A phantom, as seen reconstruced in Figure 2.3c and physically in Figure 4.2, is desired as it has

several known homogenous areas, specifically an ACR accredited phantom was used. The phan-

tom represented a good tool to perform qualitative analysis because it contains many regions of

known composition and geometrical layout, see Appendix B.5 for more details. When using real

human scans it is difficult to perform qualitative analysis on the reconstructions because the known

composition is not available. Figure 4.1 depicts nine homogenous regions: the outer two smaller

white circles represent air; the three blue inner circles represent the same homogenous properties;

and the four red circles represent unique homogenous areas. The homogenous regions provide a
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Figure 4.2: An ACR accredited phantom was used for scanning.

stable, known value, which can be used for noise analysis through the use of NPS. Using an ACR-

accredited phantom, homogenous areas of the scan are known to have various compositions, such

as solid water, acrylic, and polyethylene to name a few. From the nature of CT scanners they are

quantitative devices that measure the amount of attenuation in a specific detector channel [56]. This

attenuation reflects the physical properties of the material within the area scanned and, using this

knowledge, one can construct relatively accurate quality scores and noise estimates.

We now introduce methods from Kijewski and Judy that illustrates the use and validity of NPS in

CT [51], when having several scans of the same object. However, one typically does not have several

hundred images to do the analysis on. For instance, common practice would be to estimate the NPS

on a single image with one or more ROI. The NPS analysis can provide a valid image-standard

or quality-metric that describes the amount, and frequency, of noise contained in a reconstructed

image, as seen in Figure 4.4. However, the NPS provides noise estimates at specific frequencies,

and one generally would like one value for comparison purposes. Therefore, as the noise is always

positive, the summation of NPS frequency values provides a good metric and similar to the L2-norm.

Nonetheless, we have access to frequency-specific noise information that can be evaluated and seen

in Figure 4.4. We use the simplified discrete NPS formulation, represented by:

W̃d[k, l] =
x0y0
NxNy

|
∑
m,n

4ã[m,n]e−2πi(km/Nx+ln/Ny |2. (4.1)

This equation appears complex but is relatively simple, as it is the 2D Fourier transform of the image

components scaled by the pixel size of the x and y, divided by the number of components. In terms

of programming, one can easily formulate Equation 4.1 into the pseudocode found in Algorithm 4.1.
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(a) ROI 1 for Estimated-NPS
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(b) Histogram for ROI

Figure 4.3: (4.3a) depicts the ROI and (4.3b) shows the histogram of the ROI.

Algorithm 4.1 Estimated-NPS for Homogenous ROI

1: procedure ESTIMATENPS
2: scale := (voxSizeX ∗ voxSizeY )/(numX ∗ numY )
3: NPS := absf(powf(fft2d(image), 2)) ∗ scale
4: end procedure
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(a) Estimated-NPS of ROI 1 - DC Centered

(b) Estimated-NPS of ROI 1 - DC Centered 3D

Figure 4.4: (4.4a) and (4.4b) show the 2D and 3D DC component centered. The specific noise at a
given frequency can easily be seen.
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Table 4.1: DICOM Reconstruction from Siemens – Estimated-NPS for ROIs

Dicom Reconstruction Techniques, results NPS units2

Reconstruction Siemens
Technique DICOM
ROI 1 0.00000052
ROI 2 53.5977
ROI 3 69.1033
ROI 4 0.000000511
ROI 5 66.4297
ROI 6 63.0912
ROI 7 47.0969
ROI 8 0.00000004
ROI 9 0.000000014

However, an even simpler version can be derived:

NPS = absf(powf(fftd(image), 2)) ∗ scale, (4.2)

x′ = (x ∗ x− y ∗ y) = x2 − y2, (4.3)

y′i = (x ∗ y + y ∗ x) = 2xy, (4.4)

where, z = x+ yi and |z| = (x2 + y2)1/2, therefore substituting x′ and y′i,

((x2 − y2)2 + (2xy)2)1/2 (4.5)

((x2 − y2)(x2 − y2) + 4x2y2)1/2 (4.6)

(x4 + y4 − 2x2y2 + 4x2y2)1/2 = (x4 + y4 + 2x2y2)1/2, (4.7)

((x2 + y2)2)1/2 = x2 + y2, (4.8)

(x2 + y2) ∗ scale = NPS, (4.9)

where x and y are the real and imaginary portion of the transformed value. This derivation, although

simplistic in nature, is computationally more efficient.

One must be careful as shown by Kijewski and Judy [51], that adequate size is available for the

FT, otherwise frequency bleeding is possible. In general, if higher frequencies cannot be represented

in the transform, the values are aliased onto other portions of the spectrum [51]. Therefore, our need

to zero-pad the array before transforming to at least the next-power-of-two.

Using the reconstructed DICOM data from the Siemens Definition Flash+ scanner, we performed

the estimated-NPS on the nine regions. Surprisingly, the DICOM image had low frequency noise

in the heaviest attenuated regions. Specifically, the Siemens reconstruction was able to produce an

unbelievable zero in these regions, as seen in Table 4.1; however, they performed poorly in alternate

regions, as seen in Table 4.1. When compared with reconstruction techniques developed in this

thesis, we consistently obtained substantially better estimated-NPS in ROIs 2, 3, 5, 6, and 7, seen in
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Table 6.6. As we do not have access to the proprietary code we do not want to draw any conclusion,

as the Siemens reconstruction algorithm and filters are legendary. Nonetheless, the results are worth

mentioning. We have shown how to establish a quantitative metric that can be measured to give

insight into the level of noise in a particular reconstruction. This noise metric will be used in the

following chapters to illustrate how the estimated-NPS value can be influenced by a reconstruction

method, region, and various algorithmic parameters.

Figure 4.5: AREMI is seen displayed on the 14-bit PAC display in monochrome mode. The ability
to output HDR to the monitor is likely beneficial to diagnostic imaging specialists.

4.1.2 AREMI Image Quality Enhancements

FBP is the most widely used reconstruction technique in CT, as it can be modelled relatively easily

on a computer and is computationally efficient for image sizes of m = n = 512. This thesis

redefines this algorithm in a parallel and multi-GPU environment. Through the use of the raw

attenuation values, AREMI is able to perform any frequency-based filtering on actual raw data in

addition to conventional image based filtering. Likewise, one can extend the numerical precision of

the defined images to 14-bit, which provides a more detailed image on a specialized visualization

hardware. As the framework uses raw data to complete the reconstruction, the algorithm can control

the level of precision displayed in terms of computational precision used, and in terms of the images

displayed for visual analysis. AREMI is not limited to the HU, 4096 values, and can adjust according
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to hardware available. The HDR available from Nvidia on select GPUs provides 10-bit output to

compatible devices. However, the WIDE PAC display from DoubleBlack imaging further extends

this range to 14-bit through a specialized and environment calibrated look-up-table (LUT). AREMI

is shown on this monitor in monochrome HDR mode in Figure 4.5.

Figure 4.6: Three projection ordering techniques are evaluated for approximately 25 ART-iterations.
The cyclic ordering produces a steady convergence though slow, random ordering produces unsta-
ble convergence, and the maxOrthogonal technique has rapid convergence after only eight ART-
iterations.

4.1.3 AREMI Iterative Algorithms and Convergence

The convergence of ART type algorithms is an interesting topic area that is often neglected in many

research publications. The faster the convergence rate to an acceptable solution, the more applicable

the technique is in a clinical environment. In the following section we analyze the reconstruction of a

512× 512 slice using different projection ordering techniques and two forms of area reconstruction.

The Cyclic projection ordering samples the projections in the order they were acquired in the scan

and recovers low-frequency components first, rather quickly as seen in Figure 4.7a. The high-

frequency components are recovered later and considerably slower. Random projection ordering
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randomly samples the projections and can usually provide a reasonable reconstruction after one

complete ART-iteration as seen in Figure 4.7b.

The first, and simplest method to achieve quicker convergence is the ordering of the projec-

tions in a manner that achieves a higher-level of orthogonality between updates to the solution, as

originally shown by Guan et al. [29, 31]. This projection ordering techniques is referred to as the

maxOrthogonal method in this paper, but original termed MLS [29] . The technique shows that,

if the orthogonality between subsequent projections is large, the solution is achieved in less steps,

as seen geometrically in Figure 2.16 and in the reconstruction in Figure 4.8. We present and ana-

lyze four forms of projection ordering: cyclic, random, maxOrthogonal, and a hybrid technique that

combines the initial rapid update found in maxOrthogonal-method with the steady update found in

later ART-iterations in the cyclic-method under AREMI, seen in Figure 4.6 - 4.11. These figures

show that a reasonable solution to the problem is found when using maxOrthogonal ordering after

only one ART-iteration of SART, where several ART-iterations are required for cyclic and random

when reconstructing the phantom from raw attenuation data. The results are consistent with previous

results from Guan et al. [29] when reviewing Figure 4.6.

In order to further validate the assertion that the best technique for convergence is maxOrthog-

onal, testing under different relaxation values was required. Figure 4.9 revealed that although the

maxOrthogonal technique provided great initial convergence, the updates in later ART-iterations

were relatively slow and cyclic technique actually performed better in terms of obtaining conver-

gence. Using this information, a hypothesis was made that through a hybrid technique, which com-

bined the rapid early convergence of the maxOrthogonal technique with the refinement ability of

cyclic method, even faster convergence could be possible. Figure 4.10 shows the results of four

hybrid techniques, mainly the techniques use the maxOrthogonal method until a set ART-iteration

value, where the technique changes to the cyclic method. This resulted in faster convergence as seen

in Figure 4.11 where the hybrid30 performs the best and obtains the fastest convergence. These

results are contrary to current literature where maxOrthogonal-method performs best [29]. The hy-

brid30-method achieves a substantial improvement in convergence time. The results were verified

on various scans and consistent results were obtained. Therefore, the hybrid techniques are good,

as it appears that the method is efficient in updating high frequency content in the beginning by

using the maxOrthogonal method, but updates the low frequency content of the image in a more

efficient manner by use of the cyclic method. Reviewing Figure 4.11, it is interesting to note that,

for the hybrid techniques, it appears the more ART-iterations used under maxOrthogonal the steeper

the descent after the transition to the cyclic method. One notices the hybrid10 and hybrid20 are

relatively smooth, where the hybrid30 and hybrid40 have a more dramatic update to the solution.

hybrid40 - hybrid60 perform worse than hybrid30, but still better than the pure cyclic, random,

and maxOrthogonal projection ordering techniques. Faster convergence results in quicker runtime

and greater applicability of linear algebra techniques in clinical-CT because convergence is reached
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(a) AREMI SART reconstruction using cyclic projection ordering.

(b) AREMI SART reconstruction using random projection ordering.

Figure 4.7: Cyclic projection ordering after one ART-iteration of SART is depicted in (4.7a). The
random ordering results in initial rapid convergence and a reasonable reconstruction seen in (4.7b).
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Figure 4.8: The maxOrthogonal projection ordering method results in a good reconstruction after
only one ART-iteration.
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Figure 4.9: When using λ = 0.9 the cyclic technique obtains faster convergence than the max-
Orthogonal method near 25 ART-iterations.
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quicker.

Figure 4.10: Several projection ordering techniques are evaluated for approximately 100 ART-
iterations. The traditional cyclic ordering and maxOrthogonal methods are significantly slower at
convergence than the hybrid methods. The cyclic method does not out perform the maxOrthogonal
method in early ART-iterations only after ART-iteration 27.

4.1.4 Experimentation with Relaxation and ART

As mentioned previously, ART type algorithms attempt to converge towards a solution despite often

using an underdetermined system. Therefore, the solution the algorithm may be converging on is

one of many solutions, as there is at least one free variable available in the solution space. One

can effectively reduce the amount of noise in the solution, or converge on a result that has less

noise present, if relaxation is used [97, 38], as seen Figure 4.12. As an attempt to suppress noise

in our data a λ = 0.5 was used, and experiments show an increased level of convergence versus

the pure use of λ = 0.9 as seen in Figure 4.11. Through experimentation it is clear that there is no

static best value for λ. However, it was consistently found on various reconstructions, that using a

λ ≈ 0.8 − 0.95 in the early ART-iterations and a lower value, λ ≈ 0.1 − 0.6, resulted consistently

in faster convergence with less noise. The justification for the results are: First, the higher value
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Figure 4.11: Six methods for projection ordering are evaluated and the final 60 ART-iterations are
shown. The hybrid methods all outperform the traditional techniques. Specifically, the hybrid30
method offers the fastest convergence. When comparing hybrid30 to the maxOrthogonal method,
the maxOrthogonal method would require 500 more ART-iterations to reach the value seen by hy-
brid30 after only 100 ART-iterations.
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of λ in the beginning requires the solution to be more constrained and dramatic updates result.

Second, using a lower value of λ later during low frequency updates suppresses noise in the solution

providing a greater degree of convergence when comparing L2-error.

Figure 4.12: Experiment of switching over to λ = 0.5 at change over point from λ = 0.9 to suppress
noise resulting in consistent results.

4.2 Analysis of Choice of Reconstruction Region
Convergence and Runtime

There are two methods for reconstruction in terms of ROI: square and circular. Specifically, one

can reconstruct a complete square region or a circular region as seen in Figure 2.15. The pur-

pose of choosing a circular reconstruction region is twofold. First, as we previously showed the

reconstruction region is smaller when considering a circular reconstruction region versus a square

region. This smaller size should result in computation speedup as not as many pixels are visited.

Second, the model more accurately depicts the real scanning modality and assigns the zero atten-

uation weight value to those pixels not contained in the circular reconstruction region. One would

96



Figure 4.13: The square reconstruction technique results in significantly faster convergence when
compared to circular reconstruction. The spike seen is caused by the change over point in the hybrid
method when the technique switches from maxOrthogonal to the cyclic-technique.
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Table 4.2: Square vs. Circular Recon – Estimated-NPS for ROIs

Square and Circular Reconstruction Techniques, results NPS units210−5

Recon Square Circular
Region
ROI 1 1.89800 2.09291
ROI 2 8.80082 8.66552
ROI 3 2.15063 2.08043
ROI 4 88.8886 89.7349
ROI 5 1.25005 1.21675
ROI 6 1.22961 1.09228
ROI 7 1.09486 1.06625
ROI 8 171.932 38.7796
ROI 9 180.599 39.0146
Total Approx. 457.84 183.73

believe this to result in quicker convergence and possibly less error. However, contradictory results

were obtained. Mainly, convergence was quicker with the square reconstruction region as seen in

Figure 4.13. Second, runtime was actually quicker for the square reconstruction of 318s versus the

circular reconstruction region of 344s for 100 ART-iterations for a 512 × 512 reconstruction. We

believe the longer runtime is because of a more complex grid interpolation technique that is required

for the circular reconstruction region to be mapped to our version of Siddon’s algorithm.

Noise Analysis

The analysis of noise was drastically different when using the circular reconstruction region. The

circular reconstruction region showed slower convergence but less estimated-NPS in the final recon-

struction when compared to the square ROI as seen in Figure 4.13 and Figure 4.2. Although, in some

ROIs the square reconstruction technique result in less noise, ultimately the summation of estimated-

NPS was much lower for the circular reconstruction region. We believe the reduction of noise is due

to the system more accurately modelling the actual scan and what we already know about the SNR

for highly-attenuated regions [104]. For instance, when considering the square region there is noise

present in ROI 8-9 seen Table 4.2. However, ROI 8-9, illustrated in Figure 4.1.1, should have low

measured noise because this region has a very high SNR as it is air [104]. Nonetheless, ROI 8-9

show the highest estimated-NPS level. This noise is likely caused by noise in the highly attenuated

interior region being distributed in the air region. The circular reconstruction does not distribute

noise in the air region to the same degree and results in approximately 78% reduction in noise in

ROI 8-9 in our implementation.
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(a) AREMI SART Reconstruction using only 0.1% of 1152 projections.

(b) AREMI SART Reconstruction using only 0.5% of 1152 projections.

Figure 4.14: AREMI has the ability to test subsets of the projections available. Using only 0.1% of
the available projections results in the high-level of artifacts seen in (4.14a). Using 0.5% of the
projections results in a reconstruction with less artifacts as seen (4.14b).
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(a) AREMI SART Reconstruction using five complete ART-iterations.

(b) AREMI SART Reconstruction using 100 complete ART-iterations.

Figure 4.15: AREMI SART based full ART-iteration reconstructions are depicted. Using five com-
plete ART-iterations of SART, i.e. 5 × 1152 × 736, results in (4.15a). Using 100 ART-iterations
results in an almost artifact free reconstruction, as seen in (4.15b), but with a slight amplification of
noise in the right perimeter midpoint.

100



4.3 Convergence and Dynamic ART-iteration Count

The number of ART-iterations required in ART-type algorithms is dependent on the scan and no set

ART-iteration count is acceptable for all reconstructions. Therefore, AREMI has the ability to per-

form more ART-iterations if required during visualization. The reconstructed images using 0.1%,

0.5%, 5, and 100 ART-iterations using maxOrthogonal projection ordering is seen in Figures 4.14 -

4.15. Using too few ART-iterations results in noise and artifacts in the reconstructions. However,

using too many ART-iterations without relaxation can result in amplification of noise in the im-

age [97].

The absolute convergence of SART was proved by Jiang et al. [43]. However, the change in solu-

tion space from 5→ 100 art-iterations is often very minimal in our experimental reconstructions, as

seen in Figure 4.15. Likewise, artifacts, and noise, often become more pronounced when using very

high art-iterations (> 500). Last, the squared error seen in Figure 4.12 after 100 iterations is only

a couple points higher than after 500 iterations; making the increased iterations and computational

time difficult to justify.

4.4 Summary

The current quantitative metric for establishing convergence in raw-data is based on square error be-

tween the current iteration and previous iteration. The definition of convergence could be enhanced

by using a composite metric that would also use the estimated-NPS. However, this composite metric

could only be defined when using a scan with known homogenous areas, and for this reason, is only

mentioned for completeness. Nonetheless, by basing convergence on the level of noise in the recon-

struction ROIs and squared error one could likely better define convergence. One could postulate

that various weighting functions for the composite metric would also enhance the reconstruction.

We have established a quantitative metric for noise analysis through the use of an estimated-NPS

for homogenous regions of the scan. We have demonstrated a means to evaluate convergence for

iterative algorithms. We have shown an alternative mode for projection ordering that can result in

convergence to a solution in a much more timely manner. We illustrated the effects of reconstruction

region on convergence and noise.

In the next chapter we use the methods developed in the previous chapters to enable calculation

of the radial and longitudinal deflection from FFS, given the Siemens Definition Flash scanner ge-

ometry. Second, we briefly review the representation of the system matrix A. Last, we review the

enhancements to Siddon’s algorithm designed for a multi-GPU environment.
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Chapter 5

Consideration for Reconstruction of
Raw Data

5.1 CT-Reconstruction from Raw Data

Computed Tomography (CT) has many flavours of reconstruction algorithms and, surprisingly, in

clinical environments these are typically based solely on manufacturer-available routines. The mod-

ern day CT-machine has the ability to export raw-attenuation values. These raw-attenuation values

are based on the ray-sum of an area-based detector in a physical, non-simulated, setting as well as

vendor specifications. Commercial reconstruction algorithms are typically based on FBP and vari-

ations such as Feldkamp, Davis, and Kress (FDK) [20]. The FBP technique has been shown to

require SFBP = 1.57n projections, where n is the length of the diagonal grid of the reconstruc-

tion region [63, 64, 65]. There are various justifications of FBP use, such as, the methods have

been in use for a number of years and many seasoned radiologists have become familiar with the

reconstruction generated from by this technique. Likewise, the implementation details are relatively

parallelizable and, for that reason, specialized hardware such as Field Programmable Gate Arrays

(FPGA) are designed by vendors for near-instantaneous reconstructions in clinical settings. These

specialized pieces of hardware are expensive and are based on specific algorithms, but lack the re-

configurable ability of CPUs or GPUs. However, they have achieved substantial speedups in runtime

and were shown to be 100x faster than serial processing on the CPU [12]. The wide use of FPGAs

is not generally seen in research because of their high-cost and have been, generally, only beneficial

where the algorithm required detailed, low-level, hardware control operations [93]. There are alter-

native methods to FBP and FPGA-type implementations, but these are generally not seen in clinical

environments because of a lack of motivation by manufacturers to move to alternative methods [71].

Likewise, there is an extreme deficiency in the understanding possessed by CT-design engineers

in the recent advancements in computing and applied mathematics [71]. This means CT-design

engineers are not truly aware of the possibilities of current computer hardware and mathematical

concepts [71]. There are alternative methods, namely algebraic techniques, to CT-reconstruction
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that require less radiation exposure to patients, faster acquisition time, and a better reconstruction

[71, 26, 63, 64, 65]. These methods are typically called iterative methods for CT-reconstruction.

One class of algorithms, in this iterative reconstruction domain, is ART originally formulated by R.

Gordon in 1970 [27]. The ART method relies on an iterative method to update the solution image

to a large system of linear equations. The technique is computationally demanding but has been

show to require approximately half the number of projections compared to typical FBP methods

[63, 64, 65]. Specifically, for a single source scanner requiring SART = 0.67n projections and for

dual source scanners [88, 64], like the Siemens Definition Flash scanner, requiring SART = 0.78n

projections [63, 64, 65]. The reduction in the number of projections results in reduced acquisition

times and, most importantly, reduced radiation exposure to patients’ CT radiation; exposure having

been correlated with increased risk in the development of cancer [2, 7]. Therefore, research and

development into these alternative methods is important to patient health and the future of CT in

diagnostic imaging.

There are a number of difficulties for new researchers to experiment with and overcome by de-

veloping innovative reconstruction algorithms. Specifically, understanding proprietary technologies,

such as FFS, efficient system matrix layout, interpolation schemes, and hardware choices are but a

few of the laborious areas that require an enormous amount of background research in this area.

The aim of this section is to give a clear and insightful review of three essential aspects to CT-

reconstruction that are complicated. Mainly we review FFS mode and how to effectively handle this

technology in an ART domain and in conventional FBP. Second, we describe various interpolation

techniques and an efficient system matrix representation. Last, we give a formal 3D implementation

of Siddon’s Algorithm on the GPU. Through careful presentation and analysis, this section provides

a concise description of topics which are often overlooked and not well described in the literature,

but essential in the development of efficient and precise reconstructions.

5.1.1 Background and Methodology

The following sections will provide insight into reconstruction of raw data from clinical-CT. Impor-

tant topics such as FFS, system matrix representation, and quality metrics will be discussed.

5.1.2 Flying Focal Spot (FFS)

FFS modes are present on most commercial-CT scanners, as they provide increased spatial resolu-

tion in both radial and longitudinal directions, x and z respectively. The technology is revolutionary

as it provides a means to extract an increased level-of-detail without shrinking hardware sensors,

which are already small and closely packed. The technique uses a continuous electromagnetic de-

flection of the electron beam that results in the focal spot wobbling in radial and/or longitudinal

directions as seen in Figure 3.7. The exact angle of deflection in the radial direction and length in

the longitudinal direction are proprietary information. However, a close approximation has been
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found to work well by Kachelrie et al. in 2006 [45]. The FFS modes have the ability to substantially

suppress artifacts in scans as seen in Kachelrie’s et al. (see Figure 7 from [45]). The angle for the

radial and longitudinal deflection can be approximated by [45]:

4β̄ = (1/4) ∗ (2π/projectionCount) ∗ RFD
RD

, (5.1)

4z̄ = (1/4) ∗ (sliceThickness) ∗ RFD
RD

, (5.2)

where projectionCount is the number of projections,RFD andRD are the distance from source→

detector and distance from isocenter→detector respectively. The sliceThickness corresponds to the

collimation and nominal slice thickness, usually defined in the scan parameter file exported in raw

format from the machine. As an example, given the test machine used, as defined in Appendix B, we

have RFD = 1085.6 mm, RD = 490.6 mm, projection count of 4608, and nominal slice thickness

is set at 0.6 mm. Under these parameter values, we have a radial deflection angle 4β̄ ≈ 0.04322◦

and a longitudinal length of 4z̄ ≈ 0.33192 mm. These values provide a good starting point for

reconstruction under various FFS modes. However, to achieve more optimal settings for a specific

machine, we present a simplistic user assisted method for calibration and an automated version. Us-

ing a phantom of known composition, under the assumption of a valid reconstruction environment,

the user can simply adjust the radial angle and the longitudinal length through a keyboard shortcut

until the desired results are achieved. The second method is an automated technique that requires a

phantom of known composition and a specific line pair calibration. When the line pair is of known

location and composition, the system can reconstruct and adjust until the error between the known

and reconstructed image is below a tolerance value. Using Kachelrie’s et al. approximation as an

initial guess, either of the two suggested calibration techniques leads to good results, as seen in

Figure 5.1. However, closer analysis of a feature of each reconstruction reveals the user-assisted

calibration is much more accurate. Likewise, the spatial resolution as depicted in Figure 5.2 shows

the calibrated reconstruction line intersection more closely resembles the actual line. Quantitatively

the graph shows the area is much larger when comparing the non-calibrated method to the line-pair

versus the calibrated method. This greater area would equate to a larger squared error metric. The

calibration step is not needed for every reconstruction. After the initial calibration steps, these values

can be saved and updated as needed. Generally, after the initial calibration, no further calibration is

needed for a specific machine and the stored values can be used.

5.1.3 Representation of the Linear System

One alternative to FBP reconstruction algorithms is based on a linear algebraic representation of the

Radon transform. Given the Radon transform, a matrix representation can easily be defined as in

Section 2.12.5. The system matrix A represents the Radon transform of the image f(x, y) for a

sinogram g(l, θ). The matrix represents the forward and back-projection of rays through the image.

Using Equation 2.23 means the 2D image and sinogram need to be represented in a vector form as
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(a) Reconstruction with FFS Calibration

(b) Reconstruction without FFS Calibration

(c) Feature with FFS Calibration

(d) Feature without FFS Calibration

Figure 5.1: FFS calibrated reconstruction is shown in (5.1a), comparable to non-calibrated recon-
struction seen in (5.1b). The feature of calibrated image seen in (5.1c) is sharper than the feature
from the non-calibrated image in (5.1d). The features are depicted in the original images by the red
highlighted box.

105



Figure 5.2: Graph depicting the intersection of line from reconstruction seen in Figure 5.1a and 5.1b
with user-assisted calibration value versus approximation.
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seen in Section 2.13, and summarized for clarity here for efficient computation on the GPU:

bkl = p(ρ, θ)k×l, (5.3)

b = {a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, ... , o1, o2, o3, o4}, (5.4)

bi = bkL+l, (5.5)

fmn = f(x, y)m×n, (5.6)

f = {a1, a2, ... , a8, a9, b1, b2, ... , b8, b9, ... , i1, i2, ... i8, i9}, (5.7)

fj = xmN+n. (5.8)

The vector form is relatively simple and one can easily access specific projections or rays by use

of two operations; namely the modulus and division operators. For instance, assume we have the

data stored in the efficient contiguous vector form and are performing updates to the solution vector,

as in typical ART algorithms. We would like to carry out computation and; therefore, need to

recover the source angle β and detector offset γ. Using the modulus operation in the following

form γ = currentrow%k, the detector offset is recovered. Using the division operation in the

following form, β = b currentrowk c, the source angle can be recovered. The requirement for a

specific projection, row, or gamma offset is common in this representation and keeping the data in

an efficient contiguous allocation in vector form keeps frequent accesses efficient and convenient

with the mentioned operators.

The construction of the system matrix A is heavily researched and various interpolation schemes

can be seen in [97, 102, 19]. The system is often underdetermined and the system matrix A is large.

For instance, take f(x, y) with dimension m = n = 512 matrix and g(l, θ) with dimension l = 736

and k = 1152 minimally. Matrix A is of dimension m × n × k × l = 222,264,557,568 elements.

Representing this on a computer with single or double precision is expensive, in terms of memory.

Luckily, if one chooses pre-computation of A, then a sparse representation can be used that requires

approximately 0.1% of the storage, because only a minimal amount of entries are non-zero. This

sparse representation results in significant memory saving and speedup as seen in Toft’s dissertation

[97]. However, this sparse representation relies on a more complicated numerical procedure for

various mathematical operations, because the sparse storage format needs to be considered when

applying mathematical operations.

An alternative method to this dense representation can be seen in the use of Siddon’s algorithm

[94]. Specifically, we refer to the enhanced Siddon’s algorithm described for FFS modes in Sec-

tion 3.2.2 with our noted improvements.

A CUDA-based GPU implementation, with performance tuning, of the Jacob’s enhancements to

Siddon’s algorithm was presented in Chapter 3. Nonetheless, it is interesting to investigate Toft’s

interpolation schemes from 1996 on current parallel hardware as will be seen in Section 6.2. Specifi-

cally, Toft asserted that the computational complexity of the calculation of ray and volume intersects
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is too complicated and requires an enormous amount of time on conventional computers. However,

with the ability to use parallel processing, one can quickly compute the ray intersects with the given

volume in a fast manner. The algorithm is perfectly scalable for GPU, multi-GPU, and mixed-modes

environments of CPUs and GPUs. This is not the case for Siddon-type ray tracing algorithms where

an upper-bound is present on the number of usable GPUs, as seen in Section 6.1 and 6.2. There is an

upper-bound that is dictated by the available workload, as distributing a small workload over many

CPUs and GPUs is not effective in reducing the runtime. Given an axial reconstruction the maximal

distribution of approximately 1200 rays for dual source CT-scanners, over current Nvidia Fermie

6000 series GPUs, scales well to approximately three GPUs because each GPU has 448-stream pro-

cessors. Figure 5.3 shows that, given a finite number of rays, distribution of more than one ray per

stream processor results in idle stream processors on a GPU and decreases throughput. One can

utilize smaller sub-volumes for ray intersects, as seen in Figure 5.4, in order to utilize more stream

processors efficiently, but the merging of the results from each volume can be costly, as it requires

transfer of information from GPUs through the PCI-bus then to main memory. This transfer of infor-

mation tends to be the bottleneck of the technique and significantly hurts the throughput. Therefore,

understanding of non-raytracing techniques is important and can achieve substantial speedups in the

future as the problem can be distributed over many GPUs efficiently. Both techniques of ray-tracing

and the complete technique will be seen in Section 6.1 and Section 6.2.

Figure 5.3: Siddon’s algorithm using a ray-partitioning technique to distribute workload to multiple
GPUs
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Figure 5.4: Siddon’s algorithm using a volume-partitioning technique to distribute workload to mul-
tiple GPUs

2D and 3D Optimized Implementation of Siddon’s Algorithm

Siddon’s algorithm [94] is an alternative method to the laborious complete techniques, described

previously in Chapter 2.2 and rather completely in Toft’s dissertation [97]. The technique relies

on the ray-based walkthrough the ROI and the intersection with x, y, z planes with the given ray.

Although the technique is more efficient than the complete technique, Jacob et al. recognized the

storage and merging of intersecting planes is inefficient [41]. Given a GPU implementation of

Siddon’s algorithm the merging of planes requires dynamic storage on the GPU, which is incredibly

inefficient as the method requires storage of a dynamic list of intersecting planes. This dynamic list

needs to be read and reading memory is a costly operation on the GPU. Therefore, this contribution

serves to give 3D implementation details and an analysis of Jabob’s et al. enhancements to Siddon’s

algorithm for a GPU and multi-GPU environment. In an attempt to keep a concise document, the

implementation details of the enhanced Siddon’s algorithm on the GPU will not be repeated, but

the pseudocode can be seen in Section 3.2.2. We now present some of the performance analysis of

subtle improvements on implementation that are reflected in runtime.

CUDA Algorithm Branching and Early Loads

The GPU represents an efficient parallel processing engine, but like any efficient engine, requires

efficient layout of data and the most direct path, or simplest algorithm, is not what actually performs
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the best. First, branching should be limited, as a branch can result in idle CUDA-cores if there are

not enough threads on a given branch. There are initializations of variables that could be replaced

by typical if/else statements, such as line 15 from Algorithm 3.1 and lines 2-3 from Algorithm 3.2.

One would suspect the compiler would structure the code in an efficient manner, but results show a

performance improvement when one avoids the else statement in favor of initialization. Understand-

ing how a warp operates in CUDA leads to a justification as, by avoiding the branch the SM keeps

all SPs on the same path and fuller-warps. Likewise, if globally GPU addressed data is required,

as in line 28 from Listing 3.3, perform the load early. This early load prevents idle SPs waiting for

required data. Instead, if the load is performed early, computation continues as the operations do not

require this loaded data. Finally, when the data is required, it has already been loaded, effectively

hiding the load. On a HI-resolution reconstruction of 2048 × 2048, and 25 ART-iterations under

SART, a consistent 2% reduction in runtime was realized following these simple suggestions. This

reduction in time is significant as runtime can last from several seconds to hours. This equates to

seconds, minutes, and possibly hours of runtime savings.

Further Enhancements to Siddon’s Algorithm

One may recognize that the ROI required is often a circular or a spherical reconstruction. However,

Siddon’s algorithm only handles the case of square ROI. Considering Figure 2.17 and 2.15, one

quickly realizes reconstructing a complete square is wasteful. Specifically, considering the area of

a square versus a circle, or the volume of a cube or sphere, they differ by approximately 20% and

30% respectively. The ROI is generally a circular region and, for this reason, we hypothesized,

not evaluating those locations that are not required for reconstruction should speedup computation.

This non-important area can be seen as the white area in Figure 2.15. To accomplish this one can

use two techniques. A simple check in the inner while-loop from Listing 3.3 for exit of the ray

from the ROI by evaluation of the parametric equations for variables given the current αc value.

The alternate method would be to evaluate of the roots of the quadratic formula for ray and ROI

intersection points. These points can then be used to find the required indices and a speedup would

be likely, because there is a decrease in the number of pixels needed to be evaluated. The results of

this hypothesis were shown in Section 4.2, and the hypothesis was shown to be invalid because of the

increased cost of calculating the circular indices. However, it was shown that convergence, which

is measured by squared-error, occurred quicker with the square reconstruction region. Nonetheless,

the circular ROI resulted in a significantly less noise, approximately 1/3, when compared to the

square ROI technique.

Image Quality Metrics

As with noise estimation of raw data, there is no gold-standard for image quality. However, using

the ACR-accredited phantom, we have the ability to measure spatial resolution in the terms of line-
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pairs and areas of known geometry, as seen in Figure 5.5. Although line-pairs provide a good-quality

metric, they are based on user guided conceptual and perceptual understanding. Another possibility

is a line-pair error metric where a line intersects the line-pair at a right-angle. The points are sampled,

to the resolution of the reconstruction and plotted, seen in Figure 5.2. The closer the sampled line is

to the known value, the more accurate the spatial resolution of the reconstruction is. Various error

metrics can be used when comparing to the known value. Finally, when geometric properties of

the phantom are of known specifications, one can easily test intersection of those regions with rays

in order to calculate the exact geometric size. For instance, when a ray is defined and sampled it

will spike as it intersects a circle or square, or any region of non-uniformity. The distance between

the spikes represents the geometric size of the object and can easily be compared to a known value

and a quality metric can be assigned, based on various error metrics. We have outlined two ways

to access spatial resolution and geometric quality. However, although the technique is sound and

used in many areas of research, it is flawed as a quality-metric because a good edge-preserving filter

can be used that will boost this specific quality score. Nonetheless, these metrics are often used in

the literature, but one must consider if such filters have been used when evaluating the quality of a

reconstruction.

Although geometric evaluation is superficially interesting, it does not represent a fair quality

metric as an algorithm can specifically target edge-enhancements. Nonetheless, the line pairs de-

scribed previously can aid in the spatial resolution qualitative analysis and should be used.

Algorithm Convergence Rate

The ability to properly define convergence is a difficult task, as the system that one attempts to solve,

in ART-type iterative methods, is often underdetermined. Therefore, as there is a great number of

unknowns, versus restricting equations, it results in an infinite number of solutions. As mentioned

previously, there are techniques such as compressive sensing where the number of non-zero elements

is sparse. We did note in Section 2.14 that our system is sparse; however, compressive sensing is

a research topic worthy of a dissertation on its own, and is out of the scope of this document, but

we refer the reader to an informative webpage from Rice University on the topic [98]. However,

we need a reasonable metric to evaluate convergence of the iterative algorithms. Therefore, one

can measure the difference between the prior image and the reconstructed image using various error

metrics. If the evaluated metric falls below the given tolerance, convergence to that tolerance has

been accomplished. Lastly, as previously discussed in Chapter 3, the ordering of the projections is

important and can result in a significant computational speedup and using the hybrid30 method is

strongly advised, as it results in faster convergence in our implementation, as seen in Figures 4.10 -

4.12.
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Figure 5.5: The image represents reconstructed line pairs, where spatial resolution is evaluated by
what line pair can be seen.

5.1.4 Summary

The ability to conduct research in reconstruction algorithms, for raw attenuation values from refined

commercial-CT, is important as it can lead to critical advancements in dose reduction, noise suppres-

sion, and image quality. This thesis gives a description of the use and representation of raw data on

current HPC computer hardware. This parallel hardware has the ability to greatly reduce runtime

if it is programmed in an efficient manner. As scans using FFS modes are becoming the norm, the

ability to effectively reconstruct under these settings is important. We have described a method that

builds on those techniques from Kachelrie et al., but assisted by user-interaction to achieve a greater

level of accuracy. Likewise, we have illustrated why pixel-to-ray interpolation techniques are still

slower than the ray-driven Siddon algorithm, but believe there is promise in these techniques as they

appear to scale to multiple GPUs easier, as the distribution is block like and simpler. These methods

will be evaluated in Chapter 6.1 and Chapter 6.2. Future advancements in parallel architectures may

mean the pixel-to-ray interpolation technique will conceivably become the method of choice. As we

are reaching the limits of size and heat on current processors, parallel processing is more commonly

being utilized to obtain speedups. For this reason, Toft’s complete interpolation technique may be-

come the method of choice in the future as the scalability of ray-tracing techniques over multiple

GPUs is difficult. The formal description of an enhanced 2D and 3D Siddon’s algorithm, tailored

for the GPU with pixel based ray-length scaling and the use of FFS modes, provides a high quality
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algorithm that is able to scale to multiple GPUs effectively and, in turn, reduce runtime, providing

faster results for researchers or clinicians. The evaluation of clinical reconstructions is important,

as understanding the quality of reconstruction in a non-simulated environment is required in order

to evaluate the superiority of a reconstructions under various parameters. Overall the presentation

of these topics is important, as it provides a concise description of implementation considerations

and difficulties encountered during the reconstruction of raw attenuation values from commercial-

CT; therefore, enabling a broad audience the ability to conduct research in a rather intricate and

complicated topic area. The previous chapters are instrumental in developing the required theory in

order to conduct qualitative and quantitative analysis in the final chapters of the thesis. We use the

methods outlined to analyze various ray-driven techniques in Chapter 6.1, and complete techniques

in Chapter 6.2. Last, we conduct a thorough quantitative analysis for CWBP using various HPC

hardware in order to understand the impact of each modality on the reconstruction in Chapter 6.3.
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Chapter 6

GPU Implementation and
Experimental Results

The following chapter represents three formal contributions with an evaluation of techniques used

included in the results portion of each section. A complete review of prior techniques is not ex-

plicitly detailed, as they were discussed extensively in the previous chapters and referenced accord-

ingly. We first present our detailed multi-GPU Simultaneous Algebraic Reconstruction Technique

(SART) based on our previously noted enhancements to Siddon’s algorithm, seen in Section 3.2.2,

that would be interesting to any medical imaging specialist or multi-GPU programmer. Second, we

show a complete system matrix derivation is feasible and has reasonable runtime. We also com-

pare the technique to Toft’s previous implementation. Those concerned with complete methods

and on-the-fly computation versus techniques requiring lookup tables or ray-tracing would benefit

from reading this section. Last, as Filtered Back-Projection (FBP) techniques, seen in Section 2.6,

represent most techniques currently implemented on clinical scanners; and therefore show various

implementations of Convoluted Weighted Back-Projection (CWBP), seen in Section 2.8, and inves-

tigate runtime, effects of algorithmic numerical precision, and noise analysis for all techniques as

this type of qualitative and quantitative analysis is not available in current literature. This section

would be appropriate to those wishing to understand current implementations of CWBP for raw

attenuation values and the numerical stability of CWBP on various HPC implementation.

We remind the reader the definition of the data used, runtime, and analysis is detailed in Sec-

tion 3.0.1 as they are not explicitly repeated in this chapter. Unless otherwise noted in this chapter,

the hardware test environment was that of a 12-core Mac Pro with dual Fermie based Quadro 4000

GPUs. For more information on the hardware and development environment see Appendix B.1.
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6.1 Multi-GPU Iterative Reconstruction Algorithm for Medical
Imaging

Iterative reconstruction algorithms have been shown to reduce the required number of projections

for a complete reconstruction when compared to current conventional techniques like FBP [65].

Decreasing the number of required projections is important, as it would eventually reduce the level

of X-ray radiation a patient is exposed to. The iterative methods are computationally demanding and

require non-conventional programming, in terms of a multi-core and multi-GPU environment, for

a timely reconstructions that are high quality. The environment presenter, AREMI, uses multi-core

and multi-GPU systems for reconstruction and analysis. This environment can drastically reduce

computational reconstruction time, and lead to faster analysis of parameter space and convergence.

The environment is non-typical as it employs multiple resources in an effort to reduce runtime.

Solving large linear systems through conventional means was shown to be impractical in Sec-

tion 2.13. Likewise computation of the inverse of A is computationally complicated given the

enormous size and varying scanner setup. Likewise, the conjugate gradient algorithm is not well

suited, due to the restriction on the system matrix. Toft’s dissertation showed that the system matrix

ATA is not sparse and should be avoided [97]. Therefore, non-conventional methods are needed,

such as SART. These techniques are computationally expensive but thankfully are parallelizable.

Therefore, to provide efficient testing of parameter space, and to ensure fast convergence, AREMI

was developed with parallel processing and efficient computation in mind. The environment utilizes

available cores and GPUs to iterate to a solution of f from the transformation b = Af .

There are methods from Keck et al. [49], and those from Xu et al. [109, 110, 62], that use a

single GPU for SART type algorithms. Their exact implementation details are still notably absent in

literature, but they show the use of a GPU for SART. Jang et al. showed a multi-GPU environment is

possible and performs well, but their publication lacked any algorithmic description [42]. Compari-

son to alternative techniques is not currently possible as the specific algorithmic details are lacking

and/or the imaging modality is different. Therefore, we have given a clear overview of our exact

implementation details in our experiments in order to facilitate easier comparisons in the future.

AREMI has the ability to use multiple CPUs and GPUs in an attempt to reduce runtime for recon-

struction and, in turn, provide the means to use higher ART-iteration count and more computationally

expensive grids and filters to obtain reconstructions with less noise and artifacts. AREMI was de-

veloped for cross-platform interoperability as test hardware is composed of typical shared-memory

HPC and multi-core / multi-GPU workstations. Through the use of AREMI we have significantly

reduced runtime and have been able to test various parameter spaces and the use of AREMI results

in faster convergence because more processing power is utilized.
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6.1.1 Multi-GPU Algorithms for SART

Although AREMI has the ability to execute many different reconstruction algorithms, we will use

SART as an example because SART has the ability to reduce the amplitude of noise in the recon-

structions [1, 47]. SART updates the solution vector f on a per-projection basis, rather than a per-ray

basis as in ART. We have chosen to illustrate the use of a ray-tracing algorithm for ray and ROI in-

tersection, namely Siddon’s algorithm [94], which employs enhancements by Jacob’s et al. [41], and

our specific improvements, refer to Section 3.2.2 for more details. We have also extensively tested

complete interpolation techniques, as reviewed in Section 2.14 and Section 6.2; for more informa-

tion beyond these sections see [27, 97, 102, 47]. The environment relies on the fact that each thread,

whether on a CPU-core or CUDA-core, computes the intersection of a ray with the ROI.

We present three techniques for distribution of workload on the GPU and analyze how these

methods perform in terms of runtime and noise. Specifically, we test the partitioning techniques on

two different Back-Projection (BP) methods: a Ray-Driven (RD) BP methods, and a Voxel-Driven

(VD) BP technique. The first partitioning technique divides the detectors over the number of devices

and is referred to as Alg 1: ray-partitioning, where the second technique divides the ROI over the

number of devices and is referred to as the Alg 2: volume-partitioning.

When considering a RD-BP both partitioning methods are required to use an atomic operation

in the back-projection step. This atomic operation requires locking data and providing serial access

to the variable. This lock is required for every pixel a ray encounters in the back-projection pro-

cess to ensure a mutually-exclusive write operation. We will show the atomic operation requires

approximately 20-percent of the processing time when reconstructing a 1024×1024 slice with 1152

projections and 736 detector channels. We hypothesized that reducing the likelihood of rays writing

to the same pixel location would drastically improve performance, but likely increase the estimated-

NPS because we can not guarantee the mutual-exclusiveness. To investigate this we developed Alg

3: RD-BP with no mutually-exclusive write operation. The technique relies on a reordering of rays

to decrease the likelihood of threads writing to the same location.

When considering a VD-BP no mutually-exclusive write operation is required, and is considered

an unmatched pair because the Forward-Projection (FP) is RD and the backward-projection is VD.

The VD-BP relies on the projection of pixel elements onto the curved detector channels and linearly

interpolating the results. This technique is similar to the CWBP process discussed in Section 2.8 and

does not require the atomic operations as rays are not traced through the ROI in the back-projection

process and there is no possibility of threads writing to the same location. Refer to Section 2.22.2 for

more details on matched pair, unmatched pair, RD-BP, and VD-BP techniques for ART algorithms.

Although many different algorithms were tested, analysis will show that Alg 2: volume-partitio-

ning performs best under our implementation in terms of runtime for both RD-BP and VD-BP

techniques. Last, we will also show that although the VD-BP technique performs better in terms of

runtime it performs worse in terms of noise in the reconstruction.
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Figure 6.1: The SART update process in the multi-GPU environment is depicted. The FP is carried
out by each GPU and creates a half-detector array worth of projection values, seen in (1). Those
values are subtracted from the measured projection values P , seen in (2). Each GPU then carries
out the BP process, seen in (2), and shares a portion of the result with other computing GPUs, stage
(3). The image X is then updated with the back-projected values, seen in (3). Stage (4) shows the
data each GPU was responsible for is shared with other processing GPUs. Stage (5) shows the data
ready for FP and the entire process can start again, or exit if the required tolerance or ART-iteration
count has been reached.
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6.1.2 Algorithm 1: Ray Partitioning

Division and allocation of detector-channels to devices, in a multi-GPU environment, given fan-

beam reconstruction, would equate to taking the total number of detector-channels and dividing that

number by the number of GPUs. For consistency, we will consider the axial scan case where one-

slice of the reconstruction region will be reconstructed. Therefore, we will now only consider the

channel, or radial sample distribution, and not the complete multi-slice, or longitudinal distribution.

Given a typical scan from the Siemens Definition Flash+ scanner results in 736 channels, and

using an example of two GPUs, this would equate to 368 channels or rays for one GPU and 368

channels, or rays, for the second GPU, as seen in Figure 6.3. This workload decomposition results

in half the forward-projection process being delegated to each GPU. The technique requires no

sharing of data in the forward-projection process, as the calculations are non-dependent. During the

back-projection process we will also consider the ray-driven technique making the overall technique

classified as a matched pair, rather than the simpler voxel projection technique, but, in this manner,

multiple threads/rays can write to a given location and two resultant images need to be computed.

As one of the most expensive processes, the movement of data from host-to-GPU or GPU-to-host,

we rely on an in-place summation of back-projection textures. Therefore, during the update process

there are two images built, updating the solution f , as seen in Figure 6.1. As only a portion of the

data is shared with computing GPUs, the technique results in a significant speedup as the ray-tracing

algorithm is also distributed and the ray-tracing algorithm is the most computationally demanding

portion of the execution being carried out in both the forward and back-projection process.

To ensure full utilization of a GPU, the distribution of threads should result in all GPU Sequential

Multiprocessors (SMs) being active. Therefore, for an axial reconstruction with 736 channels, when

using Nvidia Quadro 4000 GPUs, with 256 CUDA cores, a maximum of three GPUs could be used;

the addition of a forth GPU would not speedup the execution time in this example, as all CUDA cores

would not be active. We believe this assertion to be true as smaller test sizes showed when using

two GPUs and 128 channels, no performance boost was realized. We currently lack the required

hardware to conduct the four to eight GPU test under unified virtual address space (UVA) mode as

cluster based GPU resources are inefficient because of the data transfer requirement between nodes.

Likewise, a system that uses QuadroPlex units, where four GPUs share a single PCI slot, are also

inefficient because there is a high contention for bandwidth as it is shared between all devices.

These techniques are not limited to axial scans and it is important to remind the reader that

the algorithm described in Section 3.2.2 also is capable of using helical data. When considering

the helical scans, the detector generally employs 736 channels radially and 12-128 detector rows

that represent the longitudinal dimension and results in 8832-94202 rays requiring tracing through

the ROI. In this situation a blocking strategy can be employed that is relatively simple for CUDA

programmers.

The basic algorithm consists of:
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1. distribution and memory transfer of detector channels for Forward-Projection (FP) to GPUs

( rays
GPUs ) and the FP of those rays through the Region-of-Interest (ROI), as seen in Stage 1 of

Figure 6.1. This effectively results in a reduction of computational cost from approximately

O(k ×
√
n2 +m2) to O( k

GPUs ×
√
n2 +m2).

2. given the sublist of detector channels each GPU is responsible for, subtract the measured

value from the actual projection values P, (i.e. O(k/GPUs) subtraction operations) and

Back-Project (BP) those values through the ROI. The RD-BP technique has approximate com-

putational complexity O( k
GPUs ×

√
n2 +m2) and the VD-BP technique has computational

complexity O(n×m), as seen in Stage 2 of Figure 6.1.

3. share specific portion (ROI/GPUs) of ROI with neighbouring GPUs for summation opera-

tion on each GPU, as seen in Stage 3 of Figure 6.1.

4. each GPU is required to share the Stage 3 result with neighbouring GPUs and update their

specific results with data received from neighbouring GPUs, as seen in Stage 4 of Figure 6.1.

5. last, the data is consistent on all GPUs and the FP process as seen in Stage 1 is carried out. **

note: ray partitioning is only carried out once as each GPU is always responsible for the same

set of rays.

6.1.3 Algorithm 2: Volume Partitioning

Allocating a GPU device responsibility, for a specific region, is beneficial as it is simplistic to dis-

tribute a volume and merge results. The sub-volume distribution, seen in Figure 6.2 and Figure 6.4,

depicts the SART process for sub-ROI distribution to GPUs. As shown, no explicit large sharing of

data is required, but there are some subtleties that require sharing, like the distance metric as seen

in Equation 2.51. This technique should scale rather well past two GPUs as it requires minimal data

sharing, but we currently lack the hardware to validate this assertion. Generally though, because

each GPU has the entire projection values for the forward ray-tracing algorithm and minimal data

sharing is required, the technique should perform well in hardware environments with greater than

two GPUs.

The basic algorithm consists of:

1. transfer all sinogram values to each GPU. Each GPU then allocates a portion of memory for

the subROI it is responsible for (ROI/GPUs), as seen in Stage 1 of Figure 6.2.

2. FP entire radial channel values through subROI and compute approximate p, as seen in

Stage 2 of Figure 6.2. The computational complexity for the RD-FP is reduced from O(k ×
√
n2 +m2) for the single-GPU technique to O(k ×

√
n2+m2

GPUs ). **note: Each GPU computes

actual ray-length through full reconstruction region, as well as subROI. This is required to

weight the ray contribution to each pixel accurately in the FP of rays.
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3. share p that was computed from the subROI with neighbouring GPUs and subtract updated p

from known P , as seen in Stage 2 of Figure 6.2.

4. BP the results to obtain updated subROI, as seen in Stage 3 of Figure 6.2. The RD-BP tech-

nique has approximate computational complexity O(k×
√
n2+m2

GPUs ) and the VD-BP technique

has computational complexity O( n×mGPUs ). **note: RD-BP techniques requires computing the

ray-length through the full reconstruction ROI, as well as the subROI. As in Stage 2, this is

required to weight the ray contribution to each pixel accurately in the BP of rays through the

ROI.

5. the ROI is then updated with the new projection values using a simple summation operations.

as seen in Stage 4 of Figure 6.2.

6. last, the FP-process can be carried out again, as seen in Stage 2.

An interesting observation concerning this technique is that often many rays from the projection

array do not intersect the region of interest. Although this does cause divergence in the ray-tracing

algorithm, the data is well organized and diverges together, as depicted in Figure 6.4. Last, the tech-

nique requires some additional parameters to maintain consistency with the other implementations.

Mainly, the total ROI value needs to be available to each GPU, not just the sub-ROI. This is nec-

essary to scale the ray appropriately when applying the updates to the forward or back-projection

process.

CUDA Device-to-Device Memory Transfers

In the previous sections, we discussed the process of transferring data between GPUs. There are

various methods on the current Nvidia GPU to carry out this process, some being faster than oth-

ers. Specifically, with the release of CUDA 4.0 and Fermie GPUs with UVA mode, it has become

possible to have read/write access between GPUs and also the seamless copy of data from device-

to-device without the need to directly use host-memory. This means there is not a separate address

spaces for the host and each GPU. The UVA mode provides simplified programming, faster memory

copies between GPUs, and less host overhead [89]. When possible these methods should be used

and should dictate hardware purchases, as non-Fermie GPUs currently do not support this memory

transfer method. For further reading on these topics see [13, 89].

6.1.4 Algorithm 3: RD-BP No Mutually-Exclusive Write Operations

We hypothesized that the mutually-exclusive write operation was likely costly. Therefore, we in-

vestigated how costly this guarantee was on the runtime. We removed the atomic operations from

the RD-BP process and it was found to account for approximately 20% of the total runtime when

reconstructing a 1024 × 1024 image, see Table 6.1. This is a significant portion of the runtime, as

runtime typically lasts for minutes with the complete technique. For this reason, we believed, as
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Figure 6.2: The SART update process in the multi-GPU environment is depicted. The FP is carried
out by each GPU, but on a sub-ROI rather than the entire ROI as seen in (1-2). The BP process is
seen in (4) and requires no explicit sharing of sub-ROI data. This technique eliminates the need to
share actual reconstruction region data, which is an costly process as this data is large compared to
sharing of the shared projection data.
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Figure 6.3: Siddon’s algorithm using a ray-partitioning technique to distribute workload to multiple
GPUs

Figure 6.4: GPU0 ROI is depicted as the pink region in the top left. The exaggerated illustration
shows all rays to the right of the isocenter channel, blue-ray, do not intersect the ROI of GPU0 and
exit early from the ray-tracing algorithm seen on line 15 from Algorithm 3.2.
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Figure 6.5: The ray-separation strategy is outlined, group. 1 is depicted by the blue rays and one can
see there are less likelihood of rays writing to the same pixel locations. After group. 1 is completed
group. 2 is processed and finally group. 3.

SART is only an approximation to the true solution, that further approximating the technique may

not be entirely detrimental, and could likely produce similar reconstructions but faster. Therefore,

a new technique based on ray-distribution was established. Mainly, the ordering of rays for com-

putation was chosen to decrease the likelihood of rays writing to the same location, and removed

the mutually-exclusive write operation. We will refer to this technique as Alg. 3 and is depicted in

Figure 6.5. There is no explicit algorithm outlined as the technique is simplistic and only requires

the radial detector channels to be reordered to decrease the probability of writing to the same pixel,

as seen in Figure 6.5.
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Figure 6.6: The basic GPU SART implementation is compared in Alg.1 and Alg.2. Alg.2, ROI divi-
sion, is the leader under all reconstruction settings. Testing was conducted with five ART-iterations
of SART using 1152 projection and 736 channels. The error-bars are not shown as the standard
deviation is less than two for all methods.

6.1.5 Results

The basic analysis of all techniques consists of runtime performance and the qualitative metric

estimated-NPS, as seen in Section 4.1.1. All techniques use a Ray-Driven Forward-Projection (RD-

FP) and various Back-Projection methods. In summary, we have evaluated:

1. RD.Alg.1: Ray-Partitioning with a Ray-Driven Back-Projection (RD-BP) operation

2. VD.Alg.1: Ray-Partitioning with a Voxel-Driven Back-Projection (VD-BP) operation

3. RD.Alg.2: Volume-Partitioning with a Ray-Driven Back-Projection (RD-BP) operation

4. VD.Alg.2: Volume-Partitioning with a Voxel-Driven Back-Projection (VD-BP) operation

5. Alg3: Ray-Driven Back-Projection with no mutually-exclusive write operation

6. RD-BP-No Atomic is used to illustrate the cost of the mutually-exclusive operation in the

RD-BP methods.
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Table 6.1: Multi-GPU Techniques Compared
– Five ART-iterations –

Multi-GPU Reconstruction Techniques
Recon Size RD RD RD VD VD VD RD-No Alg.3

Single Alg.1 Alg.2 Single Alg.1 Alg.2 Atomic Single
GPU GPU GPU

256× 256 7.78s 6.29s 5.13s 4.39s 4.01s 3.91s 7.31s 14.77s
512× 512 16.15s 10.30s 9.70s 10.94s 8.93s 8.89s 13.13s 27.22s
1024× 1024 35.90s 24.13s 23.33s 27.79s 21.56s 20.92s 28.84s 58.45s

RD Techniques

All RD techniques that utilized the mutually-exclusive atomic operation resulted in identical esti-

mates to NPS and are consistent because all methods use standard GPU single-precision floating-

point and the basic algorithm is identical. Figure 6.6 and Table 6.1 detail the runtime performance

of all techniques. RD.Alg.1 resulted in a 1.49x speedup and RD.Alg.2 a 1.54x speedup when com-

pared to the single GPU implementation for 1024× 1024 reconstruction size. These results show a

decrease in runtime and will provide convergence faster than a single GPU implementation. We be-

lieve under a GPU setting, with greater than two GPUs, RD.Alg.2 would produce substantially faster

reconstructions, as it does not require the large volume of data transfer as required by RD.Alg.1, seen

in stages 3-4 in Figure 6.1.

VD Techniques

Similar to the previously mentioned RD techniques, the VD methods all resulted in the same

estimated-NPS as the methods all utilize the same algorithm but the processing is different. The

runtime analysis results in a 1.29x speedup for VD.Alg.1 and a 1.33x speedup for VD.Alg.2. The

justification for the VD methods performing better in terms of runtime is twofold. First, the RD

methods do not require the mutually-exclusive constraint, which is shown to be costly in Table 6.1.

Second, the VD technique relies on much faster pixel projections, rather than a more costly ray-

tracing method. Specifically, the VD method has computational complexity of 0(n2), rather than

the RD method that requires approximately O(k ×
√
m2 + n2), where n is the dimension of the

square reconstruction region. Likewise, the RD back-projection technique from an algorithmic per-

spective is more costly, as it requires an expensive ray-tracing technique as seen in Section 3.2.2.

Whereas, the VD technique has a simpler algorithmic routine.

Alg. 3 Approximate RD Methods

The mutually-exclusive operations required for the RD methods were shown to be costly and, for

this reason, we believed a well-ordered set of rays would provide a decreased probability of writing

to a pixel location while in the process of being modified by another thread. The technique is only
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Table 6.2: Estimated-NPS for ROIs

SART Reconstruction Techniques, results NPS in units210−4

Acceleration RD-BP VD-BP
Technique
ROI 1 13.8 17.7
ROI 2 1.02 8.0
ROI 3 7.70 11.8
ROI 4 8.80 17.1
ROI 5 8.40 14.0
ROI 6 8.23 15.6
ROI 7 0.51 5.2
ROI 8 0.37 8.3
ROI 9 0.49 8.2

applicable to the RD-BP method as the VD-BP methods does not require mutually-exclusive write

operations. The technique, is theoretically sound as depicted in Figure 6.5, and result in L2-error

of 0.013 difference in reconstruction image, versus that reconstructed by the RD technique that

utilizes the atomic operation to guarantee mutual-exclusiveness during writing. The L2-error metric

is similar to Root Mean Squared error analysis without the division by the number of samples.

Figure 6.6 and Table 6.1 show the runtime for the technique and is substantially higher than all other

methods; specifically requiring an average of 58.45s to reconstruct a 1024 × 1024 image. Similar

results were observed for smaller images. We attribute the increased runtime performance, in the

absence of the atomic operation, to the fact that the data is no longer well ordered for branches during

execution. When the data is partitioned to decrease the need for mutually-exclusive operations it is

not well ordered and increases the likelihood of not having full-warps, causing increased runtime.

For more information refer to the discussion in Section 3.2.2 concerning fully active warps.

Estimated-NPS

As previously mentioned the estimated-NPS within VD and RD techniques was the same when con-

sidering Alg.1:ray-partitioning and Alg.2:volume-partitioning. However, comparing the two back-

projection techniques we see from Table 6.2 that the VD method has significantly more noise in

all ROIs than the RD method. This is likely the result of the RD method more accurately de-

scribing the area-based detector in the physical system by tracing the rays in the back-projection

process. Nonetheless, it is interesting to see a noise comparison of the two techniques utilizing raw-

attenuation values as previous literature shows the matched pair technique has less ringing artifacts

and should be equivalent when using simulated data [112, 49].
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6.1.6 Summary

The previous section has shown the analysis of three different algorithms for partitioning of work-

load to multiple GPUs in the aims to reduce the computation time for an unmanageable problem in

the aims to make it tractable. Specifically, we have shown:

1. the use of different workload partitioning schemes in a multi-core and multi-GPU environ-

ment for CT-reconstruction using a RD-FP, RD-BP, VD-BP, RD-BP-No Atomic, and a re-

laxed RD-BP technique in AREMI. The use of multiple GPUs is complicated as the designer

has to consider thread and resource management and merging of solutions. However, has

been shown to result in significant speedups to the forward and back-projection process of the

SART algorithm. Although the technique is not linear in speedup with the addition of GPUs,

the techniques still reduce runtime significantly in both RD and VD methods and plays an

important role in the facilitation of SART in clinical settings, where fast reconstructions are

required.

2. the relaxed RD-BP technique, which does not utilize a mutually-exclusive write operation in

the back-projection process, did not realize a speedup. We also reinforced the likely impor-

tance of proper data ordering to facilitate full-warps.

3. when considering estimated-NPS, the use of raw-attenuation values the RD-BP method pro-

duced less noise than the VD-BP in our implementation, even though previous literature sug-

gests they are equivalent when using simulated data.

We have demonstrated that SART is distributable across multiple GPUs. This distribution can

speedup reconstruction without increasing error. The analysis has provided the means to facilitate

SART methods in clinical-CT where fast and accurate reconstruction are required.

6.2 Evaluation of the Use of a Complete System Matrix on the
GPU for Iterative Techniques

The use of iterative techniques for reconstruction of CT images is important, as it has been shown

to produce less noisy reconstructions and require less projection data. The decrease in noise is at-

tributed to relaxation parameters and regularization during ART-iterations, while the trimming of

projection count is attributed to the Fourier Slice Theorem which positions the data on a polar grid

in frequency space when using FBP. For this reason, over-sampling the interior frequency region is

required for reasonable sampling of the periphery [30, 65]. The fascination with ART [27] is inter-

esting, as, with these methods, less projections are required and, in turn, less exposure to radiation

is needed. There are complete methods that choose to compute the complete transformation matrix

and store it for easy lookup, but these have been shown to be too expensive in terms of storage (Sec-

tion 2.17). This thesis aims to investigate a current approach to the complete method through ray
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and ROI interaction by means of computing the ray-intersection when required in a multi-GPU en-

vironment. The technique is expensive, as it requires each pixel to be tested against the ray, but

the method is important as varying degrees of ray-width can be used, as detailed in Section 2.14.

These interpolation techniques do not require that a ray is infinitely thin, as in ROI traversal seen in

Siddon’s algorithm [94]. We do not show the results of varying the ray-width on reconstructions as

this section focuses on the runtime analysis of a current implementation of a complete methods for

ART.

There are various methods available for calculating the ray and ROI interaction. Techniques,

such as Siddon’s algorithm, provide a huge speedup and are currently widely used in the research

community, because the method does not require a complete check of all pixels or voxel interac-

tion [49, 42] and has approximate computational complexity of O(k ×
√
m2 + n2). However, the

ability to use varying ray-width is difficult and is limited to varying the pixel interaction size. Alter-

native techniques are costly as they check all pixels against each ray, but varying ray width and other

interpolation specifics can be built-in. The resulting cost is O(n ×m) and O(n ×m × slices) for

axial and helical reconstructions for each forward and back-projection of rays. Toft’s dissertation

provides a thorough review of the subject area but only implemented the techniques on a single-

processor [97]. Currently, multi-processor technology, such as the GPU, is good at performing

parallel computation in a cost-effective manner. We present a GPU implementation of the complete

technique for the system matrix formulation that is required to solve the inverse Radon transform in

linear algebraic form b = Af . The technique is important as it scales well with increased computa-

tional power and could, one day, out perform ray-driven techniques as they are difficult to parallelize

as seen in Section 6.1

The ability to model different characteristics of the Radon transform can be beneficial [97, 102].

The results in Toft’s thesis, that were also tested by Vlček, showed that the level L2-error was

partially dictated by the interpolation scheme used [102]. Toft tested several different types of

interpolation schemes and, overall, the nearest neighbour routine, seen in Section 2.14, performed

best. As we are not evaluating the qualitative impact of the GPU-based techniques, we focus testing

on the nearest neighbour technique on various reconstruction sizes. Xu et al. implemented various

interpolation schemes on the CPU hoping to get guidance on a future GPU implementation [19].

However, their current publications focus mostly on Siddon’s algorithm for the forward-projection

process and voxel projection for the back-projection process.

We have found no current algebraic techniques that utilize a complete system matrix in recent

literature. This is likely because the system matrix for a small reconstruction size of 512 × 512 is

large, in the order of a terabyte as seen in Section 2.15 when using single-precision floating-point

precision. This makes computation difficult and lookup tables costly as frequent memory lookups

slow down GPU computation significantly. For these reasons, we believe the implementation of the

complete method is important, as it is becoming more feasible on current hardware and could lead
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to results that outperform Siddon’s algorithm. We will show, with the addition of computation on

the GPU, a unmanageable problem is made more reasonable in terms of runtime with a 19x speedup

versus our single-CPU implementation as seen in Table 6.3.

6.2.1 Proposed Implementation

Each GPU has many CUDA-cores and each of these cores is responsible to calculate the interaction

between a pixel and the ray in question. This process is expensive as will results in 216 pixel and ray

interactions for the case of a 512× 512 reconstruction. The process of creating a matrix row of the

system matrix A is expensive, as this requires a test of all pixel elements against the ray. However,

this is a parallel operation, and can easily be distributed in a blocked structure to a GPU, or GPUs,

as seen in Figure 6.7.

Figure 6.7: The blocking structure of the algorithm is displayed on a four Sequential Multiprocessor
(SM) on the GPU where each block is distributed to a SM for computation. The blocking structure
is dynamic and tunable.

6.2.2 GPU Workload Partitioning

The algorithmic details are similar for implementation on the GPU or CPU. Mainly, on the GPU

we distribute half the volume to each GPU to ensure contiguous reads during processing. As the

data is stored in an efficient vector representation this results in dividing the vector equally between

computational devices. The only difficulty with the technique, and what prevents a linear speedup

with the addition of GPUs, is the region when the results from each reduction need to be shared

between computing devices.

6.2.3 Parallel Dot-product

In this section we will describe an efficient shared-memory implementation of ART that is designed

for the the GPU. Equation 6.1, originally from Section 2.17, relies on a dot-product operation. This

operation needs to be efficient in order to achieve fast runtime as it has complexity O(n×m) and is

a frequency operation.
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fk+1 = fk + λ ∗
(
bi − aTi f

k

aTi ai

)
ai (6.1)

The technique implemented using shared-memory on the GPU is similar to the parallel reduc-

tion example, or Algorithm 7, in the techniques presented by Harris from Nvidia Corp [33]. The

reduction method uses an efficient shared-memory implementation that relies on a blocking struc-

ture that uses a decreasing thread count to sum values. For example, take the dot-product of two

vectors of 256 values. One could use 256 threads initially to compute pair values and store them

in shared-memory. After that value is computed in shared-memory, the first 128 threads sum a pair

of values and store the result in shared-memory. Then the next 64 sum a pair of values and store

there result in the first 32 locations of shared-memory. This process continues until only two values

are remaining and thread zero sums these two values up. This process is depicted in the illustration

from M. Harris’s web seminar, seen in Figure 6.8. All dot-products operations for ART, seen in

Equation 6.1, are computed in this manner and the method has high throughput.

Figure 6.8: Shared memory is used to store the values. For every ART-iteration only half the threads
are active and used to reduce the computation. The image is originally found in the web seminar
from Harris [33].

6.2.4 Optimal Block-size Learning

Figure 6.7 shows the blocking structure, or workload per thread, is a dynamic parameter that can be

tuned for the system in question. During testing, we realized this parameter had a severe impact on
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runtime and could equate to a 20% decrease in runtime if the most efficient parameter is chosen, as

seen in Figure 6.9 when comparing the block size 32 to 512. Considering we often see runtime in the

tens of minutes for ART or SART algorithms using the complete system matrix representation, this

results in a substantial speedup. After testing on several GPUs we quickly realized this parameter

was not optimal on all GPUs. Therefore, we opted for a simple learning phase where several test

cases were formulated and the optimal blocking structure used. The learning phase is relatively

simple and we found a correlation between small problem sizes or reconstruction and large problem

sizes. This connection resulted in the ability to learn on small problem sizes that can be computed

quickly. Those results were also applicable to the larger problem sizes, and the cost of learning was

kept to a minimal.

Figure 6.9: The number of GPUs, reconstruction time, and blocking strategy is shown. The results
show a correlation of the blocking strategy used in smaller reconstructions and larger reconstruc-
tions. Testing showed consistently faster runtime was achievable when using a block size of 32 for
the dot-product reduction. The error-bars are not shown as the standard deviation is less than two
for all methods.

6.2.5 Results

The complete methods for the derivation of the system matrix A are expensive and often authors,

such as Toft or Vlček, opted to include only ART-iterations or small problem sizes in their results.

Runtime of over 1000s, for even simple single-slice problems, with smaller sinogram was com-

mon [97, 102]. Vlček dissertation showed interpolation techniques taking several hundred seconds
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Table 6.3: Complete Techniques in SART Compared
– one ART-iteration –

Multi-GPU Reconstruction Complete Techniques
Recon Size Single Single Dual Toft

CPU GPU GPU Slow
ART

512× 512 1766.2s±2.21 163.9s 92.5s 1927.3s±2.45

and sometimes thousands. For this reason we developed a parallel algorithm to distribute the com-

putationally difficult problem over GPUs in the aims to decrease runtime.

We have shown a method that constructs the system matrix on-the-fly, row-by-row, and on the

dual-GPUs that is able to complete one complete ART-iteration of ART using 1152 projections, 736

channels, and a 512× 512 clinical reconstruction size in 92.15s and the learned blocking structure

as seen in Figure 6.9. Therefore, showing the on-the-fly methods are feasible on current HPC.

Although we are able to obtain faster results of only 2.8s using dual GPUs, see Section 6.1.5, and a

matched pair forward and back-projection ray tracer based on Siddon’s algorithm, we still feel the

results are important, as the technique is easily distributable to multiple GPUs.

A learning technique for optimal blocking strategy was presented and showed the correlation

between small problem sizes and larger reconstructions. Figure 6.9 shows the technique resulted in

an approximate 20% speedup in reconstruction when comparing the optimal 32 block to the slowest

512 block reconstruction. We found the technique to be system-dependent, as results on different

GPUs have different optimal blocking strategies and, for that reason, the learning procedure should

be carried out at least once when a new GPU is used.

Comparison to Alternative Complete Techniques

In order to establish a comparative evaluation of our methods in terms of runtime and to validate

we have an efficient CPU-implementation of the complete technique we use Toft’s source code for

testing purposes. Toft’s source code is approximately 16 years old and we modified it for current

compilers and hardware to run some limited testing. Although we were only able to test on a sim-

ulated problem the computation time should be similar on actual raw attenuation data. Toft termed

his complete method slow-art, and is comparable to our implemented method. The techniques were

tested on a 512 × 512 reconstruction with 1152 projections, 736 channels, and both methods used

nearest neighbour interpolation. The direct comparison of methods, in terms of noise, is difficult

because Toft uses specialized output images. Likewise, the input only accepted simulated data.

Nonetheless, the problem sizes are equal and in this evaluation we are interested in runtime for a

given problem size. Therefore, we feel the comparison is valid and establishes we have implemented

an efficient CPU-method for comparison purposes as the results show our CPU-implementation ac-
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tually outperforms Toft’s, as seen in Table 6.3.

Table 6.3 shows Toft’s source-code resulted in an average runtime of 1927s±2.45 for one ART-

iteration. We compared Toft’s serial implementation to our serial version which resulted in an av-

erage runtime of 1766s±2.21 where we obtained a slight speedup. Likewise, the dual-GPU im-

plementation presented, with learned blocking structure, resulting in a runtime of 92.15s, and an

approximate speedup of 21x over Toft’s complete technique. The justification for the performance

increase is the learned blocking structure that optimizes the use of cache on the GPU, a multi-GPU

algorithm that makes the problem more manageable, and the highly parallel nature of the GPU. We

believe it is likely that Toft’s code could be performance tuned for current hardware. This would

likely result in a mild speedup, but not a 21x speedup as we have demonstrated. Although we were

unable to perform noise analysis on Toft’s reconstructions or use actual raw-attenuation values we

believe the runtime analysis is fair as all techniques used the same problem size. The software pack-

age from Toft is large and rather complicated and for that reason further modifications are difficult.

The ability to use a complete method that tests all pixel locations against each ray is important

as different interpolation techniques are possible and varying ray width is made simpler. We have

shown a algorithm that aids in reducing the runtime of ART-methods. When the runtime is decreased

the parameter space can be investigated easier and makes the technique more applicable to clinical-

CT where timely reconstruction are important.

6.3 Comprehensive Analysis of HPC Methods for
CWBP

The following section was jointly produced with Dr. C. Mendl, from Applied Mathematics at the

Center for Mathematics and Analysis, Technische Universität München, Germany in the preparation

of [17]. Mendl contributed the methods seen in Algorithm 1, which is based on a graphics pipeline

implementation of Convoluted Weighted Back-Projection (CWBP).

While CUDA is the most popular software architecture for GPU programming, recent studies

have proposed to exploit the various built-in, hardwired graphics pipeline components (as facilitated

by the DirectX or OpenGL programming interfaces), instead of employing the graphics card as

multi-processor only. In this section, we directly compare DirectX, CUDA and conventional shared-

memory High-Performance Computing (HPC) CPU implementations of the CWBP algorithm with

fan-beam geometry, as seen in Section 2.8. Our comparison concerns runtime as well as accuracy,

and we estimate the NPS of the error with a double-precision serial implementation as reference.

Interactive CT imaging techniques, in the medical and physical sciences, have recently become

the focus of active research. For example, they are used to enable assistance during surgery [67],

for monitoring, or in (closed-loop) feedback experiments. The associated real-time data-processing

tasks can profit considerably from the broad availability and exponential performance growth, of

consumer graphics processing units (GPUs) and conventional HPC [107, 66]. However, the GPU

133



programming paradigm is still rather intricate, when compared to traditional CPU implementations.

To render this topic accessible to a broad audience, this paper provide a self-contained, pedagogical

implementation of the prototypical forward and inverse Radon transform [79, 47] on the GPU shader

pipeline. Likewise, we provides implementation details on an alternate GPU modality that treats

the GPU as a conventional multi-processor through a CUDA implementation. Last, we provide

implementation details of a highly parallelizable implementation on conventional HPC through a

multi-threaded reconstruction algorithm.

The analysis is comprised of a runtime study of all methods under various hardware platforms,

using single and double-precision floating-point when available. The qualitative analysis consists

of comparison to a base-line double-precision serial implementation under double-precision where

error is calculated. Likewise, through sampling of homogeneous, or uniform, areas of an ACR-

accredited phantom, an estimated-NPS, originally presented Section 4.1.1, is calculated for each

implementation.

In the following section, we will show that all GPU-based implementations outperform a tra-

ditional shared-memory implementation in terms of runtime. We will also establish that single-

precision floating-point is suitable for CWBP as minimal differences in quality is found when using

double-precision.

6.3.1 Analytic Framework: FBP

In what follows, we briefly recall the theoretical framework for the FBP algorithm [47, 55, 77],

which traces back to the original work by Radon [79, 80].

The fan-beam geometrical setup is illustrated in Figure 3.5. A point-like radiation source S and

a corresponding array of detectors rotate around the subject (rotation angle β), with the detectors

arranged on a circular arc (fan angle γ). D denotes the fixed distance between S and the origin

(rotation center). The detectors measure each fan projection pβ(γ). According to the derivation

in [47], we may write the reconstruction formula as:

f(x, y) =
1

2

2π∫
0

Wβ

(
Rot(β) (x, y)T

)
dβ, (6.2)

with the rotation matrix Rot(β) :=
(

cos β sin β
− sin β cos β

)
and

Wβ(x, y) :=
1

L(x, y)2
Q̃β(γ′(x, y)),

where

L(x, y) :=
∥∥(x,D − y)T

∥∥ =
√
x2 + (D − y)2,

γ′(x, y) := arctan

(
x

D − y

)
.
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These formulas for L and γ′ can directly be obtained from Figure 3.5 when setting β = 0. The

function Q̃β is defined as a convolution, seen by:

Q̃β(γ′) := (p̃β ? cf )(γ′) =

γm∫
−γm

p̃β(γ) cf (γ′ − γ) dγ, (6.3)

with

p̃β(γ) := pβ(γ) ·D cos γ,

cf (γ) :=

(
γ

sin γ

)2

c(γ),

as well as, formally,

c(γ) :=

∞∫
−∞

|ρ| e2πj ρ γ dρ =
(
F−1 | · |

)
(γ).

In the last equation, F−1 denotes the inverse Fourier transform. If we ignore the factor γ/ sin γ

in the filter cf to first approximation, and express the convolution (6.3) via Fourier Transforms, we

arrive at:

Q̃β(γ′) =
(
F1 G̃(·, β) | · |

)
(γ′) ≡

∞∫
−∞

G̃(ρ, β) |ρ| e2πj ρ γ
′
dρ, (6.4)

with

G̃(ρ, β) := (F1 p̃β) (ρ) =

γm∫
−γm

p̃β(γ) e−2πj ρ γ dγ. (6.5)

Summarizing, the FBP algorithm consists of two steps: first, the filtering operation (6.3), which

we implement via the Fourier transformation in (6.4) and (6.5), and second, the actual back-projection

(6.2), as an integral over β.

6.3.2 Algorithm 1: DirectX Graphics Pipeline

Figure 6.10 illustrates how the back-projection operation (6.2) can be mapped to the graphics pipeline.

The central idea of our implementation is as follows: we affect the rotation by β in equation (6.2)

by rendering a rotated full-screen rectangle for each β. The four rotated vertices have to be set up

just once. The input texture has the following structure: each row corresponds to a rotation angle

β (see Figure 3.5), and each column to a detector at fan-angle γ. Back-projecting can be visual-

ized as “smearing” the highlighted blue bar in Figure 6.10 over the reconstruction plane, which is

schematically indicated by the grayscale pixel lines.

Algorithm 6.1 shows the pixel shader code of the back-projection rendering pass. The code is

quite concise since the rotation by β has already been accomplished implicitly by the screen quads.

Convolution

Concerning the filtering operation, the graphics pipeline has to carry out the Fourier transforms,

seen in Figures (6.4) and (6.5), for each row of the input texture (i.e., projection β). The entries of

135



Figure 6.10: Implementing the back-projection step in a single draw call by employing rotated
squares (“screen quads”). Each column of the filtered input texture corresponds to one detector on
the fan (with γ between −γm and γm), and each row to a rotation angle β (defined in Figure 3.5).
The 4 vertices of each screen quad are rotated by β in the setup stage of our implementation. Sam-
pling the rows in the input texture is affected via the tex.z texture coordinate, which has the same
value for all four vertices within a quad.

the to-be-filtered input vector correspond to discretized values of γ. We zero-pad the input vector

to a power-of-two, in order to prevent spatial domain aliasing, and also to speed up the FFT. In our

implementation, we employ the well-known Cooley-Tukey FFT algorithm [11].

Interpolation

We use the available DirectX hardware accelerated linear interpolation functions. These techniques

prevent multiple reads from the sinogram as in the CPU techniques that will be discussed in Al-

gorithm 3. The DirectX kernel uses a single memory read that is hardware accelerated to provide

linear interpolation of the sinogram values in the radial direction.
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Algorithm 6.1 DirectX Back-Projection Pixel Shader

Require: x, y: coordinates (from texture coordinate register); z: projection index; tex: input tex-
ture. Constants: D: distance between rotation center and radiation source; C: texture coordinate
factor; A: fan arc length; N : number of projections

1: (x′, y′)← (x,D − y)
2: γ′ ← arctan (x′/y′)
3: Lsq← x′2 + y′2

4: t←
(
C · (γ′/A+ 0.5)

z

)
return tex.sample(t)/ (N · Lsq)

6.3.3 Algorithm 2: CUDA Implementation

The CWBP algorithm previously described is employed where each pixel location is projection onto

a curved sensor array. This is equivalent to projecting a given pixel location onto a sinogram and

linear interpolating the results. The technique is efficient as an inner-loop in the CUDA-kernel can

be used to iterate through the different projection values and prevents some repetitious computation

as seen in line 5 of Algorithm 6.2. We also provide testing on the use of fastmath-intrinsic functions

that are faster but less accurate [13]. The intrinsic functions can be activated by the NVCC-compiler

flag (−use fast math).

Algorithm 6.2 CUDA Back-Projection Kernel

Require: x, y: coordinates (CUDA blockDim, blockIdx, and threadIdx can be used to calculate);
Constants: D: distance between rotation center and radiation source; isoCenterChannel: de-
fines isocenter channel location; Beta angle: projection start angle; N : number of projections;
beta angle increment: angle increment value; fan angle grid: angle between radial fan
channels

1: θ ← arctan (x/y) :arctan2 also a good choice
2: r ←

√
x2 + y2

3: IV ← D2 + x2 + y2

4: IV 2← 2×D × r
5: for i < N do
6: L2← IV − IV 2× cos(Beta angle− θ)
7: γ ← arcsin

(
(r×sin(θ−Beta angle))√

L2

)
8: if γ < max fan angle then
9: channel index← isoCenterChannel + (γ × fan angle grid)

10: integralSummation← integralSummation+ texLookup(channel index)
L2

11: end if
12: Beta angle← Beta angle+ angle increment
13: end for
14: reconstruction[calculatedIndex]← intergralSummation

Convolution

Through experimentation, one quickly learns that the filtration process, through typical convolution,

is much too expensive, having complexity O(k2). However, employing a transform to frequency

space through efficient CuFFT libraries [68] results in a efficient point-wise multiplication, which
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can be carried out to obtain the same results but with complexity O(k log k). As the FFT libraries

are optimized, this is the method of choice, basic filtering in the frequency space. We obtained the

qualitative values by using a zero-padded transform to frequency space to the second-next-higher

power-of-two, given 736 detector channels. This resulted in 2048 values, with the final values being

zeros. In order to not add any high frequency drop-off at the transition from detector channel 736 to

737, we employed a linear decrease in values to entry 800. Finally, template-methods were used for

easy comparison of numerical accuracy, given the level of precision.

Interpolation

Algorithm 6.3 CUDA texture setup for linear interpolation and single-precision floating-point

1: channelDesc := cudaCreateChannelDesc(sizeof(T), 0, 0, 0, cudaChannelFormatKindFloat)
2: cudaMallocArray( cuArray, channelDesc, detectorChannels, projectionCount)
3: cudaMemcpyToArray( cuArray, 0, 0, hostProjections, detectorChannels * projectionCount *

sizeof(T))
4: → set texture parameters
5: tex.addressMode[0]← cudaAddressModeWrap
6: tex.addressMode[1]← cudaAddressModeWrap
7: tex.filterMode← cudaF ilterModeLinear
8: tex.normalized← true
9: → Bind the array to texture

10: cudaBindTextureToArray(tex,cuArray,channelDesc) . Internal CUDA Call

The CUDA implementation details are a slight bit simpler as the projection data, or sinogram, is

loaded into texture memory that supports linear interpolation, as seen in Algorithm 6.3. However,

although the texture-based approach supports hardware based linear interpolation and caching, the

method cannot use double-precision. Therefore, an alternative method uses standard global memory

storage on the GPU. Last, the technique uses an inner for-loop to accomplish the beta projection-

based rotations.

Multi-GPU Implementation

The use of multiple GPUs for CWBP is accomplished through a volume-partitioning technique that

distributed the reconstruction region evenly over each GPU. The method effectively reduced the

number of pixel-projection computations to O( n×mGPUs ) per-GPU from O(n×m) in the single-GPU

methods.

6.3.4 Algorithm 3: CPU Serial and Parallel Implementations

The implementation of CWBP is similar to the CUDA pseudocode seen in Algorithm 6.2. We in-

vestigated many different workload policies and found a volume partitioning strategy worked well

as the data is laid out in an efficient contiguous vector representation. The technique distributes the

reconstruction region evenly over each GPU. The method reduces the number of pixel-projection
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Table 6.4: Techniques Summarized

CWBP Reconstruction Techniques
Method Alg1 Alg2 Alg3

Convolution Cooley-Tukey cuFFT FFTW3
FFT

Back-Projection CWBP CWBP CWBP
DirectX CUDA Shared-Memory
Graphics
Pipeline

Interpolation Linear Linear Linear
Technique

computations to O( n×mCPUs ) per-CPU from O(n×m) in the single-CPU method. The data structure

used is a multi-slice valarray from the Standard Template Library (STL). The structure was origi-

nally created for efficient mathematical operations on values and works well for our implementation

because we require many vector based operations on values.

Convolution

The main difference in this stage, versus the CUDA implementation, is the use of the FFTW3 library

for the forward and inverse transform during filtering [22]. This library was chosen because it is

efficient and, like the other implementations, a standard ramp-filter was used.

Interpolation

As the CPU does not have hardware accelerated interpolation techniques we are required to lookup

multiple values in the final stage of CWBP. This is a major shortfall of the technique and results in

double the memory reads when compared to those GPU techniques that have hardware accelerated

linear interpolation.

6.3.5 Summary

We have presented three different methods for CWBP, summarized in Table 6.4. All techniques will

be analyzed in terms of runtime and the effects of numerical precision on the resulting estimated-

NPS, as originally described in Section 4.1.1.

6.3.6 Results

The ability to test several implementations of CWBP, under various HPC environments, provides

data for a clear and thorough investigation. Specifically, analysis was performed on 1152 projections,

736 channels, and a 1024 × 1024 reconstruction, as it represents the future of denser sensor arrays

and more computationally demanding integrations. Figure 6.11 shows the reconstructed image.
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We will investigate one qualitative analysis where all algorithms are compared against a base-line

double-precision implementation on the CPU, where L2-error is calculated when summing the NPS-

values. The estimated-NPS is analyzed to show each implementation is similar and validates the fact

each implementation is identical besides numerical precision. We also show the effects of numerical

precision on the reconstruction and can explicitly state the use of single-precision floating-point only

moderately effects noise in the reconstruction. Last, the runtime of all techniques is compared using

the base-line implementation as a baseline and graphed according to the speedup obtained.

Figure 6.11: Reconstruction of a 1024 × 1024 image (grey) via the FBP algorithm. The red inset
image is the input texture of the algorithm (containing the actual measurement data), with 736
individual detectors (texture width) as well as 1152 projections (texture height).

Conventional HPC – Shared-Memory

The typical modality for HPC computation is a multi-threaded application running on a shared-

memory environment. We tested an efficient CWBP implementation from a single serial execution

to 128 threads on two shared-memory systems and obtained significant speedups. Specifically, on

the SGI system with 32 dual-core Intel Itanium 9150M processors, an almost linear speedup of 64x

was achieved and, on the 12-core MacPro5.1 system a 12.64x speedup was seen in Figure 6.12,

versus the standard serial execution of the algorithm on each machine. This resulted in 7.27s and

9.09s reconstruction runtimes respectively, as seen in Table 6.5. We believe greater than linear

speedup is attributed to the operating system (Mac OS X version 10.7.3) and use of the Hyper-

Threading ability of the Intel Xeon X5650 processor, as greater than linear speedup should not be
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Figure 6.12: Conventional HPC is used to reconstruct a single 1024× 1024 image using CWBP, an
obvious performance boost is seen when using more threads. Once the system reaches full utilization
the runtime stabilizes with no decrease in reconstruction time. The error-bars are not shown as the
standard deviation is less than two for all methods.

possible.

Zeng et al. serial implementation for a 512 × 512 reconstruction using 1160 projections, and

672 radial detector channels, resulted in a runtime of 52s when using a Intel Xeon 3.2GHz pro-

cessor [113]. We were only able to test a similar problem size, but do so to validate we have a

reasonably efficient base-line implementation. Our technique achieved approximately a 2x speedup

when compared to Zeng et al. when using MacPro5.1 with Intel Xeon X5650 2.66GHz processors.

The CWBP parallel techniques from Zeng et.al only tested up to two cores, and no scalability results

past two cores were ever published [113].

In terms of double-precision, the conventional HPC environment is not severely impacted and

obtains nearly the same runtime results as single-precision, as seen when reviewing Table 6.5. We

do show the technique does scale well past two cores, for both double and single-precision floating-

point implementations, and conventional HPC will decrease the runtime substantially, representing a

good medium to reduce runtime. We also concluded that given the nature of the integration process

in CWBP, by simply applying addition operations, that the use of double-precision did not enhance

the quality of reconstruction and estimated-NPS was near identical to the standard single-precision

floating-point implementation.

141



CPU CPU CPU CUDA CUDA CUDA CUDA DirectX
system 1-core 64-core 12-core 1-GPU 2-GPU 1-GPU 2-GPU 1-GPU

SGI SGI MacPro MacPro MacPro MacPro MacPro MacPro
fastmath fastmath

single-precision (32-bit) floating-point
time [s] 464.74 7.27 9.09 1.08 0.65 0.56 0.32 0.35
speedup 1× 64× 51× 430× 715× 830x 1452x 1332×

double-precision (64-bit) floating-point
time [s] 460.66 7.35 9.16 1.82 1.06 – – –
speedup 1× 63× 50× 253× 435× – – –

Table 6.5: Runtime comparisons of our FBP reconstruction implementations.

Table 6.6: Estimated-NPS for ROIs

CWBP Reconstruction Techniques, results NPS units210−5

Acceleration CPU CPU CUDA CUDA CUDA DirectX
Technique Float Double Float Double Float Float

fastmath
ROI 1 8.8 8.8 8.7 8.8 8.7 9.5
ROI 2 3.9 4.0 4.1 3.9 4.1 4.7
ROI 3 5.9 5.9 5.9 5.9 5.9 7.1
ROI 4 8.6 8.6 8.6 8.6 8.6 9.3
ROI 5 6.9 6.9 6.9 6.9 6.9 8.8
ROI 6 7.8 7.8 7.8 7.8 7.8 6.9
ROI 7 7.3 7.3 7.1 7.3 7.1 7.5
ROI 8 4.2 4.2 4.1 4.2 4.1 3.5
ROI 9 4.2 4.2 4.0 4.2 4.0 5.2
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Non-Conventional HPC – GPU

We have shown three GPU implementations that all outperformed the conventional HPC environ-

ment, in terms of runtime as seen in Table 6.5. Specifically, the DirectX implementation was able to

consistently obtain an approximate speedup 1332x, the CUDA implementation was able to achieve

an approximate speedup of 430x for one GPU and 715x for two GPUs, under single-precision

floating-point precision and cached textures for storage of all projection data. The use of CUDA

fast-math resulted in a significant speedup in runtime, specifically 830x and 1452x for single and

dual-GPU implementations respectively. Double-precision cached textures are not supported under

CUDA and, for this reason, we opted for conventional global-memory on the GPU which allows for

double-precision storage. The double-precision implementations were notably slower, only obtain-

ing a 253x speedup for one-GPU and 435x speedup for two-GPUs, as seen in Table 6.5. The impact

of double-precision on runtime is substantial, but not as large as expected because the GPUs used

for testing are Nvidia Fermi class, which are optimized for double-precision computation.

Error Analysis

As all techniques are based on the same CWBP, found in [77, 24], and linear interpolation, we

predict that the NPS is similar, with only small differences based on GPU based single-precision

floating-point IEEE-754 standards or truncation.

We opted to use the estimated-NPS to validate the standardized algorithm used in all

implementations and the results show the techniques are similar. The estimated-NPS also showed

that the use of double-precision does not substantially change the estimated-NPS or L2-error. There-

fore, one can conclude the use of single-precision floating-point to be more than adequate when

using CWBP with linear-interpolation and a standard ramp-filter. Table 6.5 and 6.6 show the use

of intrinsic functions on the GPU, as in the fastmath-mode, results in significant runtime savings

and no difference in estimated-NPS. Therefore, under CUDA, the use of fastmath-mode does not in-

crease the noise in the reconstruction. However, if more computationally demanding filters are used,

that are in themselves sensitive to double-precision or fastmath, then one must use double-precision

or disable fastmath. A careful numerical and error analysis of the filter and implementation would

determine stability with single-precision floating-point and the use of fastmath-modes.

Table 6.6 show our DirectX implementation does suffer from a greater error than the alternate

implementations. The estimated-NPS is greater in all ROIs when comparing to the CPU and CUDA

implementations. We believe this is caused by fastmath-mode that DirectX employs to speed up

computation [59]. These hardware accelerated operations are faster then conventional operators but

are less accurate. Although the increase in error is constrained to the fifth decimal point we believe

this should be noted when considering the modality for reconstruction and the requirements for

display purposes. For instance, if a standard PAC display of 8-bit gray-scale is used, this numerical

difference could not be viewable on the display because of the limited gray-scale. Although we
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obtained identical results using CUDA, with no intrinsics and fastmath-mode, we can not guarantee

DirectX employs the same functions. Future research will look at understanding why the DirectX-

method resulted in more error.

6.4 Summary

In the previous sections we analyzed various multi-GPU reconstruction algorithm, we have shown:

1. in Section 6.1, a detailed multi-GPU algorithm for SART that resulted in 1.54x speedup for

RD-BP using Alg2:volume-partitioning when compared to the single-GPU technique. We

also showed how ray-ordering can significantly effect runtime and detailed how different

back-projection operations can effect the estimated-NPS in a reconstruction.

2. in Section 6.2, the ability to reduce runtime substantially using a multi-GPU algorithm for the

derivation of the complete system matrix in ART. The technique resulted in a 19x speedup

when compared to our serial-CPU implementation and 21x faster than Toft’s implementation.

3. in Section 6.3, the analysis of three different CWBP techniques in terms of runtime, numerical-

precision, and estimated-NPS. The analysis concluded that single-precision floating-point is

adequate for the methods and the DirectX-method provided the fastest runtime at the expense

of slightly higher noise in the reconstruction.
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Chapter 7

Conclusion

The volumetric representation of internal human anatomy was revolutionary to patient care, as spe-

cialists could more easily diagnose ailments. The modality of choice for this document was fan-

beam medical CT, because of its widespread utility and great number of challenges. Currently, the

greatest concern regarding medical CT is the use of ionizing radiation which has been linked to

the development of cancer. Through the use of computationally demanding algorithms, we hope to

eventually reduce radiation exposure, thereby reducing the potential cancer causing effects of CT.

Reconstruction in diagnostic imaging represents a difficult computational problem for even cur-

rent HPC modalities. The complexity of present clinical fan-beam CT requires special attention to

scanner specifics and knowledge of the unit used. A complete document has been compiled on the

derivation of the mathematical framework behind the Radon transform and various reconstruction

techniques based on the forward and backward-projection processes in fan-beam layout that is typ-

ically not available for researchers when using raw data. We presented a number of challenges and

solutions to these problems under fan-beam geometry that are lacking in the existing literature.

Using raw data presented a number of challenges for reconstruction, mainly the alignment, noise,

FFS modes, and qualitative and quantitative analysis of results. We provided implementation details

concerning these difficulties that should aid any researcher wishing to use medical-CT in a research

setting. We showed that alternative methods to the maximally-orthogonal technique of projection

ordering, such as our hybrid-technique, can result in faster convergence, seen in Section 4.1.3. We

showed that a typical projection ordering technique like maxOrthogonal would require close to

500 more ART-iterations to achieve similar results to the hybrid30 technique after only 100 ART-

iterations. The new projection ordering techniques, in AREMI, can save a considerable amount of

computation time and provide quicker results under our implementation.
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Through the use of AREMI and HPC, in terms of shared-memory parallel implementations on

the CPU and highly optimized GPU implementations, we have produced a methods that can pro-

vide speedy reconstructions under traditional CWBP and the computationally expensive iterative

techniques like ART or SART. We have supplied clear implementation details for multi-GPU iter-

ative algorithms based on our implementation of Jacob’s et al. algorithm when using GPUs and

real-world data with FFS modes enabled.

7.0.1 Analysis of a Multi-GPU Environment for SART

We have illustrated the use of a multi-core and multi-GPU environment for CT-reconstruction,

namely AREMI. We show through the use of iterative ART algorithms, designed for GPUs, a com-

putationally difficult problem is made manageable. We recognized a 1.48x and 1.53x speedup using

different workload policies using a RD-BP algorithm that scales over two GPUs versus our RD-BP

algorithm on one GPU. We also presented a VD-BP technique with different workload policies that

does not require a mutually-exclusive write operation. This method recognized a 1.29x and 1.33x

speedup over a single GPU VD-BP algorithm. Last, we showed that well-ordered data is important

to branching in our version of Siddon’s algorithm when we attempted to further speedup SART.

This approximation reduced the likelihood of threads writing to the same location in memory. How-

ever, the technique results in almost double the runtime compared to the conventional technique that

required a mutually-exclusive write operations.

The use of multiple GPUs is complicated in nature as it requires careful algorithm design that

is aware of hardware, but has been shown to result in significant speedups to the forward and back-

projection process of the SART algorithm. We have shown that although the technique is not linear

in speedup with the addition of GPUs, the techniques still reduce runtime and play an important role

in the facilitation of SART in clinical settings, as fast reconstructions are required. As the technique

is only available for shared-memory systems, and a maximally available eight-GPU environment

is currently supported by Nvidia under shared-memory, the techniques presented should perform

well past two GPUs as the data shared among GPUs is constant. The ray-partitioning algorithm

presented, that distributes projection values over GPUs, would not scale well when there is not

enough work to completely utilize all CUDA-cores: this setting is only true under axial scans, as in

helical scans a larger workload would be available.

7.0.2 Complete System Matrix Derivation using a Multi-GPU Environment

The ability to use complete derivations of the system matrix in a timely fashion could eventually lead

to algorithms that out-perform traditional techniques, as these methods scale to multiple GPUs easily

because the blocking structure is relatively simple, as shown in Figure 6.7. Likewise, this blocking

structure for the dot-product reduction was found to be GPU-type dependent and we reverted to a

learning scheme that tested small problem sizes to gain knowledge of the optimal blocking structure.
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The complete system matrix derivation is computationally expensive as the technique relies on a

O(n ×m) pixel interactions. We presented a method, based on using the GPU in a multi or single

GPU environment, that can significantly speed up runtime in AREMI. The technique is based on

an optimal blocking strategy that is learned which results in, approximately, a 20% speedup versus

a naive implementation. Considering runtime lasts for several minutes, and possibly hours, for 20

ART-iterations, these results are important.

We compared our complete matrix derivation technique to Toft’s original source code and the

new method based on the GPU resulted in a 21x speedup when reconstruction a 512 × 512 re-

construction. Although we were unable to modify Toft’s source code to use our complex scanner

geometry and raw-attenuation values, we believe the reconstruction time for raw-data versus sim-

ulated data to be similar. We hope to extend the implementation to more than two GPUs, and test

more computationally expensive interpolation techniques, formally comparing them with our ray-

driven forward and back-projection techniques and also the ray-driven forward-projection and voxel

based back-projection technique in a qualitative and quantitative analysis. As the computational

power of the GPU is increasing, we believe, in the near-future, the complete matrix derivation or

on-the-fly ray intersection techniques may become viable as the basic operations are less costly than

ray-tracing.

7.0.3 Analysis of HPC for CWBP

There are several methods of HPC available now, and the choice of which environment is most

suitable is often difficult. There are cost effective methods, such as the current GPU which per-

forms well when compared to typical HPC, if an implementation can be constructed that does not

require frequent memory transfers from the GPU to the CPU. We have shown that all CWBP im-

plementations are nearly equivalent and only minor differences, based on numerical precision or

hardware accelerated operations, are found, as illustrated by the estimated-NPS and L2-error met-

rics. The ability to compare various implementations shows the current GPU is powerful and the

DirectX pipeline is efficient, producing results all most as fast as the dual-GPU implementations un-

der CUDA. Therefore, if possible, construction under this modality can be beneficial. However, the

use of the graphics pipeline is more complex and experience with DirectX and OpenGL is essential.

Likewise, the complexity of iterative-type filtering can be incredibly difficult to factor for the graph-

ics pipeline, even for experienced graphics programmers. We also showed that the fastmath-mode

in CUDA that employs intrinsic functions, which are faster but less accurate, results in substantial

runtime savings with no effect on estimated-NPS.

We have shown the double-precision based implementations are superior, but are slower on the

GPU, though generally do not decrease the noise introduced during reconstruction substantially.

Therefore, one must decide if the qualitative impact is realized by experienced radiologists, and

justifies the increased runtime. For future work, we will conduct user studies, as they will provide
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the answer to these questions as the estimated-NPS and L2-error metrics show subtle differences,

but realistically these small improvements would be difficult to see on current display hardware. The

DirectX pipeline does have the ability to use double-precision, but only on select cards. Obviously

this will change in the future with the natural progression of technology. We have shown, although

conventional HPC is suitable for many problem domains, the high cost associated with this modality

and less than impressive runtime performance for CWBP show that the modality of choice is that of

the GPU in a multi-GPU environment, as it is the cheapest, simplest, and performs the best in terms

of runtime and precision.

7.0.4 Summary

We have investigated many issues with the reconstruction of raw-attenuation values for fan-beam

CT. There are many specifics that are thoroughly explored in the development of AREMI. We have

shown various implementations of CWBP using raw fan-beam data from medical-CT in order to

evaluate those techniques in terms of runtime, noise analysis, and the effects of numerical precision

on the result. The methods presented are beneficial to the research community as they establish a

framework for reconstruction under the noted modality.

In this thesis we have explored many different reconstruction algorithms and investigated some

the problems involved with reconstruction under specific methods. The techniques outlined have

shown to be valid in taking a problem that is intractable and making it manageable.

7.1 Future Work

The ability to control the number of projections in a shutter-like modality would be interesting,

as it would prevent a constant X-ray exposure to patients and represent the discrete nature of the

detector sampling more closely. The development of this hardware is interesting and complicated.

As noted by Wang et al. on the analysis of noise at various mAs values, from 100 down to 17 mAs,

the conclusion showed that, through highly attenuated regions, the noise spikes on lower mAs value

scans [104]. For this reason, decreasing the dose in terms of mAs value has dire effects on the quality

of reconstruction. However, carrying out less noise prone mAs levels and a shutter like system, or

possible limited rotation angle, would greatly reduce the exposure to X-ray radiation and; therefore,

further investigation into this hardware would be beneficial.

Techniques such as CWBP were shown to require a greater number of projections, but iterative

techniques, such as ART, have been shown to require far less. For these reasons, further analysis

into the reduction of noise, and speedier reconstructions for the computationally-intense iterative

methods, shows promise. Using limited projection angles results in the system matrix A being even

more underdetermined. Therefore, more reconstruction time is needed to obtain a good solution.

We believe through testing and further optimizations that AREMI, in computational environments

that have greater than two GPUs, would significantly decrease runtime.
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We have provided solutions to many of the difficulties found in using raw attenuation data to

reconstruct images. Therefore, we have the ability to investigate the parameter space and attempt to

optimize the solutions and reconstructions. For this reason we believe investigation in the following

to be very rewarding. First, convergence is often subjective and research into compressive sensing

and the sparse layout is interesting, as convergence to an exact solution is possible. Second, using

AREMI and compressive sensing technique presents a number of challenges and research using HPC

methods would likely be rewarding, as the HPC environment supplied by Servier, SGI and Nvidia are

powerful and rare. Last, an investigation into the use of computationally-expensive iterative filters

in the goal of better image quality and timely reconstructions for clinical-CT. These filters actually

work on the sub-iterative level and some are, in fact, iterative in their nature and converge upon an

exact solution. These iterative filters are complex and computationally-expensive and; therefore, are

a perfect fit for AREMI and the hardware resources available.

We also hope to further validate the use of a 14-bit monochrome 10MP 30inch PAC display. The

display offers excellent pixel density, as it is only 30inch with 10 MPixel and an supports HDR.

Coupled with the raw reconstruction environment AREMI and the ability to extend the output range

to 14-bits, we hope to quantify the use of the display and extended dynamic range available in AREMI

in a clinical setting through numerous user studies.

We have found comparison against other implementations very difficult when using raw fan-

beam data and believe the development of a database of raw-attenuation values for fan-beam CT

would be beneficial to the research community. Likewise, we would like to establish specific quali-

tative and quantitative metrics to enable benchmarking of similar techniques in the aims to eventually

use these reduced radiation techniques in clinical-CT.
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Appendix A

Appendix A: GPU Computing
Related-Work

Recent advances in high performance computing have provided super-computing environments for

the masses. These recent advances were facilitated by the computer gaming industry and the vast de-

mand for realism in video games. The Graphics Processing Unit (GPU) is a parallel super computer

packed nicely into a commodity hardware device, which is often less expensive than the computer

in which it resides. The peak single-precision floating-point operations of a Nvidia GTX 580 GPU

is approaching 1.5-Teraflops as seen in Equation A.1. Whereas, the peak single-precision floating-

point computational power of the latest intel Westmere 5600 6-core processor is approximately 150

GFlops, as depicted in Figure A.2. Figure A.1 shows that the single-precision floating-point com-

putational power of a single GPU is far superior than a CPU. The GPU computational power is

increasing at a rate equal to the cube of Moore’s law [60].

The following sections will review basic hardware on the GPU, the Compute Unified Device

Architecture (CUDA) programming and computational models, and General Purpose Graphics Pro-

cessing Unit (GPGPU) based computation. This primer on GPUs is useful as some of the imple-

mented techniques require knowledge of the GPU and the basic techniques behind programming the

GPU.

A.1 Insight Into the Current GPU

As general purpose computing on the GPU became more popular, many researchers quickly real-

ized some of the apparent problems. These included the complexity of programming the graphics

pipeline and the inability to directly access shared-memory on the GPU for reading and writing and

many more features unavailable for direct programmable access. Second, many disciplines of sci-

ence wanted an easy method to use the GPU to accelerate their respective simulations/applications.

Researchers that were not familiar with computer graphics programming found using the graphics

pipeline required an in-depth knowledge of the field and wanted an easier method to access the
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highly parallel, multi-threaded, and high memory bandwidth available on the GPU. Nvidia Corp.

created the Compute Unified Device Architecture (CUDA) to facilitate the use of the GPU. CUDA

was well received in the research community and provided access to some of the features on the

GPU previously not directly accessible through the graphics pipeline.The following sections will

give a short review of CUDA-based programming. However, the CUDA-Guide [13] from Nvidia

Corp. reviews the techniques in their entirety.

Hardware-specific components, and most importantly the understanding of those specifics com-

ponents, leads to efficient algorithm generation. In the following section, we will review the compu-

tational units and the various memory types available on the current GPU, under the CUDA frame-

work.

Figure A.1: Peak Single-Precision Floating-point Operations GPU vs CPU [13].

MaxFlop/sec = Flop/sec ∗ Processorcores ∗ processorclock (A.1)

A.2 Computational Units of the current GPU

The twenty-first century GPU is undoubtedly impressive, providing a quantum leap in computa-

tional power. Specifically, the GPU is encompassed by Streaming Multiprocessors (SMs), seen

in Figure A.3. Each SM commonly contains 32 CUDA cores running at a lower frequency than
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Figure A.2: Memory Bandwidth GPU vs CPU [13].

Table A.1: Example: Nvidia GTX 580

Gflops Calculation for Nvidia GTX 580
Processor Cores 512
Processor Clock Rate 1544MHz
Flop/sec 2 flops max per cycle
Max Flop/sec 2× 512× 1544 ≈ 1.5 TFlop/sec
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CPUs, generally less-than 2000 MHz. The cores run at lower frequencies to insure reliability, less

energy consumption and, in turn, less heat is generated. There are various models of GPUs from

Nvidia where the number of SMs differ in terms of quantity and frequency for the SP cores con-

tained. The Nvidia GTX 285 contains 30 SMs, resulting in 240 SP, cores each running 1.476GHz

and providing ≈ one-TFlop of single-precision floating-point performance, as calculated in Equa-

tion A.1. Where as the Nvidia Quadro 4000 Fermie based GPU has 8 SMs, and 32 CUDA cores

running at 0.95Ghz and provides approximately 0.5TFlops and 0.25TFlops of single-precision and

double-precision floating-point performance respectively.

SMs are responsible for mapping threads to an individual SP core, with one thread running on

each core of the SM. The design of the SM gives them the ability to run different programs on

different SMs. The SM SIMT (single-instruction, multiple thread) creates, manages, schedules, and

executes kernels in groups of 32 threads, called warps [13].

A.3 Computational Units of the current GPU-Warp

A warp is a grouping of threads from a kernel. Specifically, 32 threads makeup a warp. These

threads start with the same execution path, but are free to diverge through conditional statements.

The threads are then designated to one of the eight-cores on the SM. An instruction is loaded and

each thread in a warp is deemed active or inactive, depending if their execution is active given the

loaded instruction. Those deemed active have computation based on the loaded instruction, while

those threads loaded but inactive have no computation performed, because their respective execution

path is different than the currently loaded path. Therefore, conditional statements are understood to

have a significant performance decrease because there are inactive threads where cycles are simply

wasted. In general, a warp executes one common instruction across all threads, so full efficiency (no

inactive threads) is seen when all 32 threads follow the same execution path (no divergent execution

paths). In the case where threads diverge through conditional statements, which would be condi-

tionally based on some loaded data, the warp serially executes each branch of the path, disabling

threads that are not on the currently executing path. When all the execution paths are complete,

the threads naturally converge to the same execution path; however, because there is no guarantee

of ordering, serialization is used to ensure a common place for threads to wait until all threads are

ready to continue, ensuring a common execution path and realization of maximum performance be-

cause of a fully active warp. In general, serialization is used to ensure convergence and execution

of the same instruction set (see Example A.1). Although the code, described previously, is based on

CUDA, the language is simply used to illustrate the serialization needed to verify all shared memory

data is loaded.
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Figure A.3: SIMT multiprocessors, various memory available. [13].
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Listing A.1: CUDA Serialize Example [13]

/ / each t h r e a d i s r e s p o n s i b l e f o r l o a d i n g
/ / two v a l u e s from g l o b a l memory , g l o b a l
/ / memory A and B .

/ / D e c l a r a t i o n o f t h e sh ar ed memory a r r a y .
s h a r e d f l o a t A sha red [ BLOCK SIZE ] ;

/ / D e c l a r a t i o n o f t h e sh ar ed memory a r r a y .
s h a r e d f l o a t B s h a r e d [ BLOCK SIZE ] ;

/ / Load t h e m a t r i c e s from d e v i c e memory
/ / t o sh ar ed memory ; each t h r e a d l o a d s
/ / one e l e m e n t o f each m a t r i x .
i n t i n d e x = t h r e a d I d x . x ;
A sha red ( i n d e x ) = A[ i n d e x ] ;
B s h a r e d ( i n d e x ) = B[ i n d e x ] ;

/ / S y n c h r o n i z e i s needed t o make s u r e
/ / a l l t h r e a d s have lo ad ed t h e da ta i n t o
/ / sh ar ed memory .

s y n c t h r e a d s ( ) ;

/ / c a r r y o u t some c o m p u t a t i o n on t h e
/ / da ta lo ad ed i n t o sh ar ed memory .
/ / We are a s s u r e d a l l v a l u e s have been
/ / l o ad ed i n t o sh ar ed memory because
/ / o f t h e s y n c h r o n i z a t i o n c a l l .
. . .

}

A.4 Computational Units of the current GPU-Thread-blocks

Although 32 threads make up a warp, and are executed on a SM, the actual grouping of warps is

specific to thread-blocks. A thread-block is a collection of threads from a kernel. The size of the

thread-block can be controlled in CUDA by specifying the dimensionality needed [one-dimentional,

two-dimentional, or three-dimentional], making blocks easy to understand in terms of a arrays or

matrices. In total, 512 threads designate the maximum number of threads allowable in a thread-

block. This constraint requires programmers to develop specialized code to breakup large fields

(3D-case) into small subfields, in order to fit into the 512 threads constraint.

A.5 Memory on the current GPU

The contemporary GPU typically had two different types of memory available to programmers. We

will separate the memory into two sections, SM memory and globally accessible memory and a final

section on the SM and the caches available. However, most recently Nvidia developed the Unified
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Virtual Addressing (UVA) for Fermie GPUs with compute capability 2.0. The UVA provided an

easy means to share memory between GPUs and access specific locations of memory from host

process or GPU kernel through fast DMA transfers.

A.6 SM Memory and Accessibility Constraints

SMs have three types of memory available to them: registers, local memory and shared memory.

Registers are a small amount of space used to store an instruction set; they are fast to access, but

limited in size. The second local memory type is available to store locally created variables. The

third, and most important memory type, is the 16 KB of shared-memory available or 48 KB on

Fermie GPUs. This memory is important because different threads can share information between

each other, as long as they are contained within the same processing block. Remember that a block,

and the threads which encompass that block, are always contained on the same SM. The shared

memory is fast (4 clock cycles) compared to the, already quick, global memory (400-600 clock

cycles) [95], which will be discussed in the next section. This gives threads an efficient way to share

data between each other, and possibly load data from global memory to shared memory, if the given

thread block will be accessing a subset of the global memory frequently. By loading the data from

global to shared memory, assuming there is frequent access from a limited subset of global memory,

memory access and thread wait for memory fetches will be greatly reduced. All of these memory

types are readable and writable.

A.7 GPU Memory - Global Memory

Transferring data from main memory to the GPU is a time consuming processes and should be

limited because of the slow PCI-bus that the data must be transmitted through. As one can see in

Figure A.2, the G200 GPU has a memory bandwidth of approximately 150 GB/s vs. the Nehalen

CPU of approximately 30 GB/s. This shows that we have memory access times of at least three times

greater when accessing main memory vs. GPU based global memory. There is another constraint

that must be considered, namely that the maximum bandwidth of the current PCI-Express (PCI-E)

bus cannot exceed 16 GB/s, in the best case. PCI-E is currently limited to 32x and approximately 8

GB/s and 16 GB/s bidirectionally. This shows, that, although one has a major speedup in the memory

bandwidth of the current intel i7 CPU with close to 30 GB/s, three times faster than previous intel

CPUs, one still has a limiting factor of the PCI-E bus when one needs to transfer data to, or from,

the GPU. When considering memory access times and the constraints of the PCI-E bus, the G200

GPU has 10x faster access times when using the GPU’s global memory. Global memory is readable

and writable from threads on the GPU and facilitates sharing of data between thread blocks, but is

much slower than GPU-based shared memory. Also global memory is not cached and programming

parallel GPU programs should take this into account.
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A.8 GPU Memory - Texture and Constant Memory

One can see in Figure A.2 that, besides global memory, there is also constant and texture memory.

Texture-based memory is specifically based on texturing, and facilitates fast reading of coalesced

data. Likewise, constant-based memory is quick and can be used. However, both texture and con-

stant memory is read-only, which is why the data can be accessed so quickly. Furthermore texture

and constant memory are cached on the GPU, as seen in Figure A.3. For example, say a given thread

requests data from texture memory from a specific position. First the texture cache is checked to see

if the data is already cached. If not, the data is loaded and extra data is transferred. The likelihood of

another thread on the same SM requesting this data or data close to the original loaded data is high;

therefore, caching of texture and constant memory can provide a substantial increase in performance

and justifies loading the extra data into respective caches.

A.9 Caches Available on the GPU

Texture and constant caches are available and this justifies the use of texture and constant memory

when designing efficient parallel GPU programs. The caches provide a substantial speedup because

reading from SM caches, is must faster than reading from texture or constant memory. Also, global

memory is not cached, and if writing data is not required, it is better to use texture or constant

memory because of the speedup provided by the fast on-chip cache available to the SMs.

A.10 Unified Virtual Address Space (UVA)

The UVA space on the current GPU enables simpler programming by developers because one ad-

dress space is used for all CPU and GPU memory. The physical location of the memory is deter-

mined by a pointer value and removes the need to specify the location of shared resources. Many

of the most frequent memory copy functions, cudaMemcpy{HostToHost, HostToDevice, DeviceTo-

Host, DeviceToDevice} have been replaced with cudaMemcpyDefault. Using the UVA mode much

higher PCI bandwidth can be realized [89].

A.11 GPU Discussion

The current day GPU has a high computational rate when considering peak single-precision floating-

point operations. There are many considerations when programming a current day GPU, such as the

use of different GPU-memory, memory caches, sharing of data between threads in the same block,

and the sharing of memory between threads of different blocks. Therefore, one must take note of

the considerations and limitations of the various memories in order to implement efficient parallel

programs on the GPU.
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Figure A.4: Memory current GPU, modified diagram from [13].

A.12 General Purpose Computing on the Graphics Processing
Unit (GPGPU)

GPU based computing is generally based on two forms: GPGPU and CUDA development. GPGPU

organizes the problem into a special computational model where problems are solved by the graphics

pipeline, as illustrated in Figure A.5. The most widely used GPGPU based method would be the

Ping-Pong technique for off-screen rendering [32] and is reviewed in the following section. The

graphics pipeline approach have been shown to perform well as seen in Table 6.5 where a several

reconstruction techniques were compared in medical imaging and the GPGPU method outperformed

a multi-GPU CUDA based implementation.

A.13 GPGPU OpenGL Frame Buffer Object and RW Textures

As the most basic example, we will use one Frame Buffer Object (FBO) for off-screen rendering

with two textures attached to it. One of the textures is used for reading previously stored data and

the other texture is used for writing/updating of results. The initialization routine for an FBO is

read and write textures can be seen in Listing A.2 and A.3. The source code shows the process of

creating an off-screen rendering target, but the specifics should not be overlooked. The Ping-Pong

Technique’s name comes from the fact that one can swap reading and writing textures after every

rendering pass, like a Ping-Pong ball bounces back and forth. This technique reads values from the

readable-texture, computes an update/computation based upon those values, and writes the output to
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Figure A.5: Simplified graphics pipeline.

an off-screen buffer; in our example, a texture. However, instead of writing the output to the screen,

as in on-screen rendering, the output is rendered off-screen to the write-texture.
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Listing A.2: Read and Write Texture Initialization

void i n i t R e a d W r i t e T e x t u r e s ( ) {
GLuint wr i t eTex , readTex ;
g l G e n T e x t u r e s ( 1 , w r i t e T e x ) ;

/ / need two t e x t u r e s f o r r e a d i n g and w r i t i n g
/ / c r e a t e w r i t e T e x f o r i n i t i a l w r i t i n g , t h i s i s
/ / t h e t e x t u r e we w i l l w r i t e t o d u r i n g o f f s c r e e n
/ / r e n d e r i n g
g l B i n d T e x t u r e (GL TEXTURE RECTANGLE ARB , w r i t e T e x ) ;
g l T e x P a r a m e t e r i (

GL TEXTURE RECTANGLE ARB ,
GL TEXTURE MIN FILTER ,
GL NEAREST ) ;

g l T e x P a r a m e t e r i (
GL TEXTURE RECTANGLE ARB ,
GL TEXTURE MAG FILTER ,
GL NEAREST ) ;

/ / d e f i n e t h e t e x t u r e as r e c t a n g l e a r b ,
/ / v a l u e s n o t clamped be tween [ 0 , 1 ]
/ / w i d t h and h e i g h t s h o u l d be t h e
/ / s i z e o f your r e q u i r e d t e x t u r e .
glTexImage2D (

GL TEXTURE RECTANGLE ARB ,
0 , GL RGBA32F ARB , wid th , h e i g h t , 0 ,
GL RGBA, GL FLOAT , 0 ) ;

g l G e n T e x t u r e s ( 1 , readTex ) ;
/ / c r e a t e readTex f o r i n i t i a l r e a d i n g
g l B i n d T e x t u r e (GL TEXTURE RECTANGLE ARB , readTex ) ;
g l T e x P a r a m e t e r i (

GL TEXTURE RECTANGLE ARB ,
GL TEXTURE MIN FILTER ,
GL NEAREST ) ;

g l T e x P a r a m e t e r i (
GL TEXTURE RECTANGLE ARB ,
GL TEXTURE MAG FILTER ,
GL NEAREST ) ;

/ / d e f i n e t h e t e x t u r e as r e c t a n g l e a r b ,
/ / v a l u e s n o t clamped be tween [ 0 , 1 ]
/ / w i d t h and h e i g h t s h o u l d be t h e
/ / s i z e o f your r e q u i r e d t e x t u r e .
glTexImage2D (

GL TEXTURE RECTANGLE ARB ,
0 , GL RGBA32F ARB , wid th , h e i g h t , 0 ,
GL RGBA, GL FLOAT , 0 ) ;

}
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Listing A.3: Frame Buffer Object Initialization

void in i tFBO ( ) {
GLuint f b P o s i t i o n ;

/ / g e n e r a t e s one frame b u f f e r o b j e c t
glGenFramebuffersEXT ( 1 , & f b P o s i t i o n ) ;

/ / b ind t h e frame f o r o f f s c r e e n r e n d e r i n g
glBindFramebufferEXT (

GL FRAMEBUFFER EXT ,
f b P o s i t i o n ) ;

c o n s t GLenum a t t a c h m e n t p o i n t s [ ] =
{ GL COLOR ATTACHMENT0 EXT,

GL COLOR ATTACHMENT1 EXT} ;

g lFramebuf fe rTexture2DEXT (
GL FRAMEBUFFER EXT ,

a t t a c h m e n t p o i n t s [ w r i t e T e x ] ,
GL TEXTURE RECTANGLE ARB ,

t e x t u r e H o l d e r [ w r i t e T e x ] , 0 ) ;

g lFramebuf fe rTexture2DEXT (
GL FRAMEBUFFER EXT ,

a t t a c h m e n t p o i n t s [ readTex ] ,
GL TEXTURE RECTANGLE ARB ,

t e x t u r e H o l d e r [ readTex ] , 0 ) ;

/ / r e s e t t o d e f a u l t f rame b u f f e r f o r o n s c r e e n r e n d e r i n g
glBindFramebufferEXT (GL FRAMEBUFFER EXT , 0 ) ;

}

Listing A.4: Activating Framebuffer for Rendering.

void a c t i v a t e F B O ( ) {
glBindFramebufferEXT (GL FRAMEBUFFER EXT , f b P o s i t i o n ) ;

g lFramebuf fe rTexture2DEXT (
GL FRAMEBUFFER EXT ,
GL COLOR ATTACHMENT0 EXT,
GL TEXTURE RECTANGLE ARB ,
w r i t e T e x t u r e , 0 ) ;

g lFramebuf fe rTexture2DEXT (
GL FRAMEBUFFER EXT ,
GL COLOR ATTACHMENT1 EXT,
GL TEXTURE RECTANGLE ARB ,
r e a d T e x t u r e , 0 ) ;

g l D r a w B u f f e r s ( 1 , w r i t e T e x t u r e ) ;
}

Listing A.5: Ortho2D Mapping for Assured, Unclipped Rendering.
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void a d j u s t V i e w P o r t ( ) {
/ / grab c u r r e n t v iew p o r t s e t t i n g s ,
/ / w i l l need t o r e s t o r e a f t e r o r t h o run
/ / f o r c o r r e c t v i e w p o r t
GLint v i e w p o r t [ 4 ] ;
g l G e t I n t e g e r v (GL VIEWPORT , v i e w p o r t ) ;
g lMatr ixMode ( GL PROJECTION ) ;
g l P u s h M a t r i x ( ) ; {

g l L o a d I d e n t i t y ( ) ;
g l O r t h o ( 0 , wid th , 0 , h e i g h t , −1 , 1 ) ;
g lMatr ixMode (GL MODELVIEW ) ;
g l L o a d I d e n t i t y ( ) ;
/ / w i d t h and h e i g h t i s e q u a l t o w i d t h
/ / and h e i g h t v a l u e s o f t e x t u r e s used .
g l V i e w p o r t ( 0 , 0 , wid th , h e i g h t ) ;

/ / e n a b l e r e c t a n g l e t e x t u r e s
g l E n a b l e (GL TEXTURE RECTANGLE ARB ) ;
/ / c a l l s h a d e r s t h a t w i l l work on t e x t u r e s
/ / e n a b l i n g a p p r o p r i a t e t e x t u r e s f o r
/ / r e a d i n g .
. . .
/ / draw a quad t o a c t i v a t e s h a d e r s
/ / quad s h o u l d f i l l s c r e e n w i d t h and h e i g h t
g l B e g i n (GL QUADS ) ; {

g lTexCoord2f ( 0 , 0 ) ;
g l V e r t e x 2 f ( 0 , 0 ) ;
g lTexCoord2f ( wid th , 0 ) ;
g l V e r t e x 2 f ( wid th , 0 ) ;
g lTexCoord2f ( wid th , h e i g h t ) ;
g l V e r t e x 2 f ( wid th , h e i g h t ) ;
g lTexCoord2f ( 0 , h e i g h t ) ;
g l V e r t e x 2 f ( 0 , h e i g h t ) ;

} glEnd ( ) ;

} g l P o p M a t r i x ( ) ;

/ / r e s t o r e p r e v i o u s v i e w p o r t v a l u e s
glMatr ixMode (GL MODELVIEW ) ;
g l V i e w p o r t (

v i e w p o r t [ 0 ] ,
v i e w p o r t [ 1 ] ,
v i e w p o r t [ 2 ] ,
v i e w p o r t [ 3 ] ) ;

/ / r e s t o r e r e n d e r i n g t o o n s c r e e n b u f f e r
glBindFramebufferEXT (GL FRAMEBUFFER EXT , 0 ) ;

/ / swap t h e r e a d i n g and w r i t i n g t e x t u r e s
swap ( readTex , w r i t e T e x ) ;
}
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A.14 Adjusting Viewpoint for One-to-One Mapping

The viewport needs to be adjusted to ensure correct and complete computation. A call to glO-

rtho(left, right, bottom, top, near, far) is used in order to setup a two-dimensional orthographic

viewing region. This is important because the viewport will not clip the drawn quad, seen in Listing

A.5, and creates a correct rendering for a one-to-one mapping between the fragment shader and

textures used.

A.15 GPGPU Example

For an example, take the development of a quick particle-engine based on this technique. The

particle-engine would use two readable textures and two writable textures. Read-texture1 would

contain information about the initial position of the particles and read-texture2 would contain the

initial velocity information of the particles. For the initial time-step the readable textures would be

used in the fragment shader as illustrated at Figure 2.5 by the green box, while the position and ve-

locity read-textures would be used to update the position and velocity of the particles. The updated

position and velocities would be written to the off-screen buffer, specifically the two writable tex-

tures. After every update the read and write textures would be swapped so that the next integration

step, the pass through the shader, would contain the updated position and velocity from the previ-

ous time step in the readable texture. The process would continue, swapping readable and writable

textures until the simulation/particle-engine is no longer needed.

A.16 GPGPU Final Thoughts

The Ping-Pong Technique uses the graphics pipeline and, specifically, the fragment shader to per-

form computation. The computation performed is generally some update to a simulation, or some

incremental technique that depends on previous values. Difficulties arise, in GPGPU-based pro-

gramming that uses the graphics pipeline, because shared memory is not available through shaders

and direct writing is not available, as in CUDA. These limitations helped facilitate the development

of CUDA and, in turn, helped with the evolution of AREMI.

A.17 Summary

GPU programming has provided exceptional speedups for many problem domains. There are a

number of underlining justifications that dictate if a problem will have a large speedup on a GPU, or a

moderate speedup. Specifically, those problems that are considered coarse-grained, large amount of

computation between communication, will perform very well. Those coarse-grained problems that

read memory in a coalesced fashion will perform even better. Those that randomly access memory

will not perform as well. Problems that are considered fine-grained, small amount of computation

170



between communication, can still benefit from the GPU; however, they will only see moderate

speedups. By paying special attention to the use of shared memory, refer to Section A.6 , and the

performance benefits of it, one can speedup computation [16, 86, 87].

The previous sections identify many areas of research that must be utilized in order to create an

efficient reconstruction environment for CT. Through the use of specialized algorithms in the multi-

GPU environment, coupled with the streamlined resources available on a shared memory computer,

one can create a hardware modality that fashions an environment for real-time CT reconstruction,

optimization, and enhancement. The research benefits all scientists wishing to use larger HPC hard-

ware, coupled with multiple GPUs.
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Appendix B

Appendix B: Hardware and Software
Environment

B.1 Hardware and Software Environment Description

The hardware and software development needs to be accurately defined and a consistent environment

is needed on all systems. Therefore, no specialized system calls were used in Mac OSX Lion,

SUSE. The implementation of CWBP, in the DirectX shader pipeline, used specialized system calls

in Windows 7x64 Professional.

B.2 Hardware Environment

The hardware environment consists of three systems: a Mac Pro with dual 6-core Intel Xeon X5650

Westmere 2.66GHz 12MB L3 Cache processors, 64GB of 1333Mhz ECC memory, and dual Nvidia

Quadro 4000 Fermie GPUs with 2GB each of frame-buffer, a Dell 7500 dual 4-core Intel Xeon

X5550 Nehalem 2.66GHz 4 x 256KB L2 Cache 8MB L3 Cache processors, 24GB of 1333Mhz

ECC memory, and dual Nvidia Tesla c2070 Fermie GPUs with 6GB-ECC each of frame buffer

memory, and lastly, an SGI Altix 4700 32×dual-core Intel Itanium 9150M 1.66GHz 24MB L3

Cache processors, 256GB of 1333Mhz ECC shared-memory. The visualizations are displayed on

two monitors: namely a 27” 3.5MP Apple Display with 7-bit grayscale, and a 30” 10MP WIDE

Display with 14-bit grayscale.

B.3 Software Layout and Description

The software environment consists of either Apple OSX Lion-10.7-64bit, Windows 7 Professional-

64-bit, or Suse Enterprise linux. All systems use the same C++, C, OpenGL, and CUDA-4.0 calls

for cross-system comparison. No specialized or optimized compilers were used, just g++, gcc, and

nvcc CUDA compiler.
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B.4 Scanner Specifics

The CT-scanner used for all raw data purposes is a Siemens Definition Flash+ 64 or 128 slice scan-

ner. The raw data file is parsed according to Siemens raw data format specifications, and appropriate

attributes corresponding to FFS modes are specified for reconstruction.

B.5 Phantom Specifics

The phantom used for scanning is the Gammex 464 CT phantom, which is an American College

of Radiology CT accredited phantom. The phantom has various homogenous regions and contains

features of known geometric size and composition. For more information regarding ACR-accredited

phantoms, and the complexity of their design, please see [56].
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