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Abstract

Virtual Reality (VR) technology produces the sense of presence to allow people to
experience environments that are not normally experienced. Because of this charac-
teristic VR technology has been applied to various areas such as training, education,
medicine, and design and prototyping and showed usefulness and potential benefits.

The development of VR applications, which includes modeling the virtual en-
vironment, handling various devices, providing proper user interaction techniques,
and rendering the environment with adequate update rates, however, is very time-
consuming and needs considerable effort. It is not efficient and practical to build the
applications from scratch. High-level software support is crucial.

This thesis implements an object-oriented framework and toolkit, MRObjects, to
provide high-level support for VR application development. As a framework MROb-
jects captures the general structure of most VR applications to relieve individual
developers from regular routines. High-level geometric modeling, behavior modeling,
and a rich set of interaction techniques that meet the requirements of most VR ap-
plications are the principal aspects that MRObjects focuses on. The work of this
thesis concentrates on building the application framework and providing high-level
geometric modeling support. One of the primary goals of MRObjects is to facilitate
the creation of portable VR applications. This goal is achieved by a two-tier organiza-
tion of the system which is composed of a platform-independent application interface
and its underlying platform-dependent implementation. The version of MRObjects

implemented in this thesis is for SGI workstations with both the GL and OpenGL
supported.
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Chapter 1

Introduction

1.1 Motivation

Virtual Reality (VR) is an advanced human-computer interface that presents users
with a computer-generated environment that simulates the real world and allows users
to enter this world and interact with it. An important aspect of VR technology is
that it enables users to actively participate in a virtual world — to move around and
manipulate the objects in it — and not just operate a computer, as with a general
interactive computer graphics system. VR technology is very exciting and promising
because it provides people with the opportunity to experience an environment that
is not normally experienced.

Virtual reality has been around for years, but it is still a young and emerging tech-
nology. Hardware performance is not good enough to make the simulated environment
seem real, and much research on VR technology needs to be done, including gaining
a better understanding of human interface problems, and developing better software
models for VR systems. Because of its potential benefits, for the past decade or so,
virtual reality has attracted much interest in many different application areas, such
as training, education, medicine, design testing, visualization, and entertainment.

Flight Simulators were the earliest and perhaps the most convincing examples of
VR technology. They provide the most cost-effective method for training pilots and
testing new aircraft designs. Operating flight simulators, the trainees can experience

aircraft flying, develop new skills in handling aircraft under unusual operating con-



ditions, and discover the flight characteristics of new aircraft without endangering
their lives and damaging valuable aircraft or other property. Traditional flight simu-
lators use real cockpits and special equipment, with the outside view being computer-
generated. More recently, virtual reality technology has been employed in flight simu-
lators that train pilots in a lab setting with VR devices that aim at generating visual,
auditory, and haptic realism.

A closely related area to training is education. The best way to learn is by
experience, actually seeing, hearing, and doing. Virtual reality makes learning by
experience possible. The virtual physics laboratory at the University of Houston [17]
helps students to grasp important and difficult physics concepts. Students can control
the laboratory environment as well as the physical properties of objects to visualize
physical phenomena, and manipulate virtual objects to observe their behavior. Tra-
jectories can be traced, and time can be frozen or run backwards so that students
can observe time-based phenomena. Any field that deals with three dimensions or
complex phenomena has a great potential for applying virtual reality.

In medical and health-related areas virtual reality technology is beginning to find
its place. Virtual medical equipment and virtual patients give practitioners and stu-
dents more opportunities for “hands-on” experience. High-risk and unusual surgical
cases can be practiced any number of times without risking patients’ lives. With
virtual humans, medical students can study anatomical structures without any lim-
itations on the availability of cadavers. Medical research at the cell and gene levels
can be facilitated in a virtual environment through exploration and intervention.

While CAD/CAM frees designers from paper and pencil and provides more pro-
ductive support and freedom in design, it still operates in two dimensions and requires
the designers to translate their 3D ideas into a series of 2D operations and construct
a 3D object from a 2D blueprint. Virtual reality has opened the door for designers
to a 3D space and let them freely explore, analyze, and manipulate their designs,
without the barriers of a 2D screen or paper. Virtual design systems can eliminate
the costly construction of physical mock-ups and, more importantly, greatly speed

up the prototyping process. Caterpillar Inc. has been working with the University
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of Illinois, Urbana-Champaign, on a virtual environment for testing the viability of
different tractor designs [3]. William Ribarsky, et al., at Georgia Technology Institute
perceived some limitations of conventional CAD and animation systems in design and
construction and tried to solve the problem by means of virtual reality [18].

Virtual architectural walk-throughs provide an “in place” experience for design-
ers and also clients to evaluate architectural and interior designs before construction.
Matsushita’s kitchen design project [27] is a success in virtual reality applications.
Customers are placed in a virtual kitchen which is assembled based on their prefer-
ences, and they can open a cupboard, look around, and decide whether they really
like the kitchen before they buy it. People can not get the same information from
looking at a picture as they can from actually being in the environment. Further,
they may not only just visualize the design but also interact with the environment
and change the design in real time.

Entertainment is a major source for virtual reality applications. The defense and
aerospace industries invented VR, but the entertainment industry is introducing it
to the rest of the world [21]. A three dimensional game in which the players can
“actually participate” is much more fascinating than a two dimensional computer
game. Examples are Autodesk’s virtual racquetball and W industries’s Virtuality [2].

Whatever the situations and requirements, the goal of the applications is always
generating a virtual environment that simulates the real world as accurately as possi-
ble so that the users can have the feeling of actually “being there”; they can perceive
it, experience it, understand it, interact with it, and perhaps even change it just as
they can in real life. This goal is by no means easy to achieve. The fundamental
work involved in building the virtual environments includes geometric and behavior
modeling, input and output device handling, and real-time graphics rendering. For
moving around in the virtual environments, various navigation metaphors must be
provided. Adequate interaction techniques are important for users to interact with
the virtual environments. Model segmentation which partitions the virtual worlds
into smaller divisions may be necessary for fairly huge and complex environments.

For distributing computation or multiuser cooperation in distributed virtual envi-



ronments, network support is necessary. It is impractical or almost impossible to
do all these things from scratch in the development of a VR application. Even an
application in the concept-showing stage requires a great amount of time and effort.

To facilitate VR application development, software support at various levels is
necessary. Low-level device accessing software is essential. With this level of support,
applications can be provided with some standard input/output interfaces for various
VR devices, and the developers need not worry about the underlying hardware details.
The virtual environments of real VR applications tend to be complicated. Support for
modeling the geometric properties and behaviors of objects in the environments can
greatly simplify the developers’ work and speed up the development process. User
interaction, networked simulation, and all other general technologies that are needed
for VR application development should also be supported by various software and
tools other than being explored by individual developers.

The objective of this thesis is to develop high-level support for VR application
development. We will develop an object-oriented toolkit, MRObjects, which is built
on top of the existing MR Toolkit [9], a set of software packages which provide lower-
level support for the development of VR applications (a more detailed discussion
of this toolkit is found in Section 2.3). MRObjects will provide VR application
developers with an object-oriented interface, facilitating object geometric modeling
and behavior modeling. It will also provide an application framework that helps the
developers in constructing their applications. An important part of the system is to
explore proper interaction schemes to meet various application requirements.

A problem in VR application development is that the application is generally
platform-dependent. MRObjects is designed to be platform-independent. Normally,
developers with MRObjects model their applications at a higher object level and
don’t need to conform to any special graphics packages or platforms. As a result, the
applications are portable among different platforms. The high-level abstraction also
makes it possible for people from application areas outside of computer science to do

application development.



1.2 Outline of Thesis

In the next chapter, after a closer look is taken at some typical VR applications, the
general requirements for VR applications are analyzed, followed by an overview of
the previous work on software tools for supporting VR application development. In
Chapter 3, we give an overview of MRObjects and discuss its system structure and
design. Chapter 4 presents a more detailed description of MRObjects. Following the
class hierarchy, we focus on the properties that are implemented in this thesis and the
functionalities and public interfaces of all the classes, along with some implementation
issues. In Chapter 5, we describe how MRObjects works. We use two real projects
as examples to explain how to develop VR applications with MRObjects. Finally, in

Chapter 6, we conclude and discuss the need for future work.



Chapter 2

Background

Virtual reality has been applied to a wide range of areas. In this chapter, we first look
at some typical VR applications. We then try to generalize the scheme for developing
these applications and their general requirements for both hardware and software.
Finally, previous work on supporting VR application development is discussed and

the work of this thesis is proposed.

2.1 VR Applications

2.1.1 Training

Training is probably the most promising area for VR applications. Training in some
skills can be expensive, impractical, or even dangerous. VR can be used in various
training programs to let the trainees gain the required skills and experience situations
before they ever face real ones.

It is well understood that benefits can be obtained using a VR system to train
pilots. Training applications in similarly complex tasks, such as training astronauts
for manoeuvring during space walks [27] and training the officers of submarines [28],
have also been investigated by VR researchers.

Researchers at the Naval Research Laboratory built a virtual environment [25] to
train Navy Shipboard firefighters. With the virtual environment system, the firefight-
ers can familiarize themselves with an unfamiliar part of the ship, practice firefighting

procedures and test firefighting tactics and strategies without risking lives or property.



[16] reported an immersive virtual environment training model constructed for
NASA’s Hubble Space Telescope (HST) repair mission. This was the first large-scale
implementation of Virtual Environment (VE) technology for training personnel for
an actual space mission. The training system provides accurate and realistic models
of the real objects in the mission environment, including the HST, the space shuttle
cargo bay, and the maintenance/replacement hardware required for completing the
major procedural steps associated with the planned extravehicular activities. Object
behaviors and operations of objects were also portrayed in the virtual environment
to the extent necessary to complete the planned goals.

In the training process, a primary mission goal or task was fulfilled by a series of
specific interactions between the trainee and the virtual environment. The trainees
were actively immersed in the environment through a head-mounted display. They
could maneuver with six degrees of freedom by using two joysticks, one in each hand,
and wore a VPL DataGlove on their right hand. Both the head-mounted display and
the glove carried a Polhemus Fastrak sensor.

The developers used NASA-developed software, Solid Surface Modeler and Tree
Display Manager, as supporting tools to model objects and determine their interre-
lationships. They used a SoundTool utility for audio feedback in the training.

More than 100 ground-support flight team members actively trained in the virtual
environment. The training experience had a positive effect on the HST repair mission
and has broadened and deepened NASA'’s interest in the use of VE technology as a

training tool.

2.1.2 Education

Researchers at the Virtual Environment Technology Laboratory (VETL) have been
working on building a virtual laboratory for science education [17]. In Project Sci-
enceSpace, they have built three virtual environments [31]: NewtonWorld, Maxwell-
World, and PaulingWorld. In NewtonWorld, students can explore Newton’s Laws of
Motion as well as the conservation of both kinetic energy and linear momentum. Stu-

dents interact with NewtonWorld using a ”virtual hand” and a menu system. They



can control the mass and velocity of the objects (two balls) and watch their move-
ment and collisions from several viewpoints. Multi-sensory cues — visual, auditory,
and haptic - are employed to help students experience phenomena. MaxwellWorld
has been designed to enable the examination of the nature of electrostatic forces and
fields, to aid students in understanding the concept of electric flux, and to help them
empirically ”discover” Gauss’s Law. Students can interactively place both positive
and negative charges of various relative magnitudes into the world and view the force
on a positive test charge, electric field lines, potentials, surfaces of equipotential, and
lines of electric flux through surfaces. An electric field line can be "grabbed” by a
student and relocated. PaulingWorld allows one to examine the structure of both
small and large molecules from any viewpoint and in a number of single or mixed
representations.

The virtual environments use a head-mounted display, a three-dimensional acous-
tic environment, and a hand gesture input system. They used software tools including
NASA’s Solid System Modeler and VRTool by LinCom to build their applications.

Don Allison, et al., at Georgia Institute of Technology developed an immersive
virtual gorilla environment [1]. The purpose of building such an environment is to
help middle school students learn about gorillas’ interactions, vocalizations, social
structures, and habitat. In this virtual gorilla exhibit, the students can take on the
role of a juvenile gorilla, actually enter the gorilla habitat, walk round, and interact
with other artificial gorillas in the environment. The virtual gorillas can show spe-
cific reactions to students’ behaviors. All the reactions were carefully modeled from
observations on gorilla real life that would occur in real scenarios. Through such
interactions, students can learn about gorilla behaviors, interactions, and group hier-
archies. The knowledge they obtain may not be derived through normal educational
means, and their first-hand experience is almost impossible to get in the real world.
Besides, the students enjoy the virtual experience.

The authors used their Simple Virtual Environment (SVE) toolkit as support
software to build the system. Besides constructing the gorilla habitat model and

gorilla geometry, great efforts were made to accurately simulate gorilla behavior. The



system used a head-mounted display to produce the sense of immersion and a hand-
held joystick as an input device to control the navigation. Gorilla vocalization and

audio feedback were employed in the system.

2.1.3 Visualization

Virtual reality can be an effective tool for visualization. Providing 3D space naviga-
tion and other appropriate controls, it can facilitate people’s understanding of huge
data sets, complex systems, and abstract concepts.

Researchers at the Electronic Visualization Laboratory (EVL) at the University of
[linois at Chicago explored making virtual reality an effective tool for visualization
with their virtual environment, the CAVE, in several applications [6]. One of the
applications was to visualize a job execution on an Intel Touchstone DELTA parallel
supercomputer with 128 processors. The goal of this application was to help scientists
develop efficient algorithms for coordinating jobs on parallel computers. The applica-
tion involved visualization of the 128 processor array, inter-processor message passing,
and the processors’ states (e.g., whether they are free to continue processing or idle,
waiting for other processors to meet their request). Through the visualization, the
scientists can observe and study message traffic, processor throughput, and proces-
sor utilization. This gives the scientists a better understanding of the job execution
process and helps them determine the efficiency of different job execution algorithms.

Future work involves employing interactive methods to allow the scientists to con-
trol job execution, for example, stepping through the time segments of job execution.

Stytz, et al., at the Air Force Institute of Technology developed a solar system
modeler [23], an immersive virtual environment that allows its users to visualize celes-
tial objects in near-earth, deep-space, and interplanetary orbits. The size, complexity,
and variety of the solar system make it difficult for people to comprehend the mo-
tion of heavenly bodies and other physical phenomena in the outer space. Virtual
environments of the solar system that are based on orbital motion information and
accurately portray each body’s appearance will be an illuminating way for people to

study planetary motions.



The Solar System Modeler provides a 3D GUI for immersive operation; it graph-
ically models all celestial bodies throughout the solar system in 3D and accurately
portrays their locations and orbital behavior. The system enables users to interact
with satellites, planets, and moons and provides users with a variety of information
and control facilities that assist the users in comprehending the state of the virtual
environment.

The system assumes the use of a head-mounted display or a large screen surround
display for visual output. A Polhemus 3Space Fastrak tracking system is used to
control the user’s viewpoint. A mouse and keyboard are used for the user’s interactive
control over the system. A mouse and keyboard are used as input devices simply
because precise, adequate control could not be obtained from other 3D devices such
as spaceballs, VPL Datagloves, or joysticks. The system uses Performer, ObjectSim,

and their Object Manager network management facilities as supporting software.

2.1.4 Design and Prototyping

Virtual reality technology has brought a new paradigm to computer-aided design
and prototyping. Virtual design and prototyping enable designers and engineers to
design, visualize, and manipulate the end product and test its characteristics in a
three dimensional space, eliminating the limitations of flat 2D displays. Design flaws
are more likely to be found and avoided before manufacturing, and thus valuable
marketing time can be saved.

For example, Boeing’s virtual reality project planned to import aircraft CAD
data to a VR environment representing a detailed model of the aircraft, allowing
engineers in helmet-mounted displays to actively explore the aircraft long before any
manufacturing begins [21].

In addition, researchers at the NCSA (National Center for Supercomputing Appli-
cations) in the US and GMD (Germany’s National Research Center for Information
Technology) developed a collaborative virtual prototyping system for vehicle design
for Caterpillar Inc. [14]. The system supports collaborative design review and interac-

tive redesign. The designers work either in the CAVE Automatic Virtual Environment

10



(CAVE) or with the Responsive Workbench. The input to the system includes head
and hand tracking, with head tracking controlling the operator’s viewpoint. The sys-
tem provides designers with two schemes during the design process. They can either
drive the virtual vehicle around the virtual world or fly around the vehicle using a
3D mouse, a wand, which has a tracker, three buttons, and a joystick to examine the
design. The system supports cooperations among geographically distributed sites.
Any number of engineers can participate in a design process with a shared virtual
environment. With real-time video and audio transmissions being integrated into the
system, the participants can exchange design information and communicate with each
other naturally.

The system was built on an existing virtual prototyping system. It used the dy-
namic simulation package Dynasty for real-time design testing, Alias for environment
modeling, and Sense8’s WorldTos!Kit for rendering. It also made use of some other
tools for graphics rendering, communication, audio and video transmission.

It is claimed that Caterpillar has used the virtual prototyping system in several

projects at NCSA.

2.1.5 Medicine

The increasing usage of computers in Medicine has changed the way that health care
is delivered [4]. On-line patient databases, remote consultation, digital radiography,
and expert systems have become routine facilities. The introduction of VR technology
to Medicine will make a even deeper change in medical services and revolutionize the
way that doctors diagnose diseases, new surgeons practice surgical skills, and students
get training.

Chua Gim Guan, et al., at Institute of Systems Science (ISS) at National Univer-
sity of Singapore developed a volume-based pre-operative surgical planning system,
VIVIAN [11]. The system’s interface allows the user to “reach in” to a 3D display
where hand-eye coordination allows careful, dextrous work with 3D objects. The
users use both hands to interact with the application with one hand attached to the

patient’s volume complex, turning and placing it as one would do with an object
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held in real space and the other performs detailed manipulation, such as selecting an
object and changing operating modes, through the surgical planning tools. VIVIAN
features a user crop-and-clone facility to carve out volumetric objects from the MRI
(Magnetic Resonance Imaging) volume to provide a clear view of the pathology and
surrounding tissue. It also uses markers for measuring distances between points in a
3D space and drawing lines that guide approaches.

VIVIAN has been used by the neurosurgeons authoring the paper to plan opera-
tions on patients having brain tumors in various locations. The neurosurgeons believe
that VIVIAN provides the most efficient and comprehensive way in which they un-
derstand the complexity of anatomical and pathological relationships surrounding the
lesion. They all agreed that the pre-operative experience of planning the approach
virtually remains in the neurosurgeon’s mind and is supportive during the operative
procedure.

The system is written with the ISS BrixMed C++/OpenGL software toolkit and
runs on Silicon Graphics Onyx workstations, relying heavily on hardware-assisted
texture mapping. It uses a special self-developed 3D interface, the Virtual Workbench.
The input devices used are FASTRAK trackers from Polhemus.

Grigore Burdea and other researchers from Rutgers-The State University of New
Jersey and the University of Medicine and Dentistry of New Jersey proposed using
a virtual reality digital rectal examination (DRE) simulation to aid DRE training
in detecting prostate cancer [5]. Current DRE training requires medical students to
examine a large number of patients before attaining adequate experience. A simu-
lation system could remove the difficulty of finding patients willing to allow medical
students to train on them and other limitations.

Their prototype system consists of a PHANToM haptic interface which provides
force feedback to the trainee’s index finger, a motion restricting board, and an SGI
workstation. OpenGL and GHOST haptic library are used for prostate modeling.

The system models four types of prostate, each type having randomized tumor
locations. The trainee can practice any of the provided cases. While the trainee is

palpating the prostate, the prostate model deforms and forces are fed back by the
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PHANToM, corresponding to his/her finger’s movement and location in the virtual
prostate model. When being tested, the trainee has to diagnose the case presented to
him/her without seeing the prostate on the screen. The trainee’s diagnosis responses
and actions can be recorded for later analysis.

It was believed that the system showed eventual usefulness as a teaching aid,
provided realism in the modeling was increased. Better hardware that can provide
accurate force feedback and position sampling is crucial for achieving a more realistic

haptic simulation.

2.1.6 Discussion

A distinct characteristic of VR, and also a key benefit that can be obtained from VR
applications, is the participation experience. A flight simulator provides the trainee
the feeling of flying a real aircraft in a real situation; a medical student operating on
a virtual human is able to actually practice surgery; a house-buyer can obtain a clear
idea of what a house’s interior design (room separation, furniture placement, light
sources, etc.) is by entering a virtual house with certain designs; and being immersed
in a virtual environment, a game player feels like playing with “real characters” rather
than computers. Although VR applications are quite diverse and every application
has its unique problems to address, all application systems attempt to produce a
strong sense of presence to make the participants feel that they are actually operating
in a real world and interacting with real objects. However, the current VR technology
is far from mature in both hardware and software for achieving the sense of presence.
The applications described here are mostly at the research stage. For industry and
other practical uses there is still a long way to go to achieve what virtual reality
promises. Yet the potential usefulness and benefits of VR technology have been
perceived and have inspired the researchers in VR and other related fields to strive

all the way to reach their goal.
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2.2 VR Application Requirements

The central task of all VR applications is to build a responsive virtual environment to
present the participants with some proposed reality. This task makes great demands
on both hardware and software resources. From an application development point of

view, all applications have to do the following:
e Modeling the geometric objects in the virtual scene
e Defining and simulating object behavior
e Handling multiple input devices

e Providing adequate user interaction

Rendering the environment with adequate update rates

The essential work in creating a VR application is to design and build the virtual
scene. This work normally includes geometric modeling and behavior modeling. Most
VR applications have very large and complex scenes, and building them from the
polygon-level is very time consuming. Applications need support for higher-level
geometric modeling and environment design, providing adequate structure to organize
the objects into the virtual world.

Objects in the virtual environment generally have some type of behaviors, either
predefined motion or reaction to user interaction or other objects’ effects. Accurately
simulating the objects’ behaviors is essential to the success of VR applications. Behav-
ior simulation is fairly difficult work and thus must be supported by software packages.
Although high-level objects’ behaviors are application-dependent, some common be-
haviors exist among objects. For example, all physical objects have attributes such as
mass and weight and follow some rules and constraints such as Newtonian laws. Ap-
plications in the same or similar areas tend to have many commonalities. Behaviors
common to most applications, means for defining a behavior, and behavior-related
collision detection algorithms are better supported by some general tools rather than

being left to the applications.
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Most VR applications need interactive abilities which rely on various input devices.
Compared with conventional desktop interactive systems which use a keyboard and
2D mouse, VR systems use a much wider range of input devices, most of them being
three dimensional devices with six degrees of freedom. These 3D devices have the
potential of providing direct and intuitive ways of manipulating 3D objects. Multiple
devices can be used at the same time. Head tracking determines where the user is
looking and is used to determine the user’s view. Hand-tracking can show what the
user is pointing at and can be used to pick objects. Gesture and/or speech recognition
systems can be used to demonstrate what the user would like to do (e.g., grab an
object). But handling all sorts of input devices needs a considerable amount of work
and can distract the developers from their real task. In addition, doing so requires
that the developers have special knowledge of how to deal with the devices. It is
obvious that providing a high-level interface for device access is very important to
free the application developers from this tedious and hard work.

Interaction is a key property of VR applications. Since users of VR systems
operate in a 3D virtual space, they need to use direct and intuitive ways to interact
with the virtual world. A wider range of 3D devices provides more options and support
for developing interaction techniques that are suited to the 3D world. However, it
is not desirable to have application developers explore various interaction schemes.
Potentially, a standard set of interaction tasks that are useful for most applications
such as object pointing and selection, object grabbing, object dropping, setting system
parameters and selecting commands, and changing the properties of objects exist.
Navigation is a key aspect of interaction and is especially important in 3D space.
Some navigation schemes such as walk-through and look around are common to most
applications. Support for the aforementioned and some other generic interaction
metaphors that let the users operate and interact with the virtual world is required
and highly prefered.

To make the virtual environment responsive, rapid frame rates and fast response
to interactive user control are crucial. With limited hardware performance, efforts on

the software side are very important. Some mechanisms, such as culling and level-of-
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detail switching for reducing the complexity of the virtual scene and multiprocessing
for obtaining high system performance, have been explored to meet the real-time
requirement of VR systems. These mechanisms are not application-specific and can
be supported as underlying tools for VR applications.

Support for multi-sensory cues, such as audio and haptic, as well as visual effects
which are necessary in achieving the sense of presence, are also desired.

The complexity and huge amount of work needed for VR application development
make it very demanding on software support. The common problems that all VR
applications face also make it possible to provide various levels of software tools for
VR applications. The goal of these software tools and support is to remove as much of
the burden as possible from application developers and let them concentrate on their
application-specific work. Researchers in the VR and computer graphics community
have made great efforts in achieving this goal. In the following section, previous work

on software support for VR applications is reviewed and discussed.

2.3 Previous Work

Paul S. Strauss, Rikk Carey, et al. at Silicon Graphics Computer Systems developed
an object-oriented 3D graphics toolkit [22] for interactive 3D graphics applications.
The toolkit provides a general and extensible framework for representing 3D scenes.
It defines a set of object-level geometries (e.g., Cone, Cylinder, and FaceSet) to fa-
cilitate object representation. Geometries, properties, operations, and actions are all
implemented as objects called nodes. Applications build their 3D scenes with these
nodes organized into scene graphs (scene database). The toolkit implements an event
model to enable direct interaction with 3D objects. A user input event is captured at
the application level and distributed through the scene graph until it reaches the node
which will handle it. Surrogate objects are employed to give visual cues for different
interactions. The toolkit also defines a means, node kits, to help applications create
structured, consistent databases.

This toolkit provides support mainly in object representation and scene modeling.
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It is desktop-oriented and employs only 2D input devices — a keyboard and mouse.
3D space interaction techniques were not explored.

IRIS Performer [19] is a toolkit for real-time 3D graphics applications. It provides
support for gaining maximal performance from 3D graphics workstations with multi-
ple CPUs and relieves application developers from these difficult issues. The toolkit
combines a low-level library for high-performance rendering with a high-level library
that implements pipelined, parallel traversals of a hierarchical scene graph. Devel-
opers can employ multiprocessing in their applications without worrying about work
partition among processes, process synchronization, and data sharing and communi-
cation. The toolkit supports culling to the viewing frustum, level-of-detail switching,
and intersection testing for achieving proper frame rates. Some typical graphics and
database operations such as multiple views, morphing, picking and run-time profiling
are also provided.

Performer especially focuses on performance issues based on SGI graphics work-
stations. It does not include direct support on I/O devices, and issues of object
behavior modeling and interaction are not addressed.

Researchers at SunSoft Inc. developed their high-level framework, TBAG, for
interactive and animated 3D graphics applications [7]. TBAG provides a set of high
level graphical types (e.g., points, vectors, colors, transforms) and constants of these
types to facilitate geometry modeling. It provides interactive animation support
by the constrainable entity which encodes desired animation and interaction (e.g.,
mouse motion, 3D tracker data) with objects that have time-varying values (e.g.,
geometric position). Among constrainables relationships can be established by setting
up constraints. With constrainables applications need not handle input device polling
and events for updating the animation parameters. TBAG implemented a set of
manipulators for common interaction paradigms (e.g., selection with buttons). It also
provides support for developing distributed and collaborative applications. TBAG is
mainly concerned with support for animation applications. Navigation schemes which
are important for VR applications are not explored.

Larry F. Hodges, et al. at Graphics, Visualization, and Usability Center of
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Georgia Institute of Technology have developed the Simple Virtual Environment
(SVE) library that provides mechanisms and software tools for virtual reality ap-
plications [30]. The SVE system operates as a single process which resembles the
standard event loop structure of user interface applications. It handles some typi-
cal VR devices such as trackers, gloves, and head mounted displays. 3D interaction
widgets are supported for user interactions and control of the application. Anima-
tion is supported by executing application-defined animation callback functions after
event handling and before graphics rendering. The system performs view culling and
switching of object graphics representations for rendering. Functions for dealing with
audio are provided.

The SVE system provides support for various aspects of VR applications such
as user interactions, animations, rendering, and input device polling. However, the
support is at a relatively low level. Basically, application developers have to program
the logic they need using the functions provided. The SVE system is still under
development.

Researchers of initially User Interface Group at the University of Virginia [26] and
now Stage 3 Research Group at Carnegie Mellon University, built Alice [29], a 3D
scripting and prototyping environment for interactive 3D graphics. Alice models the
world as a hierarchical collection of objects. Each Alice object has a list of action
routines (callbacks) to implement animation. The action routines can be executed
either once per frame or time-based. Alice employs a multiple process architecture to
separate simulation from rendering to accomplish proper rendering frame rate. The
multi-process architecture is transparent to the programmers.

Alice was originally developed on UNIX platform and is now ported to Windows
95/98/NT as a desktop system. It is designed to be simple enough for novices to
develop interesting 3D environments and to explore the new medium of interactive
3D graphics. Alice users compose a virtual environment with pre-made objects and
control the objects’ appearance and behavior by writing scripts with Python, a rela-
tively easy scripting language. Alice supports many common 3D file formats including

.DXF and .OBJ to assist importing object models from outside Alice.
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Mark Green, Chris Shaw and other researchers at the University of Alberta have
built a toolkit, the Minimal Reality (MR) Toolkit, for supporting the development of
VR user interfaces and other forms of three dimensional user interfaces [9][20]. The
MR Toolkit consists of a collection of packages and tools, each package handling one
aspect of VR user interfaces. The MR Toolkit supports a fairly wide selection of
typical VR input and output devices, such as 3D trackers, gloves, and head-mounted
displays. Its Data Sharing Package provides a higher-level interface for data shar-
ing between two processes, supporting the decoupling of computation and graphics
rendering. Workspace Mapping handles coordinate transformations among different
coordinate systems (e.g., the device coordinate system, room coordinate system, and
virtual world coordinate system) and the programmers need to deal only with their
virtual environment coordinate system. This removes some potential confusion and
extra work. The MR Toolkit also provides a set of standard 2D and 3D interaction
techniques, such as a 2D panel in 3D space which is controlled by 3D devices. Com-
munications and interactions among multiple applications running at different sites
are supported by the MR peer mechanism. This allows multiple users to share the
same 3D environment. Real-time performance analysis tools and sound as signaling
events are also included in the toolkit.

The MR Toolkit provides the facilities that are most needed by VR applications
and thus can greatly ease the work of producing VR applications. However, it pro-
vides relatively low-level services for the construction of VR applications. High-level
support, such as virtual environment design and geometric modeling, is not provided.
Programmers developing VR applications with the MR Toolkit have to use a certain
graphics package (e.g., GL or Starbase) to build the virtual world from the poly-
gon primitive level, and the resulting application is generally not portable because
of the graphics package’s dependency on a particular platform. Also they still need
to know about device initialization (at a high level), arranging separate processes for
computation or stereo image display, and synchronizing data structures and display

operations between processes. 3D interaction and navigation techniques are not fully

explored.
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2.4 Work of This Thesis

The MR Toolkit has been licensed by more than 450 sites all over the world. Its
success in providing the generally required support for VR application development as
well as its limitations has created the need for its extension and further development.

The work of this thesis is to build MRObjects, an object-oriented toolkit, that
sits on top of the MR Toolkit and provides a higher-level interface for VR application
development.

MRObjects is designed to be platform-independent. The same application source
code should run on all the supported platforms, either a PC or a workstation. This
application portability can be achieved by producing a different implementation for
each supported platform under the portable interface. MRObjects provides high-level
geometric modeling and obviates the need for using a particular graphics package.
This not only simplifies the work of building the virtual environment, but also makes
the applications more portable. MRObjects supports a variety of input and output
devices and full 3D interaction techniques which are demanded by most VR appli-
cations; they are also the areas in which most of the existing 3D graphics toolkits
fall short. Building on top of the MR Toolkit, most of the MRObjects’ support for
various VR devices is automatic. MRObjects will explore a rich set of natural 3D
interaction and navigation techniques, giving application designers more freedom in
constructing proper interaction schemes.

MRObjects also provides a framework for VR applications. With MRObjects,
application developers can concentrate on their application-specific issues and need
not worry about the details of interacting with the required input and output devices
and things like initialization, configuration and simulation loops. All they need to
do is to build their virtual environment and put the environment into execution,
MRObjects takes care of everything else.

In the next chapter, we will discuss the basic concepts behind MRObjects and its

system design.



Chapter 3
MRODbjects — System Design

In this chapter, we presents the overall structure and system design of MRObjects.
We discuss the classes that constitute MRObjects at a level that represents the ideas
behind MRObjects. Details about the classes’ functionalities, implementation, and

user interface are described in Chapter 4.

3.1 Introduction

As discussed in Chapter 2, VR applications are highly demanding of system resources
and need significant amounts of time and effort to create. In practice, the development
of VR applications depends on various levels of software support.

The MR Toolkit, developed at the University of Alberta, consists of a set of
software packages that provide the essential low-level services for the construction
of VR applications. The programming interface is a set of procedures provided in
the packages. With the MR Toolkit, developers still have to be knowledgeable about
some system-related issues. The applications have to initialize and configure the MR
Toolkit, arrange multiple processes for decoupling simulation and computation or
stereo display, declare and calibrate the devices used, and control the simulation cycle.
It is prefered that this work be done at a high-level so developers can concentrate on
the application-specific issues.

Although VR applications are generally different from one another, they have a

lot of common characteristics. With this observation, the MR Toolkit imposes some
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typical architectures on the applications. Most MR applications require at least two
programs: one, the master program, controls the applications, and the other, the slave
or computation program, is responsible for either stereo display or computation. The

flow of control of a typical MR application can be roughly outlined as follows:

e Configuring the application

— Initializing the MR Toolkit

— Assigning the role of the program

— Starting the slave/computation program
— Selecting the devices used

— Defining the shared data structures

— Setting up coordinate system (optional)

— Calibrating some devices
e Running the simulation loop

— Obtaining the input from user interaction

— Updating the virtual scene based on the input (this step may be done in

a separate process)

— Rendering the virtual scene

Since the above steps are common to nearly every MR application, there is no
reason for each individual programmer to repeat these steps in his or her program.
In addition, the similarities shared by MR applications also demonstrate the gen-
eral requirements of all the VR applications since the MR applications are just VR
applications that use the MR Toolkit as their low-level service support.

Capturing the general characteristics and control structure of typical VR appli-
cations in a framework can greatly facilitate the development of the applications.
With the framework provided, the developers should be able to concentrate on the

application-specific issues and not be distracted by general routine operations and
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other low-level service details. The goal of MRObjects is to build such a framework
which provides high-level support for VR application development. Built on top of
the MR Toolkit, MRObjects encapsulates all the low-level and routine operations in a
set of related classes that construct the framework and provides the developers with a
high-level object-oriented interface. With MRObjects, the developers need not worry
about how to construct their applications and how to make use of the underlying
support library to control their applications, the framework provides this support au-
tomatically. The programmers need to provide only application-unique information

for setting up the applications and implement only the application-specific parts.

3.2 Overview

The application framework provided by MRObjects is based on a collection of re-

lated classes. Figure 3.1 shows the the main classes that form the architecture of

MRObjects.

MRApplication
MRDevice
MRcallBack [~
ViewObject
InteractionObject
DisplayObject (==
MRGeometryElement -efi— MRGeometry

Figure 3.1: The MRObjects class architecture

Three key classes define the structure of the framework and also guide the con-
struction of applications. They are the MRApplication class, the DisplayObject class,

and the InteractionObject class.
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The MRApplication class provides the interface with the MR Toolkit, handling
the initialization of the application and interaction with the input and output devices.
The DisplayObject class defines the basic protocol that is used by all the objects that
are displayed on the screen. The InteractionObject class defines the basic protocol
for all the objects that handle user interaction. All the other classes in MRObjects
are built on top of or around these three classes, and simple applications can be
constructed using only these three classes.

MRObjects provides object-level scene modeling support. A set of geometrical
primitives, including physical shapes (e.g., spheres) and attributes (e.g., material,
transformation, and light source), are defined in MRObjects. The representation of
the primitives is a high-level notation that does not depend on any particular graphics
package. For example, a sphere is described by its radius. The portable high-level
geometrical representation is implemented through the MRGeometry class. The MR-
Geometry class provides the interface for defining geometrical objects in applications.
The elements that define an MRGeometry object are modeled by the MRGeome-
tryElement class. The MRGeometry class supports hierarchical geometrical models.
Hierarchical objects can be constructed by adding an MRGeometry object to another
MRGeometry object, and the depth of the hierarchy of an object is limited only by
system resources (e.g., memory).

The MRGeometry objects are manipulatable entities. They have not only graphics
representation but also associated behaviors. The basic and default behavior of an
MRGeometry object is the output of its graphics. Other behaviors can be encoded
based on the requirements of an application.

Building a complex virtual environment with high-level portable geometrical prim-
itives instead of using a particular graphics package at the polygon-level not only
improves the efficiency of the developers but also results in portable applications.
Portability is one of the main aims of MRObjects.

Interaction techniques are important to VR applications. MRObjects considers
various input devices, from high-cost 3D trackers to low-cost spaceballs and joysticks,

as well as conventional keyboards and mice. It will provide a set of standard interac-
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tion techniques that are required by many typical VR applications. With this level of
support the developers need not consider handling various input devices, and in most
cases neither do they need to spend their valuable time on implementing some general
interaction metaphors. They simply choose what they need from the standard set.

The InteractionObject class acts as an interface to various interaction techniques.
Any derived class of InteractionObject implements a particular interaction metaphor.
Reactions to the user interaction and the interaction between objects in the applica-
tion are implemented with a callback mechanism by the MRcallBack class. All the
classes that need the callback mechanism are derived from this class.

Navigation is generally considered as a kind of interaction. In MRObjects, how-
ever, a separate class, ViewObject, is responsible for viewing and navigating. The
ViewObject class provides a general interface. Its derived classes define the specific
navigation schemes. Some considerations about why ViewObject is defined separately
from the InteractionObject class is discussed in Section 3.3.3.1.

The MRDevice class defines the interface for various devices used in MRObjects.

Various aspects of MRObjects’ system design are presented in the following sec-
tions. Some properties are not fully implemented in the work of this thesis. A
detailed discussion on the classes defined in MRObjects, mainly concerned with the

implementation issues, is presented in later chapters.

3.3 The Framework

MRObjects is designed as a high-level, platform-independent framework and also
as a toolkit to facilitate VR application development. The main purpose is to free
the application developers from low-level device handling and work such as system
initialization, simulation control, rendering, and user interactions that are generally
required by most applications, allowing the developers to build their applications in
a more intuitive and productive way without the requirement of high expertise in
system-specific knowiedge.

The framework implemented by MRObjects is defined mainly by three core classes:
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the MRApplication class, the DisplayObject class, and the InteractionObject class.

These classes determine the way in which applications are built.

3.3.1 The Application Interface

The MRApplication class provides the main interface with applications. It handles
device and system initialization, manages all the resources and objects, and maintains
the state of the application and controls its execution.

For each application, there should be only one instance of the MRApplication
class. The programmer needs only to declare the MRApplication object, and this
object will take care of the execution of the application. Without any specification,
the MRApplication object simply uses its default settings. However, applications
tend to have some specific requirements. There are several ways that developers can
customize their applications. They can provide command line arguments, or they can

call the methods defined in the MRApplication class to configure their applications.

3.3.2 The Object Display Interface

The DisplayObject class defines the basic protocol for object display. It is an abstract
class, and its subclasses will define the actual objects to be displayed. All the objects
that have graphics output on the screen should be defined by classes that are derived
from DisplayObject.

The protocol basically defines two operations: object update and object display.
The update mechanism provides an interface for any modification applied to the ob-
jects. For example, some objects may change their internal graphics representation
with rendering speed consideration in response to the user’s viewing position and
direction. User interaction and the objects’ behavior can change an object’s descrip-
tion parameters, such as a sphere’s radius or a rotating object’s rotation angle. The
update mechanism gives these objects a chance to perform these modifications before
they are drawn on the screen.

The basic behavior of an object is to display its graphics. DisplayObject provides

two approaches to graphics output. The first approach is based on some predefined
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subclasses of DisplayObject which provide platform-independent geometry modeling.
The MRGeometry class, for example, is such a class which is designed as the interface
for defining high-level 3D graphics objects. Applications use these portable 3D objects
to model their geometry and need not worry about object rendering. The display of
the objects is done automatically by the classes’ built-in drawing functions. This
approach embodies the ideas of MRObjects and produces portable applications.
The second approach for graphics output lets application developers explicitly de-
fine a drawing function in a class derived from DisplayObject. The derived class rep-
resents an application-specific graphical object to be displayed. The drawing function
is defined using the native graphics package. This approach gives the programmers
some flexibility to model their virtual environment. It also provides an easy way to
retrofit an existing traditional application with a VR interface. The programmer can
quickly prototype a VR application by wrapping the existing code in a DisplayObject
object and integrating it into the MRObjects framework. In this way previous work
could be saved instead of being simply ignored, which is common when upgrading an
application to a new software environment. This approach, however, greatly restricts
the portability of the resulting application. And the geometry modeling process is not
very efficient. There is another problem as well. The graphical geometries described
by the wrapped code can be treated only as a whole, although they may describe
a complex scene which is composed of a collection of objects, and the user cannot
interact with part of it. The programmer can of course break the code into parts
and build them into a hierarchical structure, but this could introduce a lot of extra
work. More importantly, doing so actually gives the work of geometry modeling that
is supported by the system back to the programmers. In cases of developing new

applications, the first portable approach is recommended.

3.3.3 The Interaction Interface

In MRObjects the InteractionObject class is designed as the basic interface for various
interaction techniques. The InteractionObject itself is an abstract class and does not

implement any interaction scheme. All the interaction schemes provided by MROb-
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jects are defined by subclasses of the InteractionObject class. Basically, each subclass
suggests one interaction metaphor.

In some previous systems (for example, JDCAD and Thred) the interaction tech-
niques are closely related to the objects in the particular applications. This can
greatly restrict the generality of the techniques and their reuse in other applications.

The idea behind MRObjects is to decouple various interaction techniques from
particular situations and make them available to all applications. Ideally, a rich set
of standard interaction techniques are provided at a high level and independent of the
objects interacted with. In most cases the developers simply choose the techniques
that are appropriate to their applications and need not worry about the implementa-
tion details. However, it is not possible to provide a complete collection of interaction
techniques. With the hierarchical object-oriented design, it is easy to extend the
standard collection at any point.

The InteractionObject class interacts with the MRApplication class and some
other classes (e.g., the MRDevice class). The objects of InteractionObject (including
all its derived classes) are managed by the MRApplication object, and an Interac-
tionObject object may declare some MR devices that are used by the interaction
technique. InteractionObject responds to new device values (generally as the result
of user interactions) through callbacks.

Each InteractionObject class that defines an interaction scheme should define one
or more callbacks that process the interaction and pass information to the other
objects in the application that are affected by the interaction. These callbacks may
be invoked at each step of the interaction or at the end of a successful interaction,
depending upon the interaction technique implemented by the class. For example,
when an object is dragged from one place to another, the callback for changing the
object’s position is called whenever the device’s position value changes. However,
while an item in a menu is selected, the callback for the menu item is called only after
the selection is completed. The callback mechanism of MRObjects is discussed in a
later section.

Since most InteractionObject objects display some type of information to the user,
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this class is a derived class of DisplayObject and supports the DisplayObject protocol

as well.

3.3.3.1 Navigation

The ViewObject class was originally designed only as a container for the user’s cur-
rent position and viewing direction as well as the viewing pyramid used to display
the objects. Since navigation controls the user’s viewpoint movement in a virtual en-
vironment, it is natural that the ViewObject class serves as the interface for various
navigation techniques. This is the role that ViewObject plays. With this interface,
MRObjects can provide some typical navigation metaphors by deriving classes from
the ViewObject class. Users can choose a navigation metaphor by declaring an object
of a proper ViewObject’s subclass that implements the metaphor and pass a pointer
of this object to the MR Application object. There is only one ViewObject object
defined in an application. Without explicit declaration, the system provides a default
navigation metaphor which depends on the input devices employed in the application.

The ViewObject class is currently designed separately from the InteractionObject
class. On one hand, since navigation techniques are part of the interaction techniques,
conceptually the ViewObject class should be derived from the InteractionObject class.
In addition, ViewObject may also have graphical output. For example, some appli-
cations may need a simulated person (avatar) representing the user himself or herself
to be present in the scene. This requirement makes it necessary and natural to put
the ViewObject class under the InteractionObject class.

On the other hand, since navigation techniques are used to control the user’s
viewpoint (not objects in the virtual scene) and generally there is only one viewpoint
in an application for a single user, there should be only one ViewObject object active
(multiple ViewObject objects can be declared, but only one instance is active at any
moment. A way of switching among these objects may be defined). This makes the
handling of the ViewObject objects different from other interaction objects.

This thesis follows the current design.
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3.3.4 Application Structure with MRObjects

The general structure of an MRObjects application is as follows:

1. Declaring the MRApplication object

2. Defining the objects in the virtual world with geometry
subclasses of DisplayObject

3. Running the program

This structure actually implies two phases in an MRObjects application. The first
two steps comprise the first phase when the application is configured. This includes
selecting the devices used in the application, determining the type of displays to be
produced, and establishing the initial set of DisplayObject and InteractionObject
objects in the application. Operations such as selecting devices or type of display are
optional. If the application does not provide information for the selection, MRObjects
provides defaults. Once the configuration is completed, the application moves to the
second phase where the configured application runs.

The following code is the “Hello, World” equivalent example which draws a coor-

dinate system with its three axes:

#include <MRObjects.h>
MRApplication *theMRApp;
main(int argc, char **argv)
{
/* Step 1: Declare the MRApplication object */
theMRApp = new MRApplication(‘‘Axes’’, &argc, argv);
/* Step 2: Define the geometry for the axes */
MRGecmetry *axes = new MRGeometry();
axes = axes
+ MRColour(1.0, 0.0, 0.0)
+ MRLine(0.0, 0.0, 0.0, 1.0, 0.0, 0.0)
+ MRColour(0.0, 1.0, 0.0)
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+ MRLine(0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
+ MRColour(0.0, 0.0, 1.0)
+ MRLine(0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
/* Step 3: Run the program */
theMRApp->run() ;
}

At the start of the program an instance of MRApplication is created and assigned
to the global variable, theMRApp. The application may provide some command line
arguments for configuration. The MRGeometry class is a subclass of DisplayObject.
It is the portable geometrical definition interface (discussed below) for modeling the
geometrical objects in the application. MRColour and MRLine are functions that
return geometrical elements (color and line, respectively) that compose the geometry.

Although far from practical, this example clearly shows the structure of an MROb-
jects application and the way to build it.

3.4 Portable Geometry Modeling

One of the main goals of MRObjects is to facilitate the creation of portable VR
applications. The application developed with MRObjects on one platform, for exam-
ple, the PC, should run instantly on any other platforms, such as high performance

workstations, without modification.

3.4.1 The Idea

The goal of creating portable applications cannot be achieved by simply selecting an
existing graphics package since it is unrealistic to expect a single graphics package to
run on all platforms. High graphics performance is often achieved by special purpose
graphics packages that are tuned to the special display architectures. There is no
way that a single portable package will approach the performance of a specially-tuned

platform-dependent package.
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Given this reality, MRObjects takes an alternative approach which provides ap-
plications with a portable interface while achieving efficient graphics performance on
all platforms. The key idea behind this approach is to distinguish between a geomet-
rical and a graphical representation of an object and use the geometry compilation
technique. A geometrical representation represents an object’s inherent properties in-
cluding its shape and attributes that determine the object’s appearance. A graphical
representation of an object is a set of graphics primitives that are used to render the
object on a particular workstation in a particular context. The geometrical repre-
sentation is a high-level, platform-independent notation, each object having only one
such representation. The graphical representation, however, is platform-dependent,
and an object can have various such representations depending on the context.

Application developers will use the high-level geometrical notation to describe
the geometrical objects in their applications. A geometry compiler is then used to
convert this geometrical description into graphics primitives using the native graphics
package. The high-level notation avoids using low-level graphics primitives and allows
the geometry compiler to convert the object into the most efficient set of primitives
for the current platform. So an object has two representation models: the high-level
geometrical representation for the developers and the low-level graphical primitives
for object display.

When an object is displayed, MRObjects first determines whether the object has
been compiled. If not, the geometry compiler is invoked to produce the native graph-
ical representation. This compiled representation is stored in the object and used
when this object is displayed. Once the object is compiled, the geometry compiler
is not called unless the object is changed. Since native graphics primitives are used
for displaying objects, the best possible performance can be achieved from the local
graphics system.

A possible problem that may arise from this approach is the geometry compilation
overhead. For static objects, the geometry compiler is executed only once to produce
the native graphics primitives, and the overhead can be ignored. For dynamic objects,

an incremental compiler could be used, so only the changed part of the object descrip-
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tion needs to be recompiled. As long as the modifications are minor, this geometry
compilation approach still results in a more efficient graphics system. Besides, most of
the changes that occur in dynamic objects are transformation matrices, and for most
graphics packages, their incremental compilation is quite fast and efficient. So there
is a good chance that applications using MRObjects will run as fast as applications
that use the native graphics package. At the least, MRObjects does not bring serious
performance degradation to the applications. In addition, we gain in portability.

In this approach, the portion that deals with the geometrical representation is
universal across all the MRObjects implementations, while a new geometry compiler
must be produced for each graphics package, and possibly for each workstation. The
finer the geometry compiler is tuned, the faster the graphics will run. Any improve-

ment in the geometry compiler will benefit all applications.

3.4.2 The Portable Interface

The distinction between geometrical and graphical object representation helps MROb-
jects achieve both portability and good performance. This two-level geometry mod-
eling scheme is implemented by the MRGeometry class, along with the MRGeome-
tryElement class.

Derived from both the DisplayObject and MRGeometryElement classes, the MR-
Geometry class inherits the basic DisplayObject interface and represents a hierar-
chical geometrical model. The MRGeometry class maintains both the geometrical
and graphical representations of objects. The high-level geometrical representation
is a list of geometrical primitives, or geometry elements. A geometry element can be
a physical shape, an attribute, a transformation, a light source, or another MRGe-
ometry object. All the geometry elements are defined by the MRGeometryElement
class and its derived classes. This is discussed further in the following subsection. A
detailed description of all the geometry element classes is presented in Section 4.8.

The low-level graphical representation is a set of graphics primitives that result
from geometry compilation. Whenever the geometrical representation is changed,

MRGeometry calls the geometry compiler to get the new graphical representation.
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The developers define the geometry of the objects in their applications by creat-
ing MRGeometry objects. Geometry elements are then added to the contents of an
MRGeometry object using the '+’ operator, which is overloaded in the MRGeometry
class and acts as a basic insertion operator. The developers interact only with the
high-level geometrical representation. The low-level graphical representation, how-
ever, is transparent to the applications. The developers may not even be aware of the

existence of the underlying compilation process.

3.4.3 The Geometry Elements

The geometry elements are the building blocks for creating geometrical objects. All
the geometry elements are modeled under the MRGeometryElement class, and each
derived class of MRGeometryElement defines one kind of geometry element. The
geometry elements provide the high-level notation for the geometrical shapes or at-
tributes they represent. For example, a cone shape is defined by class MRConeObject
with its base radius and height as the descriptive properties. It does not specify how
the cone is to be displayed. Displaying the cone is determined by the geometry
compiler.

The general geometry elements are not stand-alone entities and can only be used
as elements in building an MRGeometry object. For example, a cone object has to
be defined by creating an MRGeometry object with an MRConeObject element as
its member. The exception is the MRGeometry itself, which is a special geometry
element.

For the sake of applications, each geometry element class has at least one corre-
sponding factory function that creates an instance of the class and returns a reference
(or pointer) to the new instance. Generally, several versions of factory functions with
different parameters are overloaded for the convenience of writing applications. A
factory function call can be used directly as the operand of the ‘4’ operator in defin-
ing the MRGeometry objects. Doing so makes it much easier to create geometry

elements and build MRGeometry objects.
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3.5 MRODbjects Devices

User interaction is a basic characteristic of VR applications. The user of an VR
application should be able to control his/her viewpoint to have different views of the
virtual environment and control the behavior of the objects in the virtual world. User
interactions are achieved through the use of various devices. MRObjects abstracts
all the physical devices that are supported for user interaction into several types of
logical devices based on their functionalities. The logical device types identified by
MRObjects are value, trigger, and glove devices. These types are explained in Section
4.6.

Interaction techniques implemented in MRObjects are based on logical devices.
They do not assume the use of any particular physical devices. Instead, only logical
devices are requested for the suggested interaction techniques. For example, the
pointing and selecting technique use a value device which produces both position and
orientation data for pointing, and a trigger device which generates a boolean value for
selecting. The value device can be a 3D tracker or a joystick, and the trigger device
can be a keyboard or a mouse. Since a logical device represents the type of value that
it can generate, it simplifies the interface between interaction techniques and devices
and supports easy integrating of new physical devices.

A logical device can be implemented by different kinds of physical devices, and a
physical device can be used for different types of logical devices. For example, a value
device can be realized by a 3D tracker or a joystick, and a keyboard and mouse can
be used as both value device and trigger device. A device mapping file is used to map
a logical device to a physical device. Since this file is separate from the application
source code, an application may choose different physical devices for a logical device
from time to time with the program being unchanged.

The MRDevice class is designed to represent the abstraction of logical devices in
MRObjects. It defines the common attributes and behaviors that all devices have
and provides the basic interface for defining various logical devices. A device with

particular characteristics is defined by a derived class from MRDevice.
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An MRObjects device is a kind of resource of an application, and all the devices

used in the application are managed by the MRApplication object.

3.6 The Callback Mechanism

Callbacks provide a way to associate an operation (defined in the callback) with
some conditions or events (e.g., user input). When a particular condition occurs,
the corresponding operation is performed. The callback mechanism is required by
several classes in MRObjects. Instead of handling callbacks in each individual class,
this mechanism is implemented by a separate class, MRcallBack. Most classes in
MRObjects (see Figure 3.1) have MRcallBack as their base class so they are capable
of supporting callbacks, and this capability is inherited by all their derived classes.
The basic protocol defined in the MRcallBack class includes registering a callback,
removing a callback, and invoking callbacks. The callback itself has to be defined in

the class which needs callbacks.

3.7 System Architecture

In this section we conclude the MRObjects system design with Figure 3.2 which
shows all the main classes and their relationships in MRObjects. Each box represents
one class with its main functionalities described in it. Note that the lines between
classes do not show inheritance but collaboration relationships. From the figure we
can see that the MRApplication class connects to almost all the other classes. It is
the center of the system structure and the heart of all the applications. The figure
also demonstrates how an application interacts with the MRObjects system. The
Application box represents MRObjects applications. The bold solid lines between
Application and MRApplication class and MRGeometry class mean that applications
declare instances of these classes, while the bold dashed lines between Application and
ViewObject and InteractionObject classes mean that the application may optionally
declare objects of these classes. An application may also declare objects of other

classes. For example, an application may derive classes from DisplayObject and
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declare objects of DisplayObject and the derived classes. Simple applications interact
only with the MRApplication class and the MRGeometry class, the former being the
application interface, while the latter is used to model the geometry in the application.

In this chapter, we have discussed some points concerning MRObjects system
design. In Chapter 4, we will describe all the properties of MRObjects that have

been implemented in this thesis and also some implementation issues.
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Chapter 4

MRODbjects — Implementation

An implementation of MRObjects can be divided into two parts: a portable part
and a platform-dependent part. The portable part provides the portable interface
for MRObjects applications. Ideally, it should remain the same across all types of
platforms. The platform-dependent part, however, provides the underlying imple-
mentation based on particular computer systems. It has to be implemented for each
platform that MRObjects works on. This thesis implements two versions of MROb-
jects on SGI workstations, using the GL graphics library and OpenGL, respectively.
There are no differences between these versions with respect to the application devel-
opment interface.

This chapter gives a complete image of the MRObjects class hierarchy imple-
mented in this thesis. The class hierarchy is shown in Figure 4.1. Compared with
Figure 3.1, Figure 4.1 contains more classes. The MRLightManager class is respon-
sible for light source management, and it is under the control of the MRApplication
class. MRPDevice is a subclass of MRDevice and defines a physical device. The
ViewOrbitObject, ViewTrackObject, and ViewWalkObject classes are special cases
of ViewObject, each implementing one navigation technique. The Pointer class rep-
resents one example of an interaction technique, which implements one style of object
selection. A complete list of classes derived from MRGeometryElement implementing
geometry primitives is given in a separate figure in the portable geometry section.

In the following sections, we examine all the classes in detail. Discussion is fo-

cused on the responsibilities and public interface of these classes, along with some
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implementation issues.

4.1 The MRApplication Class

The MRApplication class is the central class of the MRObjects system and its only
instance is the central object of an application. The MRApplication object initializes
the MR Toolkit, interacts with input and output devices, keeps track of the current
state of all the objects in the application, controls the graphics output, passes user

interaction on to the appropriate InteractionObject objects, and maintains global

properties.

4.1.1 Data

The MRApplication class maintains some data structures for managing the resources,

objects, and global properties of an application. The data structures include

e The Name of the application
e A list of DisplayObject objects

A list of InteractionObject objects

A list of MRObjects devices used in the application

e A set of pointers to global properties

Parameters defining the display window

Application state parameters

Each application should have a name. If the application does not give a name
explicitly, the program name is used by default. The application name is used for
identification and other purposes, such as finding a resource file.

All the DisplayObject and InteractionObject objects as well as all the devices used
in the application are maintained by the MRApplication object.
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There are a number of properties, such as material, texture, and lighting model,
that affect the way in which geometries are rendered. These properties are potentially
global; there is only one value for each property in effect at one time. MRApplication
maintains a set of pointers that keep track of the current values for all these properties.

MRApplication also has some state parameters to record the state of an applica-

tion. For example, there is a parameter to specify whether stereo display is used.

4.1.2 Behavior

The behaviors of the MRApplication class can be grouped into four categories.

4.1.2.1 Configuration

The following methods are defined for application configuration:

e Setting the display window size

This function is used to set the size of the window on the screen for displaying

the virtual environment.

e Registering MRObjects devices
The devices used in the application must be registered with the MRApplication
object. A device mapping file is used for specifying these devices. The file name
is based on the name of the application. If the application does not provide such

a file, the system uses its default one instead.

e Configuring the application

This function decides the display type, sets graphics mode, and calls the under-
lying MR Toolkit procedures to configure the MR Toolkit and calibrate devices.

These configuration functions are mainly called in the constructor of MRAppli-
cation when creating the MRApplication object. Generally, the application does not
need to call them explicitly. Some other MR routines for setting up the application

are directly called in the constructor.



Configuring the application is the first step in an MRObjects application, and
it is done after the MRApplication object is created. Only at this point can the
application register objects. This means that all the geometry elements have to be

defined or declared after the creation of the MRApplication object.

4.1.2.2 Object Management

After the configuration stage, the application can register objects and manage them

during the execution. The following functions are designed for this purpose.
e Registering/unregistering the DisplayObject objects
e Registering/unregistering the InteractionObject objects
e Changing the state of specified DisplayObject

e Changing the state of specified InteractionObject

Object registration is done automatically when the object is created and unregis-
tered when the object is destroyed.

Both DisplayObject and InteractionObject objects have a state attribute that
controls how they participate in the application. The state of a DisplayObject object
specifies whether the object is drawn or not, and the state of an InteractionObject ob-
ject specifies whether the object is active or not. The state property of DisplayObject
and InteractionObject is discussed in the sections on the corresponding classes. Note
that the MRApplication object controls the state of these objects, not the objects

themselves.

4.1.2.3 Global Property Maintenance

At present, MRApplication provides only the following two functions for controlling

the lighting mode of the application:
e Switching the lighting model

e Customizing the lighting model
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Some property maintenance tasks are not trivial, such as keeping track of the
appropriate rendering property values for different objects in a virtual scene. In
order to avoid overloading the MRApplication class, separate classes are designed
to do the work. For example, we use a stack to maintain the properties which can
have multiple values, and the property stack is managed by the MRStateObject class
(discussed in Section 4.8.8).

4.1.2.4 Program Execution

e Checking for updates of the graphics objects
e Displaying DRAW objects and invoke ACTIVE InteractionObject objects

e Running the application

The first two functions are used to control the graphics output of the objects in
the virtual scene. First any possible update of the objects is checked for. Then the
objects are displayed. These two functions are called in the third function which
starts the simulation loop. In the third run function, the devices are sampled, the
callbacks associated with the sampled new values are invoked, the InteractionObject
objects that are ACTIVE are invoked to process user input, and all the DisplayObject
objects that are in a DRAW state are displayed. The run function should be called
in the application once, and when it returns, the main() procedure should exit and

the application ends.

4.1.3 Summary

The MRApplication class stores the main data structures of the application and
implements the initialization, configuration, controlling, and most of the management
tasks for the application. The minimum work of an application program related to
this class is to create the MRApplication object for setting up the application and to

call the run function for starting the execution of the virtual environment.
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4.2 The DisplayObject Class

The DisplayObject class represents something that is displayed in the virtual envi-
ronment. Anything in the application that needs graphical output should be defined
as an object of this class or its derived classes. The DisplayObject class defines the
protocol that is used by these objects.

The DisplayObject class is an abstract class. It has only two data members,
one is the object’s name, and the other is used to record the state of an object. A
DisplayObject object is either in a DRAW state or an UNDRAW state, determining
whether or not the object is displayed in the virtual environment. By default, the state
of a DisplayObject is DRAW. A programmer may want to create a set of objects at
the start of an application, but selectively display some of the objects at a particular
time or in particular situations. Doing so allows the application to quickly switch the
displayed objects without a delay caused by creating the objects during run time.

The DisplayObject class defines the following behaviors for its objects:
e Updating the object’s graphics
e Drawing the object

These two behaviors are both defined as pure virtual functions in the DisplayOb-
ject class and must be overridden in all the classes that are derived from DisplayOb-
ject. If the programmers derive any class from DisplayObject, it is their responsibility
to provide definitions for the update and draw methods.

Both of these functions are called once in each simulation cycle. The update
method provides the opportunity to modify the graphics representation of an object
in response to the user’s current position and viewing direction before the object is
drawn. The draw method implements object rendering, the basic and default behavior
of a DisplayObject object.

More behaviors are defined in the derived classes and depend on the special char-

acteristics of applications.
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An application follows the DisplayObject’s protocol to build its virtual world.
However, it never creates any DisplayObject objects, it creates objects of its derived

classes.

4.3 The InteractionObject Class

The InteractionObject class defines the basic protocol for objects that provide inter-
action techniques. Particular interaction techniques are defined by its derived classes.
In this thesis only one subclass, the Pointer class, has been implemented to provide a
pointing interaction technique. Most of the interaction techniques have to be explored
in future work.

Besides the inherited properties and behaviors from the DisplayObject class, In-
teractionObject does not define any special characteristics at this moment except that
the inherited state property has more options. Since, generally, an InteractionObject
object also has graphics output, it can take either a DRAW or an UNDRAW state. In
addition, the state of an InteractionObject object also has to specify either ACTIVE
or INACTIVE to control how the object participates in the interaction. By default,
an InteractionObject object is INACTIVE, which means that the object does not
respond to any of the user’s interactions, i.e., the interaction techniques associated
with the object are not enabled. An INACTIVE InteractionObject object is normally
in the UNDRAW state. If an INACTIVE InteractionObject object is in the DRAW
state, it is drawn on the screen, but the user is not able to interact with it. This is
used for interaction techniques that should always be visible, but may not always be
in a state where they can be interacted with. The state of an InteractionObject object
is expressed by both the draw property and the active property as bit combinations.
There are three possibilities: INACTIVE and UNDRAW, INACTIVE and DRAW,
and ACTIVE and DRAW.
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4.3.1 The Pointer Class

The Pointer class provides a method of selecting objects with a pointing line. This
interaction technique uses two devices. One is a pointing device, e.g., a 3D tracker,
which is used to determine the pointing direction. The other is a trigger device, e.g.,
a button on the tracker, which is used for selecting the object. For object selection
the pointing device has a pointing line as an echo to help in making the selection. The
objects that intersect the line are potentially selected. An object is finally selected
when the user presses the button. If more than one object intersects the pointing
line, the nearest one is selected.

The Pointer class has to define callbacks for both pointing and selecting. The
callback for pointing is responsible for determining the objects which are potentially
selected. Also it should display the pointing line echo and feedback for the potentially
selected objects. The selecting callback is called when the user selects the object by
triggering the trigger device (for example, by pressing a button). This callback may
register the selected object and do some manipulations on the object according to

the purpose of the application (these two callbacks have not been implemented yet).

4.4 The ViewObject Class

The ViewObject class is a base class for implementing various navigation techniques.
It contains information of the user’s eye (also referred to as viewpoint), its current
position and viewing direction, and the viewing pyramid used to display the object.
The basic behavior of this class is to access the current viewpoint and parameters
of the viewing pyramid. Other behaviors include initializing this ViewObject object,
setting up the device, if any, for controlling the user’s eye, and determining the new
value of the eye.

For an application, there is only one ViewObject object defined. The initialization
of the ViewObject object is done by the MRApplication object in its run function
right before the simulation loop is started. The task of initialization involves setting

the viewing volume and the initial value of the viewpoint.
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The functions that set up the device and determine the new value of the eye are
empty in the ViewObject class. They are overridden by ViewObject’s derived classes
which define particular navigation schemes.

Three derived classes have been defined.

4.4.1 The ViewTrackObject class

The ViewTrackObject class defines a navigation scheme in which the user’s viewpoint
is directly determined by an absolute device, e.g., a 3D tracker. The device’s posi-
tion and orientation are used directly to control the user’s eye position and viewing
direction. The problem with this scheme is that the physical space within which the
user moves limits the virtual space in which the user navigates, and as a result this

model may be used only for small virtual space navigation.

4.4.2 The ViewWalkObject class

This class implements a navigation model which simulates a walk-through or walk-
around process. Relative devices, such as a keyboard and mouse or a joystick, are
assumed to control the movement of the viewpoint. However, absolute devices, such
as a 3D tracker, along with an additional control such as a button, can also be used
for this navigation scheme. In this walk-through metaphor, there can be a variety of
choices concerning how to control the speed of walking, when to walk and when to
stop.

This scheme is suitable for architectural walk-throughs and any similarly sized
virtual space navigation. For vast virtual environments, a similar scheme, called fly-
through, with greater moving speed and probably choices for acceleration, can be

implemented.

4.4.3 The ViewOrbitObject class

The ViewOrbitObject class defines a viewpoint control model that orbits around

a certain object or a group of objects. The orbit basically follows the surface of a
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sphere from left to right and top to bottom. The orbiting is carried out automatically
without interactive control.

The properties that affect the orbiting behavior are as follows:

e Center of the orbit

This is typically the center of the object(s) to be observed. By default, the

center is assigned as the origin of the world coordinate system.

e Rotation axis

It defines the axis about which the orbiting (rotating) is carried out. By default,

the rotation occurs about the y-axis of the world coordinate system.

e Distance between the user and the orbit center

This actually defines the radius of the orbit sphere.

e Parameters determining the start and end degrees of orbiting both along (e.g.,
beginning from the positive rotation axis and moving through the negative
rotation axis) and around (in the rotation axis’ perpendicular plane) the rotation

axis, and the delta values for modifying the degrees in each step.

e Orbit behavior

This property is intended to determine how the orbiting is carried out. It is not

defined yet.

The main behavior of this class is to define the function that computes the current
viewpoint based on the above properties.

This scheme is suitable for general observation of objects. A more desirable way of
examining objects is perhaps user-controlled orbiting or direct object manipulation.
User-controlled orbiting may be implemented later, while object manipulation is not

part of navigation technique and is not considered here.
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4.5 The MRcallBack Class

The MRcallBack class implements callbacks. Its data member is a list of callback
lists, each callback list has a name and corresponds to a type of interaction. The

public interface of this class is:

e Adding a callback to a particular callback list

e Removing a callback from a particular callback list

All the classes that are derived from the MRcallBack class inherit these two meth-
ods. These classes are responsible for defining their callbacks and then adding them
to their appropriate callback list. Callbacks should be removed when they are no
longer used.

MRcallBack also defines a protected method which is used to call all the callbacks
on a callback list. The method is called through MRObjects devices when an inter-
action occurs. This part is defined in MRObjects and applications need not worry

about it.

4.6 The MRDevice Class

The MRDevice class is an abstract class for defining all the devices used in MROb-
jects. Its derived classes will define a special type of device. The basic properties

defined in MRDevice includes:

e Device name
e Device type

e Device value

Each device used in MRObjects has a predefined logical device name.
Device types determine what kind of values can be accessed from a device. MROb-

jects divides all the supported devices into three categories: value, glove, and trigger.
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A value device corresponds to some form of tracker, and it produces position and
orientation data. A glove device produces information on finger flexion. A trigger
device corresponds to a button press or a hand gesture and has a boolean value. A
device type is either value, glove, or trigger.

The device value property is a pointer to a structure which stores the actual device
value.

The following behaviors are modeled in the MRDevice class:
e Sampling the device
Reading the device’s current value. This is a pure virtual function in the MRDe-

vice class. All the derived classes have to define it according to the device it

represents.

e Triggering the action that is associated with the device

The newly sampled device value is used to invoke the callbacks that are regis-

tered with the interaction event that the device produces.

MRDevice functions as a server class which is used by other classes. Typically,
interaction objects (objects of InteractionObject and its derived classes) have one
or more member devices, which are used to implement user interactions, defined as
MRDevice objects. The interaction objects are responsible for defining callbacks
and registering the callbacks for the particular interaction events that are associated
with its member devices. The detection of the interaction events and invocation of
the callbacks, however, are handled by the MRDevice class and controlled by the
MR Application object.

4.6.1 The MRPDevice class

This class represents any physical device that is supported in MRObjects. It provides
the same interface as MRDevice except that it overrides the sample and trigger func-
tions based on the particular devices. MRPDevice is used to initialize all the devices
that are requested by applications in their device mapping files during application

initialization. Generally, applications do not declare any MRPDevice objects.
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4.7 The MRGeometry Class

The MRGeometry class implements the portable geometry modeling interface . Ap-
plications declare objects of this class to define their virtual environments.

In this thesis, the geometry compiler has not been implemented, although similar
functionality is provided. MRGeometry maintains only a list of geometry elements
representing the geometrical representation of the object. The display of an MRGe-
ometry object is implemented by its display member function, which in turn calls
the display functions of the geometry elements that define the MRGeometry object.
The display function of each geometry element is responsible for converting the ge-
ometrical representation of the element into the native graphics primitives and then
rendering them.

For composing and editing MRGeometry objects MRGeometry defines a set of

operations including

e Adding a geometry element to the geometry list
e Inserting a geometry element in the geometry list

Removing a geometry element from the geometry list

Replacing an element in the geometry list with another geometry element

Obtaining the index of a geometry element in the geometry list

Since the addition operation is used heavily in building geometries, the '+’ oper-
ator and '+=" operator are overloaded for this operation. They are defined both as
member functions and friend functions of MRGeometry. Using the overloaded opera-
tors makes adding elements to the contents of an MRGeometry object easier and more
natural. However, there are some limitations on using these operators. Generally, the
first operand of the '+’ operator should be a pointer or reference to an MRGeometry
object, and the second is a pointer or reference to any of the geometry elements that

can be added to an MRGeometry object. The result is always a pointer or reference
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to an MRGeometry object. When the second operand is an MRGeometry object,
hierarchical objects can be built up. It needs to be pointed out that the two operands
can not be pointers at the same time.

An MRGeometry object is in the DRAW state when it is created and thus dis-
played automatically. If an MRGeometry object is built to be added to other objects
as a child, then the object could be displayed twice, and probably with different
properties (e.g., different positions, sizes, or orientations). To avoid this problem an
MRGeometry object is set to UNDRAW whenever it is added to other objects as
a child object. The same thing happens if one MRGeometry object is assigned to
another. The one on the right side of the assignment becomes UNDRAW. If this
is not desired, however, the programmer can always change the drawing state of an
MRGeometry object manually.

MRGeometry has to define all the inherited methods, such as the draw method
from DisplayObject and the save and load methods from MRGeometryElement, for
its defined geometry. Basically, these methods are implemented by going through the
geometry element list of MRGeometry, calling the corresponding methods defined in

the elements.

4.7.1 Geometry Modification

In each rendering cycle, each DisplayObject object is first updated and then drawn.
The MRGeometry class makes use of this inherited update function to implement
geometry modification during run time.

In the next section we can see that each geometry element can have an application-
defined behavior function that determines how the element changes during the simu-
lation process. The update function of the MRGeometry class simply checks each of
the geometry elements to see whether it has defined a behavior function. If so, the
function is executed. In this way MRGeometry supports predefined dynamic scene

changes, and the objects in the virtual environment can have predefined behaviors.
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4.8 The Geometry Element Classes

We call all the classes that are derived from the MRGeometryElement class geometry
element classes. The MRGeometryElement class is an abstract class that defines the
basic interface for all the geometry element classes. Figure 4.2 shows the whole set
of these classes.

Each geometry element class defines a type of high-level geometrical primitive.
MRObjects provides a wide range of geometrical primitives. These primitives can be
roughly divided into five groups: physical geometrical primitives, physical geometrical
shapes, attribute elements, transformation elements, and light elements. Each group
may have a local base class that abstracts the common characteristics for that group.

All the groups are discussed in the following sections.

4.8.1 The MRGeometryElement Class

This class defines the general properties that all geometry elements have. They are

¢ Element name

Element type

Bounding box

Dirty flag

Pointer to behavior function

Reference count number

Each geometry element can have a name. All the geometry elements have a type
which is used to identify various geometry elements. Basically, each geometry element
class defines one geometry element type. The bounding box is an important prop-
erty which can support various computations, such as object selection and collision
detection. The dirty flag is used to record whether the element has changed or not.

It is set each time that the element is modified and cleared when the modification

54



MRPrimitive
MRShape
MRStatePushObject
MRStatePopObject
—MRColourObject
MRGeometryElement —— MRAttribute ——— MRMaterialObject
—MRTextureObject
—MRTextureMapObject

— MRAmbientLightObject
MRPointLightObject

— MRLightObject—+——MRDirectionLightObject
—MRSpotLightObject
—MRLightModelObject
— MRLightSwitchObject

—MRPushObject
—MRPopObject

— MR Transformation+——MRTranslateObject

—MRScaleObject
—MRRotateObject

—MRPhysicalGeometry—E

L— MRStateObj ect-[

—MRLineObject
—MRTextObject
—MRPolygonObject
MRPrimitive +—MRCubeObject
—MRWedgeObject
—MRPrismObject
—MRExtrudeObject

MR TriMeshObject
——MRMeshObject

MRQuadMeshObject

——MRSphereObject
——MRT orusObject
MRShape ——MRCylinderObject
—— MRConeObject
— MRDomeObject

Figure 4.2: The Geometry Element classes
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is handled. The purpose of this member is to assist with the efficient incremental
compilation of the geometry objects.

MRGeometryElement supports predefined behavior for geometry elements. The
behavior is defined by a function, called the behavior function. Generally, this func-
tion is provided and assigned to a pointer by the application. By default, the pointer
to the behavior function is set to null.

The reference count number is designed for maintenance purposes. It records the
number of places where the element is referenced. The element is removed only when
this number is zero, meaning that no object refers to it.

The MRGeometryElement class defines five main behaviors for all geometry ele-

ments.

e Saving the contents of a geometry element to a file

e Loading the geometry element’s definition, which has been previously saved by

the save function, from a file
e Displaying the graphics of the geometry element
e Computing the bounding box of the geometry element

e Handling geometry element modifications

MRGeometryElement defines save and load as its basic behaviors so that the
contents of MRGeometry objects can be saved to a file and also can be loaded from a
file. In this way the definition of an application’s virtual scene or just parts of it can
be reused by different applications. ASCII files are used to represent the geometry
element’s definition so that the information can easily be shared between different
hardware platforms.

The function for handling geometry element modifications checks the dirty flag to
decide whether certain actions need to be taken. One primary action is to compute
the bounding box. Whenever the geometry element is modified, its bounding box has

to be recomputed.
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These functions are empty in the MRGeometryElement class. Each derived class

should define its own version of these functions.

4.8.1.1 Geometry Element Modification

An application-defined behavior function can be used to accomplish dynamic geome-
try modifications during run time. We consider two approaches for geometry element
modification. One is to replace the geometry element with a new copy based on its
new definition. The advantage of this method is that it supports geometry element
sharing between geometries. Given that two objects share one geometry element at
the beginning, if one object wants to modify the element during simulation time, it
just makes a new copy of the element with the modification and leaves the original
element untouched, so that the other object can still refer to the original element.
This method, however, is not efficient since it repeatedly creates new copies of the
changing geometry element.

The other approach, which is employed in this implementation, is to modify the
geometry element definition directly. This approach is much more efficient than the
previous one. The only concern is whether it affects geometry element sharing. In
MRObjects a geometry definition is typically composed of three parts: physical ge-
ometry elements (e.g., a sphere), attribute elements (e.g., a red color), and transfor-
mation elements (e.g., a translation). Most geometry modifications can be fulfilled
through various transformations. For example, instead of changing the radius of a
sphere, we can use a scaling transformation. The position and orientation of a ge-
ometry element is determined by translation and rotation transformations. So in
most cases, to modify a geometry, only the transformation elements need to be mod-
ified. Generally, these transformation elements are not shared by multiple objects.
In conclusion, geometry element sharing is actually not a problem with this direct

modification approach.



4.8.2 The Physical Geometry Elements

The MRPhysicalGeometry class abstracts all the classes that represent physical ob-
jects, e.g., a polygon, a cube, or a sphere. One behavior defined in this class is
computing a geometry’s bounding box. The class also defines a list of vertices that
determine the bounding box. The vertex list must be calculated by each derived class,
while the bounding box computation function can be inherited by all subclasses of

MRPhysicalGeometry.

4.8.3 The Physical Geometrical Primitives

This group of classes represents geometrical primitives which have a fixed number of
vertices and a fixed number of faces by definition. For example, the MRLineObject
class defines a line with two vertices. The MRPrismObject class, a higher-level object,
defines a prism with 2n vertices, where n represents the number of vertical faces that
the prism has. Since this group of classes have a fixed number (normally not too big)
of vertices or flat surfaces, they generally have constant descriptions for their objects
and do not support level-of-detail. MRPrimitive is the base class for this group with
the stated abstraction.

Most of the classes in this group correspond to the graphics primitives that are
found in most graphics packages. The geometrical primitives defined under the MR-
Primitive class are Line, Text, Polygon, Cube, Wedge, Prism, and Extrude. At
present, triangular and quadrilateral Meshes are also classified in this geometrical
primitive group since they have only one representation for the meshes. However,
this may change in the future. An application may provide several meshes with
different level of details for an object; or a simplified mesh (with less triangles or
quadrilaterals) may be generated and used to represent the same object during run
time when time is crucial. Either of these situations suggests that the Mesh element
be placed in the geometrical shape group which is discussed in the next subsection.

Each primitive is defined by one class. All these classes define their save and

load methods for writing to and reading from files and the display method for their

58



graphics output.

4.8.4 The Physical Geometrical Shapes

This group of classes defines some typical higher-level 3D shapes with smooth surfaces,
for example, spheres. These shapes do not have corresponding graphical primitives
in most 3D graphics packages. The surfaces of the shapes are approximated by
triangular or quadrilateral meshes. The accuracy of the approximation depends on
the number of triangles or quadrilaterals (polygons for simplicity) used to represent
the surface. The greater the number of the polygons, the better the approximation,
and the slower the rendering. So one property of this group of classes is the level
of detail that controls how many polygons are used to approximate the shape. This
property is defined in the MRShape class, the base class for this group.

In most cases the geometry compiler decides on the optimal number of polygons,
and this number can change while the program is running. For a sphere, for example,
a large number of polygons may be required if the sphere is close to the user and large
in size, while a much smaller number can be used when the sphere is far away and
small. In some cases the application designer may also want to control the number
of polygons. This could occur when the designer is producing a special effect that
depends upon the number of polygons in the approximation. MRShape provides the
user with a public interface for doing this.

For higher efficiency, the vertex list used for computing the bounding box stores
only the vertices that define the shape’s self-defined bounding space instead of all
the vertices that approximate the shape. For example, a cone is bounded within a
pyramid, so only the five vertices of the pyramid are stored for computing the cone’s
bounding box. Sometimes, this can make the bounding box bigger than it really is.
However, it may not be a problem in most cases, and we gain in efficiency.

The shapes defined in this group are the Sphere, the Torus, the Cylinder, the

Cone, and the Dome.
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4.8.5 The Attribute Elements

The attribute elements specify the properties of attributes that affect the way that
objects are rendered. The attributes that are supported in this implementation in-
clude Colours, Materials, and Textures. The base class of this group of elements is
MR Attribute.

The MRAttribute class has a state property to specify whether an attribute object
is enabled or not, or whether it is valid or not. By default an attribute object is
enabled. If an attribute object is disabled, it has no effect on its following geometries.
An attribute object can be in the state of INVALID, this happens when errors occur
when the object is created. The existence of invalid attribute objects is a waste of
system resources (e.g., memory and time). Although the program can still execute,
expected effect may not be achieved. This is an issue of error handling. Further
investigation may be carried in future work. Each attribute class has a set of property
members that define the attribute and a public interface for setting and accessing
these properties. The basic behavior of an attribute object is to apply its properties
to the system. When an attribute object is displayed, the defined attribute is applied
to the following geometry objects until another attribute object of the same type is

encountered.

4.8.5.1 Texture Mapping

Texture mapping applies an image onto an object’s surface. Most graphics packages
support texture mapping. The problem is how to map a texture defined in 2D texture
space onto the surface of a 3D space object, i.e., to assign texture coordinates to the
vertices of a geometric primitive. There is no general rule for doing this, and it really
depends on the geometries and the requirements of the applications. In MRObjects
the texture coordinates and their mapping to geometries’ vertices are generally based
on each individual physical geometry element. Most of the geometries defined under
the MRPhysicalGeometry class have a predefined mapping from texture coordinates
to the geometry vertices.

MRMeshObject also provides a way of accepting application-determined texture
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coordinates. It has a data member recording the texture coordinates corresponding to
all the vertices of a mesh object. An application can provide the texture coordinates
when it defines a mesh object. Otherwise the texture coordinates are computed by
one of the coordinate mapping algorithms defined in MRMeshObject.
MRTextureObject and MRTextureMapObject provide a higher-level interface for
the application to specify the properties that describe how the texture is applied. The
texture itself can be an array defined in the program or an image file. At present,

GIF format images are supported.

4.8.6 The Transformation Elements

This group of classes defines geometrical transformations that are applied to elements
with geometrical properties, e.g., size and position. The MRTransformation class is
the base class of this group. It provides the general interface for all the transformation
classes and acts as a holder for keeping some global data structures that are related to
transformation operations. For example, it defines a static matrix stack for keeping
track of the transformations applied to the geometrical objects. This matrix stack is
used in bounding box computations.

The transformation classes include MRPushObject for pushing a transformation
matrix onto the matrix stack, MRPopObject for popping a matrix off the matrix
stack, MRTranslateObject for translation, MRScaleObject for scaling, and MRRota-

teObject for rotation.

4.8.7 The Lighting Elements

MRLightObject is the base class for defining various light sources. The light sources
supported in MRObjects are Ambient light, Point light, Direction light, and Spot
light.

All light sources have color and intensity properties, so these properties are defined
in MRLightObject. MRLightObject also defines a state property to show whether

the light source is switched on or off.
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All graphics systems are limited in the number of light sources that can be sup-
ported at the same time. We call each supported light source a light target. MROb-
jects provides management for mapping the light objects defined by the application
to the system’s light targets. This work is done mainly by the MRLightManager
class, which is discussed in the next section. MRLightObject has a data member to
record the target index that the light object has been assigned. If the target index is
INVALID, the light object is not associated with a system’s light target so it is not
enabled.

MRLightObject has a property-defining function for a light object to specify its
properties and a target-setting function that associates the light object with a system’s
light target. The property-defining function is empty in MRLightObject and must
be defined in each derived class.

The MRLightModelObject class defines the lighting model used in the application.
A lighting model specifies the global ambient light that is not from any particular
sources, whether the viewpoint is local to the scene or at an infinite distance, whether
lighting is enabled for both the front and back faces of objects, and the parameters
that determine how point light sources attenuate as the distance from them increases.
To prevent a complete dark scene when no light sources are defined, the global ambient
light intensity is set to a high value (e.g., greater than 70 % of the highest intensity
supported by the system) by default.

The MRApplication object provides a default lighting model. The application,
however, can customize its lighting model by changing the definition of the default
lighting model or by simply declaring its own copy of the MRLightModelObject ob-
ject. There is only one lighting model active at any time, and the MRApplication
object maintains the current lighting model.

MRLightSwitchObject is used by the application to switch a light source during
simulation. This is useful when the application wants to control the light sources in

the scene. Note that this class is derived from the MRGeometryElement class and

not from the MRLightObject class.



4.8.7.1 Defining Light Sources

MRObjects supports several types of light sources, such as directional light and point
light. Applications define their light sources by creating objects of the appropriate
subclasses of MRLightObject.

Generally, the light sources in the virtual scene have global effect. If a light is
defined in the scene, it shines on all the geometries. So in most cases we define the
light objects at the top level of the scene. Sometimes, however, the application might
need local light sources, i.e., the light sources have effect only on a certain part of the
whole scene. This is the case, for example, when some light sources do not shine on
certain geometries or their effect can be ignored. In such situation, the light sources
can actually be turned off for these geometries, resulting in simpler lighting compu-
tations. Applications can declare light sources locally with MRStatePushObject and
MRStatePopObject (discussed next) isolating their effects or use MRLightSwitchOb-

ject to switch a light source on and off as desired to obtain local light source control.

4.8.8 The Property Management Elements

In Section 4.1, we mentioned about global property maintenance. Since it is not
trivial, the MRStateObject class and its two subclasses, MRStatePushObject and
MRStatePopObject, are designed for this task.

A property is defined by an object of the corresponding class. For example, the
color property is defined by an MRColourObject object. For convenience, we call
the objects that define properties property objects. To achieve different rendering
effects for different parts of a virtual environment or isolating the effects of some
property objects, push and pop operations are needed for saving the current property
values, setting the local property values, and then restoring the original property
values, as for transformations. MRStateObject defines a property stack to store
the property objects that are pushed. MRStatePushObject and MRStatePopObject
actually implement the push and pop operations for saving and restoring the current

property values.
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The application can give a parameter to the MRStatePushObject object to specify
which properties are to be saved. If the parameter is not provided, then all the
supported properties are saved. MRStatePopObject does not need such a parameter
and it always knows what to restore.

The properties that are currently supported in MRObjects includes colors, mate-

rials, textures, light sources, and lighting models.

4.9 The MRLightManager class

An application can define a couple of light sources. Most graphics systems support a
limited number of light source targets. A light source defined in an application has to
be bounded with a system’s light source target to take effect. The MRLightManager
class is responsible for managing the application’s light sources and associating them
with the system’s light source targets.

A light-switching method is defined in MRLightManager to do most of the man-
agement work. When an application creates an MRLightObject object, or when a
light object is switched on, the light-switching function is called to allocate a sys-
tem light source target. If there are light source targets available, the light object is
associated with one target. If not, the light object does not have any effect on the
application. When a light object is switched off or destroyed, if the object is bound
to a system light target, the target is released by the light-switching function.

This is another example in which a non-trivial management task is undertaken
by a separate class. There is only one MR LightManager object in an application and

this object is under the control of the MRApplication object.
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Chapter 5
Building MRODbjects Applications

In Chapter 3, we showed the basic structure of an MRObjects application with a
simple example. In this chapter, we discuss the development of VR applications using
MRObjects in more detail. First, we show the application development model with
MRObjects. Then we demonstrate the general steps in constructing an MRObjects
application, identifying the parts provided by MRObjects, and the ones that must
be provided by the application developers. We use two projects, conducted by the
Computer Graphics Group at the University of Alberta, as examples to show how
MRObjects can support the development of VR applications. One is the Athabasca
Hall Walk-through project, which was done more than a year ago. The other is the
3D ATM Protocol Visualization project which is still being carried out. At the end

of this chapter, we discuss the benefits that applications could obtain from the use of

MRObjects.

5.1 Application Development Model

Figure 5.1 demonstrates the application development model using MRObjects. MROb-
jects sits on top of the MR Toolkit which provides the device handling and other
low-level support. An MRObjects application never interacts directly with the MR
Toolkit. Ideally, an MRObjects application is built only on top of MRObjects, using
the portable programming interface provided by MRObjects. However, MRObjects
may not meet the needs of all applications. An application may call the native graph-
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MRObjects
MR Toolkit
Native Graphics Package

Operating System

Figure 5.1: Application development model

ics package or other system libraries and facilities. In such case, the portability of
the application depends on the portability of the graphics package and the system

functions.

5.2 Building MRObjects Applications

Generally, as mentioned in Chapter 3, an MRObjects application can be built in three

steps which are discussed as follows.

5.2.1 Declaring the MRApplication Object

The MRApplication class is the key class that is responsible for controlling the appli-
cation. In the development of an MRObjects application, the first step in the main
function is to declare an instance of the MRApplication class, the only one MRAppli-
cation object. Since all the objects and devices of an application are under the control
of the MRApplication object, it has to be created before declaring any other objects.
MRApplication has a set of default parameters for configuring the application. The
developers, however, can customize their applications by providing command line
parameters or by calling the public member methods of the MRApplication class.
After the MRApplication object is created, for example, an application may choose
a navigation metaphor by defining a ViewObject object of the appropriate kind and
assign it to the application’s only one ViewObject object by calling the setViewOb-
ject method of MRApplication. The application may also call the MRApplication’s

member functions to set the position and size of its display window.
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5.2.2 Creating Virtual Scenes

Every application has its specific virtual scene to build. The application developers
should first design and model the scene to determine how it is constructed. MROb-
jects provides support in creating a well-defined scene and rendering the scene. For
defining a virtual scene, an application needs to declare objects of the DisplayObject
class or its derived classes. The MRGeometry class, a subclass of DisplayObject,
provides the portable interface for geometry modeling and is generally used in scene
building.

If a virtual environment is composed of general geometries such as polygons,
spheres, or extrudes, it is much easier to build the environment using the MRGeom-
etry class than with general graphics packages. Generally, applications first declare
objects of the MRGeometry class for their geometries to be defined. At this point, the
MRGeometry objects have no elements in them. Then they use the overloaded '+’
operator to add elements to the contents of the objects. The applications may also
define behaviors for their geometries. The '+’ operator of the MRGeometry class and
the factory functions corresponding to the geometry elements make the scene-building
process direct and easy.

When the scene is defined, the application developers have little else to do. They
need not worry about how the scene is actually rendered because the display of the
virtual environment is left to MRObjects, saving a considerable amount of develop-
ment time.

However, it is not possible for MRGeometry and all the geometry element classes
to provide a full set of geometries that meet the requirements of all applications.
When it is not convenient to define a scene model using only the MRGeometry in-
terface, an application may derive classes from the DisplayObject class to implement
graphics definition and rendering following the basic protocol of the DisplayObject
class. The native graphics package is likely used to define the display method for
graphics rendering. As a result, the portability of the application is not guaranteed.
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5.2.3 Running the Application

After an application has finished defining its virtual scene, it generally only needs
to call the run method of the MRApplication object. At this point, the application
enters its simulation loop. The control of the application is handled by MRObjects.

5.3 The Athabasca Hall Walk-through Example

The purpose of this project was to implement a virtual walk-through system for

people to examine the structure and interior design of Athabasca Hall, to which the

department of Computing Science is moving.

5.3.1 The Original Implementation

The project roughly consisted of the following work:

e Obtaining a proper scene model

The original model for Athabasca Hall was a 2D physical plan which was repre-
sented by a number of DWG files from AutoCAD. These files were first converted
to self-defined text files. Then a 3D model was designed based on the original

2D model.
e Preparing images for texture mapping
e Designing the rendering model

Implementing scene culling and rendering

e Implementing navigation and viewpoint-scene collision detection algorithms

The project was originally done using the GL graphics package and the MR Toolkit

on SGI workstations. It took two graduate students about six weeks to finish.
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5.3.2 Implementation with MRObjects

The first three parts of the work are application-specific problems that need to be done
by the developers no matter what software and platforms are used. MRObjects can
provide support for the rest of the work. At present, culling and collision detection
have not yet been implemented in MRObjects. However, they are generally required
facilities and will be added in future development.

The scene in the project is relatively simple. It consists mainly of polygon and
extrude geometries, which are supported by the geometry elements defined in MROb-
jects. In this case, it is quite easy to define the scene with MRObjects without much
programming.

This example program consists of two major functions: a main() function and an
object-creation function, the latter of which reads data from a data file and creates
the corresponding geometrical objects. We use a flat object structure to represent
the geometry of the scene. So only one MRGeometry object is defined. A pointer to
this object is declared as a global variable so that the MRGeometry object can be
referenced in both functions.

In the main() function, the MRApplication object is first created, followed by an
MRGeometry object. Then the scene is defined simply by adding all the geometries to
the contents of the MRGeometry object. Texture mapping is used to achieve realistic
effect. An MRTextureMapObject object, defining the texture mapping parameters,
and an MRTranslateObject object, translating the geometry’s center to the origin
of the world coordinate system, are first added to the MRGeometry object. Then
the object-creation function is called for each data file to add all the geometries
to the MRGeometry object. For applying different textures to different parts of
the scene, an MRTextureObject object with appropriate texture definition is added
to the MRGeometry object before the geometries that use the texture are added.
When the scene definition is finished, the main() function calls the run method of the
MRApplication object to start the simulation.

In this example, we also show how to define a behavior function for a geome-
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try element object, an object of any derived class from MRGeometryElement. One
problem in rendering the building is that the interior and exterior appearances of the
outer walls of the building are different. This means that we cannot simply use one
texture for all the walls. The original implementation used two different textures.
When the user is inside the building, a texture for the interior-wall is used; when
the user is outside the building, a texture representing the outside appearance of the
walls is used. So the texture used depends on the run-time position of the user’s
viewpoint. With MRObjects this is implemented by defining a behavior function
for the MRTextureObject object which applies the exterior-wall texture to the outer
walls that follow. The behavior function tests whether the user’s viewpoint is inside
the building. If so, the texture object is enabled, and its defined exterior-wall texture
is applied. Otherwise, the texture object is disabled, and the interior-wall texture,
which was defined earlier in the MRGeometry object’s contents, is used.

It only took several hours to implement the rendering of the building (except the

stairs) with the support of MRObjects.

5.4 The 3D ATM Protocol Visualization Example

5.4.1 Background

ATM (Asynchronous Transfer Mode) is a layered protocol for high speed networks
which support a multiplicity of services. The goal of the 3D ATM Protocol Visualiza-
tion project is to investigate 3D visualization techniques which can provide effective
error detection and performance analysis for ATM protocol data [13]. The main re-
sult of the first stage of this project, the result of a Master thesis, was a visualization
prototype running on HP workstations using the Starbase graphics package and the
MR Toolkit. This example is based on this prototype.

The ATM protocol data consist of several layers forming a protocol stack. The
developers of the project designed a ring structure to represent the stream-line style
data for each layer. Data on each layer are composed of a number of protocol data

units and are displayed on an individual ring. Different 2D geometrical shapes and
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colors are used to represent different protocol data units and different information.
The scene representing the whole protocol stack is composed of several rings, and
each ring has a lot of details on it.

In addition to the visualization model, the developers have spent a lot of time
implementing a user-control interface, which enables users to change the parameters
that control the data display, and a navigation scheme for users to navigate through
the virtual 3D data space. They also have to render the scene using a low-level

graphics package.

5.4.2 Implementation with MRObjects

For information visualization problems, there are no general rules to follow on how
to represent a data set. Every visualization application seems to have its own unique
problems.

MRObjects cannot reduce the effort of designing an appropriate model to visu-
alize the ATM protocol data. However, MRObjects can support the developers in
implementing their design. The user interactive control techniques and the naviga-
tion metaphor used in the prototype are not unique to this project. They could
be provided by MRObjects. A rich set of interaction techniques will be employed
in MRObjects so that the time spent on developing these techniques by individual
developers can be saved.

MRObjects can also help in modeling the geometry in the project. But it is not
as direct and easy as in the first walk-through example. The overall structure of the
scene in this visualization project is simple, but the details are fairly complicated.
It may not be appropriate to simply use the geometry element classes currently pro-
vided to define the scene. A possible approach is to define one or more subclasses of
DisplayObject. The derived classes will both implement the inherited interface from
the DisplayObject class and add application-specific features.

To quickly integrate the visualization project into the MRObjects framework, we
simply derive a class from DisplayObject. This class is implemented as an interface

between MRObjects and the original program of the project. The display function of
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the class simply calls the draw function in the original Ring class for all the rings to
be displayed. Of course, the original Starbase graphics calls have to be replaced. We
tested this example on SGI workstations and used the GL graphics package.

5.5 Discussion

We used two actual projects as examples to show how to develop VR applications
with MRObjects. Since the MRObjects’ implementation for SGI platforms, which this
thesis is based on, is not complete (in particular, it lacks support for various interac-
tion techniques), our implementations for the two projects were not full-fledged with
respect to their original implementations. We could not really show how much work
could be saved using MRObjects compared with the original development. However,
we clearly saw what work could be done by MRObjects, instead of the application
developers and what effort could be saved with the support of MRObjects. In the first
walk-through example, MRObjects greatly simplified the work of scene definition and
rendering, and the resulting application is much easier to maintain and accommodate
new requirements. The program implemented with MRObjects was easily ported to
the newly opened VizRoom environment (at Computing Science Department of the
University of Alberta) with little change. It would be much more difficult with the
original implementation. With the second visualization example we demonstrated
how to integrate an existing application into MRObjects.

It is certain that the work for developing these two projects would have been
much easier with the help of MRObjects. More importantly, since the development
of applications with MRObjects is at a higher object-level, the development process
is more intuitive and less demanding on system-specific implementation details. The
applications developed arc more maintainable, flexible, and portable.

The two projects have quite different characteristics, demonstrating that MROb-

jects can provide general support for various kinds of applications.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

MRObjects is an object-oriented toolkit as well as a framework which provides high-
level support for the development of VR applications.

The MRApplication, DisplayObject, and InteractionObject classes form the cen-
tral part of the framework, defining the structure of the applications. The MRAppli-
cation class is responsible for the management of the application, the DisplayObject
class provides the basic interface for objects with graphics output, and the Interac-
tionObject class defines the basic interface for various interaction techniques.

One of the primary goals of MRObjects is to produce portable VR applications.
This goal is achieved by the high-level, platform-independent graphics description
interface which is implemented by the MRGeometry class, the MRGeometryElement
class and all its derived classes. These classes are twofold: a portable application in-
terface and an underlying platform-dependent implementation. The implementation
in this thesis is for the SGI workstation platforms.

MRObjects supports a wide range of devices which are employed in various inter-
action techniques. The application developers need not handle these devices. They
need only to specify what devices they would like to use and, typically, select the
interaction techniques as well. MRObjects handles interacting with the devices.

The task of an MRObjects application is to create an MRApplication object,
define objects of MRGeometry or subclasses of DisplayObject to build the virtual
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environment, declare objects of subclasses of InteractionObject for desired interaction
techniques, and then put the environment into execution.

The MRObjects implementation of this thesis is not complete. It can only support
virtual environments with static scenes or objects with pre-defined simulation and

limited interactions.

6.2 Future Work

The work of this thesis can be considered the first step in building the MRObjects

system. There is still a lot of work that needs to be done.

6.2.1 Interaction Techniques

A main aim of MRObjects is to support full 3D interaction and provide VR application
developers with a rich set of interaction techniques. Most of this work is left for future
development.

At present, the main focuses of the interaction techniques are navigation and effec-
tive user control over the environment based on the requirements of the applications
we are working on.

Navigation is always a major concern in a 3D virtual space. As a toolkit, MROb-
jects should develop various navigation techniques which serve different requirements
as well as cognitive concerns. In addition to the navigation schemes implemented,
more metaphors need to be developed. For example, navigation with respect to a
specific target and constrained viewpoint movement in order to prevent the user from
easily getting lost.

In all the navigation schemes, a way of recording the history of the viewpoint
changes during the simulation seems useful in assisting the navigation. For example,
if the user gets lost in a virtual environment, he/she may want to go back to a
previously reached position and orientation to continue his/her navigation.

Menus may be used to provide effective and intuitive user control. A variety of

menu techniques have been developed here in the Computer Graphics Group. The
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MR Toolkit supports panels, and some other types have also been used in other
systems. We may take advantage of the work already done in developing the user
control interface for MRObjects.

Since MRObjects is a general-purpose package, an even wider range of interaction
techniques needs to be developed to meet the general requirements of a wide range
of applications. Direct object manipulation techniques, e.g., grabbing an object and
placing it at or dropping it to another place and changing the properties of objects,

are required in some VR applications and may be provided in MRObjects.

6.2.2 Behavior Support

For most VR applications, objects in the virtual environment tend to have certain
behaviors. The behaviors can either be predefined animations or responses to user
interaction. The present implementation supports only predefined behavior through
user-defined functions. In order to support fully interactive VR systems in which users
can actually interact with the virtual objects and objects may interact with each other,
interaction response behavior should be explored and added to MRObjects. We need
to investigate different scenarios from the application point of view to determine ways
of supporting various kinds of behavior.

One consideration on assisting simple predefined motion or animation, such as a
regular translation or rotation, is to define dynamic transformation elements. These
elements can be derived from the normal transformation elements and provide regular
delta changes in size, position, and orientation. For example, a dynamic rotation
element can provide self-rotation animation, and the application needs to provide
only a delta value for rotation angle, rather than a function for defining the proposed
animation when specifying the dynamic rotation element. Another benefit is that the
defined animation can be saved along with the definition of the whole geometry. This
idea needs further consideration on what potential animation abilities and behavior

should be provided by the dynamic transformation elements.
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6.2.3 Collision Detection

As long as the objects in a virtual environment move, collision detection should be
provided so that objects do not penetrate each other and they behave as in the real
world. Collision detection is an important part of the future work for MRObjects.

Collision detection can be a very intensive computation in VR applications which
are real time environments. With the present hardware performance any feasible al-
gorithm has to use some kind of approximation to detect possible collisions. Collision
detection based on bounding boxes is a reasonable scheme which greatly simplifies
the computation and adequately meets the constraints of a real-time virtual reality
system [8].

At present, a bounding box is defined as a basic property of the MRGeometryEle-
ment class for all geometry elements. It provides the basic support for a bounding

box based collision detection algorithm.

6.2.4 Rendering Performance Improvement

Generally, high-level graphics support can increase the portability of the application
but at the same time decreases the rendering speed. To ensure high performance
as well as achieving portability, MRObjects will make use of the geometry compi-
lation techniques that have been developing here at the Computer Graphics Group.
Based on this approach, a geometry compiler is implemented to convert high-level
geometrical object description into the most efficient set of display primitives for the
underlying platform. For objects with static descriptions, the compiler is executed
only once to produce the highly efficient graphics primitives. For objects whose de-
scriptions change dynamically, an incremental compiler can be employed so that only
the changed part of the object description needs to be recompiled.

Culling may also be used in MRObjects in the future to improve the rendering
speed of the virtual world. The basic idea is to remove the objects outside the viewing
frustum before rendering. This is especially useful when the virtual world is big, the

number of objects is large, and the objects are complex, and, as a result, the time
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that is spent on rendering invisible objects is far greater than the time spent on the
culling computation. The application should be able to turn the culling on and off
according to different situations.

The MR Toolkit is based on a decoupled simulation model in which multiple pro-
cesses can be designed to fulfill the application’s task collaboratively. MRObjects
should take advantage of this functionality of MR and implement a multi-process
structure for VR applications. One process, for example, performs stereo graphics
output if the application uses stereo display, and one other process performs simu-
lation computations. In this way, the rendering performance can be improved. In
contrast to the MR Toolkit, the multi-process structure in MRObjects should be
transparent to the application. The developers should not worry about how to define

separate processes for computation and other sub-tasks of the applications.

6.2.5 Others

For easier virtual environment modeling, more geometrical elements need to be added
to MRObjects, such as sweep objects, terrains, and 3D text.

For direct scene building and easy testing, an interactive scene editor is desir-
able. This task may be fulfilled by making use of the previously built 3D modeler
~ JDCAD+ [10][15] which allows users to design object geometry and behavior to
construct interesting virtual environments without programming. The result can be
saved to a file which can be loaded into an MRObjects application.

Some popular 3D object file formats, such as DXF and VRML, may be supported
to facilitate the interaction of MRObjects with other 3D environment modeling sys-
tems and integrate available 3D models.

Support for multi-user and networked applications could be a big part of future

work.
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