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ABSTRACT L ' '
. [ ¥ ‘ R e
. y . al Ar#g§'f

. ¢
For any locally compact group G, Ilet VN(G) denote the

. von Neumann algebra generated by®the left regular representation of

G. We show that, if the finite part of UN(G) 1is nonzero, then it
, , : SN

is isomorphic to 'VN(G/K),. where K 1is a certain compact normal

. subgroup of G. Groups for which VN(G) has a nonzero Type I,
finite part are characterized.. For such groups we show that there is
a compact normal subgroup K of G such that the Type I, finite

part of VN(G) 1is isomorphic to VN(G/K):. . ' BN

.

) We glso investigate the center, Z, of UN(G). We show

that, for [SIN}%r Ppé,‘yz is contained in the von Neumann -subalgebra

. 4

of VN(G) that is Zfnerated by the elements of G- with relatively
compact conjugacy classes. An example is given to show that this #s
not true, in general, even for the class of unimodular groups.

]
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l. It roduct ion

Let - G be a locally compact group and UN(eH the von
Nevmanns alpebra generated by (e left repular representation of 6 on
")

LGy, Definitions and the terminologies used in this introduct ion

can bhe f(”ll;d in Chapter 2.

The structure nf' N(G)  as a von Neumann algebra is «:los'ely
tfud to the Lopologicél group structure of - G, A trivial example is
that  UN(G) is an abelian von Neumann algebra if and only if ¢ «is an
abelian group. The purpose of what follo@s is to investigate this

N e
conngction between the structures of VUN(G) and G. “Much of what is

alreadv known is outlined below. .
In" 1950, Segal [28] showed that VUN(G) is semi-finite if G
is a unimodulﬁr group. UN(G) is alsé semi-finite if G 1is a connected
groﬁp as was;shoﬁn in 1969 by Dixmier [S]. A gap in Dixmier's proof
was corrcected by Pukanszkv [25] in-1972. In [3] (13.10.5), Dixmier
proved that VN(G) 1is a finite von Neumann algebra if and only.if
C is a [SIN]-group. This result goes back to the work of Godement,
in the early 1950's, po the theorv of characters ofba locally compact
group ({10], page 46).
More Yrecently, in [17], Kaniuth gave necessary and sufficient‘
conditio;s on the structure of a [E[N]—group_ G, fof UN(G) to be
Tvpe 1 or Type IIi. For discrete grcups G Fhe conditions for UN(G)
to be-Tvpe I or Type IIl Qere presented‘in a more elementary fashion
by Smith in [30].  This ehabled Formanek, in [9], to prove that the

Tvpe I part of VN(G) is isomorphic, in a canonical manner, to UN(G/K),

.



\

whore K is g well detined SFinite normal subproup of . Formanek "«

-

work prompted this author to investivate whether or not similar

characterizations hold for nondiscerete proups.  The results of these
iHVvﬁtixutiunu constitute this thesis.
Y , - . . : .
InChapter 4, conditions on G are given for  UNG)  to
have g nonzero finite part.  When nonvero, the finite part of  UN(G)
is isomorphic to VV(()/Kf), where Kf is n certain compact normal

B

subgroup of G,

The interscection of the Type I parc and the finite part of

UN(G) is reférred to as the Type I, finite part of VN(G). Necessary
and sufficient conditions are found omn G for UN(G) to have a

nonzero Type I, finite part. If G satisfies these conditions, then
oo

there exists a compact normal subgroup, such that the Type I,

kI,f'

finite part of VUN(G) is‘isomorphic to VN(G/KI ). The theorem which

f

provides conditions on G, for VUN(G) to have a nonzero Type I,

finite part is a direct generalization if Kaniuth's theorem in [17]

which gives conditions on a [SIN]-group C for VN(G) to be Tvpe IIl.
The proof of this generalization, which appears in Chapter 6 is very

different and simpler than Kaniuth's proof of the result for [SIN]-groups.

The identification of the Tvpe I, finite part of VN(G)
with VN(G/KI’f) is d‘generalization of Formanek's result mentioned
earlier. \ 4
On a slightly different theme, the center of VN(Q) is
investigated in Chapter S. Results that generalize known results on
discrete/groups were found Spr [SIN]—groups. Since these résults depend

heavily on the finitness of UY(G) when G is a [SIN]~group and find

application in the chapter on the Type I, finite part of UN(G), the



AW

chapter on the center i wedyed hoetween the chapter on the tinite part

ot VNG and the one on the Type I, tinite part. It is shown by

cxample that the results on !hv«rvnlwr do nut hold in peneral for
non - A IN-proups,

Proeliminary Jetinitions and necessary Facts trom the areas
of von Neamann alyebra theory and abstract harmonic analwysis are presented
in Chapter 2. Al thouph this makes for tedious r¢;n‘lix\)z, it i3 convenient
to have all preliminaries vathered together. .

A In Chapter 3, several propositions are sintud and proven.
Thev provide Lﬁc tools that will find frequent application in later
chapters. In particular, the technique used in associating central
projections in UN(G) with compact normal subgroups of G s presented.
"Chapters 4, 5, and 6 contain the results discussed above on
the finite part, the center and the Tvpe I, finite part. The results

on the Tvpe I, finite part can be extended to general representations.

This is included in Chapter 6.

The final chapter is # concluding summary of the techniques

and results of this thesis.



Notation o and Preliminar tess

This chaptaer ‘.111‘.?; ot three cction, The tir-t et ion

Codeal s with seneral von Neomann o alpcebras oand rhe tacts aboat thetfr
. »

classitication wcheme that will be ased tater. the secomd sect ion

list: come notation from the theory of harmonic aualviaia on locally
0

conpact groupn that will be ased trequentlve Ao the derinition and

w "
hasic properties of the von Neumann alpebra generated by the lefr

regular representation are given.

.

/

7/
the )hpongirul groupvproperties of locally compact groups. From time

The third section contains thepertinent definitions involving

to time, in later chapters, these properties will be mentioned as

necessarv, so thev are gather™ together here.

Additional details on von Nuuma;§ algebras tan be found in
Dixmier {4} or Sakai [27]. . Hewitt and Ross [13] is a.basic reference

for harmonic analvsis. Many of the well known results in either area

will be qj;cd without explicit reference® i
N ¥
N ) VO NEUMANLY ALGEBRAS

If # is anv Hilbert space, let B(H) denote the algebra of

all bounch linear operators on H. The weak operator topology on  B(H)

?

- . B . ) ; .
is that topology determined bv the family of semi-norms [P :5,n < Hi,

-

where

P. (Ty = "-T7 -, for all T

~

'

The words "weak opcrator topology' will usually/be shortened to WOT.
¥

e -
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-.are denoted as. follows:

E. ts said to be'purely_iﬁfinite; or Type IIT, if E dominates

. _ P
no nonzero finite projec¢tion,
. . " .- >
-_—t

T

& 1s $said to be properly'%nfi%ite if E dominates no nonzero
finite central projection,
é\vis said to be Type II1 if it is semi—finite and dominates no

nonzero abelian projection.

A

E is said to be Type 11, if it is both Type II and finite,

E is said to be Type I, finite if it is both Type I and

finite.

. %“The ven Neumann algebra M .18 'referred to ﬁé being in any of

- o

the above classes if its'fdéntity element, I, *belongs to fhat'class.
For anywof the above classes there exists a maximal

central projection in that class which dominateslall other central

projections in that class. For convenience these central projections

e .
o

Let. EI denote the maximé} Type I central projection, °
EII” denote the maximal‘Type II ‘central projection,
' DN fe naxima be I s & j i
FIII dgnoteAth%;ngimal Type IIT central projection,
‘EEI denote the maximal Type.IIl central projectioﬁ,
,1 TN '
Ef - deno%e the maximal finite central projection,
! v
Eé . denote the maximal somi~fiﬁitq central pfrojection,
f/‘ T .- :
" E. [ denote the maximal Type I, finite central projection.

THe following relations hold,

Es)

M
|

thrr T BeFrpr = Erifrrg = 0s



tr
|

2]

23]

The ,equation, I = E_ + E + E

I 1 I decomposes M as the

direct sum. M = EIM ® EIIM ® EIIIM’ of von Neumann algebras of Types

I, TL and III respect{vely. -Simildrily,

M= A _
M Efie (1 Ef)M,

o

isﬁé decomposition.of M into a finite von Neumann algegra and a
p;operly infihife»von Neumann algebra. Throughout the later chapters
EfH will bé known as the finite part of M and ‘similarily for the///.h
other distinguished céntral prajections of M. | |

The Type I, finite part of M can pe further decomposed in
a useful manner.

AFof each positive integer n, a von Néumann.algebra N is
said to be Type In if there exis;sba family of n hmutually orthogonal;.
equivalent, abelian.projections which sum as the identity in N. This
is cquiyalent to N being isomorphic to the n =< n-matrices over its
center (Sakai (271, 2.3.3).

In M, there exists a maximal central projection En"of

Type In (that 1is, Eh“ is Type In), for each positive integer n. The
elements of {En: n = 1,2;~°'} are mutually orthogonal.-and
E = 7 E



. v n

. / . -
M i said to be Type I<n if I = Z Ek'
: | = k=1 -
2.1. Remark. If M 1is not of Type I(ﬁ, then there exists a copy of
Cn+l (the (n+1)-(n+l)-complex matrices) in M.

To see this, note that if M is not of Type'I(n, then there

exists a set of (n+l) mutually orthogonal equivalent projections in M.

As in Lemma 9.3 Jf Smith [29], a copy of Cn+l can then be constructed’
in M.

1
A /v

For any natural number k, let Pk denote the standard

polynomial in k non-commuting variables

o

~ - — O - s @
Pk(al,aza"" - Ek_l) aO(l)aG(Z) aO(k),

o

where the sum is over all permutations ¢ of {1,-++,k}  and (—l)0

denotes the signature of the permutation.

2.2. Remark. (Amitsur and Levitski [1]). For any ccmmutative algebra

R, let Rm dénote the algebra of m x m-matrices over R. Then R
satisfies P2n ﬂthat is, P2n is identically zZero on Rm) if and only

Af m < n.

2.3. Proposition. et Mo i a weon Jewmary alaszirg and T a N taral

[ T, o . - AP ~ Prasag ~ s
roiior. Then Moopgtdsfies P L7 and orl

© .

Prooff i1f M satisfies P then Remarks 2.1 and 2.2 imply that M

2n’
is of Type Iip. . . - N
Conversely, if M is of Type»I(n, then M can be written as
the direct sum of algebras Mk’ l'i_k < ng where each Mk is of Type

Ik. By Remark 2.2, each Mk satisfies PZn' Therefore M satisfies

P’



2.4. Proposition... Let N Be a von Newwmaom sulaliebra of M having

£ owe ddentity element, IS M has a rnoncero Type I, SJinilte part,

2

then so does N,

- Proof: Let ~En be a nonzeféIType [n central projgction iq M. The
two-sided 1deal_of N given by (T ¢ N;TEn,= 0}, 41s of the form FN
fér some projecgion F,. cenfral iﬁ' N. The projection 1I-F " is nonzero
and (I-F)N is isomgfphic to ?nN. Therefore (I-F)N satisfies .PZn
and by Proposition.2.3 is a Type I<n von Neumann algebra. Hence N has
a nénzero Type i, finite part.

| Proposition 2.4 is essentially Lemma»l,ovaablansgy {19].

If .M is any von Neumann élgebra, ghen M has a unfque
predual. That is, there e#istsué unique, up td iéémorphism, Banéch
spaée, M, éuch that ,M*=‘(M*)*, Thé‘topolpgy of the duality,

M, M), <is'teferred to és the G—topdlbgy on M.

. ' An élement ¢ . in M* is said to be positive if, i o

. ’ * . »
(4, T T) >0, for all T e M.

If % 1s positive, then H¢]|= (¢,1).. To each-positive ¢ in M*,

-.. there corresponds®a projection, S(¢), in Mp; c%lled the support of’

4 in M, such that foroany P e Mp,

o

(v,P) =0 1if S(s)P

i)
(@]

“(4,P). > 0 - if 0 # P < S(9).

| A

Furthermore, for all T ¢ M,

3

(¢,1) = (5,8()T) = (¢,TS($)).

See Sakai [27], page 31 for the proofs of these facts.’ - 4 °

1 . o



“the Banach space’ of bounded 'continuous complex valued functions on G .

compact support, respectively.

10.

N
)

A QOSitive' ¢ ¢ M, "is called a finite O-continuous trace

or simply a-trace on M if,
4,1y =|l¢]l = 1,
and : . ' \
. * . . u
(6,0 TU) = ($,T), for all T ¢ M, U ¢ M".

Note that, if ¢ 1is a trace, then S(4) is a central projection.

in M can be -

S

The maximal finite central projection, Ef,

characterized .as,
<

Ep = 1.u.b. {S(¢): ¢ is a trace on M},

This concludes the listing of basic facts on von Neumann
N _ ;

-algebras. ' .

LOCALLY COMPACT GROUPS T .

' . L E ‘ ‘ ) \\c |
Let G denote a locally compact group. Let CB(G) Eénggs _

\\

with the supremum norm. Let CO(G) and COO(G) denote the subspaces

G

of CB(G) consisting of functions that vanish at infinity and with

Let M(G) denote the Banach algebra of bourided, regular,
Borel measures on G with convolution as multiplication and total

variation as-norm. As a Banach space M(G) is identified. with the
dudl ofd’ Cd




. . 1 ' ‘ . 11.

Let the left invariant Haar integral on C;O(G)' be denoted

by

'f f(x)dx or Jf(xjdx, ®ror all £ e ¢ (G).
G . g [oXe]

\

Left invariance means,\

) 1 o . .
Jf(yx)dx = Jf(x)dx, for all. % € G, f « COO(G).

If A is a Haar measurtﬁii;iﬁ;éet of é,‘-then ﬁhevHaar meas:re 6f A
is denoted JAl. ‘ - : ' o )
‘Fo; 1 <p <=, let Lp(c)u~dénote the usual épéces, where
G is equipped.with left Haar meésure. Undér’the ihner p}oduct, _ |
<ffg> = Jf(x)é(x)dx, tﬁeAspacé_ LZ(G)..is a Hilbert space. o -
| For any complex valued ﬁuhéﬁions f and g on G and any

x € G, the_following.notacion is used.

g(x)

]
"
—~

»
~—

F(x)

il
Hh
~

]
~

zxf(y),= f(x‘lyf, for all y ¢ G,

- r £ £(yx) , for all y e G.

fxg(x) = ff(y)g(y_lx)Qy, whenever ;he»righb side exists.

o . _ | oy ‘
- Notice, that if f,g ¢ LZ(G) and x < G, themn (f*g) (x) =

<2 flg> and (f*g) e C_(G)

2 flg and g) € C, .

o | . : S
, <ﬁé0ally {RX: x = G} will be considered as a set of operators

2 . . i . . *
on L7(G), 1in which case they are all unitary operators with 2* = ¢ —1°
. . ’ o . X
In fact, the map x = EX '1s a continuous unitary representation of . G

on L (G), where continuity is with respect to  the weak operator

topology. . The symbol, £, will also be used for the induced representa-

4

.. -



B(LZ(G)), then VN(G) =;{fx; x € GF'.

\\ - _ , B . 12.

& \

tion of the algebra M(G) -in B(LZ(C)). For & < M(G), the bperafor
2.{(u) 1is. such that ‘ \ : -
o (f -
<) flgr = J JQK E(y) gly) dy dUXX)
cwe 2
. = <w*fig-, .for all f,g\c L7(G).
T 7 . . ‘ . \ 2 '

Hence,  £(u) 1is the operator of left convolution by\ y on L7(G). If

f ¢ Ll(C), then Q(f). is left convolution by f oﬁ\ LZ(G).
.Let VN(G) denote the von Neumann algebra %enefated by
‘ ‘ !

{2 : x ¢ G} in B(LZ(G)). Then, !
xT ‘ N _ L

‘,VN(G) = WOT-cl R(M(G)) = WOT—clgz(Ll(G)).

Also, if .{rxj x'e G} 1is considered a set of elements of :

b3

In [8],'P. Evmard showé that\‘VN(G)"May be identiffed wiﬁh
the dual éf the Fourier:aigebra, A(G), of G. The Fouriér algebra
may bejdescribed ;sﬁthe sﬁb§pacé of 'CO(G) ?onsi§ting'of all funé;ions
of the form A(f*g)v,' for f,g.e LZ(G). Each T ¢ VUN(G) acts on. A(C)
as follows, for @ =.(f%g)v € AZG).. . - l i . -

N

(3,T) = <Tf|g>.

In.[8], Eymard defines a nbrm on A(G) such éhat A(G)  is a Banach

space.and the above action of UN(G) on A(G) identifies ‘VN(G)

with the dual of A(G). .Here, the'nofm bg A(C) will be éalcdlétéd_by

means of -this duality.. | |
Aﬂ.element %. of A(G) will be considered either as a

contiﬁuous>fuﬁétion én G or as a cfcbnﬁinubus linear functional on

. . . . . <
UN(G), whichever is convenient. . For instance,

o
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h -
[ ' . \

$(x) = (4,2), for all x ¢ G.

o— ~ N ?

Note that, since the gét of maps T > <Tflg>, for f and

g in LZ(GXU are exactly all the sS-continuous linear functionals on
VN(Q), the weak.opcralor topology anq the *—top;logy on UN(C) coincide.
\ : ‘ Let Pl(Gb'!denbté the setlof ¢ ¢ A(G) that are positive

as linear functionals on VN(G) with |41l = 1.. Then,

PG = ((exD) s |£]l, = 1.

Let Tl(G) denote the set of ali traces on VN(G).. Then,

]

T (6) = (4 = PL(B): (4,U%TU) = (4,T), for all T ¢ UN(G), U « UN(G)Y}.

4 [V . .
The set Pl(G) is a semi-group of continuous functions on G

under pointwise multiplication, It will be seen later that Tl(G) is
a subsemi-group of APl(G).

.

ACLASSIFICATLON OF LOCALLY COMPACT GROUPS
There arg/many different  classes of groups that will be

. i . 4
mentioned in later chapters. For the convenience of the reader, their
definitions are gathered together here.

There are, naturally, the classes of discrete groups, abelian

. o B
groups or compact groups, whose definitions are obvious.

Let :G be a locally compact group. A set V, in G, is
said to be invariant if xVx—.l =V, for.all x ¢ G.

,If there exists a compact invariant neighbourhood of the

identity in G, then G 1is said to be an [IN]-group. 2

o



If there exists a basic neighbourhood system of the ident gy
consisting of invariant sets, then G is 4 [SlN]nnroup.
Discrete, abelian or compact groups are [.‘SIN]~;:r'mxpr; and all

[STN]=groups are [ IN]-proups.

»
Ir the lefr Haar measure on O s also vipht invariant,
then © Is said to he unimodular. As was pointed out in Grosser and
Moskowitz [12], 2.4, any [IN]-group is unimodular.
3 r -1 R LRt N )
For any x « G, - let 0 = VXY v 2 Gre Let G- denoto

X : ’ FC
the normal subgroub of G consistdng of all x such that OK is

relatively compact. It is shown by example in Tits [34] that GFC* is

not necessarily a closed subgroup of . If G = GFC‘ » then G 1ig

said to be. a [FC—]~group.

Let G' denote the subgroup generated bv {xyx*ly—lz X,y° ¢ G},
Theﬁ GT o is known as the topological commutator subgrbuﬁ of G.. If
fET is compact, then G is said to be a [FD-]—group.

A represen?ation T of G on a Hilbert space Hn means a *

homomorphism of G .into the group of unitary operators on H_ that is

cohtintous with respect to the weak ‘opera'tor topology. A representation

T 1s said to Be irreducibfe.if thg)bnly subspaces of H_ invariant

under “(G) are (0) and H . It 1is said to be finite dimensional if
-]

H is.

If G  has sufficiently many finite dimensional representations
to separate‘points, then G 1is said to be maximally almost periodic
or a [HAP]—gr&bpf

If eVery irreducible representation is finite dimensional,

then G is said to be a [Tvpe T, finite}-group: This class of groups

have sometimes been referred to as [MOORE]—groﬁps.



Since every locally compact gronp has safticient Iy many

frveducible representations to separate points, any [Tope 1, tinite]-

proup is o [MAP]-pgroup.

For additional information on these classes of vroups and

thedr dinter-relations wee Grosser and Meskowits [12], Robertson [76]

and Moore [21].



3. Traces, Projections and Suhuruups

In this chapter, the structure of the traces on AR(®) i
analvieed to the extont that is necessary for applications later. An
order preserving coorcapondence i o developed hetween the nonzero
central projections in UN@G)Y  and the compact normal subgroups of G,

This correspondence will aid in showing that certaina special central
i

)

projections in VNG  are canonically nﬁsovi#ted w;gﬂ vurtnip well
deseribed compact normal subproups. A first application of this
technique is provided in the relatively casy case of the maximal
abelian central projection in VN(G).

The traces on VN(G) can be identified in terms of their

behavior as functions on G.

3.1. Proposition. Lot 1 o« Pl (G). Tnenooto- Tl (G) L7 wod only 27
. N ,_1 o~ ~ gt P
Hx) o= s (vxy ), Toroalll x,v o< G.
Proof: If . Tl(G), then for any x and v in G the tracial
. . .
srEv £y ies AN = (+,%7 ). i VLU = ¢
property of ! 1mp11L>' (-, vx y) (*, X) Since ylx v £ 1
-1 o ' vy
and. (:,i‘) = 1(x), therefore :(x) = ;(vxv ).
Converselv, if :(x) = :(yxy_l), then (:,1 < ) = (5,2 &)
: : X v vV X

for all x,v - G. Therefore, (:,AB) = (:,BA) for all .A and B in

the linear span of 7 : x - (-, Hence, (:,AT) = (:,TA) and
x

(:,8T) = (:,TS), for all S and T in UY(GQ), by the ultraweak

continuity of multiplication in VUN(G).

Corellarv. Tl(G)> P A R S ol B Pl(G).
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Proot: Poodenote the projection onto the closed ligear pan ol
s os Gt minee [0S0 T LD, i clear that S0or e ot
“ N [ ( ) M
Pl e tarae, SOt t. For oach in ), the operator r i5 in
X
UNaay . l'hc'n-l\xrq_;, SOy oSt ot Henee, SO0 P.
% X X
Converaely, since (2, P) ety Ty GaDy, i s
clear that SO0 P.
3.5 Remark., It .o 'I'1 (G), then S(Y)  must he a central projection.
[ R N
Suppose (t % ) tor - L7 (6), Lot P! denote the projection
i 2
onto the closed linear span X (? in L (G). Then P! VNoH!
X ;
and - 5(1) s the central support of P! Hence, P'UN(G)  is isomorphic
= .
to  S(HVN@) . See Dixmier [4], (1 1.4 and I 2.1). 7 (\

If H and K are Hilbert spaces, let ‘H @ K “denote their

Hilbert space tensor product (see

N are von Neumann algebras on  #H
. T N o

product of M and is the von

on H @ K" that is generated bv

[t will be necessaryv to

the support projections of two elements of

projection of their pointwise

3-6. et : SN
v oo o N T o7 IR
5 SN G)

Srlvod T SGHYUN(G)

2
Proof: Suppose h - L7(G)
for all x . Then, in the
X - RKPf‘ of G oh the range of

with cvelic vector h.

is such that

notation of

Dixmter [4] I 2.3). Suppose M and

and K,

respectively. The tensor
Neumann algebra, denoted M o N,
‘SeT: S . M and T ¢ N}.

have the following relation between

TI(C) and the support

product.

K Tl(G), ol let S(ay)  be the
S HUNGY e Toovorriiloally con-

GO = (h * R)(x)

<% hih>
X

Remark 3.5, the representation

P!

is a cyclic representation of G

The von Neumann algebra generated by this



fopreoentat tan L PN (G,
1ot ! REETE Y 11

. C(pr X .',)V Thea G,y (=)

(N N ! ) ! o)

derot ¢ the

venter at ed

b i

projection of S

Sednnann subaleebhra ot S UN(

! S GEIR TL AT IR G B ~ [ Fhen P WY The von Neumann alyebhra
X X
venetatod by A G S U I I L A O anon T L By
~ X X X
Dixmiev [3], Vi 0 (iiin, the von Seamann aleebra P2OUNGG) i oapacially
{comorphic te P which s isomorphic to  E&,  where Bois the contral
X
support ot P Phercfore  FU O in an icomorphic imaye ot 5 (G UN@G),
N
contained in S UNGD SCOENGY.
}‘
For each P UNVeoYy 1t NP = X G By - b [t is
x
rout ine to show tihat :;P is o vlosed subprouap of G which {5 normal
if P is central.
-
3.7.  Remark For Po(cy, lot N . Then,
- 1 S(:)
(<) = (:y ) = oy B0y = o, SO o= L.
X x

2] 2>

Converselv, if (x) = 1, thes cbre =1 = T, where f L7(G)
< 4 oy
is such that = (f * £) . By the Cauchv-Schwarts theorem,
DA B TP
o= e f =
< x £
Honoe, r ¥ = r « t,=r ft, tor atl - . By Preoposition 3.4, it
x . N ;. }'Y - 5
is clear that o+ 3(:) = S(:). Therefore, N_ = ix G: s {(x) = 1°.
X

L)

(G e ach that (1A ) and’
i), L) [ o Ihetetore,
IS T S O taor all ke t

+ ‘Y
Fooed abpace ot SO0, (0 s )
Coy b @ s [ gl Jet P heo the
YET(G)Y  onto o L et W denote the von

oo UNGo venctrated by



-Compare with Hewitt and Ress [13], 32.6.

3.8. Proposition.. Lek -G 'befanx locally compact Qroup. The map

. S Y \ .
that takze a projostion "P in VN(g) to the subjyroup Npooof G nas
the following properties: ~ - R
Q .
(i) +if P-# 0, then Np is compact,
(<) <f P.< P_, then N_Z < N_ ,
! 1= T2 M T, = Ty

(121) 1f E < a non-empty family of projections in

o

: = UN(G) and P = l.u.b. E, - then N_ = alN_: Q ¢ E).
o p_ "Ng

™ . B

"Proof: Part (ii) is clear. To séé'part (i) lér f e L2(G), such that

PE= £ and £, = 1. If b = (f * )Y, then ¢ < P (87 and by

Proposition 3.4, S(¢):i P. From (ii), it follows that NS(t) E.Np°

‘By Remark 3.7; NS&¢) is compact, which implies that N

is compact.
P pac

In part (iii) it followsg%?%m (ii) that NP'E_O{NQ; Q ¢ E}. Conversely,
2

suppose X ¢ N for each ZQ < E. Then f=£f, for every f in the

PR Q’ - .
range of Q and for each Q¢ E. Therefore, Qif = f, .for every f

o

X

in the closed linear span of the union of the ranges of the projectiqﬁs

inEC TBut that closed linear span is the rarge of —Pr —Therefore,
R\
X t@?P
For each:éompact normal subgroup X ‘of G, let Hx denote

the regular Borel measure on G  which, when restricted to ‘K, is
) ' [

normalized Haar measure on K and such that uK(G ~ K) = 0. Then . u
is a central idempotent in M(G) and &(UK) .is a nonzerg central

projection -in UN(G). Let EK = Q(UK)'

*,The following Proposition is énalagous to Proposition 2.9
. . . R 4

[ ] .
- of Ernest {7].



3.9. Proposition. et K be a.compact normal subzroup of G. Then

EKVN(G) " 13 tsomorphic to  UN(G/K).

Proof: -Following Evmard [8] (3.23), let j denote the isomorphism of

v
.

LZ(G/K) into LZ(G) given by
P ' 2 -
jh(x) = h(xK), for each h € L_(G/K) and x € G.

') ‘ . B .
If the Haar measure on L"(G/K) 1is properly scaled, then j is a

) 2 2 . . : »
Hilbert space isomorphism of L (G/K? onto -EKL (G).. For each T in

VN(C),‘ define T on LZ(G/K) by

8Ty =3t e s j(h), for each” h ¢ L2 (C/K) .

~ - v

This is well defined since 'EKT = TEK, for all T « VUN(G). Eymard

shows that P 1is a von Neumann algebra homomorphism of VN(G) onto-

N

. UN(G/K). 1t is clear that the kernel of ¢ is (I—EK)VN(G). Hence

», restricted to EKVN(G), is an isomorphism.

v

[

3.10. Proposition. Let G be a locally compact group, KX a compact

nermal subaroup of G, and E a nonzero central prqojection in VN(G)

21.

Lnerl
(i) K =N .
EK
vl E < E
(Zz) = Fyg
Proof: 1If K 1is a compact normal subgroup of G,ﬂ then ‘it is clear

Conversely, suppose x <« N_ , then
K : EK.

that K < N
1a = E

; - 2
<gq(jh) = jh, for each h ¢ L7 (G/K).

This implies that x < K. Thus (i) holds.
. @ ‘



' To sce that (i%) hdids, let f = ELz(G) ‘and let ¢ = (f * E)v.

If x ¢ NE’ “then fo'a‘ﬁ and therefore ¢(xy) = ¢(y), for any y € G.
“Hemrce ¢ 1is constant on cosets of NE. Therefore, by Eymard [8] .(3.25),

[}
' 2. ~ v .
there exists f. ¢ E_L7(G) such that ¢ = (£, = £) . Therefore

1% Ny 1 h .
» - 2 . .
S(3) ;_EN » which implies that f G"EN L"(G), by Proposition. 374,
E E o
Since f 1is arbitrary, E < E_'.
. —'TNE

In several of the main theorems that follow the proofs center

°

2

around showing that for the special central projection under consideration
equality actually holds in Proposition 3.10(ii). As}an illustration of’

this technj ‘g a é&mple case will be presénted immediately.

| .

Let E1° denote the maximal Type Il central projection in .
VN(Q) (that 'is, the maximal abelian central projection). Recall that;

if N 1is any closed normal subgroup of G, then G/N 1is abelian .if

and only if G' < N.-

3.1i. Theorem. (a) El # 0 if and only if G i& an [FD~]—groﬁp.

(b) If E, # 0, then E '=‘E¥T. - Therefore E_ UN(G)
l 1 G \\ e - l

ia faomorrhice #o  UNALG/CTY.

o -
0 .
; o

Proof: If El # 0, then NE is. a compact nofmal subgroup of G by
l R . - ]

Proposition 3.8. Also N is the kernel of the homomorphism LX QXE

! E ] 1
of G 1into the abelian group ‘(EiVN(G)JU;‘ Hetice G/NE is abel{an,
'.__ o : . o 1 )
which implies that™ G’ E_NE . Therefore, . G! 1is compact. Furthermore,
1
El,i ENE < EET .
1 .
Conversely, if G' s compact, then EETVN(G) ;is isomorphic
to UN(G/G") and so must be abelian since G/G' ' is. Therefére;

0 # :ET ijEl' i o .



This proves

The results
dependent on the work
applications in later

* -]

°
emphasized.

both pﬁr;s (ay and (b).

which have been proben in ‘this chaptet are~heavily

il

of’Eymapd in [8]. " These propositions. find frequent

chapters so the importance of Evmard.'s work is
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4. The Finité Part of UN(G)

‘Let Ef denote  the maximal finite central projection in

VN(G).. The properties qf the finite part of VN(G)‘.whenﬂit~i$'ﬁdﬁééf6,

o

are such that there exists a compact normal subgroup K

\ £

This result will be established together with necessary and sufficient .

with E_ = Q(uK ).

£ £

conditions on G _ for 'VN(G) to have a nonzero, finite part.
. Tt is well knowﬁ:that' YN(G) is finite if and only if. G is
a [SIN]-group (see bixﬁier [3], 13.10.5; actually the resulf goes back

to Theorem 6 of Godement [10]). A.short proof is provided here.

° : @

4.1. Proposition. Let <. beﬁdflocally compact group. Then VUNEG) is

a Finite von Newparr algebra if

and only tf G 18 a [SIN]-group.

©

Proof: If E. =1, then l.u.b.{S(d): & ¢ Tl(G)}. Therefore

f =
{e} ='NI‘=_0{NS(¢): b e Tl(G } o by Proposi;ién.3.8(iii). PropositionA

3.2 andéRemark 3.7 imply tha G is a [SIN]-group.

Conversely, if U Ys a basic neighbourhood system of e

T consisting of compact invariant sets, then for each V e U  1let

fV = Xv/[V]%. As in the proof of Proposition 3.%, & (f

~ Vv
% e
v fV) € Tl(G).

Therefore -S(¢V) < Ef. Suppose g‘é (I—Ef)Lz(G), ‘then Rxgv is in.

(I—Ef)Lz(G) -for each . x ¢ G. Therefore, for each V e U,. since

S($,}g = 0, it is clear that <2xg;fv> = O,. for every x € G. Hence
v .
~ o~ 1 ' . oL
* = 0. = ; vl2 . . 1 : .
g fv .97 DBUC fv fV dand {fv/}vl Ve u forms an approximate .

identity when acting on LZ(G) By convolution. Thereforen-g = 0,

which imi)lieéthat’rEf = I.

@ N

o

Recall that GFC_ is _the normal subgroup of G consistiag:

(v
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of elements with-relatively‘compact conjugacy classes. It.is clear
that 'GFC- is an open subgroup if G is an [fN]—group. That
openness of GF¢* implies that G is an [IN]~group and VN(G) has

a nonzero finite part is less obvious.

o

4.2, Prqpositién. Let G‘ be aiZocaZZy compact group, The following
arerequivalcnt:o | |

(2) VUN(G) fs not_prop;rly infinife,'

(Z1) G >£s an [IN]—group,b))

(i) Gp.~ 15 an open subgroup of G.

Proof: The equivaleﬁce of (ii) and (iii) is due to Wu and Yu [38]{
(Theorem 1).

To see that (i) is equivalent to (ii), note that -Tl(G) £ ¢

if and only if VUN(G) is not properly -infinite, then apply Proposition

3.3. o ' ’ Lo S
A ‘

17

4.3.  Theorem. ZLet G be an [IN]—group. There exists a compact

nerrial subgroup K

¢ Such that the finite part of. VUN(G) is isomorphic

to VN(G/Kf). ’

.

Proof: Let K. = N_ . By Propositions 3.9 and 3.10(ii), it suffices

, TE
to show that.'EK :_Ef;
f : .
Since Ef = l.u.b.{S(p): ¢ e-Tl(G)},' by, Proposition 3.8(iii),
. * = : : b e : '
o Ke n{Nsé¢). ¢« Tl(G)}f

Each "¢ in Tl(G) .is constant on cosets ofv’Kf, so by (3.25)

.of Eymard [8],‘eqch such ¢ can be considered as an element of Tl(G/Kf).



Therefofc, the identity element of G/K% is the only element of

n{NS(@): ¢ € Tl(G/Kf)}. By Propositioh 3.2 and Remark 3.7, the locally
' -~ ' ’

compact- group G/Kf is.a [SIN]-group. Proposition 4.1 implies that’
N : ¢ ) . . .

‘VN(G/Kf)- is a finite von Neumann algebra. Therefore, E is a finite

Kf ‘

projection. So EK‘»E_E

£ f

4.4. Remark. In 1951, Iwasawa [14] proved that if G 1is an (IN]-group,

then there exists a unique minimal compac¢t normal subgroup K of G,-

such that G/K is a [SIN]jgroup:‘1Clearly this Subgroup' K is exactly
. Kf' , ‘

To illustrate Theorem 4.3, an example of a non—-{SIN]-group
which is an‘[IN]Lgroup will be given together with the reéulting

decomposition of VN(G). This exXample is related to an example in
o

Hewitt and Ross [13] (7.19(b)).

Example. For each integer n let Dh”= {%l,l}, the two element

Agroup.’ Let D 'be the direct produdt group with the product topology,

i

e <)
D = It D .
n
n:...m
For x = (xn):z_m' in D, let ax ¢ D be such that

(ax)n“= X for all n.

n+l’

Then « 'is an automorphism of D and its powers give an action of the

integers Z on D. Let G be the semi—direct'product,

4

"That is, G 1is the toéologidal space D x Z ‘with multiplication



oo

(x,n) (y,m) = (x(uny); n+m);

’

for all x,y < D, n,m c Z.

It is clear that D x {0} 1is an open, compact invariant
. 8]

o

neighbourhood of the identity. In fact,
G/(p = {0}) = z. “.

By Remark 4.4, the §ubgroup Kf, given by Theorem 4.3, must be con¥

°

tained in D x {0}. TIf Kf is smaller than D x {0}, -then there
S(o)" Therefore, there

exists a ¢ > 0 such that, D x {0} ¢ V, where V = {(x,n) ¢ G:
| - . ’ )

exists a ¢ ¢ Tl(G) such that, D x {0} ¢ N

I9(x,n) - 1l < e}, ‘Then (D x {0}) n V 1is an invariant neighbourhood

-of the identity in G which is properly contained in D x {0}, ‘This
will be shown'poibe impossible. Let U = (D x {0}) n v@
n

Consider ‘U as a subset of D and for each n, let U

be the projection of U onto. Dn

U = {x :% e U}
n. n “

Simce U 15 a neighbourhood of the identity in D, with the proggct
[ . N -

topology, - there exists as positive integer n_s such that, ‘Un = Dn,
for all ifnf > n .
— o

G, yields

M,

“Calculating, (x,n)—l(y,O)(x,n) for (x,n),(y,O)“

ja_nx—l,—n)(y,d)(x,n)
\

() v, 0) ()

il

@y ) (o) = @ Ty,0))

Yore, . o . 3

SORSITe Uy f :
((x,n) U(x,n)]m Um#n’ or all m



Since U is invariant, this limplies that,

Uk = Uj’ for all integers k
Therefore, Un = Dn’ for all n. Hence U
Therefore Ke =D - 10} and G/K. = Z.

which

is

aa

-

contradiction.

[t follows from classical harmonic analysis results that

VN(z) = Lm(T), where T is the circle group. Thus Theorem 4.3 yvields
2

the decomposition of VUN(G) as

L7(r) e (I-E_) UN(G),

{

where (I—EE)VN(G) is a properly infinite von Neumann algebra.
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5. The Center ot VNG for [SIN]-Groups -

Let G be a [SIN]=group and let z denote the ceonter of
UN(CY.  The fact that  UN@)  is finite exactly whcn ¢ is a [SIN]-
group can be used to obtain some knowledype of Z.

If H  is a subgroup of G, then let UN(H1,G) denote the
von Neumann subalyebra of  UN(G) gvnomto.d l;y {ix: x « H}. The
minimal subgroup H such that Z - UN(H,GS' will be determined in
Theorem 5.3. Yor discrete groups G, the center of VN(G) is
contained in VN(GFC—‘ C). This follows from representing VN(G) as

) s o :
a subset of ”Lh(G), as in Murray and von Neumann [23], section 5.
Theorem 5.3 generalizes this result. °

A result clésely related to the above mentioned theorem is
that the center of ‘H(G), when embedded in VN(G) is WOT-dense in Z.
An esamplg‘will be given to show that neither this nor Theorem 5.3 is

true in general for non-[SIN]-groups.

For a subset A of a linear space, let co A denote the

convex hull of -A.

°Ffor each T ¢ VUN(G), let

[~ »

K(T) = WOT-cl-co {U%TU: U = UN(G)"}. o

Since " UN(G) is-a finite von Neumann algebra, there exists a linear

b

map h: VN(G) onto Z, which takes T -~ T', with the following

properties,
i) T »- 0 implies Tb > 0,

ii) Tb e K(T) » Z, 1in fact K(T) n 2 1is a singlefon,



Pii) (U*TH)” Tu‘ tor atl v . VV(U)“,

iv) 4 g WOT-WOT-cont inuous on UN(G) .

This map is known as the center valued trace. . Addit ional details and

prupur’l Les can be Found in Sakai [27] (2.4). Note that (ii) implies
)

<:[’ 0, tor all .. Z.

Lt is necessary to introduce another concept whose relation )
to the center of  UN@G)  is not immediately obvious. For f . CB(G),
let Of = (Qxf: X ¢ Gh, then f  is gaid go be almost periodiec if Of
is relatively compact in  CB(G). lLet AP(G)  denote the closed subspace
of  CB(G) consisting of almost periodic functions. It has been a long
established tact (sge von Neumann [36]) that Chere‘exists a unique
invariant mean on AP(G). That is, there exists m ¢ AP(G)* with the
following properties,

L)

Aa) m o0, lmil=1,

(b) m(f) = m(ixf) = m(rxf), ~for all £ ¢ AP(G), x ¢ G.

For each x ¢ G, 1let Sx be point evaluatibn as an element

of CB(G)*, CO(G)* or AP(G)*. Then the convex hull of the set

VXSG is wr—dense in the set of positive, norm 1 functionals on

o

CB(GQ), CO(C), or AP(G). Therefore, there exists a net

o

n
o .
Al T ,
o) AL P S ocoid tox = G}
‘., i 0 X
i=1 X,
i

which converges w%* to nq in AP(G)*,

a

A1l of the above preliminaries are necessary for the proof of

-the f{ollowing proposition from which the desired results on the center

-

o UN(G) follow casily.



I Proposition. Lo/ G b g [SIN] oo, Ve T VN((:l.(."',(;)
\ _ ;
e

R VN((;I_,C~,<:).

Proof: Since {15 linecar and WOT-cont inuous, it suftices to show that

v H cUN(G L =,6),  Tor each x o G ~. This will be accomplished by
X FC e ’
modilyingg a technique usced in Sakai 1271, page 210,

9
For cach £ and g in L) and v - G, let
K : = . rr..' r a a o G,
f,ﬂ,y(l) _1 e or all a (
a ya
' 7
' 5
It Is easv to see that F « CB(G) and the following
»yH ¥y
tdentities hold for each b ¢ G.
* ) F. = F
) T Y
(7‘:*) 7 = F <
v N -1
b f.a.y t,g,byb
Lemma 1. 77 x . G -, Trewn F_o o AP(G), “oroall o fug oo LZ(G).
B : T OFC f,8,x : - >

Proofﬂgf Lemma 1:

It is sufficient to show that the map: y ~ F

3.

4 f,8,y
is continuous from G into CB(G), since then, bv (*%), OFF R is
T T T T T T I IR-REN
- - . - ~
the continuous image of a relativelyv compact set - ( in G. o

2
Let f and g be any fixed elements of L7(G). Let & > O.

Since G 1is a [SIN]J-group, there exists an invariant neighbourhood V.

of e, such that for every v ¢ V

Let 'y and v' in € be such that y' "y

. . . . -1 ,-1
invariance of V implies a "yv' “va « V for every a < G. Hence



tor,y tor,y
v t ¢ t gl
' -1 -1 , l)
vooya a y'a
I [ l;! ; v
Yova yla Yo B
-l | | .- tJ , ”r'”,) N for every  a . (.
t v yva ’
R ) - s - N I H .'~l
Thercetore, e ol vl o it v vV ooV,
PN Pov,vy? U C

Ty . -
his concludes the proot of Lemma L.

Let™ m denote the unique two-sided invariant mean on AP (G).

. 2 .
et x be a tixed eloment of (;F('—' For cach t,g . 1L,7(0) detine,

O
N t—, M = m(F - .
( S‘) ]( t,«‘»o&)

i
This defines a bounded, conjugate bilinear form on L7(G). Hence,

2 ‘ ¢
there exists a T . BiL ((1)}, such that,
« ;

[8S]

T fj’g‘\ = m(Ff . ‘(), tor all oy - L7(G).

Lemma 2. T o UN@G)'!'.
Lemma . « N S

Proof or Lemma 2: For each a . G, since m is right invariant,

for all f,g « LZ(C).}.’

i
—3
b
[l
]
v



[LNEYRR

|
’

I emima 4, Worl ol

co A G VM [
X | [
LN
n
Proot ot Lemma b It . i : ' A o [ ARGy A then
. 1 o A
] ] ,
[}
t r i
(r ) - S IEEE
( Do i | B .
o1 0 R
i i
4’
tor all b ()
Sinee o Wk ol ot a Gy it tollows that
o1 'y
I [ O T R 1 [ B
a0 xa
Fhe second containment - clear, since X (l}_(‘—(‘ implics
0 G-
X e
-
Returning to the proof ot thoe pProposition, since
WOl e lecni a - Gl RG ),
. -1 b
a0 Xa
bv Lemmas 2 and 3,
T K(v )y o 2.
X X
Butr Is the unique clement of this intersection.  Hence, r =« b
W X X
and by Lemma 3, this implics that < UN(G,. -,6). .
a FC
This completes the proct of the provnosition
R
TP C .
Let Z!;-i((n\; denote the center of M{G),  a measure
o
57 h . N ~
ZM(G)Y]  is called a central meashre on G.
a
=y - s 4 . . . .
5.2 Corollarvy. e o SINT=e o, iz X G-,
e e e a - EL
. - .
Trllny o RE e Loy [E. on




[

o -

: Lo
K A A

o

wX—cl-cof{$ -~

a,

rxa

ta e G},

°

Proof: It follows from the proof of Proposition.S.l, that there exists

a‘net {u L = colé
L

But

C -1
a xa

—-

a

"assumed that there exists a

WOoT

—r £ , So L 0 = £,
P H u X
X.

X

i+ } is a bounded net in

wWOoT

L e
X

and

3

>R

7

X

b

: a e @ such that,

‘

M(G), so by taking a subnet it may be

w

M(G) such that T Ux' , Hence,

19
X

must be a central measure in M(G).

The uniqueness  and pbsitivity are obvious.

<

The”machinepy 1s now aVailable to prove the following two

. theorems locating the éenter of . UN(G)

5.3. Theorem. 7 G <¢ a
5.4. Theorem. 75 G s 2
tn L.

for [SIN]Qgroups.

[SIN]-zroup,

[SIN]-group

b

Ed
-

&

t?z.én Z < UN(G,.=,0).

'{\
)%"}
then Q(Z(M(G))) 73 WOT~dense -

JA proof is provided for Theorem 5.3. Theorem 5.4 can be

proven by a similar application of the Hahn—Banach Theorem.

Proof of Theorem 5.3: Suppose, to the contraryv, that there exists a

C ¢ Z, such that C ¢ VN(GFC—,G). Since VN(CFC—,G) is WOT-closed,

by the Hahn-Banach Theorem, there exists a ¢o ¢ A(G), such that,

and

({:)O’T)

1]

9

1,

0,

/

for allr T ¢ VN(GFC—;G).

1
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Let a linear functional + on VN(G) be defined by,

Since i is WOT-continu
A(G).
If x ¢ G_.—,

Therefore,

i
[*]
- .

For any X,V

5 (yX.\'—l) = (5

C -

C(d,T) = (éo,Tb), for all T < VN(G).

ous, + 1is WOT-continuous and so must be in

th 7 c UN -
hen « A(GFC ,G)

by Proposition 5.1.

Hence, * is constant on conjugacy classes in G. Therefore, o(x) = 0,

for all x = G~G__.—; so

(+,0)

o

ey = ¢ Lo =1,
o] o] .

which is a contradiction. Therefore; z i_VN(GFC-,G)-

>

1 ’ -
Let Z(L (G)] denote the center of the convolution algebra

1 : .
Ll(C). It is shown in Mosak [22] that L (G) has an approximate

identity if + . cons
. el

is a [SIN]-group. Let

isting of Z(Ll(G)) functions if and only if G

1
. Ky /lV(a , where
(&3 T .
a3

directed set of basic:invariant neighbourhoods

o 20M(e)), then f

(a2

1 . . . e SN
_Hence, Z{L (G)) is w*-dense in 200G ).

is  w¥=WOT-continuous,

LA VI Z(Ll

B

the following corollary

v} . is the
a aesH

of >e. Thérefofe, if

c I %y L .
(G)], for each « ¢ & and f‘l‘ oy %p

Since @ M(G) -+ UN(G)

‘follows from Theorem 5.3;



-

! .' ¢ . ; . ‘ 2 1
multiplication. For each t ¢ R let. t actwon R- via ut(x;y)

swhich is net relatively éompact unless. (x,y) = (050) Oéndé t =.1.

36.

B

4.5, Corollary. If G s a [SIN]-group, then z(Z(Ll(c)]) Ze WOT-dense

o o

in Z. : ‘ o
-

Neither Theorem 5.3 or Theorem 5.4 can be extended ecven to

unimodular-gromps as 1s shown by the following example. The example is

€ »

abcdnnected, unimodular group G ~such that GFC— = {e}l and VUN(G)
: ' S

is not-a factor. "It is clear that such a group cannot satisfy the
conclusibn of Theorem 5.3 since VN(GFC~,C) ‘is justl {XI: x ¢ C} in

. N 0

this case. That the same group cannot satisfy the conclusion of Theorem

5.4 follows from the fact that for connected iocally compact groups H,

the center of  M(H) is'supported on H

e (see Greenleaf, Moskowitz

a

and Rothschild [11], Theorem 1.5).

o

The Example: Let 'Rz denote the. group of ordered pairs of reé&

. . . - * . - :
numbers: under addjition and R the group of positive real numbers under
iddd + S p p
) o

*
« +

(ex,y/t), for all .(x,y) ¢ R". 'Let G bg the semigdirect product

®? o R
) .
a K - : ’ © o ‘
[t is clear that G 1is connected. To see that GFCL = fe}
let  [(x;y),t] ¢ G. If [(v:b),é]°g G;_°then v o o, o
» -1 s . X—v+tv s'w
[(vow),s17 Gy, el v, w) sl = [(F=— 5 sy = sw + 25), tl.
: . o . e e - = i
- o - ° -
) : : ) e X=v+tv i © . sw L 5
Therefore, O[(x,y),t] = {[[~—j;——*, sy - SW.é‘FEJW t} o [fv,w),sd e G}
7 o o

It follqws from Héwitt‘aﬁanoss (131, (15.29)(b7, that

° -

G will be unimodular if " . .
‘,:u . {.m ( 5. ) ‘ : ' {;JO . E’L\) . Q
, flo (x,y))dxdy = ! £(x,y)dxdy,
. , J_2 ) e £ Jew ) o

Y



for all t =R. and f ¢ C GRZ). But
: + ) o

a o ©
o roa T . rco fa<) o
'f J f(at(x,y) dxdy = J J f(ex, y/t)dxdy
o . e (> LN
- = J | f(x',y") dx’ t dy'
‘ , o ) A t o
[ e '
= J .J f(x,y)dxdy.

o

Therefore G is unimodular.

That VV(G) is not a factor is due.to the “fact that the °©
x* _ . 2 :
group ;R+ does ‘not act ergotically on R": The $ull argument is

presented below. : - . : ‘ o
’ * - P - )
If ¢ « R+, then the automorphism aL induces a unitary

. 2.2
U acting on L (@R") by,

U fCx,y) = f(ngl(x,yy) = £(x/t, ty),

Y

2 2 2 © D .
for all x,y ¢ R, f ¢ L"@®"). 1Ia turn Qt induces 'an automorphism -

& of VNORZ) onto itself by

- *

a T = Ut T Ut’ for all T = VNGRZ).

sl
L2 . . ; . .
Since. R is abelian and its own dual group, there is a unitary map

3 a2 . . . 2
from LZORZ) to L”GRz) which carries each f « LZGR") to its

" Fourier transform .%. This induces a spatial isomorphism % of
Cw 2 a2 o
L_(®R") onto VN@®"). That is,
o o 5 .
- o AL : . '
(O G, = FéL DG, 9,
. » 2 . 2.2 @ 2 .
» for all (v,8) «R™, f ¢ L°R") and - F ¢ L R™).



o

3

o

o

Qo

> of R:. on H such, that,

38.

e

For each t ¢ R let @, be the automorphism of L (RY)

+,
given by, atw='at.° $. Then,

2 : oo

3 F)(v,8) = F(ey,5/t), for all (v,8) e RZ,

o a

o S e . '
Sutherland in<[32], Proposition 2.2, gives a prodf that
: *

©

. 2 * : : :
implies that VN(R™ ®Q‘R+) = UN(G) ' is isomorphic to the crossed
2 . % S ' S :
product, R[VNGR"); d,'R+),' of the von Neumann algebra ,VNQRZ) by -
- % : . ' » '
the action a of R, . Therefore, UN(G) 1is isomorphic to

e D~ % \ : '
R(L,GRh); o, R+)._ See Takes&ki [33], Proposjition 3.4.

. The construction o0f crossed product von Neumann algébras is
preSented in Takeséki_[3}], Section 3. For Che purpose of this example -

it is sufticient to note that there exist a Hilbert space H, an

isomorphism @ -of L GRZ)‘ into B(H) .and a uﬁitary representation
’ a

°

> CF [ LODGRZ))

+%

V(e) T (F)A(E) = ° &, (F), for all t ¢ R
o s : ' ’

e ~ * ; . ' . - x

and RiL GR2); a, R+}_is generated by WN(L GRZ)) and XGR+).
, o . a © .

Let (A = {(y,5): 0 <y, & < «} and let F = X, Then A

:t(F) = F, for all ¢t « ﬁ;, so 7 _(F) 1is a central element in
: QL

N ~ * - .
R(L R7); «, R+] that is not a constant multiple of the identity.

Therefore, VN(C) is not a factor.
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o ~ bl

6. The Tvpe I, Finite Part 'of UN(G).

Let EI £ denote the maximal Type‘IT\{gnite central projection

in VN(G). The class of groups for which- Et\f # 0 1is determined in
. S - ! )
this chapier and it is Sboqn that, for such groups, there exists a

vsqch that E = E ' .

Fompact notéal subg;oup,‘kl’f If KI .

- In [30], Smith provided a simpler proof of the following

theorem of Kaniuth [16]:

If G is a discrete group, then VN(G) 1is Type I if and
onlv if G *has an abelian subgroup of finite index. . .

In thdt case, UN(G) 1is ac¢tuallv Tvpe I<n’ for some n < =,

. _ . ¥
as-is pointed out in Formanek [9].

<
The following is the non-discrete version of this theorem.

T

6.1. Theorem. Lot G Fe a localiy cormpact group. o There exists a

matural wioiber o suen that UN(G)  is Type I, ifand enly 17 G
: . - n v
has an dielicn sulgaroup of . Finite index. - .

Proof: If UN(G) is of Type I<n,'-then UN(G) satisfies P2n' Since

Ll(C) is isomorphically contained in UN(G) it is ¢lear that .L%(G)

. . v B . . . ) A 1 .
also satisfies P2n' Therefore anv *-representation of L7 (G) must

ssatisfy Pvn' Hence, the dimension qf anv irreducible representatior-

of G  fflust be less tharr n. By Theorem 1 of Moore [21], there is an

j3 L

abelian subgroup of finite index in G.

Suppoée Gl_ is aneabelian subgroup of finite index in G..
© - - N

Let xl = e,xz,...,xk “be a complete set of right coset representatives
] ’
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iﬁ G. 'Let W be the linear span of {QV: y € Gl}. Let

B =W + W2 + +e+ + Wl ., then VUN(G) is the weak operator
X X, x

topology closure of B. As in Smith [29], page 404, the qigebra B

can be isomorphically embedded in the k x k-matrices over the abelian

algebra W. Therefore, both B and  VN(G) satisfy PZR' Therefore;

UN(G) is Type I<k’ by Proposition 2.3. ‘ : N

The following two propositions will be useful in determining

I .

those groups G for which VN(G) has a non-zero Tvpe I, finite part.

- Suppose H is an open subgroup of a locally compact group

G. Let VN(H,G) denote the von: Neumann subalgebra of UN(G) generated

m

by fi TX H} acting on LZ(C). Eymard shows in [8] (3.21,20) that

X

UN(H,G) s isomorphic to VN(H).. The following propoéition is Lemma 7

of Kaniuth [17].

~

v sulgroup of (G. IF UN(G)  has

<t
et
[
[48)
8
S
5]

3
8]

6.2. - Proposition. <&

taney - T Fag

SN e PN - ~ v+
Q FIOR=3Ero JLre o, nrarc

O'ﬁqss UN(H) .

Ot
~a
¢,
N
%)

Proof: Apply Proposition 2.4.

N .
6.3 Proposition. &t K Ie z comracl normal sutgroup of G,  The
!

- .. e &l - . L ‘71 B4 .o -
SiEe s, Jenete pars of  UN(G) Lo nom-zers 27 and onlu {F the Tupe

Liite pare of UN(G/K) - fe wndn-gerc.

Proof: Since UN(G/K) is isomorphic to EKVN(G) by Proposition 3.9,
it is clear that thejexk@tence_of a non-zero Tvpe I, finite central.

v,
.

projection in VN(G/K) 1implies the existence of one in UN(G). To

.

AEK # 0, .where

prove the converse, it is sufficient to show that EI £
. . *

E[ £ is the maximal Tvpe I, finiteuprojeétion in UN(G).
b - N .

If EI”f # 0, then, for some n, .there exists a Y in
b . .

3
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TL(G) such that S(¥) is Type Iq. Suppose that f = LZ(G)- is such

. v L _ v
that -~ v = (£ % f) . Then % = (f #*

)

s AN

;
I

Claim: S(%) is also Tvpe In.

To prove this, define [ from WN(G) onto. VN(G) by

(D) (W) = (TR, for every T ¢ VNG and h « L2(G). .

Then [D(S+T) = IS + TT and T©(ST) = (TS)(I'T), for every S,T « VN(G).

[

Therefore, if E 1is anv central projection in ~VN(G) and P 1is the

standard polynomiai.of degree k, >then E UN(G) . satisfies Pk if and

only if  (TEYVN(G) satisfies Pk; Hence T(S(W))T is Type In; But
F(s(u))'%‘s(E). S
' “Since -S(2)VN(G) and S(I)UN(G) are both Tvpe I, it follows

that “SCHUNG) @ s (o) UN@G) Ais‘Type~In2 (Sakai [27], 2.6.2). Therefore

[

S(HOUN) @ s(IHYVUN(G) satisfies Pznz.' From Proposition 3.6, it

1,02 . o 12 .
follows that S(. 7 7)UN(G) satisfies ‘E2n2' Hence S(l¢!7) is

Tvpe I_ o.

L 2 ' ‘ L2 ~ v L2
Let. h in L7(G) "be such that 9.7 = (h * h) . Since Ll
. ‘ | X - 4
is a real-valued function, it is clear that f¢} = h * h.
Suppose that EKh = 0. That is, FK * h = 0, which implies
: Co2 : . , ) ) 12 .
that uK * v’ = 0. This is a contradiction, since ftf (x) > 0, for
. ' 2
evervy x < G and v (e) = 1. Therefore E h # 0.
- X o .
e b o202 : ’ . . 2,
since h = S TYLT(G) which is contaand»ln‘ EI‘fL (G), it

is clear chac,,EKEI,f # 0.

In [31], Smith prbves that if G is a unimodular group and

a

VN(G) has a nonzero Type I central projection, then the index of
n } .

: . . 2 ; -
GFC— in G is less than or equal to n°. By virtue of the results

=]
© 1 8
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of Chapter 5, this can be proven in a manper analagous to the treatment

'
N

for discrete groups as in Smith [29], Theorem 9.4.
) . . .

Proposition 4.2,

(

b.4. Proposition. Zler G oo
; AN e Ture 1 papd, thon G2 =

o nt 2 “FC

@ o
. 2
Lo Tr 2wl ot on . .
o o

Proof: Since the index of the

—_
' Lo

o . ) )
changed bv taking ‘the quotient by a compact normal

o

In Llight of

i G

FC -subgroup in the.group is not

subgroup, without
» -

o
1t 1s not necessary to assume .that G 1is unhimodular.

b oorogr sush o frat UN(G)

generality, G  can be assumed to be a [SIN]—group, by Theorem

loss of
4.3, S )
/ Let E_ “be a nonzero Type_in central projection in UN(G).

o

Then E UN(G)
n

o

is isomorphic to t

o

he algebra of

i 3 o0 7 < = ¢ PP
its center, Enh. Suppose e xl,xz, ’Xn3+l
cosers of GFC_ in G. As in Smith [29], Theorem
E C . . = E Z, not'all zero, such that
nl’ mnt+l T TnT? ‘ ?

n<+1

* Yoot E C, = 0.
- Xx. n i
1=L i
-~ pal
.2 - >

Suppose 1 = j < n"+1 1is such that Ean # 09

- . % .
any open subgroup H  of G, there e*ists an f ¢
’

Since

n ¥ n-matrices over

are from distinct

{

9.4, thefe exist

EC. ¢ Z, for
nj

2
L7 (G), supported

. . /
on =H, such that" EnC(t # 0. This is so, since anv g < L7(G) can
3 : : ; ° - i
be written,. - °
g = y ~ £ Sy
L x
, QT o) o c
i
. N R ’ - o . . .
where ix & is a complete set of cosct representatives of H in
BTN ¥ SO -
S . o N
G and each f is supported on H. o <
- X
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The subpgroup (;F(‘— Is open in  G; so there exists an
o2 ! - ’ .
f L7(G), supported on G . .- such that E C.f # 0. But,
FC n j
e
n "+l
f b EC.f = 0.
: i1 x; i

Bv Theorgm 5.3, each Enci < VN(GFC—,C) and f is supported on

G .= so each E C.f 1is supported on G_ —-. . Then' L E C.f is
FC © n i PP ¢ FC ’ x, mi-
. : ) : . N
supported on *x.G__~, for each i. Therefore, {2 E C. f1, is an
i FC ‘ X n i "i=1

i
orthogonal set of ements of - L7 (G) not all zero, with sum zero.
. < ’ » .

- . ) R o]
This is a contradiction. Therefore, GFC_ can have at most n cosets
.'5
. ~ . &
in G.

o

Yhile proving Theorem 1 of [30}], Smith .showed that if D is

a di

17}

grete'[FC_]—group and VN(D) has a nonzero Typé I part, then D
is a [FD ]-group. A slightly more gcnéril result will be required
later and this is provided bv Leﬁma 6.6 beléw. The proéfs of Lemmas
6.5 and 6.6 aré, to a %arge degree, extracted from Smith [307, Lemma

2 and Theorem 1.

6.5. Lcmma. Lec Gooooox loeally eovrast cvoun oand Ho oa olosad
clsrur o Gl IR fhere cxisca ooonrial proosiion B o VN(G) - sieh

CEeat EUNCG) cand EUNQULGY, ave Dosl Ture I fomt C(H),  the
concesiisor o H i 06, hac w relotiveln soeipaes cormnciasop suUDIroup.

Proof: Since FEVN(G) 1is isomorphic to the n ¥ n-matrices over its

scenter, it has a faithful family of irreducible representations in 4
g + ‘ . n

Let o be one such irreducidble representation. Since o (E) # 0,

<

J{EVM(H,C)} = Cn, also.

Suppose there exists 'x,v ¢ C(H) such that Eg —l.—l # E, " then
, : X Ty Txy
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L .

there exists an irreducible representation »  of  BEUN(G) in € _, such
n

that - v (EY 1o T E) # 0. Hence
’ x 'y 'xy

C(ES Do (ED ) # o (EY Y (ES ).
X 5 y X

L

But  x . C(H), so, fYE?K) commutes with p(EVN(H,G)) = € , which is
- ~ Il .

‘

a contradiction. Therefore,

E? = E, for all x,y <« C(H).

Hence, C(H)' - N

E)
6.6. lemma. Ler A Fe an abkelion group and D a dlacrete [FC -
. L “ . - - ALY -~ RN YR P, Ty v N
Jraur. 7 UN(AND) s o nomzere Tyre [ part, then DL o a [FD -oroup.

2

Proof: Since A <D is a [SIN]-group, N(AxD) must have a nonzero

Tvpe In projection, E , for some n > 1. Then EnVN(A\D) Satisfies

n

Let e denote

1

the standard polvnomial identity P, but not P_ - .
- poL: S 2n ) 2(n=-1):
the identity in A. By multilinearity of P7(n 1)’ there exists

A, e £ D. such th:
1’ ’dZ(n—l) p such that,

-+ E

Yot # 0.

p (E ¢ <
2(n—l)[ no(e),d, n (el’dv(n—l))
o

Let H. be the normal subgroup of D generated by {dl,‘“',dq(n_l)}

and their finitely many conjugates. Since H 1is finitely generated, °
C(H) has finite index in the [FC lgroup D. . If it can be shown that
- C(H) has a finite commutator subgroup, then Neumann {247, Lemma 4.1,

implies that D dis a [FD_]—group.

-

To sce that C()' is finite, note that C(A*H) in A % D is

{e .} < C(ilY. Since EnVM(A\H, AxD) satisfies Pon

?utwnot PZ(n~l)’



then the maximal Tvpe l1 central projection Foin UNCA-ULAD)Y  must
S
he nonzero.  Since  A'H is normal in AYD and  E- is maximal,

2 = E; for all x -« A-D. Therefore F  is a central Type I
n

kX
-1 x
X
p?’miuct‘ion in  UN(A-D) also.  An application of Lemma 6.5 completes
the proof.
The following theorem is a generalization of Theorem 2 in
Raniuth [17], where he assumes that. G is a [SIN]-group. The method

of proof given here is entirely different.

G boow Ineally corraet group.  Foro UN(G)  to

6.7. Theoremn.

AN oeinops s Tupe [ it rape, 4t fs neegssary and s;g‘f'fciic;zt that
,
pr iy eondi Bons old:
Lhothe Tadexr of 'CFC— o G 18 finite,
. g
D) e sovmcaror sulovoup of G- fies eompar 2locure

.
i

Proof: Suppose that VUN(G) has a nonzero Type In part for some n.

Proposition 6.4 implies that the index of GFC_ in G 1is less than or

D
equal to n”. Proposition 4.2 implies that GFC— is open Iin G. So

&
VV(CFC—) has a non-zero Tyvpe T, finite part bv Proposition 6.2.

. . . t
Bv Theorem 4.3, there exists a compact normal subgroup K of

S S he UN(C,. =) is isox i VNG ~/K).
(FC ‘ such that the finite part of V(CFC ) lSvlSOHOrPhLC to V((FC /K)

From Proposition 6.3, it follows that VV(CFC—/K) has' a non-zero

Tvpe I part. Let H = G /K. Then U 1is both a [SIN]-group and a

FC~

[FC_]—group. By Wilcox [37], there cxists a-compact normal subgroup N
wy ' ) ) N

of - H, such that [I/N 'is the direct product of a vector group, V,

and a discrete [FC_]—group, D. By Proposition 6.3, the Tvpe I part

of VN(V<D) is nonzero. Therefore, the commutator subgroup of D is
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tinite by Loemma 6.h. Since  H/N - V-hooand (:F(‘ /K Gt tollows from
Hewitt and Ross [13] (5.24) that the commutator subgroup of Gr(— has
compact closure.  Therefore, part (ii) is established since (:I‘(‘- is

open in this case.

Supposce that (1) and (ii) hold. et K denote the closure,

in G, of the commutator subgroup of GYC—' et o G - G/K denote
the canonical homomorphism. From (i), it follows that "((;P,(,—) is an

abelian subgroup of finite index in G/K. Theorem 6.1 implies that
UN(G/K)  is Type [, finite. Hence, the Tvpe I, finite part of VUN(G)
Is. non-zero.

Recall that a locallv compact group is called a [Type I,

.

finite)l-group if everv irreducible representation is finite dimensional.
> ’ > t
/ .

Note that an ‘irreducible representation is finite dimensional if and
onlyv if the von Neumann algebra it generates is Tvpe [, finite. \éQ\S
.

ﬂfi&“om

b

Jaa

. i
6.8. Remark. If ¢ 1is a [Type T, finite]-group, Lgen it is cl4

'~

“

"y

Dixmier [3] (4.2.1 and 5.5.2) that VN(G) 1is Tvpe I. It Follows

Moore [21] (lLemma. *4.1), that VUN(C) 1is a-fin%&g von Neumann algebra.
.9
Therefore UN(G) 1is Tvpe I, finite.

6.9. Remark. In [26], Robertson calls [Tvpe I, finite]-groups, {MOORE]-

groups. He gives the following characterizatsQn. A proof can be found
in:Kaniuth [17] (page 234).
For a group G to be a [Type I, finite]-group, it is necessary

and sufficient that each of the following ts satisfied.
1) the index of GFC_ in G is finite,

’

ii) the commutator subgroup of ™ G is relatively compact

FC

. G _
in Fc?



1) the yroup G foo maximatly almost periodie.,
M . 8
Reeall that a-proup s maximally o lmost periodic it there
extst o sutticient by many finite dimensional anit ary representat fons to
separate points, w ~f7
P
- hd
mn i8] P . T A¥, Syt P
(SRR N lomola ., ¢ { K ' f b o, P D SAIB Tw 7T ) ooy
L N .
i ~ 1 - v -
ST N ISR oo s SR e cows Veremnne ke, M Ll D T 0
2% A N S
"A" |' Y‘( [ ' : ‘l A" lw(l(.. j, .v
o .
,-\~‘d
. . 4
0 N . . - .
Proof: sSince M decomposes into the direet .sum of Type I “von Neumann
S A n
alyebras and cach Tvpe I von Neumann alfebra has sufficiently many
) 0 S )
c .
f-representations in € ta separate points, there are suffjciently
n [5) . vt
n““ \z‘i :
miny tinite dimensional representations of M (hence of DY, to separate
L7
points. .
. ;J"
. . . . . c . . 5
6H.11. [Lemma . St G s Coon Il cormpaat potan SuiTotTi e she ’
- b Lemma . : : LSRN .

' PO rorartiogs
“7 A
. el . R

-
A 2 N + LA a
i siste o
n - . ..
: ¢ PN o T L, e
=
Dol ML .
sl QO oo [T I, 2. &
Proof: From the characterization given in Remark 6.9, it is not hard

2

to see that Kl = ~{K: K compact, G/K is a [(Type I, fimite]-group! is o
such that (J/KL is also a [Type I, finitel-group. So it can be assumed
: . o
L]
that the subgroup K  wmiven in (i) is minimal such that s C/K is a
> I

[Tvpe I, finite]l-group.



o

[T K # f{e}, then let k ¢ K be such that k # ¢. TFor
some’ n there exists a Tyvpe [n central projection E in M, ‘such
. . n ,
that “(k)E “# E . < :
. n n .
Let €%(G) denote the group C¥-algebra of G (sce Dixmier [3],

13.9). Anvirepresentation & induces a representation, also
. R >

“denoted &, of C#(G) and conversely., % v
: Sl
Let
: . .
I, = {a e C*(G): o(a) = 0},
kel
Q
and .
i J = {a +« Cx({@): ﬂ(a)En = 0}. - a,
[f unitarily ecquivalent representations are-identified, then
I remains well defined. Let S denote the set of equivalence classcs
~  irreducible feproscntations, "o, such that J ;_JO. Bv Dixmier [3],
1.9.7, .
J=n{J : 0 ¢ S}
o
Since C*(6)/J 1is algebraically contained in EnM, it must satisfy
o i S . . .
the polvnomial -identity Poq. Thus, for each ¢ ¢ S, the identity
: A . R :
P, is alse satisfied bw C*(6Y/3 - and therefore by Q[C*(G)). Since .
Zn N h R . »
- is irvedficible, it must be finite dimensional. By minimality of K,
5 e
s(x) = I, for all x < K, ¢ ¢.S.
Let bg be the conLrnlnidémpoton M(G) as defined in Chapter 3.
and [ - () = ~(5 - 4.) are central projections in M.
N K MY K
- 4]
# El, for some  k K,
I
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By considering am approximate identity in L (G),  an

£ Ll(G) can be found such that, -

]

0 e K I for all s ¢ S,

'Lgc €= (5= u) % f :/f'— uo % Of. Since, “d(uK)
then n(fo) = 0, for aL{ 3¢ S. Hence

while

Contradicting, < L(”‘~ - ‘ e

Therefore, K ={e} and G ‘is a [Type T, finité]—gréﬁp.

3+

6.12. Theorem. . led G Fooa loesily compaost group sueh Ehat UN(G) -

comE a won-nere Tupe Dy cSInlse raess Dhove criets a compact normal
SUDITCU, KA[ .F o7 G,  suel. trgtt e Tupe I, fUndte rart of  UN(G)
> ) . . .
'l . .

Eiggﬁ: Let EI £ denote. the maxinfal Tvpe [, finite central projection
: , ,

of VUN(G). let Ky ¢ = N. . By Propositions 3.9 and 3.10(ii), it

sutfices to prove that E_ _ » E . For fhis, it suffices to prove
: _ LE =K, .
b

f) is Type I, finite. = .
Let U = C/KI

that VN((‘./KI

Since E_-. < E » by Theorem 6.7, the
: I,f — RI £

in. I is finite and the commutater J

JET

%bgroug of 'HFC— -

index of‘ HVC— | :
. . o R S o
is relatively compact. If H can 2 shown to bégaf[Type-I, finice]-
| - ; e . . v‘ .
‘wroup, theon hg Rerarrks €.9 and 6.8, the proof that VN(C/KI f) is
T o g ' L 3 ' >
‘ 5
37



o

@ C o o . e e o 50,
- Lo o noo .
- - =] ¢ 3 . [+
. . L« - . Q . a. . .
o ) . } s ° © s
s I . i - o 4 D : : o ¢
Type I, fimite will be complete. e o L
Y T . — . o
< Theorem 4.3 and the definition of KI"f imply: H 1is a [SIN]-~ -
. . ’ i : ° >k T e e
o » , N ‘ K ' . S o . N
group. »The' theorem in Wilcox [37] implies:that ther@e exists a compact
: ; R ) - ” ° . o
. - 3 P P " PR U
gormal subgroup N of H suchs= that - . ®
Loe B s P Q
- 3 . . C_, s o A .a . o . o <
n" - - a - } © o: 2 .
¢ C(HL+/N) = Vex e . o e ¢
( FC /l ) D.,‘ o . ) . - go o
° 5] 2 r. ) = .
- ' "o 2 - . N °
’ - S - o o fa} -
‘where V is a vecgor group and D is a discrete group. ©By Proposition
’ . T, ’ R ’ =% "o o i -
o : A o , Lo o . - e 'a e N,
6.3, the Type I, finite part, of UN(H/N) is nonzero. o The kermelrof “the °
L. < ° . © . e < Y
s o o : ° e o oo
representation ©f JH/N in.the Type I, .finite.part of UN(H/N) is a’”
o g B T L c N 2 - .
° . o » v - i "o oz RN . .' N @ .
compact® normal subgroup ofs H/N and, thus, must2be a Subgfoupy ot ©
- , ‘ i, . N oa . - } - .
N B o . a ) ) . S - | . . 3 /k b‘. I
Hence it can be a®sumed, bv possibly increasing-. N, - fhat 74 oL, 4 s
‘ - - o . @ . <o -
. . . R " . a o, [ N Y .
faitkful representation in a Tvpe ., finite vofi. Neumann algebra.
° S o “ Y =6 o0 " ’
g P e o . o . . PERY Q "
fore D “is maximallyv almost periodic by Lemma, 6.10. Since -
N o ’ . o @ %7 .
- AR =t S N o o E ’
= ¢ o N ’ IN oy oy : ° °
‘ /Ny~ = N ~/N ="V %D
,, (/) o = Mo ™/N =V 7D, U
3 N B [ s T - 3 i - T e, e
) 7 . ) e = oo - a . " °© ! :
it must be ma;imally almoi— dgtgioklic. = Hencd, «H/N. is a [Tvpe I, finﬁte]— o
- N ' ’ a . B " A . o : @ i e © ’ ) %
group by Remark 6.9. . ERN .
- ER o 7 - . )
N ° s < o c .
. Qg ® » ° o . l., . 3
~Therefgre, @ s, Lemma 6.11 with (K .as N and M Tas,
o - . ¢ o E L. i ° : . o - ce . .
¥ e . e . LT o . “
the image of EI fVV((, v UN(H)S -Hence, H is a [Type T, m;nfte]r
. o ’ . o ;yv . s “‘ ° A o s . e . & .
zroup. This completes. the proef of the theorem. o E ; e 5
e . . v . ) - v B C ot - o o
Corollary. o some .
e e . .
o g . . .
° v findte
. lg thg, winigue <"
Gquotiont group-
N e ~ L lIeenadoen el o Ll e . o
2 B » . R 5 o 3
If G satisfies the hypothesis of Theorem 6.12, then ‘let
. . . ° 2 s
<) o



. _ o
5 o 4 3]
p , : . o
s, ° denote the central’idempdtent in MEG) defdined by K s For
o Koo o ° : B R L, f
T,f X . Y _
any representation w of G, let H" .denote the von Neumann algebra
generated by = (G).
- i .
"
rerothesis o Theorerm 219 and
((UK ) o 1VA3713F2” 10 Tyre
I,f : o .
o
9 n

Ejggﬁ: Since, Ry pis cdntained in the kernel of, the representation
Pl - o 5 o - .
. L e °
that takes ' x < G to,.v(x)ﬁ(uK ) inT m(u YM_, it mav be considered
. T . I,f I,f. :

e -as‘a\represéﬁtqtioh of zé/KI‘E; . By Lemma 4.1 of Moorae [21], every
K - - o L “

a

representation of a [Tvpe I, finite]-group generates-.a Tvpe I, finite
r 2 o “

& . " R . . . ) .
von Jeumann algebra. Iher%fore, V(UK ) . is a Type I, finite projection
s ~ ‘ I s f : N . .
. ‘{ ) . : - o B . i
in M. B € N o °
. . - o ‘ ‘ , Se .
= 3 :’Supbosc va:T(LK‘, Y isvalso a. Tvpe T, finite central
. : ‘ I,f o ‘
projection in M. Let N: =I{x ¢ G: s(x)F = F}, then N_ ¢ K_.:. By
. © T e F . . ) F—-"1I,f

: a2 . - . o -
Lemma 6.11,: the group »G/NF is a [Type T, finite}-zroup. By minimality

of K then N_ = K_ .. Therefore
e I, s o F I,f Yo ~
. » o
. e ° © . ) ' :
K ) - <@ D_
i} “(k)F = F, for all k « K_ ..
0 I,f
o, A
o
“ o . ° o

Hence, (;K ) = "(uK JF = F.

: I,f ° I,f R o :

c’ o o o
6.15. _.Corollarv. R O T tre wprotiisis of Thecves ©018 wd
N [
Tl i IvroluelNle s ropenpogontas o G,  ihae T2 finite
ITmonalonal A7 ol onii 10K < ker T,
- < [ ; . I , f i ,
[ . Y- '
. g .

bﬁ;lﬁ;m_iﬁﬂfl£5' If: G is a.discrete group, then Thoma [35] proves that
N c. IR . . . S
G is 4 [Type I, finite]-group ' if and onlvy if G has an abelian subgroup

of finite index. 1In [9], Formanek proves that if G 1is discrete and



UN(G)

has ©14 non-zero Type T part, then there exists a minimal finite

subgroup of finite index.

normal subgroup, K, such that.thé quotient group has an abelian
Furthermore, the Type I part of VN(G)

is
isomorphic to VN(G/K). This is the discrete group Version of Theorem
6.12.

»

2

N

The following theorem was proven by Kaniuth 'in [17]. Here it

foltows f{rom the pfgof of Théorem\§.12 and Remark 6.8.

0.17. Theorem. (Kaniﬁth). VN(G) ¢

e T L R ayage Tt vy
SO TYDRe Ly FUNLLS V0N 2
~ T e Ny Y R S S -~ [na PR b PRI
MIREONE A AN L I s oa [Ture I,

o

Il tol-group.
=] \. .
» N .7
An example will now be given to illustrate:Theorem 6.12.
p > S

This example is «discussed in Grosser and Moskowitz [1
The calcula

2

2], page 39,e.
. ’ N . ¥
tion"of the details bglow follow as 'in Section 5.10 of
Grosser andaxoskowitz>)12].

Eégpﬁie, Let
?{l ox v )
o ..
H="""410 z X,v,z < R>
M 9
o o

¢

\
\
. 3
, of H 1is given by, )
\
9 - \\
A
] A
‘H'= 0 1 0': y=R.
\
\o o 1/ ]
Let o ;
110 n\ »
r = -0 1 O' : n is an integer‘ .
‘l
MO 0. l/

' s
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Let G = H1/7. Then C' = H"/T Cand is isomorphic to the circle groﬁp
T. :For this group K_ = K = G' and
2

M ("/t\[/,\f ‘M:\‘IR .

. ‘ 2.
Thercfore, UN(G) decomposes as  UN(R™) & (I-E

v , .
[ E)VN(C). But  VN@R™)

K}

‘E. .= E¥ for this s . Hence
o3 g -for this group Hgnce‘

$'(I—EE)VN(C).

v : = 2
is isomorphic to L (@®R™) and

UN(G)  is isomorphic to L (R
In the above example, " G  is connccted so the fact that

- s

'EI P Ef s no accident. It follows from the following theorem of
s L o . o : .

Kadison and Singer -[15].

SC Troenr posnioerad Josrlln e Seonr, Eren UN(G)
‘ . S . A
M - T 7T TR *®
[Raee) P ~ . T
- (;'.

In [6] and- {7], Ernest introduced another von Neumann algebra
B X . . o

which is associated with a locally compact group. This von Neumarn .
algedbra will be denoted (% (G).  The following propertieseof W'%(G)

are taken from Ernest [6] and [77.

Thepe exists a Hilbert space H and a unitary representation

- T N N . - v . ‘
of G on & ; such that W5 (€) 1is the 'von Neumann algebra generated

.\ S, ' . . . .
by L (6). For anyv representation = of ¢, there exists a T—continuous

. - e : . e 3 - )
representation’ © of W*(G) . such that =(x) Twe(x)i, for all

Il

¥ - Ge Furthermore, M = "(W*(C)).“ In this sense, « 1is a universal

o -

representation of G and Corollary 6.14 can be reformulated as follows.

6.19. Theorem LG crtteMes rie Sirotiosis oF Thosren CLI8, then
.
. R ) 3 A L
G, ) » : ~ T s Taoavnrral reeloorion Do /R (G).
N -
I,f :

prs

<
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» In this chapter, a sumnary is

7.

Summary

that” the reader mav get an overview of the. techniques used. .

 Perhaps the single most important tool which

association, developed in Chapter

groups in G
order presdrvi
to the central
far from being
compact .normal
-

L (R)- and has

Lebusaue measu

. Most

towards showin

and the nonzero ceantral. projections in UN(G).

h

ng map

1D, whic

.
r.

projection K>

onto, as in the
subgfoﬁp,t L0z,
as manyv central
raﬁlé-sots”in R

of

¢ in three diffe

'

3, betwee

is used is the

0 the compact normal sub-

. The

Lakes a compact normal subgroup K of G

is not, in general, onto. Often it is
case where 6 = R. There 1is only one
of R; ‘but VN®R) is isomorphic to
projections as there are inequivalent
® A)
has gon

the cnergy expended in the previous chapters

rent cases, t

hat a certiin central

\

projection in VN (G Is in the range of this map., K - E . The three
3 - o -
» “ o i\ K%
cases are discussed below.
1
- . . . . - - . . [ ~

If El is the maximal abelian central projection in, VNG,
then ghe tepolosical commutator subgroup, GC', Is compact 47 El°# 0
and © El = EET; - The kev to this result is the fact that UNGD  is .
abelian If and only Lf H  is belian.

Since it was known that UN(H)  is'finite ir and only if. H
is a [S[N]—group, it was possible to use this characterization to show
that if the maximal finite central projection Ef in  UN(G) is non-

ero, then L. = EK - for a cerrain compact normal subgroup Kf ot
. - ¥ i . _
Lt turns out that Kf is the minimal compact normal subgroup K such

that G/XK 7 is

a [SIN]-aroup. .

Note that

ET

is the miniwmal closed

o

(W3]

‘made of what has been proven so

o

G

o~



L

normial subgroup N of G such that G/N  is abelian.
The situation in the third case is slightly more complicated

hut retains much of the above patabrn. It was known that if G is

.

17

a [Tvpe I, finitel]l=-zroup, then VN(G) is Tvpe I, finite. The clas

of wroups for which the maxvimal Tyvpe [, finite central projection, E_ |

I,t’

. - . . . I3
is nonzero, was then characterized. Using this charvacterization a
compact normal subgroup K . was shown to exist such that E = k.

p It : I,t Ky g

\d . . [’
In fact,. K[ £ is the wminimal compact normal subgroup K of ¢ such
d R .

that  G/K  is a [Tvpe I, finite]-group. This leads to the corollary that

VN(G)Y  is Tvpe L, finite if.and only if G is a [Tvpe I, finitel-group.

Since, for anv compact normal subgroup K of "G, the wvon

Neumann alueebras EKVN(G) and VN(G/K) avre isomorphic, the above
.

characterications of the maximal ahelian, finite and Tvpe I, tinite

contral projections Lo - UN(G) - identify the respective parts of  UN(G)
with von Neumann dlvebras generated by the left regulav representations
of the.quotients of G by the respective compact normal subgroups.

Qne of thd 'steps in characterizing the groups, G, for

which By # 0, iz to show that if VN(G) has a Tvpe Il part, then
. ; 1 ‘
. . 2
thie index of G},C‘—. inn ¢ 1is less than or equal to n . For

unimodular groups, this was proven by Marvrtha Saith in [31], bv wmaking
. i .

N

use of ghe construction of | UN(G) ' as the ven Neumann algebra gencrated

bo the Hilhert algebra C)(C) as contained in Dixmier [31, 13.10.2.
B C

If G 1s g discrete greup, then there is a simple proof, also due to

Saith ([29], Lemma 9.49, of the above result. This . latter proof

)

coneral inos easd to geacral groups it it is known that the center

Fos e
—

of  UN(G)Y  is contained in VV(GFC—,U). That is the proof 'that .is

ziven for Proposition 6.4 after first reducing te the case of a [SIN]-



group and using the Cact that for [SIN]<uroups, the center of  UN(G)

is contained in VN(CFC—,G).

Aside from the above discussion, the results on the 6cnter of
UN(GY., Ffor [SIN]-groups G, are included as adother iLlustration of

. ) ° :

the connection between the structure of VN(G)  and the topological group
structch of  G.

Consideration of the® conter of VN((?)' for non—[IN]»gro’ups
ustally involves consideration of the action of some £roup on some
Medasure space as in the vxqmplc in Chapter 5. [t would be desirable

have a method of studving the center of UN(G)  for non=[ IN]~groups

toaveids rhese measure theoretic techniques.

a-

Finding necessary and sutficient conditions on geneval locally:
« . .

compact groups G for UN(G)  to be a4 tactor is an interesting but, in
the author's opinion, a very difrficult problem.

Other questions rélated to the general theme of this thesis,

v : iy ' . .
taat remain unahsvered, ave listed helow,

"¢ What are necessarv and sufficient conditions on for

UN () t:o‘ be o Tyvpe I von Neumann aleebra? If the answer to this question
Is found, then it will be ;mssiblé te decide whether the Tyvpe T part

of  UN(GY T is isomorphic to VN(G/RX)  for scnme compact normal subgroup

K or Q. “

Similarly, what are Necessary and sufficient conditions on G

e

i : .
- TN . N . - . . . . . . - - gl
for NG to b semi-finite? Again, when the answer is tound, the
. o :
. . - .C . . - B -
chiracterization of the semi<iinite part mav be possible.
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