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Abstract 

Notwithstanding the fact that many communication channels are best modeled as 

nonuniform channels, i.e., a set of parallel subchannels, most of the literature on 

channeling coding is focused on the much simpler model of uniform channels. The 

first part of this thesis presents new insight in LDPC code design considerations for 

nonuniform channels. In the second part, a nonuniform channel model comprising 

subchannels of equal capacity is used to devise a method for designing universal 

LDPC codes. Universal LDPC codes are designed given only the capacity of the 

channel and have satisfactory performance on all channels with the given capacity. 

This means the universal code is inoculated against those changes in the statistical 

behavior of the channel that do not affect capacity. Moreover, universal codes can 

be indexed according to only the capacity for which they are designed. 
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Chapter 1 

Introduction 

Part of the appeal of digital communication is due to the possibility of having ar­

bitrarily reliable transmission over a noisy channel through the use of error control 

coding. One of the most flexible and powerful classes of error correcting codes is the 

class of low-density parity-check (LDPC) codes which have attracted considerable 

attention during the last decade. This work is concerned with the design of LDPC 

codes for nonuniform channels and the design of channel-independent (or universal) 

LDPC codes. 

This chapter begins with a brief overview of digital communication and channel 

coding. Then, LDPC codes and some of the preliminary concepts are introduced. 

After that, the motivation for the research and a brief historical review are discussed. 

1.1 Basic Concepts 

A block diagram of the essential sections in a digital communication system is shown 

in Fig. 1.1. The goal is to reliably transmit information over a noisy channel. 

Shannon, in his seminal work published in 1948, founded the field of information 

theory [2]. One of his most interesting results was that arbitrarily reliable commu­

nication over noisy channels is possible up to a specific rate of information bits per 

channel use called the channel capacity (C). 

In the diagram, there is a data source producing a sequence of binary num­

bers entering the system. Then, the source encoder removes the redundancy, thus 

compresses the data. At this point, the channel decoder adds redundancy to the in­

formation in order to allow the receiver to compensate for the damage that is caused 

1 
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Figure 1.1: Block diagram of a digital communication system. 

by the noisy channel. This means the channel coding should be chosen with regard 

to the statistical behaviour of the channel. The output is still a binary sequence 

which is passed to the digital modulator to be translated into a signal to be sent 

over the channel. Channel coding is the focus of this work and is meant by coding, 

unless otherwise noted. 

The physical medium is called the communication channel. It might be, for 

instance, the atmosphere or an optical fibre. The channel usually changes the original 

signal to some extent. Hence, the received signal is noisy and corrupt. 

At the receiver, the demodulator translates the received corrupt signals into a 

sequence of likelihoods. These likelihoods show the probability of being zero or 

one for each bit of the sequence. The decoder uses these likelihoods as well as the 

dependency of them to recover the original sequence. Finally, the source decoder 

decompresses the decoded sequence. Communication is successful when the original 

data is retrieved at the end. 

1.1.1 Channel Coding 

Since 1948, there has been continuous effort to find practical solutions that allow for 

utilizing the channel capacity. Certain capacity achieving methods have been known 

for a long time, but they all demand impractical complexity [3]. Over the years, a 

host of methods have been developed. 

A binary block code is a one-to-one map from [0, l]k space to a subspace of [0, l ] n 

(n > k). Notice that everything is in GF{2) so all the summations, for example, 
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are to be performed in modulo 2. Information to be transmitted is parsed into k-bit 

vectors. Each fc-bit information vector is then mapped, or encoded, to an n-bit coded 

vector, called a codeword. The rate of the code is defined as R — | , where n is called 

the code length. 

The subspace of the code can be defined by a k x n matrix of rank k, called 

the generator matrix (shown by GfcXn). Using the generator matrix, an information 

vector, uixfc, can be encoded as v i x n = u G . A linear block code is fully described 

by its generator matrix. Notice that the generator matrix, however, is not unique. 

A linear block code can also be specified by its null space, i.e., the set of vectors 

that satisfy Gxfxn = 0. The null space of a code is described by another matrix 

(which is not unique) called the parity-check matrix (shown by H(n-k)xn)> s u c n that 

every binary vector v is a codeword in the code space if and only if, 

H v T = 0 ( n_ f c ) x l . (1.1) 

Using this relation, it is not hard to determine whether a received vector is a code­

word of the given code space or not. But the problem is that most of the times, 

the received vector is indeed a corrupted vector, and we want to remove the errors, 

i.e., to choose the codeword which was sent most likely. Decoding can be defined 

as making the best decision for the transmitted sequence, given the received (noisy) 

sequence. 

Unfortunately, in order to obtain a better performance, one ought to increase the 

length of the code. For this reason, we are interested in optimal, or satisfactorily 

close to optimal, decoding schemes for which the decoding complexity is linear with 

the block length, such that an increase of the code length up to a reasonable length 

(n = 105 , for today's applications) does not result in unreasonable increase in de­

coding complexity. For most of the classic coding techniques, the encoding/decoding 

computational complexity is not a linear function of the code length. 

In the beginning of the 1990's, using convolutional codes, it was possible to 

approach the capacity by a gap of typically 4 — 5dB. Better performance was im-

practically complex until turbo codes were discovered in 1993 [4]. An important 

breakthrough in turbo codes was the utilization of a class of suboptimal decoding 

rules, namely, iterative message passing algorithms. Using such algorithms to de-

3 
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Figure 1.2: Iterative decoding is based on extracting the dependence within the code 
structure to find a better estimate for the sent codeword. 

code turbo codes, one can obtain very close to capacity performance with a practical 

decoding complexity. Fig. 1.2 illustrates the idea of iterative decoding. 

Soon after the advent of turbo codes, a more general category of codes were re­

discovered, i.e., codes defined on graphs, that shared the remarkable features of turbo 

codes. That is, it was possible to find codes defined on graphs that could perform 

very close to capacity under iterative message passing algorithms. The search for 

codes defined on graphs which could perform extremely close to capacity led to the 

rediscovery of LDPC codes in 1996. 

1.1.2 LDPC Codes 

When the parity-check matrix (H) of a linear block code is sparse l, the code is 

called LDPC. LDPC codes were invented by Robert Gallagar [5] in his PhD thesis 

in 1963 but had been largely ignored for a long time. At that time, these codes were 

considered too complex to be implemented for practical purposes. In 1996, LDPC 

codes were rediscovered by two independent groups, both influenced by the research 

on turbo codes [6,7]. 

Soon it was shown that some LDPC codes are superior to the best turbo codes 

of the same length and can approach the Shannon capacity by a fraction of a decibel 

in practice [8]. 

LDPC codes became attractive also because of the simplicity of their graphi­

cal representation, based on Tanner graphs [9]. This simplicity allows for accurate 

analysis and design of LDPC codes. Moreover, LDPC codes are very flexible and 

therefore can be optimized for the specific channel over which the code will be used. 
XA sparse matrix is one which is populated primarily with zeros. 
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1.2 Motivation 

There are still a host of challenging problems with regard to the application of LDPC 

codes in realistic scenarios. For example, problems such as analysis of short-length 

LDPC codes, design of LDPC codes for wireless channels, new encoding methods, 

etc. are still appearing on the titles of the papers in the field. 

This work is concerned with two related problems. The first problem is the design 

of LDPC codes for parallel channels. The second problem is LDPC codes that can 

be designed independent of the channel, given only the capacity. 

1.2.1 Code Design for Parallel Channels 

Many communication systems can be modeled as a group of parallel channels. For 

example, discrete multi-tone (DMT) systems are made up of different frequency 

tones that each has its own signal to noise ratio (SNR) . When the statistical be­

havior of the parallel subchannels is different, the system is called nonuniform. The 

nommiformity makes the design of efficient channel coding solutions for such chan­

nels challenging, especially if we require all the tones to be coded and decoded in a 

single code. 

Using a single code for protecting the symbols in all frequency tones has many 

practical benefits. For example, it allows for employing codes with long block-length 

for a practical buffer delay. In addition, using a single code reduces the software 

and hardware complexity of the whole system, compared to, say, one code for each 

subchannel. In the past few years, some of the modern coding techniques such as 

LDPC coding and turbo coding have been proposed for DMT systems [10,11]. The 

motivation for using these codes has been their good performance with practical 

complexity. 

It could be shown that taking into account the nonuniformity of the channel at 

the transmitter side does not change the capacity of the channel. That is, if we have 

a well-designed code for the channel, the channel could be used without the prior 

knowledge at the transmitter side. This means, having well designed codes, we can 

omit the feedback link. This is an important reduction in the cost. 

The problem of efficient code design under different scenarios with regard to the 
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availability of channel state information (CSI) at the transmitter and the receiver 

is the focus of the current work in this Chapter. 

1.2.2 Design of Universal LDPC Codes 

Quite related to the problem of code design for parallel channels, there lies a more 

challenging problem: without exact specification of the channel, is it possible to 

design codes that perforin near capacity? 

All of the LDPC code design algorithms need exact specification of the channel 

to give an appropriate code for that channel. In contrast, we rarely have such exact 

knowledge of the channel state (especially in the transmitter side). This fact becomes 

more important in wireless channels where the channel shows dramatic variations. 

Today's systems usually use a fixed channel code, where they work below their limit 

when channel has good quality and become useless when channel is in a deep fade. 

It has been observed by many researchers [12—14] that codes which are designed 

for one channel model have a generally good performance on some other channel 

models provided the channels have equal capacities. So, if the only given specification 

of the channel is its capacity, is it possible to design a code that performs close to 

capacity on the channel? 

Finding universal codes will allow the transmitter to use an error-correcting code 

only based on the channel capacity and not the channel state information. This 

will simplify the design of communication systems because the receiver usually has a 

good estimate of the channel and can compute the channel capacity and feedback this 

number to the transmitter. It is very inefficient to feedback the detailed channel state 

information to the transmitter, whereas one single number can represent the channel 

capacity. More interestingly, if universal codes that efficiently work on all equal-

capacity channels exist, one can produce a library of codes optimized for different 

capacities and all systems can use codes of this library. 

1.3 Thesis Outline 

This thesis is organized as follows. Chapter 2 is a brief review on the preliminary 

concepts regarding design and analysis of LDPC codes. 
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Chapter 3 is dedicated to the LDPC code design considerations for nonuniform 

channels. Different scenarios regarding the presence or absence of the CSI are inves­

tigated. A new framework for code design when both sides have the CSI is proposed. 

As a practical example, code design for a power-line communication is considered. 

In Chapter 4 the problem of universal LDPC code design is investigated. A 

method is suggested that allows for decomposing a channel into basis subchannels of 

equal capacity. Using this new decomposition method, a technique is proposed that 

allows for design of universal LDPC codes. 

Finally, Chapter 5 concludes the thesis with a summary of the contributions of 

this work and suggestions for future research. 
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Chapter 2 

Design and Analysis of LDPC 
Codes 

In this chapter the necessary background on LDPC codes is discussed. Our channel 

model is introduced in Section 2.1, and three different methods of channel description 

are presented in Section 2.2. Section 2.3 is a brief review of the analysis of LDPC 

codes. Then, in Section 2.4 allotted LDPC codes which are LDPC codes especially 

modified for use on nonuniform channels are introduced. 

2.1 Channel Model 

Channel coding is often concerned with a binary-input channel. Such a channel can 

have nonbinary output. If X is the input to a memoryless channel and Y is the 

output, the channel can be described by its conditional probabilities, i.e., p(Y\X). 

When Y belongs to a discrete alphabet, p(Y\X) can be shown by its transmission 

matrix, M = \pi,j], where pij = p(Yj\Xi). When all of the rows of the transmission 

matrix are permutations of each other, and also all the columns are permutations of 

each other, the channel is called symmetric [3]. 

Most of the channels in this work are not symmetric with the above definition but 

enjoy some level of symmetry called symmetric-output. A binary-input symmetric-

output (BISO) channel is one that abides by 

p(Y\X = Q)=p(-Y\X = l), (2.1) 

where X G {0,1}, Y € R. 
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Figure 2.1: Three binary-input channel models. 

The following examples define three of the channels frequently referred to through­

out this work. These channels are the binary erasure channel (BEC) , binary symmet­

ric channel (BSC) , and binary-input additive white Gaussian (BIAWGN) channel. 

These channels are depicted in Fig. 2.1. 

A BEC is a channel that either transmits a bit correctly (with probability 1 —e) or 

erases the bit, by giving the receiver an erasure symbol. The following transmission 

matrix describes a BEC. 

MBEC = 
1 - e e 0 

0 e 1 - e 

A BSC is similar but instead of losing bits, flips (inverses) them with probability 

e. The following transmission matrix describes a BSC. 

1 
MBSC = e e 

e 1 - e 

A binary-input channel might have a continuous alphabet at the receiver side. A 

BIAWGN transmits X € {+1, -1} and the signal is corrupted by an additive white 

Gaussian noise. This means that the received signal (Y) can have any real value. 

The following equation describes a BIAWGN. 

y = ax + n, 

where a is the channel gain and n is the additive white Gaussian noise. For the sake 

of simplicity, it is assumed that a = 1. So, the noise power is expressed in terms of 

the SNR as 

2 1 
cr„ SNR' 
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2.2 Channel Description 

A BISO channel can be completely described by the probability density function 

(pdf) of its log-likelihood ratio (LLR) . The pdf of the LLR (LLRPDF) is obtained 

by assuming that the all-zero codeword is transmitted. When bit X is sent and Y 

is received, the LLR (denoted by m) is defined as 

1 0 % ( X = 1|Y)-

Therefore, there is a one-to-one correspondence between the pdf of m, f(m), and 

the channel. The capacity of the channel can be obtained by calculating the mutual 

information between X and Y, which is a function of f(m). We denote the mutual 

information of f(m) by j ( / ( m ) ) , which can be calculated as1 [15] 

/

+oo 
/ (m)log2( l + e-m)dm. (2.2) 

-oo 

Thus, the maximum achievable rate on this channel, i.e., the capacity of this channel, 

C = Z( / (m)) . 

Although every BISO channel has a unique LLRPDF, not every pdf represents a 

BISO channel. To be more specific, a pdf has to satisfy the symmetry condition [15], 

i.e., /'(—m) — e~mf(m) in order to be a valid LLRPDF of a BISO channel. The fact 

that not every pdf is a valid LLRPDF imposes some difficulties in Chapter 4 where 

channel decomposition is performed. 

Another channel representation which does not involve the above constraint and 

allows every pdf to represent a BISO channel is based on probability of error [16], 

p = min {p(X = 1\Y), l-p(X = l\Y)}. (2.3) 

It follows that p G [0, | ] . We represent the pdf of probability of error (PEPDF) with 

g(p)-

For example, a BSC with crossover probability of e can be represented with its 

LLRPDF as 

1 1 

/ (m) = (1 — e)S(m — log ) + eS(m + log ), 

1A more general form of this equation will be proven in Chapter 3. 
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which consists of two delta functions satisfying the symmetry condition. The channel 

can also be represented by g{p) = S(p — e). 

As another example consider 

g{p) = 7£(p - Cl) + (1 - 7)S(p - e2). 

This represents a channel which consists of two BSCs, one with crossover probability 

of e\ and another one with crossover probability of e-2- The first channel passes 7 

fraction of transmitted bits and the second one 1 — 7 fraction of bits. Similarly, for 

the continuous cases, the PEPDF can be obtained. For example, the PEPDF of a 

Gaussian channel is [16] 

/ x & - < j 2 floe 1 _ p - 2 „ 1 2 

g{p) = V-7=e 8 p ° • 
p(l — p)2y%ix 

From the definition and these examples, it should be clear that unlike LLR-

PDF, PEPDF representation allows every pdf defined over p € [0, 2] to represent 

a BISO channel. In fact, this representation decomposes a BISO channel into a 

convex combination of BSCs of different crossover probabilities. The fraction of 

bits passing through each BSC is captured in PEPDF. The three channel represen­

tations presented in this section are interchangeable when the input is uniformly 

distributed [16]. 

In Chapter 4, we will propose a new representation for the channel which is 

obtained from the PEPDF, but describes the channel as a convex combination of 

identical-capacity basis channels. 

2.3 Analysis of LDPC Codes 

LDPC codes are in part appealing because of the powerful analytic methods that 

code designers have at their disposal. Most of these methods are based on a graphical 

representation of LDPC codes. 

2.3.1 G r a p h i c a l R e p r e s e n t a t i o n 

The idea of using bipartite graphs to simplify design and analysis of linear codes 

goes back to Tanner's work in 1981 [9], and hence the term Tanner graph means the 

bipartite graph that represents a linear code. 

11 



X\ + X'2 + X3 + X4 + X5 + X7 + X9 = 0 

X\ + X3 + X4 + X6 + X-j + £8 + Xg = 0 

X'2 + X4 + X7 = 0 

Xi + X5 + X6 + X7 + Xg + X9 = 0 

X3 + X4 + X5 + X6 + Xg = 0 

Figure 2.2: Factor graph and parity-check equations of a short linear block code denned 
in (2.4). 

A graph is said to be bipartite when the nodes can be partitioned into two 

disjoint classes. Each edge in the bipartite graph should connect a nodes from one 

class to a node from the other class. A well-known example of bipartite graphs in 

probabilistic reasoning is a factor graph. In a factor graph, one class of nodes are 

function nodes and the other class are variable nodes. Factor graphs are very efficient 

tools for obtaining the marginals of a multivariate function when the function can 

be factorized into simpler functions [17,18]. 

It was stated that a set of parity-check equations (1.1) can determine whether 

or not a vector of the appropriate size belongs to a codebook, i.e., is it a codeword 

or not? This set of equations can be used to make a factor graph in which each 

function node, hereinafter called check node, illustrates one of the equations. 

Consider the simple LDPC code of length 9 and rate R = | described by the 

following parity-check matrix: 

H 

1 1 1 1 0 0 1 0 1 
1 0 1 1 0 1 1 1 1 
0 1 0 1 0 0 1 0 0 
1 0 0 0 1 1 1 1 1 
0 0 1 1 1 1 0 1 0 

(2.4) 

Fig. 2.2 demonstrates the factor graph and parity-check equations of this code as 

well as the corresponding factor graph. The variable nodes and the check nodes are 

located in the left side and right side of the graph, respectively. If all the check 

nodes, i.e., the equations, are satisfied, the vector that the variable nodes show is a 

codeword. 

Notice that the number of edges in the factor-graph of a code is identical to the 

number of l's in the parity-check matrix of the code. The number of edges in the 
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corresponding factor graph of LDPC codes increases linearly with the code length. 

Hence, the computational complexity of the message-passing algorithm for LDPC 

codes increases linearly with the length of the code. In other words, the complexity 

per bit of LDPC code remains almost constant and does not depend on the code 

length. 

2.3.2 C o d e S t r u c t u r e 

It is shown that the properties of LDPC codes with large code length are mostly 

determined by the length of the code and the distribution of the degrees of the two 

classes of nodes [19]. From the point of view of code structure, LDPC codes can be 

classifies into two categories: regular and irregular. 

Whereas irregular codes can have variable nodes (and check nodes) of different 

degrees, regular codes have variable nodes of a fixed degree (dv) and check nodes 

of a fixed degree (dc). If the code length is n, the factor graph of the code has n 

variable nodes, and (1 — R)n check nodes, where R is the rate of the code. Denoting 

the number of edges in the graph with E, it follows that 

E = ndv = (1 - R)ndc. 

Then rate of the code can be obtained as 

*_!_!£ = ! * 
E/dv dc 

When n is large, almost all the regular LDPC codes with variable degree dv, check 

degree dc and length n behave very similarly [19]. So, for asymptotically long LDPC 

codes, instead of specifying a particular incident, the ensemble of LDPC codes of a 

particular dv and dc, is often specified. This ensemble is referred to as the ensemble 

of (dv,dc) regular LDPC codes. 

Compared to many channel coding schemes, regular LDPC codes perform closer 

to capacity. Nevertheless, optimized irregular LDPC codes outperform regular ones 

[20]. Irregular LDPC codes are usually characterized by their edge-perspective right 

and left degree distributions. The variable side edge-based degree distribution (also 

known as the left degree distribution) is usually denoted by A = [Ai,A2,... A^J, 
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where A, is the fraction of edges in the factor graph of the code incident to vari­

able nodes of degree i. Also, dv denotes the maximum variable node degree in 

the code. Similarly, the check side (or right) degree distribution is denoted by 

p = [p\,p2, • • •,Pdc], where de denotes the maximum check node degree in the code. 

Consider an irregular LDPC code with left and right degree distributions A and 

p and length n. Assume that the number of edges in the graph is E. There are 

E\i edges connected to variable nodes of degree i. It follows that there are E\i/i 

variable nodes of degree i. So, 

i 

Similarly, since the number of check nodes is (1 — R)n, it follows that 

(l-lQn-Y.E". 
i 

Therefore, given A and p, the rate of the code can be obtained as 

R=1_ Eii/H/i 

Similar to regular LDPC codes, the performance of asymptotically long irregular 

LDPC codes on a given channel is determined by A and p [8]. Hence, to design an 

LDPC code is usually tantamount to finding the left and right degree distributions 

that assure the required performance on the given channel. 

2.3.3 Sum-product Algorithm 

There are a number of message-passing decoding algorithms based on the factor 

graph representation of linear codes. Sum-product is an algorithm for approximate 

inference on graphical models. It has been shown that if the graph is a tree (i.e., 

without cycles) the exact algorithm converges to a fixed point which is the optimal 

solution. For loopy graphs (graphs with cycles), however, the algorithm is neither 

guaranteed to converge to a fixed point, nor is the result guaranteed to be the correct 

answer. There has been ongoing research in finding a practical set of necessary 

conditions that assure the convergence of the algorithm to an optimal answer on 

loopy graphs [21]. 

Although a suboptimal algorithm in general, sum-product algorithm can perform 

surprisingly close to a maximum likelihood (ML) decoder in most cases. Close to 
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optimal performance, in tandem with the fact that the complexity of the algorithm 

increases linearly with the length of the code, has made sum-product algorithm the 

most attractive decoding algorithm in the context of LDPC codes. 

Assume that the length of the code is n and the code rate is R. So, there are n 

variable nodes, {vi,...,vn} and (1 — R)n check nodes, {ci,...,cw}. The set of check 

nodes directly connected to each node, like Vj is denoted by Af{vj}. 

Variable nodes are initially loaded with the values observed from the channel. 

This value is the likelihood of having received 0 or 1. Here, it is assumed that variable 

nodes receive LLR values, and the values passed on edges are also assumed to be 

LLR. The initial LLRs are denoted as mch,i-

As mentioned before, sum-product is an iterative message-passing algorithm. At 

the initial stage, or iteration 0, each variable node passes its value to the neighboring 

check nodes. Thus, for each variable node v-i's output, 

These messages are called intrinsic messages because they are observed from the 

channel and not affected by the constraints that the code should abide by. 

The following iterations are comprised of two phases of computing and sending 

messages: from variable nodes to neighboring check nodes and vice versa. At any 

iteration, say iteration £, first, each check node performs the following operation and 

passes the result to the neighboring variable nodes [18]. 

m^;i=2tanh-1( ft tanh f 1 ^ ) ) " (2-5) 

These messages are called extrinsic messages. 

Then, the variable nodes perform the following equation and pass the result to 

their neighboring check nodes, 

ckeN(vi)-cj 

Equations (2.5) and (2.6) constitute one iteration. When the algorithm is used 

for decoding, the iterative process of sum-product is performed up to a maximum 

number of iterations or until all the check nodes are satisfied. Each check node is said 
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to be satisfied when its corresponding parity-check equation holds. In other words, a 

check node is satisfied when the message it sends to each of its neighboring variables 

has the same sign as the last message that it has received from that variable. 

At iteration I, if one is to decide for the value of the sent bits, they can be 

obtained by combining the intrinsic messages and the last set of extrinsic messages 

as follows, 

Vi = sign -mc tM - ] T " 4 ? - ^ 
\ ck&N{vt) ) 

where the sign function returns 0 when its argument is negative, returns 1 when its 

argument is positive, and returns either 0 or 1, equally likely, when its argument is 

zero. 

There are a number of simplifications of the sum-product algorithm which suit 

particular practical purposes. For example, instead of LLR, hard information (zero 

or one) might be observed from the channel. Another example is the min-sum 

algorithm which simplifies the operation at check nodes. Further discussions in this 

regard can be found in [18]. 

2.3.4 Density Evolution 

The rationale of iterative decoding is that the extrinsic messages usually improve, or 

evolve, iteration by iteration. So, tracking the evolution of the statistical features of 

the messages is a natural means for analyzing a given code. Density evolution has 

two main assumptions [19]: (1) The code length tends to infinity which also means 

the factor graph is a tree (2) the channel is BISO and the decoding algorithm is 

symmetric. Before introducing the method, these assumptions will be explained. 

If the factor graph is cycle-free, i.e., a tree, at every iteration, the incoming 

messages are independent. When there are cycles present in the factor graph, the 

girth of the graph is defined as the length of the shortest cycle. If the girth of a 

factor graph is xp, the graph from the point of view of each variable node is similar to 

a tree for at least the neighborhood of depth |_|rJ- Therefore, the extrinsic messages 

that each variable node receives are independent from its intrinsic message for at 

least L g J iterations. 

For randomly constructed factor graphs, the ratio of short cycles to code length 
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decreases as the length of the code increases. That is, for long codes, most variable 

nodes receive independent extrinsic messages for a healthy number of iterations. 

Therefore, in very long codes, the contribution of the cycles to the behavior of the 

codes is negligible, and vanishes asymptotically with the code length. Hence, the 

factor graph is assumed to be a tree in the asymptotic analysis of LDPC codes. 

The second assumption is that the channel is BISO, defined in (2.3), and the 

update rules have symmetry condition. The update rules are said to be symmetric 

when, simply put, they treat negative and positive LLR values similarly. The update 

rules of sum-product algorithm are symmetric [19]. Under the assumption of BISO 

channel and symmetric update rules, the statistical behavior of a linear code does 

not depend on the actual codeword that is sent. That is, one can study the code 

assuming that the transmitted codeword is the all-zero codeword (present in all linear 

codes), and generalize the result. 

Density evolution receives the LLRPDF of the messages received from the channel 

and tracks the LLRPDF of the extrinsic messages iteration by iteration. So, the 

update rules are the update rules of the decoding algorithm, but the messages are 

LLRPDFs instead of actual LLR values. Therefore, the intrinsic message is identical 

for all the variable nodes. Also, when the code length tends to infinity, for a randomly 

constructed code, the extrinsic messages at a given iteration depend only on the 

degree of the check and variable nodes. Therefore, it is sufficient to keep track of 

LLRPDFs only for check nodes and variable nodes of different degrees. The analytic 

formulation can be found in [19] 

One of the most important parameters obtained by using density evolution is 

the code threshold. The code threshold for a given code and channel type is defined 

as the worst channel condition on which the code converges to zero error rate. For 

example, for a Gaussian channel the threshold of a code is usually given in the form 

of the worst possible SNR, shown by SNR*. 

In most cases, density evolution is computationally complex. Discrete density 

evolution was devised to make computer implementations possible [22]. As the name 

suggests, the only difference is that the messages are quantized and hence, pmfs are 

used instead of pdfs. Numerical experiments show that with 11-bit quantization of 
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LLRs (2048 levels of quantization), the convergence of the code is approximated with 

less than 0.001 dB error [22], which is accurate enough for almost every purpose. 

2.3.5 EXIT Charts 

extrinsic information transfer (EXIT) chart is another method for analyzing the 

asymptotic behavior of a code under iterative decoding algorithms. EXIT chart 

analysis tracks the evolution of a specific parameter. There are various choices, but 

message error rate [23] and mutual information between the density and the all-zero 

codeword [24] are the more often used ones. 

In a few cases where the LLRPDF of the intrinsic and extrinsic messages can be 

fully described by a single parameter (e.g., in BEC), EXIT chart analysis is exact 

and equivalent to density evolution. In most of the cases, however, it might not 

be an exact analysis. To have exact EXIT chart analysis, it is possible to perform 

density evolution but, for the purpose of analysis, extract a specific parameter such 

as message error probability at the end of each iteration. In this work, EXIT charts 

are exact and are obtained in this way. 

At each iteration of the density evolution, the error rate of the messages sent 

from variable nodes at the previous iteration and current iteration make a pair of 

message error rates like (q^~x\q^) — (<7m,<Zout)- After performing t iterations of 

density evolution, one will have £ pairs which can be drawn as a trajectory, which is 

called an EXIT chart. 

When message error rate is used as the representing parameter, the goal is to 

have a trajectory that finally reaches the zero error rate point. If at some point 

Qin < 9out» that is, if the trajectory crosses the y = x line, it means the decoding 

does not converge to zero error rate. Fig. 2.3 shows the EXIT chart for (3,6) regular 

LDPC codes over two BECs with different erasure rates. It is evident that Fig. 2.3a 

indicates successful decoding whereas Fig. 2.3b suggests otherwise. 

An EXIT chart is especially suitable for code design. EXIT charts are used in 

Chapter 3 to design allotted LDPC codes and in Chapter 4 to design universal LDPC 

codes. 
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F i g u r e 2 . 3 : Message error rate EXIT charts for (3,6) regular LDPC code over (a) BEC 
with erasure rate e = 0.4 and (b) BEC with erasure ra te e = 0.45. It can beshown tha t the 
threshold is e = 0.4294. 
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2.4 Allotted LDPC Codes 

The problem of designing a single LDPC code for a nonuniform channel has been 

previously studied in [25-27]. The gist of the idea is that different subsets of nodes, 

corresponding to different left degree distributions in a single Tanner graph, are 

connected to different subchannels. In other words, the code is allotted (in contrast 

with conventional codes) among subchannels. 

To allow for this allotment, the definition of the left degree distribution has to 

be extended. This extension is done in a number of different ways. We incorporate 

the method suggested in [25], with a slight modification in notations as follows. The 

left degree distribution is broken into sub-degree distributions. So, instead of having 

a vector that represents left degree distributions, we have a matrix whose each row 

corresponds to one subchannel, i.e., 

A = [Ai,]Kxd„ = [ A ( 1 ) T , A ( 2 ) T , . . . , A W T F , (2.7) 

where, row j is the degree distribution for subchannel j , from an edge perspec­

tive, and K is the number of subchannels. Thus, row j can be viewed as A ^ = 

[Aj,i,..., Aj^J, where A ĵ denotes the portion of edges connected to degree i variable 

nodes that are transmitted through the j th subchannel. Check node distribution, 

similar to conventional LDPC codes, is defined by p = [pi, p2,..., Pdc\-
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Chapter 3 

Nonuniform Channels 

Non-unform channels are suitable models for many applications. They appear in 

networks where packets are sent through parallel routes with different, qualities; in 

multi-input multi-output systems where signals experience different distortion levels 

in different channel pairs; in DMT and orthogonal frequency-division multiplexing 

(OFDM) channels where different frequency tones have unequal SNR, and even in 

storage media where different places on the disc have various qualities. This Chapter 

provides new insights in LDPC code design considerations for nonuniform channels1. 

3.1 Introduction 

The problem of LDPC coding for nonuniform channels is studied in [25]. The so­

lution is based on carefully assigning variable nodes of different degrees to different 

subchannels based on their qualities, i.e., using allotted LDPC codes. In allotted 

LDPC coding, the number of design parameters is significantly increased. There­

fore, a search-based code design is inefficient. To overcome this problem, [25] suggests 

semi-regular codes, where no subchannel can be assigned to variable nodes of more 

than one degree. This limitation may result in suboptimal codes. Another solution 

studied in [30], is based on puncturing different parts of an LDPC code at different 

rates, which is by nature a suboptimal solution. 

Allotted LDPC codes and their design have also been studied for OFDM systems 

and satisfactory performance is reported in [1] and [27]. [1] uses a linear criterion but 

relies on a Gaussian assumption [31], which, although proven accurate for the output 

1 Parts of this chapter has been previously published [28] or submitted for publication [29] 
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of variable nodes, is not a suitable assumption for the output of check nodes [31]. 

A more recent work on allotted LDPC codes derives the upper bound on the 

achievable rate of this coding method over binary-input symmetric-output parallel 

channels under maximum likelihood decoding [32], 

By introducing some auxiliary integer parameters, it will be shown that the 

design of semi-regular codes can be solved via mixed integer linear programming. 

This solution is more efficient than an exhaustive search, but still more complex 

than the design of conventional codes. By relaxing the semi-regularity constraint 

in the design of allotted codes, the whole range of irregularity becomes available to 

all subchannels. This results in both improved codes and more efficient code design 

based on linear programming. 

Having seemingly superior performance and a design method almost as efficient 

as that of the conventional LDPC codes, the only downside of allotted LDPC codes 

is that they require channel information at the transmitter side. Since channel 

information at the transmitter does not change the capacity [33], conventional codes 

in principle can perform as close to capacity as allotted ones. So, is there any benefit 

in using allotted codes? To answer to this question, assessing different LDPC coding 

approaches for nonuniform channels seems necessary. 

We discuss the three different methods, namely semi-regular allotted LDPC cod­

ing, irregular allotted LDPC coding, and conventional LDPC coding in terms of 

code design complexity and performance. This comparison is performed in different 

situations with respect to availability of the channel state information (CSI) at the 

transmitter and/or the receiver. One important result is that under suboptimal de­

coding (e.g., hard decoding) or when maximum variable degree allowed in the code is 

small, allotted LDPC codes can significantly outperform conventional LDPC codes 

and should be the code of choice. 

The sequel of this chapter is organized as follows. In Section 3.2, we briefly 

review some required background on conventional and allotted LDPC codes, as well 

as on nonuniform channels, and present the channel model. We investigate the 

design of semi-regular allotted LDPC codes in Section 3.3 and propose an iterative 

mixed integer linear programming (MILP) method. In Section 3.4 we investigate 
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code design and code performance for the case where conventional codes must be 

used due to the absence of CSI at the transmitter side. Numerical results are partly 

presented in Section 3.5. As a practical case, code design for a power-line channel is 

considered in Section 3.6. Finally, Section 3.7 concludes the chapter. 

3.2 Background and System Model 

3.2.1 Nonuniform channels 

While the literature on LDPC code design for different channel models abounds, 

usually the channel is assumed to be uniform. That is, different bits of the code 

go through different realizations of the channel, but channel parameters are similar 

for different bits. In many communication systems, however, the uniformity of the 

channel is an oversimplification, because the channel parameters that different parts 

of the code experience can be dramatically different. For example, in an OFDM 

system, different frequency tones may have vastly different SNRs -which is one of 

the reasons for using OFDM in the first place. 

The model that we use is a channel comprising K parallel subchannels. Therefore, 

the symbols that go through different subchannels may experience different channel 

parameters. In our model, subchannels are statistically independent. 

Subchannels can be described by their conditional probabilities. So, Subchannel 

j , 1 < j < K, is denned by the pdf of receiving Y when X is transmitted, i.e., 

Pj(Y\X). Nonuniform channels are usually made up of subchannels within a broad 

range of quality. In order to make use of the subchannels with good quality, higher 

order modulations should be employed. Suppose a constellation of Qj signals is used 

for subchannel j so that it carries log2 Qj bits. We denote the fraction of the 

LDPC-coded bits that pass through subchannel j by 7j, where Y^i 1j — 1-

We assume that all the subchannels use the same signalling (Q/s are equal). 

The size of the constellations should be selected based on the affordable detection 

complexity and the typical quality of subchannels. Having various constellation sizes 

is called bit-loading. Our coding methods is applicable regardless of whether or not 

bit-loading is used. 

Notice that using one constellation for all subchannels is a worst case scenario 
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as it results in bit-channels with significantly different qualities. If a coding solution 

can handle such severe unequal qualities, it certainly handles cases that bit-loading is 

used and the constellation sizes are chosen according to the capacity of the subchan­

nels. We also assume bit-interleaved coded modulation to avoid sequential decoding 

of bit-channels. 

If Gray labeling is used, one can interleave these log2 Qj bits in a single code 

and ignore their dependencies. This way, sequential decoding of bits is avoided at 

a negligible performance degradation. This technique is called bit-interleaved coded 

modulation [34]. Bit-interleaved coded modulation for a specific subchannel results in 

bit-channels that have almost equal capacity. However, the bit-channel capacity may 

still significantly vary from one subchannel to another due to the various qualities 

of different subchannels. 

Once the modulation is specified, without loss of generality, instead of dealing 

with K subchannels, we can use the corresponding bit-channels [35]. Thus, the chan­

nel can be modeled as N independent bit-channels with possibly different qualities. 

Both models are depicted in Fig.3.1. If the capacity of bit-channel j (1 < j < N) is 

Cj, the total capacity is 
N 

Ctotal = 2_, •?' (3-1) 
3=1 

It is also useful to define an average capacity as Cavg = Ct0t.A]/N. 

3.3 Efficient Design of Allotted LDPC Codes 

When both the transmitter and the receiver know the CSI, it is possible to use allot­

ted LDPC codes. The major difficulty about allotted codes is the design problem. 

The existing efficient code design procedures, developed for conventional codes, can­

not be applied to allotted codes directly due to their different structure. Moreover, 

search based methods are particularly inefficient due to a considerable increase in 

the number of design parameters. In [25], a solution based on semi-regular codes has 

been suggested. The main reason for using semi-regular codes is to reduce the size 

of the search domain and hence allow for search based optimization. 

Here, we first formulate the code design with the semi-regular constraint as a 

standard MILP. Later we will see that relaxing the semi-regular constraint both 
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simplifies the code design problem and results in improved performance. 

3.3.1 S e m i - R e g u l a r C o d e s 

The goal is to find the semi-regular LDPC code which achieves the highest rate of 

data transmission over this channel. Defining 

1 1 
U 1 '2""'d„ 

(3.2) 

it is easy to see that maximizing the code rate is equivalent to maximizing 11><KAUT, 

where llxK is a vector of ones with length K. 

We denote LLR pdf of the messages that come from subchannel j with fj(m). 

At iteration £, we denote the LLR pdf of the input messages to check nodes with 

f^\rn). It is noteworthy that f^\m) is the same for all nodes as the structure of 

the LDPC code interleaves all the messages from the previous iteration (Fig. 3.2). 

We can also define an input message error rate for the iteration as 

p{.i) = / fW(m)dm. 
J—oo 

(I) 

Now, let us define q, [ as the message error rate at the output of degree i variable 

nodes that are assigned to subchannel j and q^ as the average of q, j . The super­

script £ shows the iteration number. Here, q^ represents the message error rate at 

the output of this iterations, which is the input error rate for the next iteration, i.e., 

p^+1\ Assuming f^\m) as the LLR pdf at the input of the check nodes, the output 

of a degree i variable node assigned to subchannel j has the following LLR pdf [18] 
i - 1 

| H = ® CHK(/«>(mM ® / ; H (3.3) 
2 = 1 

where CHK(f^\m),p) is the LLR pdf after the check operation and <g> denotes 

convolution. Therefore, 
qfl = / gfiimjdm. 

J—oo 

For the next iteration, the input LLR pdf to the check nodes can be written as 
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Figure 3.1: Two equivalent channel models. Left: The channel is a set of K parallel 
subchannels each carrying a certain fraction of N bits, all using constellation size q. Right: 
The channel is made up of N parallel bit-channels. The probability density function of 
LLRs received at bit-channel i is denoted by fi(x). 

/W(m) 
Iteration 

Iteration £ + 1 

Figure 3.2: One iteration of density evolution. 
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Once density evolution is performed for N{ iterations, for each p^\ 1 < I < Ni, 

we can define q (p^ ) as 

Therefore, we have 

P ( m W ^ l l x , [ A . q ( p ^ ) ] l d v X l , (3.4) 

where , denotes Hadamard product. 

To ensure semi-regularity of the code, we have to enforce another constraint that 

lets only a single element in each A ^ be nonzero. While this is a non-linear con­

straint, we can circumvent the non-linearity by introducing a set of integer variables 

which have to be optimized along with A. We define A = [<5j,i]/cxd„ as a matrix of 

binary integers such that 

Vi, j , \jj - 5jti < 0 

and V • 5j,i = 1. The latter constraint ensures that only one djj in each row is equal 

to one and every other <5?ij is zero. The former constraint ensures that only for the 

positions that Sjj, are non-zero, Xjj, can have a non-zero weight. 

So, the rate maximization problem can be written as follows. In this formulation, 

for two matrices (vectors) A = [a$j] and B — [fry], A < B means that Vi,j, 

a>i,j < O j j . 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

A U ^ - 7 l l x K A l F = 0 K x ] (3.11) 

Vp«> € (0,p<°>] l l x K[A.q(pW)]ld j i X l <pW. (3.12) 

Here, p(°) is the average message error rate of the first iteration, (3.12) ensures 

convergence by forcing p(^+1) < pW and (3.10) ensures that A sums to one. In (3.11), 
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{A,A} 

subject to 

Vi,j, 

11X«AU' 

^ € { 0 , 1 } 

A ~ A < QKxdv 

1 A T = 1 
x 1 x dv

 x 1 x K 

A > 0Kxdv 

x l x K ^ x d v x l = x 



7 = [7i i • • • i IK] , and this constraint ensures that the fraction of bits transmitted on 

subchannel j is indeed 7j. 

The above formulation is not a standard MILP because in (3.12), p^ depends 

on A. Notice that at the beginning of the first iteration, channel messages are 

propagated to the check nodes by the variable nodes. Therefore, the pdf of the 

messages at the input of the check nodes (and as a result p^) is influenced by A. 

One strategy for solving this difficulty is to overlook this dependency; start with 

some approximation of p^; formulate the problem as a MILP and after finding 

the optimum A update p(°\ Now, we can solve the problem with the updated p(°) 

again. Our experiments show that this is an effective strategy and in many cases 

requires only a couple of rounds of MILP. Also, from (3.4), any change in A changes 

pairs. That is, q (p^ ) is itself influenced by the design parameters A^j. For 

conventional channels, it is shown in [36] that the direct effect of degree distribution 

on q^ is much less than the effect through (3.4). Therefore, one can overlook the 

dependency of q (p^ ) on Xj/s when Xj/s undergo a small change. 

Hence, the optimization can be performed as an iterative MILP. To this end, we 

need to ensure that the changes made in Xj/s are small. This constraint can be 

imposed in various ways, but we are only interested in linear constraints. A simple 

way is to guarantee that in each round of optimization the amount of change in 

every A ĵ is smaller than a certain value e. So, if the current value of the design 

parameters are A = [A^j], we have (1 — e)A < A < (1 + e)A as an extra set of linear 

constraints on A. 

3.3.2 Irregular Allotted Code 

Semi-regularity of the codes was enforced to reduce the complexity of a search-based 

code design. We showed that instead of exhaustive search, design of semi-regular 

allotted codes can be done based on an iterative MILP. In the MILP formulation, 

however, semi-regularity of the codes obliged us to use integer parameters. Without 

the integer parameters, the problem could be solved as a linear program which is 

much more efficient. Also, the number of design parameters is reduced. 

Interestingly, relaxing the constraints that were put forth to ensure semi-regularity 

will make the whole range of irregularity available to all subchannels. In other words, 
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since semi-regular codes are special cases of irregular codes, this relaxation can only 

result in improved performance. 

The code design formulation is similar to (3.5), but the optimization is performed 

on A, and constraints (3.6, 3.7, 3.8) are no longer required. 

Numerical results, included in Section 3.5, support that in addition to the simpler 

design procedure, irregular LDPC codes perform better than semi-regular codes. 

3.4 Absence of Channel Information at the transmitter 

In the previous section, we discussed efficient design of allotted codes. We also 

mentioned that allotted codes require channel information at the transmitter. But 

in reality, many communication systems do not have this information. 

In this section, we study two cases: (1) when CSI is absent at the transmitter, 

but available at the receiver and (2) when CSI is absent at both the transmitter 

and the receiver sides. In both cases, since CSI is not available to the transmitter, 

conventional codes are to be used. 

One interesting property of many nonuniform channels is that the variation of the 

overall performance of the channel is much less than the variation of the subchannels. 

For example, suppose there are Nf frequency tones in an OFDM system and variance 

of the SNRdB of every frequency tone is cr|NR. The capacity of each frequency tone 

is 

Ci = log2(l + SNR<). 

Using d ~ log2(SNRj) = /i SNRdBi, where \i = i^~,—^ = 0.3322, we have 

Cavg ~ A* / „ Nf 

and therefore 

Var(Cavg) = * ^ p . 

In practice Nf is a large number, thus it is a valid assumption that the capacity 

of every channel realization is almost equal to the average capacity. Therefore, even 

without CSI, the transmitter and the receiver can agree on a suitable code rate. 

With no CSI, bits should be interleaved at the transmitter. By interleaving, we 

make sure that variable nodes of different degrees are transmitted through different 
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subchannels, so that the average channel performance is observed. Without inter­

leaving, chances are that nodes of different degrees are assigned to subchannels in 

an unfavorable way, resulting in poor performance. 

It is known that the capacity of a parallel channel does not depend on the knowl­

edge of CSI at the transmitter [37,38]. Thus, in the absence of CSI at the transmitter, 

with conventional LDPC codes one can approach the same capacity as allotted codes 

with CSI. One important question arises here. With both conventional and allotted 

codes approaching the same capacity, is there any benefit in using allotted codes? In 

the next section, by revisiting the fact that capacity does not change with availabil­

ity of CSI at the transmitter, we discuss situations that allotted codes outperform 

conventional ones. 

3.4.1 Only the receiver knows the channel 

When the receiver knows the channel, it can recognize each one of the subchannels 

and calculate correct a posteriori probabilities. Since it is common practice to work 

with LLRs, it is more convenient here to state the capacity of each bit-channel as 

a function of its LLR distributions. Here, by capacity of each bit-channel (Cj), we 

mean the mutual information between the input and the output of the bit-channel 

when its input is equally likely zero or one. Thus we have 

Cj = H(X,) - H(Xj\Y,) 

= 1 - p W = 0)£[log2 j±^\X, - 0] - *X, - l)£[log2 j j ^ W = 1] 

>-\* l0g2 V + piX^OM)) ^ -Q\-~2E [bg2 V + polity J 
1 l>+O0 I />+00 

- / log2(l + e-m)ff(m)dm - - / log2(l + em)f}(m,)dm, (3.13) 

where fj(t) and fj(£) denote the LLR pdf when the transmitted bit is zero and one, 

respectively2. It is evident that because the receiver can compute correct LLRs, the 

LLR pdfs of the interleaved channel will be 

J /mix(x) = 7v ^ i = i h {x> (3.14) 
I /mix(x) = TV £-ij=l Jj \X' 

2When binary modulation is used, because of the channel symmetry, (3.13) renders to the more 
familiar form given in [15], i.e., Cj = 1 — /_ °° log2 (l + e_Tn)/,(m)dm. 
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After interleaving at the transmitter, the average capacity is 

1 /-+00 1 /-+00 

Cavg = 1 - - / log2(l + e-m) /° i x(m)dm - - / log2(l + e™)/^x(m)dm 
* J—oo " J—oo 

(3.15) 

= ^ £ Q . (3.16) 
j = i 

which in agreement with literature [37] shows that the capacity does not change with 

the absence of CSI at the transmitter. 

Conventional LDPC codes are shown to be able to perform very close to the 

capacity of many channel models [8,19,22]. Thus, an important question is whether 

or not allotted codes—which require channel information at the transmitter—have 

any superiority over conventional codes. 

To answer this question, first notice that for (3.15) to hold, the receiver must 

be able to recognize subchannels so that / m j x in (3.15) becomes the average of orig­

inal /j 's according to (3.14). Therefore, the result which says interleaving at the 

transmitter does not change the capacity is valid only when the nonuniformity of 

the channel is fully taken into account by the receiver (i.e., when an optimal decoder 

is employed). As a radical example of suboptimal decoding, consider the case of 

hard decoders. For conventional codes, due to hard decoding, different quality of 

subchannels at the decoder is completely ignored, as if CSI did not exist at either 

side. Absence of CSI at both the transmitter and receiver results in an unavoidable 

capacity loss on top of performance loss due to suboptimal decoding. However, for 

an allotted code—even under hard decoding—the existence of channel knowledge at 

the transmitter prevents the above mentioned capacity loss. The difference lies in 

the ability of allotted codes to utilize the reliability difference of subchannels in the 

code structure. 

The difference between the performance of allotted and conventional LDPC codes 

should decrease as the decoding precision increases, but will not vanish as long as 

the decoding is suboptimal. Conventional LDPC codes can be designed to provide 

close to capacity performance under sum-product decoding for many channels [8, 

22,31]. Therefore, for such cases, sum-product decoding has an almost optimal 

performance. As a result, we do not expect a meaningful difference between the 
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performance of allotted and conventional LDPC codes under sum-product decoding 

for highly optimized codes. Thus, under suboptimal decoding or tight constraints on 

the maximum node degree in the code (which prevent close-to-capacity performance) 

we expect allotted codes to provide a better performance than conventional ones. 

Notice that conventional codes are special cases of allotted codes. This discussion is 

supported by the examples in Section 3.5. 

3.4.2 Neither side knows the channel 

Consider a nonuniform channel when the instantaneous parameters of its subchannels 

are not known either to the transmitter or to the receiver. Similar to the previous 

case, interleaving is the natural choice. After interleaving the bits, the nonuniform 

channel can be modeled as a uniform one. 

Suppose the original channel is made up of K subchannels where subchannel 

j carries 7j fraction of the bits and characterized by the conditional probability 

Pj(Y\X). Also assume that all subchannels share the same input alphabet. It 

is known that when the receiver does not know CSI, the capacity of the system is 

reduced. Unlike the preceding case, the receiver is only aware of the average behavior 

of the channel which means that the receiver sees the channel as a uniform one with 

the following conditional probability, 

p(Y\X) = ^ ( s u b c h a n n e l j)p(Y\X, subchannel j) = ^ i j P j ( Y \ X ) . (3.17) 
i j 

Since capacity is a concave function of conditional probabilities of the channel, we 

have 

c{P(Y\x)) = c (Y,iiPi<X\x) J < ;£>c(pi(y|x)), 
\ i J i 

which shows an inevitable capacity loss in the interleaved channel. Nonetheless, 

our example shows that one can approach the reduced capacity using conventional 

LDPC coding. 
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3.5 Numerical Results 

3.5.1 Semi-regular and irregular allotted codes 

As the first example, we revisit a code design problem solved in [25], i.e., a volume 

holographic memory systems. The system can be considered as a set of parallel 

channels having different noise powers. It is assumed that there are four parallel 

channels (K = 4). The noise is assumed to be Gaussian. Hence, the system can be 

modeled as a set of four binary-input additive white Gaussian noise channels. The 

relative SNRs of different regions are SNR2 - SNR1 =1.61 dB, SNR3 - SNR1 =2.80 

dB, SNR4 - SNR1 =3.74 dB. 

We want to design a code of rate 0.85. Similar to [25], in order to prevent the 

error floor (because a bit error rate (BER) of at least 10~12 is needed), we avoid 

degree-two variable nodes in the graph. 

Solving the suggested MILP, the same semi-regular code obtained in [25] is found 

as follows: 

PAO — 1, 
"0 0 0.1250 0 0 0 0 0 0 0 

. _ 0 0 0 0.1667 0 0 0 0 0 0 
A ~ 0 0 0 0 0 0 0.2917 0 0 0 -

0 0 0 0 0 0 0 0 0 0.4167 

IP 

Using density evolution, we obtain the threshold for this code as jft = 2.73dB. We 

design an irregular allotted LDPC code with the same threshold using the iterative 

LP method. The following code is obtained: 

P26 = 1, 

"0 0 0.1407 0 0 0 0 0 0 0.2300~ 
. _ 0 0 0.2097 0 0 0 0 0 0 0 

0 0 0.2097 0 0 0 0 0 0 0 
0 0 0.2097 0 0 0 0 0 0 0 

The rate of the irregular code is R = 0.857, which is slightly improved, but more 

importantly, the design procedure was done considerably faster. For a code length 

of 105 the bit error rate curves are obtained for these two codes (Fig. 3.3), which 

show that the irregular code has a better performance by a margin of 0.13 dB 3. 

3It deserves mention that [25] suggests a special method of making the Tanner-graph. In our 
experiments, however, both codes are randomly constructed and cycles of length up to four are 
removed. 
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Figure 3.3: Bit error rate curves for the irregular allotted LDPC code and semi-regular 
allotted LDPC codes designed in Section 3.5.1. Both codes have a length of 105. The curves 
are obtained through Monte Carlo simulation. 

For a given rate, the number of edges of the Tanner-graph of a given code is con­

sidered a measure of decoding complexity [39,40]. In fact, the number of message 

updates per iteration grows almost linearly with the number of edges. The num­

ber of edges normalized per information bit for the irregular code is 4.17 whereas 

this number for the semi-regular code is 7.06. In other words, the irregular code's 

decoding complexity is also reduced by more than 40%. 

3.5.2 Code design for an OFDM system 

In the following example we study coding solutions under different scenarios regard­

ing the availability of CSI for an OFDM system. The average capacity of the actual 

and interleaved channels are shown by Cavg and C-mt, respectively. 

The basic feature in an OFDM system is that it transforms a frequency selective 

channel into a group of independent (orthogonal) parallel narrowband AWGN chan­

nels [33]. Because of the frequency selectivity of the channel, some frequency tones, 

or, in the context of nonuniform channels, some subchannels, experience significant 

attenuation while other frequency tones provide much better SNR. This extensive 

nonuniformity has been considered the main difficulty in the code design. 
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Figure 3.4: Proakis B channel with the frequency tones grouped together in six subchannels 
as in [1] 

Due to the nonuniformity of OFDM channels, allotted LDPC coding has been 

used for OFDM channels [1,26,27]. Here, motivated by our results, we design and 

compare LDPC codes for different scenarios. 

Consider designing an LDPC code with code length L and rate R, for an OFDM 

system with Nf sub-carriers. Assume the OFDM system has proper cyclic inser­

tion and sampling. Coded bits are modulated by quadrature amplitude modulation 

(QAM) with fixed constellation size q for all frequency tones. Also, bit-interleaved 

coded-modulation [34] is used. 

To comply with the experiments in [1], we use Proakis B as the channel and a 

4-QAM constellation. Fig. 3.4 shows the frequency response of the channel. We 

design five LDPC codes for this channel: two irregular allotted LDPC codes with 

different maximum degree, similarly, two conventional LDPC code assuming CSI at 

the receiver, and one conventional LDPC code assuming the absence of CSI at the 

receiver. Using sum-product algorithm with 11-bit precision (2048 fixed LLR levels), 

each code should converge to a message error rate of 10~6 in less than 400 iterations. 
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CSI available to both sides 

The channel is known to both the transmitter and the receiver. In order to reduce 

the number of subchannels, we can group frequency tones into five groups according 

to their SNRs, such that, for example, every group contains one sixth of frequency 

tones. In order to have a better comparison with [1], we use a similar grouping: 

7 = [0.6013, 0.2936, 0.0281, 0.0563, 0.0083, 0.0124]. Also, since the threshold of 

the code designed in [1] is E^/NQ = 3.03dB4, we design all of the following codes 

for the channel with SNR = 3.03dB. With 4-QAM signalling, the capacity of this 

channel is Cavg = 0.5129. 

Allowing a maximum degree of 20 in the code, and using a regular check degree of 

7 (p7 = 1), following the proposed algorithm in Section 3.3, the result of optimization 

is the following code: R = 0.5069, A u = 0.3241, AUo = 0.2428, A2)2 = 0.0868, 

A2,3 = 0.1249, A3,3 = 0.0244, A4,3 = 0.0086, A4,6 = 0.0499, A4)2o = 0.1024, A5,6 = 

0.0144, A6,e = 0.0216, which achieves 98.8% of the capacity. To see how a tighter 

constraint on complexity affects the performance, the coding problem is solved again 

under the constraint that the maximum allowed node degree is 6. The result is 

R = 0.487: p6 = 1, M,2 = 0.1005, A]>3 = 0.3744, Ai,6 = 0.1225, A2,2 = 0.1875, 

A2,6 = 0.0101, A3)6 = 0.0548, A4,6 = 0.1098, A5,6 = 0.0162, A6,6 = 0.0242, which 

achieves 95.1% of the capacity. 

As Table 3.1 shows, there is not a considerable gain in terms of code threshold 

compared to the code optimized in [1]. It has to be mentioned that the method used 

in [lj assumes the liberty of having a very large number of frequency tones. This is 

a fair assumption in the case of OFDM systems, which means 7 is not forced by the 

system. Our method, however, is aimed at more general cases. 

CSI available only to the receiver 

Now, suppose the transmitter does not know the quality of frequency tones, but the 

receiver has a good estimate of the SNR in each frequency tone. Hence, we can only 

use a conventional code, and, as discussed before, we do not expect a significant 

degradation. Again, regular check nodes with degree 7, and a maximum variable 

4Eb/No is, simply put, the energy of the signal per information bit divided by the energy of the 
noise 
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Table 3.1: Code rates obtained for various LDPC codes. 

LDPC code 
Maximum degree 

R 
(Eh/N0)* (dB) 

Gap to capacity 

[1] 
20 

0.500 
3.03 

2.52% 

irregular allotted 
20 

0.507 
2.97 

1.15% 

irregular allotted 
6 

0.487 
3.14 

4.90% 

conventional 
20 

0.491 
3.11 
4.3% 

conventional 
6 

0.461 
3.38 
10% 

node degree of 20 are used. The result is the following degree distribution: A2 = 

0.3007, A3 = 0.2517, A6 = 0.1877, A8 = 0.0006, A12 = 0.0310, A13 = 0.0341, A20 = 

0.1932, whose rate is R = 0.4910 which is 95.7% of the capacity. This is 96.9% of the 

allotted code rate. This supports the idea that channel information is not necessary 

at the transmitter side, when the decoding algorithm performs close to optimal. 

This time, a tighter set of constraints can dramatically affect the performance. 

Again, under the constraint that the maximum allowed node degree is 6, we obtain 

the following code: p$ = 1, A2 = 0.3544, A3 = 0.1479, A6 = 0.4977, whose rate is 

R = 0.4614 or 90.0% of the capacity. 

So it is clear that if the allowed complexity, thus the allowed maximum degree, 

of the code is under a tighter constraint, the difference between allotted and conven­

tional LDPC codes becomes more pronounced. 

CSI not available 

Finally, suppose the receiver does not distinguish between subchannels, but knows 

the conditional probabilities of the mixed channel (3.17). Calculating LLRs from 

conditional probabilities is a straightforward task 

In this example, we obtain Cint = 0.4172 which is 81.3% of the actual capacity 

(CaVg = 0.5129) based on correct LLR computation. This is interesting considering 

the vast difference among the quality of frequency tones. With dc — 6 and dv = 10 

and other conditions similar to the preceding cases, the optimum code is R = 0.3974: 

p5 = 0.2, pe = 0.8, A2 = 0.3039, A3 = 0.2670, A4 = 0.0251 , A10 = 0.4040. This 

code achieves 95.3% of the reduced capacity or 77.4% of the actual capacity of the 

channel (Cavg). 
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Figure 3.5: Block diagram of the transmitter. The partitioning is done based on the 
existing knowledge about the DMT channel. 

We see that although mixing subchannels is a suboptimal solution, considering 

the reduced complexity of the system and that an LDPC code can approach this 

reduced capacity, it might be a viable option. 

3.6 System Design for Power-Line Channels 

In this section, first we describe the overall structure of a typical DMT over power-

line, and then perform LDPC code optimization. We also design a conventional 

LDPC code to show the improvement obtained by optimized allotted LDPC codes. 

The overall structure of the coding system is shown in Fig. 3.5. The LDPC 

encoder takes R • N bits from the source and produces N coded bits regardless of 

the nonuniformity of the channel. Here, R is the code rate. The N coded bits are 

then broken to N/l sequences. Each sequence has I bits and represents one of the 

2l points of a QAM constellation. These N/l sequences are assigned to equivalent 

bit-channels according to A. 

Once all the binary sequences for all tones are ready, each binary sequence is 

mapped to a complex symbol (according to the labeling scheme) and using inverse 

Fast Fourier transform (IFFT) a DMT symbol is created. Notice that one LDPC 

codeword may consist of multiple DMT symbols. Since the number of bits in a 

DMT symbol depends on the channel realization, the length of the LDPC may not 

be an integer multiple of DMT symbols. However, the code block-length N is usually 

much larger than the number of bits in one DMT symbol. Therefore, one can fill 

the LDPC codeword with as many as possible DMT symbols and fill the remainder 

of the codeword with zeros. 
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At the receiver, this process is reversed. When the LLR value for every bit of 

the codeword is computed the decoding process starts. Similar to the encoding, the 

decoding is also independent of the nonuniform channel. Hence no modification on 

the decoder and the encoder of the code is required. 

There are many iterative decoding algorithms available for LDPC codes. Al­

though in the next section, we optimize the LDPC code under sum-product decod­

ing, our methodology based on the proposed recursive LP is quite general and can 

be applied to any decoding algorithm for which a density-evolution analysis [19] is 

possible. 

We use the channel model proposed in [41] for power-line communication and 

64-QAM constellation for all tones. The distribution of SNR in different tones is 

shown in Fig. 3.6. Note that the effects of impulse noise are neglected here. While 

the channel model of [41] considers water-filling, it has to be mentioned that water-

filling does not affect our approach as the coding solution is based on the channel 

SNR distribution. 

In order to avoid bit-channels with a very low capacity, tones that have an SNR 

less than a threshold should carry no information. For 64-QAM signalling, we may 

decide not to use any tone with an SNR less than 1.2 dB. This way, there will be no 

bit-channel with a capacity less than 0.2 bits/symbol. 

This approach is employed to reduce the overall complexity and has minor effect 

on the overall performance of the system, because low-capacity bit-channels have 

minor effect on the overall capacity of the system. For example, assume that we 

have 1000 bit-channels. Assume that there are 200 bit-channels with capacity less 

than 0.2. Instead of having 1000 bit-channels with average capacity of 0.42, we 

would rather have 800 bit-channels with average capacity of, say, 0.5 and neglect 

the 200 bit-channels with worst capacity. This leads to a considerable reduction of 

complexity with a slight degradation. It should be emphasized that even without 

this consideration, the proposed coding solution works perfectly. 

Since the number of active tones is relatively large, if K (the number of parallel 

subchannels) is relatively small, one can expect an average behavior in almost all 

channel realizations. Therefore, the coding solution will be robust to changes in the 
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channel as long as K -C (number of active frequency tones). 

We use K = 4 and the capacity range for subchannels are selected to be [0.2, 04), 

[0.4 0.6), [0.6 0.8) and [0.8, 1). On a 64-QAM signalling, these capacity ranges map 

to the following SNR ranges respectively: [1.2dB 6.5dB), [6.5dB 10.8dB), [10.8dB 

14.8dB) and [14.8dB +oo). From the distribution of the SNR (Fig. 3.6) it can be 

easily found that 71 = 0.3364, 72 = 0.2949, 73 = 0.2022, and 74 = 0.1665. 

When the channel condition, the constellation size and the labeling scheme are 

known, the density of LLR messages of the channel can be found via Monte Carlo 

simulation. This provides an accurate analysis for a DMT system whose frequency 

tones are distributed according to the typical distribution depicted in Fig. 3.6. Then 

LLR distribution is used in density evolution. 

0.06 
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Figure 3.6: Distribution of SNR in frequency tones of the power-line channel. Frequency 
tones are grouped into four subchannels according to their SNR. 

All of the codes in this section are designed so that they converge to target 

error rate of 10~7 in less than 400 iterations of sum-product decoding with 11-bit 

precision. The effect of 11-bit decoding and 400 iterations is in implementation of 

40 



"discrete density evolution" [22]. Choice of 400 iterations and 11-bit decoding is 

arbitrary and the approaches of this work are readily applicable to other numbers if 

needed. 

Allowing a maximum node degree of 10 in the code, the optimized degree distribu­

tion for this channel is p = {p% = 1} and A = {Ai,2 = 0.0058, Ai]3 = 0.1794, A^io = 

0.2003, A2,2 = 0.1449, A3)2 = 0.0994, A4,2 = 0.0099, A4,io = 0.3603}. This code has a 

rate of R = 0.4916. This means that more than 96% of the capacity of the channel 

C = 0.5077 bits/symbol is achieved with a code whose maximum node degree is 10. 

The above code was designed on a simplified channel because of the K = 4 

assumption. In order to have a sound comparison with conventional codes the code 

is tested on the actual channel with successful convergence. 

To see how an optimized allotted LDPC code can outperform a conventional 

LDPC code, we do similar optimization for a conventional LDPC code. The result 

is, p = {P8 = 1} and A = {A2 = 0.2564, A3 = 0.0443, Aa0 = 0.6993}. This code has 

a rate of R = 0.4129 which is no more than 81.3% of the capacity of the channel. 

Notice that in this case the nonuniformity of the channel is still used. In fact, the 

channel state information is used at the receiver to calculate correct LLRs. That 

is to say. the receiver recognizes different frequency tones and knows their correct 

SNRs. So, the only difference is that all subchannels are forced to use the same 

degree distribution. 

This comparison shows that for a practical maximum degree of 10, the conven­

tional LDPC code performs well below allotted LDPC codes. It is interesting that 

the improvement is obtained at almost no extra cost. Nevertheless, it should be 

pointed out that the difference becomes less significant if one allows impractical 

degree distributions. 

Repeating the optimization with a maximum variable node degree of 25, we 

obtained a rate 0.4707 code with p = {p8 = 1}, A = {A2 = 0.2612, A3 = 0.1971, A5 = 

0.0244, A6 = 0.1057, A]2 = 0.0204, A25 = 0.3912}. This rate is closer to capacity but 

still less than the rate of an allotted code with much less complexity. 

Considering that channel state information is available at the transmitter and the 

receiver in power-line DMT channels, allotted LDPC codes seem to be the natural 
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choice. 

3.7 Conclusion 

It was shown that semi-regular allotted LDPC codes can be designed via mixed 

integer linear programming. The proposed approach can be simplified to linear 

programming when the semi-regularity constraint is removed. 

Since allotted codes require the channel state information at the transmitter 

and channel knowledge at the transmitter does not change the capacity, a natural 

question is whether allotted codes provide any benefit over conventional LDPC codes. 

We argued that under optimal decoding the performance gap between allotted and 

conventional codes is minor. This gap, however, can be quite significant if suboptimal 

decoding is used or when the maximum node degree allowed in the code is small. 

Therefore, when channel state information is available at both the transmitter and 

receiver sides, it is better to use allotted LDPC codes, since they approach the 

capacity with smaller node degrees in the code and also because they outperform 

conventional codes with suboptimal decoders. We also investigated the case when 

neither the transmitter nor the receiver has the channel knowledge. While a capacity 

loss is inevitable, the reduced capacity appears to be approachable by conventional 

LDPC codes. 
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Chapter 4 

Universal LDPC Codes 

Design of codes for specific channels is a well studied subject. A code optimized 

for one channel, however, may not be suitable if used on another channel [42,43]. 

Therefore, more recently, there has been an emerging interest in universal codes, 

i.e., codes that provide good performance for a multitude of channels [44-47]. Such 

codes reduce system complexity by removing a need for the CSI at the transmitter 

and frequent code changes in the communication system. They also allow for once-

and-for-all coding solutions1. 

4.1 Introduction 

The existence of universal error correcting codes can easily be deduced from the 

Shannon's channel coding theorem. Consider all random codebooks of (2nR,n), i.e., 

all codes of length n and rate R, indexed from 1 to 2n(~1~R'2"' and define nu == 

n2n(i-R)2n •_ j^ u n j v e r s a i (2nuR,nu) code can be constructed as follows. To encode 

nuR bits, parse the sequence to nu/n subsequences of length nR. Then, encode the 

?'th subsequence with the codebook number i. According to [3, Theorem 8.6.1], the 

average bit error rate of a jointly-typical decoder over all (2nR, n) codebooks on any 

given channel with C > R approaches zero as n —> oo. Thus the newly constructed 

(2n"R ,nu) code is a capacity achieving universal code. 

Therefore, with a random code and a jointly-typical decoder (or an optimal 

maximum likelihood decoder), where the decoder is adjusted for each channel, ran­

dom codes with universal property can be constructed. However, the complexity 

1A version of this chapter has been submitted for publication [48] 
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of a jointly-typical or a maximum likelihood decoder grows exponentially with the 

length of the codeword (n). Thus, such universal coding solutions are not practical. 

Low-density parity-check (LDPC) codes [5] are known to be extremely strong 

error correcting codes. In fact, if carefully designed, these codes can approach the 

capacity of most channel types [8, 22] with practical complexity. The question is 

whether LDPC codes under iterative decoding have good universal properties and 

whether LDPC codes with stronger universal properties under iterative decoding 

can be constructed. Interestingly, various authors have observed good "universal 

properties" of these codes [12-14,46,47]. 

Chung [12] notices that LDPC codes designed for the Gaussian channel have 

good performance on some other channels such as the Rayleigh channel. Jin et 

al. [46] define a universal LDPC code as a code with similar performance over a class 

of channels, in which the performance is measured by the threshold of the code in 

terms of mutual information (in bits/sec/Hz). They observe that LDPC codes have 

good universal properties on fading channels with variant fading rates. In a more 

general setup, Shi and Wesel [47] study the universal properties of finite block length 

codes. 

Peng et al. [14] study design of LDPC codes that are suitable for a number of 

channels (in this case, the Gaussian channel, the BEC and the Rayleigh channel). 

For a given set of channels, they find that usually one channel can be chosen as the 

surrogate for the set. They propose using a code which is designed for the surrogate 

channel. This approach results in codes which work satisfactorily on all the given 

channels, but not necessarily on other channel types. 

Despite some observations on universality of LDPC codes on various channels, 

the performance of a code designed for one channel, can be prohibitively worse on 

another channel with similar capacity. For example, an LDPC code with maximum 

node degree of 100 that achieves more than 99.7% of the capacity of a BEC with 

capacity C = 0.5 taken from [49], does not converge to an acceptable error rate over 

a BSC with capacity C — 0.63. That is, even 80% of the capacity of the BSC is not 

achieved by this code. 

In this work, we study design of LDPC codes that have strong universal prop-
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erties. That is, for a given channel capacity C, we seek LDPC codes that provide 

good performance on all channels which exhibit this capacity. To this end, we take 

two steps that form the main body of this chapter: first, code design for convex 

combination of N channels of equal capacity, and second, decomposition of channels 

into a number of subchannels with similar capacity. 

In Section 4.3, we investigate the code design problem for convex combinations 

of two equal-capacity channels, namely CHi and CH2. By convex combination of 

two channels, we mean a scenario where 7 fraction of transmitted bits pass through 

CHi and the other 1 - 7 fraction pass through CH2, where 7 € [0,1]. For a specific 

7, this linear combination specifies a channel, CH7, for which one can easily design 

a good code. The problem that we try to solve in this Section is quite different. Our 

goal is to find a code which works for all values of 7. Such a code is universal on all 

convex combinations of CHi and CH2. 

We show that under a mild assumption, to design a code for all convex combina­

tions, it is sufficient to guarantee the convergence of the code only on its constituent 

channels (CHi and CH2). The same result would apply to any number of equal-

capacity subchannels. That is, a code designed to converge on N channels, would 

converge on the convex hull of these N channels. 

A consequence of this result is that if a set of basis channels of capacity C can be 

found, a code designed only for the basis channels is universal. This is because any 

channel with capacity C can be expressed as a convex combination of these basis 

channels. 

In Section 4.4, a channel decomposition method is suggested. Our method de­

composes a BSC with capacity C into a number of basis channels of the same capacity 

with nonnegative coefficients. Because of the identical capacity of the basis channels, 

this decomposition method is not similar to different existing channel decomposition 

techniques most famous, perhaps, is channel decomposition over BSCs with vari­

ous capacities [16,50]. We show that our technique is exhaustive, i.e., all channels 

of a given capacity can be spanned with nonnegative coefficients over the suggested 

basis. 

Therefore, for any given capacity C, a code designed only for the basis channels 
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that are obtained from our channel decomposition method is expected to have strong 

universal behavior over all channels with capacity C. Code design for the basis chan­

nels and simulation results are provided in Section 4.5. The yardstick that we use to 

measure the success of our codes is the achievable percentage of the channel capacity. 

We propose an upper bound on the achievable rates by universal LDPC codes and we 

show that our codes approach this upper bound. Also, through simulation results, 

we show that our codes have significantly better universal properties compared to 

codes with similar rate designed for specific channels. 

Finally, it is important to emphasize that throughout this chapter, we assume 

that all channels are memoryless BISO and fed with equiprobable binary inputs. 

4.2 A Short Note on LDPC Code Design 

An ensemble of irregular LDPC codes is usually represented by variable and check 

degree distributions, \{x) = ^ A , x l _ 1 and p(x) = X^iX1 - 1 , respectively. 

LDPC code design on a given channel means optimizing the check and variable 

degree distributions of the code according to a cost function. Various cost func­

tions are considered in the literature [8,51]. The most common two approaches are 

threshold maximization and rate maximization. 

In threshold maximization, the rate of the code is fixed and for a given channel 

type, the goal is to find the code which works under the worst channel quality. This 

approach minimizes the gap from the channel capacity for a fixed code rate. In rate 

maximization (similar to the approach in Chapter3), the channel parameters are 

fixed, and the goal is to obtain the code with maximum rate that provides reliable 

communication on the given channel. This approach minimizes the gap from the 

capacity for a fixed channel. 

The focus of this chapter is on the codes that are suitable for a multitude of 

channels rather than a single one. The rate-maximization approach fits our purpose 

well, because it allows for a natural generalization from a single channel to a finite 

number of them. In other words, two or more channels with identical capacity are 

given and the objective is to find the code with maximum rate that performs well 

on all of these channels. Using this approach, code design is very similar to what 
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Figure 4.1: Convex combination of two subchannels, where 7 is the fraction of bits that 
go through subchannel 1. 

has been discussed in the literature in various forms [52,53]. 

In this chapter density evolution is used for the purpose of code design [8] which 

was introduced in Chapter 2. Though to some extent repetitious, a brief review of 

the method with a little embellishment to allow for code design for two channels is 

presented in Section 4.3.2. 

4.3 Universal Codes for Convex Combinations of Two 
Channels 

In this section, we consider codes that are universal for any convex combination of 

two channels. We start with the definition of convex combination of two channels. 

4.3.1 Convex Combination of Two BISO Channels 

Fig. 4.1 illustrates a communication channel composed of two subchannels, where 

7 fraction of bits pass through subchannel 1 and 1 — 7 fraction of bits pass through 

subchannel 2. We refer to this communication channel as a convex combination of 

subchannels 1 and 2. 

Using LLRPDFs of subchannels, this combination of channels translates into 

linear combination of the corresponding LLRPDFs. That is, 

/ 7 (m) = 7 / 1 M + ( l - 7 ) / 2 M , (4-1) 

where f1(m), fl{m)) and f2(m) denote LLRPDFs of the mixed channel, subchan­

nel 1 and subchannel 2, respectively. For (4.1) to hold, the receiver must have CSI 

and compute correct LLRs (an assumption made throughout this chapter). 

Similarly, based on PEPDF representation we have 

g^ip) = ig\p) + (i - i)g2(p), (4.2) 

47 



where g1{p), g1(p), and g2(p) denote PEPDFs of the mixed channel, subchannel 1 

and subchannel 2, respectively. 

One of the important properties of the linear combination of two LLRPDFs is 

that the same linear combination applies to the mutual informations, i.e., 

1 (,F(m)) = j l (f(m)) + (1 - 7 ) J ( / V ) ) • (4.3) 

This equation holds, because according to (2.2), X(p(m)) is a linear function of 

P{m) which itself is a linear combination of / 1 (m) and f2(m). 

If 7 is fixed, the linear combination defines a unique channel, for which one can 

design a good LDPC code. If 7 is unknown, however, finding a code which works 

for all values of 7 € [0,1] is a challenging problem. 

It is noteworthy that if the transmitter knows through which of the subchan­

nels the next transmitted bit will pass, it can use two different channel codes, one 

for subchannel 1 and another one for subchannel 2 and fill the buffers on the fly. 

Thus, universal codes are not required. In most practical situations, however, the 

transmitter does not have such side information. 

When both subchannels have capacity C, from (4.3) it is evident that the capacity 

of the convex combination is also C regardless of 7. Our goal is to design a single 

LDPC code which works for all values of 7 (see Fig. 4.1). As we will see, solving this 

problem paves the way for finding universal LDPC codes that work for any channel 

with a given capacity C. 

As a first step, let us assume that there are only two possible cases, 7 = 0 and 

7 = 1 . That is, we assume the channel is equivalent to one of its subchannels. It 

will be shown later that under a mild assumption, the code designed based on this 

assumption is suitable when 7 can take other values as well. 

4.3.2 Code design for two channels 

When there are only two possible cases of 7 = 0 and 7 = 1, it is sufficient to find 

a code which works on both subchannels 1 and 2. Taking the rate maximization 

approach for code design and assuming that p(x) is given, in order to maximize the 

code rate 
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one has to maximize ]P \/h which is a linear objective function in terms of the 

design parameters {Aj}. This optimization is subject to convergence of the code on 

these two subchannels as well as X(x) describing a valid code. 

For code design, we use density evolution. Although, in this section we consider 

only two subchannels, we will consider a larger number of subchannels for the purpose 

of code design in the sequel. Thus, we formulate the design problem as a linear 

programming to allow for fast code design. 

Using density evolution for each subchannel, one can obtain asymptotic behavior 

of the code over each subchannel. At each iteration of the density evolution, we 

have the density of LLR input messages (input to check nodes, output of variable 

nodes). We denote this density at iteration £ with fe(x). This density is the same 

for all edges, as the random structure of the LDPC code interleaves the messages. 

Assuming that the all-zero codeword is transmitted, this density defines a unique 

mutual information which is 

Iin,e = Z(Mm))- (4-4) 

Here, I\n^ represents the amount of mutual information at the beginning of the ^th 

iteration. 

Running density evolution, one obtains the density of LLR messages at the output 

of degree i variable nodes, / ^ + 1 ( . T ) , for all i. The input density to the £+l th iteration 

is therefore 

fe+i(m) = 2 A«/w+i M -
i 

Thus, the input mutual information to the iteration £ + 1 is [53,54] 

-fin,M-l = Io\xt,£ = 2 _ ^ A i J ( / j ) £ + i ( m ) ) . 

% 

By removing the iteration index for simplifying the notations, the above equation 

can be rewritten as 
-'out — / j ^i-'out.i) 

i 

where Jout,i denotes the output mutual information at degree i variable nodes. 

Since, fi^+i(m)s are functions of fe(m) and fe(m) corresponds to I^i (or for 

simplicity Im) according to (4.4), one can think of the mutual information at the 
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output of degree i variable nodes, I0ut,i, as a function of J;n. We denote this function 

by /out,i(-^in)- After running density evolution for M iterations, this function is known 

at M values of Im visited by density evolution. Hence, one can use these M values 

of I-m to ensure the designed code exhibits satisfactory convergence behavior, Note 

that this gives rise to a linear program as follows, 

max(du) 

E Ai 
— 

i=2 % 

s.t. \ > o v?: 
max(d„) 

Convergence on channel 1: 
max(d„) 

£ AiJoUt,i(^) >x, V* e [C, 1) 
i=2 

Convergence on channel 2: 

max(dt,) 

i=2 

where C is the mutual information at the beginning of density evolution which is 

equal to the capacity of both of the channels. Since we want to ensure convergence of 

the code only on two channels, there are two sets of constraints on the convergence 

behavior. 

Example 1 We seek a maximum-rate LDPC code which converges on both BEC and 

BSC with capacity C = 0.5. The code should have a fixed regular check node degree 

of 9, and a maximum variable node degree of 50. The code is supposed to converge 

to a target mutual information of 1 — 2 x 10~6 in less than 400 iterations. 

Solution: A2 = 0.1979, A3 = 0.1853, A5 = 0.0417, A7 = 0.0552, A8 = 0.2133, A50 = 

0.3066, /?are=0.4702. 

Notice that if the check node degree distribution is not given, the formulation is 

not different, except for the objective function which is not linear. This difficulty 

exists in the case of code design for a single channel too. A short discussion on how 

to choose p(x) is presented in Section 4.5.1. 
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Figure 4.2: The number of iterations needed for the code of Example 1 to converge on 
different convex combinations of the BEC and BSC. Here, 7 is the fraction of bits that pass 
through the BSC. Thus 7 = 0 and 7 = 1 represent the BEC and BSC respectively. 

As a final remark, notice that if we needed convergence on N channels, we would 

have a similar formulation with 

max(d„) 

J2 VL.itfn) > 'in, V7,ne[C,l), 
i=2 

repeated for 1 < j < N, i.e., all N channels. 

4.3.3 All convex combinations of two subchannels 

A code for the special case that 7 is either zero or one was designed in the previous 

section. In general, however, 7 can take any value between zero and one. The 

number of constraints in the previous optimization problem grows almost linearly 

with the number of different channels (i.e., different possible values of 7) that the 

code should be guaranteed to work on. 

Fortunately, our experiments show that if we guarantee convergence for two val­

ues of 7, the code will converge for all the values of 7 in between. For different values 

of 7, Fig. 4.2 shows the number of iterations that the code designed in Example 1 

needs to converge to the specified target mutual information. Not only does the code 

converge for every 7 € [0,1], but also the number of iterations versus 7 is seemingly 

convex. 
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As the following theorem posits, this observation holds independent of the chan­

nel type and capacity under a mild assumption. Therefore, in order to design a code 

for the channel model given in Fig. 4.1, when 7 is unknown, we force convergence 

of the code only for 7 = 0 and 7 = 1. 

Theorem' 4-1 Assuming that the distribution of the output messages of variable 

nodes depends only on the information they bear and the structure of the code, an 

LDPC code that converges on two channels with capacity C will also converge on any 

convex combination of those channels. 

Proof: Fig. 4.3 illustrates one iteration of density evolution on the factor graph [18] 

of an LDPC code. Given the aforementioned assumption, we want to show that if 

a specific LDPC code converges on channels 1 and 2, with LLRPDFs f^(m) and 

/di(m)> w n e r e 2"(/ch) = -^(/cL) = ^ ' *n e c °d e w^u a^ s0 converge on any channel that 

can be seen as the convex combination of these two channels, i.e., any channel whose 

LLRPDF can be described as (4.1). 

If the LLRPDF of the input messages to an iteration is f\n(-) and the LLRPDF 

of the channel is /4 ( ' ) (j € {1,2}), then the LLRPDF of a degree i variable node 

will be 

fUi = ® CHK (/in, p(x)) ® / 4 , (4.5) 
fc=i 

where CHK(/jn, p(x)) is the pdf of the output of the check nodes in density evolution 

and <g> denotes the convolution operation [18]. 

Using (2.2), the mutual information of the output messages of degree i variable 

nodes will be lluti(I\n) = ^(/outi)* Then, the mutual information of the output 

messages under the all-zero assumption will be 

max(civ) 

4 , t = E Vout,i('in)- (4.6) 

t=2 

In order for the code to converge on channel j , we should have 

max(d„) 

E A4uM('in) > /in, V/ i n€[C,l). (4.7) 
i=2 
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Figure 4.3: One iteration of density evolution. 

Similar to (4.5), we have 

i - l 

/L,i = ®CHK(/in,p(x))®# 
fe=i 

where /Ju t i is the LLRPDF of a degree i variable node. Using (4.1), it follows that 

i - l 2 

/o7uM = <g> CHK (/in, ,(*)) ® Y. lifL 
fc=i j = i 

where 71 = 7, 72 = 1 — 7. Thus, 

2 

/out,i = Z^^i/out,i- (4-8) 

i=i 

Then, convergence on the combined channel is obtained because 

max(a!„) 2 max(d„) 

£ V ^ / i , , ) ^ J > £ Vo
7
uM(40 >/m, v/ine[C,i), 

i=2 j = l i=2 

where (a) follows from (4.8) and (4.6), and (b) follows from (4.7). 

If channel 1 has capacity C\ and channel 2 has capacity C2, using the above 

method only convergence in the region of [max{Ci, C2}, 1) is obtained. 

Corollary 1 The result of Theorem 4-1 can be extended to the convex combination 

of N channels with equal capacity. 
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Additional channels only increase the number of constraints of the linear program. 

Due to the very low complexity of the code-design stage, one can easily design a code 

with N in the order of a few hundreds. While the design complexity grows linearly 

with N, the number of channels for which convergence is obtained (i.e., the convex 

hull of N channels) grows exponentially with N. 

The assumption in Theorem 4-1 is a realistic one because of the central limit 

theorem. That is, since LLR messages are added together in variable nodes, the 

distribution of messages at the output of variable nodes of a given degree is close to 

a Gaussian distribution. Therefore, the messages that are going into the check nodes 

(input to the next iteration) have a mixture of Gaussian distribution [23,31] which is 

uniquely defined by the code degree distribution and the input mutual information. 

Therefore, we expect codes that will be designed based on this theorem to have 

strong universal properties. 

It should be emphasized here that this approach must not be mistaken with the 

common practice of Gaussian assumption, where all the messages (even those coming 

out of check nodes) are assumed Gaussian. 

4.4 Identical-Capacity Channel Decomposition 

In this section, we propose a channel decomposition method that expresses every 

given BISO channel of capacity C as a convex combination of a number of basis 

channels with that capacity. Using the results of the previous section, a code that 

works on the basis channels is expected to be suitable for all channels with capacity 

C. 

It was stated before that BISO channels can be fully described by their LLR-

PDF, or their PEPDF. With PEPDF decomposition technique, a BISO channel is 

spanned over BSCs with different crossover probability, p € [0, | ] . This decomposi­

tion is not suitable for our objective because we seek subchannels that have similar 

capacity. Nonetheless, we utilize this representation because it helps us to form an­

other channel representation which captures the decomposition of the channel into 

identical-capacity subchannels. 

From (4.2), it is understood that the channel illustrated in Fig. 4.1 can be 
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described as a linear combination of PEPDFs of subchannels 1 and 2. The weights 

of this linear combination are the same as the fraction of bits passed through each 

subchannel. Also notice that for a BSC with capacity C, PEPDF is #BSC(P) = 

S(p — rj), where 

r) = H-1(l-C), (4.9) 

and H(p) is the binary entropy function, i.e., H(p) = — plog2(p) — (1 —p) log2(l —p) 

for p <E [0, ?;]. Thus, when g(p) is the PEPDF of a channel, the capacity of this 

channel can be calculated as 

C = 1-E{H(P)} 

= 1 - [2 g(p)H(p)dp, 
Jo 

where integration includes mass points at p = 0 and \. 

4.4.1 Identical-capacity basis 

Now, we focus on finding a basis, made up of channels with capacity C, that allows 

for expansion of every symmetric channel with capacity C. We contend that the 

sought basis can be a set of channels defined as follows 

9xM = ot(x, y)8(p - x) + /3(x, y)S(p - y), (4.10) 

where 

a(x,y) + p(x,y) = l, (4.11) 

and 

a(x, y)H(x) + 0(x, y)H(y) = 1 - C. (4.12) 

The first condition is required for a valid PEPDF and the latter condition ensures 

that the capacity of each basis channel gx,y(p) is C. 

From (4.12), it is apparent that in order for coefficients a(x,y) and j3(x,y) to be 

nonnegative, we have min{x, y} < rj and ma,x{.T, y} > r\. Without loss of generality 

we assume x < y, thus min{,T, y} = x and max{.x, y} = y. For a given capacity C, 
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from (4.11) and (4.12), a(x,y) and /3(x,y) can be uniquely found as follows: 

Prom (4.10), (4.13), and (4.14), it, becomes clear that a(x,y),(3(x,y) and therefore 

9x,y{p) are functions of C. To simplify the notations, this dependency is not explicitly 

shown. 

The next step is to prove that any given symmetric channel with capacity C, 

whose corresponding PEPDF is g(p), can be expressed as a linear combination of 

{9x,y(p)\{x,y) € T>}, where V = {(x,y) € [0,77] x [77, \}}. To this end, we find a 

two-dimensional pdf q(x, y) which fully describes the channel according to 

9(p)= / <l(x,y)gx,y(p)dydx, (4.15) 
J x=0 •>y—ri 

where 77 is defined in (4.9). Here, q(x,y) is a density function defined over V which 

provides an alternative representation of the channel and satisfies 

v r\ 
q(x, y)dydx = 1. (4-16) 

ai=0 Jy—r) 

The next theorem shows that for any PEPDF, an equivalent description according 

to q(x,y) exists. In this theorem, it is assumed that the PEPDF does not have 

a mass point at r\ (this simplifies the notations by removing any concern about 

the boundaries). In case that g(p) does have a mass point at 77, it can be readily 

separated. That is, we have 

g(p) = a5(p - 77) + (1 - a)g\{p). 

The first term corresponds to a BSC subchannel of capacity C and would be ex­

pressible as a mass point of height a at x = y = 77 in q(x, y) domain. It follows that 

gi(p) — 1-0 does not have a mass point at 77. Thus, one can continue the 

discussion with g\{jp) instead of g(p). 

Theorem' 4-2 Every PEPDFg(p) can be written as g(p) = J^_0 Q_ q(x^ y)gx^(p)dydx, 

for some probability distribution function q(x, y) defined over {(x, y) G [0,77] x [77, \}}. 
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Proof: Any given PEPDF like g(p), can be described as two halves as follows: 

g(p) = gi(p) + gr(p)i 

where ge(p) = 0 for p e (r?, ̂ } and gr{p) = 0 for p € [0,77). Defining q{x,y) as 

(as it is detailed in the Appendix) one can verify that g(p) = J^=Q f2 q(x, y)gx,yip)dydx 

and that J?l!=0f2=r]q{x,y)dydx = 1. Moreover, since all the terms in the righthand 

side of (4.17) are nonnegative, q(x,y) > 0, meaning that q(x,y) is a pdf. Detailed 

discussions on how to arrive at (4.17) are provided in the Appendix. 

Theorem 4-2 proves that for every channel with capacity C, a q(x, y) can be found 

according to (4.17). Thus, {gXty(p)\(x,y) € V) indeed forms a set of basis for all 

channels with capacity C. Moreover, these basis channels form a minimal set in the 

sense that no single channel can be removed from the basis set. This is because for 

the basis channels themselves, only a unique representation with positive coefficient 

exists, i.e., for gXo,yo(.P) w e n a v e o n ly o n e equivalent q(x,y) — 6(x — xo)6(y — yo)-

Nevertheless, there exist channels with capacity C for which more than one q(x, y) 

representation can be found. While this seems to be inconsistent with minimality 

of the set of basis channels, the inconsistency is resolved if one notices that we 

seek convex combination of basis channels, which entails nonnegative coefficients. 

It should be emphasized that the inverse mapping is unique. That is, each q(x, y) 

defines a unique channel (see (4.15)). 

4.4.2 D e c o m p o s i t i o n 

It was shown that any given channel with capacity C can be expressed as a contin­

uous convex combination of basis channels with the same capacity, where the basis 

channels had only two terms in their PEPDF (see (4.10)). 

For practical reasons, we assume the alphabet at the receiver of the channel is 

discrete and finite. This translates into having pmf instead of pdf. Note that all the 

discussions in this Section remain valid. 
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Having a finite alphabet also means having a finite basis, because the number of 

channels that satisfy (4.10) is finite. Assuming that the quantization levels are such 

that there are Ng levels less than 77 and Nr levels greater than 77, the cardinality of 

the basis channels is N( x Nr. 

4.5 Experimental results 

Given the capacity C and the quantization levels, the set of basis channels discussed 

in last Section can be easily obtained. We can use the basis channels to design a 

code with better universal properties. That is, if we assure that a designed code 

converges on all of these basis channels, using Theorem 4-1 we expect this code to 

provide gooci performance on all channels in the convex hull of the basis channels. 

The code-design process is similar to the code design formulation in Section 4.3.2. 

We define the universal threshold (C*) of a code as the minimum capacity that 

over all channels with C > C*, convergence of the code is guaranteed. For a given 

code, using Theorems 4-1 and 4-2, one can effectively find C* through a binary 

search, making sure that the code converges on all basis channels. 

For all the examples in this Section we have used a 64-letter alphabet at the 

receiver (i.e., a 6-bit quantization) and a 9-bit sum-product decoder [18]. 

4.5.1 Check nodes 

Thus far we have assumed that there is a given check degree distribution. In reality, 

one has to choose the check degree distribution too. The performance of LDPC codes, 

however, is not too sensitive to p(x) and thus existing work usually put the focus of 

code optimization on X(x). For choosing p(x), some suggestions and guidelines are 

provided in the literature, e.g., [8,53]. For example, usually a good choice is to have 

two consequent degrees. This is what we do for the codes designed in this section. 

With the large number of basis channels (typically more than 100), even with 

only two consecutive degrees in p(x), optimization of the check degree distribution 

can still be cumbersome. Thus, for our simulations we use the best check degree 

distribution found for a code designed only for the BEC and BSC (similar to Example 

1). Clearly, with a comprehensive optimization on p(x), better universal codes can 
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Figure 4.4: A comparison between the proposed upper bound on the achievable rates by 
universal LDPC codes (solid curve) and achieved rates by our universal LDPC codes (stars). 

be obtained. However, the performance loss due to this simplifying assumption is 

minor. 

4.5.2 Numerical results 

We design universal LDPC codes that can work over channels with capacity 0.35 < 

C < 0.85 bits per channel use (bpcu). In order to see how successful the designed 

codes are, we suggest an upper bound to compare our codes with. The upper bound 

that we consider is the rate of LDPC codes designed to work on the BEC and BSC. 

This code-rate defines an upper bound on the achievable rate of a universal LDPC 

code with similar parameters. This is because working on the BEC and BSC is 

a necessary (but not sufficient) condition for a universal code. This comparison is 

provided in Fig. 4.4, which shows that achieved rates are very close to the upper 

bound. 

The next comparison is between a rate 0.6 code optimized for BIAWGN chan­

nel with maximum variable node degree of 100 [49], and a rate 0.6 universal code 

designed with the suggested method having maximum variable node of 50. Fig. 

4.5 shows the decoder's message error rate obtained after 400 iterations of density 

evolution for these two codes over three channels (BEC, BSC, and BIAWGN). Al-
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Figure 4.5: Comparison between message error rate of a rate 0.6 universal code and a rate 
0.6 code designed specifically for BIAWGN on various channels. The curves are obtained by 
running density evolution for 400 iterations. The universal code performs almost similarly 
across different channels. 

though the first code is slightly better on BIAWGN channels, on other channels it is 

outperformed by the universal code. A bit error rate comparison of these two codes, 

provided in Fig. 4.6, replicates this phenomenon. 

The universal threshold for the BIAWGN code is C* = 0.662 whereas the uni­

versal threshold of the less complex universal code is C* = 0.628. Using density 

evolution we tested both codes on 10,000 randomly generated channels with the 

capacity of their universal threshold. The codes performed well on all channels. 

It can be seen that the universal code has similar performance on all channels. 

On the other hand, the channel specific code has very good performance on the 

channel for which it is designed, but not viable performance on other channels. 

Degree distribution for the the code designed for BIAWGN taken from [49] is, 

Pis = 0.5, Pu = 0.5, A2 = 0.1499, A3 = 0.1621, A6 = 0.0224, A7 = 0.1764, A8 = 

0.0077, Ai7 = 0.1166, A28 = 0.0307, A29 = 0.0319, A31 = 0.0438, A32 = 0.0278, A43 = 

0.0048, Aioo = 0.2258, and for the universal code is, p12 = 0.5806, p13 = 0.4194, 

A2 = 0.1689, A3 = 0.1924, A6 = 0.0604, A7 - 0.2069, An = 0.0763, A30 = 0.0457, 

A5o = 0.2495. 
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Figure 4.6: Comparison between bit error rate of a rate 0.6 universal code and a rate 0.6 
code designed specifically for BIAWGN on various channels. The curves are obtained for 
length 100,000 randomly constructed codes. 

4.6 Conclusion 

Design of universal LDPC codes over BISO channels was studied. It was shown that 

under a reasonable assumption, codes that converge on N equal-capacity channels, 

also converge on the convex hull of these N channels. Therefore, we expect codes that 

are designed using this result to exhibit good universal properties on the specified 

convex hull. 

In order to obtain codes with good universal properties on all BISO channels 

with capacity C, we proposed a channel decomposition technique which allowed for 

spanning any given channel with capacity C on a number of basis channels with 

identical capacity. We designed codes for these basis channels. As expected, these 

codes exhibited strong universal performance. Specifically, 

1. In comparison with existing LDPC codes designed for a given channel, signifi­

cant performance gain was obtained when transmission took place over various 

channels of equal capacity. 

2. Defining a universal threshold for a code, we observed that our codes have 

better universal threshold compared to codes designed for specific channels. 
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3. We proposed an upper bound on achievable rates by universal LDPC codes 

and observed that, our codes approach this bound very closely. 
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Chapter 5 

Conclusion 

This chapter recapitulates the contributions of this thesis and presents a number of 

ideas about possible future research in the related area. 

5.1 Contributions 

The contributions of this thesis are twofold: Firstly, code design considerations for 

nonuniform channels, and secondly, a method for design of universal LDPC codes. 

Code Design for Nonuniform Channels 

It was shown that semi-regular allotted LDPC codes can be designed via mixed 

integer linear programming. The proposed approach can be simplified to linear 

programming the semi-regularity constraint is removed. 

Since allotted codes require the channel state information at the transmitter 

and channel knowledge at the transmitter does not change the capacity, a natural 

question is whether allotted codes provide any benefit over conventional LDPC codes. 

We argued that under optimal decoding the performance gap between allotted and 

conventional codes is minor. This gap, however, can be quite significant if suboptimal 

decoding is used or when the maximum node degree allowed in the code is small. 

Therefore, when channel state information is available at both the transmitter and 

receiver sides, it is better to use allotted LDPC codes, since they approach the 

capacity with smaller node degrees in the code and also because they outperform 

conventional codes with suboptimal decoders. We also investigated the case when 

neither the transmitter nor the receiver has the channel knowledge. While a capacity 
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loss is inevitable, the reduced capacity appears to be approachable by conventional 

LDPC codes. 

A Method for Design of Universal LDPC codes 

Design of universal LDPC codes over BISO channels was studied. It was shown that 

under a reasonable assumption, codes that converge on N equal-capacity channels, 

also converge on the convex hull of these N channels. Therefore, we expect codes that 

are designed using this result to exhibit good universal properties on the specified 

convex hull. 

In order to obtain codes with good universal properties on all BISO channels 

with capacity C, we proposed a channel decomposition technique which allowed for 

spanning any given channel with capacity C on a number of basis channels with 

identical capacity. We designed codes for these basis channels. As expected, these 

codes exhibit strong universal performance. In comparison with existing LDPC 

codes designed for a given channel, significant performance gain was obtained when 

transmission took place over various channels of equal capacity. Defining a universal 

threshold for a code, we observed that our codes have better universal threshold 

compared to codes designed for specific channels. We proposed an upper bound on 

achievable rates by universal LDPC codes and observed that our codes approach this 

bound very closely. 

5.2 Suggestions for Future Research 

Suggestions for future research are enlisted in two categories, following the main two 

chapters of this thesis. 

Nonuniform Channels 

The coding solutions suggested by this work were general in nature. However, for 

certain applications it seems that there can be more attractive solutions. In partic­

ular, for computer network were most of the deficiency comes from lost packages, a 

marriage between our coding solutions and rateless coding solutions [55, 56] seems 

encouraging. 
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Moreover, in practice, most of the channels are not memory less. Removing the 

memoryless assumption, however, results is many different complications. Introduc­

ing a model that will allow for better treatment of channels with memory will result 

in better code design methods for such channels. 

Universal Coding 

Part of discussion on universal coding was based on an approximation that in density 

evolution, the messages coming out of check nodes depends only on the code structure 

and the mutual information (mutual with the all-zero code) of the messages received 

by the check nodes. This assumption, however close to reality, prevents the current 

work from claiming that the designed universal codes are analytically proven to be 

universal: working across all the channels with the capacity the code is designed for. 

Thus, a proof for Theorem 4-1 without this assumption is particularly worthy. 

Another suggestion is that in the transition from an LDPC code designed for a 

particular channel to a universal LDPC code, there are compromises to be made in 

terms of, for example, the rate of the code. Also, a code might be universal across a 

number of channels not all channels with similar capacity. Thus, there is a need for 

new measures that allow for better cost-benefit analysis of different coding solutions 

with regard to the level of universality. 
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Appendix A 

Discussions on Theorem 4-2 

In this appendix, detailed discussions on how to arrive at (4.17) are provided. These 

discussions provide a straightforward approach to proving properties of q(x, y) and 

clarifies some of the steps taken in the numerical results section. 

Recall that g(p) was described as two halves as follows: 

dip) = 9e(p) + 9r(p), 

where ge(p) = 0 for p e (77, | ] and gr(p) — 0 for p € [0,77). 

First, let us assume that ge{p) = a(xi)8(p — x\) and gr(p) consists of t mass 

points at {2/1,2/2, ••• ,Vt] £ b?> 5]- This channel can be decomposed into t subchan­

nels, i.e., {gxi,yi{p)}i=\ e a c n w ' th corresponding coefficient {/xj,/i2,...,///,} satisfying 

J2l=\ P'i — !• It is easy to show that 

t 

i=l 

9r{Vi) . _ , , 

and 
gr{Vi) 

q{xi,yi) = <5(.x-xi)-
/5(»i, 2/i) 

One can easily extend this decomposition to the continuous case by 

I \ XI \ 9r(y) 
P{xuy) 

while remembering that we have 
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and 

"2 9r(y) dy = l. (A.l) 

Now we consider continuous gr(p) and s mass points at {.T^a^, • • • ,xs} 6 [0,rj\ 

for ge(p). The mass points are weighted by some coefficients, let say {i/\, v%,..., us} 

which satisfy ]Cj=i vi = ^ Again, we can get 

9t(xj) , _ 1 

and after extending to the continuous case we arrive at 

./o ff(») 

- f , 9'iX) , <*. (A.2) 
J° Untidy 

Finally, we can derive q(x, y) as 

q(x,y)= P q(Z,v)9e®dt 

9e(x)gr(y) 

0(*>v)#*(o ?&!!#' 
In what follows, we verify that the derived q(x,y) satisfies (4.16) and (4.15). 

Firstly, according to (A.l) and (A.2), we yield 

I q{x,y)dydx 
0 Jr) 

' 9({X) dr 

= 1. 

Secondly, using (4.10), we can write 

q{x,y)gx,y{p)dydx 
n r\ 

x=0 Jy=r\ 

2 fV 
q(p,y)a(p,y)dy + / q(x,p)a(x,p)dx. 

v Jo 
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Now, we show that the last two integrals are ge(p) and gr{p), respectively, because 

?(p, v)<*ip, v)dy 

and 

f2 9e(p)gr(y)a(p,y) 

= 9lip) 

v 
q(x,p)a(x,p)dx 

o 
v 9e(x)9r(p)P{x,p) dx 

= 9r(p), 

X) dx 

where the last equality results from (A.2). 
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