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AB\SfRACT .'

Conventional robot manipulators are built with links that have
‘relatively large diameters in order to prevent link vibrations
during the manipulator metion This practice facilitates design of
;dynamic control - systems in that link flexibility need not be- B
1nc1uded in- the already complex dynamic equations of the
manipulator However the heavy links that result from making link
cross—sections large require large\\\ctuators to mowve them In 3\‘
5applications where fast motion is desired, the lagge manipulator
mass presents an obstacle to achieving the desired rate of motion
In addition. high—powered actuators tend to be quite expensive
| Energy efficiency also suffers . :, | : ;\3_
a ¥here is now a need for lightweight arms that can move
‘relatively fast with low—powered actuators The reduction in mass
is obtained by reducing the diameter of each link Flexibility
'm0st now be included in the models on which dynam1c control
systems are based Link flexibility has its own advantages in that
active compliance with external objects is now possible Modeling |
and control of flexible manipulators Is a relatively recent
research discipline Accurate methods for including flexibility in
manipulator models exist but they tend to be inefficient from a
computational standpoint. Furthermore, control systems for e
flexible manipulators have so far been proposed only for arms w1th

one or two links and which move in only oné plane.

In this thesis, fast and efficient computational glgorithms
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be cast into linear recurrence form for easy implementation on

for modeling general flexible manipulators are presented These
Y
algorithms are recursive in nature and they possess attractive

computational features that make it easy to design special—purpose

, .

'_computing stru%tures for their implementation Both modal and :

finite element approaches to link kinematics are employed "The

P

models are quite accurate. Also, both inverse and forward dynamicsA

L

are considered in the thesis ' f »;ik T e

)

A modified "computed torque method of controlling multi- link
spatial flexible manipulators is presented and ‘tested by
simulation of a three link manipulator that moves 1n three

..... 7 \r
dimensional spaée The method is general: and can be applied

~ directly.to manipulators with arbitrary configurations Results

‘KLShow that good end-point trajectory following Can be achieved with

, N
low powered actuators. Speed of motion can be significantly

-

increassd compared with rigid manipulators that are equipped with

\

actuators of the same power .-

Finally, the computational\requirements of the control

. algorithms are discussed and it is shown that the algorithms can

t ]

e

computers\;ith ‘parallel processing capabllities.' ~

<
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. the Joints.

" the ratio of the length of each’link to its thickness (aspect

~

CHAPTER 1. OVERVIEW OF THE RESEARCH BROJECT. )

1 t Introduction. - -z\ l -;

The problems ,O modeling and control of robot manipulators

that posseSS signif cant structural flexibility have recently

.o

aroused considerable research interest [:‘1}}/~Traditionala

2 manipulator designs have deliberately avodided these problems by‘

Pad

specifying relatively massive 1 —construction In such designs{

.lratio) is decreased to the point\ﬁhere transverse link vibr hons 4

" are of very small amplitudes and - very high frequenqies Such 11nks'

can be considered as being rigid for all practical purposes. ‘The
small link vibrations can;then be filfered out of all controller
measurements to prevent aliasing in the sampling operation-

performed by the digital controller. The design of control systemS'

for»such manipulator arms, .which is a difficult task in itself due

‘to the arm’s complex, non—linear‘dynamics, can therefore avoid the

additionalucomplexities’that link-flexibility would create. A

price is paid, however, in larger actuator‘requirements in order
to move the heavier links. Also the. actuators themselves add
considerable mass to be moved if they are physically located at I
\

Figure 1 1 shows a typical robot manipulatong ‘the Puma. 580
This manipulator "has rigid links It has a payload capacity of.

2.5 kilograms and a total link mass of 55 kilograms g&ving a

oS

1mass-to—payload ratio of 22 to 1. _A large part of the control

effort thus®goes towards moving the links. themselves.

v . 1 .
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Figure 1.1 cmitted'beCauSe'of copyright protection.

.
L

. Figure 1.1. The PUMA 560 Industrial Rbbot ..
o .+ (Taken from Reference 99)

: N
Tncrea51ng demands for lower priced arms that can move at

hlgh speeds vet maintain relatively accurate trajectory—followlng
characteristics, are compelling robot designers to regect the
'tradltlonal solutlon prov1ded by the low aspect ratio link S
designs, and\consider new lightweight arm design methods. In;such
- designs,: the aspect ratio of each long link is 1ncreased ‘
Transverse vibrationsxdue to link flex1b111ty now become '
81gnificant and can no longer be 1gpored in control system design
for this type of arm. The control system des1gn problem is

rendered more difficult: by this step but does not become’entirely

intractable. Much'research, however, is needed to solVe this
} ~— -
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4 . Ly : . v - ,
”’d;;iicult problen. ) . ‘ o - |
' Flexible manipulator arms offer sevepaliadvantages other than .
increased speed and lovﬁgioVerall cost. Some of these are [2]:
1) Lower energy'consumption,gﬁ_
2) Safer opera%}on dde to reduced inertia,
3) Greater static compliance when in contact with'external
objects |

.~

4) Greater back—driv%?bility d?e to elimination of bulky
LN o ;
‘gearing mechanisms, and . ) ‘

5) Lower mass to be transported (especially useful for space
' : o I

—

applications). :
The enhanced"compliance made possible by,flekible links is a very

)useful featureJin assembly-type applications.'ln additio.,

(flexible arms are likely to be direct driven ~hence advantage i4)

above enhances compliance capabilities asdgyl Flexible arms are

‘sometimes referred to as "COmpliant arms" to emphasize these

e

characteristics
o The design of stable dynamic ‘control systems fo }exible}
;J manipul tors involves modeling both rigidity and flzxibilitv ‘
’ effects in a suitable manner. These models then form part of the\
_ control system design process. Many procedures for. modeling : .Z
lflexibleumanipulators have been proposed in the o .
literatnre[z 3 12-171. Some of these are suitable for.application ‘
to multi linked arms but by far the majority of them can only be
applied to a manipulator with just one or two links and that too
with motion restricted to a plane In practice, however a

manipulator would be expected to move in three- dimensional space

and bpuld likely have several flexible links "Models for such an
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arm need to be developed These models must be computationally

efficient since fast and efficient computer simulation is also

part of the*overall design procedure for both the mechanical and

control systems of the manipulator and dynamic models that can '

facilitate this are certainly needed. Also, calculation of some of
" -the dynamic terms may form part of the~low-1eve1 controller and

must therefore be calculated in real-time.

-

»-

1,2'Organization of the Thesis.

It is in the area of fast and efficient’ modeling and control
of general multi -linked flexible arms that this thesis finds its
raison d’etre Fast computational schemes for calculating inverse
dynamics and inertia matrices of multi- linked flexible arms are
derived in this thesis, and control systems that use them are
proposed Chapters 2 and 3 describe the derivations of the models
and the computational algorithms for their synthesis Both modal
and finite element approaches are used in the derivations. The

advantages and disadvantages of each approach are discussed

-Chapter 4 describes certain control system strategies Their

-perform?nﬁe—?s evaluated by computer simulation The main control

» system strategy involves the design of a composite controller -

' consisting of a two parts. One part controls the gross joint
motign and the other part actively damps out the higher frequency
vibrations due to flexibility - '

st
In Chapter S, the recursive properties'of the dynamics
ko
algorithms are discussed Similarities between these algorithms
- and Newton—Euler dynamics algorithms for rigid mangpulators are

demonstrated It is shown that efficient parallel implementation

Somd



. : ‘ | _
of these algorithms is feasibIe.fand that‘pipelining methods' o
similar to those employed in parallel implementagion of_the rigid
'dynamics algorithms 'are also applicable to the algorithms
vpresented_in the thesis. Chapter S is a summary of the thesis and '
includes proposalsffor'futureAresearch.
! - _

1.3. Backgrougd haterial.

In order to provide an adequate perspective-for this'research.
more’ information on mode}in% and control of manipulators in -
general, and of flexible manipulators in particularh must be

tprovided ~This is done in ‘the. following sections of this chapter

Substantial background material is: provided on topics that impinge

»directly ‘on the main aspects of the thesis The information

however{ is by no means exhaustive and the geferences at the end .,

Should be consulted for a more thorough treatment of these and

, . :
‘\f‘

other'topics;
1.4. Justification of Flexibility. ~

1t was stated earlier that the problems associated with

controlling a flexible manipulator are very difficult to overcome .
and require much research effort for their satisfactory solution
More precise Justification should therefore be given for engaging
fin this type of research. In this section, the nesults of Book and
Majette [2] on this topic are summarized. In so doing, the‘
~constraints on allowable flexibility are highlighted

The sizing of"a manipulator link in the contexf of determining

desired degree of fiexibility is constrained by two mainffactors

1) Required strength (maximum stress capability) of the link



Y
. P
and

2) Stiffness requirement imposed by control system stability

and related considerations 1
’A

For a link that is in the shape of a long, uniform cylindrical

-

beam,’its strength is determined by its radius and by the materlal
from which it 1s made. If the material is'known, only the radiusa'
needs to be determined or sbecified. The maXimum stress{ ﬂéx.in

a‘mifor-m cylindrical link is given by:

4Ma R :
Coe = e
n R s

;here'n 1s the radius of the link and M__1is the maximum bepding: -
moment exerted on the link' In a‘givenraoolication the maximum

“ stress aﬁd the ‘maximum bending moment that will be required are
known Hence the minimum radius R lmth; that is required to
provide the desired 1link strength can be calculated

For adequate strengtqf we must have
A

Al
I . L . -
R> Rstrength. - ’ . (1 2) .
The stiffness constraint can also be described.in terms of a
minimum radius St1er " The stiffness necessary to assure
. nens
proper control system performance depends of course on the
control algorithm °To give an idea of the relationship between
control, system performance and link-stiffness we cite the results -
of Book et“al [12]. They found that when a single link manlpulator

.:15 controlled by a simple PID controller, satisfactory.damprng_u

- o ~\_~
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cannot be.achiéved if the clamped-actuator natural frequency of

the link exceeds approximately three times the closedlloop

factors-that'affect this relationship, but in terms of

i

. assumption that R

bandwidth of the controlled system.'There are several other
. ‘ A , N

. Q “
link—flexibility, the constraint can be expressed”as follows: =

o

) R R  tthess . .(»1__3)
) ] K : S . : {
If RﬂJfﬁmm:> RmJu@u“ inclusion of flexibility eonsiderations

in.thevcontrol system design can perhaps allow the link's radius

td be reduced to. the lower 1imit of R i Thi/\reduction in

stlffness

rédius results in lowé/ing ‘the speed penalty imposed by actuator

- size. Faster motion can therefore be realized with the same

~ actuator. An attractive alternative design is that in which the

v
speed is not significantly increased but instead actuator size is

considerably reduced.

op

The studies'reported by Book et al [2] have demonstrated that
for arms with high aspect ratios and carrying light payloads the »

is Justified In addition,:

> R
stiffness strenqth ‘)*.\~
S

the following interesting observations are also made
1) A substantial penalty is pald in terms of speed reduction

for stiffening an arm by increasing its radius. Values of -

SOA haVe been noted

2) The penalty is greatest for longer arms andglighteﬁ o
. : , : _ 8. | L

E
v

- payload. ' | S .
b3
QQ Thp penalty is*greater for relatively high—strength
materials with low rigidity and high density

In this thesis the major consideration is the desire to‘w”



;Seduce actuator size while maintaining manipulator speed and
reasonable end-point accuracy over the gross motion traJectory We
.-concentrate ohr efforts on manipulators with links of normal
length (about one meter) but with high aspect ratios (i.e, small ;
fthicknesses) It is shown in chapter 4 that it is possible to
design control systems that can accomodate significant flexibillty
of the links without sacrificing speed and reasonable accuracy

using. relatively low powered actuators _ ’ o s

1.5 Modeling of Robot Manipulators.
In Ehis section we ekamine the fundamentals' of kinematic Ond
,R - N .
dynamic modeling of both rigid;and flexible manipulators an point

out their similarities and differences. Kinematics refers_'
geometrical and time based properties of mot ton. The relationships
‘ begween thseérmotions and the forces and torques that cause them |

\

constitute dynamics. _ ‘ .
L
1.5.1 Kinematics of Rigid’ Manipulators i : | ’ d.;
Accurate direct measurement of the end-point position andg f
velocity of a robot arm in the way humans use vision and feeling
- is generally not possible. The basis for advanced control of r1g1d'
: manipulators then iSWa relationship between the Cartesian
;coordinates of the end-effector and the manipdlator Joint

-

coordinates Positioning of - the gripper is normally specified in
»

Cartlpian task oriented coord1nates but is accomplished by

.actuation”of individual Jolnts in J01nt coordinates We therefore
need to transform quantities back and forth between the two

'__coordinate systems "This requires conslderatlon of the kinematics
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of the manipulator

A conventional rigid link manipulator, such as the Stanford

Manipulator shown in Figure‘i—Z(b), consists of a sequence of

‘ rigid links connected together by actuated Joints. There is

cOnsizerable theory surrounding its analysis [18,19]. but we will
consider only certain pertinent areas here. The kinematics of the
manipulator arm are simplified somewhat by restricting the motion
of~each Joint to one degree of freedom\only, either translational
or rotational. Denavit and Hartenberg 201 proposed in 1955, a ~
system of notation based on matrices for maf/’matically describing
the configuration of kinematic cha1ns and this notation has s1nce
been universally adopted Basically, this notation involves
defining a set of coordinates for each link and a transformation

matrix between‘any pair of coordinate sets. The description g1ven

below follows aféer the modified Denavit—Hartenbeng rules given

by Paul" [191

Figure 1. 2(a) shows the link coordinate system and the four
parameters which describe a link with rotational Joints at both

ends. It shows coordinate system (x,y .z ) attached to the n’ "

“1ink and moving with it. -Rotation of the link occurs about the

axis of the previous Joint For a rotational Joint the‘i axis-

valigns with the n+1 st Jjoint ast

The four parameters describing the n'*® 1ink are the "1ink

:'length". a» the link "twist", o« . the relative position-of two

/ . -3 o . i : ’
connected links (offset),ldn, and the rotation of link n with’

respect to the previous'link,'én;.For a rotational Joint, all the
_ | | _ ] -
link parameters are fixed except 6 o’ which is the Joint variable.-

N

For a translational joint, the Jjoint variable is the dis!ance d
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FiéuhQ 1.2(a) omitted beécause of copyright
, ' ' '

protection.

. ! / i

Figure 1.2(a) Definition of Kinematic Parameters of Chain of
- Actuated, rigid links. (Taken fronm Paul[19])

¢

,\\
D
4

Figure 1.2(b) omitted because of copyright protection. .

N
[

Figure 1.2(b). Coordihate Frames of the

Stanford Manipulator.
.. {Taken from Paul[19] . o

10 .



The m5nipu1ator arm is usually attached to a fixed hase.

Reference coordinates are then taken as,base coordinates,
(%, 1 Z5), located at joint 1. Figure 1.2(b) shows the alignment
of link—coordinates for a six-joint manipulator There are seven
1inks including.the base, and seven coordinate frames, with frame..
(xB.QB;zé)‘located atvthe‘hand (link 8, since the base is link O);
Once the preceediné system of coordinate frames has been
established the transformation from coordinate frame (x v,z

to coordinate frame (xll,y 1_1)'_can be represented by the

following‘4x4 homogeneous transformation matrix:

- ~

coso -sind cosa sin6 sine a cosa
1 i 1 1 L 1 1
_ ) 4. oo - ) ] )
1 1Ai = sinel A coselcosoci co.s.elsinoz1 alsinon‘ (1-2)
: 0 © sina © - cosa d
0 : o .0 1
. ) /' -’

Note thak for a translational Joint, a, =_O.
By using homogenous transformation matriCes'one can specify

the position and orientation of the end effector in base

coordinates by successive application of the A-transformation. The

'result for an N-link manipulator is a matrix Tw where:

T =°A ‘A --- N1y T (1-5)
. RN : |/ ‘
If bas oordlnates do not 001ncide w1th workspace (cartes1an)

coordinates then T can be pre- multiplied by the 4x4 matrix which

transforms base coordlnates into workspace coordinates. The résult



. e .

A

is a matrix’ representing the nonlineaF function expressing the
position and orientation of. the gripper in workspace coordinates,
in terms of the generalized Joint variables q References

-[18 19] provide a fairly comprehensive treatment of manipulator'

t

kinematics as used in robot control and the reader is referred to

~

them. for a more thorougﬁ treatment of the subject

\Tﬁe/matrix T which provides a way to obtain the Cartesian

‘coordinates of the end—point when the Joint angles are given can -

-readily be obtainedafor any manipulator and allows calculation of

’ the end—effector position and orientation if the. Joint angles are

known The inverse of " this operation that is a method of flndlng

<¥i:the Joint angles that correspond to a given set of Cartesian

end—point coordinates is of particular interest in controlling

_the manipulator. Positioning of the Joints to obtain the desired

i

gripper movement in workspace coordinates can then be perform d
dynamically However this "inverse kinematic. solution" of .
man1pulator arms w1th more than two or three JOlntS is sometimes
difficult to obtain. This calculation is normally to be embedded
in a real time servo loop and only a very ‘minimum number of
mathematical operations may be performed There are methods of

¥
obtaining the inverse kinematic solution for spe01f1c manlpulators

i [19,21- ~25] but they are not necessarily extensible to all

‘manipulators Those schemes that have proven successful when:

..
applied to popular robots have recently seen the postulation of

h1gh1y parallel computer; architectures for their implementation

using VLSI technology [286, 27] This approach has drastically

.reduced computation times of both forward and inverse kinematics

and real time ‘kinematic control is.now a reality

12
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During the period when real time inverse kinematic computation
was ;xpractical many proposals for advanced manipulator control
avoided this problem by controlling gripper rates instead of
gripper p081tions The technique of controlling gripper‘rates in
| cartesian space is referred to in the 11terature as resolved
‘'motion rate control" -This involves computing the Jacobian which |
can usually be inverted with relative ease, although there is '
-sometimes a singularity problem associated with its inversion
Many numerical techniques exist for computation of the Jacobian
'[28.301 Several "resolved"-qphemes*were proposed [31- 35] but it
vis doubt ful that they would now be favoured over: inverSe kinematic
schemes, given: the removal of computation bottle necks ‘in the
’latter schemes The introduction of 1link flexibility has again
made inverse kinematic solution a monumental task and it is not
unlikely that we will\see a re- appearence‘of these resolved ’

<

schemes. .
M \_/

1.5.2 Kinematics of Flexible Links..
b Link flexibility introduces the need for additional kinematic
parameters above and beyond those specified for rlgid links: These
parameters are required to describe the instantaneous deflections
_of the link at a given point along its axis. Many of the concepts'

described below are applicable to anbitrarily shaped links but
since as mentioned earlier the benefits of flexibility are

- greatest when the links have high aspect ratios, we shall restrict
our discussion to manipulators with this configuration. For

" slender links, the Euler—Ber%oulliltheory of bending of beams [36]

fseappropriate. This theory leads to*a set of partial cifferential

13 .
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equations of the.following form: .

hd

et T e

- _9 EI(x) _Q_XéfLil_‘ =  m(x) _Q_Xéf;ﬂl ~ o (1-8) - .
ac | ax? at - :
. e _

_Wwhere; _ .
y(x.tl iS‘the<link’s deflection from its normal'“rigid"
4 opsition at a distance x form its proximal*end at
time t :* ‘ _ . : : '

(. EI(x) is the link’ 8 flexural rigidity, L

mfo,is‘the differential mass at point x, and

A similar expression describes deflectlons in the X~z plane}
Torsion about the longitudinal X-direction is represented by a l
similar expression but is of second order.

In,general.ithese eq ations cannot be solved analyticallv

excépt in a few special cases for example simply supported beams .

A ¥

Some sort of. discretization is necessary and two methods haye bee
widely used for this purpose, namely, the assumed—modes method
[4 5,8,36] and the Finite element method(1,8, 9 37 381. A
comparative evaluation of the merits of each method is left for

) Chapter 3. In.this.section, only a brief discription of the
methods in so far as they are relevant to kinematics ds given.

In the assumed-modes method link—deflections.and torsional
frotations‘are represented by superposition of products of a finite
number of assumed mode- —-shapes and time-dependent, generallzed

".coordinates The mode shapes are often taken as the solut1on of

3

the partial different1al equation (1-8) given simple-houndary
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conditions such as clamped-clamped clamped free or pinned—free

. These: mode-shapes represent additional kinematic parameters that

are needed to adequately describe coordinate transformations

In the finite element method each link is divided into a

V'number of elements with interpolating polynomials describing
'ielement deflections at interior points For slender links, these

el/ments ,are one-dimensional and the interpolating polynomials are

+

often of third order (Hermitian polynomials) ﬁ38] The rotation

. agj translation of the -end- point of the last element in the link
.

used in coordinate transformations
Let ¢ and ¢ be rotational angles due to link~deflections ~
of the i link in the transverse y and z directions respectively,

and ¢xl the angle of torsion about the longitudinal x-axis. Also

“let A: and A be displacements of the 1link's end- po1nt ip the y '

zi

and z directions respectively. A homogeneous transformation
rf

. matrix, E ', that transforms the "rigid" coordinate system

i

y » »

(xl. Y Z, ) to the end—point coordinate system (%1, Y,» Z
’ \
can be defined as shown in Figure 1.3. .That is:

0 . . . K

)’

i

E = Rot(x, ¢> ) Rot (y, ¢y JRot (z, ‘¢,Zl) »

Transgy, ) Trans(y,A ’)Trans(y A -) (1-7)

0 ’{ )
-In the assumed- modes method, the displacements and angles

are given by the following expressions:
G

¢Xi;¢:'_i=‘-‘ Za’dk(t) ¢x1k; ¢yl =, Z 6ylk(t)l ¢y1ké

» »"

-

15
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where axlk’ ¢ ,azlk’

yik’

translatidn of the k'‘

-

A
ylk

o

'andA

TN

)
= Za (t) B

yik yik’

are the assumed rotatlon and ‘

'? mode shape at the link’s tip, and s (t),

-18
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v
8, (t), and 8  (t) are geheralizedlcoordinates.'In the

¢

finitéﬁelement méthod. ¢M, ¢ 1

, A and A are the
yi yi. zl

‘generalized coordinafes themselveé.,in.a simgla§idn. these would
be generated éucéeSsively by'numerical integgétion. In a control
$ys£em.‘it would,be convenient if these quantities.can be -

measured. ' o i S

¢
The transformation between base and end-effector-is then given

by cascading the joint and flexibility transformation mdtrices to

form T,. That is: o )

i ) rf o1 rf . R-1 rf ) -
T'f = A E’ A E AVEC (1-10)
1.6 Manipulator Dynamics. .

A

Maﬁipdlator dynamic models play a crhéigl role‘§n the design
of robot control sysFems. Various éppnoachesnare ava&lable to--’
formulate the'dynamiés of rigid robot a;mg, suéh as the |
Lvgrange—Euler.[19;35—41]3 Newton-Eulef‘[42—44}, recursive
Lagrange-Euler [41], and Kéheasékqﬁations[4s.48]. The
Lagrange-Euler equations are well structured and can be exﬁreésed

in matrix notation, as follows:

‘ T = H(q)g + ‘hiq, q) - o (1-11)
’ / i
where: :

‘fvié'the:vector of generalized driving torques at the joints,

Te}

is the vector of generalized joint positions,
_ . ‘
H is the NxN inertia matrix that includes effects from both:

thg actuatof system aﬂa manipulator links,
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hisa vector of centrifugal coriolis, viscous frictional
and gravitational generalized forces, and
N is the number of degrees of freedom (joints) of ‘the
manipulator. : | B - | : ' o -~
These equations are highly nonlinear and tightly coupled The ;
magnitudes of the elements of the matrix H can vary widely in 2 '
nonlinear manner with arm configuration Gravitational effects are
a maximum when the arm is outstretched and horizontal, and zero _ %
when pointing downwards. Coriolis and centrifugal'effects are
small when the arm is moving slowly but cannot . be neglected when
fast fairly accurate trajectory following Is being performed.
'Joint actuator non—linearities such as static friction gear :“ﬂf.
‘backlash and magnetic saturation effects are not included in the |
'above equation. Some robot calibration schemes [47 48] have ‘
I3

\attempted to measure these effects and compensate for them in the
\

control system but this is not a major concern in-<his thesis In.'

~

fact, ac&&ator dynamics are not considered at all. Instead, we wil]
concentrate on the dynamic effects generated by arm motion since
these form the maJor obstacles to manipulator control: A
reasonable model of actuaton systems is given in reference [49]

and it is shown there how-to”incorporate it into arm models

?

can be incdr orated in the models developed in this thesis in
exactly thé same way , B
T _ ' }
The form of these equations can be exploited in designing
manipulator>control systems but the original Lagrange Euler
formulation is computationally much too 1nten51ve to 1mp1ement in
real- time Much work has recently been done in order to reduce the

’

computational burden of these equat1ons Paul [39] and® Beczsy [40]
v ‘ _ i '
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neglected certain terms notably the coriolis and‘centrifugal
- terms, in their manipulator studies and observed significant 7
4reductions in computational complexity but vith reduced accuracy.
Raibert and Horn [50] used a'table look—up approach. ‘The :
disadvantage is the requirement of 2 large memory for sustained
accuracy Hollerbach [41] .exploited the ‘recursive nature of the
:equatipns and significantly reduced the computational time without
sacrificing accuracy. The structure of the equations was
destroyed, however, making them less useful for'control system
design purposes. This disadvantage was overcome by using

¢ i}
Hollerbach’s more effiaﬁent method for symbolic generation of

'/y~»
closed-form equatiohsp[Sl,SZ&.

The computational“complexity"of thevNewton—Eulerlformulation
[43] depends linearlyion-the number of manipulator links and this -
modeling approach is even more efficient than the recursive
Lagrangian formulation. However, it lacks the matrix structure of )
the Lagrange Euler equations Real-time implementations of the |
‘manipulator dynamic equations are required as part»ef)some
‘advanced control system strategies, such as‘?computed—torque"
control [40] and the ‘resolved schemesf Because of its numeric#l
‘vefficiency, thegNevton—Euler algorithm.is suitable for computing
. these dynamic terms. : .

Eorward NeWton—Euler algorithms have also been developed.
[44l In add1t10n the method has been_used for symbolic_
generation of closed- form algebraic equations [53,54]. An
interestirg development has been the appearance of several

-

parallel—proce881ng schemes for 1mplementation of the Newton—Euler

equations [55-62]. This has been made possible because these
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Compar son of Dynamics Fo.ynlations %oé w_ 4
(Ad8pted from Hollerbacﬂ [41]qand Lathr“

Method .

Original Lagrangian™ -

Recursive Lagrangian
Newton-Euler t
Linear parallel Newton-Euler

(Lathrop) & Qr-~‘ . . 43 .
Logarithmic parallel Newton—' JPIEEEE
Euler (Lathrop) Lx - 11 2 -

Systolic Pipeline (Lathrop) . 1 : : 3 “

a

equations can be organiZed into linear recurrence form [(62]. As a7 -

~result, the time required for their computation has been reduced

’

considerably and real- time computation is now a real possibility

Kane s equations are also recursive and are actually more
efficient than the Newton-Euler equations but they do not possess
a linear recursive form and as such have not been widely studied
B ‘in the literatune Uniprocessor implementaf%on is fast but not
‘fast enough for real-time computation Parallel computation of the
Newton-Euler equations 1s therefore more attractive for control
system implementation. |

Table 1.1 gives a»comparison of the complexityvOf«the
different formulations of the dynamic equations.,including

-~

: parallel implementations of the Newton —Euler equations for rotary

6-1ink manlpulators.‘

Com '~
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< model .however, was 11neanized about a nominal tragé!'%ry’are

. e e

1.7 Dynamics of Flexible Hanipulators - .7f7-€}’~ -

Consideration of flexibility in arm dynamic models started 1n
the early 1970’s [12] In some of these~works, manipulators which
move in 3- dimensional space (spatial arms) dgre considered
Link-flexibility, wh1bh-in rea11ty is distributed.along the length
of the link, was represented in the time domain-in terms of lumped
masses and springs B;;k et al [12] however, modeled distributed
link-flexibility in the frequency domain via transfer matrices.
Most of these models have been essentially- linear and have not
been generally extensible to spatial. arms with more than two
links | |

Researchers whose works have previously been 1n\t e field of

modeling and control ‘of flexible spacecraft have ajs applied

their ideas to modeling andjgontrol of flexible anipulators ‘as

well. The works of Hughes [70] and Singh and

ikins [71]«

-2 -

" worth noting. Both linear and nonlinear models were developed in

this research. The nonlinear models were accurate but required

tre ndous amounts. of computer time for simulation Linearized

= models ignored some coupling effects between rigid and flexible

)/

dynamics and while this might be appropriate for{the slow—mov1ng
spade shuttle arm it is not for more general, fast moving,
industrial arms. |

Moms recent work:addressed specifically to modeling fle#ible
manipulator arms has been done by Sunada ‘and Dubrowsky [1], Usoro
(61, Book [4] and HastingS{é}k Sunada/and-Dubrowsky developed an
impresSive finiteéélement procedure for determining dynamic

N, u‘&
deflections in a flexible link with an arbitrary shape Their

21
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hence would not provideqzccurate simulation. A Lagrangian

+ k.
approach is employed utilizing 4x4 homogeneous transformation

.\\ } . '@‘

’_matrices Usoro also utilized 4x4 matrices in a Lagrangian k
finite-element formulation %%though the formulation was derived
oenly for a two-1link, planar manipulator. the principles are |
extensible to spatial, multi-link flexible arms. The use of 4x4
transformation matricesuds of course, inefficient and this may
inhibit 1its use in a simulationrwhﬁfe speed is a factor . "

Book [4] generated the complete, nonlinear dynamics USing the

-Lagrangian approach and 4x4 transformation. matrices Unlike

.Usoro s method, Book represented kinematics by a modal expan51on
-This results in fewer degrees of freedom ?br comparable accuracy

The works of Usoro and Book illustrate the two main approaches
that are being taken by current researchers to model flexible

P
manipulators ‘hamely, the Lagrangian—Finite—Element method .and the

<

Lagrangian—Assumed -Modes nethod. In the assumed*modes method,
link —-deflections are represented byhthe superposition of prodects
of mode shapes and time dependent generalized coordinates Slmple
boundary conditions are assumed at the joints and these are used
to derive analytic expressions for the mode- shapesj .

: There is” some uncertainty over whether these mode shapes
represent the actual vibration mode §hapes with sufficie t
accuracy Furthermore, the correspondence between the gegiralized
-coordinates as defined in the assumed modes method and physical
deflection measurements, is not straightforward. In the
finite-element method, these problems do not exist. The actual

boundary conditions can be more accurately represented in the

finite-element equations. In addition, the generalized coordinates

~
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Modeling.

are now actual deflections of the'end-points of elements These

/

deflections . cag conCeivably be measured by strain gauges fixed at

' element boundaries A . N

The elegance of the finite-element method, however s, not v
without a price. This method is noted for requlrlﬁg/long CPU t1mes
for problem solution Two factors contribute tO\these high
computational requirements Firstly, the Lagrangian approach that
is used in most finite element programs to calculate dynamic terms
leads to numerical algorithms that are ineffio}ent [41]. Secondly,
the finite—element method itself results in a yery high model
dimension. For example if the actual vibration mode—shapes were
known then four modes of vibration may be suff1c1ent to describe
link deflections in a flexible manipulator using the assumed modes
method. The finite element method may require ten or more
elements resulting in fifgg or more degrees of freedom per link.
Computational speed and efficiency are needed in order to quickly
simulate alternative manipulator mechanical designs for the
flexible'manipulatorf Even greater speed is required for real—time
implementation of the control system since feed—forward'terms have -
to be calculated in order to achieve decoupling of flexibility
effects from rlgid body dynamics {72]. ’

1.8l Contributions of the Thesis to‘Flex%bile hanipulator

P . . i

‘This thesis addresses the problem of algorithmic inefficiency

' of the traditional Lagrangian approach to both the assumed-modes

and finite element methods.

A significant development in robot dynamics % the proof by

~z



Silver [83] that the differences in computational complexity '

between the different formulations arise from three ma jor sources

| (1) the way in which manipuldtor kinematic transformations
are represented in the methods 5@?' |

(2) the way angular velocities are represented and '

(3) recursiveness |

The traditional Lagrangian method 1s not recursive and utilizes

4x4 homogeneous transformations which tend to be inefficient. The

NewtonﬂEuler method separates rotational transformations from

. r' translationstand uses 3x3 matrices to represent the former whilst

.

iiposition vectors are used to represent the latter Hollerbach S

recursive Lagrangian formulation ‘also does the separation between '

'f;rotations and translations and this, together with its

‘recursiveness accounts for itsﬁgelative speed The Newton—Euler
method, however goes one step further and represents angular
velocitié% in terms of moving coordinate systems and 3-element .
vectors. ﬁﬁé Lagrangian methods continue to use transformation
matrices and their derivatives and are therefore clower. Silver

shows that the NewtonfEule;‘equations*for‘rigid manipulators can:

_ - : D t
‘ actually-by derived from the Lagrangian equations if tﬁ%«above

changes are made. _ @ )
The basic Newton—Euler’equations of motion require insight
into the motions of the physical system to which they are heing
applied and are difficult tb\\pply to a flexible manipulator Use
of the Lagrangian qguations is much more straightforward The
implication’ of Silver s proof of equivalence is that one does not

necessarlly need to pursue the direct Newton—EulLr approach in

'order to gain the advantages of the tradltional Newtoanuler

r
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formulation. The modified Lagrangian approach can be taken Instead

-and this is exactlﬁ what ‘s done in this thesis in developing

the physicad system. In Chapter 2, this'technique is appl
. ‘ ) .

fast, efficient and accurate models of flexible manipulator

dynamics for both control system implementation and simllation of

“both inverse and forward dynamics of flexible manipulators, using

~

/f\
’A

Y

..

the assumed-modes method. Similaggfinite element algorithms are

developed in Chapter 3 These algorithms are quite fast ano

easlly written in the form of line recurrences suitableﬁ'
parallel implementation.‘ . . . ‘ zl
The uncertainty over whether assumed mode shapes describe B
link~deflections with sufficient accuracy is also addressed in .
Chapter 3. A comparison is made ‘between simulation results -
obtained from both the assumed ‘modes and finite element methods
The results from both methods are remarkably similar. The finite’
element method takes the changing boundary conditions into account
in a more accurate way but since the assumed modes:method yields
similar results to the finite element method the assumed modes

method seems to model the flexible dynamics with sufficient

accuracy. - “1 o

1.8 Modern Approaches to Manipulator Dynamic Control.

< M N . . — .
) R : ’

1.9.1.. Rigid Manipulators.
‘ A large number of proposals-for advanced cgntrol of
rigid-1inked robots have recentlyvbeen'published in the open

literature. Tnesé proposals take into account, in one way or

25
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’ another. the complex, nonlinear and tightly coupled robot
dynamics ' One appnoach which has been taken by many authors
[33, 39 40,74~ 77] is to cancel the nonlinear dynamics by non’inear
feedback The result1ng closed loop dynamics are decoupled and
linear hence linear dESign methods can then be used to place the

__closed loop poles at desired locations These methods have been
“termed "Computed quque" methods. The" early computed torque
mebhods of Markiewicz [74] and Bejczy [40] suffered from the ¥

{disadvantage that the manipulator amics ‘had to be known -
precisely, henge the method was not robust Some calibration

schemes attempted to solve this problem by on-line calculation of -

payload and inertia parameters and hénce to satisfy the assumption ,”

that the dynamics are known Other approaches to improving the

robustness of computed torque methods have added an integral term""

'1

or an - acceleration feedback loop to the existing position and
velocity loops [80, 81f In the latter schemes;vrobust behavior has

been achieved in a relatively simple manner - Another disadvantage

s of the computed torque schemes has been the h1gh computational

requirements but this is no longer a problem as we have already
mentioned

The other approach to advanced robot control system design is
the adaptive one. One of the earliest adaptive proposals was the:
(f‘
model—referenced adaptive controller&ochubrowsky and DesForges

[82] in which the feedback gains areggbd{fied on—line in order for

: the closed- loop dynamics to follow a decocupled, linear reference
-«

26

model. Later designs 1nclude self tuning control [83] and resolved

mot.ion adaptlve control [35] Thése strategies are robust but are

difficult to analyse They can also be computationally‘intensive



11:8.2." Flexible Manipulators.

N

but this is less of a problem in this age of fast signal
processing chips
There are several other schemes which optimize various

quantities such as time along the trajectory [84], or energy [85],

: ¢
but again they are difficult to analyse.

lt has already been mentioned ih’section 1.2 that when a
flexible;manipulato; is controllea by simple Teedback of Jjoint
P sié?bns and. velocities, system stability is lost when the,

f edback gains are high [12] This limitation prevents achieving
the speed requirements that are needed to make flexible
manipulators attractive Other researchers [85]). have also found

«

.that when more advanced control schemes based on rigid dynamics

TJ only are applied directly to the flexible manipulator system

stabil ty suffers when desired speed in increased The flexible
dynamics need to 9e included in the control system model.

_,,t:-————\

ly control systems” of single or double linked, flexible
arms have been based on linearized dynamics (3,5, 88] Optimal or

PID controllers have been synthesized and good performance have

: been noted. The experiments by Cannon and Schmitz [1], in = *

particular have received widespread fame. They have highlighted
the problems due to non-colocation of actuators and sensors and

Y :
have pointed out that when this s1tuation occurs, as it does in

flex1ble manipulator control an accurate model is necessary for

good response. They have also d1scussed the problems associated

with inadequately representing d1str1buted link flex1billty in theg

model. The effects of the so called: observation spillover" and V

—
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o control spillover” were mentioned but bémter treatments of these

effects have been given 5/4Ba1as [87] and Truckenbrodt [88] Thesa ¥

problems and effects will be  more fully discussed in Jlater

chapters.
Linear control. systels for flexible man1pulators are adequate
for single or double link arms moving in a plane, and over short
dictances. In Cannon and Schmitz s experiments the tip of. their
siﬁgle link was given.a commanded displacement of only six
'-centimeters The maximum Joint angle deflection was only six
-degrees Faster motions over wider traJectories are unlikq» to

A follow the commanded traJectories if the controllers are based on

simple, linear modéis .
| Adaptive control_straf%gies have rééentlydbeen"proposed '
'[98,901. These are bascd cn the assumption of accurate, direct

sensing of end;point position and velocities in Cartesian space.

. This assumption is not quite valiid since fast Cartesian sensors

-are niot yet available It iz easier to measure the relative '
position and velocity oﬁ the tip of each link with respect to the
previous Joint This allows kinematic transformations In both the
forward 2ad 1uverse directions as in rigid manipulators ‘This
solves the non—colocation problem and servoing . in the Joint space
is again sufficient. This approach is taken in Chapter ‘4 and more
details of the method are given there

The emphasis in this thesis is not on control system design
but on fast algorithms'and parallel implementations. We needvto‘
show, however why fast algorithms and- parallel .processing are

.needed It is for this reason that the thesis 1ncludes a chapter

on control system design Computed torque techniques for flex1b1e

Y
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manipulator.control are deveipged in chapter 4. The main advantage

" of these-methods is that designing them is quite systematic and
straightforward. The methods are easily extensibie to spatial,
multi -linked flexible arms. Manipulator stabllity and speed are
both maintained. o [ ' e

Computed torque methods require on-line computation of dynamic
terms and parallel Newton—Euler algorithms have been successful in.
achieving the required sampling time for control of rigid arms. In
‘chapter 5, we show h6w the methods for parallelizing the rigid

> . Vi

Newton—Euler a}gorlthm can be d1re¢t1y extended to the

parallelization of the "Néﬁ%gn—Euler—l ke" algorithms of Chapter

2. |
B
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'CHAPTER 2. RECURSWWE ASSUMED-MODES MODELING OF FLEXIBLE
| '~ ' MANIPULATORS

d 4

R
gl

2.1 Introduction.’
It is well d@éﬁ;;hiéa_[41] thatbthe Lagrangian approach to
;»manipulator modeling léads to differential equations that are
quite intensive irom\a computational Standpoint. In this respect,
the Newton-Euler approach has proved very successful in modeling‘
rigid manipulators As mentioned in Chapter 1 applicatioﬁ of the
direct Néwton—Euler approach to a chain of flexible bodies each
experiencing bending, torsional and compressional vibrations, is
not straightforward In this chapter, this difficulty is

- circumvented byymaintaining the Lagrangian approach but
representing rotational kinematics by, angular velocities and
coordinate transformations by 3x3 rotational matrices and position
ve r The theory of moving coordinate systems is applied as in
thztj:zZitional Newton—Euler ~approach to derive recursive |
Jexpressions for velocities and accelerations of the coordlnate
frames The Lagrangian equations are. then applied. The final
result of this procedure is a set of recunsive equations that are
very. similar to the Newton—Euler recursive equations [33 44]. A
nonlihear flexible Mmodel is obtained and the recursive procedure
is. computationally very efficient. Both inverse and forward

dynamics are calculated

In the inverse plant algorithm, kinemafacsf calculated on a
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forward recursion from the base to the tip and generalized forces
are Calculated on the return recursion Pﬂ’the forward dynamics

algorithm a direct recursive algorithm is presented for

_calculatlng the terms of the 1nertia matrix (1ncluding flex1b111ty.

effects) We have chosen. :the assumed modes method in this chapter

4

to model the q%astic link deflections because of its simpllcity
¥,

&4 '
In the next chapter, we present a similar set of recursive

biian

algorithms that model linkfdeflections by the finiterelement

method. o ' fews

In the sectidps that follow the development of the 1nverse
dynamics algorithm is presented in some detail. Proofs of

'uimportant assertions are also g1ven A comparlson between the

number of computations ﬂgquired for the formulations of this
chapter and the number required for Book’s Recursive Lagrangian
Dynamics formulation [4] is presented in section (2- 7) It is
shown that the former method offers significant advantages in
computational speed without degrading numer1cal accuracy. In
section,(2—8), a discussion of the simulation accuracy achieved by
the aeéumed-modes method is presented. Some practical ’
impzementational problems 1n flexible manipulator control ‘are also
discussed. Finally, 51mulation results of an example arm, mqv1ng

in three dimens1ons are given in section (2-9).
2.2 Calculation of Link—velocities and Accelerations.
.The definitions of the link-coordinate frames“have already

been given in Chapter 1. In what follows, the reader shouﬁd refer

to Figure (1-3). As shown in that diagram, the position of any’
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I'd

pointuon the 1’th link with respect to frame (x ¥ ',2') can be

represented by a vector
R v oar) (o
A h = r .+ él( I:i) ' (2-1)-

where r 1is the position vector of the point when the link is

undeflected and A (r‘) is the deflection of the point from its

undeformed position (Left superscripts indicate the coordinatéﬂ
system of reference. Right subscripts represent the 1ink number.
Wavy-underscored symbols represent 3-element column vectors. )
A( r,) can be represented by a truncated modal expansion, as

follows:

- where [ 6“(] = diag[5Mk ka Suk] is the matrix of deflection

“variables and is multiplied by the mode‘Shapes in (2-2). .m is the

number of modes in the the modal expansion of the 1'th link Note
that, as-mentioned in Chapter 1 axial vibrations are neglected

We also make the assumption that torsional rotations are small and

,can be thought of as occuring about the undeflected x-axis.

In the equations that follow, -it is useful to define a .
rotational transformation matrix OT: which'transforms the "rigid"

frame (x',y',z') to base coordinates, as follows:

(2-3)

32
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Recur§ive>expre5516ns for the angular-and linear velécities of the

coordinate

coordinate

O°r
w

frames (x:,yl.z;) and ( 1_,"yl.zi), referred to the base

frame, can now be writfen as follows: .
i ' .
/
’ " '

) -
= 9y Yoz, 9. E (2-4)
~ a ¥
Or 0 ‘ -
= Cu o+ 8 (2-5)
0. O “. -
= 49, 7 [ 9 4% §1-1q1] oz ,9 , (2-8)
= %7 o+ U % L% : ) (2-7)
~1 ~1 2y Ly .
_ o] O r 0 r'ﬂ
~1 -1 + [9; X 1] . (2-8)
= OY + 091; x Oél + O‘é'l . (2_9)
- 0 o re 0 o 0
= e e % e [P0k % ] (2-10)
= Oyr + Oé: X ol_} + 09:, X [w X OAl] N N ;
0 S - .
+ 2 [9: X él]‘; ¥ Oél (2-11)
o 09 o T )
[$x1 ¢zl yl] t



0 :-’=' vector from origin of (xbd,th.zlq) to oriigin of
] ' t .- ' <
(xl ’ yl ' .zl )
= Lal dlsma1 .~dlcosal] .

-1, T v
%1-1 = A1 [ 0 0. .\1] , .

X 5
(%) indicates time differentiation with respect to the

primed (rlgid) coordinate system of the link.
In the formulation that follows, velocities and acceleratlons

of centers of maSS¢p$’ihe elements are alsé required. These are

‘given by the following equations

e N
. [~} - .
Oo~r O r
o= e (2-12)
,~1 Ed - .
oer O°r ' v
‘:')i = o \81 o (2_ 13)_
S ) ) .
O~r o r G r 0~ r «
V, = v, o+ [ w X sl] (2-14)
<
OGr _ 0A 1-1 . Owr O r* . o~
- ~r - 1-1 ~t-1] 7 5 * B =

O~r O~r O re o~
[ (e )] e

In'thevbecursive algorithm; these equations would be calculated

on the forward recursion from the manipulatér base to its tip.

(24

L
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. . 2 T <
2.3. Formulation of the System Kinefic Energy.
¥

It can be seen from Figure 2-1 that the kinetic energy oft

1 in deformation is given by:

3

_ 1 .. . » _
KE, = 5 I r,.-r, dm | (2-186)
But notice that:
- r, =R +r (2-17)
and
e . 0~r o
r, = R+ [ 9 X El,m] MR A (2-18)
r =2 4+ A (r’ ) ' | (2-19) |
Lehm o e ~1 ~t,m . 2\
o ' ' ,
° ) i r ) . .
Tiom T éi(gnm) , . ‘ (2—20)

[}

r r . s .
The symbols r , R, £ w Ty p,and él(ghm) are defined in Figure

~2-1. We substitute (2-17) to (2-20) into (2-18), and define the

' ) b
following: :

/£ ‘ e

.

(ci) = |[a (f ) | (r’ ) | (r)T

e T T ik ~1,m yik ~1,m ik Ci,m
r
€ix v jélk(gl,m) dm
1ink |
K ?44
m “

¥
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Figure 2.1. Definition of Vectors used in the Kinetic Energy
‘ Compq_t ation. ' ‘ '
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-

» \\,
o \ r AO( ) d \ v §
hi - ? Tim X5 Eé’ﬁn m *
link 1
° _ . "-o( r ) A( r ) A d ‘
/ fl - j ~lr,m xﬂl:»m‘ m J-.Q‘
link 1
¢ .
b = ﬁ? [-3 (r’ ) A(r" )| dm .
1 : ~!  ~i,m I ~i,m ]
1tnk 1 ' ’
¥ : o .
* f [ ¢i(r ) dm .
~1x i,m B
s 1ink ot o
04

Note that R = °V". The kinetic energy of.link i, including

Kinetic energy due to defilection, becomes:

+ °&: . [Oﬁl + °Fl } (2-21)

The first term of (2-21) 1s the- translatlonal kinetlc ehergy of
- : . e
the link, assuming no deformation., M is th‘ link mass. The second

term is the rotational kinetic energy assuming the 1link to be

; . 7 \
i . . -

. -~ i ’ £ . L 1. .' ! ,\J-
frozen in its deermed state. Il 1s the 3x3 inStantaneous link ﬂ)

- inertia tensor of the i’'th link witﬁ respect to its undeformed

\

. ,
centre of mass. It is given by: -
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: o i .
m, o T ' Y/
= £ _ r = rf rf )
N I, * [lk][Ilk [Ilk] }
k=1 v
oo,
) ££ T
* [éxk] kalvisn]
B k=1 1=1
If we define ‘the following: 4
| T |
r r r
5o ] ] e
© link 1 C 3
T
rf r r
e T oo [oL] an |
link 1 . .
2
ff : - ‘r - . r T . . . \\’._/
Fua = J [élk(ri m)] [Ak(l:-‘l m)] dm -
i Ilnk 1 ' ; ’
N

3

and X is the identity tensor, then:

N
’I: = trace(J:)X - J:
' P
iy
l» - é
. rf rf _ rf
In = trace(Jik)X I
- £f —_ _ ‘ff / \\5‘
I = trace(J‘kl)X Ji
N R .
- The total kinetic energy’ of the manipulator is the sum of ali\\
link kinetic energles :, . .' 5 .

i Ceh -

~
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2.4. Equat}ons of Motion of the Flexible Hanipulator.

2.4.1. Lagrangian Equations of Motion.

Two coupled sets of equations are required to describe the-
motion of a system of flexible linkages One set describes the
gross movement of the joints and the other describes the ;
vibrations of the links. In these equations, we neélect the

gravitational potential energy initially but include its effects

later by giving the manipulator base an acceleration equal to that

of gravity. The only potentlal energy term 1nc1uded is the elastlc

potential energy, Pe. Note that Pe is independent of both qJ and
s, .

‘qj. If we assume that modal deflections and rotations have no

displaCements at the- points where external forces are applied

he Lagrangian equations, for the J Joint apd the £t
4 4 /

w L,

i
iﬁility generalized variable become:

a3
foﬁnt Equation :
-
a d o o .
d [__If_} - 8K T - (2-22)
) a ' *
dt q, q, :
Flexibility Equa-ion
) aP
f5) - a
d_ [.__K } K = = T, (2-23)
dt | 88 8 v 93 | v i .
&~
where 66ﬂ* is'one of BSﬂw, 66”~y or aéﬂj. Each of these

equations is examined in detail in the following sections.

!
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2.4.2 Joint Equations of Motion.
" The Lagrangiéh equation of mefion for joint j requires the

~ derivatives indicated in (2-24).

In forming these derivatives, it
éhould.be notéd‘that‘g is a scalar quantity and hence indepeﬁdent
of beferenCe frame It is also 1ndependent of q and hence not
part of the joint equations of motion. Note also that I is

symmetric and also independent of qy

After some algebraic simplification, we can write

B [
fol lows: Y g



M < * 021 X 0;1 * oﬁx' +/o/?1
dt o
O~r
8 "w n . - . N - 2
+ ~1 If Oa,r,': If o°r + Oo~r % OA' . 0A ] x Ovr
ac';' ) t <1 1. ~1 ~1 ~1 ~1 ~1
J
L]
+ 031 X OC: + 0(:): X [0131 + ofl] 4 051 + OfiJ o (2-25) '

where ( ° ) and ¢ - ) indicate’ flrst and second der1vat1ves

respectlvely, with respect to local coordﬁnates Slmpllflcation

requires the following identities: r
T R
Identity 2-1: 5" “
3 vr 3 0\“,1' :
d ~1 — -~ Q\
dt aq aq \
sl \
Identity 2-2:
N .
. - - " o~ - }
f O°r _ [0 ) o f 0°r ef O°r
Ii ¢ = e x Ix .91 * Ix 9
: o
Identity 2-3: LR - i
, [a °5,’] a %u° ' 8 %
d ~1 ~1 o~r ~1
Tl s T T T e X — Yy
8¢ ) - ] L
dt qJ | qJ . qj . . | R
. v
o . O T
where .If is the derivative of the inertia tensor wit 2 to’

frame (x',yt,z'). Proof of identity (2-1) is stralghﬁforward

Proof of identlty (2-2) follows a procedure 51m11ar to that

~

followed by Silver [63]. Note however that.



£ o~r £ .f o~r
I, = & xI -1 x 9t
. 4 “"
Proof of Identity (2-3): v
Note that: - :
' m ‘ ©
1 ‘ 1-1 7y
o-~r s ‘ o
91‘ - Z Zj_l .qj + ) Z [6Jk] .§Jk
=y 1" o =1 k=1 . L
'V'I:heﬁzl
8 at | o F
- =z ., for 1 = J
) a q - v ’
—J
Also: ?'
4 z
S o < z .
' at ~3-1 <31
Hence: «
2 .0 r 1
< §:9 9 _ 8 ez, .
- = ek q,
qj 1=1 8 qj‘ b ot
. 5
g
N i /(
- IR
1=}
The /proof can ngy' be written:
o :j,r ‘ v
: R S .
o
: RS -
o : )
d a 9;‘&' é -
a _,\ ;' l
dt 2{:9)
T % X <31

e
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z T+ z
~J-1 . ~J-1
RS
oL
.0
1o} w? 4 w

L S

¢
don (2-25) now becomes:
. s ' %
< P 0-r
\ T8 “v' )
~1i O%r
. . M v +
. 1~
‘ 8q, .
i . ) ‘
. - ( oy e ;"‘-
o~r_ - [o~r o: ) 0"}
wltx.[ml X Al] + 2w
%,
T
£ 0% +f .0- 0~ 0-
I w o+ I i + w . x A +
1~ I A ~17
Y.
i ¥
0~ 0%r N o+ Y
+ A v - w X A + A +
~1 C o~ ~{ ~1 ~1
0~ - .
a v ‘ '
~1 Q°r ' o*r » 0%
+ ' . Mv + "w
aq 1~ ~1
-3 v
o
& .
' f o( 0 0 0
: ~r < ‘r 090
‘e Il wl + Al V1-+ hl +

EN
:;f;hf‘.f
.
4
o ..
A
~1
O~r
RV +
~1
o‘.
+
~1
o
o~
A

.



The final term of (2-22) is:

- . . o~r ' R . .
. aK - 3 v R . R -
—_ = ~L . M ovr + owr X O.A + OK }
1~y o ~1 ~1
aq, . 9q, .
: i a __
o 'Oé:‘ £ o~ é~ o~ 00 0g
* I 9: oA x v, o+ hy + £,
a3
9
a1 - 34 3k
1 O0*r Oo“r o~r ~r ~1 ~1
T ~1 * Yy LoX T v —
: a8 a 8¢
q, ! g, q,
-~ . -
“r 851 afl
+ WX + - N (2-27)
3 8 - .
qJ qJ
O E

Further simplifications can now be made using the following

identities:

Identity 2-4.

arf : 8 %"
l O;r . 1 Oz)r = 1 (:,r % If‘ O‘;‘)r . ~i
2 ~i ~1 . ~1 i ~1 . @
dq dq
J J
Identity 2-5:
a8 a °9: X /
— = - X Al !
8 a -
q q,
Identity 2-6:
‘ ok, o %l -
- #* . X 4

44



Tdept1d} 277:

» , and similarly for °A, R, and °f .

gilsing the laws of triple cross products.

& 3 02{ 8 OQ{
and ———

Noting also that - -
. - 6qJ an,

H5e o 8 %
~1 - ~1 0o
_ = —= xR
A g ~1 .
i )
1 .
Identity 2-8:
af 3 %"
. % = — x ofl
aqJ aqJ
Identity 2-9:
@ o (o] (o] 0 0 . (o] Q 0] .

“r N “r “r N “r “r “r N
[eix'ég]xylhggx,[élxyi] _— [~ X Yl]xél;
For a proof of identity 2-4, see reference [63] and note that:

- '
‘,gll 6’
St < (o).
LA 4 .
i \ |
Identities (2-5) to (2-8) make use of the fact that %A, °%,
051, and Ofi are all independent of éj, so that:
"i.," - ~
ey a °a 3 [ d °a }
~1 = ~1
3 q aq |
" . qJ qJ dt

Identity (2-9) is proven

are zero for j > i,
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J (2-28)

2.4.3 Flexibility Equation.
. .
In the assumed-modes method, the gereralized flexibility

variables are the modal" coeff1c1ents §Ux, §Uy and §Uz.‘The

procedure for der1ying the flexibility equations is .similar for
all three directions in whlch v1hrat10ns occur, and w111 therefore
be detailed for the y-direction only. The final equatlons for all’
three directions w111 be glven at the end. [

" The first two tenms-of the Lagrangianveqnation of motion for
;the elastic defcrmation of the j’'th link, (equation 2-23), can be ¥
expanded in much the same ‘way as (2-22) Was expanded above. It

should be noted that the third term of the kinetic energy equation



(2-21) is now dependent on the {élk]

following identities apply:

<l
Identity 2-10:

Identity 2-11:

ah, a % X
) — = —_— X él
a8 . asé
le ify

Identity 2-12:. . _ @ :

ok 8 %" -
~1 ~1
85 . 88
£y ey

Identity 2-13:

's, but not on the[élk]’s. The

3h 8 %w°
~1 ~1 )
- = —_— X t—li
adé aé
ity sty
Identity 2-14: '
af a %
=1 ~1
— = — x £
<36J'f 86“_
y y
- O
’P
Identity 2-15:
' f i 0~r
1 0°r . aIi 0o~r . o~r’ f 0°r 8 ‘-‘v,l
Y op = =Y ox 1 e —
a3 ~1 S -
ity Jfy
1 0~r o-~r
* 2 ‘1’1' ijy 9
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2 . aé
here G'. = z
o % Myey :

~ \8the dfvative beiﬁ&rfqrmed in local

] . .an—g.f \ZQ‘-,g ST -
coordl nates.'&‘; o g g ',
. ~ JF ,‘t E }.A I o l‘
Identity '2-16:
o~r o~r ‘g’“:,_' ' O~r . o »
d [ o } 9 v }“g“r & v, o L
— = — 4 (.u1 X -
a3 : 38 ? 33
:Qt i)y tJy

" Identity (2-10) is similar to

.

identity (2-1) and its proof is
straightforward. Proof of identity (2-11) makes use of the fact

that °A 1is independent of 8 ., so that:
07 0+
® 8 91 - a d éx
R 38 a8
1y iy dt
To prove identity (2-12), we note that:
. -')"
A. ml
0 . 0
L= ) ],
J=1
and that 0‘311 is independent of [3”]. Hence:
- {
- m
a °a .~ a°
~1 ~1)
4 = ajk] L ' n
aajfy k=1 dt o '

Jfy



Identities (2-13) to (2+15) can be proved in a similar manner and
. . N . \ :

will therefore not be pfésented. ‘ Q&.

LI 3

 Prodf of Identity 2-1

m ‘ / O ’ Jy ) RU

Note first that: . /

= = ; i > J
3s i Iy ~3ify
ify 0
antd: ) ) ®
. \s?; : ®
Or i
8 91 _ 8 agl—l .
ify 1=1 aajfy ot
i-1 1-1 3 5 a¢l
+ [6 k] - “1k
St P at
=1 1=1 ify
»
i 1-1
- ?ny X [Z : a0 9 F z '21 ] ,
1=4+1 1=j+1
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t
0
-
|
160
b
4
L
B
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Oo~r . . ©
= 9 X ?)I‘y * <£)er Z ?1
I=j+1
x 3 %’ a ‘
r ~ N :
= Y X e+ — End gf Proof.
a8 35 '
by iy 2
[«

Following a procedure similar to that used for the Joint
equation, and also making use df‘ Identlty (2- 2) the first two

terms of (2-28) can be expanded and the result simplified to

yield:
™
9
N .
e
d oK aK ’ *
— ] I - —_ = /,
dt adé
t 1
Jy Yy 1=
o~
8 v: 0% 0%r 0
- MoV o+ N A
d8
tjy
£
0 0 0° oo o
N T X [wr X A] + 2 w X A + A
~1 ~1 ~i) . ~1 ~ ~1
o~
3 " ’
~1 f 0% of O~r 0~r £ 0~
+ : Ix i Ii wi" wl X Il° i *
a3 .
i)y i
o - v
I °r “r o [ hod bad
él X V1 t ‘31 X bx.+ f:an + hi * fx

th,, ' , (2-29)

~ 50



SN

. »
where: - Lo
2 o
| NS o [0B, of A
t = \V/ —_ + (‘:')i +
Ity -t 38 38 a8
i)y 1}y i1jy
d | af 4 of .| 8B
“r ~ 1 ~1 i
S Pl R o IR
8 d
dt aly i)y gt ily
1 - aIf “r -
- 59 w - (2-30)
aé .
’ iy :
. v -

The terms that constitute t',, involve derivativés in local

coordfnateS‘ohly and are very easy to simpjify. For example,

9 . e

¢

- .o" .l ‘ . . .
ﬁg§§§ 0 ®
a’é ¥ 4 A ‘
e — = Ay
88 .
o , 1y 0 o ETh L0
- A'vui_. ) . ~.'_J" v, e

. a"

N ' ‘A’v" ’ P . .
Expressions fopdgag(and t“i.can be derived in a similar manner.

;
LR
-

L3 , v
2.4.4 Elastic Potential Energy Term.

In‘fhis sectioni we examine the last (thifd) term of eduation
f2. 3). Elastic potential énergy is accounteénfor, to a good
appro imation,.by bending about the tranSverse'y and z directions
and by torsion about the longitudinal x-axis. For the’i’th link;“'

the potential energy is given by_;he expression:

"
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x -+ dx

: : o )
/ : 7 ‘ ) .

4., and Al are deflections in the indicated directions,

¢“ is the rotation about the x—axis due to torsion b
. ‘
-E 1s Young’s modulus of elasticity of the material,

L

i\* G is the shear modulus of elasticity7of the material, -

v

s ‘the area moment of‘ inertia of the link

cross—section about the y and z axes respectively.

:: When the truncated modal. series are inserted for the
‘1#%%§flections and .rotations in the above equation, the last term of

(2-23) can be written in the following form:

ﬁf A SR '
. ‘a , ; NI . Q?‘ . .’ .
) # ; J 6Pe ) Z ‘
. . a8 L Ik | Takey '

_Where KJ is a scalar Sthfifness coefficient which can be
} t‘%

calculated from the elastiﬁ constants of the links and the
mode-shapes for ﬁlexure and tors%on Deta11s of this procedure are

given by Book [4] and are not unique to the development presented
here. Slmilar expre551ons hold for the potential energy term of

| the flexibility equation 1n the X and Zz directions. | 7
PR, ot /e

Kid
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Equatidns (2-30) and (2-31) can be combined as follows:

o

3 af .
or or i ~ i
t = Y —_— @ + .
ity ' a8 a8 3 &
1y i) Jy
I o o]
. d a ar d db
r ~1 i
+ w —_ F + F + — —_
é ' a a
dt 1} i)y dt 1}y
r
_ ol . Z s |« (2-32)
2~ as ! Ik ey g
1y . ;
' %@b p Vl ) . .
The complete flexibility equation can therefore be written as
follows: .
&
&>
N .O“
r
8 Y 0, O%r o%r 0~
Tiey T 2 ) Ma M ~1 él *
Iy 861 .
1=y Jy
Wk (o k] c2% <%+ %
13
9 %ur oon . . N
+ — I &:: + f: ow: + % x 1o .
88 ~ ~ ~1 i~
iy
(] 0% ~ oY) o) o " o
A x V4 wrx[h+§]+h+°f
~1 ~1 ~1 ~1 ~1 ~1 ~1
+ t
ity
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2.5. Computational Algorithm for the Inverse Dynamics- ’ o
An algorithm similar to the recursive Newton—Euler algorithm

for rigid manipulators results from the joint equation (2-28). The

flexibility equatlon (2—33) departs only slightly from this form.

Both equations can be combined into a single, compact {

- f

computational procedure in which all terms, including flexibllity

teqps are calculatéd To see how the computational algorithm is

derived, note .that:

o~r
8 (31 . .
. = Z 1 =3 : (2-34)
~J-1
9q
<)
‘and
[0 2l of
a v : .
~1 _ O~r : ) O
o = %, X By, Jor i o= (2-35)

where oéqu is the vector from the origin of coordinate frame

(xyq,yyd,gjl) to-the centre of mass of the i’th link in 1ts

undeformed state. That is: ~

L \

o1 » 1~1°
o o o-r .
pj 1,1 Z pk + Z 4 * s, (2-386)
k= k= .

J . . 3 P}
"Note also that: ; ‘ \
3% o
~ A o
= o | = "¢ ot fore 1>
as o -Jfy
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s [0, P
. = 0 X Biaa vy
LI o
Y Ity . .‘.'1; .
A o o~r 0, gg . ’ .
= [+ + A > s
" ey By, < for #> 55

The recursive equations for'calqulating the, joint ‘torques from
t&e end-effector backwards to the base are therefore:

’

0 o 0 ~ }
= i -—
~1 ~1+1 El (2. 37)
o] _ 0 + O r* 0A 0 0O r* + O~r 0 .
, Sier. i S8 BRI FPOY % 3 X L ﬁ
+ °N ‘ :
AN » (2-38)
A.
T = z - 9% ‘ (2-39)
IR BY ~1 ’ :
“ " A
where
o) 0% 0% 0% o~ - -
F = M vr + @ X .. A + W X [owr X OA] +
~1 1 ~1 =y ~1 ~1 ~1 -
X

: ¢ 0~r o} o
. R 2 % £+ °a (2-40)
L 1 ~1 ~1 SO
¢ N
S
7
)~ . . . ) L
0 £ 0%r f O*r 0~r f O"r 0% 0%r
= + W+ w w + A +
N, Log + f0%0+ %0 x 1] % 8, %%y,
?
o~r 00 0g 0 0%
w oox [131 + {l] + h + °f (2-41)

. . . .
The"flexibility equation.can also be written as follows: ‘



. . (2-42)

Similar‘equations hold for Tiex 24 Ty | o .

In this thesis,. we consider actuator forces and torques as
being applied only at the manipulator Joints. In this case, tﬂyis
set to zero in the above equation. |

Note the similgrity of eq tions }2—35) to (2—39) to the
Newton-Euler formulation of rigid manipulator equations. Equation
(2 350 is identical to its rigid counterpart, and represen?s the
equilibrium of forces for each link in translation. Equation
,(2 =36) represents equilibrium of torques and now takes into
"consideration the deflection of the link’'s endpoint away from its
‘normal, undeflected position

'Equation- (2-38) is-Newton s equation of motion of the link in
.translationf In addition to the inertia force due to rigid-body
‘translation (the first term of (2—38)) the inertia force due to
acceleration of the link’s actual center of mass)away from its :
-undeflected position is now included (represented by the rest of
the terms in (2-38)). In total (2-38) is just the 1ink’'s mass
multiplied by the total velocity of the link’s actual center of '
mass as it performs its total motion. ' T,

It is clear that equation (2-39) represents Euler’'s equation
of rotation about the link’s normal, undeflected center;of mass
-The first two terms are- the same as the terms of the correspondlng
equatlon in the rlgid manipulator formulatlon The third term
accounts for the rate of change of the link’s inertia as it

. . . v
vibrates. The fourth term accounts for the fact that the actual

.
o
v

»
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- &
center of mass is not necessarily coincident with the link s

norma} undeflecteé?gghter of mass. It is difficylt to attribute
physical meanlgg to the rest of the terms in this equation. It is‘
for this reason that the Lagrangian approach has been preferred
over a direct: Newton-Euler approach The computational procedure
however, possesses the same desirable attributes that are
associated with Newton—Euler approaches. It is not unlikely that
a direct Newton-Euler approach in which distributed link
flexibility is modeled by a modal approach as in this chapter
would result in a similar, if not ident1ca1 recursive

computational procedure.

Note that in (2-37) to-(2—42)- the vector quantities have all

been referred to base c ordinates It is a sihple matter to show
)
‘that both the forwﬁrd aid backward recursive equafions can be
- . T "1: S . ,‘ ..
're -written as follows e e,
. ¥ % .
1
. . &
Forward exprgssionsi Ea h ','{f”jup'j?‘7
, . i3 : ' :
t r 1, 1=t ' . o o o
% = ',Ax-i[ 2o % qil RV ‘ S (2-43)
{ S Y A O ;ﬂ - e;i>,“ oo T .
‘:.)1 - Ei [ ‘:.)1 + @1]-? o - o S . ) (2_44)
. . < ) l . 3t
ter 4 1-1+ ‘ -1 . . |
2 = Ax-r[ Yt LaX 29 ¢ goqx] (?_45)

i fiie i. A | oo ‘ w
AR Ty
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t*r

N
= A 1-1 + o'k ’ (2-47)
- 1-1 ~1-1 9% B _
- -
£
= E_::f[ly: + ol x A s il:\ol] " (2-48)
: o _

£ o &4

. rfll°p ier i > ir’ i r i )
= E [Yl oo x4+ e x( 9 X 8)) @v
20 x'a) o+ ’1}'1] (2-50)
ir ' :
- W (2-51)
= (2-52)
— + lA h
= §l
1~pr 1~r ¢ i re i~ ) -
+ W ;% WX l P, + S| (2-53)
[ Y
? 4
12or 12 14 t~r 1~p 14
- M1 Yy vt e X oty x.[wx X éi] +
1- 1 1o v
2wy x &+ ' (2-54)

A - ~ - -~ A
- ,--IIf' !wr « in lwr - lmr - 1.f i°r A i2 1%r
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The expressions for tjrx, tjfy an\cm

ifz
forward recursion. '
: 8
The backward  expressions are: -
1 1 1+1 1 !
£, 5 E AL, fa v E (2-56)
1 1 141 i r* 1 i+1
~1 El e D * [ ¢ T Al] X Ex A1+1 gi:i_
i _re 1°r i 1
+ [ 1 §1] SO (2-57)
3 ~0 S | ;
The f‘léxibility equation can ‘also be written as follows:
— ] . J J+1 . T by
Tiex T tjf‘x * ?jfx E, Aj+1 Dy (2-59) .
= 3 , S L L
) Tny - tny * ?jfy El Aj+1 Qj+1 + Do
3 e d 553«1 . : - ,
+ éjf‘y E1 AJ+1 €j+1 . (2-60)
= J .. J J+1 .
rjfz - tJrz * ?jfz El A_]+1 Din +
J . 3 j+1 : %
+ éjfz El AJ+1 gj+1 : _ ) (2 61)
o
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’ To 1nclude gravity effects, simply set \1 equal to the

3—dimensiona1 gravity vector appropriate for the coordinate system d

.,‘ -3
o P

of the manipulator base. SR f ,gvg~'t~ *:J;gg“, ;u
Lo £ rf. ,‘"_ '. ,"v-.
Note that QE: )7 s equal to (E )T since E is a matr1x of ;\".,Im
CaonlL A
direction cosines: Inversion of the matrix is thereﬂore &% %_?R\t
unnecessary. L - e ey e
J S Ty Ape ot
’ Cn ’ P ':’ "r * § - ‘? 75,*
oA, ok
. e b '.ﬂ'l v ”.%J‘f )»1

2.6. Computational Algorithm for Dynamic Simulation
In this section we derive a fast computationalgalgorithm for

dynamic simulation of llexible manipulators which could be very

Hz =R - L (2-82)

where:
'Z = vector of generalized coordinates,

=lq, 38, 8, ""Sml' I 8, S, ...62m2. .. aumﬁ‘] e

H = Inertia matrix in the order for multiplication appropriate for
A o
z, | :

R = vector of remainlng dynamics and external forcing terms

-~

When z is arranged in the order shown here, the resulting inertla
matrix H is symmetric Numerical simulation of the motion of a
flex1b1e manipulator enta11s solutlon of (2-62) to obta1n the

‘i‘z

generalized accelerations z which are then 1ntegrated tw1ce to

vield the generalized xelocities and coordinates The problem now

J 3
'
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iIs to find Hand R. To db\this, we follow the method of
Walker(4d]. R

R is simply the»difference between the'external forcing vector
and the dynamics obtaind¥ from the ihvehse plant algorithm when
all the generalized accelerations set to zero.
is, To calculate H, note that if the inverse plant algorithm is
run with all references to gravity, velocities, elastic forces and

»external loads eliminated, and with 2 = e where e, is a vector

k)

the same length as z, with all elements equal to zero except a '1’

j' in the k'* location then the resulting dynamlcs from the joint

J-;and flexibility equations would form a vector that would be equal
.to the k"’colUmn‘of H. This can be seen from (2-62). Hence all
Jcolumns of H could be found by successively incrementing the value
.;of k. This however, 1is an inefficient procedure. An alternative
i is to follow a procedure similar to that of Walker's method 3.

To dejc;ibe the forward dynamics algorithm we shall use the

following nqtation for terms of ‘the H matrix:

hrj~3- = the term in the column corresponding to q and the
C ‘row corresponding to q,
i'hL51w{i,? the term in the iflumn corresponding to 6 o and
T T the row corresponding to q
‘hshésj_‘= the term in: th&,column corresponding to q and the
o . row c¢§}espond1hg to 3 1k}
héﬂa{GU; =i>the term in the column corresponding to SU?#and

the row correspondlng to 3 .
: where ? refers to e1ther x, y or z. In the algorithm that follows,
we assume that the manipulator payload isa concentrated mass.

Then starting with . R o ¢

.sd)
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. Py ! ; .
UV M. = payload mass, noo . :
@’ ‘i'r : ' ‘ L vy . ’ s
. N _ : — K : = . ) ;
v’ .SN#I =0 ol L ' S
. N . P . ‘ . _l..- s :',‘
& = [0] L e

N+1
calculate the following for the J link during the recursion

from the last (N’th) link down to the manipulator base

)
) = J re Jp ) ,
Mg, = MJ+1[ Ry = ~j+1] * s
\ v</vl
e j re g2 Jae _
\p(‘/‘ + mj.[ PJ + . §J ] + éj (2 84)
- i {
7
(3-1) fr (J-1), - J .‘;’j rf S fo
c, = E Ay ey AL E (2-65)
\.}A
_ J J re ‘ er . ;
N ey (2-68)
. Q@
Soev L ya JAJ N
L, = By i+ s, + T -y .. (2-867)
. \‘ K“:‘:'
(3-1) _ fr T-1 J N
& = Eja vAJ Eyer v M F(X) 4
o
J. b : J. . rf
- F(’A , -
I, ( ~J)/mJ * om F(X,) : AJ_IEJ_1 (2-68)
- ‘ RTEY e
where F(X) = (X. X)I - X X! .

For the k’“‘flexibility mode, form the4following vectors:
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s

lized vafiable 3 is
Jky

(2-89)
: o
de  (2-70)
j+1
fj+1:5_]kz - M_]+1 [ éjkz + ?sz X CJ‘.1 ] | (2-71) ‘
. _ | \
where: "\\ N
v/
- 0 -‘ . .
=] s © (2-72)
~Jky . ~Jky
. 0 .
r 0 N Aoy l\')\
J = —
8= | O (2~73)
JA J .
- ~Jky
[ g ¢
j ~ Jkx
?ka = 0 (2-74) .
. O |
B 0 b
J .
[+ = s . —
yxy 0 4‘ (2-75)
J¢ > '
{ -~ Jkx-
o T
.= | e - (2-78)
~Jkz <~ Jkx
0]

¢ - o

Also, calculate the following vectors:



J

nj#l:Gsz

To form a column corresponding to the variable GJ

g

J+1

~jkz

J

gj¢1 X fj+1:5jkx (2-77)
I x f (2-78)
<3+1 3J+1:83ky
I x f . (2-79)
T3+l J+1:8)kz

term is given by the assignment:

hjkx:jkx .

The terms in this column above the diagonal element are obtained

o

+
kx

g

~Jkz

J

O

nj+1:5jkx

c? the diagonal

(2-80)

by following a recursive procedure from this mode backwards

through the preceeding modes of the same link, then through the

preceeding links, all the way downyto the manipulator base. The

recursive equations are the equivalents of equations (2-53) to

(2-58).

A similar procedure is followed in order to calculate the

terms of the calumns corresponding to the variables 6

and &
ky

Z'

The ‘terms of a column corresponding to the joint variable q,

are obtained by first forming the following vectors:

-1 rf
&
] EJ

117,

%

31
M e,

+

J-1

~

J

j-1
X fJ

Nyt

(2-81)

(2-82)

The diagonal term of the colypn is given

§ %,

64
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h, =-z-component of [EI;f Jdgj] (2-83)
The elements in this column that are above the diagonal elemen£
are calculated by a backward recursion from the j’u‘joint down to
- the base of the manipulator. The recursive equations are, as for
the flexibility va?iaﬁle case, obtained by modifying equations
(2-53) to (2-58) f;r this case.

This completes the algorithm for calculating thé inertia

matrix.

2.7. Simulation Example.

The fofward dynamic algorithm is demonstrated by simulation of
the two-1ink spatial flexible manipulétér shown in Figure 2-2. The
maﬁipﬁlator dimensions are also given in Figure 2.2. The initial
values of the deflection variables are‘all set to zero, and the
{3}tial Joint angies are: q, = -80 degrees, and q, = ldfdegrees.
fﬁe arm is allowed to swing freely under gravity. The results are
shown in Figure 2.3, which shows the oscillations of the Joiht
‘angles ("JOINT 1" and "JOINT 2"), a§ well as the vibrations of the
end-point of each link in the y ("YDISP"), z ("ZDISP") and x

("TORSION") directions. Note that there is no torsion of the
second link. "

An 1mpértant obser&ation that can be made from the simulation
results is that the oscillations that arise as a result of
structural flexibility appear supeﬁimposed on top of
lower-frequency, gross joint-angle oscillations. This éan be seen

in the plots in Figure 2.3 of "YDISP" and "ZDISP" for both links.
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DIMENSIONS

Link 1 Link 2
Length 1.22 m 1.22 m
Radius 0.005 m 0.004 m
Materiél Aluminum Aluminum
Density [2.78x10% kg-n® |2.78x10° kg-m>
;g;zf;: 6.9x10 '° N-n"?|6.9x10'° N-m"2
§2§3Ius [8.9x10%  N-n” 8.gx1o9 N-m~?
EI product|33.9  N-p? 13.9 . N-n®
GJ product |78.5 N-n° |32.9 N-m°
Frequency {5.8 hz 4.7 hz

(x3,¥,,2,)

Figure 2.2. Example Manibulator Used in the Simulations.
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Thls observation is'the basis for the control algorithm tﬁat is
proposed in Chapter 3. If link—flexibility 1s not too great, then:
two well separated sets of time constants are present in the
flexible manipulator system. Model decomposition into slow and
fast subsystems is therefore possible. The control system design
‘problem becomes more tractable“in that designs canﬁnow be based
upon.the two simpler subsystems individually, and tne resUlts

-
combined into a composi

e control system. This is the approachi

taken in Chapter’ jposite controllers are proposed and

tested by sinulai;;
g2.8. Comparison with Book’s Recursive Lagrangian Method.

Of all the‘published papers on algorithms fer numerical
modeling of flexible manipulators, Book;s paper on recursive
Lagrangian dynamics [4] has been the only one to inolude an
analysis of computational conplexity. In order to éetermine the
relative speed and efficiency of the algorithms presented in"this
chapter, we perform an analysis of their computation;l'complexity
and compare the results with Book’s. | |

Book;s algorithms are mainly applicable to planar
manipulators.” This restriction results from his uselof the same
generalized variables to represent elastic deflections in all
three planes This can hardly be correct, since motion in one

plane does not necessarily imply motion in another Comparison

with his method necessarily requires a reformulation of the fully

K3

general, 3-D algoritth’presentedihere to include the assumptions
made by Book. This ls quite easily done by replacing every

occurrence of the diagonal matrix diag[6MR,6wk,6“k] by the .

87

.
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scalar “6 ". Significant simpltfication of the algorithms result.
Comparison‘with Book’s method is now more meaningful Numerical
results obtained from simulation of an example arm moving in a
plane using the resulting algorithmic equations are identical to
those obtained using Book’s method and to those obtained using the
general 3-D equations . - A .
.In order to compare the speeds of execution of the two dynamic* -
_formulationsy we compare the total number of multiplications and

the total number of additions required to compute H and R in

eq ation (2-59). Book gives a.pair of expressions fotr these

numbers that are derived after the following assumptions were

made: (1) Obvious simplif1cations in matrix mult1pllcations due to -
the gpecial structure of matrices or vectors in these computations
. -were made, (2) terms that appeared in multiple equations weren>\

d
calculated only once and saved (3) the integrations required to

' compute I etc were not included When we. make the same
assumptions the numbers of multiplications and'additions required

: for one complete run of the inverse plant algorithm are as - '-{

Ll

follows ' " ' o S ’
‘No.of Mults. < 32nm® + 105nm + 300 -.93.
o, . No.sof.Adds. "w= 35nm? i 49nm + 244n - o1
.?\‘\ J‘ : ' .:;_ -' ) 5 - .-',l_‘l,." ( . ) ?.," . et u- \Q

_Ihennumbérsﬂof‘computationsirequired to falculateih‘are:"

No. ‘of ‘Mults. = 3n°n® + nu’ + 16.5n%n + 13. 502 - ﬁ\

AR ~ . +43.5nm + 118.5n - 65.5m ~ 95 \

"

No. of Adds. = 3n%m® + 1.5nm° + 13.5n°m + 10n° - 3n? N
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+ 42.5nm + 102n - 66m - 86

where: -

o
]

number of links, all flexible,

-8
i

number of modes per link; same for all 1inks.

Binks, all of which are

A'the scheme proposed in'this
chapter requires a total of 8, 75 multipllcations and 8,064
additions to compute H and R in equation (2- 59) Book’ s method
requires 34,593 multiplications or about 3.5 times as many as the

' scheme of this chapte;iand 33,653 additions, og 4: 1 times as many
e’as the scheme of this chapter This clearly demonstrates the =
success of the method 1n terms of speed and accuracy ’

o

HﬁHIf Walker s method 3 were’ applied to a 6 link flexible

-~ -

:ﬁ£ manipulator ‘and " we model the three modes of vibration of each
link by giving each link an additional 3 degreeg of freedom, then“"
the total number of multiplications required to compute H and R of
_ (2-62), would be 11, 496. This~number is greatei;, than the ntmber,
;.“ obtained'when the algorithm preseﬁted in this chapter is used to-
;~ model ‘the same manipulator with three modes per li</; Furthermore
the method of this chapter vields more accurate numerical results ‘
Book states that in order to be competitive with possible
' Newton—Euler, non—transfer matrix»approaches; he wou1d have to

make certa1n 51mp11fications of the assumed mode shapes The same «

simplifications can be made for the mode shapes here as well ?pis v

. “ _ v

-
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will result in further speeding up the algorithms.presented in B
this chapter. S | r _

THe algorithms presented here revert to Luh's Newton—Euler
algorithm for links that are considered rigid. Unneces§ary
equations should not be computed for such links For example, if
the i’th link is rigid then v = 10:, hence it is unnecessary
to compute equation {2-50), for example for this link When the
algorithm is programmed in this way, the number of multiplications
required to compute H and R of equation (2~-59) for a 6- link
manipulator with two flexible links and thrge modes per Fle;ible
link is 3, 190, cOmparediwith 11,361 for Book's method. |
2.9. ;biscussion and Summary.

The algorithms for modeling flexible manipulators that have
been presented in this chapter are successful in terms of speed of
'computation How closely the numerical model represents the actual
manipulator depends, to a large extent, on the accuracywto which
_the flexible deflections are modeled. The assumption that the-
infinite modal expansion can be truncated has been discussed by

several authors [87,881. The general conclusion has been made that

“in most cases good control action.cab still be achieved if the

»«controller is based on a mod 1 in which thed irst few mode shapes

are represented fairly accurately Albertshet al 51 haveﬂghown
that_the higher Vibratory modes cah also be damped by wrapping the
links with a visco—elastic material When this is done the v
accuracy of truncated models becomes quite good.

M‘§¢ authors make the assumption that link oscillations are
"_relatively small since it allows for consideration of linear

- ' : hd

i
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~ iipelastic beam vibrations only Cetinkunt [89] suggested that one

| ‘way to ensure this in practiCe is to develop traJectory generation

-:f;algorithms thAt design tasks such that excitation of flexible

.‘1'.states minimized

| Advanced schemes for on-line control of flexible manipulators
would undoubtedly require real-time calculation of some -if not

':all; of the terms of the inverse and forward dvnamic equations ‘

.“_ The efffciency of the computational procedure presented in this -

‘1E chapter makes it attractive for on-line implementation of say,<

| some form of modified, computed-torque control scheme for flexible
'manipulators that might be based on reduced-order models. In order
to calculate the recursive inverse dynamics algorithm that was

| /presented in this chapter for a six-link robot arm with two

. flexible links and threeﬁgodgz.per link, current 16-bit

microprocessors require 5-10 milliseconds. Even this is still too

long for real-time control of flexible manipulators Availability

of faster microprocessors in the near future should make real- time

¢ontrol feasible o

Another advantage of the inversevdynamics formulation of this

chapter is that it can capitalize on the methods for parallel

’j

computation of the r1gid Newton—Euler algorithm that have appeared ey
in'the literature [55- 62] It seems that these methods can be .
' extended quite easily to Include this algoriZhm, -hence ‘ ;v e

considerably speeding up the calculationst \

~n summary. a Newton—Euler like algorithm Is presented: in this
chapter ‘for numerical calculation of inverse and forward dynamics
of flexible manipulators Inverse dynamics are calculated by first

calculating kinematics cn a forward recurston from the‘manlpulator . S
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: ,base to the tip then calculating dynamics on the return r'ecursion

vThe for‘ward dynamics formulation involves a direct procedur:e for

| calculating the: full inertia rhatrix including flexibility effects
The algorithm for calculating forward dynamics is at least three .
- to four times as fast as the only other method for which
“computation times are availab% in the liter'ature to date, a,nd
Just as accur-ate A discussion some practical implementat1onal
' problems in flexible manipulatomﬁ%ontr‘ol is/ also presented.

Despite these ‘obstacles, the methods presented in this chapter

: cham cal and control

- should prove very useful in designing the:

systems of' flexible mampulator‘s

/

.
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CHAPTER 3. RECURSIVE FINITE ELEMENT MODELING OF FLEXI@
MANIPULA’I‘ORS | »

t I - d
. | B

3.1. Introduction

._q“ i..
The two approaches to flexible manipulatdr modeling that have

been identifiied as the most promising to date are the

Assumed—Modes method[4], and the Finite—element method[6]. In the

a

}assumed—modes method, which is discussed in Chapter 2,

g

link-deflections are represented by the superposition of products

of deflectlon mode shapes and time- dependent generalized
<

-coordinates. Simple boundary conditions are assumed at the joints

and these are used to derive analytic‘expressions for the mode
shapes In reality; the'boundary conditions may be more

complicated and there has been some uncertainty as to whether the

' simple clamped clamped or cIamped free mode shapes can

e

satisfactorily represent flexible-1ink kinematics. In the

finite—element method, which is the subject of this chaptor this"‘

problem does not exist. The actual boundary conditions can be more

accurately represented in the finite ~eTemerit equations ) a -

. -4
.-@n, Vo et
- s e TR .

‘ This advantage of the flnite element method however is not
gained without a price This method is.noted for requiring Tong
CPU times for problem solution Two" factors contribute to these

high computational requirements Firstly, the Lagrangian approach

(that is used in most’ finite-élement programs to’ calculate d/namica

terms Ieads to numericai algorithms that are inefficient {a1].

Qecondiy the inite eiement method 1*3eii resuits in a ver/ hiph'

7




model dimension For example, four modes of vibration may be |
sufficient to describe 1ink deflections in a flexible manipulator -
.using the assumed-modes method, but the finite element method may
require ten or more elegents, resulting in fifty or more degrees
of freedom per link.

Fast and efficient algorithms are needed in order to quickly
simulate alternative manipulator mechanical designs for the
flexible manipulator. Even greater speed is required for real-time
implementation of the control system since feedforward terms may -
have to be calculated in order to achieve‘decoupling of
flexibility effects from rigid—body dynamics. In thlS chapter we
present new, recursive algorithms that alleviate the problem of
computational inefficiency of the traditional Lagrangian
Finite-element formulation of flexible manipulator dynamids. These

-algorithms are derived in a manner similar to the manner in which
the recursive, assumed modes algorithms are. derived in Chapter 2.
Velocities and accelerations are calculated on a forward recur31on
from the- manipulator base to itg tip. and Joint torques and
flexibility dynamic: terms are calculated on the return recursion.

B The traditional finite element representation of flexible link
hkinematics is retained " The methoﬁ’ﬁroduqﬁs the same numerical
f‘results as the Lagrangian finfte element meﬁhod but’ the algorithm
is much faster and moreaefficient.

In the sections‘that followy the development of the algorithms
‘iIs presentedvin some detail The numerical results obtained fraem

Vsimulation of the same two- link spatial “lexible manipulator

«described in chapter é are presented. A me*hod of estimating mode

shapes from ‘inite element data is then given and a comparison is



made with the fundamental mode shape assuming clamped-free

boundary conditions.

3.2. Finite:Element Kinematics.

In thetapproach taken.in this chapter, the i'th link‘is
div%ﬁed 1nto n, linear elements, with the j'th element having
lengﬁh 8 (see Figure 3.1). For simplicity we will assume‘that
each efement is of constant cross- sectional dimensions, with

f
Young S moduli E and E Jz in the Yy and z direction

respectively, and shear modulus G hgabout the longitudinal

x—axis ‘An 1rregu1arly shaped element can be divided into smaller

§
elements to conform with th1s assumpt1on Each element has

assigned to it a local, rig1d“ coordinate system (x ,y ,z J)

with origin located at the" element s distal’ end when 1t 1s

undeformed, as shown in Figure 3 1. Note that x i g lies along the

undeformed length of the element Displacements and rotations of

" the element are assumed to be measured with respect to thls

coordinate frame. Associated with each element are five

Q

‘time—dependeht generalized coordinates, namely, the element-tip’s

deflections in the y (u‘ )anﬁ z (u ») directions, their

derivatives (wuyand L ) wlth respect to x 1, and the : ,
. 2
element—tip’s-angular}rotation (wUx) about the xl; axis due to

torsion.

- (o]

A notable characteristic of the formulation presented here is

_ \
the assumption that lfnk—oscillations are small in magnitude

AT
_compared to the link’s length. This assumption is not necessary
"\
‘order to derive recursive algorithms but lt is a realistlc

~

>1n

represenéatlon of the sjtuation that would mosf likely exist in '
- \ .

e [
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the majority of practicgl manipnlators of the near future. Terms
that contain higher order powers of deflection variebres can

therefore be negledted. The resulting simplification of'dynamic_
terms is significant. InacCUracies introdnced by this.assunption

are relatively small [6] and, in a controlfsystem design, can be

. compensated for by feedgeck The coupling effects between flexural

deflections and torsional angles are neglected since these are at
least ofiseCOnd order.. Higher-order terms involving only flexural,

‘deflections are retained in the current formulation but in an

i

_ actual simulation or controller design, these terms can be

neglected as well. | - | ; E

Flexural deflections of interior points of an element in.both

the y and z directions are interpolated by third- -order

f~polynomials [38] Thus:

(x!) = P(x')u +P.(x ) e '

1ty 1) 1y 1(J~-1)y 2 M1y 1(J-Dy
,/’,—. .
* Ps(xu) uljy + P4(Xu)»‘ ‘pu
: PR .
v g . v . o
A T " : .
= BV v - -
- ' E')Uy(xlj) ~1jy . ) o (3-1)
where: .
i 2 3 %
Pl(x) = 1 - 3 — 2= (3-2a)

N
W

Pix) '= x - 22 + X (3-2b)
. ¢ '
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the maJority of practical manipulators of the near future Terms
RN

that contain higher order‘powers of- deflection variables can .
therefore be neglected The resulting simplification of. dynamic
terms is significant Inaccuracies introduced by(this assumption ,
a£e relatively small [6] and, in a control system design, can be.
compensated for by feedback The coupling effects between flexural
deflections and torsional angles are neglected, since these are at
least of second order. Higher-order terms involving only flexural

<

deflections are retained in t\jmrent ‘ormulation but in an

-
«

actual simulation or controller design, these terms can be

,-neglected as well.

Flexural deflections of - interior points of an element in both

the y and z directions ‘are interpolated by third—order

—
-

polynomials [38]. Thuse

-

N

, ; . . \\b .
1 » - 1 ' N [}
. . ljy(xlj) - Pi(,xu)'ulu-i)y M Pz(xfj) wl(]—l)y
. '+ Ps(xfj) U, ot P4(X,J) ? gy
) < T
" .A. T' cl . ¢ .
Py (%) Lisy - (3‘11'
. N "
where [
x2 . x3 . c .
P (X) = 1 - 3 —2 + 2 — L i ' (3—2&)
£ ¢ .
. ©
Pz(x)l =% - 2 X 4 X

(3-2p)

-3



A~P3(¥) =" 3 N f—‘ - ?

il
|
+
.
@
wn
Q.

PQ(X)

The left superscript (1') indicates that the parameter is measured

with respect to the "primed"‘coordinate system (k'*Ty 11).,

.Similar expressions obtailn for ! AUz in the z-direction.
Torsional rotations ' ¢Ux(xlj) are'interpolated by linear o
polynomials. hence:

o - : - . ~

$unl)) = Q00 e L r Q) e

1(3-1) 1)x .
- A - T s
' T ' - . s " N
. — %Jx('xu) Zi'jx . . (3 3)
where : ‘ . :. ( o )
SQx) = 1 - X ' (3-4a)
: oo IR I » . ;!
£ - R T -
= X . ) \ , .y,
Q00 = N (3-4b)

Higher order‘interpolation polynomiais can be used to represent
_ torsional vibrations at interior points but this may not be
upecess??y unless torsion is significant ‘ N

| "It is useful to define a coordinate frame (x y z ) with its
origin located at the 1ink’s tip when it is undeformed as shown
in Figure 3- I. The axes* of-this.frame are located according to

Paul’s convention [IQ]fexactly‘as described in chapter 1. The

. . G. }
usual kinematic parameters that describe rigid-link motion are
. F T o

4
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1 . , .
) <

e o

defined, such as the nhk—*twg;t'- %.‘ 11‘_ length* L, c:ffset d,,

and Joint rotational angle qi Motio of this coordinate frame

represents the gross, rigid—body moti.p of the manipulator
/

i

As mentioned in chapter 1, an additional set of kinematic

=

4 parameters is required to, describe elastic oscillations about the
| rigid*link motion Rln order to define this néw set we need to

" define another coordinate frame (xl,yl,z )‘with its origin located

fae

at the link’s actual tip and moving with the link as it executes

l

both its gross (rigid) motion and elastic oscillations (%ee.
. Figure 3- 1) The axes are- oriented such that this coordinate frame
becomes identical to the rigid frame (x y z ) when the link is

_undeformed Kinematics of the link’'s tip due to flexibility can

now be represented 4n terms of the angles‘l ¢nc ! ¢w and
Jl

¢1,'which are the angular displacements~of the X, y and z axes

respectively of frame (xl.yl,z ) from (x yl z' )‘ and in terms of
‘linear displacements ' Aw.and» a of the origin of b% yl.zi

from the origin of (x|,y',z!). For 2 1ink with (x| . \y_‘ Lz )
- | S AN

parallel to (x;,y;,z;), therfOllowing‘hold:.

= W
¢ix wi,n'x . B
i < .
. . }é/
. !
' ¢iy - wl,ny
ml.:
“.ll T
¢iz - . ¢i,nz ,



o * "..” ‘

RS i
. A = A
) f~‘\ - 1z # i,niz_ ( /

o The rotational transformation Ef that transi“drms frame

. e (x y z) to f‘rame (xl,y. z ) is already- defined in chapter 1 as:

A ] “y
. :\ 5. E .f.\-( N : K
Ty . R X T
]
i

ST ', : ’“l' : U A : ‘o _ '
,E_", b Rot(5<. _4¢“) Rot(y.‘- ¢‘y) R_ot(z,. .¢iz) A _(3 5):'

4

AR e

This transformation matrix.‘ together with the Joint rotational

\

: : ’ : . L
(x’.yl-,.z ) of each link. The left 'superscript "i'" indicates that _°

/ i

matrix A ¥ allow rotational kinematics to be referred from one "
: coordinate system to another on the same or any other link and )

~ finally to the inertial system (x,.y,,2,) located at Yhe -

manipulator base. Definitions of EZl and l'IAI. are the same as

E’;r and 1'lAi‘a,s shown in Figure 1-3.

Recursive expressions can now be written for angular |

. P . i

velocities and accelerations ( g, :gl.. , and linear velocit»ies '

‘and accelerations ( v

1' Yx) of the rigid-coordinate frame

I

the quantity is referred to the rigid coordinate system Recursive

: expressions can also be written for the angular Velocities and

accelerations ( w , ig}l), and the linear velocitiesand 4

-a(:celeration ( v V\) of frame (xl,yl,z ) of each link The left

superscript "i" indicates that the quantity is referred to framej

(%, v, z,). The expressions follow
o= A e v s & ~ | ( 8‘ '
= - Sia %, 9, -7 ' 3-8a)

1 re 1" ¢ ' ¢ .
w = E [ o+ «}il | (3-6b)
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ref1! or < 4’ ! e gl T )
E, [ YooY @, R (3-84) . -
° i . 1. - .
‘ He .
A T .« et Toa . R
ll 'l_l. . +\l','l“ ll . L. _—
e Yy Y T EX Ry '(3-Be) . o
e . ‘o ) . e
L] ' N N Vi
e 2 . *
) i ¢ - . . . )
re ! ' r y! .‘ 1! e . '
. Er[ Vy * e x A T+ AL } gt'(3—6f] .
v “ \ * o< .
7] . .
! ', - ® -
t' -1 ! ' e '
+ e
A1-1 P ~l-1] ‘3[ X Pl - . -
.. »
-
. - '

S

. y . ' v ‘ .
vector from origin of (x _,y, .z, ) to origin of

s N

£

o

&
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- v . k
. ! ° <« - . S : ) ’ : N R
. . N ' ’
. NN . . . .
. 3 . L . . . s S,
. . R . X . v - ‘.
°

ROr, ) fy
(X, ¥, 20 i
tT . . ‘- . I .
.= [al. | dislv."a\ - d:‘f°s°‘1] _ W SR ,
» . . B ' ' - ‘
\ . *A -
- T . ? . .
= [0 0 . 1] . , L ’

.':‘.f L R .. . . ot 'r.
E = -transpose \of Ef )

’ (?}r indicates differentiation with respect to ~the primed
(rigid) coordinate system of the link o ) ‘
. )

4
K]

Velocities and accelerations of centers of mass of the

. o
elements are also required Ihese are descr'"i‘bed by the fol lowing

equations.-
Y r s
.0, . (3-7a)
<5 . ’ 4
. . R .‘l {3 -
Vi . “ " '
PV ON e VG (3- 7b)
~13 -
A o ! .
-y .
. - » N
e x'i/A- -1 o [ thg
XU A1 <18 ~1) R, 1) ~ =1
. 7 . W
v \\ ‘ .v 1. ']'P v 'll_r ll re® l. = - ' .
Sy v W W < o+ -
g ey x ~Ux. Bioi,yy. 8y, - (3 7C)..‘
: &

In the recursive algorithm these equations would be calculated 1 on

the forward recursion from the manipulator base to its tip.

3.3 Boundary Conditions.
The first element of each link is constrained such that it has

-

I

*,
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zero displaéement‘with.respect to the previous link at their

common,jo&nt The angle that this element makes with the. previous
li©k is the Joint angle q (radians) Hence Uorh Yoy’ :.. «

Oz

wuw. and P ox BT€ all equal to zero. These conditions effectively

,',clamp the Lith, I{nk at its joint with»the (1- 1)"h link so that
the only relative motion between the two links at this point is '
the Joint rotat . This boundary condition seems to represent the
‘}actual boundary cdhditions quite accurately. as verified by ‘
’Hastings [8] It/seems that this phenomenon. is due mainly to the
;lpresence of\static friction in theﬁJo nt’'s drive ‘mechanism.
: The boundary~condition at the distal end of a Link;is not o
explicitly specified‘ Instead ‘motion of*thfs end is indireqtly
) determined by the effecﬁ of the following links on it It will be

shown later that the calculated mode shapes turn out to be almost o

.o r
)

the same as mode shapes calculated analytically under the

assumption that the link’'s proximal end is- clamped and its distal
end is free Mbdal frequencies change dramatically as the masses
of following links vary or as the Joint configuration of the -

manipulator changes, but the mode shapes remain theasame!

4

]

3.4. Kinetic Ene’gy Computation o .

[3

As noted in chapter {J we specialize our discussion somewhat
to manipulatorS\with\links that have high aspect ratios For such
links the most significant ‘forms of vibration are flexure in both
the'y and z directions and torsion about the longitudinal X-axis
'(see Figure 3.2). Longitudinal link- vibrations are usually of very

small amplitudes and high frequencies and are hence neglected

a\f}- Figure 3.2 shows the vector displacement, r, ,‘from the
. Y - N .
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‘ - . ' . - 89
inertial referenee frame (xo.yb:z ) located'at'the manipulator
..base to an arbitrary point on the J, th element of the i,th link
This vector is assumed to be measured with respect to the inertial
reference frame (we shall omit left superscripts to 1ndicate
this) L ¢an be written in terms of aPe absolute displacement,
RU' of the‘element’s undeformed centerjef—mess, and displacements

due to flexibility, as follows:

where all teérms are as defined in Figure 3. 2 The kinetlc energy

N

fof the element is given by ",1 . l‘\hEyA
eE = Y[ o 1o g2 IR S -
KE,, = 2 I Ty "Ly dmy *+ 3 I 311: dm, . @3 B)Y :

)
where the 1ntegration is performed over the. J element if the

ot link Differentiating (3-7)_ yields

ty
. i . . . K
. - . . ~
M hd L -
.

By ) =‘5'J +'. [ Jxr (xj)]

R .[. o l..+ %2; (xlj) A;_ gtj(xlj)' = (3-9) R
. wnene:-- \\\ - | ‘ ‘ : v. e . B
. L \ : e . v -
\ .
§u(x-'iJ? = K et
) ijz (X;J) .

<

After substltuting‘(st) into (3-8) and performing the 1ndichted
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Jx agxx o~iyx
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Y

_wh‘ewr‘e;: e ‘. ) .
~ 4
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S AT L eT
. A . .
. ~1) =’[0 Py %1y El)z l{ljz(]

Piz = Py, = J. Py

Trace [ Jt

i
]
"

ff
Yy

e -, . - VT fr

) : .
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H

H.o + =Vt e
J.Y' ’HLJYY "'l_‘ly E ] ?l AJ?-,I:-l’l‘}zz, ~‘l Jz =
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integration, the kineti¢ energy can be written as follows:

e}_}y Lyy ~1)y o <ty gy ~14z

‘VT £ > VTf“' £ f

~1)z Ttjzy ~1ly ~1)z 1)zz ~1)z
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3.5. Potential Energy Computation..
\ ' C ~ ’ o :
The elastic potential energy computation follows the

traditional procedure- as described in [6], and can be summa_mi.'zed'

X - "
by the following equatiﬁn: ‘
- p® = L yT K .VT‘ + 1 1,T - 1/T J
‘ B 2y Ty sty -0 2.~z yz o~z
1,T T ‘ PR
o2 ik Kljx 1-{ux \F3~711')
) ' 5'
o b
where: ~ v | . ]
; E I .
13y - .3 1}y {
.1 : “
lJ -
- )
'K El'jzlljz =
L uz n® 1jz .
<
G ) 7
: - 1)x 1% o . . .
l;Ux ‘1 EUX - ' ' BT
1y- - . ~
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“Where:

The - total elastic potengial energy, P°

420 :

elements and all lirik's,.<

ca

—

12
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3. 6 Inverse Dynamic Equations.

B}

H
fSIIJ

21U

1y

-12

-

Szl
-élu\’ZIi
12 =61
'—sllj' 41?J

, 1s the sum all P:J

L3

.‘;\

over all

A Derivation of the Jjoint equations of motron involve ‘the

expansion of the derivatives indicated in the following Lagrangian

Equations

7: is the total elastic potential energy,

a“

N

total number of links.

~ ....1
0

(3-12a)

(3-12b)
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. ' D_ .
. P; 1s the total gravitational potential energy,

:.:." indicates one of Uy Y (0““7 ‘wlky: OT {®, ix and *

indicates its.time derivative.
. \ : X h] . ) /,

A procedure similar:to that described in the previous chapter is
._followed The following identities are used in the simplification

K

of the expressions that result from the expansions

w
it eq N
i id :U - ~1) \\ (3-13a) e
dt 8 ql a’ql : N
- s
3w 3 W™ 3 w
d [ il ] - ~ b, ox — (3-13b) - ™
dt ] ql ) a4 ql a ql .
8 7 R |
. ,4 Y = - X ? . 1 ‘- ° (37;130)
9 q, - dq . T
| 5 B
e 1 a7 oo B
e a * o , -
¢
where _? can be replaced in (3-13c) and (3-13d) by anyﬂéf Au' é’

I

(]

h,, or f 5 and * and *.are as in (3-12c). Proofs of these
identities are similar to proofs of the corresponding identities
in chapter 2 and will therefore not be give here -

After simpiification the Joint equations of motlon becoeme:



S [ 0 &) |
z Z Sadt F,, + 2 N (3-14)
t=1 j=1 .0 q, 8 q,
(
*  Where
{7
2r ' - r r In
= + A + @ w A
By = my ¥y vey x4, 0+ 9 x (e, x4 ) o

+
€
b3
—

ITo
+
+

o1
P
+

e
S

The only form of potential energy that is dependent~on q 1s t

gravitational potential energy Its effect 1s included in the same

manner as in Chapter 2." That is, the manipulator base 1s giver an
'acceleration equal to the gravitational acceleration.

R

The flexibility equation for each. element is slightly more

L

complicated in that there are "extra“ terms in the equat)on which'

3
are dependent only on the link under consideration Aftef

] .
P

simplification we have: \// ' . ‘ '
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Y .
N "y or ' r ’
. a3 YU 8 (3” , -
3 % ~1) 3 *. = e
fw1 §=1 ®
4
where:
n g g {
! oA ) 3h af
, r ~1}) or ~1) ~1)
t. = Z Vl . + 91 +
~1) a*. J o o
. J:l : -
/
X a [of, of |, a7 b,
+ wr —_— ; + + - ‘l
| Wl at | et L a* ~dt | o
% B 1
S
1 ~r- aIfJ ~r ' ° )
I oy . -18°
T2~y g% ,9” : ‘ ) £31 )
where "*" is as in (3-13), and: : "
. y i
g . 1T or 1 3T fr 9.0
Y 2 ~lJy Jlyy ~lyy . 2 ~1jz ljzz ~1)z
> ‘ ' & L '
’ » 1 9T ™ [ ff
SRS 2 lzUx 1Jxx ~1Jx

The terms that comprise ty are not inclwded in'the summation ovef

the' 1inks .(represented by the summation over 'i') in equation

h

(3-15) aré'the'"exﬂ?a“ terms. They depend on the J’t and (J+1)’St

elements of thevl’tﬁllink‘only and are quite sﬁraightforward to
compute. For example: . 4

: ED S s

. n ' . . . . .
U Sl P N - v ‘_
B ' Vol - = y < o~ .
! s Z YU a',, Ylk . [0 plky[B] ' “'QT<‘\ ]
. . . J=1 - ) ll’lky . ., v . ] ) o L



él“ ‘ . ~ B 1
*+ Yukox) [ 0 pHi*Uy (1] ?]

~

The other terms are Jjust as streightforward. _ . ‘ﬁ{
Elastic potential energy effec¢ts are included as follows:
T s a4

ok _. . | 1 »
du - Klky[3'] Klky + Kl»%*l)y [1"]‘1,’1(»;”1'394'
? R A o T
. » ' ape . . ‘ ' aPe
A similar expression holds for 3y - Expressions for 3¢ — and
' , c v 1kz o - ‘1ky
° '. . . . -
—gg——-arejpf the form: ) . . a
wlk: -
JR (41 v, + K . [2,1V
akay Co Ty TP ~lky L THkeD)y €0 B2 (keny
A : ' ' ’
" - and finally:
2%, = K _[2;]V o+ K [1]v - '
CI kx <1 ~1kx 1Hk+1) x 1(k+1)x ¢
. B \ .

The potential energy term can_be<combined with .t teﬂyield:

¥

w/ 1 .
?/4 Recursive Algorithm'fbr\Inverse Dynamics Calculation
A
The main advantage of thisg formulation of flexible manipulator

ap°

d&namics is its relative‘computational efficiency. This efficiency

results from two characteristics: (1) the recﬁnSive nature of the
. ’ . T . *

formulation, and (2) the representation of rotational kinematics

in terms of angular veldcities. w and 3 instead of derivatives of

transfbrmation matrices Together these factors cause a‘

- Y

: substitution of storage—space for computation time. More terms can

-

¥ [
s 4

g7

rg



now be calculated once and stor'ed for use in various pa.rts pf the
compv.;tational algorithm. The recur'sive nature of equations (3 14)
and -(3-15.) is not immediately obvious. Further simpl_if‘ica.tiQn is
necessa.ry\before tixey can be writtien in their fina'}\-., recu_rsive
form. This is accomplished by making use of the following

‘identities:

i
i [ o
T
.

0 . s
= 1| for k=mn, 1>1, 0 otherwise;

0 otherwise;

= OO0
)
Q<
3
~
[

\%
p—t
@

1 - - - _
Ol xp,. ., fork=n, 1i>1, 0othegpwise;
0 lIlJ vl ~ 4 .

8¢ ]
av" [0 ] .
\ R N
" j = 0 x Py for k = n, i >1, 0 otherwise;
awwyi | 1] ' "
-
8V [ 0 ]
1 . - :
; 1= -1 ] x Py, for k = n, 1>1, 0 otherwise;
3 aq’lkz L O ;

] for k =n, 1 >'1, Q otherwise;

. .

@

]e
-

[ W
[} B
OO M
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a r r -
le _ 8
awlky( hd 1 .
gt A[0]
o, Ao
%% vz “5'9\-

for'k

fer k

n

,» 1 >1, 0 otherwise;

v

.+ 1> 1, 0otherwise; '

'The resulting algorithm can now he written in the form of a

Trecursion from the manipula®®r tip down to its base. Define the

following:

Bt
fr 1 -
El ~1+1
nl
¢ '1,
~1)
_j:l X
l.ll
ll
~1}3
J=1

-,

(3-17a)

- .
(3-17b)

(3<18a)

" (3-18b) 1

e

Pk

y}"
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) .
. o1* ,» =~
1 . £ + t _
. 0 141 Yyt k = n
'I.'u = ; (3-21)
< lky ) . -
) 'cu ; k < n,
L 7 lky ~
y N )
. : =1
8 Voo 4oy et
1| e Yzt KT Dy
-Fu = 4 . (3_22 ).—"'m Yo
lkz . ' [
. . “5’ ! ~ .
e '_
7
r : ’
) [cl) 3 t %
. n + t h - é‘
o ]- t+1 Prex’ k = n, . ' .
T =3 : ' : - ’
‘plkx : A ; N . (3 23) \v‘
' t ; k <n
L ¢lkx 1
’ 2. ‘K ’
T r : v : 3
Y o1
a, .10 n + t !
LN 6\. 1 bel Py ‘k=n1 . _ L
T = 4. B L : - .
qpngy N B . (3-24)
e t ; k<. n '
L iy !



The joint tordues are calculated by the following equat 1bn:

T = z-_compo'nent\of_l"lnl o ’ (3-28)

. . - /
LY

In an actual implementation of this algorithm N ,

F. and .
v ﬁl1.u X 13:J gre calculated on a forward recursion from the

manipulator base to its tip and stored. Then, star'ting with "f

and "an. which are forces and torqyes exerted on the manipulator

A

101.

by its payload, equations (3-16) to (3~ 25) are calculated récursively

back tor the base Because of the similarity of this algorithm to
the Newton—Euler algorithm of Luh et al [43], ,we shall refer to
the algorithm presented in this section as the "Newton-Euler
,Finite—Element" ‘(NEFE) method for flexible manipulators..

It is-sometimes convenient to simulate the_effect-of.a:
concentrated payload on the dynamic=responsewof avflexihle
_fmanipulator In such a case. the backward recursion is started by

,setting n to the zero vector and:

fn L N
’ f‘rx+i YN

3.8. Recursive Algorithm for Calculation .of Forward Dynamics
The forward- dynamics of a flexible manipulator are, as before,

‘represented by the following equation: | ~



IS

> &'
3 A | ‘_".‘
| Hz = R (3- 27)
* ) .,
where &
z = the vector of all generalized_coordinates
' ' [qx' O At TP wiix"v’i:y"otxz’ o ] : ' ; _,;g

I ' ’

— . ’ ) R A (ﬁ ] ‘
H = thefsymmetric'Generalized Inertia Matrix (GIM)

s
%

‘Agugointed out in Chapter 2,_numerical Simulation of a
flexible manipulator is accomplished byvsolving (3-27) for
accelerations and integrating twice to yield_velocities.and”;"
'position variahles. The vector R is the'difference between-the
\external torques applied at the mahipulator Joints and the »f }
inverse’ dynamics obtained by setting all accelerations to zero‘*

To cﬁlculate H; - we again notice that each column is equal to

 the inverse dynamics obtalned when all references to gravity,

generalized velocities, and elastic forces are omitted from'the
algorithm, and the generalized accfleration_vector~set to zero
except for a "1" in the locatidn corresponding to thathparticula;
.column It is computationally expensive to actually follow this
procedure in a computer program. Instead the inverse'dynamic |

equations themselves are modified to reflect the effect of the

‘ procedure The result is a recursive algorithm for- directly

calculating the terms of the GIM ‘When calculating the oolumn

]
correspondingrto a parﬂ!cular element ov Joint generalized

- ~variab1e, the rest of the- manipulator from this element or Joint

BIEN

R ‘= vector of remaining dynamics and external forcing termsL'



W

up to the manipulator tip is considered to be frozen in 1ts
deformed state at that giwven instant of time. The second
“derivative of this generalized variable is set to unity in the
inverse dynamic equations, resulting in much simpler~expressions
A run of this simpler algorithm from the element in question down
to the manipulator base yields the portion of the column that lies

in the upper triangle Since H is symmetrical this is"all that is

needed. Starting with tne last element of the last link and:moving.r‘

“down to the base, theoentire upper triangle'of"the;GIM is.

calculaféd l

To describe the forward dynamics algorithm. we shall use the

. {
following notation for terms of the H matrix:

h, = the term in the column corresponding to Ei) and the-
row corresponding to 5:‘ B _ Pa
N e =<...the‘term in tk€ column corresponding to i"'lk?"and' the
row corresponding to q | oo
,hnk?u = the term in the column corresponding to q and the
row corresponding to *1if ' t\J
hqkméu? = 'the term in the column_corresponding to ?Lﬁ and theﬁ

row corresponding t°~'1k?

where * refers to one of u or ¢ and ? 1s elther x, y ar z. In the

- algorithm that follows we assume that the manipulator payload 1s

a concentrated mass. Then, starting with: .

=<
Il

o1 ‘K’payload mass, o E i - (3-28)

1

guf1 =9 o . | - (3-29)

103
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Cpr, ™. L0107 L - ~ (3-30)

calculate the following for the J'th 1ink during the recursion

- down to the manipulator base

MJ = 4Mjﬂ + m, (wher'e mJ. = Z mjk). (3-31)
_ oA :
Jt' - j' re J' Jl
My 7 g, MJ+1[‘ 3 S ~J+1]

k=1
',
(fl)' £ (3-1) ! \'
= : = r -1) J 3. rf _
S T B A Tep TAL E (3-33)
o - , (3-34)
h Jl - ‘ .
3t ~ .
s + -7 c . (3-35)
T SL m, R R )
t. . .
A3-1) £r §-1 5 ) -
: 8; EJ_1 AJ. .81.*1 + MJ+1 F(X,)
n - °
J .
I 1’3 ¥ rf
+ - F .
Z{ I ( é"S')/m +omy F(X,) } A_E
k=1 v \ _
j" S
' (3-36)

where F(X) = (X. X)I - xxF .

j" . »-JIA» ) le ) : ' ',
+ Z m_,k[ Pj-l;Jk + §jk ] + éjk ] } (3"32_)_
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_ A c%umn corresponding to the ‘g‘ener‘a.li'zed'va_riablg uJky is
: calculjated by'forming the f‘c{llowi’ng wectors: N
. - ‘. _L . .
Lpetiagey - My (1) . Mk =y (3-37).
. » o
- = 0 othervise;
= l
s : ) ° | .
Dy M“1 Sy X é . if k = n, (3-38)
- = 0 otherwise; '
1 ' N
' . N
| 0 . .
JI 3 'J.I . . . "’,_. = . . )
‘ij:ujky T ‘i:)ﬂ:ujky * pjky[3]
0 .
Pyiketyy [3] o (3-39)
v o E N
\( i Lo L. ’
g - oo g
’ le:uj..ky = Q‘Ju:mky



i ‘\:
N . o
3° r* )z : -
* [ EJ '+ §j(k+,1) ] X Ej(k+1)y [1]
0 0
. + Ov + 0
?' rf . rf :
kay[BI J(k+1)xy[0]
- - 4 e
v 1 .
1y Juyy i3] /
+ 0 '
L 0
) T ° e :
& - ( Vj(k+1)y Jj(kgl)yy (1]
.+ - .0
» X . 4
.
' -~ -0
‘For 1 < j:
(1-1)" L tm1y, L,
~t:ujky 1° Siel:ujky
(i-1)' ' 1-1, 1!
o I-3l:ujky_ -_ Al'{ ‘Biﬂ:ujky

S

™

IR B LY LY v
F [ By v o4 ] X €l+1:ujky}

(3-41)

(3-42)

: 'The terms of this column, from the diagonal term up to the first

term, are obtained by substituting equations (3 38) and (3-37)

1nto equations (3- 20) to (3-25) and following through w1th the

>
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. e ;//
recursive ‘procedure. L '

L éy similar procedures, the columns corresponding to the other
f“lexibilit'yf\}ariables can be calculated '
/ A column corresponding to the Joint variable q, is found by

first forming the vector:
= E 'z, x M ¢ (3-43)
n, = g EM gz o+ Yooy Mg (3-44)

" where z, = [0 O 1]T.,The diagonal termris.given_by:-

‘hy,, = z-component of (EI* ‘%)x . (3-45)

e _,
" The rest of the elements are. found by substituting equations ’
(3- 43) and (3- 44) into (3 20) to (3 ~25) and- again following
_ through with the recursion

This completes the recursive procedure for calculating the

Generalized Inertia Matrix /
3.9. Simulation Example. |
The forward dynamic algorithm is demonstrated by simulation of
“the two-link flexible manipulator shown in Figure 2. 2. The
manipulator-dimensions are also given_in Figure 2.2. Each link is
divided Into four elements. The initial valtxes‘of“the- deflection
variables are all set to zero, and the joint angles are set to
q, = -80 degrees, and q, = 10 degrees The arm is allowed to swing |

freely under gravity Figure 3. 3 shows the simulation results
\/
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Plots?of'thefgross Joint motions (labeled fJOlNT“lf and JOINT. 2"

in figure.Q.Ql. and the fine oscillatory vibrations of the tips .
(labeled "YDIér"} ;ZDISP" and,"TORSION"ein'Figu;e 3.3) of each

1ink are shown. Nete that the fine oscillatory motions of the link
.tips‘appearvsuperimpbsed onto the ‘gross motions that result from
'-Joint_motion. It«is-also worth noting that, as in Chapter 2, the
.frequency of the the flexible oscillations are higher than the

frequency of the Joint oscrllations ) . : .

3.10. Comparison Between Finite Element and Assumed Modes Models
In the simulation studies that ave been reported in the ¢
literature clamped-free mode-shapeks for freely=vibrating beams -
have been used as’ admissible functions approximating the actual

mode shapes of flexible links [8,8 ] There has been some dou
however .as to whether these mode shapes satisfactorily descr§l
link vibrations under the all the different boundary conditions

that are imposed on a link.as it moVes-in he chain of links. If

the mode shapes are known then the deflection varlables can be

obtained from deflection measurements in a manner desc

Nemir [90]. Nemir has also recently reported experimental results

-

on a single link with QL end—point mass. -In his experiments, he
found that clamped—free mode shapes Were the most satisfactory.
Both clamped-clamped and clamped mass eigenfunctions were
rejected . o g '53,

There are noticeable differences betweeh the simulation

i

results shown In Fdgure 2.3, where link flexibility is modeled by
%§%he assumed modes method, and the simulation results shown in

Figure 3.3, where linK flexibility is modeled by the finite

LY
N
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'“Vper link are used in the assumed modes method

. /‘

y ’ 13

/
'elgmint method. A major contributor to thesevdifferences,is the

inaccuracy offthe finite element representat:on of the higher
modes of - vibration when only each link is divided-into only four
elements However, another significant reason for these
differences is that a very large number of iterations is needed to
simulate five seconds of manipulator motion when the finite
element method is~used In this method, a very small integtation
time step is required since high vibrational frequencies (though
inaccurate) are present Numericalverrors accumulate and can be
noticed in the plots of Figure 3.3. ¢
A more accurate comparison between the assumed modes and
finite;élement methods can. bexperformed by considering motion in:
only one‘plane; In this case the number of elements that each
1ink can be divided into can be increased without increasing the

dimension of the overall system. In the comparison that follows a

two link planar manipulator, with both links flexible, 1is

"flkconsidered Each 1link is divided into eight elements Four modes -

)

. In this section we compare mode shapes and modal °

frequencies that are estimated from finite element data with the

‘clamped-free mode shapes and modal frequencies calculated by g@e

]

of the assumed modes method described in Chapter 2. The

mode-shapes and modal frequencies are estimated under several

different "payload conditions" and for different configurations of

the manipulatorwjoints

"

. Lo
The mode shapes are calculated by partitioning the manipulator

~dynamic equation as given ‘by equation (3-27) into two separate.but

/,\goupled equationshthat represent the joint and flexibility motion
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_respectively; Only the'inertia and stiffness_terms are reta;Fed in '

the flexibility equation. The equation of fl?xibility then

becomes:
HS = K38 S (3-48)

The matrices H and K are then partitioned into submatrices
corresponding to each flexible link then further into matriceslb
that correspond to each of the x, y and z directions. Each
resulting equation is of the form of (3-46). For example, the
equation'describing the subsystem. for thei’th link‘in the y

direction is as follows: e \ o
" H 3 = K& - (3-47)

'Each equation represents a general eigenvalue problem which can be
solved for modal frequencies and shape functions. The shape
: functions (elgenvectors) can then be used to calculate modal )
parameters ‘that are needed in the assumed modes-algorithms of ~
chapter 2, | @

i The proc¢edure for forming equation 23 ~-47) neglects the
: submatrices that represent coupling bebween the links and between
the. different directions associated with a particular link This
" does not mean that interaction between the links is neglected
Interaction betweeni%y!links Is included in the elements that
make up the matrix H in .equation (3- 47) The terms of" the
: ~

coupling submatrices are found to be quite small when compared

with the elements of H lt seems that neglecting them,does not

R, .-
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detract from the usefulness of equation (3-47) for calculating
modal shapes and frequencies . _

Figure 3. 4 shows plots of the fundamental mode shape of .
deflection in the transverse y-direction of the inner link of a
two—link planar manipulator Each link is of rectangular
cross—section with dimensions given in Table 3 1, and is divided
into eight elements of equal length. The mass of the payload.is
varied from zero up to a Value'slightly greatervthan the combined
‘magk of the two links. Mode shapes-calculated b& the finite
' element'method are compared to the clamped-=free modeshape given b&
the following expression: .

o

B (x) = cosh(Ax) - cos(Ax) + @ [sinh(kx) - sin(Ax) ] (3-48)
" « " ‘ o :
‘ ‘/\r;u»

where, for the first mdde:’ = 4
0.7341 o

o

A = 1.8751/¢, anll ¢ is the length of the link.

This expression 1s plotted in Figure 3.4, along with the mode

shape of the first mode of the first link for five different cases
which correspond to the second 1ink having different masses. The

five cases are summarized in Table 3.2. It is seen from the,pi

that the mode shapes  calculated from equation '(3-46) are

remarkably similar to the.clamped—freevmode‘shapebplotted from. 0.
equation (3-48) This is sogeven when the payload has a mass that
is-equal to the combined mass of'the links the shape of the first
‘vadeOf vibration of the first link remains similar to:the

: clamped free mode shape.
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< LAY 2«"--

| o Lank f«‘”‘ |
> 1" i .6
Length T ﬁ.ZZ“‘m
widh | o ooa” 1.
F.a P e " "‘.
. Density ~ | .2.78x10° kg/n 2. 78x10% kg/m
\ - ‘. QL ‘ _,..A X -
Young's Modulus ?a.‘.,s_x1o’°..ux.35“ 1. 6.9%10'° N-n"?
E— T P
R
& The modal frequency, however, chaniks

of the payload changes Table 3. 2 shows the modal frequencies for

all five cases. As the mass of the payload increases the modal -

frequency decreases substantially

Table 3.2 also shows modal frequencies that are calculated%
from the mass and stiffness matrices obtained from the assumed
modes method,'assuming clamped-free mode shapes. . It is seen that
‘these values are quite close to those obtained from the finite

. _ . |
'~ element method. v S L

Another .comparison between the clamped—free mode shape and
that calculated from the’ finite—element method is made in Figure
3. ‘3. for different Joint c6nf1gurations of the mﬁhipulator Three
different configurations are simulated and they are summarized in

Table 3.3. In the first case, the'manipulator links are

' outstretched. In the second ‘case, they are at right angles with

& e

each other and in the third case the second link is rotated right-

around =) that it overlaps the first The mode shapes are again
' seen to be similar to the clamped free mode shape Table 3.3 shows

14

modal frequencies for all three cases when they are calculated



- equation (3-44) is Jjustified.

/
seigenfunctions,for describing flexible 1ink kinematics. For

Table 3.2.

First Modal Frequency for Different Nasses‘of Link 2

Case | Mass of Link Mass of %&yload F‘r‘eql1 . :v Freq22~ | @
1 | 0.384 kg. * 0.00 Kg.  [1.88 Hz. |2.02 Hz.t

2 | 0.388Kkg. | . 0.20 Kg.  |1.33 Kz 1.47 Hz. ]
3 | 0.384 Kg. ~ 0.40 Kg. 1.08 Hz., 1721 Hz.
4 0.384 Kg. 0.60 Kg. 0.943 Hz|1.05 Hz..
5 | o0.3akg. |. ‘0.80 Kg. 0.844 Hz 0.9434 Hz

B Freql = Frequency calculated by Finite Element Method.

s

2 .
Freq2 ‘= Frequency calculated by Asumed Modes Method.

»
)

. from both the finite element and assumed modes methods The

correspondence ‘1s again quite good
A final comparison is made between actual simulation results
from both methods Figure 3.6 shows plots of the deflection\o the

end point of the first link of a two-1ink manipulator 3%tai

from the assumed modes and ﬂinite element methods. The"

is initially held vertically and the second joint is

'y ) . : .
initial rotation of ten degrees. It is seen that the curves are

ialmost indistinguishable from each other. These ploté also verify,

'that neglecting coupling submatrices in order to arrive at

e

The conclusion to be drawn from these results is ‘ghat the

-

assumed modes method 1s to be preferred over the finite element

method for simulation or.contrel system design of flexible

manipulators wﬂth uniform high—aspect ratio links The analytical

'expressions for clamped free mode shapes form a very good set of

-
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o manipulators

Table 3. 3 } .
First’ Hodal Frequency for Different Joint Configuration
. . had ¢
~ 'Case : \' q, (Deg. ) q,(Deg.) l?‘r*eql1 » Freq2® . N "j.
1 .-90.0 0.0 1.88.Hz. | 2.02 Hz.
2 -sofo |, +90.0 2.50 Hz. | 2.66 Hz.
- —~ - 5
3. -80.0 .| +180.0- 5.14 Hz.| 5.15 Hz. o
- . \‘ ~
) 1 t -
Freql .= Frequency ca_l‘culated by Flnlto Element Method: \
2Freq2

= Frequency calculated by Assumed Modes Method. . &0

in which the links are not uniform, analyticaﬁ

‘expressions for clamped free mode shapes may not be available. In

these cases the finite element method can be used to calculate

the mode shapes at one configuration of the manipulator Joints and

s -this set of mode shapes used for all configurations The assumed

e

~modes method would implicitly account for the‘effect of link

inertia and Joint configuration on modal frequencies Model

’

dimension when the assumed modes method is used is képt to a

minimum. The algorithms of chap&gp.z can then be used for quick

simulation of alternative manfpulator designs. Furthermore,

parallel implementation of the inverse dynamics algorithm

presented there would most likely make real-time computation of-

feedforward terms feasible. For these reasons, all simulations

that are done in the res: of the thesis use the assumed modes

method.” The parallel algorithms presented in the next.ihapter are

also developed with the assumed modes method in mind.

o
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CHAPTER 4. COMPOSITE .CONTROL OF FLEXIBLE MANIPULATORS.
4.1 Introduction.
Most of the techniques for dynamic control of flexible

manipulators that have been published in the open literature have

been designed for, or at least tested on, a'single flexible link -

vthat'moves over. a small distance [3,5,14]. It is not clear at this
time whether these technidues would be-Successful in driving a
*'multi link flexible manipulator with reasonable accuracy over a
traJectory that involves major changes in gross Joint
configuration. Arm dynamics vary consid ably over suchfa

L4
trajectory Fixed—gain controllers based on linearized dynamics at

a particular polnt might cause unacceptable overshoots in tip
position at other points along the trajectory If a'conservatiye
ydesign is adopted then slow motion would occur over some parts of
'the;trajectory If both high speed and’ reasonable accuracy are
rdesired high-gain controllers of this type may result in system
instability Advanced control systems for flex1b1e manipulators
must therefore give a mo:e accurate accounting of. the changing
dynamics ' e

Onefway-of account ing for'changes in dynamicvparameters is to
adjust the controller'gains during the motion in an adaptive. way.
Controllers based on this method are sometimes difficult to'f

. analyse and stability is not always assuredL%Another method is to
cancel the nonlinear dynamic effects by global feedback at each’

: sampling instant. This is the approachggaken by the popular

R AR "(V\ ’ /
¢ . : : *

122

o



"computed torque" method and its variations. Their application to

rigid manipulators has been studied extensively (40, 75-77]. So

far,'computed torque control of manioulators @itn flexdbility has

been studied only in its application to arms with Joint

flexibility. Spong et al [91,92]. have utilized the theory bf

vsdngular:perturbations in order to derive modified computed torque

contrOllers for arms with weak Joint flexibility. In this chapter,

the'computed torque approach is extended in a general way to the .

"design of controllers for spatial multi-linked manipulators with _

fflexible links

In section 4.2, a brief description.of the computed torque

method fon;cigid links is f¥rst given The necessary modifications'

~to th; mighod in order to include flexibility effects are then

»prese ted in sections 4 '3 to 4.8. Simulation results to

demonsirate the performance'ofvthe method are included. A
multirate‘imblementationVSCheme'isfthen discussed in section 4.9,
4. 2 Computed Torque Control of Rigid Manipulators ' | F

+In the-claséical computed torque technique for control of rigid'

; manipulators the command input torque is calculated as a function

/
of desired U§EEF accelerations g ; velocities g and positions g .
and their actual counterparts g, g and g. The system dynamics are

written in the following form
T = H(g) § + h(g, s (4-1)

where: r

Oy

T is the torque generated by the joint actuators,
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"H(g) 1is the system inertia matrix, snd

h(g é) is ar vector or otnher dynamic effects

‘The command control torque T, is calculated from the expression
NS _
. Q{/\

¢

s
/

r, = Hctg){"d + K fa - gk 9;]} *hlg 9 (4-2)

“ -

where the subscript "c"~indicates_that e terms are:calculated
ucounterparts of the actual termst‘Kf'and K are diagonal gain
matrices. Tt is assumed that the calculatgd terms are equal to the
. actual ones. Decoupling’ and linearization of the resulting error
equations result, as can be seen from substituion of I, as given
in-equation (4—2) for T in (4-1). If we define the joint errorvas

=q, g, then the error equation for each Joint becomes Q{

e + K_ 6 .+ K, 8 =0 .  (4-3)

The gains Kﬂ and K can theAEfore{be chosen to place the roots
of equation (4 -3) at arbitrary values. Their values are typically
20 and 100 respectively. resulting in critical dampling of the
Joint motion and a time constant of O. .1-seconds. Figure 4. 1 is a=~

4

block diagram of the. control scheme.

.\_‘\

The computed torque technique is an effective means of
lcontrolling rigid manipulator arns if the calculated dynamic terms
';are close in value to their actual counterparts. In effect the
open—loop system poles are cancelled by the nonlinear feedback and
new syStem poles are determined by the choice of feedback gains

-This method when used alone is not a robust approach and indeed,
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if there is some variation between the. calculated dynamic terms

\and their actual values performance deteriorates. Several ways of.
improving the robustness of computed torque control have been o
presented in the literature [80,81]. ‘These have adged additional
fintegral or: acceleration feedback tgrms to the loops shown in ) )
Figure 4.1. The resulting control systems have been shown to
possess good robustness properties. Thé>overa11 controller is now .
quite attractive The control torques can be calculated by the

Newton—Euler algorithm by simply Substituting the vector v(t) for .

the vector g(t) in the algorighm, where:

v(t) = g, + Kv[gd - g] + Kp[ g, - g] . N (4-4)
The methods‘for_parallel computation of the Newton—Euler'algorithm
have now made computed torque control of rigiddmanipulators quite

feasible.

4.3,;Computed Torque Cbntrol of Flexible Manipulators,

Several re hers have deSigned-control systems for flexible
manipulators j:ﬂ::}ch ‘the desired trajectory is. specified in terms
of Joiﬁt angles [93 94] The controller’s task, then, is to
ensure joint tracking while at the same:time actively damping out
.link deflections. This approach is. similar to the way rigid

, manipulators are controlled The problems due to non—colocation of
.f‘sensors and actuators are non-existent and it is relatively easy
ﬂ&o guarantee stable motion. The major disadvantage of this method

- is that the two requirements of accurate Joint tracking and damped

| 2
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oscillation; are contradictory. Rapid Joint motion excites link

| vibrations which are only lightly damped. If the oscillations are
damped by active'feedback &he accuracy with which the joint

follows the desired trajectory suffers .Doing both at the same

time increases settling times, a situation that_ is gamerally
unacceptable 3 | |

One solution to the problem-lies in basing the desired
trajectory on tip positions rather than Joint angles. The success’

S

" “of this appro?ch isamependent on the'availability of chsgp, fast
ﬂ cartesian senzors that can measure tip positions and velocities in .
task space coordinatesi However, cartesion sensors such as vision»
systems tend to be quite expensive, In addition, this approach
suffers from the problﬁms'that result from non-colocation of
sensors and actuators These problems are non—existent in the
QJoint—angle tracking approach The approach that is described in
this chapter is based on an end—po&nt traJectory but does not
4.assum the availability of fast cartesian sensors Instead 1t
assumes that individual link deflections are measureable and that
a vector Joining the link s base with its tip is computed. This .
vector has been called a “pseudolink" by Nemir in a recent paper
[90]. The manipulator can be viewed as a chain of these _
pseudolinks. The trajectory is based on-pseudolink angles.rather
than Joint angles The task of the controller 1s' then to assure.
:proper tracking of this trajectory regardless of link vibrations .
iwhich can eyen be allowed to continue for some time after the tip_
has reached its final destination Kinematic'transformations'back
‘and forth along the pseudolinks allow end- point positioning

without end-point sensing The problem of non—colocation of
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“actuators and sensors is eliminated and simple straln gauge .
measureﬁents are sufficient. Kinematic conversion between

cartesian and pseudolink coordinates as 1n‘rigid manipulator

control is now possible. The.method 1s also extensiblé in a

general way to multi-linked, spetlal'manipulators This method

will be referred to as the "Composite Pseudolink Controller“

In the paper by Nemir [S0], a pseudolink self tuning,’y'-
. adaptive controller is de\\gned for a single link movlng in a | ’ -
plane /}he design. however, is restricted to manipulators in which
oqu the last link is flexible. The composite-bseudolink'
controller proposed here does not suffer from this restriction It

is based on a system decomposition into "“rigid" and "flexible

subsystems. This method of decomposition is now presented.
4.4. System Decomposition.

The dynemicsbof a robot manipulator with flexible links can be

separated intg two coupled, ‘nonlinear ‘equations, as follows:

-
+

'Hu(g' 8) g * le(g-v 3)

‘E =
Q= Hu(g &) g+ H, (g 8)8+n(g 3 g 8) +Ks (4-5b)
where:
T = [rl, ta,'- . e rN] i1s the vector of joint actuator
torques, -
g = (q,, q,. * * : q,] 1s the vector of joint angles,
8 = [6“, 612, <oe e SNm] is the vector of flexibility

variables, -~ = . ﬁ
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Qi and h are vectors of dynamics due to centrifugal coriolis.

gravity effects etc,

H, "512 \ o »
H = [~ . .| is the nonsingular inert%a matrix, and

H21 H22

~ K 1s the nonsingular matrix of stiffness/coefficients.

‘/

Eaﬁation (4-5a) describes the gross Joidt motion of the -
manipulator and includes the effects of link flexibility on Jjoint
motion. Eguation (4-5b) describes the faster oscillations due to
~ flexibility but also includes the effects of Jjoint motion on 4
| flexible motion. These equations represent flexible nanipulator
dynamics when kinematics are representeoiby elther the assumed

modes or the finite element method. The vectorié'iS'used to

T

represent the generalized'coordinates as‘defined in either of the
methods. It should be noted that control-torques are applied only
at the Jjoints and are expected to control the overall system )
_including link flexibility

' Unlike in the rigid manipulator case,. 1t is_inpOSsible to
completely decouple all tﬁe generalized varlables present inA
equation (4-5) from each other by‘nonlinear feedback. lhis istl;
because only the Joint variables are actuated and control of
‘flexibility variables\occurs through their coupling with the Joint
variables‘ It is possible however, to decouple the joint N ,-
variables from the flexibility variables and from each other\byls
nonlinear feedback. Let the control torques be calculated by the

following express1on , ‘5._ -

T,o= H, (g 8 v(t) +H, (g 8 3+ h,’ (g.yé g. 8) (4-6)

~C
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*  where the subscript "c" indicates that the term is calculated‘and
v(t) is given by equation (4-4). Substituting (4-6) for T in
(4—Sa) and assuning that the calculated terms are equal to their

actual counterparts, the resulting joint equation is: _ 'g

o

g(t) = w(t)y (4-7)

3

The error equation is, as before, given by equationA(443) anduthe,

i:) controller gains can again be chosen arbdtrar1ly
)
° | \Eaxl_

This approach to f ble manipulator control involves

measuring or estimating the flexibility variables and velocities.

>

The assumed.modes method is more attractive for use in calculating
the control torques due to the lower dimension of the resulting

system model. It should be noted that the vector 6 is calculated

a

from the flexibility equaf?ﬁg’(4 Sb) as folloWs

w ‘ (xd _1’;‘ .-
SR - H H, ,»(t) + h

22;c“ ~2,¢c “.~+ Kcé ] : (4-8)

2

The above method guarantees that the manipulator joint motion
follows the commanded Joint trajectory with a finite steady state

error that can be made arbitrarily small If the terms H 3

,C~

h, . and the contribution to the elements of H, _from v

flexibility effects are at-least bounded.-then the manipulator’s
tip will at worst ‘'undergo non—increasing\oscillatory motion when
the Joint angles have achieved their steady state values. This can

be seen by observing the effect of the Joint controller

represented by equation (4-6) on the flexibility equation.
Ke) . o et - N . ' :



Rewrite equation (4-8) as follows:

§ + Al(g,8)8 = T(g,§,g.§)ﬁ = " ,4. ) {4-9)

. ] “‘-,."‘!‘ -

b
where:

p— -1 ' : . - -
A1 = sz’c Kc (4-10a)

. -1 : i , . _
T ='H,zz~,c‘[“21.g vy + o, | (4-10b)

It is seen.that the flexible motion 1s driven by the coupling

torques T and 1is igitiated by v(t) which is non-zero at the start
of the motion. At steady state however, v(t) -> 0 and the
residual excitation of the flexible system is due only to

gravitational torques that are included in the vector h . In

vpractice, th will also include a small damping term which

ensures n n—increasing Pehaviour of the flexibility variables and,

" in most cases results in decay of the- oscillations

N -,

The assumption is made here that the dependence of A, on the
Joint variables is‘"slower" than its dependence on the flexibility
variables. Its dependence on the flexibility variables is also not
very'great. A1 can therefore be considered as being "quasi-static"

in the time scale of the flexibMNity variables. The behavior of

the flexible subsystem will therefore be oscillatory since‘A1 is a y

ggsitive definite matrix with real eigenvalues.. (Note that

131

positive definiteness of Al with real eigenvalues imblies marginal;i}

stability in ‘this case; since we are'dealing with a secondforder
14

system. If equation (4- 9) is written in the standard state-space

form, the system eigenvalues will be purely imaginary).
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After the decay of the oscillations the static deflections of

1

the links are given by the equation

8 =-K h ’ (4-11)
’ N 3 ™ -
] ¥ ’ . ’ A' &
.. * o .

where EZc is the vector. of gravity effects only. In a control
system, these static deflections must be compensated for at the
end of the motion trajectory.

‘The description of the composite pseudolink controller design

is’ made easier by considering a typical manipulator as we go QJ)

along. We therefore digress here to @escribe a three- link
manipulator with two flexible links The above conclusions
regarding the decoupling of the rigid-subsystem from the flexible

subsystem are then verified by simulation studies on this

R
manipulator. ’

l -
?,5. Example Arm. . _” ” . ’

F&gure 4.2 shows the shape of the three link, %patial
manipulator that is simulated It has a kinema@ic configuration
that' is similar 'to the. PUMA 560 shown in Figure 1 1. The first
;link is,ibunted vertically and rotates about its base. This link
is. considered to be rigid for the purpose of the simulation The
other two links have high aspect ratios and are quite flexible |
Transverse and torsional vibrations are Included in the "
Jsimulation The manipulator parameters are summarized in Table

2

4.1. The payload is. represented by a point mass of O 3 kilogram )

giving a mass to payload ratio of about 8.1 to 1, compared with $§
to 1 for the PUMA 560.
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Table 4.1. Link Parameters of ExampledArm.

CLink 1 Link 2 Link 8

. . ]

mass 079 kg 1.07 kg. "0.69 kg
length 0.10 m. 1.22 m. 1.22 m.

o

radius * 0.03 m. 0.010 m 0.008 n
twist 90 deg. ' 0 deg. 0 deg.
offset | 0.10 m. 0.0m. 0.0 m.

f‘: - 3.75 Hz. 1.94 Hz

) f1 is the fundamental frequency of vibration in the

y-direction when payload-massfis 0. 3kg.

»

ﬁ 6. Simulation Results With Joint Controller Only

* In this simulatioi

equation (4-8) is ap

plie

run, only the Joint controller given by

. Figure 4.3(a-c) show the responses of

the manlpulator Jeoints to commanded steps of 10 degrees for each

%ggint The €] ntroller gains are: K

= 100, K

= 20 for all three

Joints. These gains correspond to critically damped motion with

closed- loop poles at ( 10, O)

It is clearwthat flexibility effects are completely decoupled

-from these responses and that the joint angles follow the desired

trajector;es quite well.

2

t

Figure 4.4Ta-d) show.-the tip deflections of the two flexible '

links in the y and 2z directions From these plots it is seen that

after the Joints have reached their steégy states, the tip motion

of ﬁhe links continues to, be oscillatory. The oscillations are

Rl

sustalned since structural damping}is absent from the-model used

Vg

134
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for‘Simulation The. results: of the“simulatiOn'confirm}the validity

of the model decomposition discussed earlier This lays the i
foundation for the composite control schenme whose obJective is to

_ensure that the pseudolink angles follow the commanded traJectory

4 -ﬂé . K
with little or no error. - - T W : ‘

. : R 4
$ o . R

”.

¢=Jk 4.7. Design of'Pse;\olink Controller

"' If the’ composite control method proposed by Spong et al

P
s

[91,92] for controlling flexible Joints is followed at this point
then the next step in the design;procedure would be to synthesize

pig
S a flexible motion controllen that damps out the flefible

{

oscillations observed in Figure 4 4, This can be done by writing
. N
v(t) as follows

v(t) = w () +Tu0) o (ge1a)

4

v
«
Vo)
P
W
v
£

where v (t) is identical to v(t) as given by equation (4- 4) and is
designed to drive the Joints along theirwdesired traJectory V(t)
must be designed to actively damp out flexible vibrations while'
not throwing the Jjoints too.far of f their desired traJectories.
Substitution of equation (4f14) intoleouation (4f85»resu1tsvin the

cldsed—loop Joint equation:
oglt) = v (b)) o+ v (t) o - (4-15)

The flexibility equation becomes:

.« % ¢ AMED S ¢ B8 Y(t) =0 (4-16)

2 Pl
o

B

- 139 .
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" where:

-1 . ~‘ -
Bl =. H22',_c Hzl,c ) ' (4 17a)
-1 -
A= HL K y -\-ﬁ (4-17b)
p =88 T
§ = -H, _v(t) h, . | (4 17d).._

The benefit of writing the flexible subsystemxin the form given in
equation (4-16) is that the equation becomes'"quasi—linear" linear
in the flexibility variables. The matrix coefficients are still
nonlinearly dependent on‘both the Jjoint and fiexibility variables,
more so on the Joint than on the flexibility variables. For the
case wheredthe_Joint variables vary at a slower rate than. the
flexibility variables, these coefficients can be gonsidered as
being "quasi-constant". Equation (4-18B) then approximately
repres:nts a linear time- invariant set of differential equations
‘that is both controllable and observable. The control vector: v (t)
can therefore be calculated using one of the- many,schemes
avallable for designing control systems-for'linear systems

The poles of the closed-loop flexible'subsystem can be chosen
such that v (t) -> 0 quite rapidly. In the traditional singular
perturbation,epproach [91;92]. § is given by a zero’thqorder

'approximation to equation (4-16). That is, the expression on the

right hand side of (4-186) is written as an asymptotic expansion in

" terms of some small parameter (p) and only the zero th order term
1s retained This term is dependent on the Joint angles and not on-

the flexibility variables. A controller that forces the variables

140
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3(t) to follow the quasi-steady state 3(t) as defined in this
manner damps the‘flexible oscillations out. Except.for-a small
steady state error in manipulator tip position due to static
- defleotion. the manipulator is forced to behave as though it were
rigid fog, mofk of its motion.

The majg¥%d§saAVantage.ofﬂthis approach-is thst for suocess.
the parameter yemust>h§ quite small. For links with significant
flexiyility, il may.pe too large énd the zero’th order
'approXimation to § may not be sufficiently accurate. In this case,
the flegible oscillations ma% not decay fast enough and the#
manipulatorstip may still bg—vibrating at the end of the
trajectory. ' '

The solution to this problem is to rewrite equations (4- 8) and_
{4-18) 1in terms of pseudolinks. For the three-1ink manipulator
sho§g>in Figure 4, 2 we consider the flexible deflections of the
second and third links in the transverse y—direction to be
controlled by the second and third Joint actuators respectively.
For these links, the pseudolink angles in the y directions (7

and 7$) are given by the-following expressions:

]

+ B, (4-19)

Ty = A7t Byt 9, - B (4-20)

where all angles are defined in Figure 4.5. The angles B and By

aregapproximated by the following expressions:

& By = — By = yA:'l* - (4-21)
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. where a{{ﬁa all terms are defined in Figure 4.5. The pseudolink

. apg@es'_are therefore given by the sum of the J°1Ht7an8195 and

.simple linear combinations of the' flexibility variaples. This
'ipulator dynamic ‘equat\ions quite easy

makes modifica!ion of té
'arg:i f‘aci itates the pseudo nk corﬁol erdesig% .

The only neans Of cont b W
plane, a.nd torsioﬁ of *the sg,cond link ig t‘hrough t g
the first Joint "The pseudolink angle v, is shown in"'.' ; :
_as well It is seen that kinematic transformations from the second
link down to the base are necessary;i};l order to calcu].ate T, ’
| Fortunately, some simplif‘ications can be Made after the kinematlc
iv.transformatiém\s that allow 7, to be written @& the sum of the
‘Joi*nt a.ngle (}ql).la.nd a linear coﬁmbination of the flexibility
| variables Second and-higher powers'of the deflection variab-les
v-'are deleted during the transf‘ormations Also, coupling terms
between deflections in the X-y and x-z planes are neglected. The
resulting expression becomes:

\

1 . |
4 '= q, + P I Agz + ¢2yC3£3 - ¢2xS3£3 + ASz (4-22)

P - = C2£2- * c3£3

C, = cos(ql)

S, = sin(q,) ) -

¢,.t = lengths of links 2 and 3 respectively,
, Afz = deflections of thejtip of the 1'*" link in the y

S ' .
and z directions respectively,

¢,,» 9,, = angular deflections of the tip of the 1'"" link
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“about the y and z axes respectively, . ‘
%, = torsional angle of the second link. Note that the third . w
link does™not undergo torsional rotation for this
manipulator. o ¥

q, = i’*" joint angle. )

’ : N 4

At this point, advantage is takel of the Fact that the Jjoint

p

angles vérésaf a slower pate th the fléxibility variablés. The
Vvalué of P éan therefore be cgﬁsidéred to be qdasi—constant. and
recalculated a‘small-numbenféf gimes.over a trajectory.
. Combining equations (4-19), (4-20) and (4-22), we obtain:
p :

‘ 7(t) = g(t) + Fa(t)” ° (a-23)
- & ' Sk " .

1’,0‘

where F is a piecewise constant matrix, and:

’

T
r = [0 %)

T
\ [ql. q, q_a]

»

<"
n

Te}
]

Equation (4-23) in now substituted into (4-5), resulting in:
. N\ -

e
]
=2
=R
+
e
N
|
J-':
T
—_—
O
+
=2

1 (4-242)

Q = H, 7+ [H22 - HQIF] S+h,+K?  (4-24b) -

'+ The joint controller then becomes:



. )
‘:Ec\\ Hli,c (t) + [HIZ c 11,¢c ] §- + bl,c (4—25)
f.‘ \} . N '
<where: , ' \1 4 . .
v (6) = F, o+ K [Zd“ z] + Kp[z;i-— z] @)

Substituting (4-25) afd (4-26) into (4-24a) results in the

closed—lobp error equation becoming: A
e + K e + K e (4-27)
> -~ v ~ p ~ B
. . . i >
' - L .
where the trajectory error is now defined as e =72, 7 Tke gains.

~d

Kp and l(.v cgn gg%}? be chosen to-placé the closed-loop poles of
the joint subsystem a£7arb1trary locations.

The Joint angles Qould follow the desired trajectory“under the
.control given by %guation (4-25), provided the resulting flexible
subsystem is at least marginally stable.. However this 1s not so

in the maJority of cases. The flexible subsystemris given by the

following equation: L

/ .. v

/
5 (t) +a,3(t) =0 (4-28)

where

5. = 8-3 (4-292)
A AR - (a-290)

-1 A
A, = [Haa" H21F] K o (4-29c)

The frequencies of vibration of the flexible links are assumed to

be sufficiently high such that the:matrix Aa'can be considered

"quasi-static" in the time scale of the flexibility variables, For

"w



/;/ﬁ-the three-1ink manipulatorlshown in Figure 4.2, somejof the

‘ eigenvélues of A turn out to be negative Thig means that some of
the poles of the system are 1n the right half-plane\‘indicating ‘
that the system is unstable. (Note that we are again dealing hereh‘
with a second order differentiaj equation that is not written in
standard(state—space form If the equation is converted into
standard form, represented by a first order differential equation,

some of the eigenvalues of the system matrix would ‘have- positive

real parts.) The system, however, 4s controllable at all points
except a finite number of singular points. These singular points
would normally be avoided during the trajectory planning stage
anyway A composite controller that stabilizes the flexible

sdbsystem can therefore be synthesized by writing v (t) as

follows: ‘ ' ’
' . P
v.(t) = v (t) + v (t) " (4-30)
DL ~p,r ~P,f . . .
_ 4 3, ,i : o
where vp (t) is the same as v (t) in (4-26). The closed-loop
LT /]
%oint equation begomes ' ~
. : u‘“& '
S ,:. e - i
" r(t) = v (t) £FV (t) © (4-31)
s ~ ~p,r v ~p,f C

RN A o
a . :
» and the open—loop flexible subsystem becomes

«;;’ - f '4' . B
‘\ﬁf(t) + A §f(t) + B; Emf(t) = 0 ' (4-32)
where:
-1 ’
82 = [H22 - H21 F] H21 : (4-33)
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The flexible subsystem can now be controlled by state feedback
using one of the many techniques available for synthesizing the
.feedback gains of a linear system. Normally, the gains will be
chosen such- that S ->0 quigy rapidly ‘This does not necessarily
“mean that the oscillations due to flexibility decay as rapidly It
means that the quasi—steagyxstate is tracked‘with small rise times

and settling times. After this is accomplished, the pseudolink

angles would track the desired trajectory with the desiged

7
,accuracy. "

The major advantage of this method is that the quasi-steady

:state 3(t) need not be approximated by the zero’th order term in &

I~ .

an asymtotic expansion in terms of a Small'parameter In fact no
mention;at all of a small parameter is necessary The value of

dlculljed directly from equation (4-29b). The *

pseudolinks WO 'rack the desired,traJectory even if the value

-«

of G(t) is non;zero at the end of the trajectory. The manipulator

Joint ma, still be oscillating at this point but the tip would be
|

at i,ggg d?ﬂred position

7S
= s"

s

B

| 4'8 51¥h1ation Results) nvh
Iho assumed modes method described in chapter 2 is used to
‘model the three- link manipulatorfshown in Figure 4.2. Link
,flexibility is represented by the first clamped free mode shape.
¢sThe open—loop poles of the flexibl@ subsystem are given in Table’

g, 2 Note that some of them have positive real parts as asserted

'earlier An optimal method [97] is used~to determine the feedback

b
~——

gains of the flexible subsystem The closed loop poles are given
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Table 4.2

‘ . ( .
Open-loop poles of the flexible subsystem.

Y-Direction A Z-Direction ) - Torsion
Real _Imag. Real imag. | Real | Imag..
0.0 234.5 0.0 | 47,14 | 0.0 54.8
0.0 |-234.5 0.0 ~47.14 0.0 -54. 8
31.5 0.0 | 27.1 0.0 0.0 65.5
-31.5 0.0 |+27.1 0.0 | 0.0 -65.5

N

Table 4.3
Closed-1loop poles oiithe flexible‘subsystem unger
Pseudolink control ) “

g, .

Y-Direction . 2—D1rectfbn Torsion
Real Imag. Real | imag. Real " Imag.
-780.2 | 0.0 -27.9 0.0 0.0 | s4.8
-49.1 7.9 -27.7 0.0 | 0.0 -54.8
-49.1 | -7.9 -0.03 | 39.1 .| -0.016 | _ 65.5
-28.0 |» 0.0 -0.03 ”—39.1Y~ ~-0.016 -65.5




\ e

'in Table 4.3. A payload of 0.3kg. s assumed to be attached to the
vmanipulator's tip. . | |

The desired motion proff%e of each joint is as represented by
the curve shown in Figure 4. 5 The maximum angular' displacement is
the same'for each Jéint andﬁis 90 degrees but the initial joint -
angles are all different. The initial Joint angles.are..q1 =0
degrees, q, = -45 degnees and q5 = 45 degrees The curve in
Figure 4.6 is obtained by specifying a constant acceleration of 90
deg s for the first second, then suddenly reversing its
’direction‘for the latter second of the trajectory..The’initial
velocitles are all setfy to zero.and the initial desired Joint
angles are set edual to the initial angies. The desired angles

. (qm) and velocities (&“J at each integration time step is

calculated by the‘following formulas.:

a(tedt) = q(6) + () at (4-12)

q, (t+dt) = q (t) +a,(t) dt’ . (4-13)

. O
' .
where a, is the desired acceleration. The: desired acceleration of
the third Joint is -90 deg s and, as mentioned above, is 90

gdeg.s 'for each of the first and second joints.The controller
'gains are: k = 100, K = 20. These are typical gains used in [/
controlling rigid m'pipulators éhd correspond to a critically B
damped response. The closed-loop poles of the system are at
(-10,C} 1in the s-plare.

The desired trajectory of each pseudolink angle .is the samevas

the desjned'Joint angie:deSCribed in section 4.6. The initial

150
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velocities are all zero for both Joint;and‘flexihility. The _
l initial flexibility variables are set;to”yalues that approximate'u
_the static deflections of the links at the starting position. The
1nitial Joint angles are: q, = o, q, = —45 degrees, and q; = 45

degrees. ' : éfk

é?y order to assess the performance of t¥y

controller the motion of a rigid manipulatornthat is controlled
by the traditional computed, torque method is simulated The
kinematic configuration of this manipulator is the same as that of
"the flexible manipulator The radii of the second and third links,
however, are increased to 6’05 meter ach. This would be
necessary in order to stiffen the linﬁF sufficiently such that
they can be considered rigid. ‘ o , : o
Figure 4.7 shows the actual traJectories of the pseudolink
angles in the case of the flexible manipulator and the Jjoint
angles~in the case of the rigid manipulator It is seen that, as
predicted apart from initial transients the pseudolink angles‘
A,track the joint angle trajectories of the rigid manipulator quite . N
‘; well. Manipulator speed is manitained without suffering too much
by way of reduced tracking accuracy
The main advantage of lightweight arms is the ability to
maintain manipulator speed and stability with low powerﬂactuators
This advantage is demonstrated in Figure 4 8. In this graph, the

/

actuator torques of each of the three Joints for both the flexible
man:;;mator and the rigid one are plotted The torque profiles for

the other actuators are similar It is seen that at least a

five -fold reduction in actuator torque can be realized by redu01ng

the radii of the links. _ : : ‘ -
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FigUP§ 4.7 Simulation results showing the Pseudolfnk—angle
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4.9. Implementational Considerations. ' o %é?

Implementation of the composite,pseudolink controller requires
real-time calculation of the inverse dynamics using a dynamic
model that includes flexibflit}h Implementation of the
"Newton—Euler—like, inverse algorithm that;was,presented in chapter
- 2.0on a uniprocessor may not be fast enough for real-time control.

.Ways of either reducing the computational reqﬂi}ements of a
' computed torque controller or of speeding up the calculations
: are needed Techniques of parallel processing the calculations
ihelp to speed them up. In this section, we describe a novel"
implementation method that reduces the computational requirements
‘of‘eomputed torque methods for flexible manipulators. This method
was first presented at the 1986 International Conference on
Systems Man and: Cybernetics [98B].

As was observed earlier flexible dynamics give rise to time
constants that are generally smaller than the time constants
associated with the gross motion of the Joints If the links are
not too flexible the singular perturbation approach allows
separation of the overall model into two subsystems a slow‘
(rigid) and a fjs g(flexible) subsystem in which the slow
subsystem is-identieal;to the manipulator dynamical system if the
links’' were rigid The dynamical matrices of the fast subsystem are
B dependent on,the slow variables only, and can be considered as
,constant in the fast time scale The slow subsystem can be
) controlled at a slow rate and the&gast subsystem at a fast rate.
»This has the advantage tpgg the inverse'dynamics calculation
| whicharequires the longest CPU time can now be given time

required .The fast controller'merely requires the multiplication



‘4.9.1. Sampling Rate Considerations.

. \ v\ ; . .' | ’ ﬂ ~_: s |
of gain matrices by the flexibility variable;,and veloclities and
this can be done quite easily at a'fast rate.-The overall

Implication is that computational requirements for controller v

implementation can be considerably reduced 2

( .
7

&

5,'.

Sampling rate considerations are very important in controller /

implementation using digital computers Rates of SOHz to SOHz

have been suggested for cohtrol of rigid man%pulatorsi Much higher

rates than these would be necessary for control of flexible

manipulators. It has been demonstrated in [96] that if all

considerations of Joint or link flexibility were omitted ‘from the

_dynamical equations,‘then a sampling rate of 10 Hertz WGUId still

guarantee stability of the (rigid) ‘system when a. computed torque
controller is used with the same gains as used’in the simulation
in the previous section. This rate is considerably less than the
rates mentioned above. Rates of 50 Hertz were necessary only
because the Joints of the manipulators showed oscillatory

characteristics and the sampling ratexhad to be chosen to be five

to ten times the frequency of these oscillations If Joint and

'link flexibility were grouped together in the fastgsubsystem that

resulted from the system decomposition that used the singular

perturbation ideas, then the composite controller can be .

‘aimplemented with two sampling rates in the hardware In the

worst—case scenario the sampling rate used to control the rigid

«“subsystem can be - maintained at 50 Hertz, while that part of the

‘hardware that controls flexibility can operate at the higher

sampling rate. This”multiratehcontrol implementation’is depicted

e 8 S
<
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its tip. The linR7& "hown in Figure 4.10:

. kilograms. The flexI| ﬁty parameters are|chosen such that the

" maximum deflection of tge link over a step one radian is about
five percent of the link’s length. The open-logp natural frequency
of fhe fast subsystem 1s about 10 Hertz; e assumed modes method
with one flexible mode is used to simulate the link. The slgw
subsystem is controlled by a computed torque method‘with .
q9nfr611er gains as fo,llows:.l(p = 100, K; = 20. Control .is basea
on dbiving the joints to follow a step in Joint position and at
the same time damping out-thellink’s oscillations.vA small damping
factor of three percent is intro:uced into the dynamics of;thé_
flexible subsystem. |

In the first test shown in Figure 4.11,’the.fast controiler is
omitted and the slow (computed torque) controfiér is run at the
nominal rate of SO hertz. The system is cleariy stable, with the
Joing angle following the commanded input as desired. The
oscillations of the link'aecéy as a result of the damping
introduced as part of the dynamiq‘model. However, it was found
that aé the sampling rate was reduced to about 25 Hertz, the
system lost stability. This_is clearly a result of the éffect of
flexibility on the system dynamics. This effect was not taken into
consideration by the control system. If this effect were not

present, sampling rates down to 10 Hertz would not have resulted -

in system instability. Furthermore, the damping that was

159
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Figure 4.9. Block Diagram of the Multirate Controller.
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LOAD HASS  2.0KG
LINK MASS  1.0KG
LINK LENGTH 1.oH

Figure 4.10. Single-link manipulator used in the multirate
Example. ‘ :
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[0 JOINT VARIABLE(Q)

A FLEXIBILITY
VARIABLEL( ¢}

STATE VARIABLE

S
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Figure 4.11. Responses of Joint angleﬁand flexibility variable.
under Jjoint controller only. Joint controller

operating af S50hz.



163
introduced into the flexible subsystem moae; did not prevent
instability at this sampling rate. If this dampinngas not
present, instability would have occuréd at an even higher sampling
- rate. = Q_ - )

The ability to ﬁﬁmple the joint angles at a slow rate when 2
fast controller is ;ddeanto the system is néxt shown in Figure -
4.12. This gfaph shoﬁs the responses.of the joint and flexibility
variables when the siow controller is operated at a rate of 20
Hertz and the fast contfoller is operated==at a rate of 103 Hertzﬁ

The responsés are now almost identical to the responsés shown in

L
Figure 4.11. Stability is eabared and the flexibility variable is

"damped out quite rapidly: ! pase in sampling rate of the

slow cbntroller that is} ,bie'by the multirate controll

scheme can be a signjfid- e sctor in reducing speed requirements

of the‘manipdlator control system hardware.
Y .\ y
" 4.10. Conclusion.

&

iThe multirate control scheme has been tested on a singié link
ﬁoving iﬁ a plane. The success of the scheme in this application
1s.no guarantee that it will work as well when applied to a
general; multi-linked manipulator. This merits further :
investigation but. this has not been pursued as part of this
thesis. ;t is possible that in general, rétes as high as 50 Hertz
might be necessary;?or control of the rigid subsystem. A
mﬁltirate, pseudolink composite controller would require inclusion
of flexibility variables in the computed torque controller and |

calculation of the inverse dynamics, including flexibi}ity

effects, might be necessary. This is where the Newton-Euler‘like

¥
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‘algorithms would prove useful. In order to acéomodate a sampling
rate of 50~ Hertz, pargllel précessing would be necessary.. Paraliel
processing ofvthe assumed modes, inverse dynamics algorithm is

4
4

déscribed in the next chapter.

: &
I



'gombutable in real time by reasonably priced hardware The e

CHAPTER S. RECURRENCE RELATIONS AND PARALLELISM IN FLEXIBLE

MANIPULATOR DYNAMICS

5.1. Introduction. e
In order to implement the composite, pseudolink control scheme
described in the previous chapter, the control toroues'must be
.Vw
computational requirements of this control systen, and ways to’

meet these Hequirements form the subJect of this chapter

-y

1

5.2 Cpmputational Requirementsiof the Composite, Pseudolink

Controller. , oL

The control torques T that are required for comp051te
pseudolink control of & multilink flexible man1pu1ator are given

by the following equation. S T \

LR
[

~ci T <H, f(t) + H, §(t). t’ 'Qi@ ©(5-1)

- 2 A R ot

N T 0 R )

<
~~
ot
S
)]

U(t) is 7he vectpr of Joint accelerations that are needed 1n order

>

-to drive the manipulator pseudolink angles along their des1red

_traJectories without instability of the flex1b1e subsystem of the

manipulaton_ The vector u(t) is designed towachieve decoupllnguof

|'. . BN . g \ )

. //”% n
166 }



the joint dynamicstgrom the flexible dynamics, and includes terms

.that are selected in order to endownthe closed-loop, Joint
. - I

dynamical subsystem with convenient linear properties. The vector

v (t) is des}gned to stabilize the flexible subsystem. Its
elements decay rapidly to zero. Once these two vectors are
determined substitution of their sum into equation (5-1) yields
the required control torques This equation- represents the inverse
dynamics algorithm for flexible manipulators that has been
presented"in Chapter 2 of this thesis. Qalculation of the control/
torqhes_can therefore be performed by that algorithm, with |
the vecton v(t) substituted for the joint accelerations in the
. algorithm. g .

The'problem, howeverjﬁi;\complicated by the fact that'the
procedure for calculating.gé(t) requires the otherlsubmatricesnof

‘the inert,q

H= | % R (5-3)

Y
¢ .

(The subscript “c" i§ omitted for brevity ) Alq the terms of H are

therefore needed at some point It seems that calculation of the

control torques 1is more efficiently done by separately calculating
_the bias torques h (- [h _Ili] as defined by~equations (4 Sa)
and (4-5b)) and the inertia matrix H. The ‘bilas vector h “and the

matrix H are then literally substituted into equation (S 1) toi

qalculate the,torques .
4 " The computationalvrequirements for computed torque control of

e =%

e flexible manipulators can therefore be summarized as follows

™

- 187
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5.

1) Calculation of the bias vector, and:

2) Calculation of the inertia matrix H

'Both the bias vector and the inertia matrix need to be

re—calculated at'regular intervals, perhaps during every sampling

interval. Calculation of the bias vectors is performed by the

'inverse dynamics algorithm with a11 mention of generalized

power than is avallable from current microprocessor chips is

v
-

accelerations omitted and the inertia matrix is calculated by the

'forward dynamics algorithm

We have already seen, the recursive algorithms presented in

Chapter 2 involve fewer arithmetic computations than the

traditional Lagrangian algorithms Nontheless greater processing

<

needed to I'mplement the algorithms in'real time. One way of

obtaining the required computational power 1is through parallel

processing This approach has been taken by several researchers
*~

.4

~ for achieving the speed needed for real time control of rigid
dmanipudators [55 -62, 69] Recursive equations are suitable for

. computation using a class of powerful highly parallel computers
_referred to a Single Instruction Multiple Data stream (SIMD)

:computers [100 101] However the precedence relationships that

exist between various térms of recursive equations must be - °

).

organized in an efficient way so as not to degrade the. performance

‘ of the computer Pipelining is a concept that is in widespread use

Al

~

75:_fu11*uSé of thiSwarchitecturaJ feature ‘are required

The pipeIining methods bf Lee and Chang [62 69] aréD

‘e

partgcularly ihter/sting They reformulate the Newtpanuler o

equations intb “linear recurrences In this, form the recursive '

168

Rt Ln SIMD—computers ané\methods for arranging the recursion to make'



equations can be efficiently computed by small, special purpose,
'SIMD computers. .In the sequel, it is shown that the recursive
equations in the inverse and forward dynamics algorithms for

23

flexible manipulators can also be reformulated into linear

ot

recurrence form for efficient computation by SIMD computers.

5 3 Parallelism in Linear Recurrence Problems

‘ A linear recurrence problem of slze (n+1) can be described as

Q?utation of a quantity X(1) that is given by the following

(A oy

r. > é *vl‘ .

" X(1) = &) * X(1-1)r bl1) o QS 1sn (5-4)
o Dé, S ‘ ) . ' a " ’ Y ‘,' . . . :
R ~
Sl e A

. where "*" and "+", are two associative_i,nary operators X(0) is
not thefidentity with respect*tob"*“. and a(1) and b(1) are given
for all.i If a(i) is the identity with respect to f*". or 1f b(1)

" is the ideﬁtity element witgﬁﬁespect to "+" , then the\problem is a

168

. linear homogenous recurrence relation Otherwise it is atlinear L

o 2
. i

*'1nhomogenous recurrence- relation R R

A simple example of a linear homogenous.recurrence relation
‘;w'. . ‘.‘:ﬂ\" > I3
i@;" is theV§rob1em of computing the sum of (n+1) integers ‘a, - |

n!

where nis a power of 2. This problem can be written in the
. . S
following form:

. :- . ' . ,_ ’.:L .. R Jyé ;. .é.- aoz . L T : :J A .- .’ - . ts._Sa) L ,
- o . SR ) . ) B .
. . .. v, = Vi + ,a" . 1‘ s i = n » . (SCS/E)) |

A linear, homogenous recurrencelproblem can be parallelized'by:



170

grouping consecutiqve pairs of terms together. and performing the
operation on each pair simultaneously. The operation‘is then |
repeated in“a similar manner until the final result is obtained as
the result of the last stage of the process. This process is
called the recursive doubling" technique The recursive doubling
technique applied to the addition example is depicted by the 4
‘tree-like structure in Figure 5.1. The leaf nodes represent the
integéﬁs to 'be added, and the value at -each intermediate node is a

L1

“partial sum”. The value at the root node is the required final

sum. This procedure clearly requires logz(n) stages and therefore.

results in'reducing the computational°complexity of the summation
algorithm from O(n), as it would be when computed on a
uniprocessor, to 0(log(n)) when computed in parallel using the
recursive doubling technique. C ¢
| A linear inhomogenous recurrence problem can also be evaluated
"in parallel using,the recursive doubling method. Thevprocess,
however is more complicated The . reader is referred to Lee and
-~ Chang (691 for the algorithm. L '

The recursive doubling algorithm is susceptible to- a "systolic
pipelined" design that can’ be implemented using very large scale
integration (VLSI) technology Systolic pipelining is ‘a technique
_that has recently been developed for reducing the design cost of
‘special purpose integrated devices [102 104}J -Devices’ with this
:{architecture are characterized by a large number o simple .
icomputing eiements through which,data flows like bléod through oft
teins The computing elements are, members of - a“Small set of ‘basic
types The "layout of each of these basic building blocks is first
_~optimized then they are simply.replicated a large number of times

!h
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Figure 5.1. Diagram showing the réCursive doublingi .
computational algorithm. (Taken from Reference 62)
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’tii R : ' ' ﬁd?é a
“as neededr Each computing element communicates with its nearest
neighbour pnly 1/0 operations are performed only by boundary

elements Communication problems ane therefore avoided. Systolic

-‘architectures conform well to the'ﬁonstraints imposed by VLSI
-f- technology i : TR ' ) : o

{0 )

%lj : fr Not all algorithms are susceptible “to a systolic design. In
general problems that arel“compute bound", that is, problems that

involve a greater number of arithmetitioperations than I/0

operation, can benefit from a systolict- pelined design.

Many signal processing algorithms'are:oggfute bound and can be

efficiently_parallelized using the systolic approach.‘

S.4. Inverse Dynamics of Flexible Manipulators

Recurrences.

4

Asiwas menti

ed previously, ‘it is shown by~;;

that the recurgive equations that make up the Neﬁtonihuler,
inverse‘dynamics algorithm for rigid manipulators can be
re-wr ten in the formﬂpf linear homogenous recurrence relations
;ﬁe Newton—Euler forward dynamics equations’ can be written partly,u
in the form of linear\homog ous and' partly in the form of linear
inhomogenous recurrence relations RecursiVe doubling methods have
been proposed for parallelizing both algorithms In this section
we . show that the inverse dynamics algorithm for- flexible
manipulators can also be written as linear homgenous recurrence
‘ relations In a later section we show that the forward dynamics
w"algogithm fbr flexible manipulators can also be formulated partly
' as homogenous and partly as inhomogenous linear recurrences. The

recursive doubling technique can therefore'be employed to design



“of the Newton-Euler, inverse dynamics’ algorithm for rigid

[

Mand equations (Fi ~27) “and (Fl 28)

173, '
f ﬂ"

A‘ "‘i

-

efficient, systolic architectures for .parallelizing the »
algorithms. . - L
4 ' : B
The inverse dynamics algorithm with generalized accelerations

omitted is summarized in Table 5.1. The equations that form part )
£ K . ;{;}.'v .

o
manipulators are indicated The simiiarities°between the :
algorithms for rigid and flexible manipulators are striking There
are, however, significant differences In the first place the
equations that are necessary to calculate flexible link kinematics

(equations F1-1 to Fl 14) are not present in the algorithm for

-rigid maripulators. In the second place, equations (Fl 16)
1

(F1-18), (F1-20), (F1- -20), (F1- 21) parts of.equations\(Fl-ZZ) and

[(F1-23), equations (F1-24) to (F1—26) and'equations (F1—29) to

;(Fl 31) are all new'to the algorithm for- flexible dynamics
;Fortunately, these two groups of equations do not destroy the
‘basic recursive nature of the algorithm The recursiveness of the

;algorithm is actually exhibited by equations (Fl 15) to (Fl 20)

;5.4.1 Model for Calculating the Non~Recursive Equations.

Equations (Fl—l) to (F1—14) do not form part of the recursive

) procedure for calculating the torQues However,’ their results are

d*needed by the recursive equations Fortunately. these equations do

. ' |
not represent a major computational bottleneck to” the overall

N

3.computational scheme The most straightforward approach to their

'f incorponation into the global computational picture is to have

them calculated before the main recursive procedure commences -,

Separate arithmetic units can be employeq for this purpose. These



Table 5.1.

Summary of Inverse Dynamics Algorithm forf£1e§ible Manipulatobé,
with Generalized actelerations omitted.

Assume: q, &‘. [

.where indicated.

INITIAL CONDITIONS.

o)
W =

~0

ol
W = H
w, =0

~

[V
v

~0

.lr'
lk]’ p: ’

i~p

=3

1,

for each i and each k,

= g (gravity vector); N = # links,

NM = # modes per 1ink.

INITIAL CALCULATIONS.

For i
{

«

1 to N step 1, DO

NM :
) 18,18,

k=1

NM

E: [61k}>§1k

k=1

NM -
) z [6lk] élk
k=1

o

NH v
}: [alk] v
k=1 .

® (F1-5)

(F1-1)

o

(F1-3)

(F1f4)



K
“\.

1o

1 ky

1kz

gfky

i kx

']

Table 5.1 (Cont’d)

ilz

. R,
. S te
'[~1xy yLnyrkfy
BN

iklyz

‘(; -
1klzy

NM

s f
1lky i1z tklyz

(F1-8)

(F1-7)

(F1-10)

(F1-11)

(F1-12)
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"', - Table 5.1 (Cont’d)
'h(.,',\il')l :

Ky = ) 8, Ky L P11

NM .
Klkz = Z 6112 Kllz (F1—14)

NEXT 1; 4" .

/* Note: All symbols with overscores are constant */
} /* END INITIAL CALCULATIONS */
. %X ; f:}

i ~ s

-——"FORWARD RECURSION.

For 1 = 1 to N, step 1, DO

ey R e A
{ . ‘.;).
{ rf

Calculate 'A  and E . y

U | 1-1 - a1 : ' _ '

w o= Al-l[ Otz qx] : (F1-15)
(Same as for Rigid Manipulator)

ERRICA AR (Fi-18)

t'e 1-1+ i1 C. - '

S Al—‘l[ St EOGI,] - (F1-17)
(Same as for Rigid Manipulator)

' = E:fFé: . ‘9:,(‘§J o ' (F1-18)

«

4



Pos

Table 5.1 (Cont’d)

1*r _ 1 i-1-° i°r i r i { re
Yy T Al-l[ Yl—l] M-I b 0, x ( 9 X ?1 )
, ! (F1-19)
(Same as for Rigid M'?.nipulator-)
10 eefier ter 1 i r tr 1
OY1 "Ei[yx ogx 4 oo x (e x AR
B ) ) [ S -
+ 2(’9: X 1§l)] & . - (F1-20)
i%r i*r t°r i-r i r i r tor . )
Vy = Y, tree x s o+ wox (e oxos)) (F1-21)
(Same as for Rigid Manipulator)
L]
-
(F1-22)

(F1-23)

A

(Except for terms that include
as for rigid Man_ipul'ato'r)‘

, li:. il and lél. same

177



Table 5. 1 (\font d)

} /* END ‘INNER ‘LOOP */

". - . . .‘ . : . r. . . ] . o
Por.1 = N down 'tgi/l step —1 : ," A / L
. , S - -~ R o g . .
£ o ' - X .
1 fro1, . 1+l B | .y _. .
g)l - -Ex' A1+1 ~1+1 *o Ez (F1-27)
(Excépt for El - same as for I‘lgld Ma.nipulator')
- . | | s Vo
1 ) fr i i+1 L .
n, s Ef A, IO Lo .
I o |
. i r* fr i RS
e [91 éx] x B AL
(Except for E and A ., same as for. r1gid Manipulator)
S/ Calculate Tor‘que\s due to Flexibility ¥/
For k =1 to NM, step 1, DO: ) f :
{ ) ' .
, ) £r1 11 ' -
T = tfth T 2k Ei > A1+1 ~1+1 (F1—29l
_ 1 fro1, -ie1
l Ty = bty * iy T B Ay Doy T
I3 ,,.mq/,x
1 frot 1+1 % : .
+ by 1-:l 3 Al_fl £ (F1-30)
_ 1 fr 1 S1+1 '
lk; tlkz + ~1kz El Alkz ~i+1 +
¥ ’ a2 N . ,
1 . fro i 1+1 _ . 1 4
* ~1kz Ei A1+1 €1+1 A (F1-31)
 NEXT k; ’ '

{



| Table 5.1 (Cont'd) ”
/* CALCULATE SOINT TORQUE */ * )
J T =z A a0 . o (F_1f32)' |
P IS END MAKING ALL TORQUES, ***/ .

) *****l*.!*li.l***i*il*é'END TABLE 5 1***l***l***l*i********i!**
. ) N ik ) ) o, s . - : .

& -



) . ) . . i . g SRVERTEE R
. . . . e e . RN emoie
b . . . 2 . : - P
. ’ : < .

. " - ) N ; PR

L ‘ J ‘ ey o B s -
units can themselves possess pipelined architectures for | ._"

dperforming fast floating point operations but this pipelihing e

.exists at a lower level than what is considered in implementing
the’ recursive equations 4» . . ;o R

| ébhceptually,.one cah haveva separate processor for each of

»

iequations (F1-1) to (F1-14). Each processor performs an inner .

fproduct operatior for each of the x, y and z dir ons }h

7
e

"fsimultaneOUSly In otherwords for the y—direction say, the

B

processor- computes the following operation

.

- 3 T » .
.= ) . ," ) ‘\‘\n . (5—8 )

This operation can be performed by the processing elements ‘shown

in Figure S.2 in Just a few clock cycles Similar operations are

I

performed simultaneaouly for the x and z components of the ~ ‘

3-dimensional vector A represented by equation (Fl -2). The same
. -arithmetic unit is used to compute the vectors for all flexible
links. In- this way, hardware requirements are kept low, .
ALYl the vectors indicated as the results .of equations *(F1-1)
to (F1-14) are calculated simultaneously This is pgsfibléIé since

all data required for the calculations are available at the start

. Q

of the computational procedure VLSL 1mplementation of the

processors is also possible due to the similarity of the ' e’
. ) B o o \ n . .

. . e
processing elements. These can all be constructed from two basic

building blocks, namely, an inner product unit and a Summer. VLSI . «

»
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Lo
Woor

design can thegefore concentrate”on optimizihg tﬁe layOGt of theése
blocks, and the layout replicated over several chips.
§

5.4.2. Rarailel Algorithﬁ for Calculalihg‘the ReCUﬁ;lve Equatlons

v

The ma jor computatlonal bottleneck of the inverse dynamics
algorithm for flexible manlpulators 1s bPGSegted gbVequétions
(Fl 15) to (F1 32) Precedence relationshlps ex1st between the
various terms of these eéuatlons hence effICIGDt methods for

computing them %n parallel,‘using SIMD computers, need to be

devised. In the form shown in Table 5-1, the precedence

L

\

relationships are not represented by linear recurrences. However:.



e e ®

,by'first referriug all vector qusutitfes to bdse coordinates,‘and

then coﬁbining the folléﬁing pairs ofvequations:}(F1~15,‘Fl—iB),

ti-‘1-.17 F1-18), and, (F1-19, F1-20), all the recursive equations

can' be written in- linear, hohogenous recurrence fOrm
The resu1t1ng procedure for evaluatlng the recursive equatlons as

“

«E linear homogenous recurrence problem is given below.

B 1) Compute.the 3x3 rotation matrices, °T[, 1=1,2,...N, by: .
- R I (5=7)
- . ﬁ})‘%\ - E »
'. ‘ K N ‘r* ~r o - 2 o
2) Compute:the vectors plﬂ §n @x, 80 L, b, b8 2z, h,,
fl, 1=1,2,...N, by theffollowinglequations; ‘
\ R . _ 0 ’r‘. E _ T
; . z, = T, Zoy %o = (0.0 11" (5-8)
T e . o, o
AL '
NI . G W AT P ,
. 1 f T, pp o : - (5-9)
_ : R h AV

of .the vectors are calculated by equations of the ”

5

form ¢ 5~ 9) This step refers all‘vectors-to base
coordinates. ) .
' * %
‘ 3) Compute .
S :
' b, =hz,, 4 ¢ 8., o ' (5-10)

[ . and



e

7) Compute

<

(U)v >

v i B
‘ .
r .
wr = w . + 'A
~1 < ~i-1 24
- >
‘ ]
. ‘ ‘
o
_ 1 | |
4) Compute .
: h e .
v ) _ r | . + .
R pl “1-1 X i [ El—lql él-l
. ' ' e .
and |
r or . )
W = + |
~1 ~1-1 D )
5) COmpute.) - S ‘ N |
” ‘p' i . .‘
' "~ i ‘°t ‘ re 1 i'pe
R = [A) x + " x
: < ~1°. 91 (' wi x. p1 )
Ceml T -~ r
A.;J + 'w w A
. * ~1-1 X ~§21 . @ X E~l-1 % A,

r “r
X (91 X §l)

(5-15)
(5-18B)

$

N



S . |
. C o .
N - K
F [ MY,
T -
Y 4 -
. ~
L i .;.A. .
. Y
8) Compute
I
{
- ' } eprt
o = W+
. N, [ I/ e :
- J\‘I o T v
. < ".\_N o
. - . . r "
+ \81' x [131
]

9) Compute "INNER LOOP" as’in Table 5.1.

10) Compute

\f 12) Compute .

¢ o
~i kx

L 4 . E *‘\_‘.' .

' " B r ~

W A + W ’lw A +
~ X ~1 ©o~] |~ X ,~1]

i

f]] T i D

1o
oA

X I w +: é Xva{lr

-l

| . (6-21)
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- A Tiey = iy ~iky
= o + @
tlki tlkz ~lkz
\ P .
. ‘
for k

<

~1+1

.Ql-&l

1,2,..

A

~iky

+ A

~1kz

. NM

) gi*i :

£in

It is seen that all the recursive equations;

]

'(5—11) (5-13), (5-15), (5- 19) and (5-21),

linear homogenous recurrence relations The other equations are -

are now in the form of

A

(5-24)

) B
namely,.equations

not recursive and can be evaluated by simple parallel

-~ ~ ]

computations. The computation of the recyrsive equations can now
ﬂ

toy

be performed by employing the recursive douinng algorith

Implementation n SIMD computers is can now be\efficiently done
‘f ‘ *

/ :

— 5.5. Forward Dynamics of Flexible Manipulators as Linear“

Recurrences.

As mentioned previously, Lee and Chang [89] have shown. that

-

some of the recur51ve equations that form part of the

Newton—Euler forward dynamics algorithm can be written in the'

“*form of linear homogenous recurrences

(

‘them can be wrritten in this form The remaining recursive'

equation can be written in the form of a linear

'equation Both types of recurrence problems can be evaluated by

1nhomogenous

using the recursive doubling algorlthm This results in an

O(log N) computational time complex1ty compared with an O(N) time

(5-23)

v 188
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In fact all except one of
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>

lcomplexity for the non—parallel method In this section the

1

o recursive equations that comprise the algorithm for calculating ,

the elements of the inertia matrix; H, of a'flexible manipulator,

‘ - 'Y _ .- -
are re-written in linear reCurrence form This requires referring

187 .

all vectors and inertia tensors to base coordinates The resulting

computational procedure is given in Table 5.2. In these equations,

i left superscripts are omitted for brevity All vectors and inertia ,

tensors however. are understood to- be*referred to base _

»
.- bd

‘5coordina;es.

Tabl®'5.2 shows that equaticps (F2-1), (F2-3), (F2-15),

“{F2-18) (F2-19), (F2-24) (F2-25), and“F2-31), are all in linear,

homogenous recurrence form. Similar equations exist in the modules

for computing columns that correspond to madal variables in the y

1 e

and X directions These equations are not shown in Table 5. 2 but

they possess the ‘sSame recurrence properties as those that are.

o’ s-.
. AN : .
shown. 3 ?

In the whole»algorithm only equation (Féizj is in lin ar. h

inhomogenous form Equations (F2-18), and (F2-30) are simpl .

3 assighments The rest of the equations are not recurs}ve and .an

) therefore be“évaluated by simple parallel computations a (J

.

5.6. Conclusion.

In this chapter the inverse and forward dynamics algorithms

_for flexible manipulators that have been developed in this thesis

.

have been shown to possess convenient linear recursive

v LY

properties These:: properties allow for efficient parallelization
of the algerithms by use of the method of recursive doubling\\?he

computational time complexity of the algorithms becomeS4of order
_ . . ) L ~y
a) . Nt : s
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- Tablé's 2
w\
Summary of the Linear Recursive Algorithm for Calculating the
' I{%Stia Hatrix H. . FUR ,
#ﬁ;§{kj pl..s - m I},‘élu é*f A ® fo?‘alli, |

~1ky ~1k "
J'N k = 1 2 NM where indicated A

o

N = number of links NM number of modes per link‘

~

INITIAL CUVDITIONS

, M&Hv = payload mass, o ~,‘ ”,‘*-.
Cher- = position¢vector of payload from the end—point of
‘ the N»* 1ink "

swu = 1nert1é -tensor of payload about the end—point of

the N'*® 1ink.

RECURSION FROM VANIPULATOR TIP DOWN TO ITS BASE

- For 1 = N'down to 1, step -1, DO:

M o= M, +om, f (F2-1)
L :b_’1 . ) )
~1 = = ~fi+1 + L ml[: + S:] + i
M M ” ’
i 4
r* ?
“1[ .t 91] i (F2*2)

. . £ ,‘_ N N . ‘ ’ ‘
__81 = & - - M., FX) + 1) - ":(91)/"}1 +'m F(X)
(F2-3)

where F(X) = (X . X)I - X Ti_ o © (F2-4)
) ) - -~ . : r —~

a6
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& » . ' : -
- ) Table S 2;(6:;t,d)
~ e ] v
KI BRI + B, *og
X = + s + ! ~
22 T B \ s, “m <y
{ + !
. oy
N

PR

‘CALCULATE COLUMNS OF H CORRESPONDING TO FLEX&BILITY -

.VARIABLES ) ‘ ’
“for k = NM down to' 1, .step -1, DO:

b "

~

o

'VARIABLE IN [HE Z- DIRECTION

{

v

. - P
S T2 . A + : .
'fi+i:61kz__- M1+I [ ~ikz ?lkz X Sin

= & ® +
nI+1:6Ikz ¢

- CALCULATE DIAGONAL TERM:

141 ~1kz 11

PZ =N + 3*(i-1)*NM + 3*k; QzZ =

HIPZI(PZ] = b, * Y

H K +\ élkz .
VA y-term */

QZ = QZ-1; =

HIPZ][QZ] l‘{(k'y, o+ <P‘“(y >

A .
~iky

/* x-term */
= Qz-1;
H[PZ1(Q2Z] =;b!kkx -+ ¢

-~1 kx

nifi:ﬁikz

f1+1:8ikz'

&N

nl+1t51kz

f1+1:51ki

nl+1:5lkz

(F2-10)

(F2-11)

CALCULATE COLUMN{OF*H CORRESPONDING TO FLEXIBILITY -

: v.'ﬁ

[

4

"189



Table 5.2 (Cont’d) ["
CALCULATE ELEMENTS IN_THIS COLUMNS L
CORRESPONDING TO OTHER MODES IN. THE 1' " LINK:

~ for 1 = K-1 down to 1, step -1, Do,
"

~ /* z-term */.

0z = QZ—i{"  _ | | . -
N HIPZI1QZ] = HIQZI[PZ]
v To= blkl‘z + 91.1'; .._n)<+1:5'lkz _
o+ A g | (F2-12)

~il1z - 1+1:81kz

/* y-term */°

. _— 5 - .
QZ:QZ—]_; e ' ‘ . <
: H[PZ1[Qz] = H[QZ][PZ] o s
= blkly * ?lly ’ ni+1:5xkz‘
N . , ,ﬂ_l V,
Yoy o fx+;:61kz (F2-¥3)
/* x-term */ . o »
QZ = Qz-1;
HIPZ1[QZ] = H[QZ][PZ]
B .bxk}xA * ?11x i ‘n1+1:81&z (F2-14)
* NEXT 1; .

} /* End.loop 1 */
. ‘} - £

-



' Table 5.2 %Cont d) -

~

- CALCULATE ELEMENT l'N THIS COLUMN CORRESPONDING TO*

THE 1’”UOINT VARIABLE: o ~ Lo
-gi‘fa'lk‘:z = -f-“,101.:5lkz'-+ g1kz_ . ’ (F2-15) /

: ' = + A :
Qi:ancz : 91+1;61kz» ¥ (91 ~1)~x ixu:axkz_

. . r . n . .
o + (g, +s)xe  +h =+ £ e ‘;.(Il-“-2—16)

‘H[11[P2Z) = H[PZ][1] = Zia " Dy iz

(F2-17)

[~

-

CALCULATE ELEMENTS IN THIS COLUMN CORRESPO‘ND?NG T0

MODES AND JOINT VARIABLES FOR j < i: s

a

For J = 1-1 déwn to ‘1, step -1, DO:

¢ T . |
. ! T, v .
. fj:ﬁlkz - gj-&l:'ﬁ“;z‘ ) * A (F2_18.)'
Dy 8ixz T _ Dok T (Ej -+ A ) x ~J+1 Sikz _?’
A . - . _ (F2‘19).
/* Modes first */ _
for 1 =MN down to 1, step -1, DO: - - o
{ ) |

N
°Q2:=QZ,{\,— 1;

S z—tem\n -“-/ .

L3
H[PZ][QZ] H[QZ][PZ]
= ~}lz ) nj+1:5lkz »
+ éjlz ) f‘_lfl:alkz (F2-20)

0Z =0z - 1:

o191
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Table 5.2 (Cont’d)-"

/* y-term */ A B .' | :
HPzllez) = glezie1 - C
JE §le{' nj+1:5lkz
éjly'. fj+1:51kz {Fngl)
] QZ = Qz —?\1;‘ | ; -
/*‘x—term */ i
HIPZ[QZ] = HiQZ](PZ] |
h ,AF gylx ; 93+1;5Ikz' (FZEQZ) B
© . NEXT 1; M -
} /deqdvmodes */ ' o
/* Joint term */
H[J][PZ] H[PZH 4] e
. = g[q - ~j:51k; ,"' .IIF2—23)
; " NEXT 5 - r ) Q;.
'} /* End all links j < 1%/ .

END MAKING THIS COLUMN.

-3

N
CALCULATE COLUMN OF H CORRESPONDING TO FLEXIBILITY

VARIABLE 1IN THE Y- DIRECTION -

- . 4 -
{ - ;
i

Repeat a proceedure similar to that represented by

equations (F2-7) to (F2-23).°

&>



~ 7' Table 5.2 (Cont’d)

CALCULATE COLUMN OF H CORRESPONDING TO FLEXIBILITY' .

' VARIABLE IN THE X-DIRECTION:

{ .
Repeat a proceedu}e stmiiar'to that represehtéd by~
~equations (F2-7) ;o (f?—%g). . ‘
.‘} . |
NEXT k; -

} /7* End modes k */ :
END MAKING COLUMNS CORRESPONDING TO FLEXIBILITY VARTABLES.

NOW, MAKE COLUMN CORRESPONDING TO THE”i’u‘JQINT VARTABLE.

- ' ~ &
£, = £, 0 Z, X Mg ' I (F2_24)/ ‘
By T By, 7 &z, v X (z,., x M ¢) o (F2-2)
/* Diagonal element */ ‘
HI11(i]l =z _ ' n _ | - .. (Fz2-28)
. . "

L

/* Elements of this,colump correaponding to modal- variables
for joint j < i1 */ e o
. 4

: ) . IACIE A : :
for j = i-1 down to 1, step -1, DO: - . B
P =N + 3*j*NM; (
/* Modal variables */-.
for l?;_NM down to 1, step 41,'DO:
..{ . : - l'
/* z=term */ -
H{11[P] = H[P][i]

. Pzt Py TP ‘ (F2f27)



]

> e Table 5.2 (Cont’d)
P = P-1; 1
/* y<term */ SO >
v HUINPI = HIPI[1]
" SRR ITRLITCRL S ,
P = P-1; ’
/* X-term */ e
©» HI11[P] = HIPI[1] = 2
NEXT 1;
} /* End modal variables */
S* Jéint termi*/ )
: fj = il*l i
T T, v ) s g

S~ HILI[g] = ‘11[4][1],=.—5J_1 &

. 4
NEXT j; IR

} /*‘end IOOp.J 4/,

NEXT 1; . -

}~/* End loop i */

END ALL LINKS.

o

~

****i**l*_**********l*ll*ﬁl* END QIGORITHM *****¥****************'**

Ty

.

(F2-28)

(F2-29)

(F2-30)

(F2-31)

)
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‘over their non-papmallel evaluation. In factgsthe lower bound on.

& 't

AN

- (log N). This represents a significant speed-up of the.algorithms

AN
4
oty

cohputational time is achieved. :

¥

The parallel algorithms are suitable for 1mp1ementaticn us1ng

-

VLSI technology. Systolic pipelined approaches seem to present a

framework around which special purpose computational structures

195

can be designed for their actual 1mp1ementation This topic 1s not t

pursued any further in this ‘thesis, but it appears to be an area
\

for further research that could. prove quite fruitful
/P
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CHAPTER 6. SUMMARY AND PROJECT&ONS FOR FURTHER RESEARCH.

] -~

. B.1. Highlighis of Issues Addressed in the Thesis.

Several issues related to modeling and control of flexible

/

robot manipulators have been addressed in this thesis The .

o

research project was motivated by the need for. lightweight arms

P}

"that would require less bulky'actuator systems and use less

energy The advantages of lightweight arms are presented in.

!

Chapter 1. These arms would of " necessity be made from links that ==

tend to flex as they move. This link f

.7
of control systems that drive the

xibility makes the design

nt actuators a very difficults

for flexible manipulators arise mainly because of the complicated
: s
dynamics of a mul ilink flexible arm that moves in three

.dimensions (a spatial arm) Modeling distributed link flexibility, .
and the coupling effects that the links exert on each other may
involve solving complex partial differential equations

.Fortunately, this is not. necessary in most cases Discretization

of the dynamic equations is possible by use ofitwo methods (1)

~

the “assumed modes method, and (2) the finite element metKod. These

kS

two approaches are used in flexible manipulator modeling in

Chapters 2 and.G

-

The computational algorlthms presented in Chapters 2 and 3
represent the flrst t ime that Newton—Euler‘like algorithms that

use modal or finite element methods hh<e been derived for flexible

S~ . -
196 - .



197

mgnipulators The Newton—Euler algorithm for calculating rigid
manipulator inverse dynamics is well known for its computational
efficiency and its linearjrecursive properties. Huang and Lee.

[105] extended the Newtoh*%yler method to flexible manipulators by
dividing a link into several sublinks and representing each
subjoint by a mass-sp ing model This method requires a large
number‘of sublinks for reasonable accuracy. The inverse dyriamics
algorithm derived in Chapter 2 using the modal approach involves

-~

far fewer degrees of freedom’for similar accuracy Furthermore
the algorithm is %ery simiiar to the NewtpnvEuler algorithm and is
also computationally very efflclent An eff1c1ent forward dynamics
algorithm was dlso presented in Chapter~2 using the modal

approach

Algorithms similar to those derived in Chapter 2 are presented
7

- 1in Chapter 3. In this chapter the finite elementlapproach is used
‘to model flexibility The finite element algdﬁtthms involve a much
larger number of degrees of freedom than the assumed modes ”
algorithms for simtlar accuracy However, they incorporate the-

Ve
“‘boundary conditions at the joints in a more accurate, ner and

ence do not suffer from the uncertainty in choosing mode shapes
’§hat plagues the modal approach._lt is shown (in Chapter also),
however? that uhen'clamped—free-mode shapes are used to m del
flexihilityzin the algorithms, simulation‘results of a m ipulator A
. are similar to the results obtained when the finite element .

' algorithms are used for the simulation. Also mode shapes
estimated from the finite element méthod are found to‘be similar
to the clamped—free mode shapes. It seems then that the modal

algorithms of Chapter 2 model the dynamlcs of flexible



>

o\ .
manipulators with suffigient accuracy for controlband simulation

purposes. . | |

| In Chapter 4, a new method of flexible manipulator control is

presented Th is a "computed torque" method that 1s based on |

decomposing the manipulator dynamic equations into two sets One

set describes that. Joint motion and the other set describes the

vibratory motion due to flexibility A composite control vector is

derived that drives the "psedolink angles" along predetermined
o

-~

traJectories The major advantage of this approach is that it is

systematic and general and can be applied to spat1a1
manipulators Simulation refults of a three- link spat1a1
manipulator confirms this. The pseudolink angles are defined in
such a way that desired trajectories can be planned off line

A based on desired tip motion. Pseudolink -angle, tracking implies

tip—trajectory tracking

e

&
" The maJor disadvantage of the composite, pseudolink control'

&
system is its high compmtational requirements. These: requirements

are discussed in Chapter 5. Implementing the control system
requires real-time calculation of the inverse and fOrward dynamic
equations. It is shown in that chapter that both the inverse and
i the forward gyn\’ibs algorithms for flexible manipulators that
have been derived in Chapter 2 can be efficiently parallelized.

-

This is done by re-writing the recursive equations in the form of

-

linear recurrence relations. The recurrence relations are mostly
&bf the homogenous type, w&th Just one of th;m being of the

inhomo%maaus type. All of them, however can be evaluated in

parallel u51ng the recursive doubling technique This makes it

possible to efficiently compute the recursiye equations on SIMD

-t
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computersl-

6.2. Projections for Further Research.
Although some ma jor issues have ‘been successfully addressed in
this thesisl there\are many problems that gemain.to be solved .
before flexible manipulator control becomes a practical art. The
‘problems lie mainly in implementation of advanced control systems
such as the composite pseudolink control system. Detailed models
are frequently required by these controllers The composite
.pseudollnk controller employs a . complete flexible model but it
‘,may work with a less/detailed one. In fact many of the terms that -
:are included in the computational algorithms Tay have negligible
effects on the overall system model This conclusion arises from

. the fact that in most«cases link deflections are relatively

Hsmall. These deflections are certainly not negligible, but

second-order effects may be. If these terms are located and _
omitted from the algorithms simplification of the computational
procedure may - result Such a,project is certainly worth - C ' .
undertaking, and could form a basis for further research
Another area of possibly fruitful research is the actual

implementation in VLSI of the recursive inverse and forward dynamics i/

L

algorithms for flexible manipualtors. In Chapter 5, it'is shown
that efficient parallel implementation‘of'the algorithms is.
Apossiblet and a“systolic" design approach is suggested An actual
‘designg however, was not performed as part of the- current research
project Such a de51gn is a substantial undertaking that ‘can
comprise a Ph.D thesis This would involve selection of a small

number of basic processing elements<that would be replicated many:f

times Es‘needpd. Number representations would have. to be chosen B
]



;Iquite interesting '

L A ,
v - _ S
. ’ [}

) ¢

‘(floating point vs. fixed point) and a suitable argthectural

layout (e.g. bit sliced architecture) determined fhen the. lower
level design and chip layout must be done.
Aﬁ alternative to special- purpose ch1p implementation of the

algorithms is the use of the signal processing chips that have

recently become available. These are specialized processors that
© can perform fast floating point operations. Takanashi [106] has
_implemented the Newton—Euler equations on one of them (the
- MDP7]'30) ané?can calculate the inverse dynamics equations for a
'1'six—link rigid manipulator in O g milliseconds The forward

dynamics equations took 1.9 m(lliseconds on the processor }lt" B

seems that one processor would not be fast enough for

vimplementation of the flexible dynamics algorithms , but it might

¥

™

be feasible to do so using a distributed system employing a‘fey of ,

these processors This is certainly worth consideration and can be

-~

¢

“

b
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