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Abstract 
The application of limit equilibrium finite element slope stability methods is 

examined. Two-dimensional studies are presented to provide a better understanding 

of the interaction between a stress - deformation analysis and the slope stability 

calculations. Special attention is directed towards the influence of the stress - strain 

characteristics of the soil, the influence of Poisson's ratio and stress history. Studies 

are presented to investigate concerns that an isotropic linear elastic soil model might 

not provide a reliable estimate of the factor of safety in slopes where there is potential 

for extensive yielding, because the shear stress is permitted to increase beyond the 

shear strength of the soil. The influence of Poisson's ratio and stress history is shown 

to be related to the rotation of the principal stress that is part of the collapse process. 

The accuracy of the factor of safety is shown to depend on the degree of compatibility 

between the orientation of the principal stress and the admissibility criteria used to 

control the shape of the slip surface. The fluctuations in the factor of safety can be 

eliminated using an elasto-plastic stress analysis and kinematic admissibility criteria 

can be used to control the shape of the slip surface. 

The development of a stress-based three-dimensional slope stability method is 

also presented. The factor of safety is computed based on the results of an 

independent stress-deformation analysis. The resulting factor of safety equation is 

determinate, linear and satisfies all conditions of equilibrium. The search for the slip 

surface is completed using traditional trial and error techniques where the shape of 

the critical slip surface is pre-defined along with a more advanced non-linear 



searching procedure. The characteristics of the derived factor of safety equation 

support the design of a searching algorithm based on a combination of dynamic 

programming and a series of geometric and kinematic admissibility criteria. The 

admissibility criteria are used to refine the searching procedure and distinguish 

between reasonable and unreasonable slip surfaces. The shape of the slip surface 

becomes part of the slope stability evaluation and is integrated with the method used 

to compute the factor of safety. 
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Chapter 1 

Introduction 

The development of limit equilibrium slope stability methods based on stresses from 

a finite element analysis seems to correspond in maturity with method of slices 

techniques. The gradual improvement with time of the method of slices technique is 

marked by the development of methods that satisfy all conditions of equilibrium. 

Methods satisfying all conditions of equilibrium are required to provide a reliable 

factor of safety calculation for slip surfaces that might deviate from circular or planar 

shapes. However, the development of advanced searching procedures is discouraged 

since the methods do not invoke kinematical considerations regarding soil behavior 

and require that the shape of the slip surface be assumed (Morgenstern and Price 

1965). Deriving the factor of safety equation based on the results from a stress -

deformation analysis makes it possible to invoke kinematic admissibility criteria and 

develop searching procedures that include the shape of the slip surface in the overall 

slope stability evaluation. 

The primary objective of this dissertation is to provide a new finite element slope 

stability method that can be used to overcome limitations inherited by three-

dimensional method of columns. The dissertation describes the details regarding the 

development of a three-dimensional slope stability method where the factor of safety 

is computed based on the results of a stress - deformation analysis and the search for 

the critical slip surface is completed using the dynamic programming method. The 

following sections present a classification scheme that is used to describe the 

characteristics of the finite element factor of safety, a review of key milestones 

regarding the development of two- and three-dimensional searching procedures, 

followed by an overview of the dissertation 

1 



1.1 Factor of Safety 

The method of slices represents one of the most widely used numerical techniques to 

compute the factor of safety. Developmental research related to the method of slices 

extends over four decades and documents the progression from methods that satisfy 

force or moment equilibrium to the most advanced methods satisfying all conditions 

of equilibrium (Fellenius 1936; Bishop 1955; Janbu et al. 1956; Morgenstern and 

Price 1965; Spencer 1967; Fredlund and Krahn 1977). Classification schemes have 

been developed to compare the characteristics of each method. Existing classification 

schemes are used to distinguish between different methods depending on which 

conditions of equilibrium are met according to the existing classification scheme 

shown in Table 1.1. It is well known that the reliability of the factor of safety (Fs) 

calculation for slip surfaces of a particular shape is related to the equilibrium 

conditions that are satisfied. Methods satisfying moment equilibrium are considered 

to be reliable when the majority of the slip surface is circular and methods satisfying 

force equilibrium are considered to be reliable when the majority of the slip surface is 

planar. The need for methods satisfying all conditions of equilibrium is considered 

necessary given that the critical slip surface may deviate significantly from a circle or 

a plane. 
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Table 1.1: A classification scheme used to compare two-dimensional limit 

equilibrium factor of safety equations. 

Method 

Method of Slices 
Ordinary or Fellenius (1936) 
Janbu's Simplified (1956) 
Simplified Bishop (1955) 

Spencer (1967) 
Morgenstem-Price (1965) 

GLE (1977) 

Enhanced 
Linear Elastic 

Existing 

Moment 
equilibrium 

X 

X 

X 

X 

X 

X 

classification scheme 
Vertical 

force 
equilibrium 

X 

X 

X 

X 

Horizontal 
force 

equilibrium 

X 

X 

xa 

xb 

xc 

xd 

Expanded classification scheme 

Calculation 
procedure 

linear 
non-linear 
non-linear 

non-linear 
non-linear 

non-linear 

linear 

Local Fs 

Constant 
Constant 
Constant 

Constant 
Constant 

Constant 

Variable 

Governing 
admissibility 

criteria 

GAC 
GAC 
GAC 

GAC 
GAC 

GAC 

KAC 
X represents the inter-slice normal force ; E represents the inter-slice shear force 
a X/E is constant 
b X/E is variable 
c X/E is variable and the factor of safety from moment equilibrium and force equlibrium are solved separately. 
d Slices do not exist therefore no assumptions are required regarding the relationship between X and E. 
GAC: Geoemetric Admissibility Criteria 
KAC: Kinematic Admissibility Criteria 
GLE: General Limit Equilibrium Method (Fredlund 1977) 

"Enhanced limit strength methods" refers to a procedure where the results from an 

independent stress-deformation analysis are combined with a limit equilibrium 

framework to compute the factor of safety (Kulhawy 1969). "Enhanced limit strength 

methods" require only one finite element analysis to compute the factor of safety for 

any number of c' and tan(/>' combinations and should not be confused with the finite 

element slope stability procedure commonly referred to as the "Strength Reduction 

Technique" (Zienkiewicz et al. 1975; Matsui and San 1992). The "enhanced limit 

strength method" has been referred to as the "enhanced limit method", "enhanced 

method" or "finite element slope stability method" following the classification 

scheme presented by Fredlund and Scoular (1999). The term "stress-based" method 

is considered to provide a more accurate description of the procedure and is used in 

this dissertation. 

The existing classification scheme is expanded to demonstrate the advantages 

associated with adopting stress-based methods. The expanded classification scheme 

includes three new categories on calculation procedure, local factor of safety (Fs), 
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and governing admissibility criteria. The calculation procedure refers to the 

character of the mathematical method that must be used to compute the factor of 

safety. A linear method indicates a situation where the factor of safety equation is 

statically determinate and can be solved directly. A non-linear method indicates a 

situation where the factor of safety equation is statically indeterminate. An estimated 

factor of safety is used to compute the normal force along the slip surface and the 

final factor of safety is found through an iterative procedure. The local factor of 

safety distribution is classified as either constant or variable. A variable distribution 

indicates a situation where the factor of safety for discrete portions of the slip surface 

can be computed independent of the global factor of safety for the overall slip 

surface. A constant distribution indicates that the calculation of the local factor of 

safety and the global factor of safety cannot be separated (i.e., the local factor of 

safety is equal to the global factor of safety along the entire slip surface.). 

Admissibility criteria are used to control the geometry of slip surfaces considered 

in a slope stability analysis. The governing admissibility criteria classification is 

included to demonstrate that the ability to invoke certain admissibility criteria is 

related to the method used to compute the factor of safety. It is possible to 

distinguish between two classes of admissibility criteria; namely, geometric and 

kinematic admissibility criteria. Geometric admissibility criteria (GAC) are based 

strictly on the geometric properties of the slip surface. Kinematic admissibility 

criteria (KAC) can be formulated based on principles of soil behavior and the 

kinematics required to ensure physically realistic slip surfaces. Kinematic 

admissibility criteria are generally more flexible than geometric admissibility criteria. 

The stress-based method has several advantages when compared to traditional 

limit equilibrium method of slices techniques. 

• The internal stress distribution resulting from a finite element analysis is 

computed satisfying all the conditions of equilibrium. 

• The stress-based slope stability formulation is determinate and does not 

require assumptions regarding the internal stress conditions. The resulting 
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factor of safety equation is linear and can be solved without the use of 

iterative procedures. 

• The local factor of safety distribution is variable providing valuable 

information regarding possible development of failure. 

• Kinematic considerations regarding soil behavior can be invoked removing 

the requirement that the shape of the slip surface be assumed. 

The characteristics of the stress-based method have resulted in the development of 

more advanced searching procedures where kinematic admissibility criteria can be 

used to control the shape of the slip surface (Pham 2002; Pham and Fredlund 2003). 

The use of kinematic admissibility criteria makes it possible to determine the shape of 

the critical slip surface as part of the overall slope stability evaluation. 

The development of the method of columns has matured to a similar level as the 

method slices. The methods of slices listed in Table 1.1 have been extended to 

equivalent methods of columns techniques and are available in commercial software 

(Hovland 1977; Chen and Chameau 1982; Hungr 1987; Ugai 1988; Lam and 

Fredlund 1993; Hungr 2001). Methods of columns techniques resulting from the 

extension of two-dimensional methods satisfying all conditions of equilibrium 

provide the ability to compute the factor of safety for three-dimensional slip surfaces 

of any shape. The method of columns inherits other characteristics from the method 

of slices resulting in a classification system similar to the extended classification 

scheme in Table 1.1. The method of columns procedures are non-linear. The three-

dimensional local factor of safety distribution is constant and no kinematic 

considerations regarding soil behavior are invoked confirming that the shape of the 

three-dimensional slip surface must be assumed (i.e., geometric admissibility 

governs.). 

The "hybrid" approach proposed by Loehr (1998) can be considered an extension 

of the two-dimensional stress-based method to three dimensions and was developed 

to overcome the limitations associated with the method of columns techniques. Loehr 

reported difficulties associated with the level of mesh refinement required to provide 
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an accurate factor of safety calculation. The advantages associated with the stress-

based method of slope stability have not been fully realized in three-dimensional 

analyses. 

1.2 Searching Techniques 

A factor of safety equation must be combined with a searching procedure to predict 

the stability of slopes in cases where the location of the slip surface is unknown. The 

selection of a searching procedure depends largely on the type of admissibility criteria 

supported by the factor of safety equation. Table 1.2 provides a summary of key 

milestones in the progression from the use of restrictive searches based on geometric 

admissibility criteria to more flexible procedures based on kinematic admissibility 

criteria. 

Table 1.2: Summary of key milestones in the progression from restrictive searching 

techniques based on geometric admissibility criteria (GAC) to more flexible 

procedures based on kinematic admissibility criteria (KAC). 

2D/3D 
2D 

3D 

Factor of Safety 
Method of slices 

Method of slices 
Enhanced 
Enhanced 
Method of Columns 
Method of Columns 

Enhanced 
Enhanced 

Admissibility 
GAC 

GAC 
GAC 
KAC 
GAC 
GAC 

GAC 
KAC 

Author 
Bishop (1955); Janbu et. al (1956) 
Morgenstern and Price (1965) 
Spencer (1967) 

Baker (1980) 
Scoular(1997) 
Pham (2002) 
Hungr(2001) 
Jiang & Yamagami (2004) 
Yamagami & Jiang (1997) 

Loehr (1998), Current research 
Current research 

The first method of slices formulations assumed the shape of the critical slip 

surface to be circular which led to the use of a trial and error searching procedure 
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commonly referred to as the "grid and radius" method. The "grid and radius" 

searching procedure has been modified to include circular slip surfaces intersected by 

planes or impenetrable soil layers providing the ability to consider composite slip 

surfaces. Steps have also been taken to automate the trial and error procedure to 

reduce the effort required to locate the critical slip circle. 

The next stage involved the development of a number of searching procedures to 

remove restrictions placed on the shape of the slip surface such as dynamic 

programming (Baker 1980), Simplex method (Nguyen 1985), Conjugate Gradient 

(Greco 1988), Monte Carlo (Greco 1996), Alternating Variable (Celestino and 

Duncan 1981), Univariate (Greco 1988), Variation Calculus (Baker and Garber 1977) 

and Steepest Descent (Chen and Shao 1988). The searching procedures were 

combined with various methods of slices techniques and were limited to the use of 

geometric admissibility criteria. Baker (1980) demonstrated that the dynamic 

programming method can be designed to consider admissibility criteria while the 

search for the critical slip surface is in progress. A new geometric admissibility 

criterion was proposed that considers slip surfaces to be admissible if the first 

derivative calculated from the crest to the toe of the slope was greater than or equal to 

zero (i.e., the slip surface must be concave.). The ability to include concave slip 

surfaces represents a significant improvement considering that slip surfaces with 

circular and composite characteristics can be evaluated in a single search. 

Scoular (1997) combined the stress-based method with the grid and radius 

searching procedure assuming that the critical slip surface was circular. Other 

procedures have been developed based on geometric admissibility criteria providing 

the ability to search for slip surfaces that might deviate from a circular shape 

(Yamagami and Ueta 1988b; Kim and Lee 1997). Pham (2002) utilized the full 

potential of the stress-based method by adopting a kinematic admissibility criterion to 

govern the search for the critical slip surface. The criterion makes it possible to 

search for irregular slip surfaces that might follow along unique geological or man 

made features. 
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The development of three-dimensional searching procedures has not matured to 

the same level as two-dimensional methods. A three-dimensional version of the "grid 

and radius" searching procedure has been developed to search for spherical or 

ellipsoidal slip surfaces following a similar trial and error procedure (Hungr 2001). 

Dynamic programming has also been used to search for three-dimensional slip 

surfaces following the geometric admissibility criteria proposed by Baker (1980) 

(Yamagami and Jiang 1997; Jiang and Yamagami 2004). Loehr (1998) extended the 

two-dimensional stress-based method to three dimensions but no formal searching 

procedure was developed. The author is not aware of any three-dimensional 

searching algorithms where kinematic admissibility criteria are used to control the 

shape of the slip surface. 

1.3 Overview of Research Project 

The development of the stress-based method provides the ability to apply kinematic 

admissibility criteria and ultimately make the shape of the slip surface part of the 

slope stability evaluation. The advantages associated with stress-based methods have 

been realized within the context of two-dimensional slope stability but have not been 

extended to three-dimensional analyses. There is also a need for more research 

regarding the interaction between the stress - deformation analysis and the slope 

stability calculations. The application of the stress-based method introduces new soil 

parameters that are not typically associated with slope stability calculations. In many 

cases, the influence of the stress - strain characteristics of the soil, Poisson's ratio and 

the application of admissibility criteria are not well understood. 

This dissertation presents the progression of research that was completed to 

develop a three-dimensional stress-based slope stability method where the search for 

the critical slip surface is based on kinematic admissibility criteria. Two-dimensional 

studies are presented to clarify the interaction between the stress - deformation 

analysis, the factor of safety calculation and the characteristics of the dynamic 

programming searching procedure. The second half of the dissertation presents the 
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development of the three-dimensional slope stability method. The first stage focuses 

on developing a procedure to compute the three-dimensional factor of safety based on 

the results of stress - deformation analysis. The second stage involves the integration 

of the dynamic programming searching procedure including a number of 

admissibility criteria. 

The research required the development of software capable of two- and three-

dimensional slope stability calculations. Both the two- and three-dimensional 

software are designed to search for the critical slip surface or perform back analysis 

by computing the factor of safety for a known slip surface. The search for the critical 

two-dimensional slip surface is completed based on the dynamic programming 

algorithm and the application of kinematic admissibility criteria. The search for the 

critical three-dimensional slip surface can be completed based on an extension of the 

dynamic programming algorithm to three-dimensions. A trial and error procedure 

based on the assumption that the critical slip surface is ellipsoidal (i.e., similar to the 

'grid and radius' method in two-dimensions) can also be used. The slope stability 

software is designed to interface with commercially available stress - deformation 

software products. Two products were used during the course of this research 

including SVSolid™ and FLAC™. SVSolid™ is a finite element based software 

product developed by SoilVision Systems Ltd. (SoilVision Systems Ltd. 2006a). 

FLAC™ is a finite difference based software product developed by the Itasca 

Consulting Group Inc. (Itasca Consulting Group Inc. 2000). Other commercial 

software products used during the course of this research include GeoStudio™ (GEO-

SLOPE International Ltd. 2004), SVFlux™ and Tecplot™ (Tecplot Inc. 2003). 

1.4 Organization of Dissertation 

The dissertation is presented in paper-based format and consists of four main 

chapters, supplemented by two appendices. Each chapter is an article that has been 

prepared for submission to a peer reviewed journal and includes an independent 

literature review and citations. The literature review consists of published work 
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related to two- and three-dimensional slope stability including numerical procedures 

to compute the factor of safety, searching procedures, case histories and laboratory 

studies. The dissertation itself is occasionally referenced due to the nature of the 

paper based thesis format. 

Chapter 2 presents a comparison of two-dimensional slope stability analyses 

based on isotropic linear elastic or elasto-plastic stresses. The study examines the 

accuracy of the factor of safety calculation based on a linear elastic stress analysis in 

slope conditions where there is the potential for extensive yielding. The internal 

stresses are generated by the 'switch on' gravity method because the study is directed 

towards normally consolidated slope conditions. Chapter 3 is an extension of the 

two-dimensional analyses completed in Chapter 2. A sensitivity analysis is designed 

to examine the potential influence that Poisson's ratio and Young's modulus might 

have on the calculation of the factor of safety. This part of the study is limited to 

normally consolidated slopes (i.e., stress conditions generated by the 'switch on' 

gravity method.) to remain consistent with the types of analyses considered in 

previous research. The study goes on to examine whether an isotropic linear elastic 

stress analysis can provide a reasonable representation of the stresses in over-

consolidated soil conditions. Discussion is also provided regarding the merits related 

to the strict application of kinematic admissibility criteria in the dynamic 

programming searching procedure and the potential to violate kinematic admissibility 

in searching procedures based exclusively on geometric admissibility criteria. 

Chapter 4 is focused on the development of a procedure where stresses from a 

finite element analysis are incorporated into a limit equilibrium framework to 

compute the factor of safety for three-dimensional slip surfaces. A series of 

verification examples and sensitivity studies are presented to determine if the 

proposed method provides the required accuracy and flexibility to assess the stability 

of slopes typically encountered in practice. Chapter 5 presents the details 

surrounding the integration of the three-dimensional dynamic programming searching 

procedure. Geometric and kinematic admissibility criteria are developed to train the 

searching procedure to distinguish between reasonable and unreasonable slip 
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surfaces. A series of stability evaluations are presented to discover if the 

admissibility criteria can be used to provide a balance between the number of slip 

surfaces considered in the analysis and the solution time. 

Appendix A consists of a conference paper presented at the Canadian 

Geotechnical Conference in 2004 (Stianson et al. 2004). The paper presents the 

results from a preliminary two-dimensional study that was completed to verify the 

operability of the two-dimensional slope stability software and begin to study the 

differences between slope stability calculations based on linear elastic or elasto-

plastic stresses. Appendix B provides detailed information regarding the procedure 

that was designed to complete a three-dimensional dynamic programming slope 

stability analysis. 
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Chapter 2 

Dynamic Programming Slope 
Stability Analyses Based on Linear 
Elastic and Elasto-Plastic Stress 
Analyses 

2.1 Introduction 

A number of limit equilibrium slope stability methods have been developed where the 

overall factor of safety is calculated based on stresses from a separate finite element 

analysis (Yamagami and Ueta 1988b; Zou et al. 1995; Fredlund et al. 1997; Pham 

2002). The proposed finite element methods are reported to have several advantages 

when compared to traditional limit equilibrium method of slices techniques (Fredlund 

etal. 1997). 

• The slope stability formulations based on finite element stresses are 

determinate and do not require assumptions regarding internal stress 

conditions that are typically required for conventional method of slices 

techniques. 

• The factor of safety equation based on finite element stresses can be solved 

without the use of iterative procedures. The factor of safety equation is linear 

because the normal stresses acting at specific locations along potential slip 

surfaces are known. 

• The distribution in the local factor of safety can be computed and used to 

provide further information regarding the character of the instability. 
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One of the main motivations behind the development of slope stability methods 

based on finite element stresses is the ability to include the stress-strain characteristics 

of the soil in the stability calculations. Scoular (1997) performed extensive 

comparisons between slope stability results from a finite element slope stability 

method with results from the traditional methods of slices. The intent was to 

investigate differences that might occur between factor of safety calculations where 

the stress-strain characteristics of the soil are included and cases which use force 

equilibrium on a simple slice. The comparisons were carried out for a range of soil 

conditions where slopes were stable and slopes were failing. In all cases, the finite 

element factors of safety were computed based on stresses generated from an 

isotropic linear elastic "switch-on" gravity analysis. The results demonstrated that 

factors of safety computed using the method of slices and the finite element method 

were similar, even for unstable slopes where the factor of safety was less than 1.0. 

The results also showed that the location of the critical slip surface might be different 

in some cases. 

The agreement in the factors of safety near failure might come as a surprise 

considering that the finite element slope stability calculations were based on linear 

elastic stresses. It appeared possible that a slope stability analysis based on elasto-

plastic stresses would provide a more reasonable calculation of the factor of safely 

and the location of the critical slip surface for slopes that are near failure. On the 

other hand, it also appeared possible that a slope stability analysis based on a linear 

elastic analysis might be adequate when the slope is not near failure (Naylor 1982). 

In either case, the sensitivity of the slope stability calculations to the selected 

constitutive model was not well defined. 

The purpose of this study is to investigate differences that might occur in slope 

stability calculations as a result of using differing soil behavior models. A series of 

example problems are presented that compare slope stability results based on stresses 

generated from either an isotropic linear elastic or elasto-plastic stress analysis. The 

results are compared by evaluating the differences in the shape, location, and factor of 

safety of the critical slip surface determined using either constitutive model. The 
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same searching procedure was used to determine the critical slip surface when using 

linear elastic or elasto-plastic stresses. The examples are selected to ensure that the 

comparison includes both stable and failing slopes. 

2.2 Background 

A review of previous research involving comparisons between slope stability analyses 

based on elasto-plastic stresses is presented. The majority of the previous studies 

involved the comparison of slope stability calculations based on elasto-plastic stresses 

with one or more of the method of slices techniques. One study (Zienkiewicz et al. 

1975), reported difficulties associated with restrictions typically placed on the shape 

of the slip surface in conventional method of slices techniques. Additional research is 

presented to discuss the rationale that was used to select an appropriate searching 

procedure to overcome the difficulties reported in previous studies. The slope 

stability method selected to perform the proposed comparison is presented including 

the procedure used to search for the critical slip surface and the definition of the 

factor of safety. 

2.2.1 Slope Stability Comparisons Involving 
Elasto-Plastic Stress Analysis 

Table 2.1 provides a summary of a number of research studies that include 

comparisons between the results of slope stability analyses based on elasto-plastic 

stresses with results from other methods. 
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Table 2.1: A summary of a number of research studies that compare the results 

between slope stability analyses based on elasto-plastic stresses with other methods of 

analysis. 

Author 

Zienkiewicz et al. (1975) 

Snitbhan and Chen (1978) 

Elasto-plastic 
slope stability 
method 
Strength reduction 
technique 

Strength reduction 
technique 

Kohgo and Yamashita (1988) Strength reduction 

Huang and Yamasaki (1993a^ 

Toufigh(1997) 

technique 

) Local factor of 
safety technique 

Local 
displacement 

Slope stability method 
used in the comparison 

Bishop (1955), 
(Morgenstern and Price 
1965) 

Limit analysis 

(Fellenius 1936), Bishop 
(1955), (Morgenstern 
and Price 1965) 
Bishop (1955), (Sarma 
1973) 

Linear elastic versus 
elasto-plastic stresses 

Comparison Results 

Agreement for simple 
homogeneous slopes; diverged 
for more complex slopes 

Agreement for simple 
homogeneous slopes 
Agreement for simple 
homogeneous slopes 

Agreement in factor of safety; 
Slip surface did not agree in 
some cases 
Significant variation attributed 
to the soil behavior models 

Several comparisons were completed using elasto-plastic stresses in combination 

with the strength reduction technique (Zienkiewicz et al. 1975; Snitbhan and Chen 

1978; Kohgo and Yamashita 1988). The soil properties corresponding to the collapse 

of a slope were determined by monitoring the displacement at an appropriate location 

within the slope (usually a point near the toe). Failure (Fs = 1.0) was assumed to 

occur when the displacement at the monitored point increased excessively due to an 

incremental decrease in strength or an incremental increase in the unit weight of the 

soil. The failure surface was approximated by observing patterns in the velocity 

vectors and contours of shear strain. The critical slip surface was considered to 

coincide with a path following along locations in the slope displaying the largest 

velocity vectors and values of shear strain. Subsequent slope stability analyses were 

carried out using the methods listed in Table 2.1. The results of the slope stability 

calculations compared the shape, location, and factor of safety of the critical slip 

surface. The factor of safety and critical slip surfaces were reported to be in good 

agreement for cases where simple homogeneous slopes were considered. 
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Zienkiewicz et al. (1975) went on to show that the same agreement might not be 

expected for composite embankments with irregular soil layers. One embankment 

consisting of manmade material in combination with existing geological features was 

analyzed. The factors of safety computed using the Bishop (1955) or Morgenstern 

and Price (1965) methods of analysis were found to be 12% and 24% higher than the 

factor of safety computed using the strength reduction technique, respectively. The 

mode of failure observed from the strength reduction analysis was clearly non-

circular. The differences reported in the Bishop and Morgenstern and Price factors of 

safety were attributed to the manner in which the equilibrium of each slice was 

satisfied and the restriction that only circular slip surfaces could be considered in the 

search for the critical slip surface. 

Huang and Yamasaki (1993) presented a comparison between a new local factor 

of safety technique with Bishop's (1955) and Sarma's (1973) methods of slices. The 

proposed local factor of safety technique was based on stresses generated from a 

separate finite element analysis. The procedure involved the calculation of a local 

factor of safety for every node on the finite element mesh. A procedure using Mohr 

circles in combination with a Mohr-Coulomb failure envelope was developed to 

determine the orientation of the plane with the lowest local factor of safety at each 

node. The local factor of safety was defined as the available shear strength divided 

by the shear stress acting on the critical plane. Individual line segments were drawn 

with orientations corresponding to the critical planes at nodes where the local factor 

of safety was less than or equal to some pre-determined threshold value. The line 

segments were used as a guide to trace a continuous slip surface extending from the 

crest to the toe of the slope. The critical slip surface was identified through visual 

inspection and was defined as the deepest continuous slip surface that could be traced 

by connecting a series of line segments. 

Figure 2.1 illustrates the field of critical planes used to identify the most likely 

failure surface for a simple homogeneous slope. The planes were drawn at nodes in 

the finite element mesh where the local factor of safety was less than or equal to 1.0. 
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The slip surface shown in Figure 2.1 was traced by connecting the planes that would 

result in the deepest continuous slip surface. 

Failure Surface . ^ —,.% / . i , ,,, t , , , /t\ 

'/ 

szv///////// 
7T7///////////// 

/ s/ss ss / / / / / / / / / / / / / / / 
'///////// ss // // / / / / / / / / / / / 

Figure 2.1: The field of critical planes used to identify the most likely failure surface 

for a simple homogeneous slope (Huang and Yamasaki 1993). 

The comparisons presented by Huang and Yamasaki (1993) included several 

homogeneous slopes as well as the analysis of Springfield dam. The factors of safety 

from all analyses were reported to be in good agreement with the exception of the 

location of the slip surface in some instances. 

Toufigh (1997) reported the results of a study where the slope stability results 

based on elasto-plastic stresses were compared with results based on linear elastic 

stresses. The displacement fields computed from the finite element stress analysis 

were used to generate a family of slip surfaces to be considered in the slope stability 

analysis. Each slip surface was generated beginning at an arbitrary point at the top of 

the slope. A series of line segments were drawn tangent to intersecting displacement 

vectors until the slip surface exited at a point near the base of the slope. A family of 

slip surfaces were generated by repeating the process beginning at a number of 

different points along the crest of the slope. The factor of safety of each slip surface 

was calculated using the Mohr-Coulomb failure criteria and stresses from the finite 

element analysis. 
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Table 2.2: Factors of safety for families of curves from Toufigh (1997). 

No. of curve 1 
Elastoplastic . 
behaviour 
Linear elastic 

12.96 9.24 6.58 4.27 behaviour 
* unacceptable factors of safety due to boundary conditions used in model 

Table 2.2 shows a comparison between the factors of safety computed for a 

family of six curves generated for a homogeneous 1:2 slope. The factors of safety 

computed based on linear elastic stresses were significantly higher when compared to 

the factors of safety computed based on elasto-plastic stresses. The variations in the 

factors of safely were attributed to the differences in the two soil behavior models. 

2.2.2 Slope Stability Method used to Perform 
a Comparison Between Slope Stability 
Results Based on Linear Elastic or 
Elasto-Plastic Stresses 

Traditional limit equilibrium factors of safety are typically computed within the 

framework of one of the method of slices formulations. Methods of slices that satisfy 

both force and moment equilibrium are generally preferred. The factor of safety 

equations associated with the more rigorous methods are non-linear and must be 

solved using an iterative procedure. The computational difficulties are generally 

accepted based on the grounds that the factor of safety calculations are more reliable. 

However, the reliability of the procedure used to search for the slip surface with the 

lowest factor of safety is often overlooked. Simple trial and error searching 

procedures are typically used in combination with the most advanced method of slices 

formulations. The search is normally restricted to circular failure surfaces while other 

potentially admissible slip surfaces are arbitrarily excluded from the search. The 

deficiencies that could enter into the slope stability analysis due to the use of 
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inadequate searching procedures might be as detrimental as using a factor of safety 

equation that was formulated without considering all the conditions of equilibrium. 

The computational complexities that arise from the combination of non-linear factor 

of safety equations with more advanced non-linear searching procedures have likely 

contributed to the continued use of simple trial and error techniques. 

Replacing trial and error searching techniques with a more advanced dynamic 

programming optimization procedure permits the development of more general 

criteria to govern the shape of admissible slip surfaces (Baker 1980; Yamagami and 

Ueta 1988b; Zou et al. 1995; Pham 2002). Baker (1980) combined dynamic 

programming with the factor of safety equation developed by Spencer (1967). Baker 

developed a new criterion to govern the shape of admissible slip surfaces considered 

in the dynamic programming procedure. Slip surfaces were considered to be 

admissible if the first derivative calculated from the crest to the toe of the slope was 

greater than or equal to zero (i.e., the slip surface must be concave.). The ability to 

include concave slip surfaces represents a significant improvement considering that 

slip surfaces following along weak layers can be included in the search. The dynamic 

programming procedure has also been applied in combination with finite element 

slope stability methods (Yamagami and Ueta 1988b; Zou et al. 1995; Pham 2002; 

Pham and Fredlund 2003). Studies have shown that computational complexities 

associated with the application of the dynamic programming method are significantly 

reduced when the factor of safety equation is linear. Pham and Fredlund (2003) also 

demonstrated that the stresses from the finite element analysis could be used to 

develop a new kinematic admissibility criterion. The criterion is based on the 

principle that the resisting force must always act in a direction opposite to the mass 

movement and does not pose direct restrictions on the geometry of the slip surface. 

The criterion makes it possible to search for irregular slip surfaces that might follow 

along unique geological or man made features, as shown in Figure 2.2. 
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Figure 2.2: Geologically controlled slip surface that illustrates the possibility of the 

slip surface being convex or concave. 

The dynamic programming procedure is used in combination with the finite 

element factor of safety equation to ensure consistency in the comparison between 

slope stability analyses based on linear elastic or elasto-plastic stress. The slope 

stability method is also considered to represent a move towards a more exact solution 

when compared with the method of slices techniques (Pham and Fredlund 2003). A 

brief description of the factor of safety equation and the dynamic programming 

formulation is provided. A more detailed discussion is provided in Pham and 

Fredlund (2003). 

2.2.2.1 Calculation of the Factor of Safety 
Based on Stresses from an Independent 
Stress-Deformation Analysis 

The dynamic programming method is a numerical algorithm used to optimize 

sequential multi-stage decision problems (Bellman 1957). Multi-stage decision 

problems are solved using a system of "stages" and "states". The "stage-state" 
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system consists of a grid of points organized into rows and columns. The "stage-

state" system is used to search for the critical slip surface and is known as the search 

grid. The points from the search grid can be connected to form linear line segments. 

It is assumed that a continuous slip surface can be approximated by connecting a 

series of n linear line segments. The overall factor of safety (Fs) can be defined as 

follows: 

n 

1=1 

2>,AZ, 
;=1 

where n is the total number of individual line segments, r f is the shear strength, tj is 

the shear stress, and AZ. is the length of one line segment (Naylor 1982). 

The shear strength along the z'th line segment can be computed using the extended 

Mohr-Coulomb equation for saturated-unsaturated soil (Fredlund and Rahardjo 1993) 

given by the following equation; 

[2.2] rfi = c'+ (cx„ - u a ) t a n <j>'+ (ua - u w ) t a n </>b 

where (cr„-ua) is the net normal stress acting on the ith segment, (ua-uw) is the 

matric suction, and c', (j>\ and 0b are the effective shear strength parameters for a 

saturated-unsaturated soil. 

The normal stress, an, and the actuating shear stress, Tn, acting at the orientation 

of the i line segment are determined using Eq. [2.3] and Eq. [2.4] derived from the 

Mohr circle of stresses (Terzaghi and Peck 1948); 

[2.3] <?„ = <JX * sin2 d + ay cos2 d - vxy sin 20 

[2.1] Fs = 
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[2.4] r „=^ ( s in 2 #-cos 2 0) -
(cr -rr \ a„ -<J y 

\ " J 

sin26> 

where 9 is the angle of the ith line segment with respect to the horizontal and ax, ay 

and xxy are the normal and shear stresses acting in the x- and y- coordinated 

directions. The values of <rx, ay and xxy are computed using a separate numerical 

stress-deformation analysis. The factor of safety calculations based on finite element 

stresses falls into the category of a limit equilibrium method since the factor of safety 

is defined through consideration of the overall limit equilibrium of forces. 

2.2.2.2 Application of the Dynamic 
Programming Searching Technique 

The dynamic programming method can only be applied to an additive function. The 

definition of the factor of safety in Eq. [2.1] is a ratio and can be re-written in an 

additive form as follows; 

[2.5] G = f^(Ri-FsSi) 

where Rj, St and Fs are the acting resisting force, acting shear force and factor of 

safety along the i,h line segment, respectively. The resulting equation is called the 

auxiliary functional (G) (also known as the return function) and can be evaluated for 

individual line segment considered in the dynamic programming search. The 

objective is to determine the combination of line segments (i.e., slip surface) where 

the summation of return function values is the lowest. Minimizing the auxiliary 

functional has been shown to be equivalent to minimizing the definition of the factor 

of safely given in Eq. [2.1] (Baker 1980). 
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A second equation, called the optimal function (Eq. [2.6]), is introduced to keep 

track of the return function values as the dynamic programming search progresses 

from one "stage" to the next. 

[2.6] HMU) = mm[H,(K) + DGl<J,K)] 

K is an array representing the total number of "state" points from "stage" i (NPi), as 

shown in Figure 2.3. Therefore, H,(K) represents the value of the optimal function at 

each of the "state" points in "stage" i. DGi(j,K) represents an array used to store the 

values of the return function calculated for the line segments connecting "state" point 

j in "stage" i+\ to each of the "state" points represented by the K array. The line 

segment representing the critical path from one of the "state" points in "stage" / to 

"state" pointy in "stage" i+\ (i.e., Hj+l(j)) is determined by selecting the minimum 

value of Ht(K) + DGt(j,K). 

26 



[1,NP(1)] 
Slip surface (segment 4 of n) / 

y A 

Figure 2.3: Components of the dynamic programming method including an example 

search grid. 

The dynamic programming search is iterative and can be used to solve slope 

stability problems using the following steps. 

1) Solve for the stress state at all points in the slope. 

2) Define the dynamic programming search grid. The search grid is divided into 

"stages" in the horizontal direction and into "states" in the vertical direction. The 

terms "stages" and "states" are names used to separate the numbering of the grid 

points in the horizontal and vertical directions. The search grid takes on the 

character of a series of columns and rows, as shown in 

3) Figure 2.3. The grid must contain a number of points outside the slope near the 

crest and the toe of the slope. This ensures that the entry and exit points of the slip 

surface are part of the analysis. At least one column of "state" points must be 

contained entirely within the boundaries of the slope. The column is usually 

selected near the mid-point of the slope. 

4) The complete stress state from the numerical analysis is imported to the points on 

the dynamic programming search grid. Linear interpolation is used when the 
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points from the dynamic programming search grid do not exactly correspond to the 

mesh used in the numerical analysis. 

5) The user must select an initial factor of safety that is used in computing the 

Auxiliary Functional, G, for the first iteration. The value for a convergence 

criterion (8) is also selected. The convergence criterion is used to determine when 

the dynamic programming search has identified the critical slip surface. 

6) The value of the Optimal Function, H(IiK), is initialized to zero for all "state" 

points, K, in the first "stage". 

7) It is now possible to determine the most critical path to each point in the search 

grid by evaluating Eq. [2.6] for all remaining "state" points. The first "state" point 

to be evaluated is, j=l, in "stage", /+1 =2 (i.e., H2(l)). The "state" point, K, from 

"stage", /, resulting in the minimum Optimal Functional value, 

mm[Hj(K)+DGj(j,K)], is recorded and the search proceeds to the next "state" 

point, J+1, in the current stage (i.e., ;+l = 2). When all of the "state" points in the 

current stage have been evaluated, the search proceeds to the next stage and step 

(6) is repeated. 

8) When the search reaches the last "stage", the "state" point with the lowest Optimal 

Functional value is determined. The information stored at this point corresponds to 

the combination of line segments with the lowest factor of safety. 

9) The actual factor of safety for the combination of line segments determined from 

step (7) is calculated using Eq. [2.1]. 

10) The computed factor of safety is compared with the previous factor of safety. If 

the difference is less than a predetermined convergence criterion, 5, the search is 

discontinued. If not, the previous factor of safety is replaced with the new factor 

of safety and another iteration is undertaken repeating steps (6) through (9). 

The dynamic programming searching procedure was selected to move away from 

traditional grid and radius type searching procedures that require significant 

restrictions on the shape of potential slip surfaces. Dynamic programming provides 

the ability to develop meaningful admissibility criteria to guide the shape of the slip 
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surface and is not considered to be as vulnerable to being trapped in local minima as 

the grid and radius procedure. In addition, it is possible to design the search grid and 

perform a series of simple checks to reduce the chance of a situation where the 

searching procedure gets trapped in a local minimum (i.e., include a number of grid 

points outside the slope, choose a reasonable grid density and search portions of the 

slope separately etc.). 

2.3 Comparing Slope Stability Analysis Based 
on Linear Elastic or Elasto-Plastic Stresses 

A study was undertaken to ascertain the differences that might occur in slope stability 

analyses based on stresses calculated assuming linear elastic or elasto-plastic soil 

behavior. The methodology developed to perform the comparisons is presented 

followed by the results from specific examples. 

2.3.1 Methodology and Scope 

The methodology used to compare the slope stability calculations is illustrated in the 

flow chart shown in Figure 2.4. 
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Figure 2.4: Methodology used to compare the effect of the linear elastic or elasto-

plastic models on the slope stability calculation. 

The geometry of the slope was defined, followed by the generation of the 

isotropic linear elastic stresses resulting when gravity forces are "switched on". Pore-

water pressures were imported from a separate seepage analysis when required. The 

elasto-plastic stresses were evaluated using the linear elastic conditions as the initial 

stress state. Next, two separate slope stability analyses were completed; one based on 

the linear elastic stresses, the other based on the elasto-plastic stresses. The same 

dynamic programming grid was used to search for the critical slip surface in both 

cases. Finally, the shape, location and average factor of safety for the critical slip 

surfaces from the two slope stability analyses were compared. The stress-

deformation analyses were completed using FLAC (Itasca Consulting Group Inc.), 
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the seepage analyses were completed using SVFLUX (SoilVision Systems Ltd.), and 

the slope stability calculations were completed using a computer code developed 

specifically for this study. 

A variety of slopes with increasing complexity were included in the study to 

ensure that the comparison would encompass a range of typical conditions. The 

comparison begins with a parametric study involving a simple homogeneous slope. 

Next, embankments with various slope angles and pore-water pressure conditions are 

considered, followed by two multi-layered slope conditions. The current study is a 

continuation of the research presented by Stianson et al. (2004). 

Table 2.3 summarizes the range of soil properties considered in the parametric 

study completed for the simple homogeneous slope. Four values of Poisson's ratio 

were considered along with three combinations of c' and §''. The combinations of c' 

and <j)' were selected to evaluate cases where the factors of safety ranged from values 

greater than 1.0 to values less than 1.0, based on computations carried out using linear 

elastic stresses. Only the results obtained for the case where Poisson's ratio was 

equal to 0.48 have been included. The comparison for this case is representative of 

the results observed for other cases; the only differences being that the shape of the 

slip surface is affected slightly by changing Poisson's ratio. The slope stability 

results were not sensitive to Young's modulus. Therefore, Young's modulus was not 

included in the parametric study and was set to 20,000 kPa for all cases. The unit 

weight of the soil (y) and the convergence criteria (5) for the dynamic programming 

search remained constant throughout the comparison and were set to 18 kN/m3 and 

0.001, respectively. The factors of safety are reported to higher accuracy than is 

typically used in practice to facilitate a detailed comparison of the results. 
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Table 2.3: Range of soil properties used in the parametric study involving the 

homogeneous slope 

Unit 
Weight 

y 
(kN/m3) 

18 

18 

18 

18 

Poisson's 
Ratio 

V 

0.48 

0.40 

0.33 

0.20 

Effective 
Cohesion 

c' 
(kPa) 
20 
17 
15 
20 
17 
15 
20 
17 
15 
20 
17 
15 

Effective 
i Friction Angle 

*' 
(degrees) 
10 
7 
5 
10 
7 
5 
10 
7 
5 
10 
7 
5 

2.3.2 Presentation of Results 

The results of each comparison are presented beginning with the parametric study 

involving a homogeneous slope followed by other comparisons involving various 

pore-water pressure conditions, slope angles, and finally multi-layered slopes. 

2.3.2.1 Homogeneous Dry Slope 

Figures 2.5, 2.7 and 2.9 provide comparisons of the slope stability results for cases 

where the factors of safety are approximately 1.3, 1.0 and less than 1.0, respectively. 

The slip surface defined using square symbols represents the results based on linear 

elastic stresses while the slip surface described using triangular symbols represents 

the results based on elasto-plastic stresses. The solid line with no symbols represents 

the results from a conventional limit equilibrium analysis using the Morgenstern and 
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Price (1965) method. The linear elastic and elasto-plastic local factor of safety 

distributions have been included in Figures 2.6 and 2.8 for the first two cases. 
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Figure 2.5: Comparison of the shape, location and average factor of safety for the slip 

surfaces determined using linear elastic stresses, elasto-plastic stresses and the 

Morgenstern and Price (1965) method for the 2:1 homogeneous slope at a factor of 

safety of approximately 1.3. 

Figure 2.5 confirms that there is reasonably close agreement between all three 

analytical procedures when relatively stable slope conditions are considered. The 

shape and location for the critical slip surfaces are similar. The average factors of 

safety calculated using linear elastic and elasto-plastic stresses are 1.356 and 1.365, 

respectively. The difference between the two factors of safety values is less than 1%. 
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Figure 2.6: Local factor of safety distributions along the slip surfaces determined 

using linear elastic stresses or elasto-plastic stresses for the 2:1 homogeneous slope at 

a factor of safety of approximately 1.3. 

The local factor of safety distributions along each slip surface for the conditions 

evaluated in Figure 2.5, are provided in Figure 2.6. The central region of the slope is 

shown to have the highest local factor of safety followed by the crest of the slope and 

finally the toe of the slope. The evidence would suggest that failure might start at the 

toe of the slope as the local factor of safety is less than 1.0 based on elastic stresses 

and is equal to 1.0 based on elasto-plastic stresses. It can also be noted that the local 

factors of safety calculated using elasto-plastic stresses to the left of the failing 

portion at the toe are less than those calculated using elastic stresses. This behavior 

indicates that the excess stresses are being redistributed to more stable portions of the 

slope. Even though localized failure has started at the toe of the slope, it has only 

occurred over a small portion of the slip surface. Therefore, the agreement in the 
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overall factor of safety and the location of the slip surface illustrated in Figure 2.5 

might be expected. The differences might be accentuated as the stability of the slope 

is reduced and the overall factor of safety approaches 1.0. 
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Figure 2.7: Comparison of the shape, location and average factor of safety for the slip 

surfaces determined using linear elastic stresses, elasto-plastic stresses and the 

Morgenstern and Price (1965) method for the 2:1 homogeneous slope at a factor of 

safety of approximately 1.0. 

Figure 2.7 demonstrates that the agreement in the slope stability calculations 

continues as the factor of safety is decreased to approximately 1.0. There is 

reasonably close agreement between the shape and location of the critical slip surface 

and there is once again less than 1% difference in the overall factors of safety. 

The shape of the local factor of safety distribution based on linear elastic stresses is 

similar to that of the previous example but the local factors of safety have shifted 

downward as shown in Figure 2.8. Consequently, a zone at the toe of the slope has 

failed and failure has been initiated near the crest of the slope. The shape of the local 
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factor of safety distribution based on elasto-plastic stresses is essentially flat at a 

factor of safety near 1.0. The shape of the distribution indicates that the maximum 

amount of stress redistribution has taken place along the slip surface. Even with the 

large variations in local factor of safety, there is still reasonably close agreement 

between the shape, location and average factor of safety for the most critical slip 

surface. 

Elasto-Plastic Fs = 1.067 

Linear Elastic Fs=1.064 

20 25 30 35 40 45 
Distance Along Slip Surface (m) 

50 55 

Figure 2.8: Local factor of safety distribution along the slip surface determined using 

linear elastic stresses or elasto-plastic stresses for the 2:1 homogeneous slope at a 

factor of safety of approximately 1.0. 

A similar comparison was conducted for a case where the strength of the soil was 

further reduced resulting in an overall factor of safety below 1.0 (based on elastic 

stresses). The results of the comparison are shown in Figure 2.9. The overall factors 

of safety calculated using elastic and elasto-plastic stresses were equal to 0.868 and 

1.041, respectively. The difference between the two factors of safety is 
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approximately 16%. The slip surfaces determined from elastic stresses and the 

Morgenstern and Price method are similar to those found in the previous examples 

while the slip surface determined using elasto-plastic stresses has moved much deeper 

into the slope. The deeper slip surface might be a result of the deformed shape 

predicted in the elasto-plastic stress analysis. In the previous examples where the 

factors of safety were greater than or equal to 1.0, small displacements were adequate 

to allow the excess stresses to redistribute resulting in deformed shapes that were 

reasonably close to the original slope geometry. Further decreasing the soil strength 

resulted in larger displacements taking place before the excess stresses could be 

redistributed. It is possible that the increased displacements might have resulted in a 

deformed shape that deviated from the original slope geometry enough to cause 

significant differences in the slope stability comparison. An additional comparison 

was carried out using the deformed slope geometry predicted from the elasto-plastic 

analysis in an attempt to explain the differences shown in Figure 2.9. 
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Figure 2.9: Comparison of the shape, location and average factor of safety for the slip 

surfaces determined using linear elastic stresses, elasto-plastic stresses and the 

Morgenstern and Price (1965) method for the 2:1 homogeneous slope at a factor of 

safety of less than 1.0. 

The deformed slope geometry is shown in Figure 2.10 (dashed line) along with a 

comparison of the slope stability results from all three analytical methods. The 

critical slip surfaces identified using the elastic stress analysis and the Morgenstern-

Price method have moved deeper into the slope and the factors of safety have 

increased to 1.0, as result of the more stable deformed slope geometry. The 

comparison shows a similar level of agreement to that realized in previous examples 

where the factors of safety were greater than or equal to 1.0. The improved 

agreement shown in Figure 2.10 provides evidence that the deformed slope geometry 

was the cause for the differences in the slope stability results shown in Figure 2.9. 
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Figure 2.10: Comparison of the shape, location and average factor of safety for the 

slip surfaces determined using linear elastic stresses, elasto-plastic stresses and the 

Morgenstern and Price (1965) method based on the deformed geometry predicted 

using an elasto-plastic stress analysis. 

The results presented in Figure 2.5 through Figure 2.8 are meant to compare slope 

stability calculations considering conditions typically evaluated in practice (i.e., 

factors of safety from 1.3 to 1.0). The results demonstrate that the soil behavior 

model can significantly influence the local factor of safety distribution but has little 

influence on the overall factor of safety. It is understood that it is impossible for the 

slope conditions evaluated in Figure 2.9 and 2.10 to exist naturally (i.e., factor of 

safety is less than 1.0). Nevertheless, the results are included to demonstrate that the 

comparison needs to be extended to the point of unrealistic slope conditions before 

the slope stability comparison indicates any significant differences. The results 

emphasize the conclusion that there will be no difference between slope stability 

calculations based on linear elastic or elasto-plastic stresses as long as the same slope 
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geometry is being evaluated. The results can be used to explain other cases where 

the selection of soil properties in the finite element analysis (i.e., strength properties 

or Young's modulus) might result in a deformed shape that is different than the 

original shape. The results also show that small changes in geometry can result in a 

significant difference in the location of the slip surface and the overall factor of 

safety. The results emphasize the importance of making sure the geometry of the 

slope is as accurate as possible. 

The previous examples compare the slope stability calculations as the slope is 

brought to failure by decreasing the strength of the soil. Figure 2.11 provides a 

comparison involving a case where the stability of the slope is reduced by increasing 

the slope angle while keeping the strength of the soil constant. The cohesion is equal 

to 20kPa and the angle of internal friction is equal to 10°. Three slope angles are 

considered including 3:1, 2:1 and 1:1 resulting in factors of safety of approximately 

1.5, 1.3 and 1.0. The results confirm that a similar level of agreement is achieved for 

a case where the stability of the slope is reduced by increasing the slope angle. 
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Figure 2.11: Comparison of the shape, location and average factor of safety for the 

slip surfaces determined using linear elastic stresses or elasto-plastic stresses for a 

homogeneous slope with slope angles of 3:1., 2:1 and 1:1. 

The slope stability comparisons thus far have only given consideration to dry 

homogeneous slopes. Additional slope stability analyses are presented where the 

effects of pore-water pressure and multiple soil layers are considered. 

2.3.2.2 Homogeneous Wet and Submerged 
Slope 

The stability of a homogeneous embankment with a 2:1 slope angle is evaluated 

under two conditions including a case where the piezometric line passes through the 

toe of the slope (i.e., wet slope) as well as a case of partial submergence of the slope 

(Figure 2.12). The effective cohesion and effective friction angle were arbitrarily 

selected to be 20 kPa and 10°, respectively. The computed average factors of safety 
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were approximately 1.22 for the wet slope and approximately 1.25 for the submerged 

slope. The slope stability analyses based on elastic and elasto-plastic stresses showed 

reasonably close agreement under both the wet and submerged conditions. 
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Figure 2.12: Comparison of the shape, location and average factor of safety for the 

slip surfaces determined using linear elastic stresses or elasto-plastic stresses for the 

2:1 homogeneous slope with a piezometric line (i.e., wet slope) as well as conditions 

of partial submergence. 

2.3.2.3 Two Layer Slope 

The first multi-layered slope configuration is shown in Figure 2.13. The slope stands 

at a 2:1 angle and consists of two soil units. The shear strength of both soil layers 

was selected to result in an overall factor of safety close to 1.0. The final soil 

properties selected for the analysis are provided in Figure 2.13. 
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Figure 2.13: Comparison of the shape, location and average factor of safety for the 

slip surfaces determined using linear elastic stresses or elasto-plastic stresses for the 

2:1 slope with two soil layers. 

The results shown in Figure 2.13 demonstrate the same level of agreement 

observed in other examples. The difference between the two factors of safety is less 

than 1% and there is agreement in the shape and location of the critical slip surface. 

2.3.2.4 Three Layer Slope 

The second multi-layered slope includes three soil layers. The shear strength 

properties were selected to result in an average factor of safety near 1.0. A thin, weak 

layer was also included to illustrate the effect on the shape and location of a slip 

surface that is controlled by a geological feature. 
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Figure 2.14: Comparison of the shape, location and average factor of safety for the 

slip surfaces determined using linear elastic stresses or elasto-plastic stresses for the 

2:1 slope with three soil layers including a weak layer. 

The results in Figure 2.14 show that the same level of agreement is achieved even 

under more complex stratigraphic conditions. It appears that the same mode of 

failure is determined assuming either linear elastic or elasto-plastic soil behavior. 

The application of the dynamic programming optimization technique makes it 

possible to determine the mode of failure without making any prior assumptions 

regarding the shape of the slip surface. There is once again less than 1% difference in 

the average factor of safety and there is good agreement in the shape and location of 

the critical slip surface. 
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2.4 The Effects of the Linear Elastic or Elasto-
Plastic Constitutive Model on the Slope 
Stability Calculation 

Examination of a number of slope stability comparisons involving various 

stratigraphic and pore-water pressure conditions shows no significant differences on 

the slip surface location or the overall factor of safety when linear elastic or elasto-

plastic soil behavior is assumed. The differences in the slope stability calculations 

become apparent when the local factors of safety are compared at individual points 

along the slip surfaces. These differences are accentuated as the slope becomes close 

to failure. The following discussion examines why there are large differences in the 

local factor of safety and proposes a condition where the assumed soil behavior 

model might significantly influence the calculation of the overall factor of safely. 

From Eq. [2.2], the shear strength is dependent on five variables; namely, 

effective cohesion , c\ effective angle of internal friction, <()', pore-water pressure 

distribution, uw, and the angle defining the ratio of increase in shear strength with 

respect to soil suction, § . Four of the above variables are independent of the stress 

analysis; namely, c\ fy, uw and <|> , in typical slope stability calculations. These 

variables are assigned values for the various soil layers and held constant throughout 

the analysis. The normal stress, an, is the only variable that can be influenced by the 

selected constitutive model. If the stress distribution is approximated by "switching 

on" gravity forces, the normal stress will be controlled largely by the geometry of the 

slope. Therefore, it could be expected that similar normal stresses would be 

calculated regardless of the selected constitutive model as long as the same soil 

properties and geometry are used. 
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Figure 2.15: Shear strength distributions along the slip surfaces determined using 

linear elastic stresses or elasto-plastic stresses for the 2:1 homogeneous slope and a 

factor of safety approximately equal to 1.0. 

The above rationale can be described further by considering the local shear 

strength distributions shown in Figure 2.15. Figure 2.15 shows a plot of the shear 

strength distribution along the critical elastic and elasto-plastic slip surfaces 

determined for the homogeneous slope with a factor of safety of approximately 1.0 

(i.e., Figure 2.7). The shear strength values based on linear elastic stresses are 

slightly larger than those based on elasto-plastic stresses. The small differences are 

due to the fact that the slip surface determined based on elastic stresses is slightly 

lower than the slip surface determined from elasto-plastic stresses. A lower slip 

surface will have larger normal stresses and slightly larger shear strengths. Overall, 

the assumed soil behavior model seems to have little influence on the shape of the 

shear strength distribution and the magnitude of individual values along the 

distribution. This would indicate that the variations observed in the local factor of 
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safety distributions shown in Figure 2.8 do not originate in the shear strength term of 

the factor of safety equation. 

Figure 2.16: Comparing linear elastic versus elasto-perfectly plastic stress analysis. 

The mobilized shear stress is calculated using the deviatoric stress from the stress 

analysis (Figure 2.16a) in combination with Mohr's circle (Figure 2.16b). It is 

possible to calculate different mobilized shear stresses depending on the stability of 

the slope and the constitutive model selected for the stress analysis. Referring to 

Figure 2.16a, the deviatoric stress calculated for failing portions of the slope, using 

the elasto-plastic model, are only permitted to rise to the shear strength of the soil 

before being redistributed to other areas of the slope. The deviatoric stresses 

calculated using the linear elastic constitutive model are permitted to increase beyond 

the shear strength of the soil. Higher deviatoric stresses produce Mohr's circles with 
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larger radii, resulting in higher mobilized shear stresses as shown in Figure 2.16b. 

The shear stress distributions shown in Figure 2.17 confirm that the mobilized shear 

stress calculated from a linear elastic analysis is higher in failing portions of the slope 

and seems to explain the origin of the observed variations in the local factor of safety 

distributions. 
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Figure 2.17: Mobilized shear stress distributions along the slip surfaces determined 

using linear elastic stresses or elasto-plastic stresses for the 2:1 homogeneous slope 

and a factor of safety approximately equal to 1.0. 

All of the slope stability calculations completed in the current study are evaluated 

based on the assumption that the strength parameters (i.e., c' and <]>') are constant 

throughout individual soil units. It is possible that the assumed soil behavior model 

might influence the slope stability calculations more significantly if attempts were 

made to capture the strain softening characteristics of the soil. The strength of the 

soil could be included in the slope stability analysis as a function of the amount of 
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strain computed from the stress-deformation analysis, according to a relationship 

similar to that shown in Figure 2.18. 

Figure 2.18: Shear strength for a strain softening material. 

In certain locations of the slope, the strength of the soil will correspond to the 

peak strength conditions shown in Figure 2.18. Other locations of the slope might 

have been subject to additional strains resulting in a loss of strength (i.e., c' and <)>'). 

The strength of the soil might exist at some intermediate level (dashed line) or in 

extreme cases be reduced to a level corresponding to the residual strength of the soil. 

It is possible to assign the strength at individual locations within the slope according 

to the strains calculated from a numerical stress-deformation analysis. Significant 

differences might occur between a slope stability analysis based on linear elastic 

stresses using constant strength parameters when compared to a slope stability 

analysis using strain dependent strength properties. The slope stability method used 

in the current analysis would have to be modified to perform slope stability analyses 

using strain dependent shear strength properties. 
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2.5 Conclusions 

Slope stability results based on linear elastic or elasto-plastic stress analyses have 

been compared with respect to the shape, location and overall factor of safety for the 

most critical slip surface. The following conclusions can be made from this study. 

1) There appears to be insignificant differences in the local factors of safety 

calculated from linear elastic stresses or elasto-plastic stresses for slopes with 

factors of safety large enough such that localized failure does not occur. The 

differences in the local factor of safety become larger for slopes that are close to 

failure and experience localized failure. The local factors of safety determined 

when using elasto-plastic stresses for slopes at or near failure would appear to be 

more representative of in situ conditions. 

2) There are small essentially insignificant differences between the shape, location 

and the overall factors of safety (i.e., less than 1%) calculated using either the 

linear elastic or elasto-plastic stress analysis. The use of linear elastic stresses 

appears to be acceptable when the factor of safety is equal to, greater than, or less 

than unity and constant shear strength properties are used in the slope stability 

analysis. 

3) Slope stability calculations in engineering practice are generally concerned with 

the stability of the original slope geometry, not the deformed slope geometry. It is 

noted that the geometry at the end of the elasto-plastic stress-deformation analysis 

can be significantly different from the original slope geometry. The geometrical 

differences can significantly alter the slope stability evaluation. 

4) The shape, location, and overall factor of safety predicted using conventional 

methods of slices agrees with the results based on elastic stresses for factors of 

safety greater than, equal to, or less than 1.0 for the range of examples presented in 

this study. 

5) The comparisons show no significant deviation in the results based on either soil 

behavioral model for cases where the factors of safety are greater than or equal to 
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1.0. When the overall factor of safety is less than 1.0, the linear elastic model and 

the limit equilibrium method of slices give similar answers. The elasto-plastic 

model will seek a slip surface location where the factor of safety is 1.0. 

The agreement shown in this comparative study confirms that linear elastic 

stresses can provide a reasonable representation of the stresses at failure for a wide 

range of conditions. Therefore, linear elastic stresses will likely continue to be found 

in general usage for limit equilibrium slope stability analysis. 
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Chapter 3 

The Role of Admissibility Criteria 
in Stress-Based Slope Stability 
Methods 

3.1 Introduction 

The development of slope stability methods where the factor of safety is computed 

based on stresses from a finite element analysis provide a number of advantages when 

compared to conventional method of slices techniques. Fredlund and Scoular (1997) 

report that the factor of safety equation is determinate and linear indicating that no 

additional assumptions are required regarding the internal forces acting on the sliding 

mass. Therefore, iterative procedures are not required to compute the factor of safety. 

Pham and Fredlund (2003) recognized that reducing the complexity of the factor of 

safety calculation and a priori knowledge of the internal stress distribution provides 

the ability to adopt more advanced searching procedures and integrate kinematic 

admissibility criteria to govern the search for the critical slip surface. The end result 

is a slope stability method that does not require assumptions regarding the shape of 

potential slip surfaces; rather, the shape of the slip surface becomes part of the slope 

stability evaluation. 

The internal stress distribution is commonly generated using the "switch-on" 

gravity technique assuming isotropic linear elastic soil behavior. Young's modulus 

and Poisson's ratio are often assigned at random with little knowledge of how the 

values will impact the slope stability calculations. Sensitivity studies are sometimes 

performed as part of the stability analysis to determine if the factor of safety is 
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sensitive to the selection of Young's modulus or Poisson's ratio. The selection of 

appropriate values could be simplified if the variability in the factor of safety is low. 

If the variability in the factor of safety is high, it might mean that more effort is 

required to determine the most appropriate values to be used in combination with a 

stability analysis. Most researchers agree that Young's modulus has little to no 

influence (< 3%) on computed factors of safety (Table 3.1). However, there appears 

to be different views regarding the overall influence of Poisson's ratio (Table 3.1). In 

some cases, the factor safety is reported to vary by less than 5% while in other cases 

the factor of safety is shown to vary by more than 20%. 

One of the main objectives of this paper is to determine the influence that 

Poisson's ratio and Young's modulus might have on finite element slope stability 

calculations. This part of the study is limited to normally consolidated slopes (i.e., 

stress conditions generated by the 'switch on' gravity method.) to remain consistent 

with the types of analyses considered in previous research. The results from a 

sensitivity study are used to discuss previous experience regarding the influence of 

Poisson's ratio. The study goes on to examine if a linear elastic stress analysis can be 

used to capture the collapse process in overconsolidated soil conditions. Discussion 

is also provided regarding the merits related to the strict application of kinematic 

admissibility criteria in the dynamic programming searching procedure and the 

potential to violate kinematic admissibility if searching procedures like the grid and 

radius method are used. 

3.2 Background 

A number of studies have been completed to investigate the influence of Poisson's 

ratio and Young's modulus on the factor of safety calculations (Table 3.1). The slope 

conditions range from cases such as dams and other embankments, to representative 

cases including homogeneous and layered slopes. The internal stresses are generated 

for a range of conditions including excavated slopes, built-up slopes and 

embankments where gravity forces are 'switched on'. The internal stress distribution 
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for a particular slope is recalculated a number of times using different values for 

Poisson's ratio and Young's modulus. Slope stability calculations are completed for 

each case and the overall variation in the factor of safety is recorded. The factor of 

safety from various method of slices procedures have been used to provide a context 

to the results to discover clear trends between finite element based slope stability 

calculations and method of slices analyses. 

Table 3.1 provides a summary of information regarding the range of Poisson's 

ratios considered in each sensitivity study, the maximum variation in the factor of 

safety resulting from the selection of different values for Poisson's ratio and the 

maximum variation in the factor of safety as a result of selecting various values for 

Young's modulus. Most researchers agree that Young's modulus has little to no 

influence on the factor of safety for homogeneous conditions and minimal influence 

(< 3%) on the factor safety for layered conditions (i.e., layers with contrasting 

Young's modulus values.) (Wang and Sun 1970). Therefore, most of the attention 

was directed towards studying the influence of Poisson's ratio. Figures illustrating 

the relationship between the computed factors of safety and Poisson's ratio were 

presented in addition to recording the maximum variation in the factor of safety. 
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Table 3.1: Previous studies regarding the influence of Poisson's ratio on limit 

equilibrium slope stability calculations. 

Author 
Dunlop and Duncan 1970 
Wang and Sun 1970 
Wright etal. 1973 
Fredlund et al. 1997 
Fredlund and Scoular 1999 
Pham and Fredlund 2003 
Gitirana Jr. and Fredlund 2003 
Brito et al. 2004 

Range of 
Poisson's ratio 
0.2 - 0.475 
0.2 - 0.4 

0.3 - 0.49 
0.33 and 0.48 
0.33 and 0.48 

0.33, 0.43, 0.49 
0.3 

Maximum variation in the 
factor of safety (%) 
Poisson's 
ratio 
-

5% 
6% 
1% 
3% 

20% 
19% 
* 

Young's 
modulus 
0 
3% 
-
-
-
-
-

-

* Influence of parameter considered to be significant but value not reported. 
- Influence of parameter considered to be negligable but value not reported. 

There appears to be some debate regarding the influence of Poisson's ratio on 

factor of safety calculations. Early studies seem to indicate that Poisson's ratio does 

not have a significant influence on the computed factor of safety (Dunlop and Duncan 

1970; Wang and Sun 1970; Wright et al. 1973; Fredlund et al. 1997). The latest 

studies suggest that the factor of safety might vary as much as 20% depending on the 

value selected for Poisson's ratio. The main difference between slope stability 

methods developed after 1999 is the use of kinematic admissibility criteria to govern 

the search for the critical slip surface. Slope stability methods developed prior to 

Pham and Fredlund (2003) assumed that the slip surface was circular. Circular slip 

surfaces were assumed to be kinematically admissible and no specific checks were 

performed to confirm the assumption. The following section provides more detail 

related to the application of kinematic admissibility criteria when the shape of the slip 

surface is computed as well as the importance of checking for admissibility when the 

shape of the slip surface is assumed. 
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3.3 Admissibility Criteria Developed to 
Govern the Shape of Potential Slip 
Surfaces 

Admissibility criteria can be viewed as a set of rules used to govern the shape of slip 

surfaces considered in the slope stability analysis. The goal is to select the 

admissibility criteria that can be used to simulate actual slope stability failures. 

Admissibility criteria are typically selected to provide a balance between the 

flexibility that is required to simulate real cases and difficulties encountered in the 

numerical techniques used to compute the factor of safety and search for the critical 

slip surface. The application of admissibility criteria has taken on different forms 

throughout the development of slope stability methods. One example is the use of 

trial and error searching procedures where the critical slip surface is assumed to be 

circular. Another example is the development of criteria to evaluate the admissibility 

of the circular slip surface resulting from the method of slices analysis. These types 

of admissibility criteria are based on principles of soil mechanics and force 

equilibrium and are applied by considering the forces acting on individual slices. The 

admissibility criteria can be used to identify situations where the slope stability results 

might not be reliable; such as cases where the mobilized shearing resistance becomes 

large and negative resulting in negative factors of safety or conditions where the total 

and effective normal force at the base of a slice is negative to maintain force 

equilibrium (i.e., state of tension is implied) (Ching and Fredlund 1983). These 

admissibility criteria can be viewed as secondary criteria and are typically applied 

once the search for the critical slip surface is complete. 

More advanced searching procedures have been developed to permit the 

application of admissibility criteria during the search for the critical slip surface. 

Certain admissibility criteria are based strictly on the geometry of the slip surface 

while others are based on physical principles related to the slope movement or 

principles of soil mechanics. Admissibility criteria based only on the geometry of the 

slip surface can be classified as geometric admissibility criteria and admissibility 
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criteria based on some aspect of the physics of the movement can be classified as 

kinematic admissibility criteria. Kinematic admissibility criteria are generally more 

flexible and result in fewer restrictions on the shape of the slip surface. However, the 

ability to apply kinematic admissibility criteria is influenced by the searching 

procedure and the procedure used to compute the factor of safety (Stianson 2008). 

Kinematic admissibility criteria can be applied in cases where dynamic programming 

is used to search for the critical slip surface and the factor of safety is computed based 

on stresses generated from a separate stress-deformation analysis. Geometric 

admissibility criteria are typically easier to apply because no prior knowledge of the 

internal stress distribution is required. 

The use of slope stability methods where the factor of safety is computed based 

on finite element stresses has resulted in the development of new ways to apply 

kinematic admissibility criteria. Pham and Fredlund (2003) developed a method 

where kinematic admissibility criteria can be used to control the shape of the slip 

surface while the search for the critical slip surface is in progress. The method hinges 

on the use of dynamic programming to search for the critical slip surface. The 

kinematic admissibility criterion used to control the shape of the slip surface is based 

on the principle that resisting forces acting along a slip surface must act in a direction 

opposite to the assumed direction of mass movement (i.e., the mobilized shear forces 

are assumed to act in the direction of movement.). A Mohr's circle analysis is used to 

identify the direction of the mobilized shear force acting on individual line segments 

considered in the dynamic programming search. If the mobilized shear stress is in the 

direction of slope movement the line segment is included in the search; if not, the line 

segment is excluded from the search (Figure 3.1). The kinematic admissibility 

criteria used by Pham and Fredlund (2003) is similar to assumptions made in a 

method of slices analysis in that: 1) the direction of slope movement is assumed at the 

beginning the analysis and 2) the mobilized shear force along the base of a slice is 

required to act in the direction of slope movement. 
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Figure 3.1: A schematic illustrating the application of kinematic admissibility criteria 

during the dynamic programming search (Pham and Fredlund 2003). 

Slip surfaces generated using geometric admissibility criteria are not necessarily 

kinematically admissible. Circular slip surfaces considered in a "grid and radius" 

search are often assumed to be kinematically admissible even though no specific 

checks are performed to confirm the assumption. A number of examples are 

considered in the current study to investigate whether or not there might be cases 

where circular slip surfaces might violate the kinematic admissibility criteria 

described in Figure 3.1. 

3.4 Influence of Poisson's Ratio on Normally 
Consolidated Slopes 

A sensitivity study was completed to investigate why some reports suggest the 

influence of Poisson's ratio is less than 10% while other studies report that the factor 

of safety might vary as much as 20%. The sensitivity study was designed with the 

objective of identifying at least one slope configuration where the different levels of 
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sensitivity observed in previous studies could be duplicated. In other words, identity 

one case where: 1) the influence of Poisson's ratio is less significant when the shape 

of the slip surface is assumed to be circular and, 2) the influence of Poisson's ratio is 

more significant when the search for the slip surface is governed using kinematic 

admissibility criteria. The sensitivity study is divided into two sections according to 

the procedure used to control the shape of potential slip surfaces. Slip surfaces are 

assumed to be circular in the first section and dynamic programming is used to search 

for the shape of the critical slip surface in the second section. The factor of safety is 

computed based on finite element stresses in both sections. 

Figure 3.2 provides a summary of the methodology that was developed to identify 

slope conditions that might be used to duplicate the controversy observed in previous 

studies. Experience seems to indicate that the influence of Poisson's ratio might be 

related to the location of the critical slip surface (i.e., more significant when the slip 

surface is shallow). The location of the slip surface in a homogeneous slope can be 

controlled by selecting different combinations of effective cohesion (c) and angle of 

internal friction (</>'). Deeper slip surfaces result when cohesion dominates the 

strength of the material. The slip surface moves towards the slope face as the 

cohesion is decreased to zero. 
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Figure 3.2: Sensitivity study designed to duplicate the controversy observed in 

previous studies. 

A number of c' and (/>' combinations were considered resulting in deep slip 

surfaces progressing to conditions where the slip surface approaches the face of the 

slope. The stability number (TV) was calculated for each c and ^' combination, using 

Eq.[3.1], 

[3.1] N-
yHtanfi 

where c' is cohesion, y is the unit weight, H is the slope height, and (/>' is the angle of 

internal friction. Larger stability numbers indicate conditions where cohesion 

dominates the strength of the soil (i.e., deep slip surfaces) and lower stability numbers 

indicate conditions where friction dominates the strength of the soil (i.e., shallow slip 
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surfaces). The angle of internal friction was set to 30 degrees in the stability number 

equal to zero case to consider the limiting condition where the internal angle of 

friction is equal to the slope angle. 

The internal stress distribution for the slope was generated using an isotropic 

linear elastic "switch-on" gravity analysis. The internal stresses were re-computed a 

number of times based on different values of Poisson's ratio ranging from 0.1 to 0.48. 

Poisson's ratio partially controls the relationship between the horizontal and vertical 

stress in an isotropic linear elastic analysis. Under no later yield condition for 

horizontally layered soils, this process generates a Ko value equal to Ko = ox/ay - v 

/(l - v )). Poisson's ratio were used as a tool to generate a range of stress conditions 

where Ko varies between 0 and 1.0. For Ko values higher than 1.0, high horizontal 

stresses were applied on the boundaries. The stability analysis was completed for 

each Ko condition to evaluate the influence of the internal stress distribution on the 

factor of safety calculation. 

3.4.1 Section No. 1: Influence of Poisson's 
Ratio when the Slip Surface is Assumed 
to be Circular 

The factor of safety for each c' and <f> combination was re-calculated five times using 

the following values for Poisson's ratio; 0.1, 0.2, 0.3, 0.4, and 0.48. Figure 3.1 

illustrates the variability in the factor of safety for the critical slip surface (CSS) 

corresponding to each stability number. Poisson's ratio is listed along the horizontal 

axis. The percent difference between the factor of safety computed when Poisson's 

ratio is equal to 0.48 and the factors of safety computed for the other values of 

Poisson's ratio (i.e., 0.1, 0.2, 0.3, and 0.4), is listed on the vertical axis. 
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Figure 3.3: Relationship between Poisson's ratio and the factor of safety assuming the 

shape of the slip surface is circular. 

The results seem to follow a trend where the influence of Poisson's ratio becomes 

more significant as the slip surface becomes shallow (i.e., lower stability number). 

The maximum variability in the factor of safety is less than 8% and seems to 

correspond to the results from earlier research listed in Table 3.1. 

3.4.2 Section No. 2: Influence of Poisson's 
Ratio when Kinematic Admissibility 
Criteria are used to Control the Shape of 
the Critical Slip Surface. 

The sensitivity study described in Figure 3.4 was repeated using a slope stability 

method where dynamic programming was used in combination with kinematic 
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admissibility criteria to search for the critical slip surface. The results are presented 

in Figure 3.4 following the same form as the previous section. Poisson's ratio is 

plotted along the horizontal axis. The vertical axis lists the difference between the 

factor of safety computed for the case where Poisson's ratio is equal to 0.48 and the 

factors of safety computed using other values of Poisson's ratio (i.e., 0.1, 0.2, 0.3, and 

0.4). The relationship between Poisson's ratio and the factor of safety is plotted for 

each stability number. 
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Figure 3.4. Relationship between Poisson's ratio and the factor of safety for the case 

where the shape of the slip surface is controlled using kinematic admissibility criteria. 

The variability in the factor of safety is similar to the results reported in the previous 

section (< 8%) for the cases where the stability number is greater than or equal to 

0.14. However, the maximum variability in the factor of safety occurs for the case 

where the stability number is equal to zero. The difference is higher than 35%. The 

stability number equal to zero case is one example that can be used to duplicate the 

differences observed in previous studies. It appears that the influence of Poisson's 
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ratio is related to the type of admissibility criteria applied during the search for the 

critical slip surface. 

Figure 3.5 through 3.8 display the variability in the shape and location of the 

critical slip surface when dynamic programming is combined with kinematic 

admissibility criteria to search for the critical slip surface. Each figure displays a 

family of slip surfaces corresponding to the values of Poisson's ratio selected in the 

finite element stress analysis. There are a total of six slip surfaces on each figure, one 

for each value of Poisson's ratio (5) and the critical slip surface identified using the 

Morgenstern-Price (1965) method of slices technique. 
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Figure 3.5: Family of slip surfaces for the case where the stability number is equal to 

1.71. 
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Figure 3.8: Family of slip surfaces for the case where the stability number is equal to 

zero. 

The family of slip surfaces for each stability number follow the general behavior 

illustrated in Figure 3.2 in that deeper slip surfaces correspond to larger stability 

numbers. The variability in the shape and location of the critical slip surface seems to 

fluctuate for different stability numbers. The shape of the slip surfaces is relatively 

consistent when the stability number is greater than zero. However, there are large 

differences in the shape and location of the critical slip surface for the case where the 

stability number is equal to zero. It is interesting to point out that these conditions are 

also difficult to evaluate using the method of slices. The conditions generally result 

in shallow localized slip surfaces making it difficult to determine the factor of safety 

for a global failure condition. A global slip surface is often investigated by 

artificially increasing the cohesion of the material by small amounts (i.e., 1 to 5 kPa 

for example.). Increasing the cohesion typically results in a deeper slip surface with a 

higher factor of safety. The increase in the factor of safety resulting from a small 
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increase in the cohesion is considered acceptable in return for the ability to 

investigate the desired global failure condition. A similar procedure was required for 

the case where Poisson's ratio is equal to 0.48. The search grid was designed to keep 

the slip surface from rising too close to the slope face resulting in a similar location to 

the critical slip circle identified by the Morgenstera and Price analysis. 

The tendency for the slip surface to rise to the slope face can be explained 

considering the Mohr-Coulomb failure envelope shown in Figure 3.9. The failure 

envelope is elevated at the angle of internal friction and passes through the origin 

when cohesion is equal to zero. The Mohr's circles shown in Figure 3.9 represent 

potential stress states for a soil element on or near the slope face. The minimum 

principal stress for a soil element near the slope face is close to zero. The Mohr's 

circle passes close to the origin and intersects the failure envelope. 

f - ^ — Failure Envelope 

a) Point near the slope 

face (failure) 

b) Point away from the 

slope face (failure) 

c) Point away from the 

slope face (no failure) 

b) 

Figure 3.9: Conceptual Mohr-Coulomb failure envelope for a cohesionless material. 

The results presented in Figure 3.8 are not consistent with the behavior described 

above. The critical slip surface is near the slope face when Poisson's ratio is close to 

0.5 but moves deeper into the slope as Poisson's ratio is decreased to 0.1, even though 

the stability number is equal to zero. These results provide evidence that there might 

be difficulties associated with the strict application of kinematic admissibility criteria 

during the search for the critical slip surface. It is interesting to note that the critical 
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slip surface follows the anticipated behavior regardless of the value selected for 

Poisson's ratio if the search for the critical slip surface is carried out using the grid 

and radius method where no kinematic admissibility checks are applied. The 

following section describes a procedure that was developed to evaluate the interaction 

between the admissibility criteria adopted in the searching procedure and the internal 

stress distribution computed from the stress-deformation analysis. 

3.5 The use of 'Admissibility Plots' to Illustrate 
the Interaction between the Internal Stress 
Distribution and the Application of 
Kinematic Admissibility Criteria 

Information gathered during a dynamic programming search can be used to create 

plots illustrating the influence of the admissibility criteria on the overall slope 

stability calculations. A significant number of line segments can be evaluated during 

the search for the critical slip surface. The line segments are created by joining two 

points from the dynamic programming search grid. It is possible to record the 

admissibility and local factor of safety for each line segment. The information can be 

used to identify the combination of line segments resulting in the critical admissible 

path to any point on the dynamic programming search grid. Plotting the critical path 

to every point on the search grid is one way to illustrate the interaction between the 

internal stress distribution and admissibility criteria applied during the search for the 

critical slip surface. These plots can be used to gain a general understanding 

regarding the critical trends associated with the overall admissibility of the system 

and can be referred to as 'admissibility plots'. Urciuoli and Picarelli (2004) use a 

similar type of plot to illustrate the rotation of failure planes predicted by Mohr's 

theory during the development of slope failure. It is important to point out that 

'admissibility plots' only show a sample of the total number of admissible line 

segments considered in the dynamic programming search. It would not be possible to 

distinguish between line segments if all of the admissible line segments were included 
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in the admissibility plot. Similarly, line segments connecting grid points outside the 

boundaries of the slope are not included to remove unnecessary clutter. All of the 

admissibility plots presented below were generated using the same dynamic 

programming search grid to provide a consistent basis for comparison. 

Figure 3.10 and 3.11 are the admissibility plots for the case where Poisson's ratio 

is equal to 0.48 and the stability numbers are equal to 1.71 and zero, respectively. 

The critical slip surfaces are included to illustrate the relationship to the overall 

admissibility of the system. 

35 

40 50 
Distance (m) 

Figure 3.10: Admissibility plot for the case where Poisson's ratio is equal to 0.48 and 

the stability number is equal to 1.71 (Fs = 1.24). 
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Figure 3.11: Admissibility plot for the case where Poisson's ratio is equal to 0.48 and 

the stability number is equal to 0 (Fs — 0.75). 

The admissibility plots confirm that slip surfaces can be expected to be circular for 

the case where the stability number is equal to 1.71 and slip surfaces can be expected 

to take on planar characteristics when the stability number is equal to zero. There are 

a large number of line segments surrounding the critical slip surface in both cases 

indicating that the search is not restricted due to the presence of inadmissible line 

segments in critical areas of the slope. 

Figure 3.11 and 3.12 are the admissibility plots for the case where Poisson's ratio 

is equal to 0.1 and the stability numbers are equal to 1.71 and zero, respectively. 

There is a significant reduction in the number of line segments surrounding the 

critical slip surface in both cases. It appears that the selection of Poisson's ratio has a 

significant influence on the admissibility of line segments in certain areas of the 

slope. The reduction in the number of admissible line segments near the crest of the 

slope is likely the cause of the variability in the location of the slip surface shown in 

Figure 3.7 (N = 1.71). It appears that the entry of the slip surface is forced closer to 

the crest of the slope for the cases where Poisson's ratio is less than 0.3. Pushing the 

entry point closer to the crest seems to have resulted in shallower slip surfaces. The 
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restrictions seem to be less significant when the stability number is equal to 0.15 and 

have the opposite effect when the stability number is 0.14. The admissibility plots 

seem to be useful in explaining why there is more variability in the location of the slip 

surface in some cases but not in others (i.e., Figure 3.5, Figure 3.6, Figure 3.7, and 

Figure 3.8). 

40 50 
Distance (m) 

Figure 3.12: Admissibility plot for the case where Poisson's ratio is equal to 0.1 and 

the stability number is equal to 1.71 (Fs = 1.22). 
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Figure 3.13: Admissibility plot for the case where Poisson's ratio is equal to 0.1 and 

the stability number is equal to 0 (Fs = 1.44). 

The reduction in the number of admissible line segments when Poisson's ratio is 

equal to 0.1 seems to have a significant impact on the location of the critical slip 

surface when the stability number is equal to zero. Previous discussions indicate that 

the slip surface should rise to the ground surface when the material is cohesionless 

and the internal angle of friction is equal to the slope angle. Figure 3.13 illustrates 

that there are a small number of admissible line segments near the slope face. A close 

evaluation of those line segments reveals that there is no combination of admissible 

line segments to provide a continuous slip surface. Some slip surfaces end abruptly 

before exiting the slope and others have not entry point near the crest of the slope. 

As a result, the search for the critical slip surface is forced deeper into the slope. The 

critical slip surface shown in Figure 3.13 is nearly the shallowest set of line segments 

that can be combined to form a continuous slip surface. 
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3.5.1 Interaction between Stress Rotation and 
Admissibility Criteria 

The admissibility plots presented above demonstrate that the admissibility of line 

segments in certain areas of the slope can be affected by the selection of Poisson's 

ratio. Poisson's ratio, v, partially controls the relationship between the horizontal and 

vertical stresses and can influence the orientation of the principal stresses. Figure 

3.14 demonstrates conceptually how the slope stability calculations can be affected if 

the orientation of the principal stress is rotated. 

a) 90° 

Admissible 

180° ccw from c^ 

b) 115° 

;0° 

CTl <*1 

CT3 

Figure 3.14: Conceptual illustration of how stress rotations can influence the 

admissibility of line segments considered in the dynamic programming search. 

First, let us assume that positive shear stresses correspond to the assumed 

direction of failure. Therefore, line segments with positive shear stresses are 

admissible and line segments with negative shear stresses are not admissible. 

According to Mohr's circle, line segments will have positive shear stress if oriented at 

angles between 0 and 180 degrees measured counter clockwise (ccw) from the plane 

where oi acts (or clockwise from the plane where OT, acts). Line segments considered 

in the slope stability analysis will be admissible if oriented at angles between 0 and 

90 degrees since angles measured on Mohr's circle are twice the angle measured in 

reality (i.e., Principal stresses are 90 degrees apart on the soil element which 
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corresponds to 180 degrees in Mohr's circle.). Let us suppose that scenarios a) and b) 

represent an element of soil at the same point near the toe of a slope. The internal 

stress distribution in scenario a) was generated using one value for Poisson's ratio 

while the internal stresses in scenario b) were generated using a different value of 

Poisson's ratio. The actual values for Poisson's ratio are not important for this 

discussion. The main point is that the procedure used to generate the stresses in 

scenario b) resulted in the rotation of the principal stresses. 

In scenario a), a\ acts on a horizontal plane. Therefore, line segments oriented 

between 0 and 90 degrees measured counter clockwise from a horizontal plane are 

admissible. Two arbitrary admissible line segments are shown along with the shaded 

zone with no admissible line segments. In scenario b), G\ acts on a plane elevated at 

25 degrees (ccw) from the horizontal. Therefore, line segments oriented between 25 

and 115 degrees are admissible. The discussion demonstrates how the orientation of 

the principal stresses can influence the orientation of admissible line segments. In 

this case, admissible line segments in scenario b) are steeper than admissible line 

segments in scenario a). It should be noted that the line segments considered in the 

dynamic programming search are created by joining two points from the dynamic 

programming search grid. In some cases, the rotation of the principal stresses and the 

grid spacing selected in the dynamic programming search can result in the exclusion 

of certain line segments as shown in Figure 3.12 and 3.13. 

The exclusion of individual line segments based on the strict application of 

kinematic admissibility criteria could be viewed as a negative characteristic of the 

dynamic programming searching procedure. It might seem more reasonable to 

modify the procedure to accept a certain number of inadmissible line segments, 

providing that the overall slip surface is admissible, in an attempt to reconcile the 

results illustrated in Figure 3.8. Another alternative is that the kinematic admissibility 

criterion is being applied properly and the results in Figure 3.8 and the admissibility 

plot in Figure 3.13 provide evidence that the linear elastic analysis might not provide 

a reasonable representation of the characteristics of the internal stresses at failure. 
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Urciuoli (2002) describes the development of collapse as a process where both 

principal stresses and failure surfaces predicted by Mohr's theory rotate to become 

kinematically compatible with the geometry of the slope. Naylor (1982) warned that 

care should be taken in deriving the shape of the slip surface based on the results of a 

linear elastic analysis because the orientation of the stress field might not result in the 

proper alignment of failure planes predicted by Mohr's theory. Urciuoli (2002) goes 

on to suggest that an elasto-plastic analysis might provide a better representation of 

the stress field because the stress redistribution resulting from local failure results in 

the rotation of the stress field to an orientation that promotes the development of a 

continuous slip surface. The stability number equal to zero case was re-analyzed 

based on stresses from an elasto-plastic analysis and compared to the linear elastic 

results. 

Figure 3.15 illustrates the family of slip surfaces computed using elasto-plastic 

stresses for the stability number equal to zero case. It appears that using elasto-plastic 

stresses has corrected the problems associated with Figure 3.8. All of the slip 

surfaces approach the slope face regardless of the value selected for Poisson's ratio 

and there is no longer significant variation in the computed factor of safety. 

78 



35 

30 

25 

c 
o 
CO 

> 
iD 20 

15 ^ 

10 

A 

• 

X 

• 

- e -

Poisson's 
Ratio 
0.48 
0.4 
0.3 
0.2 
0.1 
MP 

Factor of 
Safety 
1.00 
1.00 
0.95 
0.97 
0.97 
1.03 

X 

"M • Search Boundary 

15 20 25 30 35 40 45 

Distance (m) 

50 55 60 65 

Figure 3.15: Family of slip surfaces computed based on elasto-plastic stresses for the 

stability number equal to zero case. 

Figure 16 represents the admissibility plot generated based on elasto-plastic 

stresses for the case where Poisson's ratio is equal to 0.1 and the stability number is 

equal to zero. The results can be directly compared to Figure 3.13 which represents 

the same case but is generated using linear elastic stresses. The results confirm that 

the elasto-plastic analysis promotes a dramatic increase in the number of admissible 

line segments and the number of continuous slip surfaces in critical areas of the slope 

(i.e., near the slope face.). 
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Figure 3.16: Admissibility plot for the case where Poisson's ratio is equal to 0.1 and 

the stability number is equal to 0 (Fs = 0.67). 

Figure 3.17 compares the angle to the minor principal stress computed using an 

elasto-plastic or linear elastic stress analysis for a random selection of points near the 

slope face (Angle of 60° is perpendicular to the slope face.). The results confirm that 

there can be significant differences in the orientation of the principal stresses between 

linear elastic or elasto-plastic stress analyses. The results provide further evidence 

that the orientation of the principal stresses predicted in the stress-deformation 

analysis can significantly influence the subsequent slope stability calculations. It 

appears that a linear elastic stress-deformation analysis does not provide a reasonable 

representation of the internal stress distribution for this example. 
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Figure 3.17: Comparison of the angle to the direction of the minor principal stress 

computed using an elasto-plastic or linear elastic stress-deformation analysis. 

3.5.2 Interaction between Kinematic 
Admissibility Criteria and the Internal 
Stress Distribution for Overconsolidated 
Slopes 

Poisson's ratio has been shown to influence the relationship between the horizontal 

and vertical stress in normally consolidated soil modeled using a "switch-on" gravity 

analysis (i.e., Ko = CTx/cjy = v /(l - v )). The coefficient of lateral earth pressure at rest 

(KQ) could vary between 1 and 0 for the values of Poisson's ratio considered in the 

previous analysis. This variation could be viewed as insignificant considering that Ko 

can be much higher in many overconsolidated soil deposits. It seems reasonable to 
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extend the analysis to consider overconsolidated slope conditions with the objective 

of determining if the differences between linear elastic and elasto-plastic slope 

stability analyses are significantly exaggerated for cases where the variation in Ko is 

two to three times the values considered previously. 

There are many procedures that could be used to generate the initial stress field 

for various Ko conditions including fluctuation of the water table, removal of 

surcharge pressure and constant overconsolidated ratio. In this case, an initial linear 

elastic stress field with a constant overconsolidation ratio (OCR) is generated through 

the application of external stress boundary conditions applied to the edges of a 

rectangular block of soil. A slope is excavated in approximately 2m lifts to a depth of 

10m creating a slope angle of 30 degrees. The internal stress distribution resulting 

from the excavation process is solved using linear elastic and an elasto-plastic 

analysis. Two slope stability analyses are completed, one based on the linear elastic 

stress field, the other based on the elasto-plastic stress field. Admissibility plots are 

generated in both cases to illustrate the interaction between the admissibility criteria 

applied during the dynamic programming search and the internal stress distribution. 

Figure 3.18 shows the admissibility plot for the case where the internal stress was 

computed using a linear elastic analysis. The results confirm that the interaction 

between the admissibility criteria and a linear elastic approximation of the internal 

stress distribution in overconsolidated soil conditions is significantly exaggerated 

when compared to the influence of Poisson's ratio in the previous normally 

consolidated example (i.e., Figure 3.8). The admissibility plot indicates that the 

number of admissible slip surfaces is nearly reduced to zero. The reduction in the 

number of admissible slip surfaces is attributed to the exclusion of individual line 

segments because the linear elastic stress field results in local failure planes that are 

not compatible with the formation of a continuous slip surface. The incompatible 

stress field has resulted in an irregular slip surface with a factor of safety that has 

been artificially elevated to a value of 1.69. 
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Figure 3.18: Admissibility plot for the case where the internal stresses are computed 

using a linear elastic analysis for the stability number equal to 1.71 case (Fs = 1.69). 

The results in Figure 3.19 demonstrate that elasto-plastic analysis provides a 

better representation of the internal stress distribution. The local failure planes appear 

to be compatible with the geometry of the slope and promote the development of 

continuous slip surfaces. The factor of safety has reduced to a reasonable value since 

the location of the slip surface is no longer influenced by the absence of admissible 

planes in critical areas of the slope. 
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Figure 3.19: Admissibility plot for the case where the internal stresses are computed 

using an elasto-plastic analysis for the stability number equal to 1.71 case (Fs = 1.28). 

3.6 Discussion 

The results in Figure 3.3 and Figure 3.4 were initially used to explain the different 

reports regarding the influence of Poisson's ratio on slope stability calculations. It 

appears that the differences observed in Figure 3.3 and Figure 3.4 can be used to 

identify conditions where a linear elastic analysis does not provide a reasonable 

representation of the internal stress distribution to be used in slope stability 

calculations. Figure 3.3 was presented to confirm the thinking that Poisson's ratio 

might not have a significant influence on the factor of safety in cases where the shape 

of the critical slip surface is assumed to be circular (i.e., or any procedure that only 

considers geometric admissibility, including the 'grid and radius' method.). Those 

results could be used to argue that the internal stress distribution resulting from a 

linear elastic analysis is adequate and the variation in the factor of safety observed in 

Figure 3.4 is due to the application of kinematic admissibility criteria that are too 

strict. Commercial software is used to re-analyze two cases to explain why it is 

possible to overlook the problems associated with linear elastic stresses if the search 

for the critical slip surface is completed using the 'grid and radius' method. Further 
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discussion of the literature is also provided to support the strict application of 

kinematic admissibility criteria. 

3.6.1 Potential Violation of Kinematic 
Admissibility using Grid and Radius 
Searches 

A linear elastic "switch-on" gravity analysis was performed to compute the internal 

stress distribution for the stability number equal to zero case when Poisson's ratio is 

equal to 0.1. Slope/W™ was used to perform a finite element slope stability analysis 

where the factor of safety is computed based on the stress distribution from 

Sigma/W™ and the 'grid and radius' method is used to search for the critical slip 

surface. The critical slip surface was located near the slope face and the factor of 

safety was computed to be 0.91, as shown in Figure 3.20. Figure 3.20 also illustrates 

the shear strength and the shear mobilized for individual line segments along the 

critical slip surface. The local factor of safety for each line segment is computed by 

dividing the shear strength by the mobilized shear stress. The information in Figure 

3.20, along with the direction of failure assumed at the beginning of the slope stability 

analysis, makes it possible to evaluate the admissibility of the critical slip surface. 

The mobilized shear force for each line segment along the slip surface should act in 

the assumed direction of movement (in this case left to right) to pass the proposed 

kinematic admissibility criteria. In other words, the mobilized shear stress should be 

positive. The mobilized shear stress acting on the first three line segments is negative 

which means that this slip surface is kinematically inadmissible. The presence of 

inadmissible line segments in an otherwise reasonable slope stability analysis could 

be used as evidence to suggest that it is acceptable to allow a small number of 

inadmissible line segments to be included in the slope stability analysis. However, 

the full implications of including inadmissible line segments is not fully understood 

without considering the local factor of safety distribution that is ultimately used to 

compute the overall factor of safety. 
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Figure 3.20: Distribution of shear strength and shear mobilized along the critical slip 

surface for the stability number equal to zero case and Poisson's ratio is equal to 0.1 

(Fs = 0.91). 

The mobilized shear stress and the shear strength for line segment number three 

are reported to be -2.5667 kPa and 7.0594 kPa, respectively. The shear strength 

divided by the mobilized shear stress results in a local factor of safety equal to -2.75; 

however, the slope stability results indicate that the local factor of safety is equal to 

5.0. It appears that the local factor of safety has been set to a reasonably large value 

to indicate that the mobilized shear stress is opposing the movement of the slope 

resulting in an increased margin of safety. 

Figure 3.21 illustrates the slope stability results for the overconsolidated case 

where KQ is initially equal 3.0. An initial linear elastic stress field with a constant 
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overconsolidation ratio equal to three is generated through the application of external 

stress boundary conditions applied to the edges of a rectangular block of soil. A slope 

is excavated in approximately lm lifts to a depth of 10m creating a slope angle of 30 

degrees. The strength properties correspond to the N = 1.71 case. The impact of 

including inadmissible planes in the slope stability analysis is significantly 

exaggerated. The critical slip surface is depressed deep into the slope and the 

mobilized shear stress is negative on over half of the slip surface corresponding to the 

line segments where the local factor of safety is shown to be 5.0. All of these factors 

have resulted in a factor of safety that is artificially elevated to a value of 1.93 when 

compared to the results shown in Figure 3.5 and Figure 3.19. 
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Figure 3.21: Local factor of safety distribution along the circular slip surface 

computed based on stresses from an linear elastic excavated slope analysis in 

conditions where Ko is equal 3.0 (Fs = 1.93). 

Figure 3.22 illustrates how the results change if the stresses are computed using 

an elasto-plastic analysis. There are no longer any negative values of mobilized shear 

stress and the location of the slip surface is more reasonable (The local factor of 

safety is equal to 5.0 for one line segment but it does not correspond to a case where 

the mobilized shear stress is negative.) The factor of safety is reduced to 1.52 but is 

still significantly greater than the factor of safety for the critical slip surface found 

using dynamic programming (1.27). The results demonstrate the benefits of using 

searching procedures based on kinematic admissibility criteria that are intimately 

related to the internal stress distribution of the slope. 
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Figure 3.22: Local factor of safety distribution along the circular slip surface 

computed based on stresses from an elasto-plastic excavated slope analysis in 

conditions where Ko is equal 3.0 (Fs = 1.52). 

3.6.2 Strict Application of Kinematic 
Admissibility Criteria in Finite Element 
Slope Stability Methods 

Urciuoli (2002) and Urciuoli and Picarelli (2004) studied the relationship between 

stress, strain and displacement during the collapse of an infinite slope. The collapse 

process is characterized by the rotation of the principal stresses until failure surfaces 

predicted by Mohr's theory are kinematically compatible with the geometry of the 

slope. The results from the study provide evidence that slope conditions could exist 

where linear elastic stresses might not provide a reasonable representation of the 
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internal stress distribution. The results were used in the current study to direct the 

selection of an appropriate analysis that could be performed to explain the difficulties 

associated with the application of kinematic admissibility criteria in finite element 

slope stability methods. 

Urciuoli et al. (2007) state that "the mechanics of failure in intact soils is complex 

because the orientation of the developing slip surface must be consistent everywhere 

with that of the principal stresses. Normally, this is not assured by initial stresses 

whose direction could lead to local failure planes that are incompatible with the 

formation of a continuous slip surface ". These comments suggest that the application 

of strict admissibility criteria is appropriate since the internal stresses need to rotate 

into alignment before a continuous slip surface can develop. Urciuoli et al. (2007) 

includes findings from case studies and laboratory tests to support these conclusions 

(Morgenstern and Tchalenko 1967; Skempton and Petley 1967) including cases of 

"unfinished landslides" characterized by the formation of long cracks on the ground 

surface but no generation of general slope failure (Bernarder 2000). 

3.7 Conclusions 

A summary of the literature is provided to identify different findings regarding the 

influence of Poisson's ratio and Young's modulus on the factor of safety. In some 

cases, the factor safety is reported to vary by less than 5% while in other cases the 

factor of safety is shown to vary by more than 20%. The results from a sensitivity 

study were presented to explain the different views surrounding the influence of 

Poisson's ratio. One example from the sensitivity study was identified where the 

influence of Poisson's ratio seemed to be related to the method used to search for the 

critical slip surface. The variation in the factor of safety was found to be less than 

10% if the grid and radius method was used to identify the critical slip surface and 

greater than 35% if the dynamic programming method was used. The different levels 

of sensitivity were found to be related to the soil behavior model adopted in the 

stress-deformation analysis and how the searching procedure is designed to interact 
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with the resulting internal stress distribution of the slope. Further studies were 

presented to investigate the details surrounding the interaction between admissibility 

criteria and the internal stress distribution of the slope considering linear elastic and 

elasto-plastic soil behavior as well as overconsolidated soil conditions. The following 

conclusions can be made from this study. 

1) Poisson's ratio can influence the orientation of the principal stresses in a "switch-

on" gravity analysis. The interaction between admissibility criteria and the 

orientation of the stress field can result in fluctuations in the computed factor of 

safety. The influence of Poisson's ratio can be minimized by using an elasto-

plastic stress analysis which provides a more realistic prediction of the orientation 

of the principal stresses. 

2) A linear elastic analysis is found to provide an inadequate representation of the 

internal stress distribution in overconsolidated soil conditions where the rotation of 

the principal stress is required to promote the development of a continuous slip 

surface. 

3) The strict application of kinematic admissibility criteria in the dynamic 

programming search is appropriate and corresponds to the behavior observed in 

case histories and in laboratory tests. 

4) Information gathered during the dynamic programming search can be used to 

illustrate the interaction between the kinematic admissibility criteria and the 

internal stress distribution for the slope in the form of an admissibility plot. 

5) Searching procedures that rely on geometric admissibility criteria can result in 

critical slip surfaces that are not compatible with internal stress distribution. The 

violation of kinematic admissibility can be recognized by identifying locations 

along the slip surface where the mobilized shear stress is opposite to the assumed 

direction of failure (i.e., negative.). The influence on the overall stability analysis 

depends on how much of the slip surface is inadmissible and how the presence of 

negative mobilized shear stresses are treated. In most cases the incompatibility 

results in a factor of safety that is artificially elevated. 
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Chapter 4 

Three-Dimensional Slope Stability 
Based on Stresses from a Stress-
Deformation Analysis 

4.1 Introduction 

A variety of procedures are available to evaluate the stability of slopes ranging from 

simple expressions like the stability number to rigorous numerical methods. The 

need for more rigorous numerical methods resulted in the development of limit 

equilibrium formulations categorized as the method of slices (Fellenius 1936; Bishop 

1955; Janbu et al. 1956). Significant improvements in the speed and memory 

capacity of personal computers facilitated the use of the method of slices in 

engineering practice and promoted research into a series of more rigorous two-

dimensional method of slices formulations. These formulations allowed for the 

extension of the two-dimensional method of slices to the three-dimensional method of 

columns (Chen and Chameau 1983; Hungr 1987; Lam and Fredlund 1993; Hungr 

2001). 

The method of slices and the method of columns require the use of assumptions 

regarding the forces in the sliding mass to render the factor of safety equation 

determinate. The stress-based method of slope stability incorporates the stresses 

computed from a stress - deformation analysis into a conventional limit equilibrium 

factor of safety calculation. The stress-based method was developed to alleviate the 

use of assumptions regarding the forces in the sliding mass. Fredlund et al. (1997) 
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identified three important advantages resulting from the use of stress-based methods 

versus the assumptions typically adopted in method of slices formulations; 1) The 

stress versus strain relationship of the soils is included in the analysis, 2) the factor of 

safety equation is determinate and requires no further assumptions to complete the 

calculation and 3) the factor of safety equation is linear because the normal stresses 

along the slip surface are known. The application of the stress-based method in two-

dimensional slope stability has led to the development of admissibility criteria that 

can be used to negate the usage of assumptions regarding the shape of the slip 

surface. It is anticipated that similar three-dimensional admissibility criteria will be 

developed as a result of the extension of the stress-based method to three dimensions. 

The development and wide-spread use of the stress-based method of slope 

stability has been made possible due to the increased speed of personal computers and 

the development of commercial software. The increases in computing speed and 

memory capacity have been so substantial that it has become economical to extend 

the two-dimensional stress-based method to three dimensions. The objective of this 

research study is to demonstrate a procedure for combining a finite element stress 

analysis on a slope with limit equilibrium concepts to calculate the factor of safety for 

three-dimensional slip surfaces. A series of published example problems are re­

analyzed as part of the verification process. 

4.2 Background 

The following discussion provides a summary of the developments related to two-

and three-dimensional stress-based methods of slope stability. 
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4.2.1 Developments Related to Two-
Dimensional Stress-Based Methods of 
Slope Stability 

A detailed summary of finite element methods of slope stability was presented by 

Scoular (1997). Fredlund et. al. (1997) summarized the development of the two-

dimensional finite element methods of slope stability using the flow chart shown in 

Figure 4.1. 

Finite Element Slope Stability Methods 

Stress-based limit methods 

(finite element analysis 

combined with limit 

equilibrium analysis) 

Direct Methods 

(finite element analysis only) 

Load increase 

to failure 

1 
Strength decrease 

to failure 

Definition of the factor of safety 

Strength 

Kulhawy 1969 

Stress Level 

Zienkiewicz et al. 1975 

Strength & Stress Level 

Adikari and Commins 1985 

F* = 
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Figure 4.1: A summary of the finite element procedures for computing the factor of 

safety in slope stability analysis (Fredlund et al. 1997). 

The finite element slope stability methods have been categorized as either direct 

or stress-based methods. The "Enhanced limit strength" method originally proposed 

by Kulhawy (1969) was identified by Scoular (1997) as the most appropriate factor of 
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safety definition. Scoular (1997) went on to solve a series of slope stability problems 

verifying the reliability of the method based on the "enhanced limit strength" factor 

of safety definition. The "stress level" methods have been criticized for using the 

principal stresses in the factor of safety definition. Fredlund et al. (1999) concluded 

that by definition, failure does not take place on the plane of principal stress and that 

any "stress level" method will result in higher factors of safety than "strength" 

methods. Therefore, the three-dimensional slope stability method presented in the 

current study is based on the enhanced limit strength factor of safety definition. 

Pham (2002) advanced the work of Scoular (1997) by incorporating a more 

advanced searching procedure that allowed the shape of the slip surface to become 

part of the analysis. The factor of safety calculation is based on the "enhanced Limit 

Strength" concept while the dynamic programming optimization technique is used to 

search for the slip surface with the lowest factor of safety. Pham (2002) 

demonstrated that the computational complexities associated with the application of 

more advanced searching procedures are significantly reduced due to the linear nature 

of the stress-based factor of safety equation. The geometrical restrictions typically 

placed on the shape of the slip surface can be replaced with a new admissibility 

criteria based on the kinematics of the failing mass. It seems reasonable to expect 

that the development of three-dimensional stress-based methods of slope stability will 

provide similar advantages associated with the application of more advanced non­

linear searching techniques. 

Stianson (2008) performed a comparative study to investigate the differences that 

might occur between slope stability calculations depending on the soil behavior 

model selected in the finite element analysis. The comparative study was completed 

using a slope stability method that was developed based on the procedure proposed 

by Pham (2002). The results demonstrated that there are small essentially 

insignificant differences between slope stability calculations based on stresses 

generated using a linear elastic or elasto-plastic soil behavior model. Therefore, each 

of the factor of safety calculations presented in this report are based on stresses 

generated from a linear elastic switch on gravity analysis. 
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The research summarized above has laid the groundwork for the extension of the 

stress-based method of slope stability to three-dimensions. The advantages 

associated with the stress-based limit equilibrium method have been well documented 

and recommendations have been made regarding the most appropriate factor of safety 

definition. 

4.2.2 Extension of Two-Dimensional Stress-
Based Methods of Slope Stability to 
Three Dimensions 

There has been limited research directed towards the extension of the two-

dimensional stress-based methods of slope stability to three dimensions. Chen and 

Chameau (1982) reported using a method where the stresses from a three-dimensional 

finite element analysis were combined with a limit equilibrium analysis to assess the 

stability of a particular embankment. The factor of safety calculated using the finite 

element stresses was reported to be in reasonable agreement with factors of safety 

computed using other limit equilibrium methods. Many of the details regarding the 

application of the method were not provided. 

Loehr (1998) developed a hybrid approach where a finite element stress analysis 

was utilized within a limit equilibrium framework, similar to the work of Chen and 

Chameau (1982). Potential slip surfaces were discretized using a series of triangular 

planes. A procedure involving linear interpolation was developed to compute the 

resisting force and shear force acting at the centroid of individual triangular planes. 

The forces were computed based on the stresses from a separate finite element 

analysis. The overall factor of safety was computed by dividing the summation of the 

resisting forces by the summation of the shear forces acting on the slip surface. Two 

example problems were considered to test the accuracy of the formulation. The first 

example consisted of an infinitely long slope with a planar slip surface and the second 

example involved a symmetrical wedge failure. First, the overall factors of safety for 

both examples were calculated by hand considering the normal and shear forces 
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required to satisfy force equilibrium. Next, the normal force, shear force, and factor 

of safety were computed using the proposed finite element slope stability method. 

The accuracy of the finite element slope stability method was evaluated by comparing 

the normal force, shear force, and overall factor of safety to the values determined 

from the hand calculation. 

The results from the finite element method were found to provide an inadequate 

level of accuracy for both examples. The degree to which the finite element analysis 

deviated from the manual force equilibrium analysis was considered to be dependent 

on the density of the finite element mesh and the value of Poisson's ratio selected in 

the finite element analysis. The influence of Poisson's ratio was reported to diminish 

as the density of the finite element mesh was increased. The finite element procedure 

was deemed unreliable due to the computational effort required to increase the 

density of the finite element mesh to a level that would remove the effect of Poisson's 

ratio. The procedure used to calculate the forces acting at the centroid of individual 

triangular surfaces was also considered to contribute to the inadequacies of the 

method. Loehr went on to propose that the method could be improved by calculating 

the stresses acting on the slip surface directly from the nodal forces from the finite 

element analysis. 

The reliability of performing limit equilibrium slope stability calculations using 

stresses imported from a separate finite element analysis appear to be in question. 

Extensive sensitivity studies were completed using the proposed procedure to 

evaluate the factors that could influence the accuracy of the factor of safety 

calculation. 
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4.3 Three-Dimensional Limit Equilibrium 
Slope Stability Analysis Based on Finite 
Element Stresses 

The following discussion outlines the details surrounding the calculation of the factor 

of safety for a three-dimensional slip surface. The factor of safety calculations are 

based on the combination of a limit equilibrium analysis with stresses from a separate 

stress-deformation analysis. 

4.3.1 Linking the Stress-Deformation Analysis 
with the Slope Stability Calculations 

The internal stress state computed from the finite element analysis is used to 

determine the forces acting along the three-dimensional slip surface. The 

interpolation procedure required to determine the stresses acting at discrete points 

along the slip surface is dependent on the mesh configuration used in the three-

dimensional stress-deformation analysis (i.e., tetrahedron, hexahedron etc.). A 

separate interpolation procedure is required for individual mesh configurations. For 

simplicity, the stresses from the finite element analysis are exported to a common grid 

configuration, referred to as the intermediate grid, consisting of rectangular elements 

(Figure 4.2). 
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Stress State: ax c y az axy axz a, 

Pore Pressure: uw 

Figure 4.2: Illustration of the three-dimensional grid linking the finite element stress 

analysis with the slope stability calculations. 

Exporting the stresses from the stress-deformation analysis to a rectangular grid 

configuration means that only one interpolation procedure is required to determine 

the stresses acting along a slip surface. The density of the intermediate grid is defined 

by specifying the number of increments in the x, y, and z-directions (i.e., w, I, and h). 

Sensitivity analyses are performed to show that the dimensions of the intermediate 

grid can be selected so that there are no adverse effects on the accuracy of the factor 

of safety calculations. 

4.3.2 Calculating the Factor of Safety for a 
Three-Dimensional Slip Surface 

The factor of safety equation for an arbitrary three-dimensional slip surface can be 

defined as: 
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\T rdA 

where Xf is the shear strength of the soil, x is the mobilized shear stress, and dA is an 

incremental area on the slip surface. Assuming that a potential slip surface can be 

approximated by a series of triangular surfaces (Figure 4.3), it is possible to write the 

factor of safety equation in discretized form: 

mnl J mnl mn I mn 

[4.2] FS = 2 x 4 , / JX.4,, = ;£*, / 2 X 

where m is the number of dividing lines in the x-direction, n is the number of dividing 

lines in the j-direction, rf is the shear strength, rijk is the mobilized shear stress, and 

Ayk is the area of one triangular plane (The i, j and k subscripts indicate the 

coordinates of the resultant force in the three-dimensional grid not the components of 

the vector). The resisting force, Ry, and the shear force, Sy, can be calculated by 

multiplying the shear strength and the mobilized shear stress by the area of each 

plane. Ry and Sy are the addition of the resisting forces and shear forces acting on the 

combination of two triangular planes (i.e., k =1 and 2). 
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Figure 4.3: A three-dimensional ellipsoidal slip surface approximated by a series of 

triangular planes. 

The slip surface shown in Figure 4.3 is discretized with a total of m*n*2 

triangular planes. The two triangles between the dividing lines / and i+1 in the x-

direction and j and j+1 in the y-direction can be identified according to the 

incremental areas Ayj and Ay2. The procedure used to compute the resisting force, 

Riji, and the shear force, Siji, for triangle Ay}, is described below. 

The normal and mobilized shear stresses acting on the incremental area, Ayk, can 

be calculated using the stress state at the centroid of the area Ayi and the unit vector, 

n, normal to the plane. A search is performed through the intermediate grid to 

determine the eight nodes surrounding the centroid of a triangle. 

103 



The stress states from the surrounding eight nodes are used to determine the stress 

state at the centroid of the triangle Ay], using standard tri-linear interpolation. First, a 

local coordinate system is defined with an origin located at the centre of the element. 

Next, the local coordinates (xc, yc, zc) for the centroid, C, of the triangular plane can 

be computed using the expressions shown in Eq. [4.3]. 

[4.3] _ o * 
(xM-x,) 

- i ; ^ = 2 ! 
(y-yj) 

(yJ+l-yj) 
•i ; * e 

The values x, y, z are the coordinates for the centroid of the triangular plane based 

on the global coordinate system. Likewise, the coordinates x„ yt, and z, are based on 

the global coordinate system. The local coordinates computed using the expressions 

given in Eq. [4.3] will always result in values between negative one and one. The 

local coordinates of the centroid can be used to compute an interpolation factor, N, for 

each of the eight nodes using the set of expressions given in Eq. [4.4]. 

i V , = ( l / 8 ) * ( l + x c ) * ( l + J c ) * ( l - Z c ) 

N2 = (1 / 8) * (1 - xc) * (1 + j c ) * (1 -zc) 

[4.4] JV3 = (1 / 8) * (1 +xc) * (1 - yc) * (1 -zc) 

tf4 = ( l / 8 ) * ( l - X C ) * 0 - J/c)*(l"Zc) 

N5 = (1 / 8) * (1 +xc) * (1 +yc) * (1 +zc) 
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iV6 = ( l / 8 ) * ( l - xc)*(l+yc)*(\+zc) 

# 7 = (1 / 8) * (1 +xc) * (1 - yc) * (1 +zc) 

7V8 = ( 1 / 8 ) * ( 1 - xc)*(l- yc)*(l+zc) 

The parameters describing the stress state at the centroid of the triangular plane (i.e., 

GX, oy, CTZ, CTxy, axz, ayz) can be computed as the sum of the parameter multiplied by 

8 

the corresponding interpolation factor for each of the eight nodes (i.e., ax =^(JX Ni 

; = i 

etc.). The unit normal vector, n, can be determined using the three coordinates from 

the triangular plane. 

Knowing the stress state at the centroid of the triangle and the unit vector normal 

to the plane, it is possible to calculate the components of the traction T"' shown in 

Figure 4.4, using Eq. [4.5]. 

W _ . [4.5] Tr = aijnj 

3 ^ 

Figure 4.4: Calculating the resisting force, Ryi, and shear force, Syi, based on the 

normal stress, a„ , and mobilized shear stress, r„,, acting at the centroid of 

incremental area Ayj. 

The normal stress, an , can be calculated by evaluating the dot product of the 

traction l*n) and the unit normal vector, n, using Eq. [4.6]. 
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[4.6] ^t=T".n 

Finally, Pythagoras' theorem can be used to determine the magnitude of the 

mobilized shear stress, riJk, acting at the centroid of the area located at coordinates i, j 

and k using Eq. [4.7]. 

[4-7] r , = JrM ak "at 

The shear force, Syj, is calculated by multiplying the mobilized shear stress, from Eq. 

[4.7], by the area of the triangle, Ayj. 

The shear strength provided by each incremental area, Ayk, can be calculated using 

the extended Mohr-Coulomb equation for saturated-unsaturated soil (Fredlund and 

Rahardjo 1993): 

[4.8] rfiji = c'+(an -ua)tan<p+(ua -uw)tan0b 

where c', §', and (j)b are the shear strength parameters of a saturated-unsaturated soil, 

(<Tn-ua)is the net normal stress, and (ua-uw) is the matric suction. The resisting 

force, Riji, is computed by multiplying the shear strength of the soil ,^. . , by the area 

of the triangle Ayi. 

The same procedure can be used to compute the resisting force and shear force for 

each triangular plane on the slip surface. The summation of the resisting forces 

divided by the summation of the shear forces can be used to compute the overall 

factor of safety for the slip surface, according to Eq. [4.2]. 
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4.3.3 Restrictions Applied to the Shape of the 
Slip Surface 

The factor of safety equation defined by Eq. [4.2] can be used to compute the factor 

of safety for slip surfaces of any shape. However, all of the verification examples 

selected for the current study consider ellipsoidal slip surfaces, with the exception of 

one example, where the ellipsoidal slip surface is modified to approximate a 

translational slide along a weak layer within the slope. The slip surface for this case 

is defined by an ellipsoid intersected by a plane. 

[49i (*~xc)2 {y-ycf (z-zc)
2
 = 1 

L a2 b2 c2 

The general equation for an ellipsoidal surface is given by Eq. [4.9]. Each 

ellipsoidal slip surface is specified by the coordinates of its centre (xc,yc,zc), its radius, 

and an aspect ratio. The semi-axes b and c are taken to be equal to the radius of the 

ellipsoid. The semi-axis a, is equal to the radius of the ellipsoid multiplied by the 

aspect ratio. A ratio of 1 defines a spherical slip surface while a large number (i.e., 

1000) defines a cylindrical slip surface. In some cases, a trial and error searching 

procedure is used to determine the centre, radius, and aspect ratio for the critical 

ellipsoidal slip surface. The search for the critical slip surface is similar to the 

procedure developed by Hungr (2001) for use in Clara/W™. 

Stianson (2008) demonstrated that the factor of safety computed in two-

dimensional finite element slope stability analyses can be affected when circular slip 

surfaces are assumed to be kinematically admissible. In some cases, the shear forces 

acting along the slip surface might violate the assumed direction of failure. It is 

possible that similar effects might occur when ellipsoidal slip surfaces are considered 

in the current three-dimensional slope stability calculations. The results from the 

current research will be closely evaluated to check if the forces acting on individual 

planes along the slip surface might influence the factor of safety calculations. 
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4.4 Verification Example Problems 

The results from four example problems are presented to evaluate the reliability of the 

proposed procedure for calculating three-dimensional factors of safety based on 

stresses from a separate finite element analysis. The factors of safety are reported to 

higher accuracy than is typically used in practice to facilitate a detailed comparison of 

the results. 

4.4.1 Verification Example No. 1: Closed 
Form Solution 

The first verification example problem consists of a symmetrical spherical slip 

surface intersecting a homogeneous slope made up of purely cohesive soil (Figure 

4.6). A closed-form solution for this example problem was presented by Baligh and 

Azzouz (1975) and Gens et al. (1988). The factor of safety from the closed-form 

solution was calculated to be 1.402. The factor of safety equal to 1.402 was 

confirmed by Silvestri (2006b; 2006a). The closed-form solution is a popular 

benchmark and has been used to evaluate various three-dimensional slope stability 

formulations (Hungr et al. 1989; Lam and Fredlund 1993; Chen et al. 2001). 

The factor of safety computed using the proposed stress-based slope stability 

method is compared to the results presented in previous research. A series of 

sensitivity analyses are also presented to determine if the computed factor of safety is 

sensitive to the density of the finite element mesh, the density of the intermediate 

grid, the number of planes used to discretize the slip surface and the value of 

Poisson's ratio selected in the finite element stress analysis. 
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4.4.1.1 Finite Element Stress Analysis for 
Verification Example No. 1 

The finite element mesh used to compute the internal stress state for the slope is 

shown in Figure 4.5. Roller boundary conditions are applied to all sides of the 

problem, the bottom of the problem is pinned, and the top surface of the problem is 

free to move. The internal stress distribution is computed based on an isotropic linear 

elastic model using the 'switch on' gravity technique. The dimensions are selected so 

that the boundary conditions have a limited effect on the stresses near the specified 

slip. 

Figure 4.5: Finite element mesh used to calculate the internal stress state for 

verification example No. 1. 

4.4.1.2 Slope Stability Results for Verification 
Example No. 1 
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The factor of safety computed using the proposed finite element limit equilibrium 

method might be affected by three different meshes including: 1) the finite element 

mesh used to solve for the internal stress state, 2) the intermediate grid used to link 

the stress-deformation analysis to the limit equilibrium factor of safety calculation, 

and 3) the number of planes used to discretize the slip surface. The results from a 

sensitivity analysis considering each of these factors are provided in Figure 4.6. 

Figure 4.6: Verification example No. 1: a specified spherical slip surface in a 

homogeneous purely cohesive slope (Hungr et al. 1989) with c', cohesion; §\ friction 

angle; R, moment arm of the resisting force; y, unit weight of soil. 

The curves in Figure 4.7 are labeled according to the dimension of the finite 

element mesh used to solve for the internal stress state and the dimension of the 

intermediate grid. A finite element mesh generated with NGRID equal to 10, 
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indicates that the longest dimension of the problem, in this case 4m, is divided into 10 

increments resulting in a grid spacing equal to 0.4m. The finite element mesh 

throughout the remainder of the problem is modified to comply with the grid spacing 

of 0.4m required over the longest dimension of the problem. The internal stresses 

computed from the finite element analysis are exported to an intermediate grid with 

the same number of divisions in the x, y, and z-directions. Therefore, an intermediate 

grid with a dimension equal to 16 means that each dimension of the problem (i.e., x, 

y, and z) is divided into 16 increments. 

The x-axis in Figure 4.7 reports half the number of triangular planes used to 

discretize the slip surface. The number of triangular planes is divided by two so that 

a direct comparison can be made with the number of columns used in previous 

studies. The three-dimensional factor of safety is reported on the y-axis. The grey 

band through the middle of Figure 4.7 represents the range of factors of safety that are 

within 1 % of the closed-form solution. The computer time required to compute the 

factor of safety for each case is estimated along the secondary x-axis along the top of 

Figure 4.7. The simulations were run on a 3.00GHz Pentium 4 processor with 1.0GB 

of random access memory (RAM). All of the models presented in Figure 4.7 were 

solved using Poisson's ratio equal 0.49 and Young's modulus equal to 10,000 kPa. 

I l l 



0 1 
Solution time (s) 

2 3 4 5 6 7 8 9 10 11 

0 5000 10000 15000 20000 25000 30000 35000 40000 

No. triangular planes / 2 

Figure 4.7: Influence of the finite element mesh, the intermediate grid, and the slip 

surface discretization on the three-dimensional factor of safety. 

Initially, the internal stress state was computed using a finite element mesh with 

NGRID equal to 10. The computed stresses were exported to an intermediate grid 

with four increments in the x, y, and z-directions. A series of slope stability models 

were generated to determine the relationship between the computed factor of safety 

and the number of planes used to discretize the slip surface. The factor of safety 

increases from 1.272 to 1.324 as the number of planes increases from 100 to 6,400. 

The procedure described above is repeated while incrementally increasing the 

density of the intermediate grid and the finite element mesh. The intent is to 

determine the condition where additional increases in the density of the grids do not 

influence the computed factor of safety. In other words, a converged solution is 

achieved. A converged solution is considered to be achieved for the case where the 

finite element mesh is generated using NGRID equal to 10 and the stresses are 

exported to an intermediate grid with 16 increments in the x, y, and z-directions. The 
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factor of safety for this case is equal to 1.386 when the slip surface is discretized with 

6,400 planes. 

The factor of safety computed using the proposed stress-based slope stability 

method is compared to the factors of safety from other studies in Table 4.1. The 

factor of safety computed using the stress-based slope stability method appears to be 

in reasonably close agreement with the closed-form solution and the values reported 

from other studies. 

Table 4.1: A comparison between the factors of safety computed for verification 

example No. 1. 

Author 
Baiigh and Azzouz (1975); 
Genseta l . (1988) 

Hungret. al. (1989) 

Lam and Fredlund (1993) 
(540 columns) 
Lam and Fredlund (1993) 
(1200 columns) 
Chen et. al. (2001a) 

Chen (2004) 

Current Study 

Method 
Closed form solution 

Method of columns 
(Simplified Bishop) 
Method of columns 
(GLE) 
Method of columns 
(GLE) 
Upper bound limit 
analysis 

Upper bound limit 
analysis 
Stress-based slope 
stability method 

Three-
dimensional 
factor of 
1.402 

1.422 

1.402 

1.386 

1.422 

1.43 

1.403 

safety 

0 / 
/o 
difference 
-

1.4 

0.0 

-1.2 

1.4 

2.0 

0.1 

4.4.1.3 Influence of Poisson's Ratio on the 
Three-Dimensional Factor of Safety 

A sensitivity analysis was also completed to determine if the Poisson's ratio (v) used 

to calculate the internal stress state has a significant effect on the computed factor of 
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safety. A series of models were completed considering eight values of Poisson's ratio 

including 0.0, 0.1, 0.2, 0.3, 0.4, 0.42, 0.45, and 0.49. 

Figure 4.8 illustrates the relationship between Poisson's ratio and the computed 

three-dimensional factor of safety. The range of Poisson ratio values are listed on the 

x-axis, the computed three-dimensional factors of safety are shown on the left y-ax\s, 

and the percent difference from the closed form solution is provided on the right y-

axis. The figure also provides information regarding the admissibility of individual 

planes along the slip surface, depending on the Poisson's ratio selected in the finite 

element stress analysis. The number of planes where the shear force violates the 

assumed direction of failure is listed for each value of Poisson's ratio. The shear 

force is considered to be kinematically inadmissible if it acts contrary to the assumed 

direction of failure. 
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Figure 4.8: Influence of Poisson's ratio on the three-dimensional factor of safety for 

verification example #1. 

The factor of safety increases from approximately 0.8 when Poisson's ratio is 

equal to 0 to 1.386 when Poisson's ratio is equal to 0.49. The factor of safety varies 

by more than 40% over the range of Poisson's ratio values considered in the 

sensitivity study. It appears that the variation in the factor of safety is related to the 

number of planes along the slip surface where the kinematic admissibility criterion is 

violated. The factor of safety is closest to the closed-form solution when no planes 

violate the admissibility criterion and seems to be degraded as the number of 

inadmissible planes increases. The results confirm the behavior described by 

Stianson (2008). 
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4.4.2 Verification Example No. 2: Weak Layer 

The second verification example involves a composite slip surface sliding along a 

weak layer within a homogeneous slope (Figure 4.9). The example problem was 

originally presented by Fredlund and Krahn (1977) in a two-dimensional slope 

stability study. Since then, the slope has been extended to three dimensions and used 

to evaluate three-dimensional slope stability formulations. The factor of safety 

computed using the stress-based slope stability formulation is compared to the results 

reported in previous studies (Xing 1988; Hungr et al. 1989; Lam and Fredlund 1993; 

Chen et al. 2001; Chen 2004). 
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Figure 4.9: A two-dimensional cross-section illustrating the geometry and soil 

properties for verification example No. 2. H is the height of the slope and R is the 

radius of the ellipsoid. 

The factor of safety is computed for the composite slip surface shown in Figure 

4.9, considering two conditions. The first case does not include the piezometric line 
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and considers an ellipsoidal slip surface that encompasses 13,000m3 of soil. The 

second case includes the water table and considers a slip surface that encompasses 

16,000m3 of soil. 

4.4.2.1 Finite Element Stress Analysis for 
Verification Example No. 2 

The finite element analysis used to compute the internal stress state for the slope is 

presented in Figure 4.10. Roller boundary conditions are applied to all sides of the 

problem, the bottom of the problem is pinned, and the top surface of the problem is 

free to move. The internal stress distribution is computed based on an isotropic linear 

elastic model using the 'switch on' gravity technique. A sensitivity study is also 

performed to observe the effects of Poisson's ratio on the factor of safety calculation. 

The linear elastic stresses are generated considering Poisson's ratio values equal 0, 

0.1, 0.2, 0.3, 0.4, and 0.49. The values of Young's modulus are arbitrarily selected to 

be 15,000 kPa in the medium soil and 5,000 kPa in the weak layer. 
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Figure 4.10: Finite element mesh used to calculate the internal stress state for 

verification example No. 2. 

4.4.2.2 Slope Stability Results for Verification 
Example No. 2 

Figure 4.11 illustrates the slip surface for Case 1 where the volume of soil 

encompassed by the slip surface is approximately 13,000 cubic meters. A sensitivity 

study was completed for Case 1 to determine the appropriate finite element mesh 

density, intermediate grid density, and the number of planes that should be used to 

discretize the slip surface. The resulting parameters were also used to compute the 

factor of safety for the second case considering a slide volume of 16,000m3. 
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Figure 4.11: Slip surface generated for Case 1 considering a slide volume of 

13,000m3. 

Initially, the internal stress state was calculated using a finite element mesh with 

NGRID equal to 10 (i.e., grid spacing = 180m/10 = 18m). The computed stresses 

were exported to an intermediate grid with 45 increments in the x-direction (4m 

spacing), 25 increments in the y-direction (2m spacing), and 36 increments in the z-

direction (0.25m spacing). The initial grid spacing for the intermediate grid was 

selected with the understanding that: 1) a small spacing would be required in the z-

direction due to the weak layer, 2) the largest spacing would be allowed in the x-

direction because the soil properties and geometry are continuous, and 3) the spacing 

in the ^-direction should be somewhere in between. 

A series of slope stability models were generated to determine the relationship 

between the computed factor of safety and the number of planes used to discretize the 

slip surface (Figure 4.11). The relationship for NGRID equal to 10 is shown in 
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Figure 4.12. The factor of safety decreases from 1.763 to 1.713 as the number of 

planes increases from 1,200 to 19,200. 
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Figure 4.12: Results of a sensitivity study used to determine the appropriate density 

for the finite element mesh for Case 1. 

The remaining curves in Figure 4.12 illustrate the effect of increasing the density 

of the finite element mesh by increasing NGRD from 10 to 50 in four equal 

increments. Each curve is shifted downward until convergence is obtained when 

NGRID is equal 50. A number of additional trials were completed in a separate 

analysis to determine the appropriate grid density for the intermediate grid linking the 

finite element stresses with the factor of safety calculation. The factors of safety for 

both cases were calculated with NGRID equal to 50, an intermediate grid with 45, 25, 

and 90 increments in the x, y, and z-directions, and approximately 20,000 planes to 

discretize the critical slip surface. 

The factor of safety for Case 1 is equal to 1.607 while the factor of safety for Case 

2 is equal to 1.514. The factors of safety computed for Case 1 and Case 2 are 
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1.553 
1.620 
1.603 
1.665 
1.656 
1.607 

1.441 
1.54 

1.508 
-
-

1.514 

compared to the results from other studies in Table 4.2. The results from the stress-

based slope stability method appear to be within the limits of uncertainty associated 

with slope stability calculations. 

Table 4.2: A comparison between the factors of safety computed for verification 

example No. 2. 

Case 1: without Case 2: with 
water table water table 

Author method 13,000 m3 16,000 m3 

Xing (1988) Ordinary 
Hungr (1989) Bihsop's simplified 
Lam (1993) General limit equilibrium method 
Huang and Tsai (2000) Upper bound limit analysis 
Chen (2004) Upper bound limit analysis 
Current Study Stress based method 

The results confirm that the proposed method can be effective for larger-scale 

problems involving thousands of cubic meters of material. The analysis also 

illustrates the ability of the proposed method to evaluate cases involving non-circular 

failure surfaces with consideration of force and moment equilibrium. 

4.4.2.3 Influence of Poisson's Ratio on the 
Three-Dimensional Factor of Safety 

A sensitivity analysis was completed to determine the influence of Poisson's ratio 

(v) on the computed factor of safety for the slope conditions considered in Case 1 

(i.e., Slide volume of 13,000 m3 and no piezometric surface). A series of models 

were completed considering six values of Poisson's ratio including 0.0, 0.1, 0.2, 0.3, 

0.4, and 0.49. 

Figure 4.13 illustrates the relationship between Poisson's ratio (v) and the 

computed three-dimensional factor of safety for Case 1. The range of Poisson's ratio 

values are listed on the x-axis and the corresponding three-dimensional factors of 
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safety are shown on the y-axis. The percent difference from the factor of safety 

determined from the sensitivity analysis (i.e., 1.607) is reported on the rights-axis. 

The figure also provides information regarding the number of inadmissible planes 

along the slip surface depending on the Poisson's ratio selected in the finite element 

stress analysis. 
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Figure 4.13: Influence of Poisson's ratio on the three-dimensional factor of safety for 

Case 1. 

The factor of safety increases from 1.464 when Poisson's ratio is equal to 0 to 

1.607 when Poisson's ratio is equal to 0.49. The factor of safety varies by 

approximately 10% over the range of Poisson ratio values considered in the 

sensitivity study. The number of inadmissible planes has the same effect on the 

factor of safety calculation in that the factor of safety is closest to the accepted value 

when no planes violate the admissibility criteria; however, the overall effect of 

Poisson's ratio seems to be less dramatic. 
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4.4.3 Verification Example No. 3: Leshchinsky 
et al. (1985) 

Leshchinsky et al. (1985) presented an analytical method where the equations of 

equilibrium are arranged as an isoperimetric problem and variational calculus is 

applied to determine the critical log-spiral failure surface. The method was used to 

evaluate the stability of the embankment described by the cross-section shown in 

Figure 4.14. The characteristics of the slope were selected such that the two-

dimensional factor of safety is equal 1.0. A three-dimensional slope stability analysis 

was carried out to determine the entry point along the crest of the slope for the slip 

surface with the lowest factor of safety. The critical slip surface was forced to pass 

through the toe of the slope and the width-to-length ratio was selected to result in a 

slip surface similar to the one shown in Figure 4.15. The entry point near the crest of 

the slope was determined through a trial and error procedure. 
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Figure 4.14: Comparison of the factor of safety for the three-dimensional slip surfaces 

found using the variational approach developed by Leshchinsky et al. (1985), the 

method of columns approach developed by Hungr et al. (1989), and the procedure 

developed for the current study. 
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Figure 4.15: Three-dimensional slip surface found using the procedure developed for 

the current study. 

A similar analysis was completed using the proposed slope stability method to 

determine the factor of safety and the centre for the critical ellipsoidal failure surface 

with a comparable width-to-length ratio. The width-to-length ratio was controlled by 

considering ellipsoidal slip surfaces with an aspect ratio equal to 0.66, as suggested 

by Hungr et al. (1989). The results from all three studies are compared in Figure 

4.14. 

The most significant difference between the results is that the factor of safety 

computed based on finite element stresses is approximately 11% larger than the 

factors of safety computed using the other methods. The difference is not surprising 

considering the potential differences in the stresses used to compute the factor of 

safety. The formulation presented by Leshchinsky et al. (1985) was found to be 

independent of the stresses acting on the sip surface. The extension of Bishop's 

simplified method to three-dimensions (Hungr et al. 1989) involves vertical and 
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moment equilibrium and follows a procedure similar to the original two-dimensional 

formulation. The stress distribution along potential failure surfaces associated with 

Bishop's method of analysis are known to have different characteristics when 

compared to the stress distribution associated with finite element slope stability 

analyses, especially near the toe of the slope (Krahn 2003). The stresses near the toe 

of the slope are generally higher from a finite element analysis and can lead to an 

increase in the normal stresses acting on the slip surface. Higher normal stresses can 

contribute to the stability of the slope resulting in larger factors of safety. 

4.4.4 Verification Example No. 4: Dennhardt 
and Forster 1985 

Dennhardt and Forster (1985) presented an analytical method to calculate the factor 

of safety for a three-dimensional ellipsoidal slip surfaces. The method was used to 

identify the ellipsoidal slip surface with the lowest factor of safety for the three-

dimensional slope shown in Figure 4.16. A three-dimensional failure was generated 

by loading the slope over a 5 x 2 meter area, with one meter of material. The material 

was assigned a unit weight equal 55 kN/m3 to simulate a surcharge equal to 55 kPa. 

The load was placed along the axis of symmetry, lm behind the crest of the slope. 

The geometrical characteristics and the factor of safety for the critical ellipsoidal slip 

surface found by Dennhardt and Forster (1985) are presented in Figure 4.16. 
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Figure 4.16: Slope stability results for a three-dimensional slope with a surcharge 

load of 55 kPa. Numbers without parentheses are from Hungr et al. (1989). Numbers 

with parentheses are from Dennhardt and Forster (1985). 

Hungr et al. (1989) used the results published by Dennhardt and Forster (1985) to 

evaluate the three-dimensional method of columns formulation based on Bishop's 

simplified method. The slip surface found by Hungr et al. (1989) displayed similar 

characteristics to the slip surface found by Dennhardt and Forster (1985). The results 

reported by both authors are compared in Figure 4.16. 

The overall factor of safety and some of the geometrical characteristics of the 

critical ellipsoidal slip surface found using the proposed technique are different from 

those reported by Dennhardt and Forster (1985) and Hungr et al. (1989). The most 

significant difference is that the slip surface with the lowest factor of safety is 
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cylindrical, corresponding to plane strain failure. Another less significant difference 

is that the slip surface does not pass directly through the toe of the slope. The slip 

surface exits a small distance above the toe of the slope avoiding areas with increased 

stress that contribute to the overall stability of the slope. The entry point on the top of 

the slope was determined to be 3.5m from the crest of the slope, similar to the 

distances reported by Dennhardt and Forster (4.0m) and Hungr et al. (3.7m). A 

sensitivity analysis was completed to determine the factors contributing to the 

differences observed in the exit distance of the slip surface in the x-direction. First, 

two- and three-dimensional plane strain analyses were carried out, for both loaded 

and unloaded conditions, to identify the conditions that should be satisfied to result in 

a typical three-dimensional failure surface (i.e., a failure surface that does not extend 

infinitely in the x-direction). Next, a series of three-dimensional analyses were 

completed to determine the relationship between the three-dimensional factor of 

safety (i.e., surcharge load) and the exit distance in the x-direction. 

The three-dimensional factor of safety for the loaded plane strain scenario (i.e., 

cylindrical slip surface) is dependent on the length of the slope in the x-direction. If 

the length of the slope is equal to the width of the surcharge (2m), the three-

dimensional factor of safety for the loaded plane strain case should be equal to the 

loaded two-dimensional case. The factor of safety for the loaded two-dimensional 

case is equal to 1.32, based on stresses from a finite element analysis (Dennhardt and 

Forster (1985) reported 1.29 using the Morgenstern and Price Method). If the length 

of the slope is increased infinitely in the x-direction, the effect of the surcharge load 

will eventually become insignificant. The three-dimensional factor of safety for the 

cylindrical slip surface increases and approaches the two-dimensional unloaded case. 

The two-dimensional factor of safety for the case with no load applied is equal to 

1.54, based on stresses from a finite element analysis (1.44 using the two-dimensional 

Morgenstern and Price or Bishop Simplified method). For a typical three-

dimensional failure surface to be the most critical, it seems reasonable to expect that 

the factor of safety should be less than the unloaded plane strain case. It is interesting 

to observe that the three-dimensional factors of safety reported by Dennhardt and 
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Forster (1.54) and Hungr et al. (1.58) are higher than the unloaded plane strain case 

(1.44). 

The results from a series of loaded three-dimensional models are presented to 

investigate the relationship between the exit distance of the slip surface and the factor 

of safety. In one case, the factor of safety is controlled by increasing or decreasing 

the surcharge applied to the crest while Poisson's ratio is equal 0.48. In the other 

case, Poisson's ratio is equal 0.30. The exit distance of the slip surface is controlled 

by the aspect ratio of the ellipsoid. The exit distance increases as the aspect ratio is 

increased. An exit distance equal to 4m corresponds to an aspect ratio of 

approximately 0.5 while an exit distance equal to 10m corresponds to an aspect ratio 

of approximately 1.2. An aspect ratio of 1,000 represents an infinite slip surface (i.e., 

plane strain conditions). 
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Figure 4.17: Relationship between the exit distance of the three-dimensional failure 

surface and the three-dimensional factor of safety. 

The exit distance increases exponentially as the three-dimensional factor of safety 

approaches the unloaded two-dimensional plane strain case. A distinct three-

dimensional failure surface, contained within the 24m length of slope (see Figure 

4.16), does not begin to emerge until the three-dimensional factor of safety decreases 

to approximately 1.47. A factor of safety equal to 1.47 is approximately 5% lower 

than the factor of safety for the unloaded plane strain case and corresponds to a 

surcharge equal to 150 kPa. The results seem to support the thinking that the three-

dimensional factor of safety should be lower than the factor of safety for the unloaded 

plane strain condition to develop a typical three-dimensional failure (i.e., including 

end effects). The exit distance steadily decreases as the three-dimensional factor of 

safety is reduced due to the application of additional load. The exit distance 

approaches the values reported by Dennhardt and Forster (1985) and Hungr et al. 
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(1989) once the surcharge load is increased beyond 600 kPa or the three-dimensional 

factor of safety decreases below 1.0. 

One additional model was completed for each surcharge load with Poisson's ratio 

equal to 0.3. Poisson's ratio affects the exit distance of the slip surface as well as the 

factor of safety. The curve describing the relationship between the exit distance and 

the three-dimensional factor of safety for the case where Poisson's ratio was equal to 

0.3 is shown in Figure 4.17. The curve is shifted down and to the left when compared 

to the relationship determined using Poisson's ratio equal to 0.48. It appears that the 

exit distance decrease as Poisson's ratio is decreased. 

4.5 Discussion 

The results from each comparison demonstrate that the proposed slope stability 

method provides a reliable estimate of the three-dimensional factor of safety. The 

accuracy of the factor of safety calculation is affected by the density of the finite 

element mesh used to compute the internal stresses, the intermediate grid used to link 

the finite element analysis and the slope stability calculations, the discretization of the 

slip surface, and the admissibility of individual planes along the slip surface. 

Detailed sensitivity studies are presented in the first and second examples to show 

that the density of each mesh can be increased to a level where the variation in the 

factor of safety is no longer significant. The procedure is shown to provide 

reasonable estimates of the factor of safety for large scale failures often encountered 

in practice. 

Sensitivity studies are also presented to demonstrate the influence of Poisson's 

ratio on the three-dimensional factor of safety. The Poisson's ratio selected in the 

'switch on' gravity analysis partially controls the relationship between the horizontal 

and vertical stresses (i.e., K<, = <zjay = v/(l - v)). Selecting different values for 

Poisson's ratio can influence the direction of forces acting on individual planes along 

the slip surface. In some cases, certain planes can be considered kinematically 

inadmissible because the shear force acts contrary to the assumed direction of failure. 
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It appears that the overall variability in the factor of safety increases as the number of 

inadmissible planes increases. The factor of safety is shown to be the most reliable 

when Poisson's ratio is selected so that a minimum number of planes violate the 

kinematic admissibility criteria. The results confirm the conclusion made by Stianson 

(2008) that finite element slope stability results can be misleading if slip surfaces of a 

certain shape are automatically assumed to be admissible. 

The third and fourth example problems are examples of other cases where the 

characteristics of the finite element stress distribution can result in differences in the 

slope stability calculations. The factor of safety computed in the third example is 

approximately 11 % higher than the factor of safety computed using the method of 

columns. The increase in the factor of safety is considered to be due to the presence 

of stress concentrations near sharp breaks in the geometry at the toe of the slope. 

The fourth example considers a case where a surcharge is applied on the crest of the 

slope to initiate a three-dimensional failure. A significantly higher surcharge is 

required in the finite element analysis to produce a slip surface with similar 

characteristics as the slip surface found using the method of columns. , 

4.6 Conclusion 

A procedure is developed where stresses from a separate finite element analysis are 

incorporated into a limit equilibrium framework to evaluate the stability of three-

dimensional slopes. The resulting three-dimensional finite element factor of safety 

equation is determinate and satisfies all conditions of equilibrium. In addition, the 

factor of safety can be computed directly and does not require the use of complex 

iterative procedures. The proposed method is used to re-analyze a series of published 

example problems. The results from each comparison demonstrate that the stress-

based finite element method provides a reliable estimate of the three-dimensional 

factor of safety. The stability of each slope considered in the current research is 

evaluated using symmetrical ellipsoidal failure surfaces. The ability to satisfy all 

conditions of equilibrium means that the procedure can be used to evaluate the factor 
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of safety for three-dimensional slip surfaces of any arbitrary shape provided that the 

slip surface is kinematically admissible. This research has set the stage to go the next 

step and incorporate non-linear searching techniques to alleviate assumptions 

regarding the shape of the three-dimensional slip surface. 

4.7 Bibliography 

Baligh, M.M., and Azzouz, A.S. 1975. End effects of stability of cohesive slopes. 

Journal of the Geotechnical Engineering Division, ASCE, 101(GT 11): 1105-

1117. 

Bishop, A.W. 1955. The use of the slip circle in the stability analysis of slopes. 

Geotechnique, 5:7-17. 

Chen, J. 2004. Slope stability analysis using rigid elements. Dissertation, Hong Kong 

Polytechnic University, Hong Kong. 

Chen, R.H., and Chameau, J.L. 1982. Three-dimensional limit equilibrium analysis of 

slopes. Geotechnique, 32(1): 31-40. 

Chen, Z.Y., Wang, J., Wang, Y.J., Yin, J.H., and Haberfield, C. 2001. A three-

dimensional slope stability analysis method using the upper bound theorem -

Part II: numerical approaches, applications and extensions. International 

Journal of Rock Mechanics and Mining Sciences, 38(3): 379-397. 

Dennhardt, M., and Forster, W. 1985. Problems of three-dimensional slope stability. 

In Proceedings, 11th International Conference on Soil Mechanics and 

Foundation Engineering. San Francisco, Vol.2, pp. 427-431. 

Fan, K., Fredlund, D.G., and Wilson, G.W. 1986. An interslice force function for 

limit equilibrium slope stability analysis. Canadian Geotechnical Journal, 

23(3): 287-296. 

Fellcnius, W. 1936. Calculations of the stability of earth dams. In Transaction of the 

2nd Congress on Large Dams. Washington DC, Vol.4, p. 445 

Fredlund, D.G., and Krahn, J. 1977. Comparison of slope stability methods of 

analysis. Canadian Geotechnical Journal, 14(3): 429-439. 

133 



Fredlund, D.G., and Rahardjo, H. 1993. Soil Mechanics for Unsaturated Soils. John 

Wiley & Sons, Inc., New York, N. Y. 

Fredlund, D.G., Krahn, J., and Pufahl, D.E. 1981. The relationship between limit 

equilibrium slope stability methods. In Proceedings of the International 

Conference on Soil Mechanics and Foundations Engineering. Stockholm, 

Sweden, Vol.3, pp. 409-416. 

Fredlund, D.G., Scoular, R.E.G., and Zakerzadeh, N. 1997. Using finite element 

stress analysis to compute the factor of safety. In 52nd Canadian Geotechnical 

Conference. Regina, Saskatchewan, Canada, pp. 73-80. 

Gens, A., Hutchinson, J.N., and Cavounidis, S. 1988. Three-dimensional analysis of 

slides in cohesive soils. Geotechnique, 38(1): 1-23. 

Hungr, O. 1987. An extension of Bishop's simplified method of slope stability 

analysis to three dimensions. Geotechnique, 37(1): 113-117. 

Hungr, O. 2001. CLARA-W: Slope Stability Analysis in two or three Dimensions for 

microcomputers. O. Hungr Geotechnical Research, Vancouver, B.C. 

Hungr, O., Salgado, F.M., and Byrne, P.M. 1989. Evaluation of a three-dimensional 

method of slope stability analysis. Canadian Geotechnical Journal, 26(4): 679-

686. 

Janbu, N., Bjerrum, L., and Kjaernsli, B. 1956. Soil mechanics applied to some 

engineering problems. Norwegian Geotechnical Institute, Publication No. 16 

(in Norwegian). 

Krahn, J. 2003. The 2001 R.M. Hardy Lecture: The limits of limit equilibrium 

analyses. Canadian Geotechnical Journal, 40(3): 643-660. 

Kulhawy, F.H. 1969. Finite element analysis of the behavior of embankments. 

Dissertation, University of California, Berkeley, California, USA. 

Lam, L., and Fredlund, D.G. 1993. General limit equilibrium model for three-

dimensional slope stability analysis. Canadian Geotechnical Journal, 30(6): 

905-919. 

134 



Leshchinsky, D., Baker, R., and Silver, MX. 1985. Three-dimensional analysis of 

slope stability. International Journal for Numerical and Analytical Methods in 

Geomechanics, 9(3): 199-223. 

Loehr, J.E. 1998. Development of a hybrid limit equilibrium-finite element procedure 

for three-dimensional slope stability analysis. Dissertation, The University of 

Texas at Austin, Texas, USA. 

Morgenstern, N.R., and Price, V.E. 1965. The analysis of slope stability of general 

slip surfaces. Geotechnique, 15(1): 79-63. 

Pham, H.T.V. 2002. Slope Stability Analysis Using Dynamic Programming Method 

Combined With a Finite Element Stress Analysis. Thesis, University of 

Saskatchewan, Saskatoon, Canada. 

Scoular, R.E.G. 1997. Limit equilibrium slope stability analysis using a stress 

analysis. Thesis, University of Saskatchewan, Saskatoon, Canada. 

Silvestri, V. 2006a. A three-dimensional slope stability problem in clay. Canadian 

Geotechnical Journal, 43(2): 224-228. 

Silvestri, V. 2006b. Erratum: A three-dimensional slope stability problem in clay. 

Canadian Geotechnical Journal, 43(10): 1. 

Spencer, E. 1967. A method for analysis of the stability of embankments assuming 

parallel interslice forces. Geotechnique, 17(1): 11-26. 

Stianson, J.R. 2008. A three-dimensional slope stability method based on finite 

element stress analysis and dynamic programming. Dissertation, University of 

Alberta, Canada. 

Xing, Z. 1988. Three-dimensional stability analysis of concave slopes in plan view. 

Journal of Geotechnical Engineering, ASCE, 114(6): 658-671. 

135 



Chapter 5 

Three-Dimensional Slope Stability 
Based on Dynamic Programming 
and Finite Element Stresses 
Analysis 

5.1 Introduction 

Admissibility criteria play a critical role in the application of searching procedures to 

locate the critical slip surface in two- and three-dimensional limit equilibrium slope 

stability analyses. Admissibility criteria can be used to train the searching procedure 

to distinguish between reasonable and unreasonable slip surfaces. The goal is to 

select admissibility criteria that are sufficiently flexible to provide an exhaustive 

search (i.e., the most likely failure surface is included in the search) yet restrictive 

enough to result in a search that is efficient (i.e., meaningless slip surfaces are 

excluded from the search). Neglecting to use appropriate admissibility criteria can 

compromise the efficiency of the search by including unreasonable slip surfaces that 

have little resemblance to real cases. 

The ability to invoke admissibility criteria is closely related to the method used to 

compute the factor of safety. Traditional two-dimensional method of slices 

techniques invoke no kinematical considerations regarding soil behavior and hence 

require assumptions regarding the overall shape of potential failure surfaces 

(Morgenstern and Price 1965). Assumptions regarding the shape of the slip surface 

are generally justified on the grounds that the computational procedure is made 

simpler. However, Ching and Fredlund (1983) provide examples where an analyst 
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might seemingly select a reasonable shape (i.e., circular or composite) that in the end 

might result in the violation of basic soil behavior principles including cases where 

the factor of safety is less than zero or tensile forces exist within the sliding mass. 

Ching and Fredlund (1983) developed an admissibility criterion based on active and 

passive earth pressure theory that can be used to identify and modify the shape of 

problematic failure surfaces. The earth pressure constraint acts as a secondary 

admissibility criterion used to modify the primary shape of the slip surface selected 

by the analyst. Similar admissibility criteria are applied in the three-dimensional 

method of columns techniques for the calculation of factor of safety. The primary 

shape of the slip surface is typically assumed to be an ellipsoid and is subject to 

secondary modifications. 

More sophisticated admissibility criteria have been developed as a result of the 

application of two-dimensional stress-based slope stability methods (Pham and 

Fredlund 2003). The admissibility criterion developed by Pham and Fredlund (2003) 

can be used to govern the shape of the overall slip surface without the use of arbitrary 

assumptions. The criterion includes both circular and non-circular failure surfaces 

and is made possible as a result of calculating the internal stress distribution prior to 

performing the slope stability calculations. It is reasonable that the admissibility 

criteria developed for two-dimensional finite element slope stability calculations be 

extended to three-dimensional slope stability problems. 

The objective of this research is to demonstrate a procedure that can be used to 

simultaneously determine the shape, location, and factor of safety for the critical slip 

surface in three-dimensional slope stability problems. The procedure is designed to 

use stresses from an independent finite element analysis to compute the factor of 

safety. The dynamic programming methodology is used to search for the critical slip 

surface. The shape of the critical slip surface is not pre-defined, however, that does 

not mean that the dynamic programming searching procedure indiscriminately 

considers every possible slip surface. The searching procedure is trained to 

distinguish between reasonable and unreasonable slip surfaces through the use of a 

series of admissibility criteria. The admissibility criteria used to govern the three-
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dimensional slope stability calculations are developed based on extensions of 

admissibility criteria that have been successfully applied in two-dimensional slope 

stability methods. 

5.2 Background 

Admissibility criteria are used to judge whether or not a potential slip surface is 

worthy of consideration in the slope stability analysis. It is possible to distinguish 

between two classes of admissibility; namely, geometric and kinematic admissibility 

criteria. Geometric admissibility criteria (GAC) are based strictly on the geometric 

properties of the slip surface. Kinematic admissibility criteria (KAC) can be 

formulated based on principles of soil behavior, equilibrium considerations, and the 

kinematics required to produce physically realistic slip surfaces. Kinematic 

admissibility criteria are typically considered to be more flexible than geometric 

admissibility criteria. The application of certain admissibility criteria is closely 

related to the method used to compute the factor of safety and the procedure used to 

search for the critical slip surface. A number of geometric and kinematic 

admissibility criteria identified in the literature are summarized in Table 5.1 and 

Table 5.2. 

Table 5.1: Geometric admissibility criteria applied in two-dimensional slope stability 

formulations. 

Geometric Admissibility Criteria 

Cird^ (X-xcy+(y-yc)
2=Ri 

(traditional limit equilibrium methods) 

(Nguyen 1985), (De Natale 1991) 

Concave 82y/d2x>0 

(Baker 1980) 
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The circular GAC is one of the simplest and most restrictive admissibility criteria. 

The advantage of using the circular GAC is that the shape and location of potential 

slip surfaces can be described using three parameters. 'Grid and radius' searching 

techniques have been developed to systematically evaluate various combinations of 

the parameters to identify the slip circle with the lowest factor of safety. Steps have 

also been taken to consider composite slip surfaces by including the ability to specify 

pre-defined lines of intersection. The lines of intersection are used to simulate the 

location of weak layers within the slope. The critical composite slip surface and the 

critical circular slip surface are typically identified in separate searches. 

The application of the dynamic programming searching technique in two-

dimensional slope stability promoted the development of a more general GAC. The 

GAC developed by Baker (I980),d2y/dx2 > 0, considered the use of concave slip 

surfaces. The searching procedure proposed by Baker (1980) is considerably more 

flexible than the grid and radius approach and can be used to consider circular and 

composite slip surfaces in the same search. The concave GAC should be used in 

combination with factor of safety equations satisfying all conditions of equilibrium. 

Classic earth pressure theory has been used to develop KAC to limit the angle of 

inclination of individual line segments along a slip surface. The inclination of the slip 

surface in the active zone should not exceed the limit of 45+<J>/2 and the inclination of 

the slip surface in the passive zone should not exceed 45-(|)/2. Boutrup and Lovell 

(1980) used the earth pressure constraints to control the shape of randomly generated 

slip surfaces while Ching and Fredlund (1983) used earth pressure constraints to 

modify the slip surface at the end of a method of slices analysis. Ching and Fredlund 

(1983) found that specifying a circular or composite slip surface could result in the 

violation of basic soil behavioral principles. In moderate cases, the factor of safety 

might be under-estimated but in more severe cases the factor of safety could be 

negative. The results indicated that GAC might result in slip surfaces that violate 

certain principles of soil mechanics if used in isolation of other considerations. 
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Table 5.2: Kinematic admissibility criteria applied in two-dimensional slope stability 

formulations. 

Kinematic Admissibility Criteria 

Theoretical Principle Governing Equation 

Earth Pressure Theory 

(Boutrup and Lovell 1980) 

(Ching and Fredlund 1983) 

Active Case: 9 < 45 + ^ / 2 

Passive Case: 9< 4 5 - ^ / 2 

Force Equilibrium 

(Baker 1980), (Greco 1996) 
Pa, =cos(ai-9)\ > 0.3-0.4 

Failure criterion of the soil The line of thrust, computed based on moment 

(Morgenstern and Price 1965) equilibrium, must not pass below the slip surface. 

Kinematics of the sliding mass 

(Pham and Fredlund 2003) 
rn = vxy (sin2 9 - cos2 9 J -

' a —a ^ 
* y 

J 
sin 29 

Baker (1980) proposed an additional admissibility criterion to be used in 

combination with Spencer's method of slices technique. The criterion was based on 

the rationale that force equilibrium should be satisfied for individual slices if the slip 

surface is to be considered reasonable. The criterion is not related to the geometric 

properties of the slip surface and is therefore classified as a KAC. The expression 

used to evaluate individual slices along the slip surface is listed in Table 5.2. The 

expression is used as part of the procedure to compute the inter-slice forces. The 

restriction that Pa be in the range of 0.3 to 0.4 is necessary to ensure that force 

equilibrium is satisfied (i.e., the force polygon for an individual slice closes). Similar 

expressions can be developed for other method of slices techniques to evaluate the 

satisfaction of force equilibrium for individual slices. Greco (1996) presented a 

summary of the expressions used in combination with various method of slices 

techniques including Bishop's Simplified method, Janbu's method, and Spencer's 

method. Greco (1996) confirmed that slip surfaces violating the criterion (i.e., Pa 
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>0.3 to 0.4) tend to assume shapes that are kinematically inadmissible and can be 

excluded from the analysis. 

Morgenstern and Price (1965) introduced an admissibility criteria based on the 

rationale that the failure criterion for the soil must not be violated. The failure 

criterion is considered to be violated if a state of tension is implied within the soil 

mass above the slip surface. Morgenstern and Price (1965) indicated that it is 

possible to determine whether or not a state of tension is implied by computing the 

location of the line of thrust. The line of thrust is computed using moment 

equilibrium and describes the line of action of the resultant inter-slice forces acting on 

individual slices. Tension is considered to exist within the sliding mass if the line of 

the thrust passes below the slip surface. Slip surfaces that result in a violation of the 

failure criterion of the soil are excluded from the analysis. 

Pham and Fredlund (2003) developed a KAC based on the consideration that the 

actuating force should act in the same direction as mass movement. The admissibility 

of individual line segments along a potential slip surface is evaluated by computing 

the direction of the actuating shear stress based on a Mohr's Circle analysis of the 

finite element stresses. The criterion is more flexible than the concave criterion 

because it can be used to model cases where weak layers within the slope might result 

in a slip surfaces that are not strictly concave. 

The application of admissibility criteria in three-dimensional slope stability is less 

advanced. In most cases, GAC are used to restrict the shape of potential slip surfaces 

to pre-defined mathematical shapes such as ellipsoids. Composite slip surfaces are 

often considered in a separate analysis involving a procedure where the ellipsoid is 

intersected with a plane corresponding to the location of a weak layer. Yamagami 

and Jiang (1997) developed a three-dimensional slope stability method based on the 

combination of dynamic programming and Spencer's method of slices technique. 

The concave admissibility criterion originally proposed by Baker (1980) was adopted 

to relax the restrictions typically placed on the shape of three-dimensional slip 

surfaces. However, difficulties were encountered as a result of the extremely large 

number of potential slip surfaces that needed to be considered in even the simplest 
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three-dimensional slope stability analysis. Yamagami and Jiang (1997) used random 

number generation to limit the number of slip surfaces to be considered in the 

dynamic programming search to reduce the computational time required to complete 

an analysis. The current three-dimensional slope stability method is formulated 

considering the possibility of improving the efficiency of three-dimensional searching 

procedures by combining existing GAC with KAC. It is possible to investigate the 

application of more advanced KAC as a result of the development of three-

dimensional slope stability methods where the factor of safety is computed based on 

finite element stresses and the search for the critical slip surface is completed using 

dynamic programming (Stianson 2008). 

5.3 Application of the Dynamic Programming 
Optimization Technique to Three-
Dimensional Slope Stability 

The dynamic programming method is a numerical algorithm used to optimize 

sequential multi-stage decision problems (Bellman 1957). Multi-stage decision 

problems are solved using a system of stages and states. The stages associated with 

the dynamic programming search are in no way related to other staged systems 

typically referred to in slope stability literature (i.e., staged construction sequence, 

etc.). Likewise, the states associated with the dynamic programming search are in no 

way related to soil behavior (i.e., stress state, limit state, critical state soil mechanics 

etc.). Dividing the slope stability calculation into a stage-state system facilitates the 

calculation of the factor of safety for trial slip surfaces while at the same time 

searching for the slip surface with the lowest factor of safety. The details regarding 

the development of the stage-state system, the factor of safety equation, and the 

optimization procedure used to search for the critical slip surface are presented in the 

following sections. 
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5.3.1 Development of a Stage-State System 

Yamagami and Jiang (1997) developed a scheme for dividing the three-

dimensional slope stability calculations into a stage-state system. Stages were 

defined as a series of two-dimensional cross-sections aligned perpendicular to the 

assumed direction of failure (i.e., stage cross-sections). A state was defined as one 

curve on one stage cross-section (i.e., state curve). The shaded region shown in 

Figure 5.1 results from the connection of state curve (jj) from stage [i] to state curve 

(kk) in stage [i+1] and represents a narrow section of a three-dimensional slip surface. 

A complete three-dimensional slip surface can be generated by connecting one state 

curve from each stage cross-section. 

Figure 5.1: Stage-state system proposed by Yamagami and Jiang (1997). 

A separate numerical procedure involving random number generation was 

developed to generate a specified number of concave state curves on each stage 

cross-section. Once a sample of state curves was generated on each stage cross-

section, the dynamic programming algorithm was used to determine the combination 
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of state curve connections that resulted in the three-dimensional slip surface with the 

lowest factor of safety. 

The proposed formulation uses a similar procedure to divide the three-

dimensional slope stability calculations into a stage-state system. The main 

difference between the procedure developed by Yamagami and Jiang (1997) and the 

proposed procedure is the numerical technique used to generate state curves on each 

stage cross-section. More detail regarding the generation of state curves is provided 

in the following section. 

5.3.2 Admissibility Criteria Governing the 
Shape of the Slip Surface Perpendicular 
to Movement 

The generation of state curves is an intermediate step in the overall slope stability 

evaluation. First, a discretization scheme is used to generate a two-dimensional grid 

{cross-section grid) of points on each stage cross-section. 
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Stage Cross-Sections 

Figure 5.2: A series of regular two-dimensional cross-section grids generated for a 

number of stage cross-sections for a three-dimensional slope. 

The regular cross-section grid shown in Figure 5.3 represents stage cross-section 

" f outlined in Figure 5.2 and was generated by specifying a common spacing 

between points in the x and z-directions. A numerical procedure is used to 

systematically iterate from the first to the last column, connecting one grid point from 

each column. A broken line segment {state curve), extending from one side of the 

cross-section grid to the other, is formed after one complete iteration. It is evident 

from Figure 5.3 that state curves describe the shape of the slip surface in the direction 

perpendicular to failure. In practice, a number of iterations are performed to generate 

the total number of state curves passing certain admissibility criteria (i.e., a random 

number generator is not used to generate a pre-defined number of state curves on each 

stage cross-section). Once the state curves have been generated on each stage cross-

section, the dynamic programming method is used to search for the combination of 

state curves that result in the slip surface with the lowest factor of safety. 

Yamagami and Jiang (1997) suggested that the slope stability evaluation could be 

considered sufficiently rigorous if a few hundred state curves were randomly 
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generated for each stage cross-section. A detailed study was undertaken to 

investigate the numerical difficulties that might be encountered if a more rigorous 

treatment of state curve generation was considered. 

^— Point Number 

Q fl> Q (0. Ground Surface --£> & & 

- H A x N -
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Column Number 

Figure 5.3: Illustration to describe the generation of state curves. 

The cross-section grid shown in Figure 5.3 contains a total of 15 columns, each 

with 15 points except for the first and last columns. The points below the ground 

surface were excluded from the first and last columns to indicate that all state curves 

exit the slope. If state curves of any shape were allowed, including those that result 

in oscillatory slip surfaces, there would be a total of 1.95E15 (i.e., 1513) state curves 

that could be generated for the grid shown in Figure 5.3. The time required to 

evaluate the state curve connections between two cross-sections is sensitive to the 

number of state curves included on each cross-section. At this point, it is prudent to 

discuss the number of state curves that the dynamic programming optimization 

technique can evaluate within a reasonable amount of time, given the available 

computing resources in a typical desktop computer. 

The computer code developed for the current research has been used to solve a 

number of example problems. Each example has provided additional experience 

regarding the time required for the dynamic programming algorithm to search 
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through a given number of curve connections. Figure 5.4 represents a typical 

relationship between computer time and the total number of curve connections to be 

considered by the dynamic programming algorithm. The relationship shown in 

Figure 5.4 can be used to approximate the solution time given a certain number of 

curve connections or recommend the number of curve connections that will result in a 

reasonable solution time. The simulations were run on a 3.00GHz Pentium 4 

processor with 1.0GB of random access memory (RAM). 
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Figure 5.4: Relationship between computing time and the number of state curve 

connections. 

Consider the case where the dynamic programming algorithm would be used to 

determine the critical curve connections between two stage cross-sections similar to 

the one shown in Figure 5.3. The total number of curve connections between the two 

cross-sections can be computed by multiplying the total number of curves in cross-

section / by the number of curves in cross-section i+1. The total number of curve 

connections would be equal to, 1.95E15 * 1.95E15 = 3.8E30 curve connections. The 

solution time can be estimated using the straight line equation used to approximate 

147 



the relationship shown in Figure 5.4. The approximate solution time would be equal 

to 3.8E30 / 84034 = 4.52e25 minutes or 8.6E19 years! The following calculation 

demonstrates the need for the application of admissibility criteria to identify only 

those state curves that result in physically realistic slip surfaces. The question 

regarding the number of state curves left over after the application of appropriate 

admissibility criteria remains to be answered. 

5.3.2.1 Concave Admissibility Criteria 

Yamagami and Jiang (1997) recognized that state curves resulting in oscillatory slip 

surfaces can be excluded from the analysis on the basis that a large number of actual 

sliding surfaces are smooth curves. It was suggested that only state curves passing 

the admissibility criterion d2z/d2y>0, should be included in the analysis. The 

admissibility criterion includes state curves similar to the curves shown in Figure 5.5 

including concave curves (curve a), flat bottom curves with concave sides (curve b) 

or flat bottom curves with planar (curve c) sides. The admissibility criteria can be 

classified as GAC as it is based on the geometric properties of the slip surface. 

There are at least two special cases (i.e., Eq. [5.2] and Eq. [5.3] given below) 

included within the overall concave admissibility criteria that will result in 

meaningful slip surfaces but are slightly more restrictive, resulting in fewer state 

curves. 

[5.!] d2z/82y>0 

[5 2] If dz/dy = 0 then d2z/d2y > 0 else d2z/d2y > 0 

[5.3] d2z/82y>0 
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Equation [5.2] includes curves similar to curves a and b but excludes curves like c. 

Equation [5.3] only includes curves where the slope of consecutive line segments is 

always decreasing (i.e., curves similar to curve a). The variations of the concave 

constraint can be used to limit the number of state curves included in the analysis 

depending on the soil conditions being considered. For example, it might not be 

necessary to include flat bottom planar curves in simple homogeneous slopes 

consisting of cohesive material with no well-defined weak layers. It is well known 

from two-dimensional analysis that slip surfaces in homogeneous cohesive slopes are 

generally smooth curves. 

Figure 5.5: An illustration of the differences between state curves allowed by the 

three proposed variations of the concave constraint. 

Applying the concave admissibility criteria reduces the number of state curves for the 

cross-section grid shown in Figure 5.3 from 1.95E15 curves to just over 350,000 

curves. According to Figure 5.4, the computer time required to optimize the critical 

curve connections between two stages with 350,000 state curves would still be in the 

order of three years. 

Yamagami and Jiang (1997) suggested that the total number of state curves could 

be reduced to a reasonable level by randomly selecting 100-200 state curves for 

simple symmetrical problems or 400-500 state curves for non-symmetrical slopes. 

Randomly selecting 500 curves from a sample of approximately 350,000 concave 

curves would mean that hundreds of thousands of potentially admissible state curves 

would indiscriminately be removed from the analysis. Ching and Fredlund (1984) 

also demonstrated that the application of GAC in isolation might result in slip 
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surfaces that violate basic principles of soil behavior. It is possible that the 

development of more advanced admissibility criteria might offer the ability to reduce 

the number of state curves to a reasonable level while still providing a rigorous 

treatment of state curve generation. 

5.3.2.2 Earth Pressure Admissibility Criteria 

Classic earth pressure theory can be used to control the inclination of line segments 

used to generate state curves. Controlling the inclination of individual line segments 

based on earth pressure theory will ensure the shape of the slip surface is reasonable 

and provide a meaningful admissibility criterion that can be used to reduce the 

number of state curve combinations. All of the state curves that contain line 

segments elevated at angles less than or equal to 45 + 072 in an active zone, or 

4 5 - ^ 7 2 in a passive zone, should be included in the search for the most critical slip 

surface. In practice, it is not necessary to predetermine active and passive zones if 

only the active constraint is applied. The sample of curves satisfying the active 

constraint will include all of those curves that satisfy the passive constraint, (i.e., 

45 + 072 automatically includes curves passing 4 5 - 0 7 2 ). It is understood that 

applying only the active constraint will result in a certain number of extra curves in 

zones where passive failure is expected. The application of the earth pressure 

constraint is not the final check for slip surface admissibility and is only meant to 

provide a meaningful constraint that can be used to reduce the number of state curve 

combinations. The final check for admissibility is carried out using a kinematic 

admissibility criterion applied during the dynamic programming search. 

5.3.2.3 Grid Aspect Ratio Constraint 

The number of state curves included in the analysis after applying the earth pressure 

admissibility criterion depends on the friction angle of the soil and the aspect ratio of 

the cross-section grid. The aspect ratio of the cross-section grid is the relationship 
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between the horizontal grid spacing to the vertical grid spacing. The aspect ratio for 

the cross-section grid shown in Figure 5.3 is 1:4 (i.e., the vertical grid spacing of 

0.5m results in four times as many grid points as the horizontal grid spacing of 2m). 

Figure 6 illustrates how the aspect ratio of the cross-section grid and the earth 

pressure admissibility criteria can be used to control the number of state curves to be 

included in the analysis. 

• | 2 m H -

° A * i 

%?T0.5m 

1:4 1:2 

->1 2m h 

1:1 

Figure 5.6: Illustration showing how the number of state curve combinations can be 

increased or decreased depending on the aspect ratio selected for the cross-section 

grid. 

The aspect ratio for the grid on the left is 1:4. The middle grid and the grid on the 

right have aspect ratios equal to 1:2 and 1:1, respectively. If the soil has a friction 

angle equal to the 30 degrees, only those state curves with line segments elevated at 

angles less than 60 degrees (45 + 072 = 60) are included in the analysis. The solid 

black lines have been drawn at 60 degrees to illustrate the number of line segments 

that are considered for a single point on the cross-section grid. The 1:4 grid contains 

approximately twice as many line combinations as the 1:2 grid (i.e., at least twice as 

many state curve combinations). The number of admissible combinations decreases 

as the friction angle of the soil decreases or the aspect ratio of the cross-section grid is 

decreased. Difficulties can arise if the angle permitted by the earth pressure 

constraint approaches the minimum angle between points on the cross-section grid. 
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For example, in the extreme case where the friction angle of the soil is equal to zero, 

the maximum line segment elevation permitted by the earth pressure admissibility 

criteria is equal to 45 degrees. If the cross-section grid aspect ratio is less than 1:1, 

the minimum angle between grid points is greater than 45 degrees resulting in a case 

where there are zero admissible state curves. 

The aspect ratio of the dynamic programming search grid can be selected lower 

during preliminary analysis to reduce the number of state curves and expedite the 

dynamic programming search. The aspect ratio should not be reduced lower than 1:2 

and should be sufficiently large to provide enough resolution to account for thin weak 

layers that might dominate the stability analysis. The aspect ratio can be increased 

once the search grid is focused around the likely location of the critical slip surface 

identified from preliminary searching. 

5.3.2.4 Application of Admissibility Criteria 
during State Curve Generation 

The numerical procedure used to generate state curves can be formulated to permit 

the application of various combinations of the admissibility criteria described above. 

Selecting state curves based on the proposed admissibility criteria is considered to be 

rigorous because state curves are not arbitrarily excluded from the analysis. All of 

the state curves passing the applied admissibility criteria are considered. A 

sensitivity study was undertaken to investigate whether or not the admissibility 

criteria can be used to reduce the number of state curve combinations to a number 

that can be managed with available computing resources. 

Various combinations of the admissibility criteria were applied during the 

generation of state curves for the cross-section grid shown Figure 5.3 (Table 5.3). In 

each case, the number of admissible state curves is reported along with an estimate of 

the solution time in hours. The solution time represents the time required by the 

dynamic programming algorithm to determine the optimum state curve connection 
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between two stage cross-sections each containing a certain number of state curves. 

The results of the sensitivity study are presented in Table 5.3. 

Table 5.3: Results of a sensitivity study regarding the rigorous treatment of state 

curve generation. 

Grid aspect 
ratio 
1:4 
1:4 
1:4 
1:2 

*' 

0 t o 1 2 
0 t o 2 0 
0 t o 3 0 
0 t o 3 0 

Earth 
pressure 
constraint (° 
51 
55 
60 
60 

No. 1 

State 
) curves 

32 821 
83 844 
157 181 
3 463 

Solution 
time 
(hrs.) 
214 
1 394 
4 900 
2.4 

Concave constraint 
No. 2 

State 
curves 
1 361 
3 423 
8 154 

567 

Solution 
time 
(hrs.) 
0.4 
2.3 
13.2 
0.1 

No. 3 
Solution 

State time 
curves (hrs.) 
467 0.04 
1 258 0.3 
3 161 2.0 
183 0.01 

The largest number of state curves was reported for the combination where the 

cross-section grid aspect ratio was 1:4, the friction angle of the soil was 30 degrees, 

and the most flexible concave criteria was used (i.e., Eq. [5.1] ). This combination 

resulted in approximately 157,000 admissible state curves. According to Figure 5.4, 

approximately 4,900 hours of computer time would be required to optimize all of the 

combinations. The results show that the number of state curves can be reduced if the 

friction angle of the soil is lower, if the density of cross-section grid is reduced by 

considering an aspect ratio of 1:2, or if one of the more restrictive variations of the 

concave criteria is invoked. In reality, the angle of internal friction corresponds to the 

strength of the soil and cannot be modified to control the number of state curve 

connections. The solution time can be reduced to 13 hours or less by selecting the 

concave criteria corresponding to Eq. [5.2] and to 2 hours or less by selecting the 

concave criteria corresponding to Eq. [5.3]. The solution time was reduced to 2 hours 

or less when an aspect ratio of 1:2 was selected, for all three variations of the concave 

criteria. 

The solution time can also be significantly reduced by incorporating information 

from field investigations. In many cases, it is possible to estimate the volume of soil 
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that is moving or even isolate the general location of the slip surface at discrete points 

using slope inclinometer data. 

. /— Ground Surface —\» 

Known point on the slip surface \J 
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Column Number 
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Figure 5.7: Illustration showing how information from field investigations can be 

used to reduce the total number of admissible state curves and reduce the solution 

time. 

Let us consider the combination from Table 5.3 where the grid aspect ratio is 1:4, 

the friction angle of the soil is 30 degrees, and the concave criterion corresponds to 

Eq. [5.1]. The total number of admissible state curves for this case is 8,154. If one 

point on the slip surface can be identified, the remaining points in the column could 

be removed from the cross-section grid, as shown in Figure 5.7. In this case, isolating 

one point on the failure surface reduces the total number of admissible state curves 

from 8,154 to 647, reducing the solution time from nearly 13 hours to approximately 

5 minutes. 

Admissibility criteria are necessary to increase the efficiency of the search by 

excluding state curves that do not result in reasonable slip surfaces. In practice, it is 

possible to carry out more restrictive preliminary analysis to determine the 

approximate location of the slip surface. Once the approximate location of the slip 

surface has been identified, it is possible to focus the grid on each cross-section 

around the anticipated area and relax the admissibility criteria. The admissibility 
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criteria described in this paper can be used to investigate the stability of a large 

number of conditions typically encountered in practice. 

5.3.3 Admissibility Criteria Governing the 
Shape of the Slip Surface in the 
Direction of Movement 

Kinematic admissibility criteria used in three-dimensional slope stability formulations 

is less developed than those used in two-dimensional formulations. The idea of using 

the dynamic programming algorithm to search for concave failure surfaces was 

extended to three-dimensions by Yamagami and Jiang (1997). However, it appears 

that the concave restriction was only applied in the direction perpendicular to failure. 

Yamagami and Jiang (1997) did not report on the use of a criterion to ensure the 

shape of the slip surface in the direction of failure was kinematically admissible. The 

criterion proposed by Pham and Fredlund (2003) has been extended to three-

dimensions for use in the current research. The criterion serves as the final check for 

admissibility of the overall three-dimensional slip surface. 

5.3.4 Definition of the Factor of Safety 

The factor of safety equation for an arbitrary three-dimensional slip surface can be 

defined as 

\rf dA 
[5-4] F°=\n 

where Xf is the shear strength of the soil, x is the mobilized shear stress, and dA is an 

incremental area on the slip surface. It is assumed that the critical slip surface can be 

approximated by series of triangular surfaces (Figure 5.8). The triangular surfaces 
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form the connection between the critical state curves from successive stage cross-

sections. The factor of safety can be written in the form: 
mnl [ mn2 mn 1 mn 

[5.5] Fs = YSfJ* YSmAm =TR» / 5 X 

where m is the number of dividing lines in the x-direction, n is the number of dividing 

lines in the ̂ -direction, rf is the shear strength, rjjk is the mobilized shear stress, and 

Ayk is the area of one triangular plane. The resisting force Ry and the shear force Sy 

can be calculated by multiplying the shear strength and the mobilized shear stress, 

obtained from the finite element analysis, by the area of each plane. Ry and Sy are the 

addition of the resisting forces and shear forces acting on the combination of two 

triangular planes (i.e., k = 1 and 2 as shown in Figure 5.8). The slip surface shown in 

Figure 5.8 is discretized with a total of m*n*2 triangular planes. The two triangles 

between the dividing lines / and i+J in the x-direction andj andy+7 in the y-direction 

can be identified according to the incremental areas Ayi and Ay2, as shown in 

Figure 5.8. 
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Figure 5.8: A three-dimensional slip surface discretized into a series of triangular 

planes. 

The procedure used to compute the resisting force, Ryk, and the shear force, Syt, 

for triangle Ayt, has been described by Stianson (2008). The normal stress and 

mobilized shear stress acting on the incremental area, Ayu, are obtained from a 

separate finite element stress analysis. The shear force, Syk, is calculated by 

multiplying the mobilized shear stress by the area of the triangle, Ayk. The shear 

strength provided by each incremental area, Ayk, can be calculated using the extended 

Mohr-Coulomb equation for saturated-unsaturated soil (Fredlund and Rahardjo 

1993): 

[5.6] TU = c'+(a„ -ua) tan </>'+(ua - ujtan </)b 

where c', §', and $ are the shear strength parameters of a saturated-unsaturated soil, 

(crn — wa)is the net normal stress, and («a — ww)is the matric suction. The resisting 
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force, Ryk, is computed by multiplying the shear strength of the soil,r^ , by the area 

of the triangle A ,#. 

5.3.5 Dynamic Programming Optimization 
Procedure 

The three-dimensional slope stability calculations have been divided into a stage-state 

system and the factor of safety equation has been defined. It is now possible to 

introduce an auxiliary functional that is evaluated for each state curve connection and 

can be used to determine the slip surface with the lowest factor of safety. It was 

shown by Baker (1980) that the minimum factor of safety for two-dimensional slope 

stability problems can be found by rearranging the factor of safety equation into an 

auxiliary functional. Eq. [5.7] is the extension of the auxiliary functional proposed by 

Baker (1980) to three-dimensional slope stability analysis and is the result of 

rearranging Eq. [5.4]. 

[5.7] G , = £ k - ^ J 

Figure 5.8 illustrates a portion of a three-dimensional sip surface resulting from 

the connection of state curve (kk) from stage [z'+l] to state curve (jj) from stage [/']. 

The state curves are connected by a series of triangular planes. The value of the 

auxiliary functional for the connection shown in Figure 5.8 is determined by 

summing the result of the right hand side of Eq. [5.7] evaluated for each plane 

combination (i.e., one plane combination consists of areas Ayi and Ay2. Ry and Sy are 

the addition of the resisting forces and actuating forces acting on the areas Ayj and 

Aij2.). 

The optimal function shown in Eq. [5.8] is introduced to record and compare the 

return function values, G„ calculated for each trajectory as the search for the slip 

surface with the minimum factor of safety proceeds. 
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™ Hi+1(kk) = min {HXJj) + G^jjM^ti^ 

# , ( ! / ) = 0; jj=\-sx 

Gi(jj,kk) is the value of the return function that is calculated from the trajectory 

between state curve (kk) in stage [i+l] to state curve (jj) in stage [/]. //,(/}) is the 

value of the optimal function recorded at the state curve (jj) in stage [i]. The value of 

the optimal function, H\(jj), for all of the state curves in the initial stage (i.e., state 

curves 1 through s) is set to zero according to the boundary condition listed in Eq. 

[5.8]. The state curve (jj) that results in the minimum value of the brace {}(i.e., the 

trajectory with the lowest factor of safety), is recorded and the calculation proceeds to 

the state curve (kk+\). When the calculation reaches the final stage [n] the state 

curve (kk) resulting in the minimum optimal function value is determined. Starting at 

the minimum state curve in the final stage, it is possible to trace back the minimum 

trajectory to each previous stage using the recorded (jj) values at each [/] and (kk). 

The combination of each minimum trajectory is the trace of the slip surface with the 

lowest factor of safety. 

5.4 Comparisons with Published Three-
Dimensional Solutions 

New slope stability methods are often evaluated by re-analyzing a selection of cases 

from the literature. There are a limited number of published cases where the search 

for the critical three-dimensional slip surface is performed using dynamic 

programming (Yamagami and Jiang 1997; Jiang et al. 2003; Jiang and Yamagami 

2004). In each case, the overall factor of safety is computed using a method of 

columns technique based on the extension of one of the methods of slices including 

Janbu's Simplified method (Yamagami and Jiang 1997; Jiang et al. 2003) or 

Spencer's method (Jiang and Yamagami 2004). The authors are not aware of any 
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cases where the factor of safety is computed based on finite element stresses and the 

search for the critical three-dimensional slip surface is performed using dynamic 

programming. 

A series of examples were selected from the literature to evaluate the application 

of the dynamic programming searching procedure in combination with the proposed 

admissibility criteria. Valuable information can be obtained through the comparisons 

even though the factors of safety are not computed using the same procedure. In 

some cases, the results are also compared with the critical ellipsoidal slip surface 

computed based on the procedure developed by Stianson (2008). 

5.4.1 Loaded Homogeneous Slope 

The first example involves a simple homogeneous slope elevated at a 2:1 angle and 

subject to a distributed load in addition to gravity forces (Figure 5.9). The load is 

distributed over a square eight meter by eight meter area. Only one-half of the load is 

shown in Figure 5.9 due to the symmetry of the slope. The internal stress distribution 

of the slope was computed using an isotropic linear elastic finite element analysis 

using the 'switch on' gravity technique with Young's modulus equal to 20,000 kPa 

and Poisson's ratio equal to 0.48. The effective cohesion, effective angle of internal 

friction, and unit weight of the material were taken to be 10 kPa, 10°, and 18 kN/m3, 

respectively. 
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Figure 5.9: Plan view and cross-section view of the simple homogeneous slope 

considered in Example No. 1. 

The example was originally evaluated by Yamagami et al. (1991) using a three-

dimensional slope stability method involving the random generation of surfaces. The 

problem has been re-analyzed by Yamagami and Jiang (1997) to investigate if the 

efficiency of the slope stability method might be improved if the search technique 
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based on the random generation of surfaces was replaced with dynamic programming. 

The solution time was reduced from 4 hours to 12 minutes and the dynamic 

programming search identified a slip surface with a lower factor of safety. The factor 

of safety for the case where the slope was subject to a load of 50 kPa was estimated to 

be 1.141 using random generation of surfaces and 1.026 using dynamic programming. 

5.4.1.1 Application of the Dynamic 
Programming Searching Procedure in 
Combination with Admissibility 
Criteria 

The slope stability analysis consists of a preliminary search followed by a series of 

refined searches (Table 5.4). Initially, the dynamic programming search grid was 

defined by selecting an appropriate spacing in the j-direction (i.e., spacing between 

stage cross-sections in the direction of failure), in the x-direction (i.e., the spacing 

between columns of grid points perpendicular to failure) and the z-direction (i.e., 

vertical spacing between grid points). The spacing between grid points was selected 

keeping in mind the dimensions of the overall area to be searched and the desired 

aspect ratio (i.e., no less than 1:2.). Subsequent refinements to the search grid were 

completed based on the results from the preliminary search. 

The concave admissibility criteria was selected according to the soil conditions, 

keeping in mind that a more restrictive criterion results in fewer state curve 

combinations and in turn shorter run times. The critical slip surface was expected to 

be circular because the slope consists of homogeneous material. The concave 

criterion corresponding to Eq. [5.2] includes circular and composite curves and was 

considered to be a reasonable starting point for preliminary analysis. If the shape of 

the slip surface from the preliminary analysis turned out to be circular, Eq. [5.3] could 

be applied in the refined searches (i.e., it would likely not be necessary to consider 

composite state curves). In this case, Eq. [5.1] was used in the refined search to 
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provide an indication regarding the run times that might be expected when the most 

general concave admissibility criterion is applied. 

Table 5.4: The parameters used to define the dynamic programming search and a 

summary of the solution details for the comparison involving the loaded 

homogeneous slope. 

Parameter Preliminary search Refined search 

Search grid spacing (m) 

*y-direction 2 1 
x-direction 2 1 
z-direction 1 0.5 

Aspect ratio (x:z) 1:2 1:2 
Concave admissibility criteria Eq. [2] Eq. [1] 
Number of state curves 700 19 000 
State curve connections 43 000 30 000 000 
Solution time 5 minutes 5.5 hours 

* Assumed direction of failure. 

The grid spacing and admissibility criteria selected in the preliminary analysis 

resulted in a total of 700 state curves distributed over 10 stage cross-sections. There 

were a total of 43,000 potential state curve connections. The number of state curve 

connections represents the total number of unique slip surfaces evaluated during the 

search. The density of the search grid was increased for the refined search while the 

aspect ratio of the grid remained the same. The number of state curves included in 

the refined analysis increased dramatically as a result of increasing the grid density 

and relaxing the concave constraint. There were approximately 19,000 state curves 

included in the analysis distributed over 16 stage cross-sections resulting in over 30 

million state curve connections (i.e., 30 million slip surface combinations). The 

solution time increased from approximately 5 minutes for the preliminary analysis to 

5.5 hours for the refined analysis. 
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5.4.1.2 Slope Stability Results 

Initially, the stability of the slope was evaluated considering a case where a load 

equal to 50 kPa was applied on the crest of the slope (Figure 5.10). The critical slip 

surface is symmetrical and approximately circular along a cross-section 

corresponding to the line of symmetry. The shape of the slip surface seems to 

correspond with the types of failures typically expected in homogeneous material. 

The factor of safety for the slope is 1.121 indicating that the slope is near the point of 

failure. 

Figure 5.10: Critical slip surface found using the proposed slope stability method. 

The results reported by Yamagami and Jiang (1997) are similar to the results 

reported in Figure 5.10 in that the slip surface is symmetrical and approximately 

circular along the line of symmetry. The slip surface found using the proposed 

procedure exits the slope a significant distance above the toe. The slip surface 
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reported by Yamagami and Jiang (1997) is deeper, exits at the toe of the slope and the 

factor of safety was estimated to be 1.026. The variation in the results is likely due to 

the different procedures used to compute the overall factor of safety. 

Additional stability calculations were completed to observe the change in the 

character of the slip surface as a result of decreasing the load applied on the crest of 

the slope. The load was decreased from 50 kPa to zero in five regular increments. 

The slip surface moved deeper into the slope as the magnitude of the applied load was 

reduced. Reducing the load to 30 kPa resulted in a slip surface with similar 

geometrical characteristics as the slip surface reported by Yamagami and Jiang 

(1997), for the 50 kPa load case (Figure 5.11). Reducing the load to zero resulted in a 

slip surface with cylindrical characteristics indicative of plane strain failure. 
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Figure 5.11: Critical slip surface for the case where the load applied on the crest of 

the slope is equal to 30 kPa (Fs = 1.30). 

5.4.1.3 Comparison with Critical Ellipsoidal 
Failure Surface 

The soil (homogeneous) and loading (symmetrical) conditions considered in the first 

example resulted in a symmetrical slip surface that can be reasonably approximated 

using an ellipsoidal shape. The critical slip surface identified by the dynamic 

programming searching technique can be compared to the critical slip surface 

identified using the grid and radius searching procedure designed to search for the 

critical ellipsoidal slip surface (Stianson 2008). 
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Figure 5.12: Comparison between the critical slip surface found using the dynamic 

programming search technique with the critical ellipsoidal slip surface found using a 

simple grid and radius search technique. 

Figure 12 shows a comparison between the trace of the critical ellipsoidal slip 

surface with the trace of the slip surface found using dynamic programming, along 

the line of symmetry of the slope (i.e., x = 18m). The centre of the critical ellipsoid is 

located at the coordinate (18, 11, 14) and the radius is equal to 7.90 meters. The 

ellipsoidal slip surface is in close agreement with the slip surface determined from the 

dynamic programming search. The trace of the ellipsoidal slip surface shown in 

Figure 5.12 is in better agreement with the dynamic programming slope stability 

results than the results reported by Yamagami and Jiang (1997). The agreement is 

likely due to the fact that the factor of safety calculation adopted in the current 

method is similar to the method developed by Stianson (2008). Yamagami and Jiang 

(1997) computed the factor of safety using a method of columns technique based on 

the extension of Janbu's simplified method of slices. 
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The shape of the dynamic programming slip surface in the direction of failure is 

governed by kinematic admissibility criteria rather than assumptions regarding the 

specific geometric shape. The kinematic admissibility criteria used to control the 

shape of the slip surface in the direction of failure is more general than assuming that 

the slip surface conforms to an ellipsoid. However, the shape of the critical slip 

surface identified by the dynamic programming optimization technique is nearly 

circular. The results provide evidence that the dynamic programming searching 

technique can be used to successfully evaluate the stability of slope and identify the 

shape of the critical slip surface. 

5.4.2 Loaded Homogeneous Slope with 
Modified Soil Properties 

The slope conditions considered in the first comparison can be modified to 

demonstrate the flexibility of the admissibility criteria used to govern the dynamic 

programming search. A weak layer is included in the slope as shown in Figure 5.13. 

The shape of the weak layer was selected to promote a condition where the failure 

surface might not be strictly concave. The weak layer can be considered to be an 

idealized representation of the two-dimensional slope conditions evaluated by 

Zienkiewicz et al. (1975), where a fill material was placed over an existing geological 

feature. The weak layer is strictly cohesive with c' = 4 kPa and unit weight equal to 

18 kN/m3. The load applied on the crest of the slope is equal to 30 kPa. The results 

for the loaded weak layer case can be compared to the results reported in Figure 5.11, 

corresponding to a case with the same loading conditions but homogeneous soil 

properties. 
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Figure 5.13: Cross-section view of the modified slope conditions considered in 

Example No. 2. 

5.4.2.1 Slope Stability Results 

The slope stability results for the weak layer case are presented in Figure 5.14. The 

results demonstrate the ability of the proposed searching procedure to evaluate the 

stability of slopes where the critical slip surface might not be strictly concave due to 

certain geological or man-made conditions. The presence of the weak layer has 

changed the character of the slip surface and reduced the factor of safety from 1.3 to 

1.0 when compared to the homogeneous case (i.e., Figure 5.11). 
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Figure 5.14: Slope stability results for the second example where an irregular weak 

layer is included in the slope. 

The stability of the slope was also evaluated using the grid and radius searching 

procedure developed by Stianson (2008). The analysis was completed to demonstrate 

that assumptions regarding the overall shape of the slip surface can affect the 

computed factor of safety. The factor of safety for the slope was determined to be 

1.15. The factor of safety is over-estimated by approximately 13% due to the 

assumption that the slip surface was ellipsoidal. 

5.4.3 Convex Slope Including Pore-Water 
Pressures and a Weak Layer 

The slope was originally considered by Yamagami and Jiang (1997) as part of the 

testing program carried out to evaluate a similar slope stability method involving 

dynamic programming. The slope consists of a conical heap of soil as shown in 

Figure 5.15. The slope is similar to other three-dimensional geometries found in 
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practice including the outside corner of an embankment or excavation. The stability 

of the slope was evaluated for three separate cases including homogeneous soil with 

no pore-water pressure, homogeneous soil with pore-water pressure, and multi-

layered soil conditions with pore-water pressure. The distribution of pore-water 

pressure was defined using a phreatic surface that was taken to be the surface of a 

cone with a vertical to horizontal inclination of 1:4 (Yamagami and Jiang 1997). The 

multi-layered slope conditions, including the phreatic surface, are shown in Figure 

5.15. 

Material Thickness (m) y (kl\l/m ) c' (kPa) f 

Layer 1 
Layer 2 
Layer 3 
Layer 4 

7 
5.5 
0.5 
10 

19.2 
18 
19.2 
19.2 

29.3 
17.5 
0 
0 

10 
10 
10 
30 

Radius to the crest of the slope is equal to 12m. 
Radius to the toe of the slope is equal to 35m. 

r ' ' ' 1 1 1 , , t r i I , i
l'|i" l'Vi ,| 

!5 30 35 40 45 

Figure 5.15: Slope geometry and soil conditions considered in the multi-layer conical 

heap example problem. 

Initially, the soil conditions were considered to be homogeneous. Two additional 

cases were considered where the slope conditions were modified to decrease the 
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overall stability of the slope and increase the complexity of the search for the critical 

failure surface. The complexity of the search for the critical slip surface was 

considered to increase as the number of state curves increased. The number of state 

curves can increase as a result of expanding the search area or by relaxing the 

admissibility criteria to accommodate more complex soil conditions. 

The critical slip surfaces were expected to be symmetrical in all cases because the 

geometry and soil conditions are such that a line of symmetry exists regardless of the 

assumed direction of failure. However, it was possible that the shape and location of 

the critical slip surface might be different between certain cases. The critical slip 

surface in the second case could have been deeper (with a lower factor of safety) 

when compared to the first case, as a result of the reduced effective stress below the 

phreatic surface. The critical slip surface in the third case might have been composite 

(i.e., follow along the weak layer) while in the first two cases the critical slip surface 

was expected to be a smooth surface because the soil properties are homogeneous. 

The search for the critical slip surface becomes more complex as the slope conditions 

are modified from the homogeneous case to the multi-layered case including pore-

water pressure. The objective was to demonstrate that the proposed searching 

procedure can be used to identify the critical slip surface for various soil conditions. 

5.4.3.1 Slope Stability Results 

The slope stability results for the first case (i.e., no pore-water pressure) and the 

second case (i.e., with pore-water pressure) are shown in Figure 5.16a) and Figure 

5.16&), respectively. The critical slip surface for the second case passes deeper into 

the slope as a result of the reduced effective stress below the phreatic surface. The 

factor of safety for the third case was calculated to be 0.535. The soil conditions 

considered in the third case result in a slip surface with a completely different shape 

than the soil conditions considered in the first two cases. The results demonstrate that 

the dynamic programming searching procedure can be used to search for the slip 

surface in a variety of soil conditions. 
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a) Soil Properties: 

•' = 20°; C = 29.3 kPa; y = 19.2 kN/m3; E = 20 000kPa;_v = 0.48; Fs=1.75 

80 70 60 

b) Soil Properties: 

*' = 20° ; C = 29.3 kPa ; y = 19.2 kN/m3 ; E = 20 000 kPa ; v = 0.48 ; Fs=1.62 
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c) Soil Properties: Multi-Layered Slope; Fs = 0.535 

Figure 5.16: Slope stability results for Example No. 3. 

The factors of safety computed by Yamagami and Jiang (1997) and the values 

computed using the current slope stability procedure are presented in Table 5.5. The 

factors of safety computed using the current slope stability method are consistently 

lower than the factors of safety reported by Yamagami and Jiang (1997). The two 

most significant factors contributing to the differences between the factors of safety 

include the method used to compute the factor of safety and the procedure used to 

generate state curves to search for the critical slip surface. 

Table 5.5: Comparison between factors of safety computed by Yamagami and Jiang 

(1997) and the current slope stability method for Example No. 3. 

Yamagami and Current Difference 
Case Jiang (1997) study % 
Homogeneous 2.06 1.75 15% 
Homogeneous (Including phreatic surface) 1.83 1.619 12% 
Four layers (Including phreatic surface) 1.08 0.535 50% 

174 



Yamagami and Jiang (1997) computed the factor of safety using a three-

dimensional method of columns procedure originally developed by Ugai (1988) and 

Ugai and Hosobori (1988). The procedure is based on an extension of the two-

dimensional Janbu Simplified method to an equivalent method of columns procedure. 

The factor of safety is computed considering horizontal and vertical force 

equilibrium. Moment equilibrium was not satisfied and the effects of inter-column 

shear forces were not taken into consideration. The factor of safety computed based 

on finite element stresses satisfies horizontal force, vertical force, and moment 

equilibrium and considers all of the forces acting within the sliding mass. Both 

procedures use dynamic programming to search for the critical slip surface. The main 

difference between the two searching procedures is the method used to generate state 

curves. Yamagami and Jiang (1997) consider a random sample of 100-500 concave 

state curves while the current procedure considers all of the state curves passing a 

series of admissibility criteria. 

In the first case, the soil is homogeneous and the phreatic surface is not included 

in the slope. Yamagami and Jiang (1997) computed the factor of safety to be 2.06. 

The factor of safely was computed to be 1.75 (i.e., 15% lower) using the proposed 

slope stability method. It appears that the critical slip surface is more shallow and 

narrow when compared to the results reported by Yamagami and Jiang (1997). The 

reduction in the factor of safety is primarily attributed to the differences between the 

procedures used compute the factor of safety (i.e., method of columns versus finite 

element stresses). It is possible that the reduction in the factor of safety is due in part 

to using a more rigorous searching procedure. However, it is anticipated that either 

searching procedure will provide a similar level of performance when the shape of the 

slip surface is relatively simple and can be approximated using restrictive 

admissibility criteria. The searching procedure will likely play a more significant role 

when more flexible admissibility criteria are necessary to locate the slip surface with 

the lowest factor of safety. 

In the second case, the soil remains homogeneous but the phreatic surface is 

included in the slope. The search region is expanded to consider that the slip surface 
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will likely move deeper in the slope as a result of the phreatic surface. The 

admissibility criteria remains the same as the first case but the number of state curves 

considered in the analysis increases as a result of the expanded searching area. Both 

slope stability procedures confirm that the stability of the slope is reduced and that the 

critical slip surface moves deeper into the slope. The factor of safety computed using 

the current slope stability method is 12% lower than the factor of safety reported by 

Yamagamig and Jiang (1997). The results seem to follow a similar pattern as the first 

case. 

In the third case, the slope is divided into four soil layers including a thin weak 

layer. The admissibility criteria used to generate state curves was relaxed to consider 

slip surfaces that might follow along the thin weak layer. Relaxing the admissibility 

criteria increases the number of state curves that should be considered in the analysis. 

The difference between the factors of safety for this case is significantly greater than 

the previous two cases and is in the order of 50%. It appears that the influence of 

using a more rigorous searching procedure becomes more significant in cases where 

more flexible admissibility criteria are required to identify the slip surface with the 

lowest factor of safety. 

5.5 Discussion 

The method used to search for the critical slip surface should fit the complexity of the 

slope conditions being evaluated. In the first example, the slope consists of 

homogeneous material. The search for the critical slip surface is completed using two 

separate procedures including: 1) a 'grid and radius' search assuming that the slip 

surface is ellipsoidal (i.e., circular in the direction of failure) and 2) the dynamic 

programming technique using the proposed geometric and kinematic admissibility 

criteria to govern the shape of the slip surface. The factor of safety is calculated 

based on stresses from an independent stress-deformation analysis in both cases. The 

critical slip surfaces identified by both searching procedures are compared in Figure 

5.12. The results demonstrate that there are practical uses for 'grid and radius' 
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searching procedures where the critical slip surface is assumed to be ellipsoidal. The 

ability to perform a reasonable slope stability analysis using a 'grid and radius' 

searching procedure significantly reduces the overall computing time. However, the 

value of the dynamic programming searching procedure is demonstrated as the soil 

conditions within the slope become more complex (i.e., second example in Figure 

5.14) and the last case of the third example (Figure 5.16c)). 

The factor of safety calculation requires the slip surface to be discretized into a 

series of triangular planes. The size of the triangles can influence the accuracy of the 

factor of safety calculation as well as the resolution in the shape of the final slip 

surface. Currently, the size of the triangles is controlled by the number of points 

included in the dynamic programming search grid. The density of the dynamic 

programming search grid must be increased to reduce the size of the triangles and 

improve the accuracy of the factor of safety calculation. However, the time required 

to complete the dynamic programming search can increase as the density of the 

search grid increases. In many cases, the shape of the slip surface can be reasonably 

approximated using a lower density when compared to the density required to 

improve the factor of safety calculation. It is possible to provide a second level of 

discretization, independent of the search grid density, to improve the overall factor of 

safety calculation. The triangles formed by connecting the points on the search grid 

can be discretized into a series of smaller triangles as part of a separate procedure 

independent of the dynamic programming search. The secondary discretization can 

improve the factor of safety calculation without significantly increasing the time 

required to search for the critical slip surface. 

5.6 Conclusions 

The proposed slope stability procedure can be used to simultaneously determine the 

shape, location and the factor of safety for the critical slip surface in three-

dimensional slope stability problems. The procedure is designed to use stresses from 

a separate finite element analysis to compute the factor of safety and dynamic 
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programming to search for the critical slip surface. The finite element factor of safety 

equation is determinate and linear making it possible to direct more computer 

resources towards the search for the critical slip surface. 

There are significant numerical difficulties that must be overcome to develop 

rigorous three-dimensional searching procedures where the shape of the slip surface 

is not pre-defined. The numerical difficulties are associated with the overwhelming 

number of slip surface combinations that would be included in the analysis without 

the use of meaningful criteria to exclude unreasonable slip surfaces. A procedure was 

introduced whereby 'geometric' and 'kinematic' admissibility criteria were used to 

train the searching procedure to distinguish between reasonable and unreasonable slip 

surfaces. The admissibility criteria can be used in place of a random number 

generator and provide a rigorous treatment of state curve generation. The flexibility 

of the admissibility criteria can be adjusted to provide a balance between the solution 

time and the complexity of the soil conditions. 
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Chapter 6 

Summary and Conclusions 

The development of a procedure that can be used to simultaneously determine the 

shape, location and factor of safety for the critical slip surface in three-dimensional 

slope stability calculations was presented. The procedure was developed following a 

natural progression from two- to three-dimensional analysis. Two-dimensional 

studies were undertaken to provide a better understanding of the interaction between 

the stress-deformation analysis and the slope stability calculations including the 

influence of the stress-strain characteristics of the soil, the influence of Poisson's ratio 

and the application of admissibility criteria. The two-dimensional studies provided 

the background necessary to extend the stress-based method factor of safety 

calculations to three-dimensions and develop the three-dimensional dynamic 

programming searching procedure. 

Dynamic programming is applied as a numerical technique to search for the 

critical slip surface. The algorithm does not require the existence and uniqueness of 

derivatives making it suitable for application to a layered profile where such 

derivatives are not properly formed (Baker 1980). The sequential nature of the 

procedure also permits the application of admissibility criteria as the search for the 

critical slip surface progresses. The application of the numerical procedure can be 

memory intensive. The memory and time requirements can increase markedly with 

the size and density of the search grid. The size of the search grid is selected 

according to the anticipated dimensions of the unstable soil mass. The density of the 

search grid is selected with enough resolution to consider the influence of key soil 

layers (i.e., thin weak zones.), provide a reasonable representation of the shape of the 

slip surface and can influence the accuracy of the factor of safety in some cases. 
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Memory and time requirements can be easily managed in two-dimensional problems 

but can become excessive in three-dimensional problems where the dimensions of the 

unstable mass are large and the shape of the slip surface is complex. The influence of 

the search grid density on the accuracy of the factor of safety can be minimized by 

including a second level of discretization on the mesh used to approximate the slip 

surface. Each triangle on the mesh can be discretized into a number of smaller 

triangles. The second level of discretization can be included to improve the accuracy 

of the factor of safety calculation and is not meant to alter the shape of the slip 

surface. 

The application of the dynamic programming algorithm requires that the factor of 

safety equation be re-written in the form of an additive Auxiliary Functional. 

Application of dynamic programming yields the absolute minimum of the Auxiliary 

Functional that corresponds to a minimum of the factor of safety functional for the 

slope but not necessarily the lowest one (Baker 1980). The search grid is typically 

constructed with a number of points outside the boundaries of the slope which helps 

to minimize this difficulty. The points above the crest of the slope are required to 

determine the entry point of the slip surface and can be viewed as different starting 

points along the factor of safety functional for the slope. The ability to initiate the 

search at a number of locations along the factor of safety functional can eliminate 

local minima from the search and reduce the likelihood of becoming trapped. This 

characteristic is different from other searching procedures that are initiated by 

specifying one initial slip surface. 

6.1 Two-Dimensional Studies 

A comparative study was completed to investigate concerns that a linear elastic 

analysis might not provide a reliable estimate of the factor of safety in slopes where 

there is potential for extensive yielding. The study was limited to normally 

consolidated soil conditions where the internal stress distribution can be estimated 

using the 'switch on' gravity technique. A number of different slope configurations 
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were evaluated to determine the differences between slope stability analyses based on 

linear elastic or elasto-plastic soil behavior. The results demonstrated that there can 

be significant differences in the local factor of safety distribution as a result of local 

yielding but the shape, location and overall factor of safety are similar. The 

similarities in the slope stability results were observed in cases where there was 

extensive yielding (i.e., Fs =1.0) even though the shear stress increased beyond the 

strength of the soil in the linear elastic analysis. 

Calculating the factor of safety based on the results of a stress-deformation 

analysis introduces new variables that are not typically associated with slope stability 

calculations; namely, Young's modulus and Poisson's ratio. A review of the 

literature indicated that researchers generally agree that Young's modulus does not 

have a significant influence on the slope stability results but there appeared to be 

different reports regarding the influence of Poisson's ratio. The results from a 

number of studies indicated that the slope stability analysis is not sensitive to the 

selection of Poisson's ratio while other studies reported that the factor of safety could 

vary by as much as 20%. Another study involving three-dimensional slope stability 

evaluations reported that Poisson's ratio can contribute to fluctuations in three-

dimensional factors of safety in the order of 100% (Loehr 1998). A second two-

dimensional study was completed to examine the interaction between the stress-

deformation analysis and the slope stability calculations with special attention 

directed towards the influence of Poisson's ratio. 

Poisson's ratio partially controls the relationship between the horizontal and 

vertical stress and can influence the orientation of the failure surfaces predicted by 

Mohr's theory. Therefore, the amount of stress rotation required to promote the 

development of a continuous slip surface depends on Poisson's ratio to some degree. 

A linear elastic analysis was shown to provide a poor prediction of the stress rotations 

required to bring the internal stress distribution into alignment in some cases. The 

limitations associated with the linear elastic analysis resulted in elevated factors of 

safety in cases where the search was based on geometric admissibility. Searching 

procedures based on kinematic admissibility criteria were shown to be more sensitive 
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resulting in irregular shaped slip surfaces and elevated factors of safety. The 

influence of stress rotation was shown to be significant in normally consolidated 

cases where the slip surface is shallow and excavations made in over-consolidated 

soil conditions. A more reasonable representation of the internal stress distribution 

was achieved through the use of an elasto-plastic analysis. 

Searching procedures based exclusively on geometric admissibility criteria can 

result in slip surfaces that are not compatible with the internal stress distribution. The 

influence on the overall stability analysis was shown to depend on how much of the 

slip surface was inadmissible and how the presence of negative mobilized shear 

stresses were treated. The dynamic programming searching procedure was designed 

to exclude slip surfaces that were not completely admissible through the application 

of kinematic admissibility criteria. The strict application of kinematic admissibility 

criteria was considered to be appropriate based on observations made from shear 

zones in natural clays and laboratory tests (Morgenstern and Tchalenko 1967; 

Skempton and Petley 1967). 

6.2 Three-Dimensional Studies 

The details surrounding the extension of the stress-based slope stability method to 

three dimensions were presented. The results from an independent stress-deformation 

analysis were imported into the three-dimensional limit equilibrium slope stability 

analysis in the form of a regular grid. Slip surfaces were initially assumed to be 

ellipsoidal and were approximated using a triangular discretization scheme. The 

normal force and shear force acting at the centroid of individual triangular planes was 

computed based on the imported stress field using an interpolation scheme. The 

accuracy of the three-dimensional factor of safety calculation was shown to depend 

on: 1) the density of the finite element mesh, 2) the density of the intermediate stress 

grid linking the stress-deformation analysis and the factor of safety calculation, 3) the 

discretization of the slip surface and 4) the compatibility between the internal stress 

distribution and the shape of the slip surface. The results from a number of sensitivity 
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analyses demonstrated that the mesh refinement could be increased to an appropriate 

level without increasing the cost of the analysis to a degree that would discourage the 

application of the method in practice. 

Additional sensitivity studies were completed to investigate the influence of 

Poisson's ratio. The results confirmed that the factor of safety can be sensitive to the 

value selected for Poisson's ratio in cases where the shape of the specified slip 

surface is not completely compatible with the stresses from the stress analysis. The 

level of compatibility was evaluated by reporting the number of inadmissible 

triangular planes on the slip surface. The fluctuations in the factor of safety increased 

as the number of inadmissible planes on the slip surface increased. The computed 

factor of safety was in agreement with published values when Poisson's ratio was 

selected so that there were no inadmissible planes on the slip surface. A series of 

verification examples were presented to confirm that the proposed method provides 

the required accuracy and flexibility to assess the stability of slopes typically 

encountered in practice. The successful application of the stress-based method in 

three-dimensions involves similar steps and provides similar advantages as the 

corresponding two-dimensional method. The factor of safety equation is linear, 

satisfies all conditions of force equilibrium and provides the ability to develop more 

advanced three-dimensional searching procedures based on kinematic admissibility 

criteria. 

The final stage of the research involved the development of a slope stability 

method based on the combination of the stress-based method to compute the factor of 

safety and dynamic programming to search for the critical slip surface. There were 

numerical difficulties associated with the overwhelming number of slip surface 

combinations that were included in the analysis without meaningful criteria to 

exclude unreasonable slip surfaces. A combination of geometric and kinematic 

admissibility criteria were used to train the dynamic programming searching 

procedure to distinguish between reasonable and unreasonable slip surfaces. The 

flexibility of the admissibility criteria was adjusted to provide a balance between the 

slip surfaces included in the analysis and the solution time. 
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6.3 Recommendations for Future Research 

All of the slope stability calculations were completed with no consideration of the 

strain values computed from the stress-deformation analysis. Additional research 

could be completed to determine if knowledge of the strain values could be used to 

improve the limit equilibrium slope stability calculations. Strength parameters (i.e., 

c' and (()') are typically assigned based on the assumption that the values are constant 

throughout individual soil units. It is possible that strength of the soil could be 

included in the slope stability analysis as a function of the amount of strain computed 

from the stress-deformation analysis in an attempt to capture the strain softening 

characteristics of the soil. Knowledge of the strain could also provide the basis for 

the development of new admissibility criteria. The admissibility criteria could be 

used to further reduce the number of slip surfaces considered in two- and three-

dimensional searching algorithms. 

It is clear that the searching procedure based on the dynamic programming 

algorithm represents a significant advancement over traditional trial and error 

techniques where the shape of the slip surface is assumed. The application of the 

dynamic programming algorithm has remained the subject of research for some 20 

years and has only recently been incorporated into a commercially available software 

product for the evaluation of two-dimensional slope stability problems (SoilVision 

Systems Ltd. 2006b). Other commercial software products based on the method of 

slices or stress-based methods could also benefit from the ability to provide a more 

thorough search for the critical slip surface, stress-based slope stability methods can 

take advantage of geometric and kinematic admissibility criteria to completely 

integrate the search for the critical slip surface with the stress distribution used to 

compute the factor of safety. Results from this dissertation have indicated that it is 

prudent to confirm that the shape of the slip surface is compatible with the internal 

stress distribution when the shape of the slip surface is specified. 

Finally, this dissertation confirms that the stress-based method can be extended 

and successfully applied to compute the factor of safety for three-dimensional slip 
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surfaces. The development of three-dimensional modeling products with CAD 

interfaces as well as advanced visualization products could provide the tools required 

to apply the stress-based method in engineering practice. The stress-based procedure 

can be economically combined with traditional searching procedures to provide the 

ability to evaluate three-dimensional effects in many cases. The three-dimensional 

dynamic programming searching procedure is clearly more costly than traditional trial 

and error searching procedures but represents a viable option that can be applied in 

complex situations where the increased cost is warranted. The practice of 

geotechnical engineering will benefit from the development of cost-effective three-

dimensional slope stability methods given the pressure to design steeper slopes in 

response to the ever increasing value of natural resources, water storage requirements 

and property value. This dissertation has demonstrated that the numerical difficulties 

associated with three-dimensional slope stability analyses can be effectively managed 

providing the ability to carry out further analyses of case history examples. 
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Appendix A 

Comparing Slope Stability 
Analysis Based on Linear Elastic 
or Elasto-Plastic Stresses Using 
Dynamic Programming 
Techniques1 

A.l Introduction 

Conventional limit equilibrium slope stability methods require assumptions regarding 

stresses within the slope and the shapes of potential slip surfaces to render the 

problem determinate. These assumptions have been overcome with the use of the 

dynamic programming method (Brito et al. 2004) in combination with stresses from a 

finite element analysis. However, slope stability calculations based on stresses from 

finite element analysis have not become popular for slope stability studies due to 

intense computational requirements and difficulties in assessing the stress versus 

strain characteristics of the soil (Scoular 1997). If the Dynamic Programming 

Method (DPM) of analysis is to be adopted in practice, these issues must be 

addressed and continuing verification of the method must be provided. 

The focus of this study is to address the above concerns by providing additional 

verification of the DPM and guidance as to the appropriate constitutive model to use 

in stability calculations. Verification of the DPM is provided through the comparison 

1 This chapter has been presented as a paper at the 2004 Canadian Geotechnical Conference (Stianson 
et al. 2004). 
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of a vertical cut analysis with Taylor's stability charts. Guidance on appropriate 

constitutive models is provided through a comparison of stability results based on 

either linear elastic (LE) or elasto-plastic (EP) stresses. The comparison includes a 

series of stable and failing slopes. It is of interest to determine if stresses from a 

plastic analysis are required to correctly determine the shape, location, and factor of 

safety of critical slip surfaces for slopes at or near failure. 

A.2 Background 

Much research has been focused on developing techniques to overcome assumptions 

used in limit equilibrium methods. Variational calculus was one of the first of such 

techniques. The calculus of variations provides a mathematical procedure to find the 

shape of an extremal, a curve that maximizes or minimizes the value of an integral 

along that line (De Josselin De Jong 1980). The benefit of such a method is that the 

factor of safety is determined without any prior assumptions regarding the shape or 

location of the critical slip surface. While the calculus of variations was popular with 

several researchers, it was shown to contain a degeneration (De Josselin De Jong 

1981). The degeneration was related to the non-existence of unique derivatives 

within the formulation. 

The DPM, in combination with Spencer's (1967) assumptions, was first applied to 

slope stability problems by Baker (1980). It was used to overcome assumptions 

regarding the shape of potential slip surfaces and degenerations reported with 

variational calculus. Baker notes that while the DPM is similar in concept to the 

calculus of variations it does not require the existence and uniqueness of derivatives 

to determine the critical slip surface. Instead, the minimization is completed 

numerically through the direct comparison of values. While numerical methods may 

have been laborious in the past, they are much less of a problem with the high speed 

computers readily available today. 

The formulation of the DPM in combination with stresses from a finite element 

analysis was first developed by Yamagami and Ueta (1988b). The purpose of the 
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study was to employ limit equilibrium methods to yield an overall factor of safety 

while accounting for the constitutive relationship and initial stress state of the soil 

using stresses from a finite element analysis. The benefit of determining the shape of 

the slip surface without assumptions was also realized. Further verification has been 

provided by testing the technique over a wide range of slope conditions using a large 

parametric study (Pham 2002). The technique has also been applied to the analysis of 

transient embankment stability by Gitirana and Fredlund (2003). 

A.3 Verification 

A.3.1 Vertical Cut analysis 

The <j)-Circle Method was proposed by Gilboy and Casagrande with the hope that a 

completely graphical solution method may be developed to solve for the stability of a 

homogeneous slope. Applied to any circular slip surface, the result is a vector whose 

length represents the quantity 2c/y, where c is the cohesion and y is the unit weight 

required for equilibrium (Taylor 1937). Dividing the length of the vector by the 

height of the slope (//), resulted in an abstract number that could describe the 

equilibrium conditions for a slope of any height for a given slope and friction angle, 

2c/yH. Taylor (1937) modified the form of this abstract number resulting in the 

following dimensionless expression called the "Stability Number" with Fs 

representing the factor of safety. 

C 

The traditional factor of safety equation becomes independent of the normal stress 

when (j)' is equal to zero. If the linear elastic constitutive model is used, the 

calculation of the factor of safety using the DPM should be independent of Young's 

modulus and Poisson's ratio. These realizations allow for the comparison of the 
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DPM with the stability charts developed by Taylor (1937) which are also independent 

of stress. The reliability of the DPM will be tested by comparing the factor of safety 

obtained for a strictly cohesive vertical cut with Taylor's stability chart. 

A slope with cohesion equal to 30 kPa, internal angle of friction equal to zero, and 

a unit weight of 18kN/m3 was used to compare the DPM with Taylor's stability chart. 

Assuming a factor of safety of one, Taylor's stability number predicts the critical 

height for a vertical cut with the noted properties to be 6.4m. A stress analysis is 

completed for a vertical cut with this height using the linear elastic constitutive 

model. Two values of Poisson's ratio (0.48 and 0.33) and Young's modulus (20,000 

kPa and 100,000 kPa) are chosen to test if the DPM is independent of stress for the 

(|>'=0 analysis. 

A.4 Comparison of Slope Stability Results 
Based on Linear Elastic or Elasto-Plastic 
Stress Analysis 

The purpose of this comparison is to address issues related to basing a slope stability 

analysis on stresses generated from a numerical analysis. More specifically, 

investigating the use of linear elastic stresses in slopes where the factor of safety is 

low enough to allow overstressing to occur. In such slopes, a constitutive model that 

accounts for yielding may be required to correctly calculate the factor of safety and 

determine the shape and location of the critical slip surface. However, use of plastic 

constitutive models is more involved causing computing times to increase. 

Therefore, it is necessary to determine if a plastic analysis is in fact required. 

A.4.1 Scope 

A variety of increasingly complex problems are chosen to ensure that the comparison 

will encompass a small range of typical conditions. The range of problems includes 

homogeneous slopes and multi-layered slopes with various Poisson's ratios, pore 
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pressure conditions and slope angles. Space does not permit the presentation of every 

model so representative results are chosen that best illustrate the observed behavior 

for each condition. 

The FLAC stress analysis software package is chosen to complete the 

comparison. FLAC is chosen based on three requirements. The software must 

include an elasto-plastic constitutive model, a linear elastic constitutive model, and 

must have the ability to incorporate the computed stress data into the DP slope 

stability analysis. It should also be noted that the finite difference solution technique 

employed by FLAC results in similar stress fields when compared with finite element 

results for the range of slopes in this study. 

A.4.1.1 Homogenous Slopes 

Ideally, the comparison between the LE and EP models will be carried out over a 

range of safety factors. Beginning with safety factors for which the majority of the 

slope behaves in an elastic manner progressing to safety factors where the slope 

experiences yielding. Soil properties are chosen such that three factors of safety will 

result including ~1.3, ~1.0, and < 1.0. Factors of safety of 1.3 and 1.0 result in slopes 

that are mostly elastic with some yielding and slopes that are at failure, respectively. 

The majority of engineering design is completed using factors of safety greater than 

1.2 while successful back analysis requires a factor of safety of 1.0. Factors of safety 

less than 1.0 are impossible in reality but are included for discussion purposes. 
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Table A.l: Homogeneous slope soil properties 

Unit 
Weight 

y 
(kN/m3) 
18 

18 

18 

18 

Poisson's 
Ratio 

V 

0.48 

0.40 

0.33 

0.20 

Effective 
Cohesion 

c' 
(kPa) 
20 
17 
15 
20 
17 
15 
20 
17 
15 
20 
17 
15 

Effective 
i Friction Angle 

*' 
(degrees) 
10 
7 
5 
10 
7 
5 
10 
7 
5 
10 
7 
5 

The range of soil properties used in the homogeneous slopes is shown in Table 

A.l. The effective cohesion (c') and effective friction angle ((()') are chosen such that 

a factor of safety of ~1.3 results, given a unit weight of 18 kN/m3 and a 2:1 slope 

angle. The slope is brought to failure by decreasing the cohesion and friction of the 

material by equal increments resulting in factors of safety of -1.0 and <1.0 

respectively. A set of analysis was also completed bringing the slope to failure by 

increasing the unit weight of the material. Using cohesion equal to 20 kPa and 

friction angle equal to 10° the desired range of safety factors was achieved by using 

unit weights of 18 kN/m3, 30 kN/m3, and 50 kN/m3. Bringing the slope to failure by 

increasing the unit weight produced similar results therefore only the strength 

reduction results are presented. 

Four values of Poisson's ratio are chosen including 0.48, 0.40, 0.33, and 0.2. 

Varying Poisson's ratio in a LE analysis is equivalent to setting different in-situ stress 

conditions. The range of Ko values achieved using the above values for Poisson's 

ratio include 0.25, 0.5, 0.7, and ~1.0. These values are calculated according to the 
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following relationship, K<, = v/ 1-v. This relationship is only a guide, as stress 

conditions generated in a slope vary with depth. It should also be noted that Young's 

modulus was held constant at 20,000 kPa for all homogeneous analysis. The 

convergence criteria (8) for the dynamic programming search remained 0.001 for all 

analyses. 

A.4.1.2 Wet and Submerged Slopes 

Water is included for the case of Poisson's ratio equal to 0.48, cohesion equal to 20 

kPa, friction angle equal to 10° and slope angle of 2:1. Two pore-water conditions 

are generated including a wet slope condition where the water table is drawn down to 

the toe of the slope and a submerged slope condition where the water is two meters 

deep at the toe of the slope. 

A.4.1.3 Slope Angle 

Three slope angles are chosen including 3:1, 2:1 and 1:1. These slope angles are 

applied to the case where Poisson's ratio is 0.48 and the unit weight is 18 kN/m3. 

Given these conditions the factor of safety ranges from ~1.6 to 1.0. 

A.4.1.4 Multi-Layered Slopes 

Multi-layered slopes are included to compare conditions where a contrast in Young's 

modulus exists and a weak soil layer is included. Two conditions are considered 

including a 2-layer slope and a 3-layer slope under dry and wet conditions. 

A.5 Results 

A.5.1 Vertical Cut 
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The factor of safety calculated by the DPM is virtually the same as that predicted by 

Taylor's stability chart. Focusing on the first two slip surfaces listed in Figure A.l, 

the factor of safety calculated using a constant Poisson's ratio is exactly the same 

whether the Young's modulus is 20,000 kPa or 100,000 kPa. The slip surfaces for the 

first two cases also plot one on top of the other. Therefore, the factor of safety and 

the critical slip surface calculated using the DPM method is independent of Young's 

modulus. 

Comparing the results using a Poisson's ratio of 0.48 to 0.33 yields a slight 

difference in the factor of safety and the location of the critical slip surface. As noted 

by (Gitirana and Fredlund 2003), the overall effect of the value of v results in higher 

ax/oy ratios inside the embankment for larger values of v. The larger values of <Jx/oy 

inside the embankment drive the slip surface to shallower regions where the lower 

ax/ay ratios occur. While the effect is almost negligible in this case, the slip surface 

for v equal to 0.33 is slightly deeper than for the 0.48 case. In this comparison it 

appears that various in-situ stress states result in only minor differences. 
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Figure A. 1: Vertical cut comparison 

A.5.2 Homogeneous Slope 

The results for the case of Poisson's ratio equal to 0.48 are used to illustrate the 

observed behavior for all dry homogeneous slopes. There are three figures, one for 

each factor of safety including -1.3, -1.0, and <1.0. It should be noted that the 

legend for each slip surface records whether the analysis was elastic or elasto-plastic 

and the calculated factor of safety. The factor of safety calculated by the 

Morgenstern and Price (MP) method using a half sine function is also included for 

comparison. One summary plot at the end of the section shows the relationship 

between the initial K^ conditions and the factor of safety. 

Figure A.2, A.3 and A.4 illustrate the difference between slope stability analysis 

based LE or EP stress analysis. The shape and location of the critical slip surfaces are 

very similar for conditions where the factor of safety is equal to or greater than one. 

The calculated factors of safety for these conditions are also very similar. The 
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following reasoning explains why the differences between these two analyses are 

very small. 

The distribution of stress computed by any stress analysis is governed mainly by 

the geometry of the problem, the boundary conditions and the soil properties. 

Therefore, it is reasonable to expect that critical areas of high stress will develop in 

similar locations within a slope using either the LE or EP constitutive model. This 

can be verified by using extremely high strength in an EP stress analysis and 

observing that the stress distribution is the same as the equivalent LE stress analysis. 
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Figure A.2: Dry Homogeneous Slope, Fs~1.3. 
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Figure A.3: Dry Homogeneous Slope, Fs~1.0 
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Figure A.4: Dry Homogeneous Slope, Fs<1.0 

However, in most cases the EP stresses are only allowed to increase to a certain level 

before excess stresses are redistributed to surrounding soil. As shown in Figure A.2 

and A.3, this does not cause large differences in the location of the critical slip 

surface when the factor of safety is equal to or greater than 1.0. Excess stresses are 

redistributed to adjacent areas of high stiffness and lower mobilized strength. The DP 

stability analysis searches for the path of lowest mobilized strength. Therefore, it is 

not surprising that the DP search determines the critical slip surface to be in similar 

locations using either constitutive model. This has also been verified by comparing 

displacement vectors determined from EP stress analysis with the critical slip surface 

determined from DP stability analysis. If additional load is added to the slope or the 

strength of the slope is decreased, large displacements occur. Additional stresses are 

redistributed to surrounding soil increasing the amount of failed soil. This causes 
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large differences in the location of the critical slip surface determined from LE or EP 

stresses as shown in Figure A.4. 

The discussion above is also useful for explaining differences observed in the 

distribution of the factor of safety but overall agreement in the average factor safety. 

If strength properties used in an EP model are such that a factor of safety of 1.0 will 

result, the factor of safety computed for individual line segments along the critical 

slip surface will be approximately the same. If DP stability analysis is completed 

using the equivalent LE stresses, the distribution of the factor of safety is highly 

variable and in some cases exists below 1.0. This difference is also due to the 

redistribution of stresses that occurs in an EP analysis. Although there are differences 

in the distribution of the factor of safety along the critical slip surface, agreement in 

the overall factor of safety results from three conditions: 1) the same geometry, 

boundary conditions and elastic constants are used to generate the stress state, 2) the 

same strength properties are used to perform the stability analysis and 3) the 

calculated factor of safety for the slope is equal to or greater than 1.0. 

The same trend is observed when the initial stress state is changed. There remain 

only small differences in stability analysis based on either LE of EP stress analysis. 

However, it should be noted that changing the initial stress state causes subtle 

variations in the shape of the critical slip surface from both analysis. The slip surface 

becomes less circular with decreasing Poisson's ratio (i.e. decreasing Ko). The effects 

are more pronounced near the crest of the slope. Figure A.5 illustrates the 

relationship between factor of safety and initial stress state computed using LE 

stresses. The plot shows that there is virtually no change in the factor of safety as Ko 

is varied from 0.3 to ~ 1 . The remaining examples have been included to examine if 

similar results will be observed for more complex slopes. 
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Figure A.5: Effect of initial stress state on the factor of safety. 

A.5.3 Wet and Submerged Slope 

Soil Properties: 
- c' = 20,17,15 kPa ; <()' = 10,7,5 ; fo' = 0 ; y = 18 kN/m3; E = 20,000 kPa ; Linear 

Elastic ; 5 = 0.001 
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Figure A.6 shows the comparison of LE wet (Elastic-W), EP wet (Plastic-W), LE 

submerged (Elastic-S), and EP submerged (Plastic-S) results. 
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Figure A.6: Wet and Submerged Slope 

As anticipated the critical slip surface rises and the factor of safety increases slightly 

as the slope is submerged with water. This occurs due to the added pressure of the 

standing water at the toe of the slope. It can be seen that the shape and location of the 

critical slip surfaces are again quite similar for both the wet and submerged 

conditions. From Figure A.6, the dark lines correspond to the wet condition and the 

light lines correspond to the submerged condition. 

A.5.4 Slope Angle 

As expected, the factor of safety decreases as the slope angle becomes steeper. The 

results also show the same similarities between the shape and location of the critical 

slip surface when using either LE or EP stresses. 
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Figure A.7: Slope Angle. 

A.5.5 Multi-Layer Slopes 

A.5.5.1 Two Layer Slope 

Figure A.8 illustrates the results for the 2-Layer slope at a factor of safety of ~1.0 and 

dry conditions. Only small differences exist between the location of the critical slip 

surface and the calculated factor of safety. The two methods differed by similar 

amounts when water was included. 
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Figure A. 8: Two Layer Slope 

A.5.5.2 Three Layer Slope 

The three layer slope models a condition of a much larger stiffness contrast, as well as 

the inclusion of a weak layer. The results from the dry condition are shown in Figure 

A.9. While these results show almost no deviation, it should be noted that a 

limitation was encountered in this analysis. The thickness of the weak layer was 

originally lm thick. The results from this condition showed larger deviations near the 

toe of the slope and through the weak layer. This deviation was due to the search grid 

density relative to the dimensions of features within the slope. When the thickness of 

the weak layer is increased to 2m, the results calculated are as shown in Figure A.9. 

More testing is required to determine the optimum grid density relative to the size of 

important features within the slope. 
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Figure A.9: Three layer slope. 

A.6 Conclusions 

The reliability of the DPM is confirmed in the vertical cut analysis. The DPM 

predicted the same factor of safety as Taylor's stability charts for a vertical strictly 

cohesive cut. It was also demonstrated that the factor of safety and slip surface were 

relatively unaltered by Young's modulus and only minor changes resulted from 

changing Poisson's ratio. 

The differences between stability analyses based on LE or EP stresses are also 

presented. The largest differences are shown to occur in the fabricated condition 

where the factor of safety is less than one. Only small differences were found when 

the slope was modeled under more realistic conditions where the factor of safety is 

equal to or greater than 1.0. It would seem then that LE stress analysis is sufficient to 

calculate the overall stability of a slope. Due to the various conditions considered, it 

is reasonable to conclude that elastic stress analysis is adequate for a large range of 
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slope conditions frequently encountered in practice. This is of benefit as elastic stress 

analysis is less involved requiring much less computer time. However, more research 

is required to determine if this conclusion will hold true for every possible slope 

condition encountered in practice. 
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Appendix B 

Methodology to Perform a Three-
Dimensional Dynamic 
Programming Slope Stability 
Analysis 

B.l Finite Element Analysis 

A significant amount of the information required to complete the slope stability 

analysis is generated or managed during the completion of the stress deformation 

analysis. The results of the finite element analysis are exported to a regular three-

dimension grid in preparation for performing the slope stability evaluation (Figure 

B.l). The strategy for preparing the information required in the slope stability 

analysis is outlined below. 

Table B.l lists the parameters input into the stress-deformation analysis. It is 

beneficial to assign values for the supporting parameters even though the information 

is not required to compute the internal stress distribution. The Dynamic 

Programming optimization procedure does not have to be designed to identify the 

boundaries of the soil layers since each point in the exported three-dimensional grid 

inherits the correct strength and stress values from the stress-deformation analysis. 

Many stress-deformation software packages provide the ability to define additional 

variables to facilitate the management of the supporting parameters that will be used 

to compute the factor of safety in later stages of the slope stability analysis. It is 

important to note that the coordinate system selected in the stress-deformation 

analysis is maintained throughout the rest of the slope stability analysis. The current 
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formulation is designed such that the ̂ -direction corresponds to the assumed direction 

of failure. 

Table B.l: Parameters input into the stress-deformation analysis. 

Stress Deformation Required to compute internal 1 Required for slope 
Analysis stresses distribution stability analysis 

Linear Elastic E, v c ' , <|)', <|> , u w 

Elasto-Plastic E> v > c '• "t*' <))b, u w 

1The slope stability parameters are not used to compute the interna! stress 
distribution. The stress deformation software manages the assignment of 
the supporting parameters to the various soil units in preparation for the 
stability analysis. 

The internal stress state computed from the finite element analysis is used to 

determine the forces acting along the three-dimensional slip surface. The 

interpolation procedure required to determine the stresses acting at discrete points 

along the slip surface is dependent on the mesh configuration used in the three-

dimensional stress-deformation analysis (i.e., tetrahedron, hexahedron etc.). A 

separate interpolation procedure is required for individual mesh configurations. For 

simplicity, the stresses and soil parameters from the finite element analysis are 

exported to a rectangular grid configuration, referred to as the intermediate grid 

(Figure B.l b). The information stored in the intermediate grid is used to compute the 

factor of safety for the triangular planes that are connected to form potential slip 

surfaces during the slope stability analysis. In many cases, the stress and strength 

parameters are required at points that do not align exactly with the points on the 

intermediate grid. The values of the parameters are linearly interpolated from 

surrounding grid points on the intermediate grid. The density of the intermediate grid 

is selected to minimize the influence of the linear interpolation procedure and provide 

an accurate factor of safety calculation. 
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Figure B.l: Illustration of the three-dimensional grid linking the stress-deformation 

analysis with the slope stability calculations. 

B.2 Development of the Stage-State System 

The dynamic programming method is a numerical algorithm used to optimize 

sequential multi-stage decision problems. Multi-stage decision problems are solved 

using a system of stages and states. Dividing the slope stability calculation into a 

stage-state system facilitates the calculation of the factor of safety for trial slip 

surfaces while at the same time searching for the slip surface with the lowest factor of 

safety. The details regarding the development of the stage-state system is presented 

in the following sections. 

B.2.1 Three-Dimensional Dynamic 
Programming Search Grid 
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A previous section described how the stress-deformation analysis is used to prepare 

an intermediate grid that stores the soil parameters required to compute the factor of 

safety for a potential slip surface. The current section introduces one more three-

dimensional grid referred to as the dynamic programming search grid. The points on 

the search grid are used construct triangular planes that are connected together to 

form the slip surfaces evaluated during the slope stability analysis. The search grid is 

designed so that the connection of triangular planes is completed according to a 

stage-state system. 

The two-dimensional dynamic programming slope stability formulation proposed 

by Pham (2000) used the concept of an intermediate grid to store the soil properties 

and generate potential slip surfaces. In other words, the points on the intermediate 

grid are used to generate potential slip surfaces instead of developing a separate 

search grid. It might seem reasonable to eliminate the requirement of a separate 

search grid to reduce the effort required to prepare a two- or three-dimensional 

search. However, it is recommended that the intermediate grid and the search grid 

remain separate. 
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Figure B.2: Profile view (a) and front view (b) illustrating the separation between the 

intermediate grid and the search grid. 

The density of the intermediate grid is selected to provide the ability to compute 

an accurate factor of safety. The density of the search grid is selected to build slip 

surfaces that can reasonably represent the shape of the critical slip surface. In many 

cases the density of the intermediate grid must be increased to a higher level than 

would be required to represent the shape of the critical slip surface. As a result, the 

dynamic programming searching procedure would be required to evaluate extra slip 

surface combinations if the intermediate grid was used in place of a separate search 

grid, increasing the overall solution time. The increase in the solution time resulting 

from using one grid might not be considered significant in certain two-dimensional 

problems. However, the solution time can increase drastically in three-dimensional 

analyses and the best search grid design might not be achieved. Therefore, it is best 

to separate between the grid used to store the information from the stress-deformation 
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analysis and the grid used to construct potential slip surfaces during the dynamic 

programming search (In both two- and three-dimensional formulations.). 

The input required to generate the three-dimensional search grid is summarized in 

Table B.2. The resulting search grid is regular in that the x, y and z spacing between 

points is constant (Further research in this area should consider the possibility of 

increasing the density of the dynamic programming search grid around thin weak 

layers or other problem areas in the slope. Doing so would provide another reason to 

separate between the intermediate grid and the dynamic programming search grid.). 

The grid is initially rectangular and intersects the slope in the area of interest as 

shown in 

Figure B.3 a). The grid should be viewed as a series of two-dimensional cross-

sections called stages. Stages are aligned perpendicular to the assumed direction of 

failure (i.e., the ^-direction in the current formulation). Stages divide the slope 

stability analysis into a number of smaller optimization problems. 

Table B.2: Parameters required to build the dynamic programming Search Grid. 

Parameter Description 
xc, yc, zc Starting coordinates 
x, y, z Spacing between points in each direction 
i, j , k Number columns/rows to generate 

The spacing between points in the z-direction is typically selected based on the 

presence of thin weak layers or other requirements regarding the shape of the slip 

surface. The spacing between points in the x- and y- directions is typically three to 

four times larger than the z spacing. The selection of the spacing is related to the 

presence of soil features and the admissibility criteria applied during the generation of 

state curves. The relationship between the spacing and the admissibility criteria is 

described in the following section. 
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The final step in preparing the search grid is to delete unnecessary points above the 

ground surface. The points are deleted using a three-dimensional surface like the one 

shown in 

Figure B.3 (i.e., all points above the surface are deleted.). The surface is designed 

to leave a certain number of grid points above the ground surface near the outside of 

the search grid. These grid points are needed to evaluate the entry and exits points of 

the critical slip surface. The surface deletes a certain number of grid points below the 

ground surface, approximately in the middle of the search grid. These points are 

deleted so that potential slip surfaces are forced to pass through the slope. The final 

search grid is shown in Figure B.3b). 
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Figure B.3: Illustration describing the design of the dynamic programming search 

grid. 
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Figure B.4 illustrates two profiles taken through the centre of the problem parallel 

to the assumed direction of failure (i.e., the j-direction). The profiles illustrate that 

there are certain number of points above the crest and the toe of the slope. These 

points provide the ability to locate the entry and exit of the critical slip surface. The 

profiles also illustrate that points along the face of the slope are deleted so that the 

slip surfaces are forced to enter the slope. 

0 4 8 12 16 20 24 28 32 36 40 44 0 4 8 12 16 20 24 28 32 38 40 44 
Y Y 

Figure B.4: Search grid configurations to facilitate different searching strategies. 

The profiles demonstrate a potential searching strategy that can be used to 

maximize the efficiency of the dynamic programming optimization procedure. An 

initial search can be completed using a coarse grid similar to the one shown in Figure 

B.4 a). The coarse grid is spread over a large area of the slope to identify the most 

likely location of the critical slip surface. It is understood that the shape of the slip 

surface will likely be approximate at this stage. The next step is to focus the search 

grid around the critical slip surface identified in the preliminary search. The internal 

modifications to the search grid are applied using a surface similar to the procedure 

for deleting points above the ground surface. 

B.2.2 State Curve Generation 

The final step in preparing the skeleton of the dynamic programming search is to 

further divide the analysis into a series of states. Figure B.5 represents a typical 
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profile view of one stage. States are defined as curves generated by connecting a 

series of points from one stage. It is evident from Figure B.5 that state curves 

describe the shape of the slip surface in the direction perpendicular to failure. The 

numerical procedure to generate state curves is divided into steps depending on the 

number of admissibility criteria that are used to control the shape of the curves. The 

current formulation is divided into two steps that correspond to the application of the 

earth pressure admissibility criteria described in section 5.3.2.2 and the concave 

admissibility criteria described in section 5.3.2.1. 

\— Point Number 

©. <a $ <s>, Ground Surface —s* (i) (?) CD 
• • ^ • fir €* i~^ 

ha Hal m 
- • I Ax H-

i i i i ] 1 0 1 

Column Number 

m m m m 

X 

Figure B.5: Profile view of one stage from 

Figure B.3 a) illustrating the numbering scheme used in the numerical procedure to 

generate state curves. 

The earth pressure admissibility criterion is applied first and follows the 

numbering scheme illustrated in Figure B.5. The procedure begins at point, [k= 1], 

in column, [/ = 2]. The angle of inclination (9) for the line segment connecting point, 

k, to each point \j=l] to [/'=«] in column [/" — 1] is computed and compared to the 

angle of inclination permitted by the earth pressure admissibility criteria (i.e., 

45 + ^ 7 2 ) . The connections that result in line segments with angles of inclination, 

| 0 | < 45 + ^7 2 , are stored. The procedure is repeated until the connections for each 
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point in the grid have been evaluated. Figure B.6 a) and b) illustrates the results of 

the procedure for point k in column /". Figure B.6 a) illustrates all of the connections 

evaluated for a point k. The solid lines in Figure B.6 b) represent line segments that 

pass the earth pressure admissibility criteria. Applying the earth pressure 

admissibility criteria first, reduces the number of connections evaluated during the 

application of the concave admissibility criteria. 

a) /c=1 , : - y=i b) *=1 

i, 1M&Z ; 8 < 4 5 + d>72 
K — rfj;.......« — J T 

m — 1 
*— n m 

i-1 

Figure B.6: Schematic illustrating the application of the earth pressure admissibility 

criteria. 

The application of the concave admissibility criteria follows a similar procedure. 

The procedure begins in column, [/ = 2]. The slope (i.e., dz/dx) of each of each line 

segment connection between points [k = 1 ] to [m] and points [/' = 1 ] to [n] that pass 

the earth pressure admissibility criteria are calculated and stored at the corresponding 

point [k]. The procedure moves on to the next column (i..e, / = /+1). The procedure 

computes the slope of each admissible connection between points [k] in columns [z] 

and points [/] in column [i — 1], similar to the first step. It is important to point out 

that each point [/] in column [i - 1] contains information regarding the slope of the 

line segments from column [i-2] leading to that point, as shown in Figure B.7 a). 

Now the procedure computes the difference between the slope of connections 

between columns [i-2] and [i-l] and columns [z'-l] and [/] (i.e., d2z/d2x is 

computed). The connections that pass the required concave admissibility criteria (i..e, 

Equations [5.1], [5.2] or [5.3]) are recorded. Figure B.7 b) illustrates the admissible 

connections after the application of the concave admissibility criteria corresponding 

to Equation [5.1]. The line segments between column [/ - 2] and [i — 1] were 
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recorded during the application of the earth pressure admissibility criteria. The solid 

lines represent the connections that passed the concave admissibility criteria. The 

procedure continues through the remainder of the grid until all of the admissible state 

curves have been recorded. 

a) / c = 1 -

Equation [5.1], 

[5.2] or [5.3] 

b ) / c = 1 -

k 
k+1 

m — 
i i-1 i-2 

Figure B.7: Schematic illustrating the application of the concave admissibility 

criteria. 

Figure B.8 illustrates a completed sample of state curves on one stage. Each 

admissible state curve is stored in an array in preparation for the completion of the 

dynamic programming search. Figure B.9 illustrates a completed stage-state system 

that is ready to be searched (The top layer has been made "see through" in an attempt 

to illustrate the internal portion of the stage state system.). 
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Figure B.8: Illustration of a completed sample of state curves. 

Figure B.9: Illustration of a completed stage-state system. 

B.3 Dynamic Programming Search 

The dynamic programming search is completed according to the stage-state system 

described above. The following sections describe the procedure to compute the factor 

N 

25 

20 

15 

10 
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of safety followed by a description of the dynamic programming optimization 

procedure. 

B.3.1 Calculating the Factor of Safety 

The points on the dynamic programming search grid are used construct triangular 

planes that are connected together to form the slip surfaces evaluated during the slope 

stability analysis. The factor of safety for individual triangular planes is evaluated 

and used to compute the overall factor of safety for the slip surface. The following 

discussion describes the procedure to compute the factor of safety for one triangular 

plane. 

Figure B.10: Illustration of one triangular plane intersecting an element from the 

intermediate grid. 

A search is performed through the intermediate grid to determine the eight grid 

points surrounding the centroid of the triangle (Figure B.9). The soil parameters and 

stress state from the surrounding eight grid points are used to determine the soil 

parameters and stress state at the centroid of the triangle using standard tri-linear 

interpolation. First, a local coordinate system is defined with an origin located at the 

centre of the element. Next, the local coordinates (xc, yc, zc) for the centroid, C, of the 

triangular plane can be computed using the expressions shown in Eq. [4.3]. 
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[6.2] x, = 2 . - ^ - 1 ;, ,=2.i*^L-l;., = 2 « J ^ - 1 
( * W - * / ) (yz+ i -Jy) ( z A + l - ^ ) 

The values x, y, z are the coordinates for the centroid of the triangular plane based 

on the global coordinate system. Likewise, the coordinates Xj, yu and z, are based on 

the global coordinate system. The local coordinates computed using the expressions 

given in Eq. [4.3] will always result in values between negative one and one. The 

local coordinates of the centroid can be used to compute an interpolation factor, N, for 

each of the eight nodes using the set of expressions given in Eq. [4.4]. 

Nx = (1 / 8) * (1 + xc) * (1 + yc) * (1 -zc) 

JV2 = ( 1 / 8 ) * ( 1 - x c ) * ( l + y c ) * ( l - z c ) 

tf3 = ( l / 8 ) * ( l + x c ) * ( l - ; y c ) * ( l - z c ) 

JV4 = ( 1 / 8 ) * ( 1 - xc) * 0 - * ) * ( ! - * c ) 

N5 = (1 / 8) * (1 +xc) * (1 + yc) * (1 + zc) 

N6 = (1 / 8) * (1 - xc) * (1 +yc) * (1 +zc) 

Nj = (1 /8) * (1 +xc) * (1 - yc) * (1 + zc) 

JV8 = ( 1 / 8 ) * ( 1 - x c ) * ( l - ^ c ) * ( l + z c ) 

[6.3] 

The soil parameters (i.e., c', (()', § , uw) and stress state (i.e., CTX, ay, az, axy, axz, ayz) at 

the centroid of the triangular plane can be computed as the sum of the parameter 

multiplied by the corresponding interpolation factor for each of the eight nodes (e.g., 

8 

ax ='^J<JxNj etc.). The unit normal vector, n, can be determined using the three 

coordinates from the triangular plane. 

Knowing the stress state at the centroid of the triangle and the unit vector normal 

to the plane, it is possible to calculate the components of the traction Tn' shown in 

Figure B.l 1, using Eq. [4.5]. 
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w [6.4] Tr^a^j 

3 ^ 

Figure B.l 1: Calculating the resisting force, R, and shear force, S, based on the 

normal stress, an, and mobilized shear stress, T , acting at the centroid of a triangular 

plane. 

The normal stress, an , can be calculated by evaluating the dot product of the traction 

T*n) and the unit normal vector, n, using Eq. [4.6]. 

[6.5] <Jn =T"*n 

Finally, Pythagoras' theorem can be used to determine the magnitude of the 

mobilized shear stress, r , acting at the centroid of the triangle using Eq. [4.7]. 

[6.6] r = J r M\2 

The shear force, S, is calculated by multiplying the mobilized shear stress, from Eq. 

[4.7], by the area of the triangle. 
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The shear strength provided over the area of the triangle can be calculated using 

the extended Mohr-Coulomb equation for saturated-unsaturated soil (Fredlund and 

Rahardjo 1993): 

[6.7] tf =C'+(<TH -ua)tanfi+(ua -uw)tan0b 

where c', (()', and § are the shear strength parameters of a saturated-unsaturated soil, 

(crn -w a ) is the net normal stress, and (ua -w iv)is the matric suction. The resisting 

force, R, is computed by multiplying the shear strength of the soil, r f , by the area of 

the triangle .4. 

The same procedure can be used to compute the resisting force and shear force for 

each triangular plane on the slip surface. The summation of the resisting forces 

divided by the summation of the shear forces can be used to compute the overall 

factor of safety for the slip surface, according to Eq. [4.2]. 

B.3.2 Optimization Procedure 

The three-dimensional slope stability calculations have been divided into a stage-state 

system and the factor of safety equation has been defined. It is now possible to 

introduce an auxiliary functional (G) that is evaluated for each state curve connection 

and can be used to determine the slip surface with the lowest factor of safety. Eq. 

[5.7] represents the auxiliary functional and is the result of rearranging Eq. [5.4]. 

mn -

[6.8] G , = Z k - ^ , J 
'7=1 

Figure B.12 illustrates a portion of a three-dimensional sip surface resulting from 

the connection of state curve (kk) from stage [z'+l] to state curve (Jj) from stage [/']. 

The state curves are connected by a series of triangular planes. The value of the 
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auxiliary functional for the connection shown in Figure B.12 is determined by 

summing the result of the right hand side of Eq. [5.7] evaluated for each plane 

combination. 

Stage 

State Curve "jj" 

State Curve "kk" 

"/+ 1" 

Figure B.12: One state curve connection between stage [i] and [i - 1]. 

The optimal function shown in Eq. [5.8] is introduced to record and compare the 

return function values, G„ calculated for each trajectory as the search for the slip 

surface with the minimum factor of safety proceeds. 

C6-9] Hi+l(kk) = min {H,{jj) + G,UJ,kk)1ti 
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The value of the optimal function, H\(fj), for all of the state curves in the first stage 

(i.e., state curves 1 through s) is set to zero, the factor of safety is initialized with a 

reasonable guess and the convergence criteria (8) is set according to the desired 

accuracy in the factor of safety. The numerical procedure evaluates the state curve 

connections between every stage beginning with stage [i] to stage [M-1]. The return 

function Gi(jj,kk) is calculated for each trajectory between state curve (kk) in stage 

[i+l] to state curves [(jj) = 1-5,-] in stage [i]. In other words, R and S is calculated for 

each triangular plane on the state curve connection and used together with the current 

value of F to compute the return function value. //,(/)'), the value of the optimal 

function recorded at the state curve (jj) in stage [/], is added to the return function 

value. The state curve (jj) that results in the minimum value of the brace {} (i.e., the 

trajectory with the lowest factor of safety), is recorded and the calculation proceeds to 

the state curve (kk+l) until all of the connections between stage [i] and [i+l] have 

been evaluated. When the calculation reaches the final stage [n] the state curve (kk) 

resulting in the minimum optimal function value is determined. Starting at the 

minimum state curve in the final stage, it is possible to trace back the minimum 

trajectory to each previous stage using the recorded (jj) values at each [i] and (kk). 

The combination of each minimum trajectory is the trace of the slip surface with the 

lowest factor of safety. The factor of safety (Fs) for the slip surface is computed and 

compared to F (i.e., the factor of safety from the previous iteration). If, | F-Fs | < X, 

then convergence is achieved and the optimization procedure is complete. If not, F is 

set to the value Fs and the optimization procedure is repeated. Convergence is 

typically achieved in less than five iterations. 

B.4 Evaluating the Results 

It is possible to artificially restrict the shape of the slip surface depending on the 

design of dynamic programming search grid or the intermediate grid. The final slip 

surface should be inspected to make sure that it does not touch the boundaries of 

either grid. It is possible to design the computer program to identify the locations 
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where the slip surface is restricted by the search grid, automatically expand the search 

grid in the problem area and perform another iteration. 
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