
University of Alberta

A Neuro-fuzzy Architecture Incorporating Complex Fuzzy Logic

by

Zhifei Chen ©
A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45791-7
Our file Notre reference
ISBN: 978-0-494-45791-7

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Complex fuzzy sets have recently been a topic of interest in the fuzzy systems

community. However, to date, no practical application of this concept has yet been

proposed. The goal of this thesis is to create a time series forecasting system, which will

be the first practical application of the complex fuzzy sets. We have constructed a neuro-

fuzzy architecture, named ANCFIS, inducing complex fuzzy rules from time-series. The

challenge of this architecture is how to update the parameters of complex fuzzy sets. We

have developed a novel derivative-free optimization technique to overcome this problem:

the Variable Neighborhood Chaotic Simulated Annealing (VNCSA) algorithm, and

compare VNCSA against two existing alternatives: a chaotic simulated annealing

technique, and Ant Colony Optimization algorithm. Our comparisons are carried out over

one synthetic dataset and five real-world datasets. We found that the VNCSA algorithm

leads to the best tracking error in the ANCFIS architecture, for all six datasets.

Acknowledgement

I owe a debt of gratitude to my supervisor, Dr Scott Dick from whom I have learned
much about complex fuzzy logic. I wish to acknowledge his support and guidance
throughout the project.

Special thanks to my dear friend James Man for his encouragement and his collaboration
over the last 10 months.

I would also like to express thanks to my wife and daughter for their support during my
working on the thesis.

Table of contents

1 Introduction 1
2 Literature review 6

2.1 Type-1 fuzzy logic review 6
2.1.1 Type-1 fuzzy sets 7
2.1.2 Fuzzy relations and fuzzy composition 9
2.1.3 Fuzzy reasoning 11
2.1.4 Fuzzy inference systems 13

2.2 ANFIS review 16
2.2.1 ANFIS architecture 19
2.2.2 Gradient descent method in hybrid learning algorithm 21

2.3 Complex fuzzy theory review 27
2.3.1 Complex fuzzy sets 29
2.3.2 Set theoretic operations 30
2.3.3 Vector aggregation 32
2.3.4 Complex fuzzy relations 33
2.3.5 Complex fuzzy logic 35

2.4 Chaotic Simulated Annealing Algorithm 36
2.4.1 The Logistic Map and Ulam-von Neumann Map 38
2.4.2 Existing chaotic simulated annealing methods 44

2.5 Ant colony optimization 50
2.5.1 Initialization 51
2.5.2 Update Probability 52
2.5.3 Output of Solutions 54
2.5.4 Adjustment of the Step Size 54

2.6 Complex-valued neural networks 54
2.7 Complex-valued ANFIS 56

3 Complex fuzzy inference system 58
3.1 Complex Fuzzy Sets 60
3.2 ANCFIS architecture 62
3.3 Backpropagation for ANCFIS 68

3.3.1 Derivative of complex function 68
3.3.2 Gradient-based Learning Rule 71
3.3.3 Mathematical Model of Premise Parameter Identification 80

3.4 Variable neighborhood chaotic simulated annealing algorithm 81
3.4.1 VNCSA algorithm 82

3.4.1.1 Generating initial solution population 83
3.4.1.2 Initial temperature and final temperature 84
3.4.1.3 Neighbor selection 84
3.4.1.4 Temperature update 86
3.4.1.5 The procedures on VNCSA algorithm 86

3.4.2 Parameter Selection and Comparison on Benchmark Test Functions 87
3.4.2.1 Unconstrained optimization 87
3.4.2.2 Constrained optimization Problems 92

4 Experimental Comparison of the Three Alternatives in ANCFIS 98

4.1 Synthetic dataset 99
4.2 Mackey-Glass Time Series 102
4.3 Santa Fe dataset A 106
4.4 Sunspots 109
4.5 Predicting Stellar Brightness 111
4.6 Predicting Wave Height 113

5 Summary and Future Work 117
6 References 119

List of Tables

Table 2. 1 A relation X -» Fbetween the two crisp sets [99] 10
Table 2. 2 A fuzzy relation X -> 7 between the two crisp sets [99] 11
Table 2. 3 Summary of the hybrid-learning rule used in ANFIS, from [5][6] 18
Table 2. 4 Density distribution of the logistic map 43
Table 3. 1 Parameters of VNCSA and CSA2 used in test functions 88
Table 3. 2 Parameters of ACO used in test functions 88
Table 3. 3 Testing results on unconstrained functions 91
Table 3.4 Parameters of VNCSA and CSA2 used in testing constraint functions 92
Table 3. 5 Parameters of ACO used in test constraint functions 92
Table 3. 6 Testing results on constrained functions 96
Table 4. 1 Parameters of VNCSA and CSA2 used in ANCFIS for time series data

prediction 99
Table 4. 2 Parameters of ACO used in ANCFIS for time series data prediction 99
Table 4. 3 Synthetic dataset parameter exploration 100
Table 4. 4 Comparison testing RMSE for synthetic time series 102
Table 4. 5 Comparison of testing RMSE for Mackey-Glass 104
Table 4. 6 Membership functions 105
Table 4. 7 Comparison of testing RMSE for Santa Fe dataset A (laser) series 108
Table 4. 8 Comparison of testing RMSE for sunspot series 111
Table 4. 9 Comparison of testing RMSE for star brightness 113
Table 4. 10 Comparison of testing RMSE for waves series 115

List of Figures

Fig. 2. 1 Examples of four classes of parameterized membership functions: 9
Fig. 2. 2 Graphic interpretation of fuzzy reasoning 13
Fig. 2. 3 Approximate reasoning for multiple antecedents from [5][6] 13
Fig. 2. 4 Fuzzy inference system [5][6] 14
Fig. 2. 5 Normally applied fuzzy if-then rules and fuzzy inference mechanisms, from[5]

[6] 14
Fig. 2. 6 (a) Sugeno fuzzy reasoning (b) Equivalent ANFIS architecture, from [5][6]... 18
Fig. 2. 7 Error propagation model of Fig.2.6 (b) 24
Fig. 2. 8 General scheme of a complex fuzzy logic system [3] 35
Fig. 2. 9 The logistic map for different values of // 39
Fig. 2. 10 Bifurcation diagram of the logistic map, long-term values 40
Fig. 2. 11 The sensitiveness of the logistic map to the initial condition at// = 4.0 40
Fig. 2. 12 The logistic map for // = 4.0 42
Fig. 2. 13 Bifurcation diagram of the Ulam-von Neumann map, long-term values 43
Fig. 2. 14 (a) Logistic mapping at, u=4, 48
Fig. 3.1 An ANCFIS architecture 58
Fig. 3. 2 ANFIS architecture for a two-input Sugeno fuzzy model with four rules from [5]

58
Fig. 3. 3 Visualization of a complex fuzzy set, rs{6) = sin(#) 61
Fig. 3. 4 Illustration of Implicit structure in the convolution of input vector and sampled

points generated from complex membership function 64
Fig. 3. 5 The Elliott function, (Left) Magnitude. (Right) Phase 65
Fig. 3. 6 ANCFIS backpropagation network 70
Fig. 3. 7 A six-layer ANCFIS structure with 2 complex membership functions (a)

forward pass; (b) ANCFIS backpropagation network 76
Fig. 3. 8 The graph of Goldstein-Price function 88
Fig. 3. 9 The iteration process using VNCSA algorithm 89
Fig. 3. 10 The iteration process for Hartman's function 1 using VNCSA algorithm 90
Fig. 3. 11 The iteration process for Hartman's function 2 using VNCSA algorithm 90
Fig. 3. 12 The iteration process for G4 using VNCSA algorithm 93
Fig. 3. 13 The iteration process for G9 by using VNCSA algorithm 94
Fig. 3. 14 The iteration process for G10 by using VNCSA algorithm 95
Fig. 4. 1 Synthetic dataset after normalization 100
Fig. 4. 2 (a) synthetic time series test results and one-step-ahead prediction(desired

values as dashed line, and predicted values as solid line); (b) prediction error 101
Fig. 4. 3 Training RMSE curves for synthetic time series 101
Fig. 4. 4 Mackey-Glass time series from t = 124 to 1123 103
Fig. 4. 5 (a) Mackey -Glass time series test results from t=624 to 1123 and one-step-

ahead prediction(desired values as dashed line, and predicted values as solid line);
(b) prediction error 103

Fig. 4. 6 Training RMSE curves for Mackey-Glass series 104
Fig. 4. 7 A VNCSA-ANCFIS architecture 105

Fig. 4. 8 An ANFIS architecture with 4-input Sugeno fuzzy model with sixteen rules
(The connections from inputs to layer 4 are not shown) 106

Fig. 4. 9 Santa Fe dataset A (laser) after normalization 107
Fig. 4. 10 (a) Santa Fe dataset A (laser)time series test results and one-step-ahead

prediction(desired values as dashed line, and predicted values as solid line); (b)
prediction error 107

Fig. 4. 11 Training RMSE curves for Santa Fe dataset A (laser) series 108
Fig. 4. 12 Sunspot series after normalization 109
Fig. 4. 13 (a) Sunspot time series test results from t=624 to 1123 and one-step-ahead

prediction(desired values as dashed line, and predicted values as solid line); (b)
prediction error 110

Fig. 4. 14 Training RMSE curves and testing RMSE curves for Sunspot series I l l
Fig. 4. 15 The Star time series data before normalizing 112
Fig. 4.16 (a) the Star time series testing data from t=481 to 600(desired values as

dashed line, and predicted values as solid line); (b) prediction error 112
Fig. 4. 17 Training RMSE curves for Star series 113
Fig. 4. 18 The waves time series data before normalizing 114
Fig. 4. 19 (a) the waves time series testing data from t=257 to 320 desired values as

dashed line, and predicted values as solid line; (b) prediction error 114
Fig. 4. 20 Training RMSE curves for Waves series 115

1 Introduction

The development of complex fuzzy logic [1][2][3], a novel framework for logical

reasoning, has been a topic of interest in fuzzy systems in recent years. Complex fuzzy

logic is a generalization of traditional fuzzy logic, based on complex fuzzy sets. In the

complex fuzzy logic, the inference rules are created and "fired" in a similar-fashion to the

traditional fuzzy logic. The predicted output and a complex fuzzy rule are complex fuzzy

sets. Complex fuzzy sets are a recently-proposed extension to the standard (type-1) fuzzy

set meory. Where a Type-1 fuzzy set A in a universe of discourse U is characterized by a

membership juA, which takes values between [0,1], a complex fuzzy set's membership

function has the unit disc of the complex plane as its codomain. Equivalently, a complex

fuzzy set is a set of ordered pairs (x, \i(x)) where x € X is an object from some universal

set X, and \i(x) e D, the set of complex numbers whose modulus is less than or equal to 1

[1][2][3][4]. This novel framework of complex fuzzy logic not only maintains all the

advantages of using traditional fuzzy logic, but also at the same time allows for the

definition of operations that allow complex fuzzy sets to interact in new and interesting

ways. Complex membership functions possess "wave-like" properties, which allow them

to constructively and destructively interfere with one another. Although the theory

behind complex fuzzy logic is being developed, there have as yet been no applications of

complex fuzzy logic to real-world problems. Until such applications demonstrate the

utility of complex fuzzy sets and complex fuzzy logic, they will remain theoretical

curiosities. Development of a practical complex fuzzy logic system is complicated by the

nature of complex membership functions; it is very difficult to build an intuitive

1

understanding of complex fuzzy sets and their practical meaning, and so elicitation of a

complex fuzzy system from expert knowledge is currently infeasible. Thus, we need to

use inductive learning to create a complex fuzzy system.

In previous work [1], it was suggested that complex fuzzy sets would be a

reasonable model for "approximately periodic" phenomena; patterns that approximately

repeat themselves, but are never exactly the same twice. Such phenomena have

previously been termed regular patterns, with regularity viewed as a generalization of

stationarity [98]. The rationale is that complex fuzzy sets might themselves be periodic,

with the sine function proposed as a possible candidate in [1]. We have been following up

on this suggestion, attempting to build a complex fuzzy inferential system [3] to model

regular phenomena. At this time, regularity finds its most common and important

expression in the form of time-series data, and the practical problem of time-series

forecasting. Accordingly, we are attempting to create a time-series forecasting algorithm

using complex fuzzy logic; we suspect that such a system will be a simpler, more natural

model of the time series than a type-1 fuzzy system.

Standard fuzzy systems, and their extensions, are rule-based expert systems that

may be developed in one of two ways: either they can be elicited from a domain expert,

or they may be induced from input/output data. Elicitation requires an expert to provide

appropriate definitions of all fuzzy sets, as well as the rules themselves. However, since

complex fuzzy sets have a two-dimensional membership function, they could not be

simply represented by two distinct fuzzy sets. We and others believe complex fuzzy logic

is useful when there is significant interaction between the amplitude and phase terms. If

there is an existing link between the amplitude and the phase, it is counter-intuitive to

2

separate them and hope that their relationship can be re-established through an inference

process. Therefore, we turn to inductive learning, and specifically artificial neural

networks, to develop our complex fuzzy inferential system. Our work extensively

modifies the ANFIS (Adaptive Neuro Fuzzy Inference System) architecture [5] [6] [7],

incorporating complex fuzzy sets instead of type-1 fuzzy sets, and replacing the Takagi-

Sugeno-Kang (TSK) rules with the interference-based complex fuzzy inference

postulated in [3]. We have named this architecture the Adative Neuro-Complex-Fuzzy

Inferential System (ANCFIS).

In the ANFIS architecture, layer 1 computes the membership of a crisp (numeric)

input in each fuzzy set during the forward pass, and updates the parameters of the fuzzy

sets during the backward pass using a gradient descent algorithm. However, when we

apply gradient descent to the complex-valued signals in ANCFIS, we find that the partial

derivatives of the error function with respect to the real-valued parameters of our

complex fuzzy sets are complex-valued, and so we could not directly update these

adaptive real-valued parameters as in classic ANFIS. Classical derivative-based methods

could not be used here, and thus ANCFIS must utilize a derivative-free optimization

technique to update the parameters in layer 1. We have developed a novel algorithm,

Variable-Neighborhood Chaotic Simulated Annealing (VNCSA) for this purpose; our

first objective in this thesis is to determine whether to use this algorithm to update the

parameters of layer 1, or to employ a different derivative-free technique. We compare

VNCSA against the well-known Ant Colony Optimization (ACO) technique [8][9][10],

as well as a different Chaotic Simulated Annealing (CSA) algorithm [11].

3

Our second objective in this thesis is to demonstrate the utility of the ANCFIS

technique for time series prediction. The performance of ANCFIS technique using

VNCSA algorithm is tested against six time series datasets, and the out-of-sample root

mean square errors are compared with those obtained by ANCFIS using ant colony

optimization (ACO) and ANCFIS using CSA2 [16], as well as the classic ANFIS

architecture.

Our main research contributions are summarized as follows:

1. Formulation of an ANCFIS architecture incorporating adaptive neuro fuzzy

inference system with complex fuzzy logic. Our work is based on the well-known

ANFIS architecture [5][6][7], extending the architecture and modifying the node

functions to accommodate complex fuzzy logic. In addition, instead of having

separate time-delayed inputs in the ANFIS, they are combined into one single

input vector presented to the ANCFIS architecture.

2. Derivation of hybrid learning algorithms, analogous to the ANCFIS algorithm. In

the forward pass of hybrid learning algorithm, the consequent parameters

p, q, r are estimated by the least squares method while the premise parameters of

MFs are fixed. In the backward pass, the complex membership functions are

updated by a combination of gradient descent and derivative-free optimization

method while the consequent parameters are fixed.

3. Development of VNCSA algorithm. Based on the simulated annealing algorithm,

a derivative-free VNCSA algorithm is proposed, where we introduce the behavior

of one-dimension chaotic maps to simulated annealing (SA) to ensure small

perturbations from adjacent candidate solution are imposed on the each candidate

4

solution. Through testing some classical nonlinear unconstraint and constraint

benchmark optimization functions, the parameters determining the performance of

this algorithm are discussed.

4. Experimental evaluation of the ANCFIS learning algorithm. Six problems in time

series prediction are used in our experiments. We contrast ANCFIS using

VNCSA with ANCFIS-CSA2, ANCFIS-ACO, and the classical ANFIS

architecture.

The remainder of this thesis is organized into four chapters: chapter 2 presents a

literature review covering the topics of type-1 fuzzy logic, complex fuzzy logic, ANFIS,

complex-valued neural networks, the chaotic characteristics of one-dimension chaotic

maps, classical chaotic simulated annealing algorithms, and the principles of ACO in

combinational optimization. In chapter 3, we present the ANCFIS architecture. This

includes the structure of ANCFIS, the node functions of the forward pass, the error-

propagation model for the backward pass, the procedures of VNCSA algorithm and

preliminary experimental results for the VNCSA algorithm on unconstrained and

constrained benchmark optimization problems. In Section 4, the ANCFIS architecture is

tested on a total of six datasets. One is a synthetic dataset comprised of two sinusoidal

signals and the other five are forecasting datasets from the literature: Wolfer sunspot

numbers [82]-[86], Mackey-Glass chaotic time series [5][6], the Santa Fe time series

forecasting competition dataset A (laser) [80][81], the waves time series [82][87] and the

Star time series [82]. Chapter 5 contains a summary and a discussion of future work.

5

2 Literature review

2.1 Type-1 fuzzy logic review

The research and application on type-1 fuzzy logic have made a tremendous

progress since Zadeh published the first paper [12]. In 1965, Zadeh firstly introduced

fuzzy sets as an extension of the classical notion of set. In recent years, the number and

variety of applications of type-1 fuzzy logic have increased significantly. These

applications range from consumer products such as cameras, camcorders, washing

machines, and microwave ovens to industrial process control, medical instrumentation,

decision-support systems, and financial portfolio selection. A type-1 fuzzy set is

characterized by a two-dimensional MF. Type-1 fuzzy set theory provides a systematic

calculus to handle imprecise and incomplete information linguistically, and it implements

numerical calculation by using linguistic labels associated with a membership function. A

type-1 fuzzy inference system using fuzzy if-then rules can effectively model human

expertise in a specific application. Type-2 fuzzy logic [13][14][15][17][18] represents

uncertainty using a function which is itself a type-1 fuzzy number. Sometimes type-2

fuzzy logic is referred to as fuzzy fuzzy because of this. A type-2 fuzzy set is

characterized by a three-dimensional MF. Type 2 fuzzy logic is a way of representing and

modelling uncertainty and imprecision. The basic premise using type-2 fuzzy logic is that

most applications in the general area of modelling decision making have to cope with

imprecision in data, knowledge, rules etc. It provides a way of not ignoring this

imprecision but using it to make better computer systems. Since complex fuzzy sets are

6

an extension to type-1 fuzzy set theory, we will focus only on type-1 fuzzy logic. In the

following, the fuzzy set refers to type-1 fuzzy set.

2.1.1 Type-1 fuzzy sets

Let X be a space of objects and x be a generic element of X. A classical set A,

A c X , is defined by a collection of elements or objects xe X, such that each x can

either belong or not belong to the set A. By defining a "characteristic function" for each

element xe X, we can represent a classical set A by a set of ordered pairs (x, 0) or (x, 1),

which indicates x£ A or x e A, respectively.

Unlike the aforementioned conventional set, a fuzzy set (Zadeh, 1965) expresses

the degree to which an element belongs to a set. Hence the characteristic function of a

fuzzy set is allowed to have values between 0 and 1, which denotes the degree of

membership of an element in a given set. Obviously, the definition of a fuzzy set is a

simple extension of the definition of a classical set in which the characteristic function is

permitted to have any values between 0 and 1. If the values of the membership function

//A(x)is restricted to either 0 or 1, then A is reduced to a classical set and //A(x)is the

characteristic function of A.

Definition of Type-1 Fuzzy sets [5]:

If X is a collection of objects expressed generically byx, then a fuzzy set A in

X is defined as a set of ordered pairs:

A = {(x,/iA(x)\xe X}. (2.1)

The membership function is denoted by juA (x) and it maps each element of X to

a membership grade between 0 and 1. Usually X is called the universe of discourse, and it

may be composed of discrete objects or continuous space. The construction of a fuzzy

7

set depends on two things: the identification of a universe of discourse and the

specification of a membership function. Alternatively, a fuzzy set A can be also

expressed as

V MA \xi)/ > if x is a collection of discrete objects.
A = \ Ty /x<- (2.2)

f MA \xy ; if x is a continuous space(usually the real line R).

Containment, union, intersection, and complement are the most used operations

on fuzzy sets [5],

(1) Containment or subset: Fuzzy set A is contained in fuzzy set B (or

equivalently, A is a subset of B), in symbols,

A^B^jUA(x)</lB(x). (2.3)

(2) Union of two fuzzy sets (disjunction): the union of two fuzzy set A and B is

a fuzzy set C, whose MF is associated with those of A and B by

Hc (x) = JUAUB (•*) = max(ft, (x),/lB (x)) = juA (x) v juB (x), (2.4)

where v refers to max.

(3) Intersection (conjunction): the intersection of two fuzzy set A and B is

a fuzzy set C, whose MF is associated with those of A and B by

juc (x) = /UAf)B (x) = min(jUA (x),juB (x)) = juA (x) A JUB (X) , (2.5)

where A refers to min.

(4) Complement (negation): the complement of fuzzy set A, denoted by A, is

represented as

jij(x) = l-MAx) (2-6)

Membership functions

8

(a) Triangular MF (b) Trapezoidal MF

0 10 20 30 40 50 60 70 BO 90100

(c) Gaussian MF

0 10 20 30 40 50 60 70 80 90100

(d) Generalized Bell MF

0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100

Fig. 2.1 Examples of four classes of parameterized membership functions:

(a) triangular (x;30,50,70); (b) trapezoid (x;20,30,50,85);

(c) gaussian (x;50,15); (d) bell (x;l 0,2,50), from[5]

A fuzzy set is normally characterized using its membership function.

Parameterized membership functions of a single variable are often used; common

choices include triangular membership functions (specified by three parameters),

trapezoidal membership functions (specified by four parameters), Gaussian membership

functions (specified by two parameters) and generalized bell membership functions

(specified by three parameters). Figure 2.1 provides examples of these membership

functions.

2.1.2 Fuzzy relations and fuzzy composition

Fuzzy relations [99] represent a degree of presence or absence of association,

interaction, or interconnectedness between the elements of two or more crisp sets. Let U

9

and V be two crisp sets. A fuzzy relation R(U, V) is a fuzzy subset of the product space

UxV. The relation R(U, V) is characterized by a membership function juR(x,y) where

xeU and ye V . jUR(x,y) assigns each pair (x, y) a membership value between [0,1],

which represents the degree to which the relation R holds for the elements x and y.

Relations can be explained by a simple example in our daily life using discrete

fuzzy sets. Let us analyze the relationship between the color of a tomato xand the grade

of maturity y and characterize the linguistic variable color by a crisp set X with three

linguistic terms

X = {green, yellow,red},

and similarly die grade of maturity

Y = {verdant, half _ mature, mature},

A crisp formulation of a relation X —> Y between the two crisp sets is listed in

Table 2.1. This crisp relation/? can be generalized to consider different degrees of

strength of association or interaction between elements of two crisp sets. Degrees of

association can be expressed by membership grades in a fuzzy relation in the same way

as degrees of the set membership are represented in a fuzzy set. Using this in the fruit

example, the table 2.1 can be changed to table 2.2.

Table 2.1 A relation X —> Y between the two crisp sets [99]

green

yellow

red

verdant

1

0

0

Half_mature

0

1

0

mature

0

0

1

10

Table 2.2 A fuzzy relation X —» Y between the two crisp sets [99]

green

yellow

red

verdant

1

0.3

0

Halfjnature

0.5

1

0.2

mature

0

0.5

1

Composition of traditional fuzzy relations on the same product space is easily

done through set operation such as union, intersection and complement. Composition of

fuzzy relations on different product spaces can be done if they share a common set, for

example: R(U,V) and S(V,W). The composition of these two relations is denoted

C(U,W) = R(U,V)°S(V,W). The membership function for C(U,W) is given by the

max-min composition of/? and S

jUc(x,z) = maxmm[jUR(x,y),/us(y,z)] = v luR(x,y)Ajus(y,z], (2.7)
y

where A and v denote max and min, respectively.

2.1.3 Fuzzy reasoning

Fuzzy reasoning [5], also called approximate reasoning, is an inference process

deriving conclusions based on a set of fuzzy if-then rules and known facts. A fuzzy if-

then rule is in the form: ifx is A then y is B, where A and B are linguistic values. Often "x

is A" is called the antecedent or premise whereas "y is B" is called the consequence or

conclusion. Traditionally, according to the modus ponens, we can inference the truth of a

proposition B from the truth of A and the implication A —» B. As a matter of fact, modus

ponens is usually used in an approximate manner.

For the single rule with single antecedent, the concept of inference is illustrated as

11

Premise 1 (fact): x is A

Premise 2 (rule): if x is A then y is B,

Consequence(conclusion): y is B ,

where A is close to A and B is close to B.

And the membership function of the resulting B is defined as:

Hw (y) = max x min[//A- (x), flR (x,y)] = wx \/iA, (x) A JUR (X, y)]

= vx[juA.(x)AjuA(x,y)]AjuB(y), (2.8)

where A and v denote max and min, respectively.

For single rule with multiple antecedents, the inference procedure is illustrated as

Premise 1 (fact): x is A and y is B

Premise 2 (rule): if x is A and y is B then z is C,

Consequence(conclusion): z is C .

And the membership function of the resulting C is expressed as:

juc iz) = vXiy[#A'(*) A^fl.(y)] A[{IA(X) AjuB(y) A / / C (Z)]

= K [/ f ^ W f 1 W] } A (v
y [/*,•(y)A//a(y)]}A//c(z)

1 « ' * v '

= (fi^Affl2)A//c(z), (2.9)

where «, A ftj2 is called the firing strength, and represents the degree to which the

antecedent part of the rule is met. Again, A and v denote max and min, respectively.

A graphic interpretations of the single rule with single antecedent and of the

single rule with multiple antecedents are shown in Fig. 2.2 and Fig.2.3, separately.

12

H

A

->x

Fig. 2.2 Graphic interpretation of fuzzy reasoning

using the max-min composition, from[5][6].

A A' j.

\l \
\: ';

ifliBWiiiiBtote^—>x

f B B'

/ \

1 i

. . . .^a^^^rot^. .. "V - .r. „„ ^ y

M

JV

Fig. 2.3 Approximate reasoning for multiple antecedents from [5] [6]

2.1.4 Fuzzy inference systems

The basic computing framework of a fuzzy inference system is composed of a

rule base consisting of fuzzy rules, a reasoning mechanism performing the inference

procedure based on the rules and given facts to draw a reasonable conclusion, a

database/dictionary defining the membership function employed in the fuzzy rules, and a

fuzzification interface that converts the crisp data inputs into a fuzzy set. Since the

outputs produced by the basic inference system are almost always fuzzy sets, we usually

need to extract a crisp value best representing a fuzzy set by a defuzzification method.

Therefore, the inference system should include a defuzzification interfac t that converts

13

input
N

' •
fuzzification

interface

knowledge base

database

(fuzzy)

Rule base

i r
''

defuzzification
interface

1 1

(fuzzy)

output

premise part

Fig. 2.4 Fuzzy inference system [5] [6]

consequent part

A

±—

Tsukamoto
K_

~\ r

Mamdani Sugeno

Zj = ax + by + c

z2 = px + qy + r

z2 Z Z

multiplication weighted weighted _

(ormin) averageM rnax^ average H

w^ + wYz2

z centroid of area

Fig. 2.5 Normally applied fuzzy if-then rules and fuzzy inference mechanisms, from[5] [6]

the resulting consequents into a crisp output. A fuzzy inference system is shown in Fig.

2.4.

Normally fuzzy inference systems can be split into the three classes shown in

Fig.2.5. The main differences between these them lie in the consequences of their fuzzy

rules, and aggregation and defuzzification procedures.

The Mamdani fuzzy model [19] was the very first fuzzy controller. The problem

was to control a steam engine and boiler combination by aids of a set of linguistic control

14

rules generated by experienced human operators. Since the plant takes only crisp values

as inputs, a defuzzifier must be used to convert a fuzzy set to a crisp value. There are

numerous methods for defuzzing a fuzzy set A of a universe of discourse Z; the most

common defuzzification strategy is to adopt the centroid of the area under the fuzzy set

curve. The computation of the centroid of an area is generally expensive, as it needs

integration across a varying function. The centroid of an area, zC0A, is represented by

ZCOA = \ , u . (2.10)

z

where juA (z)is the aggregated output membership function.

The Sugeno fuzzy model [20] [21] [22], also known as TSK fuzzy model, differs in

the form of the rule consequents. A TSK fuzzy rule has the form

ifx is A and y is B then z = f(x,y),

where A and B are fuzzy sets in the antecedent and z- f(x, y) is a crisp function in the

consequent, f(x, y) can be any function as long as it can completely represent the output

of the model within the fuzzy region specified by the antecedent of the rule; polynomial

functions are commonly used. When f(x, y) is a 1st order polynomial, the fuzzy

inference system is called a first-order Sugeno fuzzy model. If f(x,y) is constant it is a

zero-order model. The output level zt of each rule is weighted by the firing strength w, of

the rule. The final output is the weighted average of all rule outputs, denoted as

N

z = ^-N , (2.11)

15

where z; is a Is order polynomial.

In the Tsukamoto fuzzy model [23], the consequent of each fuzzy if-then rule is

represented by a fuzzy set with a monotonic MF. The inferred output of each rule is

defined as a crisp value induced by the rule's firing strength. The overall output is the

weighted average of each rule's output, represented as

N

z = ^N , (2.12)

where z;is a crisp value induced by the rule's firing strength. However, the Tsukamoto

fuzzy model is not used very often; the Mamdani or Sugeno fuzzy models are vastly more

popular.

2.2 ANFIS review

ANFIS [5] [6] is a type of adaptive network that is functionally equivalent to a

TSK fuzzy inference system. Each node represents a processing unit and the directed

links indicate the flow direction of signals between the connected nodes. Some of nodes

are adaptive, which means that the outputs of the nodes are dependent on modifiable

parameters. By adjusting the parameters of just one single node in the first layer, changes

will propagate towards further nodes; as a result, the behavior of the whole network will

be changed. The links in this adaptive network are un-weighted. Based on the type of

connections, adaptive networks are normally classified into two categories: feedforward

(no feedback links) and recurrent (at least one directed cycle). ANFIS is a feedforward

type network, having no links between nodes in the same layer.

16

The parameters of ANFIS are distributed into its nodes, so each node has its own

set of local parameters. The union of all of the local parameters forms the adaptive

network's overall parameter set. If a node's parameter set is not the empty set, then its

node function can be modified through the adaptive parameters, and this kind of adaptive

node is represented graphically using a square. On the other hand, if there is no parameter

set pertaining to the node, this fixed node is indicated graphically using a circle (see

Fig.2.6). ANFIS contains 5 different layers, where nodes in the same layer have the same

node function and nodes in different layers have different node functions. Two of the

layers (1 and 4) have adaptive (parameterized) nodes. The parameters in layer 1 are

known as the premise parameters and the parameters in layer 4 are called the consequent

parameters.

ANFIS aims to achieve a desired nonlinear mapping that is defined by a data set

made up of desired input-output pairs of a target system to be modeled. The procedures

used to regulate the node parameters to improve ANFIS's performance are referred to as

the hybrid learning algorithm. This algorithm combines the gradient descent and least

squares methods for identification of parameters.

ANFIS uses offline or "batch" learning. Each epoch consists of a forward pass

and a backward pass. In the forward pass, after an input is presented, the node outputs

are calculated starting from the first layer towards the right in the forward direction (see

Fig.2.6) until the consequent parameters in layer 4 are identified using a least-squares

method while the values of the premise parameters in layer 1 are fixed. After the

parameters of the polynomial in layer 4 are identified, the error measure for each training

data pair can be computed. The errors for each data pair are summed together, until all

17

Table 2 .3 Summary of the hybrid-learning rule used in ANFIS, from [5] [6]

Premise Parameters in layer 1

Consequent Parameters in layer 4

Signals

Forward pass

Fixed

Least-squares estimator

Node outputs

Backward pass

Gradient descent

Fixed

Error signals

A
\ 4

J v

/ N

A

\ x ,

1

^ ,

.

r
j

JC^\

V 7

V ;

layer 1

I

W./i + W2f2

•w, /, = plx+q2y + rl

1 \f H>, + W2

ft = p2x+q2y+r2 = w/, + wif2

(a)
layer 4

layer 3 layer 2

* * I * layer5

Fig. 2. 6 (a) Sugeno fuzzy reasoning (b) Equivalent ANFIS architecture, from [5][6]

training data pairs have been presented. In the backward pass, error signals propagate

backward from layer 5 towards layer 1, and the premise parameters are updated using the

gradient descent method while the consequent parameters are fixed. The gradient method

alone is slow to converge and it is prone to get trapped in local minima. The hybrid-

learning rule helps avoid this, and the hybrid algorithm also converges much faster since

18

the search space dimensions are reduced in comparison to the original steepest descent

method. Table 2.3 gives a summary of the hybrid-learning rule.

To demonstrate the ANFIS architecture, consider a two-input 1st order Sugeno

fuzzy model with 2 fuzzy if-then rules (shown in Fig. 2.6(a)), and the corresponding

equivalent ANFIS (shown in Fig. 2.6(b)). Note that the diagram indicates the node

connections in the forward direction in the forward pass of ANFIS. In the backward pass

of ANFIS, the directional links between the nodes are reversed.

For a first-order Sugeno fuzzy model, a common rule set with two fuzzy if-then

rules is the following:

If x is Ai and y is Bi then / , = pxx + qly + r1,

If x is A2 and y is B2 then f2 = p2x + q2y + r2.

2.2.1 ANFIS architecture

Layer 1: the node function of each node / (an adaptive node) in layer 1 is denoted

by

°u = MA, (*)> »" = L 2 , and Ou = /lB,_2 (?).»' = 3>4 • (2-13)

in which x is the input to the ith node, A, and Bt_2 are the linguistic labels (e.g. large,

small) with respect to this node function. Namely, Ou is the membership function grade

of a fuzzy set A (where A = Ai, A2, Bi or B2) and it indicates how much the given x

matches the quantifier A,. The membership function n is any appropriate parameterized

membership function such as the generalized bell function or Gaussian function (shown

below):

19

or

//A(x) = exp{-(^-)2} (2.15)

Trapezoidal or triangular-shaped membership functions are also common candidates for

node functions in layer 1. Parameters of the membership function in layer 1 are termed

premise parameters. As discussed, in the forward pass, the premise parameters are fixed.

Layer 2: Each node labeled IT in layer 2 is a fixed node, and its output is the

product of all incoming signals, and represents the firing strength of a fuzzy rule.

02./ = w, = MAl WMB, (y). 1 = 1.2. (2.16)

Layer 3: Each node labeled N in layer 3 is a fixed node that normalizes each

weight by the sum of all rules' firing degrees.

0Xi=^ = ~ - , 1 = 1,2. (2.17)

7=1

Layer 4: Each node in layer 4 is an adaptive node with node function:

OtJ = w,f, = w'l(.pix + qly + r,). (2.18)

where w, is the output of the 3rd layer, and the values pt, qt and rt are called the

consequent parameters. They are identified using a least squares method.

Layer 5: In this layer, there is only a single node, a fixed node labeled £, which

calculates the overall output as the sum of all incoming signals. This is the output of

ANFIS.

20

05,i = 2 > « / , = ^ - ^ - (2.19)

If the premise parameters are fixed in the forward pass, the overall output can be

expressed as a linear combination of the consequent parameters. The output of the above

network can be expressed as:

wl + w2 wl+ w2

f = wl(p1x + qly + rl) + wz(p2x + q2y + r2) (2.20)

f = (w1x)pl+(w1y)ql +(wl)rl +{w2x)p2+{w2y)q2 +(w2)r2,

which is linear in the consequent parameter.

To speed up parameter identification of the adaptive networks and avoid

convergence to local minima, here we describe a hybrid learning which integrate the

gradient method with least squares estimate.

2.2.2 Gradient descent method in hybrid learning algorithm

The central part of the gradient descent [5] [6] for ANFIS is to calculate the

gradient vector. The gradient vector is the derivative of an error measure with respect to

a parameter, which can be computed using the chain rule. This is referred to as the back-

propagation learning rule since it is calculated from the output towards the inputs. The

p th error measure Ep can be obtained from each training pair in our training data. The

target is to minimize the total error measure

* = X,V (2.21)

This can be realized by adjusting the parameters in the node functions. Before

calculating the gradient vector, the following relationship should be observed:

21

Change in parameter a => change in output of nodes containing parameter a => change

in network's outputs => change in error measure.

This means that the error measure can be minimized by adjusting the individual

parameters of the network. In other words, a small change in a parameter a may have a

high impact on the output of the node containing a . The basic concept in calculating the

gradient vector is to pass a form of derivative information starting from the output layer,

going backwards layer-by-layer until the input layer is reached. Note that there is an

important distinction between this 'ordered derivative' and the 'partial derivative'. The

partial derivative handles all of other input variables besides the one in question as

constants when differentiation is performed. This is not true for the ordered derivative.

The ordered derivative considers both direct and indirect paths that contribute to the

casual relationship.

We assume that ANFIS has L layers, and its Zth layer has N(l) nodes. Then the

output and function of node i [i = 1,...,JV(/)] in lay /can be represented as xu and /,,.,

respectively. Due to the node output associated with its upcoming signals and its own

parameter set, xhi is written as follows:

Xl,i ~ Jl.i W-1,1 >" 'Xl-l,N(l-l) ta^t>,C---j , (2.22)

where a, b, c, etc. are the parameters corresponding to this node.

Suppose that there are P entries in the given training data, the error measure for

the pth((l < p < P) entry of training data entry can be defined as the sum of squared error,

in symbols :

EP = 2L\dk-xUk)
*-i , (2.23)

22

where dk is the fcth component of the pth target output vector, and xLk is the

Mi component of actual output vector generated by the current pth input vector.

Therefore, the overall error measure is written as: E = V E„.

In order to perform a learning procedure based on the gradient descent of E in the

whole parameter set, firstly, we need to compute the error rate dEp/dxfor the

pth training data and for each node output x. The error rate for the output node at

(L,/)can be derived easily from Eq. (2.23).

d+En dEn , x

£u = " ^ = T ^ = -2(4 " *,„•) • (2-24)

The error rate at the internal node (/,z)can be calculated by the chain rule:

_° ^p _ ±1 ° n
P Qfi+um _ vV QJi+un ms\

"*/,,• m=l C 'X;+l,m VXl,i m=l " * / , i

where 1 < / < L -1. That means the error rate in the internal node can be denoted as a

linear sum of the error rates of the nodes on the next layer.

The gradient vector is defined as the derivative of the error measure with respect

to each parameter, so we have to apply the chain rule again to find the gradient vector. If

a is a parameter of the i th node at layer/, we have

d+E„ d+Epdfn dfu

L = 1 •"-' = e . •"•' ; (2.26)

da dxti da ''' da '

The derivative of the overall error measure E with respect to a :

at the same time, the generic parameter a can be updated below:

23

Aa = -Tj—
6a

where 77 is a learning rate that can be written as:

k

(2.28)

77 = (2.29)

in which A: is a step size, which can affect the convergence rate.

As a matter of fact, ANFIS use the batch learning mode(also called as off-line

learning), to update the parameter a based on the formula (2.27) and the update action

is performed only after the whole training data set has been offered, i.e., after each epoch.

The following example illustrates how to map these generic equations down to the

specific equations of ANFIS, (consider a two-input 1st order Sugeno fuzzy model witfi 2

fuzzy if-then rules, with generalized bell membership functions). The error-propagation

network of Fig. 2.6 (b) is constructed in Fig.2.7, where the output of node i is the error

signal of this node in the original adaptive network. Then we have the following:

/©* -5

Fig. 2.7 Error propagation model of Fig.2.6 (b)

24

dE. oE I —
en = —-2- = -2{dn -xn) = - 2 dn - £ w i f i ,i = 1,2,

axu v <• y

dx
^ L = ^ 1 L = , ^LL =

2>/«
dxn 3x10

 udxl0 d(w2f2)
J _ = en,i = l,2,

£n =
J_EjLJ_EJLtf1L = e Vn =

X*</,
^P_-ZZ±_^JVL-£ HiL-£

 v !_ J =c i = l2
3x9 dxn dx9 dx9 <Hwi/J

_ a ^ _ a ^ ^ _ 3/ . di^2f2)_
fc8 ~ -\ ~ -\ -> — fc10 -w — 10 ~.t~ \ ~ 10J2 ~CUJ2'

dx8 dx10 dx8 dx8 aywi)

e .^_.KM9_.eK = e^M=ef=ef
c 7 -> -1 ^ C 9 -> c 9 -./— \ c 9 . / l c l l 7 l '

dx7 dx9 dx7 dx7 o\Wi)
f w2 ^ w,

• + £n
wl+w2 _ dEp _ dEp y , | ae, a/7 _ a/8 { a/7 _ \ W l + w2 <

3x6 3x8 dx6 dx7 3x6 3x6 3x6 a(w2) 3(w2)

= £„ ! \-£ !—
fo+wj2 7 (w,+w2)

\2' f H / \2 '
(w,+w2)

£< =
3x5 3x8 dx5 3x7 3x5 3x5 3x5 d ^) d(w>j)

wl+w2

f w. A

H>! +W 2 J

5 " A 5

w2fi-w2f2

£A =

(W! + W2 J (,Wi + W2) (Wl +W2)

dEpV6 P y 6 _, a K ^) _
= - ^ — ^ — = ^fi T — - £e. —^7 r~ -9x4 9x6 dx %hJ 6A*A, '

— -v ~ -, -̂ — fcS -̂ — fcS -W " 1 —

£0 =

3x3 dx5 dx3 3x3 3(//B j '

dE
P JEP y« = y6 = g 6

a ^ J = . r ^ .
3x2 3x6 3x2

 63x2 3(//,)
* u ^ ^ f n2 ,

3xj 3x5 3xx
 5 3xj 3^//^) ' '

For the bell MF, juA(x) = —r——r- then the derivatives of an MF with
1 + Wff

respect to parameters are listed as follows:

25

da, a.
i i

dMA =

dc,

2 In
X — C; L(l-//J,if**c,

0,
if X = C;

2b,

x — c,
•MA<y-f*A\ftx*cL

0,
if x = c,

(2.30)

The gradient for the parameters a^b^c^in node 1, the parameters a2,b2,c2in node

2, the parameters a3,Z?3,c3 in node 3, and the parameters a4,&4,c4in node 4 of the layer 1

can be obtained directly according to Eq. (2.30). Thus, for the node 1, we have

2ftln x-c,

0,

3cj 3x, dcx 3cj 3(c!)

For the node 2, we have

oa2 o(a2J «[

/M, (l - /M, l i f x * c i .
if x = c,

—^ejiA-iiAftx*^
x-c,

0,
if x = c,

da2 dx2 da2

a£,=
a£pfc=£,fc=f.

3(ftJ_
db, dx, db~, db-, v 2 i / ^ 2

d(b2)
2el In x - c , ki-Ajtf**^-

o,
if x = c,

3c2 3x2 3c2 3c2 3(c2)

For the node 3, we have

lb. '2-e2juAl-MAtfx*c2

0, if x = c.

-i — -> -. ~ c 3 -\ — c 3 -,/• \ — c 3 J"B, V1 i"fl, / 3a3 3x3 3a3
 J 3a3 3(a3)

db3 3x3 db3 db3 d(b3)
2e3 In y-c3

0,
i f y = c3.

26

• " • • a y 3c, 3x, dc
- = P — ^ = P •

dc.

2h

y-c
'2-e3juBl{l-MB}ify*c3

0,
if y = c3_

For the node 4, we have
BEp_dEp 3/4 _ 3/4 _ 3 f c J 2fe4 / x
3 _ ~ :».. 3 ~ _ f c ^ „ - f c 4 ->/• \ ~ f c 4 „ MB2\

L MB2)> da4 3x4 da4 da4 a(«4) ^

db4 dx4 db. ydb. 3fe)
2f4ln y - ^ 4

i f y = c 4 .

dEP_dEP
dcA dx4 dc

a / 4 _ A a / 4 _ g 4
a ^) _

3c, 3c, 3(c)

2fe
y - ^

-£4juB2(\-[iB2\tf y*c4

o, if y = c4

And then, the adaptive parameters can be updated using Eqs. (2.27), (2.28), (2.29).

2.3 Complex fuzzy theory review

When fuzzy sets were proposed in 1965 [12], a lot of researchers criticized and

thought they had no practical value. Starting from that time, the application field of fuzzy

logic has grown tremendously. The unique properties of fuzzy logic are capable of

expressing subjective or linguistic knowledge so that fuzzy logic is mainly applied to

simulate human decision making process. Mathematically, fuzzy sets are an extension of

dual valued logic, extending the possible values of the membership function from {0, 1}

to the unit interval [0, 1]. One of the most famous early applications of fuzzy logic is that

of the Sendai Subway system in Sendai, Japan. This control of the Nanboku line,

developed by Hitachi, used a fuzzy controller to run the train all day long. The fuzzy

system controls acceleration, deceleration, and breaking of the train. Since its

introduction, it not only reduced energy consumption by 10%, but the passengers hardly

notice now when the train is changing its velocity. In the past neither conventional, nor

human control could have achieved such performance [100]. A type-2 fuzzy set maps

elements in a crisp domain to type-1 fuzzy numbers ranged from 0 tol. Since the value of

27

each point in a type-2 fuzzy set is given as a function, type-2 fuzzy sets are three-

dimensional. After combining traditional fuzzy set with complex numbers, a novel

complex fuzzy set characterized by complex-valued membership function is developed.

This idea has resulted in the development of complex fuzzy sets [2] and complex fuzzy

logic [1][3]. As suggested in [1], the complex fuzzy sets might be an appropriate model

for "approximately periodic" phenomena since the complex fuzzy sets might be

characterized by the sine function presented as a possible candidate in [1]. One of

examples of these "approximately periodic" patterns given in [1] is that of traffic

congestion happened in the major city. In the morning, there is heavy traffic in one

direction while working people are rushed to work. The same thing occurs in the opposite

direction when they go home from work. In between, traffic is lighter, and at night, the

roads are nearly empty. Although this behaviour repeats from one day to the next, it is

only approximately periodic since it never repeats itself exactly.

Complex fuzzy sets are different from the fuzzy complex numbers developed by

Buckley in [25], [26] and [27]. A fuzzy complex number as developed firstly in [25] is a

type-1 fuzzy set, whose members are elements of the complex plane (i.e. a fuzzy subset

of the complex numbers). The differentiation and integration of fuzzy complex numbers

was discussed in [26] and [27], respectively. Fuzzy complex numbers were employed in

the solution of fuzzy relational equations in [28] and [29]. In [102], a complex fuzzy set

was defined as a membership function mapping the complex plane into [0 , l]x[0 , l] ; this

is very close to the complex fuzzy sets in [2], and quite similar to the formulation in

[103]. Nguyen et al. investigated this literature and applied an optimization method to

choose the best representation for fuzzy complex numbers in [104].

28

2.3.1 Complex fuzzy sets
A complex fuzzy set S characterized by a membership function jus (x) is defined

on a universe of discourse U, in which any element belonging to U is mapped to a

complex-valued grade of membership in the set S . The values from jus (x) correspond to

the points in the unit disc in the complex plane and are represented in the form of

Ms(x) = rs(x)-eJ">M, j = ^ . (2.31)

where rs(x) and 0)s(x) are both real valued and rs(x)s [0,1]. The complex fuzzy set S

can be represented as the set of ordered pairs

S = {(x,/is{x))\xeU}. (2.32)

From equation (2.31), it is obvious that complex grades of membership consist of

an amplitude term rs{x)md a phase term%(.*). Since complex fuzzy sets are extensions

of ordinary fuzzy sets, it should be possible to express any ordinary complex set in

complex form by setting the amplitude term and the phase term 0)s (x) = 0 for all x.

Without considering the phase term, the complex fuzzy set is converted into a traditional

fuzzy set.

From the viewpoint of the amplitude term, it is apparent that the amplitude term is

the same as the real-valued grade of membership, lying in the range of [0,1], and it may

be regarded as representing the degree to which xis a member of the complex fuzzy

set 5 . On the contrary, the phase term is a totally innovative parameter of membership,

by which the complex fuzzy sets are distinguished from the ordinary fuzzy sets, and it is

the phase term that supplies the framework of complex fuzzy logic with its unique

properties and makes complex fuzzy logic differ from the conventional fuzzy logic. The

29

phase term allows for a new type of interaction to occur between membership functions.

Complex fuzzy membership functions can be viewed as a wave, where the phase term

allows them to constructively or destructively interfere with one another using a novel

form of set aggregation termed vector aggregation [3].

2.3.2 Set theoretic operations

The derivation of complex fuzzy logic is basis on several mathematical properties

of complex fuzzy sets, which include basic set theoretic operations such as complex

fuzzy union and intersection, complex fuzzy relations and their composition, and a novel

form of set aggregation-vector aggregation. The original definitions in [2] are described

below.

Complex fuzzy complement:

The traditional fuzzy complement function c must satisfy the two following

axioms:

1. c(0) = 1, and c(l) = 0 (boundary conditions)

2. VJC, y e [0,1], if x < y, then c(x) > c(y) (monotonicity)

It is also desirable for c to be continuous and involutive, c(c(x)) = x. There are

three popular complement operations, the standard fuzzy complement, the step threshold

complement and the Sugeno class complement.

Complex fuzzy union:

The set of axioms of traditional fuzzy set theoretic operations could not directly

transplanted to that of complex fuzzy sets due to no closure for complex fuzzy sets while using

the algebraic sum. However, the amplitude term of a complex-valued grade of membership is

actually commensurate to the conventional real-valued grade of membership. Therefore, any

axiomatic requirements applied to conventional fuzzy union are supposed to be applicable to the

30

amplitude term of complex fuzzy union, in other words, similar to the complex fuzzy

complement, the complex fuzzy union u should apply traditional fuzzy unions to the

amplitude term.

For juA(x) = rA(x)-eJt°AM and juB(x) = rB(x)-eja>sM, the membership union AuB is

represented as:

MAUBW = [rAx)xrB(xy\'eJ"*»ix\ (2.33)

Now, the issue to resolve is how to obtain 0)A[JB. Here, we could not simply

abandon the union operator for the phase term as we did in the complement operator. In

the process of using the complex fuzzy union, the form of deriving the phase term of

Al jB i s dependent on the practical applications. That means, various applications of

complex fuzzy union may need completely different form to calculate the phase

tCTmo)A{jB. The authors [2] [3] present several different possibilities in the paper:

a) Sum: coAUB =a)A+coB (2.34)

b) Max: eoA[iB = max(a)A, coB) (2.35)

c) Min: ct)AUB = min(0)A, 0)B) (2.36)

d) Winner take all: coA[jB - (OA if rA > rB or 0)AUB = Q)B if rB > rA (2.37)

e) Weighted average: toAUB = r ^ + r ^ B (2.38)
rA+rB

f) Average: Q)Al)B =
 m*™* (2.39)

g) Difference: 0)AUB =coA-coB (2.40)

Complex fuzzy intersection

31

The operation of complex fuzzy intersection is almost identical to that of complex

fuzzy union. The traditional fuzzy axioms are used directly in the derivation of the

amplitude terms, while treatment of the membership phase 6)AriB is almost completely

application dependant. The operation of complex fuzzy intersection can be specified by:

/ W (*) = [rJx)xrB(x)] V < ^ W , (2.41)

and 0)A(]B is application dependant and can be chosen from the same list above for the

union (see Eqs. (2.34)~(2.40)).

From the set operations above, the technique employed for defining the complex

fuzzy complement, union and intersection was to treat the magnitude and phase of a

complex number as separate entities; these operations are defined only based on the

amplitude and the phase term is regarded as an entirely relative quantity, and it has a

lower impact on the set theoretic operations. This idea was tested and formalized as

rotational in variance in [1]. It was demonstrated that even under the more general criteria

of rotational invariance, entirely disregarding the phase may limit the possible choices of

the set-theoretic operations. More specifically, it was demonstrated that intuitively

appealing choices for the complex fuzzy complement (negation) and the complex fuzzy

intersection (the algebraic product) are exclude from consideration. Instead, the author in

[1] suggested that the amplitude and phase of membership function should be coupled

tightly in complex fuzzy set. Sine and cosine functions were also suggested as basic

complex fuzzy membership functions.

2.3.3 Vector aggregation
Conventional aggregation operations on fuzzy sets provide a tool for

incorporating several sets in order to generate a single fuzzy set, while vector aggregation

32

[2] provides a specially useful methods for performing complex fuzzy sets, given as

follows:

Let Al,A2,---,An be complex fuzzy sets on U, vector aggregation on Al,A2,---,An is

specified by a function v

v : {a|a e C, \a\ < 1}" -> {&|fc e C, |fc| < l} (2.42)

The function v generates an aggregation fuzzy set A by manipulating complex

fuzzy sets Al,A2,---,An for each xeU . For all xeU, vmay be represented by

MA M = vfan, (4 ^ (4 • • •. /'A. M) = S W<>"A W (243)

with w(e {ala e C,|o| < ljfor all i ,and ^ " |w(.| = 1.

From Eq. (2.43), vector aggregation generates a weighted sum of the grades of

membership of x in sets Ax,A2,---,An . If the phases of the different grades of

membership juA, (x) are the same, the amplitude of the sum will be maximized. Otherwise,

destructive inference will happen, in this case, the amplitude of the sum will become

much smaller than the separate amplitudes of its arguments. Vector aggregation allows

the aggregation of complex fuzzy sets in a manner that incorporates phase considerations.

2.3.4 Complex fuzzy relations

Complex fuzzy relations [2] [3] and compositions affords the basis for the

derivation of the complex fuzzy logic, they are summarized below. Let U andV to be two

crisp sets. A complex fuzzy relation R(U, V) is a complex fuzzy subset of the product

spaced xV. As usual, R(U,V) can be denoted as the set of ordered pairs

R(U,V) = {((x, y),juR(x, y))\(x, y)zU xv} (2.44)

33

The complex-valued membership function uR (x) can be represented in the form of

r(x)-eJt0^x\j = V- l , r(x)is the amplitude of the grade of membership with r(x)e [0,l],

and ao(x) is the phase of the grade of membership, both of which are real-valued.

Compositions of complex fuzzy relations on the same product space

The compositions of complex fuzzy relations on the same product space can be

manipulated based on the complex fuzzy set theoretic operations. Let

R(U,V) &ndS(U, V)be complex fuzzy relations, whose compositions are operated as:

a) The complex fuzzy intersection of R(U,V) and S(U,V) , represented

by R n S(U, V), is characterized by the membership function

MRns(x,y)=MR(x,y)*Ms(x>y) (2-45)

b) The complex fuzzy union of R(U,V)andS(U,V), represented byRvS(U,V),

is characterized by the membership function

MRus(x>y) = MR(x,y)®Ms(x>y) (2-46)

where * and © refers to the set theoretic operations of complex fuzzy intersection and

union.

Compositions of complex fuzzy relations on different product spaces

Let the membership functions of relations R(U,V),S(V,W)and the composition

of these relations R o s(u, w), be

uR(x,y) = rR{x,y)-eia,*(*») (2.47)

us(y,z) = rs{y,z)-e^M (2.48)

« , s («) = f K («) ^ i % i W (2-49)

34

Inputs j
Fuzzification

Module
Complex fuzzy
inference engine

t i

Defuzzification
module

[Output

Complex fuzzy
Rule base

Fig. 2.8 General scheme of a complex fuzzy logic system [3]

The amplitude term may be computed by using the sup-star composition and the phase

term can be calculated using Eqs. (2.34)~(2.40) and the sup operation.

2.3.5 Complex fuzzy logic

Complex fuzzy logic [3] uses rules constructed with complex fuzzy sets to

develop a complex fuzzy logic system shown in Fig. 2.8. As can be seen, a complex

fuzzy system has the same architecture as a type-1 fuzzy system, but substitutes complex

fuzzy sets for type-1 fuzzy sets.

The complex fuzzy implication relation is characterized by a complex-valued

membership function and is expressed as JUA_>B (x, y). This membership function contains

an amplitude term rA_>B (x, y) and a phase term coA_+B (x, y). The amplitude term is

equivalent to a real-valued grade of membership, and specifies the degree of truth of the

implication relation. The phase term signifies the phase associated with the implication.

Although the phase term is of little consequence by itself, it becomes important parameter

where several implication relations are combined at the same time, as occurs in complex

fuzzy systems.

The implication function employed in complex fuzzy logic is the product

implication

MA^B{x,y) = MA(x)-nB{y). (2.50)

The amplitude and phase term are calculated using

35

rA^B(x,y) = rA(x)-rB(y), (2.51)

and

a)A^B(x,y) = coA(x) + toB(y). (2.52)

Complex fuzzy implication can be used to construct complex fuzzy inference

rules, in the form of Generalized Modus Ponens.

Premise 1:"X is A*";

Premise 2: "IF X is A, THEN Y is B".

Consequence: "Y is B*."

where the sets A,B ,A* and B*are all complex fuzzy sets.

The amplitude and phase term of the membership function of B* are given by:

rB» (y) = sup[rA, (x) ® rA^B (x, y)] = sup[rA, (x) ® (rA (x) • rB (y))] (2.53)

coB, (y) = f[g(G)A* (x), (OA^B (x, y))] = f[g(coA (x), (eoA (x) + Q)B (y)))] (2.54)

where g refers to any function utilized to compute the intersection of two membership

phases, see Eqs. (2.34)~(2.40), and / is the membership phase equivalent of the sup

operation.

Throughout section 2.3, we need to clearly indicate that these are Ramot's ideas

[2] [3], not ours. Our ideas often differ, where the magnitudes and phases of complex

fuzzy sets are coupled tightly.

2.4 Chaotic Simulated Annealing Algorithm

Several chaotic simulated annealing algorithms solving unconstrained nonlinear

problems have recently drawn much attention [11],[30]-[41]. In simulated annealing

(SA)[42]-[48], the value of an objective to be minimized treated like heat energy in a

36

thermodynamic system. At high temperatures, SA allows function evaluations at faraway

points and it is likely to accept a new point with higher energy. The disadvantage of SA

lies in the slowly falling temperature process and dependence on the random number

generator. Chaotic dynamical systems have a specific property, sensitivity to initial

conditions, that means that each point in such a system is arbitrarily closely approximated

by other points with significantly different future trajectories [49]-[51]. Thus, an

arbitrarily small pertubation of the current trajectory of the chaotic map may result in

significantly different future behavior, which can be applied to SA to allow algorithm to

jump out of the local convergence. A transiently chaotic neural network (TCNN) with

richer and more flexible dynamics [30] [32] was proposed to solve combinatorial

optimization problems by introducing simulated annealing to Hopfield neural network

(HNN) [52] [53]. Nonlinear dynamics approach [31] [54] used an additive chaotic force

for determining the global minimum of a continuous, unconstrained or bound-constrained

cost function. Chaotic simulated annealing (CSA) algorithm [11] introduced the concepts

of chaotic initialization and chaotic sequences to SA.

Compared with traditional methods for optimization, hybridizing chaotic maps

with derivative-free optimization algorithms is in its infancy, and so we will begin with a

review of chaotic maps. In mathematics and physics, many one-dimensional maps

exhibit sensitivity to initial conditions, with small changes in initial conditions leading to

large changes in the long-term outcome (popularly known as the "butterfly effect"). Due

to this sensitivity, the behavior of nonlinear chaotic maps seems to be random, as any

measurement error in initial conditions are magnified exponentially through time.

37

However, these maps are deterministic, analytical functions (hence the term

"deterministic chaos") [49].

2.4.1 The Logistic Map and Ulam-von Neumann Map

The Logistic differential equation in [50] was originally used by P.F. Verhulst

in 1845 to model the surplus growth of the population biomass of species in a limited

environment, such as food supply or disease, in which two casual effects are found:

reproduction and starvation. The former denotes the increase of population which is

proportional to the current population and the latter denotes a population decrease at a

rate proportional to the value obtained by taking the theoretical "carrying capacity" of the

environment less the current population. This differential equation is represented by

dx/dt - /Jx(l - x), (2.55)

and its corresponding difference equation, the logistic map, is written as

*n+i =juxn(l-xn), xne [0,1], (2.56)

where xn is a number between zero and one, and means the population at year n, and

hence xo represents the initial population (at year 0) ; ju is a positive number, known as

bifurcation parameter, and denotes a combined rate for reproduction and starvation. The

probability density function of the Logistic map is expressed as

P'(x)-^W^- (2'57)

In Fig.2.9 (a)-(f), we present several runs of the logistic map for different values of ii.

The map is iterated 200 times with the value of ju varying from 0.4 to 4 at different

initial values generated by a random number generator.

38

100

n
o so

(a) Stable, at // = 0.4, x = 0.242645 (b) Stable, at// = 2.4, x = 0.362045

0.8-

0.75-

0.7-

X„ 0.65 -

0.6-

0.55-

0.5-
0 50 100 150 200 0 50 100 150

n n

(c) Periodic, at// = 3.2,* = 0.490295 (d) Periodic, at// = 3.5,x = 0.787796

50 100 150 200

n
(e) chaotic, at// = 3.8,* = 0.0.556549 (f) Completely chaotic,

a t / /= 4.0,JC = 0.806564

Fig. 2.9 The logistic map for different values of //

Rather than continuing to describe the behavior of the logistic map for individual

values of ju, we present a more global view of this chaotic model through a bifurcation

diagram (Fig. 2.10), where //varies smoothly from 2.0 to 4.0. Mathematically, a

bifurcation occurs when the solution to a parameterized equation changes from being

unique to there being two distinct solutions, due to a smooth change in the parameter. In

39

this graph, the map is iterated 200 times at each of many intervening values of//, with

the first 100 values dropped out to ensure that only the long-term behavior is plotted [50].

In Fig. 2.10, the first bifurcation occurs at// = 3 . If a value of // greater than 3 is

chosen, the chaotic map becomes unstable, with higher values of ju leading to further

bifurcations or even to chaotic behavior. The logistic map is known to be chaotic for most

values of // between about 3.57 and 4.

In addition, this map also displays a great sensitivity to initial conditions. As

shown in Fig. 2.11, we choose // = 4.0, and select two very close initial values

xlfi = 0.654321, x20 = 0.654320. The map is then iterated 200 hundred times to generate

two sequences, {xlM}and{x2n},n = l,2,---,200. We calculate the difference of these two

sequences \xln -x2n\, and plot that difference in Fig.2.11. This figure demonstrates how

0 . 9 '

C , B '

0,7 •

0 , 6 '

. 0 , 5 '

0 . 4 '

0 . 3 -

0 .2 •

0.1 -

oJ

I I
'I:

••... ,.i
. - «
- . i

l
I , ;i

mil'
lii II III!'
iijij
ill!' jjiji

'III

11
I'll 111 11 lit!
Ill)

" i ! I |
, , , 51

Fig. 2.10 Bifurcation diagram of the logistic map, long-term values

of xn are plotted for 2 < / / < 4 [50].

U.4 -

-0.4

-0.6

-0.8-1

-1
150 200

Fig. 2.11 The sensitiveness of the logistic map to the initial condition at// = 4.0

40

tiny differences in initial conditions will be magnified through time in a chaotic map,

until they cover the entire codomain of the map.

From Figs. 2.10 and 2.11, it would seem that at ju = 4.0, the long-term behavior

of the logistic map will fill much of the interval [0,1]; this is true, but with a caveat: the

initial values must not be fixed points, which occur when xn+k = xn, where k denotes the

order of the fixed point. The fixed points of order 1 are the solutions to the polynomial

/(x) = 4x(l-x) = x. (2.58)

So the fixed points are Xj(1) = 0 andx^ = 0.75 . The fixed points of order two must meet

xn+2 = xn, and xn+2 - xn+l. Thus we have

Xn+2 = ^Xn+1 U — Xn+1)

= 4[4xn(l-xJ][l-4x„(l-xJ]

= 42x„(l-x„)[l-4xn(l-xn)] = x„, (2.59)

and

Xn+2 = 4 x „ + 1 (l - 0

= 4[4x„(l-xJ][l-4x„(l-xJ]

= [4*„(l-x„)]. (2.60)

So the fixed points of order two are x,<2) = 1 and x(
2

2) = 0.25 and

,2) = 5 + V 5 a n d , 2) = 5 - V 5 _

Similarly, the fixed points of order three are x,(3) = 0.5 and x2
2> = and

(2) _ 2-V3
Over order three, no more real valued fixed points exist. When we study

41

100 150 200

(a)AU = 5 + V5
(b)Atjc =

2+^3

Fig. 2.12 The logistic map for // = 4.0

the fixed points of the logistic map, an interesting thing happens for ju = 4.0, at different

initial value x = and x = (seen in Fig. 2.12). For Fig. (a) in Fig. 2.12, the

values of xn are supposed to be x • 5 + S
8

every two iterations , and for Fig. (b) in Fig.

2.12, the values of xn are supposed to be x - 0.75 after two iterations. However, the map

becomes unstable after iterating about 50 times since V3andv5 are irrational numbers

that cannot be represented by a digital computer. This is another instance of very small

differences in the initial value causing large differences in long-time behavior.

The probability density distribution of the Logistic map is not a uniform distribution; the

middle of the interval [0,1] is more sparsely populated than the ends. Table 2.3 shows a

distribution of the Logistic map by starting with a random value x0in the interval [0,1]

for // = 4.0 after iterating 100 times, 1000 times and 10000 times, separately. When we

develop a chaotic optimization algorithm, we need to take this special distribution into

consideration; one option is to compress the search space.

42

Table 2.4 Density distribution of the logistic map

Number of Iteration

100

1000

10000

0<x<0.3

37

374

3678

0.3<x<0.7

25

262

2620

0.7 < X < 1

38

364

3702

Ulam and von Neumann studied the chaotic behavior of the nonlinear self

mapping of the interval [-1,1] in 1947 [56], defined by

yn+i=l-ryn
2, ynz[-l,l], (2.61)

with probability density function

pf(y)=—r= (2.62)
x^l-y2

A bifurcation diagram of this map is presented in Fig. 2.13. Again, we plot a series of

values for yn as a function of r obtained by starting with a random value y0, iterating

200 times, and discarding the first 100 points. In this diagram the map fills much of the

interval [-1,1] at r = 2.

Fig. 2.13 Bifurcation diagram of the Ulam-von Neumann map, long-term values

of yn are plotted for 0.6 < r < 2.

43

Actually, the Ulam-von Neumann map is the conversion form of the Logistic map.

Let

y = 2x-l, (2.63)

and substitute into Eq. (2.61), the Ulam-von Neumann map is converted into the Logistic

map. Therefore, the Ulam-von Neumann has all chaotic behaviors which the Logistic

map possesses.

2.4.2 Existing chaotic simulated annealing methods

The Transiently Chaotic Neural Network (TCNN) [30] was created to overcome

the problem of local minima in Hopfield neural networks [45] [46]. TCNN introduces a

chaotic simulated annealing algorithm into the Hopfield neural network. Chaotic

dynamics are used in place of random variates to search for a global optimum point in

weight space; they are implemented via temporary feedback connections. Over time, the

chaotic dynamics are reduced and finally disappear during training, using a decreasing

bifurcation parameter that plays the role of the temperature parameter in the standard

simulated annealing algorithm. In other words, TCNN is gradually converted to the

traditional Hopfield neural network and converges to a stable equilibrium point. Unlike

stochastic simulated annealing, chaotic simulated annealing has completely deterministic

dynamics; this does imply that TCNN is not guaranteed to settle down to a global

minimum no matter how slowly the annealing parameter (self-coupling) is reduced [41].

A transiently chaotic neuron [30] is defined as:

* ' M =
1 + g - » w « <2-64)

(n }

\j=hj*i J

44

z,(f + l) = (l-£)z,(f) (2.66)

(i = l,...,n)

where yt [t) is the internal state of neuron i at time t,

My is connection weight from neuron j to neuron i, let 0)^ = Q)fi, 0)u - 0,

]T fi^. (?)+/,. = - ™% , xt (t) is the output of neuron i at time t,

E is the system error,

(3 is the damping factor of the time-dependent z, (t) (0 5 (3 S 1),

/, is the input bias of neuron i,

e is a "steepness" parameter of the neuron output (e >0),

a is a scaling parameter for the inputs (a > 0),

Zi {t) is the feedback connection weight or refractory strength (zt (0 - 0)-

Since the "temperature" zt{t) evolves with time according to z(.(f) = z(.(o)g*1" '̂,

Eq. (2.65) eventually shrinks to the continuous-time Hopfield neural network without

self-feedback connections, namely 0)u = 0 . With exponential damping of z(t), the

neuron outputx(t) gradually transitions from chaotic behavior to a fixed point through

reversed period-doubling bifurcations.

The nonlinear dynamics approach [31] is an additive chaotic forcing scheme for

solving optimization problems. The gradients of the global optimization problem are

viewed as a system of ordinary differential equations, a chaotic function is added, and the

45

entire system is then discretized to the Euler form. Normally, the gradients of a given cost

function /(x)can be treated as a system of ordinary differential equations:

%- = -f, i = l-..n (2.67)
at axi

with appropriate initial conditions:x;(f = 0) = x.0,z' = l,...,«.For global optimization

problems, Eq. (2.67) will have a few stable equilibrium points depending on the choice of

initial conditions. However, finding a set of the initial conditions guaranteeing an

approach to the equilibrium point corresponding to the global minimum of the given

objective function f(x) is of course difficult. The nonlinear dynamics approach is to

convert the system of equations to a dynamic system [54], expressed as

^ = -^- + kiC(t),i = l...n, (2.68)
dt oxi

where C(t) is the chaotic function, and the scalar kt controls the magnitude of added

chaos. The explicit Euler technique is then used to solve the set of Eq. (2.68). Thus, the

continuous-time dynamical system Eq. (2.68) is replaced by its equivalent discrete

dynamical system

x/+1 = x{ - h % ^ - + kiC
J,i = \...n, (2.69)

ox,

where /lis the step size constant, indices landj refer to the system variables and the

time step, respectively, and the logistic map, Lorenz or Rossler systems can be used as

the chaotic function. For example, the logistic map is represented as

c'm+i = 4 c m (l - C m) ; C y + 1 = C m - 0 . 5 ; - 0 . 5 < C ; + 1 < 0 . 5 . (2.70)

46

The scaling factor k controls the rate at which Eq. (2.69) is brought into the vicinity of the

global optimum. Plainly, this scalar is quite similar to the temperature variable in

simulated annealing; however, annealing was never considered in [31].

The Chaotic Simulated Annealing (CSA) algorithm [11] introduced two different

chaotic systems into the simulated annealing algorithm. The first chaotic

system is the well-known one-dimensional logistic map defined by

z t + 1 = / c t (l - z t) , z t e [0 , l] , * = 0,l,..., (2.71)

where zk is the value of the variable z at the Mi iteration.

The other chaotic system was developed for chaotic neurons [57][58], and consists of the

map

zk+1 =rfik- 2tanh(?zk)exp(-3zj;),k = 0,1,..., (2.72)

where zk is the internal state of the neuron, r\ is a damping factor of the nerve membrane

(0^T(Cl) and yis an adjustable parameter depending on the practical application.

The output of equation (2.71) and equation (2.72) are shown in Fig. 2.14. From Fig. 2.13,

the output of the one-dimensional logistic map is limited to the interval [0,1], while the

output of chaotic neuron is not. These maps were used to replace the random number

generators in a standard simulated annealing algorithm. The algorithm was first proposed

to sample the input space and find a near optimal solution x to an objective function /(•)

to be minimized. Similar to simulated annealing, an objective function /(•) is analogous

to the energy in a thermodynamic system, expressed as E = f(x), and the annealing

schedule specifies how rapidly the temperature T is lowered from high to low values. The

algorithm consists of three steps:

47

(a) (b)

Fig. 2.14 (a) Logistic mapping at , u=4,

(b) Chaotic neuron mapping at Z<F0.01, y=5, t|=0.9, fc=300 [11].

Step 1: Initialization.

Set the iteration count of chaotic system k to 0, and initialize the chaotic variable

z0ito generate the next chaotic variables zu, i = l,...,n by Eq. (2.71) or (2.72), /is the

index of the input vector x of the objective function, n is the length of input vector x.

The initial solution to the objective function /(•), x, = \xhl,xh2,...,xlnf, is produced by

the formulax1(=ai+(bi-ai)x.zu, i = l,...,n, where a, and fc, are the minimum and

maximum of the i th dimension of the input vector xl, separately. Set the temperature

T to a high starting value Tmm, and choose a minimum temperature T^ which stops

executing algorithm, and define the maximum iteration count Lroaxat each temperature.

Set the iteration count m to 1 at each temperature. Let x" = x,and / * = f[x")= f(x{),

where x* is the current best solution to the objective function, / * is the current minimum

value of the objective function at x= x".

Step 2: Search

48

while (r > 7 ^) do

(a) while {m^L^) do

(1) Generate a new solution to the objective function,ym = (;yml,ym2,...,;ym„)7'>

by ym,i =xm,i+ax(bi~ai)xZm,i ; a is a variable, which decreases by

a-axe~fi in each iteration, where /? is a constant between 0 and 1, A,, and

bt are the minimum and maximum of the i th dimension of the input vector

xmoithe objective function.

(2) Evaluate the change in energy level AE* = f(ym)- f*

andAE = f{ym)-f(xm).

(3) If AE* < 0 update the best solution x* - ym and the best value /* =/(**).

(4) If AE < 0 update current state with new state, xm+1 = ym.

AE

(5) If AE > 0 update current state with new state with probability e T .

(6) m=m+l.

End while

(b) ^max = Anax +d,m = 0, where d is a positive integer, which allows algorithm to

search for more feasible solutions.

(c) Decrease temperature Taccording to annealing schedule by formula T = SxT,

where 5 is a constant between 0 and 1.

end while

Step 3: Output the best solution x* and the best value /*.

49

CSA with Eq. (2.71) is called CSA1, and CSA with Eq. (2. 72) is named CSA2.

The disadvantage of CSA1 is that the next candidate solution to the objective function is

actually generated on a single side of the current optimum, not in the whole of the

neighborhood. This results in slower computation and has a high impact on the quality of

the approximate optimum point. The disadvantage of CSA2 is that the algorithm does not

make full use of each trial solution and is inefficient because the values of chaotic

sequences generated by Eq. (2. 72) exceed the range (-1,1), so that many trial solutions do

not satisfy the nonlinear constraint function.

2.5 Ant colony optimization

Ant colonies are a community. Despite the small size and limited intelligence of

each individual member of a colony, this highly organized society can accomplish

complex tasks, that could not be accomplished by a single ant. Ant colony optimization

(ACO) [8]-[10] is a metaheuristic algorithm derived from the observation of real ant's

foraging behavior. The first framework was presented by Marco Dorigo in his PhD thesis,

and is a probabilistic technique for solving computational problems, which can be

reduced to find good paths through graphs. Now ant colony optimization mehtod has

became one of the most succesful and widely recognized algorithmic techniques due to

its ability to find shortest paths.

In the real world, when ants start to seach for food, they wander at random. Once they

find food, they come back to their colony while laying down pheromone trails. If other

ants find such a path, they tend not to keep traveling randomly, but rather to follow the

trail instead, and the pheromone trails will be reinforced back and forth between the food

source and their colony. In other words, positive feedback through the pheromone trails

50

eventually leads to all ants following a single path. Over time, however, the pheromone

trail begins to evaporate, which decreases its attraction. The more time it takes for an ant

to find the food source and return again, the less pheromones remain on the path due to

evaporation. Compared to a long path, ants spend less time on a short path, keeping the

pheromone density high since the production rate of the pheromone on the path is almost

the same as its evaporation rate or larger. The advantage of ant colony optimization using

pheromone evaporation is to avoid convergence to a locally optimal solution. Assuming

that there were no evaporation at all, the paths selected by the first ants would be

excessively attractive to the following ones. In that case, the exploration of the solution

space would be limited, and thus the algorithm would probably not find the global

optimal solution. In the following, we will describe the implementation of the ACO

algorithm for function optimization problems.

2.5.1 Initialization

Define the number of the outer iterations, N _outer, and the number of the inner

iterations, N _ inner , the number for the feasible solution in the neighborhood,

N _ search, the number of the ant colony, M , evaporation coefficient, p, and the initial

neighborhood £>. of the optimization variables is defined by

Z ^ O . l x f o - a ,) , (2.73)

where a(,&(. are the lower and upper bounds of the optimization variables, and the

neighborhood D, tunes the step size for each variable of the objective function to

optimize.

51

At the beginning of the ACO algorithm, a group of trial solutions to the nonlinear

constraint objective function are randomly generated according to the equation

st=at + {bt-at)xr, {2.1 A)

where a ^ a r e the lower and upper bounds of the optimization variables, r is a random

number in the interval (0,1)- We select the best one satisfying the constraint functions as

the current optimal solution, Scurrmt. Similarly, another set of feasible solutions satisfying

the constraint requirements, an ant colony, are built randomly.

2.5.2 Update Probability

The algorithm explores the optimal solution based on the ant colony, in which the

probability of the ant /updated by the ant jdepends on the combination of two values:

the attractiveness rjy, expressed by heuristic values from the objective function and

indicating the priori desirability of that update; and the pheromone trail zv, indicating the

posteriori desirability of that update and how proficient it has been in the past to make

that particular update.

The update probability between the ant i and the ant j is defined as:

1% 7„>0
Pn=\ YS"7!* ,i = l,2,...,Af, ; = 1,2,...,M, (2.75)

i=\

0 77, < 0

where M is the number of the ant colony; Tjy is the difference of the values of the

objective function between the ant i and the ant j ; 77̂ is the difference of the values of

the objective function between the ant i and the ant k, and only the positive value of

52

the 77,* is chosen in the calculation; a and (5 are the user defined parameters, here we set

them to 1, separately.

If py > plmnsition, (Ptmmilion is called transition probability, which is set to 0.1 in the

algorithm), then the ant i is replaced by the ant j . Other wise, the N _ search new trial

solutions are generated in the neighborhood of the ant j to find a local optimal solution

according to Eq. (2.76):

Xm+1=Xm+Du,m = 1,2, ...N_ search, (2.76)

where u is a vector of random numbers in the range (-1,1), and Dis a matrix that controls

the step size distribution. If the value of the objective function of the ant i" is less than

that of the ant j , then the ant /will be replaced by the ant j . When all ants' impacts on

the ant i are evaluated, the pheromone trails are updated, until M ants build in parallel

their solutions. The update of the pheromone trail is achieved by:

Ti{t + l) = PTi{t) + ATi{t), (2.77)

M 1

ATi(t) = ^ - r ^ , j = l,2,...,M, (2.78)

where f{Xt) is the value of the objective function of the ant i which has been updated by

the ant j . Intuitively, the small function value will result in higher levels of pheromone

deposited on the paths. AT,(*) indicates the sum of the contributions of all ants to the ant

i. And p is pheromone evaporation rate.

Pheromone evaporation is an important concept in ACO, by means of which the

pheromone trail intensity on the components decrease over time. During executing the

53

algorithm, pheromone evaporation is required to avoid quickly converging to a sub-

optimal region. Here we set p to 0.7.

2.5.3 Output of Solutions

After M ants obtain in parallel their solutions, these solutions are compared with the

scunen, t 0 f m d t h e b e s t o n e and store as Scumm.

2.5.4 Adjustment of the Step Size
The exponential cooling scheme is used as the step size decrement rule, represented as:

Dk+l=vDk (2.79)

where v is set to 0.5 in the algorithm.

Repeat these procedures mentioned above until the termination criteria is satisfied.

2.6 Complex-valued neural networks

The ANCFIS architecture we propose is naturally a relative of the complex-valued neural

network (CVNN) architectures, which have been studied for over 15 years. CVNNs

generally accept complex-valued inputs and outputs, and their neuron weights and biases

may also be complex-valued. Previous CVNN models [61]-[65] have generalized the

Hopfield model, backpropagation and the perceptron learning rule to deal with complex

inputs. Noest [61] introduced an associative memory network with local variables

assuming one of q equidistant positions on the unit circle (g-state phasors) in the complex

plane. Leung and Haykin [63] extended real-valued backpropagation networks to

complex-valued backpropagation networks, for general radar signal processing and

communications problems in which a complex-valued representation of signals is

54

required. In [63], the neuron activation function is expressed as

yi: = l / (l = exp(-Vw ;.x.)) with complex variables, and the dynamics with partial

derivatives in real and imaginary parts are analyzed. Benvenuto & Piazza [64] considered

a CVNN whose activation is expressed separately in real and imaginary parts as

f(z) = sigmoid(Re(z)) + i sigmoidQm(z)), namely the real-imaginary -type activation

function, which can be regarded as one of the simplex extensions of a real sigmoid

activation function. Dynamics of CVNNs with real-imaginary-type activations were

analyzed when they are applied to complex-plane transform in [66] [67]. Kim & Adali

[68][69] discussed the characteristics of activation functions in details. Akira Hirose [70]

proposed a developmental learning architecture based on the complex-valued coherent

neural network. The input signal xm, output signal yn and weight 0)nm are all complex

numbers with amplitude and phase. The neural connection weight 0)nm was expressed

byl^Bml^pfr'^^mJ' where i = V - l , |<w„m|is the connection amplitude, Tnmis the delay

time and / is the carrier frequency which is used as the modulation parameter of the

behavioral mode, that means, if the parameter value of / is fixed, the behavioral mode is

also fixed. In the complex-valued coherent neural network, an amplitude-phase-type

neuron activation function is expressed by Atanh(gsn)exp[ifin], where A and gare real

numbers, snexp[ij3n] is the complex-valued input summation ^(Onmxm with amplitude
m

sn, phase J3n.

55

2.7 Complex-valued ANFIS

To date there has been only one attempt to develop an inductive learning architecture

using complex fuzzy sets. This architecture, named CANFIS [71] was used to handle

complex-valued input-output pairs, and to model a simple lead-lag compensator transfer

function of form k(l + TS)/(l + T's), where S = jco . Their architecture is a hybrid of

complex fuzzy sets that processes the output of a complex-valued single-layer neural

network. The real-valued adaptive parameters of the complex membership functions for

each rule were updated by a steepest descent algorithm, and the bias and weight

parameters of complex neurons were updated by a complex least square estimator. In this

work, the complex fuzzy sets follow the basic concept laid down by Ramot [2]: the phase

and magnitude of the complex fuzzy sets are treated as uncoupled quantities. In [1], we

argue that this undermines the fundamental nature of complex memberships. A complex

membership is not merely a two-dimensional membership function; it is a vector, a

unitary quantity. Without that coupling, it is natural to ask why complex fuzzy sets are

required; a two-dimensional membership function (i.e. for complex input/output values)

could simply be created from two type-1 fuzzy sets. That is precisely the approach taken

in an earlier architecture, also dubbed CANFIS, developed by Li and Jang [72]. This is a

straightforward extension of the ANFIS architecture to complex-valued inputs and

outputs. Each complex-valued input was divided into its real and imaginary components,

and two Gaussian type-1 fuzzy sets were associated with each component of each input.

For three complex inputs, this architecture leads to 64 rules. As in the original ANFIS

architecture, the consequent parameters were adjusted using the least-squares algorithm,

while the premise parameters were adjusted via gradient descent. The ANCFIS system

56

we propose in the current paper is the first, and so far only, complex fuzzy system that

couples phase and magnitude. As will be seen, this approach also results in a very

parsimonious network structure, an advantage not enjoyed by the architectures in [71]

and [72].

57

3 Complex fuzzy inference system

A|

A
" 2

A3

-A >\

-J

A
layer o layer 1 layer 2 layer 3 layer 4 layer 5 layer 6

Fig. 3.1 An ANCFIS architecture

Fig. 3.2 ANFIS architecture for a two-input Sugeno fuzzy model with four rules from [5]

We have developed the ANCFIS architecture to inductively determine a complex

fuzzy inferential rule base, and implement complex fuzzy inference. The signature

capability of a complex fuzzy inference system is rule interference, which is the property

of rules to reinforce or contradict each other (constructive or destructive interference).

This mechanism was first postulated in [3]; to the best of the author's knowledge,

ANCFIS represents the first realization of this mechanism in a machine-learning

algorithm. ANCFIS is a six-layer adaptive neural network, with adaptive nodes in layers

one and five. An example of the ANCFIS architecture, assuming one input and three

rules, is depicted in Fig. 3.1.

58

ANCFIS is based on the well-known ANFIS architecture developed by Jang [6],

with substantial modifications. A two-input ANFIS network with two fuzzy sets per input

is depicted in Fig. 3.2 for comparison. The most obvious modification is the addition of

an additional layer; this is the dot-product layer in ANCFIS, which implements the rule-

interference property. Less obvious, but crucial to the success of ANCFIS, is the use of

complex fuzzy sets in Layer 1, rather than type-1 fuzzy sets. ANCFIS is intended to be a

parsimonious, effective time series forecasting algorithm; this property flows directly

from the incorporation of complex fuzzy sets. The generalized modus ponens rule [4]

requires inputs to be compared to rule antecedents, to determine a. firing degree for each

rule. In the original ANFIS, a time series must be converted to orthogonal features

(usually a lagged representation) before it is presented to the network. The inputs are

then compared to type-1 fuzzy sets using the algebraic product. In ANCFIS, by contrast,

complex fuzzy sets may be directly compared to a segment of the time series, using the

complex-valued convolution operator (chosen after empirical comparisons against real-

valued convolution and the L2 norm in [73]). Thus, while ANFIS may need several

inputs to capture a segment of a univariate time series (leading to a combinatorial

explosion in the number of inferential rules), ANCFIS needs only a single input

consisting of an a window of the time series. ANCFIS thus side-steps the "curse of

dimensionality" by requiring a lower input dimensionality than conventional machine

learning algorithms. In multivariate time series, ANCFIS will require one input per

variate.

As in the original ANFIS architecture, ANCFIS uses the hybrid learning rule [6].

59

In the forward pass, the parameters of layer five (the linear consequent function) are

determined via least-squares optimization. In the backward pass, the parameters of layer

one (the antecedent complex fuzzy sets) must be determined. In ANFIS, this was

accomplished via gradient descent. However, the partial derivatives of the parameters of

the complex fuzzy sets in ANCFIS do not have a closed-form solution. Thus, we turn to a

derivative-free optimization technique to update the complex fuzzy set parameters of

layer one. The precise choice of technique to employ will be determined via empirical

comparison between ACO, CSA2, and our new VNCSA algorithm.

3.1 Complex Fuzzy Sets

As discussed, inputs in ANCFIS are windows of a time series, to be combined

with a complex fuzzy set via complex-valued convolution. We thus need to specify a

parameterized functional form for these complex fuzzy sets that is compatible with this

architecture, and will also contribute to our overall objective of time series forecasting.

Sinusoids are one obvious choice; we know that under very general conditions, an

essentially arbitrary function can be represented by a Fourier series, the sum of a series of

sine and cosine terms. The complex fuzzy sets we introduce in this paper are of the form

r(0) = dsin(a0 + b) + c (3.1)

where r(0)is the radial distance from the origin, and 6 is the counterclockwise angle from

the positive real axis (i.e. polar coordinates). The parameters {a,b,c,d} allow us to

manipulate the sine function; a increases or decreases the frequency of a sine wave, while

b introduces a phase shift, c shifts the sine wave, and d changes the amplitude of the wave.

Since the amplitude of complex fuzzy memberships are limited to the unit disc of the

60

Fig. 3.3 Visualization of a complex fuzzy set, rs (9) — sin(#)

complex plane, the membership function must satisfy two constraints: 0 < d + c < 1,

1 > c > d > 0 . Importantly, this membership function tightly couples the phase and

magnitude of the complex fuzzy set.

The membership function of our complex fuzzy set can be visualized by placing

the complex plane R x / at right angles to the universe of discourse U. The complex

membership function then forms a trajectory within the cylinder formed by projecting the

unit disc D along U. For example, consider the function rs(0) = dsin(a9 + b) + cwith

d = I,a = \,b = 0,c = Oin Fig. 3.3. An interesting property of this sine function is that, if

you project the trajectory of this complex fuzzy set back to the complex plane, you get a

circle of radius 0.5 centered at 0 + 0.5; . We have previously speculated [1] that

61

membership functions whose projections lead to closed contours (especially convex

contours) are likely to be an important class of complex fuzzy sets.

3.2 ANCFIS architecture

Layer 1; Premise parameters

The parameter set for layer 1 is {aj,bj,cj,di} , i = 1,2,-•-,n_CMF , where

n_CMF is the number of complex membership functions (henceforth, the premise

parameters). The first layer computes the convolution of each membership function and

the input vector. Firstly, the membership function is sampled by

rk(9k) = ds\n(a9k + b) + c , (3.2)

0k = — (k + iteration_count) , (3.3)

n

where n is the length of input vector, and k represents the element index of the complex

samples, k = 1,2,..., n . iteration _ count is an index on the training data patterns. Then the

sampled points are transformed from polar to rectangular coordinates using the well-

known transforms

xk=rkcos(0k), (3.4)

yk =rksin(0k). (3.5)

These complex-valued samples are convolved with the original real-valued input

vector. If the functions involved in convolution are continuous, the convolution is an

integral that represents the amount of overlap of one function as it is shifted over another

function. The reader will notice that the input vector presented to the ANCFIS and the

62

sampled points generated from the complex membership function via Eqs. (3.2), (3.3),

(3.4), (3.5) are both discrete time series, not continuous functions. Therefore, in this case,

the convolution is a sum instead of an integral. Let / represents the input vector, and

g represents sampled points vector, m = length(f), and n = length(g), then h is the

vector of the length m + n-\, whose k th element is

h{k) = Yf(Mk + l-J)> (3-6)
j

g(k + \-j) = xM_j + iyM_j = rM_. cos(0t+w) + irk+1_j sin(0 t+w), (3.7)

the sum is over all the values of j which lead to legal subscripts for /(_/) and

g(k + l- j), specifically j-max(l,k + l-n):ndn(k,m). Assuming that both of two

vectors have the same length, m-n, this gives

h(l) = f(l)*g(l)
A(2) = /(l)**(2) + /(2)*g(l)

h(n) = f(l)* g(n) + f(2)* g(n-l) + ... + f(n)* g(l)

h(2n-l) = f(n)*g(n)
Thus we have

2n-l 2n-l mm(k,n)

convolution sum =^h(k) = ^ ^f(j)g{k + l-j), (3.8)
k=l Jfc=l j=max(l,k+l-n)

The following example demonstrates how to calculate the summation of the

results of convolution between the input vector and the complex samples from CMF. For

example, assume that we have two membership functions, and the length of input vector

is 2. The number of points of sampled membership function should be equivalent to the

length of input vector, namely, both of them have the same dimension. From Eqs. (3.2),

(3.3), we sample 2 points from each complex membership function,

63

Yl=[2+3i, 3+4i] complex samples from MF1,

Fig. 3.4 Illustration of Implicit structure in the convolution of input vector and sampled points
generated from complex membership function

(SMFUl = SMFU2 , SMF121 = SMF122 , SMFZl 1 = SMF2X2 ,SMF22\ = SMF222)

Y2=[l+2i, 4+7i] complex samples from MF2,

and X=[3, 2] input vector,

where xx = 3 , x2 =2

2+3i= SMFm, 2+3i= SMFU2, 3+4i= SMFl2l, 3+4i= SMFl22;

l+2i= SMF2n, l+2i= SMF2l2, 4+7i= SMF22l, 4+7i= SMF222,

sum (Conv(X,Yl))= SMFm*^+ SMFU2*x2+ SMF^x^ SMFm*x2,

sum (Conv(X,Y2))= SMFm * xx + SMF2l2 *x2 + SMF22l * xx + SMF222 * x2,

From the formula of the summation of the convolution between the complex samples of

the complex membership functions and the elements of the input vector of presented to

the neural network, it is interesting to notice that this summation of the convolution can

64

be viewed as the implicit neural network, which may be illustrated in Fig. 3.4, where

SMFikj can be regarded as the weight connecting the j th element of the input vector

presented to ANCFIS to the k th sample point of the i th membership function in the first

layer. The different elements of input vector connected to the same sample point from the

membership function share the same weight. In other words, the weights connecting the

same sample point from the complex membership function to different elements of the

input vector are always the same.

From Fig. 3.4, since the convolution sum can be viewed in the form of a neural

network, and this provides essential guidance in deriving the gradient equations for the

ANCFIS learning algorithm. In other words, these complex-valued weights connected the

elements of the input vector and the nodes generated from the complex membership

function can be updated using gradient descent method. Thus, Eq. (3.8) can be rewritten

convolution _ sum = ^ O0j x ̂ SMFL

7=1
ikj (3.9)

where n is the length of input vector, O0 j,j = 1,2,... n, denotes the j th element of input

vector presented to the inference system.

4 -4
Imaginary 4 -4 Imaginary

Fig. 3.5 The Elliott function, (Left) Magnitude. (Right) Phase

65

In order to keep this value within the complex unit circle, and keep its phase the

same, we need to find an appropriate activation function and apply it to the sum of all

components of the convolution. We choose Elliot function [65] to process real and

imaginary components of complex number jointly,

/fe) = r T F ' (3-10)
l + |z|

where z is a complex number. Fig. 3.5 shows the magnitude and phase of the joint-

complex activation function, which is suitable for processing information meaning in

rotation around the origin of coordinate.

Substituting Eq. (3.9) into Eq. (3.10), the output of the nodes in the first layer is

represented by

0,,= ;=i

X O0Jx^SMFt
k=\ J

U

1 +
;=1 V *=1

,i = l,2,---,n_CMF. (3.11)

In the following, the complex-valued output of node i in layer / is denoted Oli.

Layer 2: Firing strength

Each node labeled II in layer 2 is a fixed node that is responsible for multiplying

the incoming signals and delivering the product to the next layer.

°v=n °u' * • = ^ •••>"- CMF • <3-12>

In Fig. 3.1, we only have one input vector to the network x, and the output of layer 2 is

the same as layer 1. The output from every node in layer 2 represents the firing strength

of a fuzzy rule. Although it is not shown here, this layer allows for interaction between

66

multiple input vectors, in the case of multivariate time series. The algebraic product is

also the complex fuzzy intersection derived in [1].

Layer 3 Normalized firing strength

The output of each node labeled N in layer 3 represents the ilh rule's normalized

firing strength:

°Xi=^i = n_c2 ,i = l,2,-,n_CMF, (3.13)

.7=1

n_CMF

where ^ w J refers to the summation of the magnitude of each weight w ;. This layer

j=i

only normalizes the magnitude of the weights; phases are unchanged.

Layer 4 Dot product

The output of each node labeled DP in layer 4 is the dot product of each

normalized firing strength and the sum of the outputs of all nodes in the previous layer.

Note that the outputs of layer 4 are always real valued, which is desirable as the predicted

output for time series data should be real valued.
n_CMF

04i = wf = wt • X ^ , i = 1,2,-,n_CMF, (3.14)

n_CMF

where ^ wi is the complex sum. If all the phases of the various arguments are aligned,

the amplitude of the sum will be maximized (constructive interference) If, however, the

phases of all the arguments are not equal, destructive interference may occur, and the

weights of some rules might be drastically reduced.

Layer 5 Consequent parameters

Each node i in layer 5 is an adaptive node. The output of each node i is

67

calculated by:

= Wf {Pi,lXl + Pi,2X2 +•••+ Pi,jXj +••• + Pi,nXn + >}) , ./ = 1, 2 , . . . ,« , (3.15)

where wf is the z'-th output of the 4th layer, x. is the j -th value in the input vector and n

is the length of the input vector, and {p,, rt} is the parameter set for the linear output

function. p{ is a vector of the same length as the input vector x, while r, is a constant.

Parameters in this layer are referred to as consequent parameters, and are identified in the

forward pass using a linear least squares estimator [24] [6] [74].

Layer 6

In this layer, there is only a single node that calculates the overall output as the

summation of all incoming signals.

061 = overall output = £ wf f,. (3.16)

3.3 Backpropagation for ANCFIS

This section introduces a backprogation learning rule for ANCFIS structure to

update the sampled points generated from complex membership functions, which is in

essence the simple steepest descent method. The main part of this basic learning rule

involves how to recursively produce a gradient vector in which each element is defined as

the derivative of an error measure with respect to a sampled point of complex

membership function. This can be realized using the chain rule.

3.3.1 Derivative of complex function

68

Before deriving a gradient vector in ANCFIS structure, we need to seek a formula

for computing the derivative / (z)of the complex function f(z) = u(x,y)+iv(x,y) in

terms of the partial derivatives of u(x, y) and v(x, y).

Let

f{z) = u{z)+iv{z) = u{x,y)+iv{x,y), (3.17)

where z = x + iy,z = x—iy,

we define

dz = dx+idy , (3.18)

then the total derivative of / with respect to z can be calculated as follows:

z + z (3.18)

y=-
z-z

2i
(3.19)

therefore

dx 1 . dx 1
— = —and ^= = — ,
dz 2 dz 2

(3.20)

f£.-_L-_I- _̂ -__L = I-
dz~2i~ 2 ' d~z~ 2i~ 2 '

(3.21)

and

(3.22)

According to u and v, Eq. (3.29) can be expressed by

dz 2

rdu .dv
+ i— \-i dx dx

du .dv
dy dy

du .dv
— + i —
dx dx

.du dv
•i — + —-

dy dy

69

du dv

dx dy +
.du .dv

-i— + i —
ay dx

(3.23)

So, the partial derivatives of complex-valued Elliot function , — , — , — , — , can
dx dx dy dy

be expressed as follows:

(y2+N) ,
W , =

uy=l

Hd+N)2

i

-xy

v=<

\4 + W
0

-xy

Hd+H)2

0

f(*a+M)
vy=< 4+\z\f

1

if |z| * 0

|z| = 0

if |z| * 0

W = 0

if |z |*0

|z| = 0

if |z|*0

Iz| = 0

(3.24)

(3.25)

(3.26)

(3.27)

layer 1 layer 2 layer 3 layer 4 layer 5 layer 6

Fig. 3. 6 ANCFIS backpropagation network

70

Based on the knowledge of differentiating complex functions, we will derive the

procedures of this backpropagation learning rule in the rest of this section. By reversing

the links of the forward pass network and supplying the error signals at the output layer

as inputs to the new network. Thus, the error propagation network used in the backward

pass is obtained, in which the errors propagate from the last output node towards the

inputs. The backpropagation network is shown in Fig. 3.6, where for the sake of clarity, a

unique number is assigned to each node.

3.3.2 Gradient-based Learning Rule

The sum of the squared error is used as the error measure for the pth (1 < p< P)

entry of the training data:

N(L) 2

where L refers to the number of the layers, dq is the qth component of the pth desired

output vector, and xL is the qth component of the actual output vector generated by

supplying the pth input vector to the network. We can obtain the p th error measure Ep

from each training pair in our training data. The goal of the ANCFIS is to minimize the

total error measure

E = YPEP. (3.29)

This can be achieved by changing the parameters in the node functions. In order to

facilitate the discussion the 'error signal', £,. is defined as the derivative of the error

71

measure E with respect to the output of node i in layer/, taking both direct and indirect

paths into account:

d+E
P f ; , = — ^ (3.30)

The error signal for the i th output node (at layer L) can be calculated directly

^Ep dEp
eL, =^L = ^L = -2{di-xL>i). (3.31)

For every internal (non output) node at the z'th position in layer /, the error signal can be

represented as a linear combination of error signals from layer / + 1 . This means that all

error signals can be calculated iteratively from the output towards the input layer.

_ _ Z £ - _ V p Jl+1<m - V e //+1'm nii\
dxu ;=1 dxl+Um dx w w dxw

where 1 < Z < L - 1 ,and m refers to the index of node in the layer / + 1 .

Once all of the eti 's have been obtained, it is straightforward to calculate the

gradient for a generic weight SMF sampled from the membership function in node i of

the first layer. Suppose that the output xu of the neuron i in the first layer of the network

is

xu=f(zu) = uu+ivu, z u = * u + / / • ' = £ * 0 J X £ S M F J , (3.33)

;=i v *=i y

In what follows, the subscripts /? and / indicate the real and imaginary parts,

respectively. We note the following partial derivatives:

W 3„1.<' 3vW 3, ,U a*u . 3yu _« a*u _« »y = * o ; . - ^ / . „ = 0 . ^ . ^ = 0 , - , „ ; „ , = * o r (3-34)
dSMFikjR '°J,dSMFikjR 'dSMF^ ' dSMFikjI ° ' r

72

In order to use the chain rule to find the gradient of the error function £ with

respect to the real part of SMFjkj, we have to observe the variable dependencies: the real

function Ep is a function of both uhi(x
u, v u)and vu(x

1,',y1''), and x1 'andy1 'are both

functions of SMFjkjR and SMFm . Thus, we can rewrite the gradient of the error function

with respect to the real part of SMFikjR as

3+£„ 3+£„

dSMFm duhi

3«u dxu d"u dyu

dxu dSMFikjR dyu dSMF, ikjR J

9+£„
+ -

*>v

3vu axu
 +_3vw ay-;

dxu dSMFm dyu dSMFL ikjR J

rd+Epduu ^+Epdv^

• 9w,,. dxu 3v,, dxu .
\ 1,1 1,1 y

X, •0,j '
(3.35)

3 % ?>+Ep where and -a re the real part and the imaginary part of the error signals of

duu
node / in the first layer, separately. — p is the partial derivative of the real part of the

dvu
Ellitott function with respect to the real part of summation of convolution. —-fr is the

partial derivative of the imaginary part of the activation function with respect to the real

part of summation of convolution. Likewise, the gradient of the error function with

respect to the imaginary part SMFjkjI is

9+£„ d+E„fduhi dxu duhi dyu ^

dSMFikjI duu V
dxlidSMFm dylidSMFm ikji j

13

+ -
d+E„

3 v i , ,

9vlj(. ax1-'' , av,, a y
dx1" dSMFikJI dyu dSMFm tkji j

d+Ep dult | d+Ep dvhi

duXi dyu dvu By1'1 vcy
(3.36)

combining (3.35) and (3.36), we can write the gradient of error function £ with respect

to the complex sample SMFm as

3+£„ d+E„ d+E„
• + i-

dSMFikJ dSMFikjR dSMFikjl

d+Ep duu d+Ep dvj

dult dx1'1 dvlt dx1'
x0J+i\

d+Ep duu d+Ep 3v

3MU dyu 3vu dy i,i
1<U

(3.37)

Once all of the su 's have been obtained, it is straightforward to calculate the

update for a generic weight SMFikj,

dSMFn u dSMF:k: '
(3.38)

ikj ikj

(3.39)
BSMFikj UdSMFy

where fu denotes the function of node i of the first layer. By using the steepest descent,

the update formula for the generic complex sample is

ASMF, •kj

d+E £, d+Ep

dSMFikj 'fldSMF, ikj

JSMF,t

f (
Re

V V

d+E

dSMF:i ikj j
+ Im

FE
,2\

BSMF
ikj J

P FE

UdSMFikj '
(3.40)

74

where TJ is the learning rate, kis the step size, the length of each transition along the

gradient direction in the parameter space. Generally speaking, when the step size is

updated, the speed of convergence can be modified.

Usually we can change the step size to adjust the convergence speed, such as

using the following heuristic rules[5][6]:

1. If the parameter undergoes m consecutive reductions, increases k by

k = k* increase rate

namely, increase the step size after m downs

2. If the parameter varies consecutively n times of combinations of one reduction and

one increase, decreases k by

k = k* decrease rate

namely, decrease the step size after n combinations of 1 up and 1 down.

Thus, we have

SMFikj = SMFikj u + ASMFiki = SMFiki U-TJ ^ E

lKJnew "9old "V lKl old ' TiQMp

= SMF*Jo,d-

Ks Re
VE ^

dSMF, ikj J
+ Im

d+E
.2\

dSMF, i» J J

? d+E
V 1 p

fldSMF,
(3.41)

ikj

For simplicity and clarity, taking an ANCFIS with two CMFs as an example(see Fig. 3.7),

we start with the calculation of the derivative of the error measure in (3.31) at node 11.

From the output to layer 6:

d+En

dxn
^- = -2{dn-xn) = -l(dn-YJwfPf), i = \,2 (3.42)

75

^)<

V*

9

10
layer 5 layer

Fig. 3.7 A six-layer ANCFIS structure with 2 complex membership functions (a) forward pass; (b)
ANCFIS backpropagation network

From layer 6 to layer 5:

— O C ^ _

d\W2f2)
^10 — £n, 1=1,2

:fu, 1=1,2
dxg dxn dx9

 n dxg
 n B^Wj/J

From layer 5 to layer 4:

3x7 dx9 dx7 3x7 3(w1
D/>)

^10/2 — ^11/2

(3.43)

(3.44)

(3.45)

(3.46)

From layer 4 to layer 3:

76

dEp dEp a/8 dEp a/7 a/8 3/7 a w f a <
'6 3x6 3x8 dx6 3x7 3x6 3x6 3x6 d(w2) <Hw2)

a(w2)
 7 a(w2)

(3.47)

_dEp _dEp a/8 | BEP df7 _ y , ; ^ a/7 _Cs 3 w f , ̂ 3 M T

3x5 3xg 3x5 3x7 3x5 3x5 dx5 9(^1) ^ (^ I)

= f fe'fe+^M , c 9[w1»(w, + w2)]
(3.48)

<Kwi) 9(w[)

Assume that v^ = xx + ry2 ,w2 = x2 + iy2. The derivative of complex functions in

(3.47) yields:

_ 3(w2*w2+w2«w1) a f c ^ + w ^ w j
fc6 — fc8 - v — + fc7 -^—

ow2 ow2

_£ 3[(x,x2+ >>!>>,) + (x2x2 + y2y2)] [g 8[(x tx2+y1y2) + (x1x1+y1y1)]

a(x2+«>2) 7 a(x2+j>>2) (349)

= - f8 ((*i + 2x2) + j(y, + 2y2)) + - £7 (x, - iy,)

1 /— — \ 1 — 1 —

where wi indicates the complex conjugate of the normalized weight. The derivative of

complex functions in (3.48) yields:

_ 3(vv2«w1+iv2»w2) 3(w1*w1+w1»w2)
fc5 — fc8 -1— + fc7 - > —

= c 3[(*2*i + y2yi)+(^2^2 + yiyi)], ,. d[(*i*i + y tyi)+(*i*2 + y ty2)]

a(x1+j>1)
 7 a(x1+?j1) ^350)

= j es fa - ^2)+^ ̂ 7 fe + ^2) - «'(2y, + y2))

= 2 £ s (w 2)+ 2 £i (wi + w 2) + 2 f 7 Wi

From /oyer 5 to foyer 2:

77

£* =
dEp_dEp df6 JEP 3 / df6 _ 3/5 _c 3w:

- + = £«TT i + ft
3x4 3x6 3x4 3x5 3x4 3x4 3x4

• = £ « : + £<
Bwj

3(w2)
 5 d{w2)

w,

c 6
|w, + w2

w,

3(>v2)
+ * 5 ^

K +N
a(w2)

(3.51)

g ^ . ^ ^ 1 ^ , % . . y« ,g fc=g ^ , a*,
3x3 3x6 3x3 3x5 3x3 3x3 3x3 3(1^) ^\wi)

W,

= F ——
Wj + W2

3(wJ ^+£<

w,
|Wj + \W2\

3(wJ

(3.52)

Assume that wl - x1 + iyx , w2 = x2 + iy2 . The use of derivative formula of

complex function in (3.51) yields:

eA =e,

{x2+iy2)

Jxf + yf +yjx2
2+y

(xi+iyi)

-+ + £5^
4xl+yl+4xl + y-.

d{x2+iy2)
 5 3(x2+ry2)

The partial derivatives can be calculated separately as follows:

(3.53)

let — = w, + iv?, where w, = — and v, = —- and M = Jx,2 + y,2 + -Jx2 + yI ,

then,

M y2

3^2

3x. ' 3y2 M 2 7 x 2 + y2
2 5*2 ^y2

M - -

3v, 44+yl
M M-

{x2+iy2)

JxJ+tf+JxJ+y*
3(x2 + zy2)

3w 2 + dv2 ^

3x2 3y V"A2
+

1)

.3M, . 3V.

3y2 3x2 j

78

And let — L = M, + h>, where M, = — , v, = — and M = Jxf + y\ + Jxl + y\ ,

M MM
then,

3M, 3M, - * i y 2
3v, -yi*2

^ 2 M2JxtTyf' ty2 M2^xl+yl ' 3*2 M2^]x2 + y2
and

3v, - J 1 J 2

^ M2-y]x[+y,

Ui+iyJ

•Jx? + y?+Jxl + y.

3(x2 + ry2)

3M, 3v,
—L + —L

v3x2 3 j 2 7

. 3M, . 3v
•1—- + i—•

3y2 3x

Continuing with this, we can obtain

3« 1 3M , • y ^ 2 3v0 ••«lJ2 3v, J i ^

&i M2•s[xJ7yJ, dyi M2
yfxJ7yJ, &i M2-Jx2 + y2 ' ^ 1 M2^x2 + y2

and

M -
J i

1 _ 3M _

3x, ~ M 2

Finally, we have

1

-y/xf + yf 3M, _ -x ,? .
M -

3v, 3v, _ Vxi2 + rf
fy M2-sjx

2 + yf &i ' dyi M '

^ 4 = ^ 7
3M2 9V2

3x2 3y
V"-2

+ 1
i)

3M, 3V,
- + • 3y2 3x 2 /

+ £<
3M, 3v

v3x2 dy
+ i

3«, 3V,
L + — L

3y2 3x i)

(3.54)

^ 3 - ^ 6 2

3M, 3V,
— - + —-

v 3xj 3y
+ ij

1 J

3M2 3v2

3y, 3xj + e.
3M,

y3Xj

3vi V- 3M, 3V,

dy, 3x, ,
(3.55)

3fi ,_ag,y 4_^y 4 =^3(H> 2)

3x2 3(w2) 3x, 3XA 3;
= £A (3.56)

79

c t — — — 1 3 — 1 3 , . — 1 3 (, J . J / ;

axY dx3 o^! dXj o(wJ

Once we get all of the £,'s, we can straightforwardly calculate the gradient for a

generic weight SMFikj in node i according to Eq. (3.38) and 3.39)

3.3.3 Mathematical Model of Premise Parameter Identification

How to update the real valued premise parameters {a,b,c,d} of the complex

membership function is a unique problem. In ANFIS, we simply add the negative

gradient of the overall error measure E with respect to adaptive parameters of

membership functions multiplied by the learning rate to the parameters to be updated. In

ANCFIS, since the derivative of the overall error measure E with respect to the adaptive

parameters {a,b,c,d}is complex, while adaptive parameters are real-valued, the update of

adaptive parameters of complex membership functions could not be directly achieved. In

terms of Eq. (3.4) and (3.5), after the magnitude of phase of each weight SMFikj are

calculated, we have a set of m magnitude-phase data pairs for each complex membership

function, m = 1,2,...,n2. Now what we need to do is to find an optimization method for

fitting a set of magnitude-phase data pairs related to the adaptive parameters. That means

the unknown adaptive parameters {a,b,c,d} can be indirectly identified using the

optimization method.

We hope to optimize a model by minimizing a squared error measure between

magnitudes of the updated weights and the fitting value of complex membership function

at given phases corresponding to the magnitudes of the updated weights, defined by:

n2

E\x1,x2,x3,x4) = 2_,(magnitudem — (x4 * sin(x1 * phasem + x2) + x3))2 , (3.58)
m=l

80

where JC1,X2,X3,JC4refer to the premise parameters a,b,c,d, respectively, rcis the length

of input vector to the system, Magnitudem and phasem are the magnitude-phase data pair

of the updated weight SMFikj , k-\,2,...,n, j = l,2,...,n, m = l,2,...,n2,and n2is the

total number of the weights.

Seen from Eq. (3.58), this optimization objective function belongs to the class of

nonlinear least square problems, which may be solved using Levenberg-Marquardt

method [75], since this optimization technique can handle well ill-conditioned matrices.

However, this method needs to derive the Jacobian matrix of the difference between the

desired output, magnitudem, and the model's output, x4 *sin(x1 * phasem +x2) + x3. In

addition, this method is deterministic in the sense that it inevitably leads to convergence

to the nearest local minimum close to the initial points. In practice, however, knowing

good starting points is nearly impossible. We have elected instead to employ derivative-

free optimization. Therefore, we will propose a derivative-free optimization technique,

VNCSA, to identify adaptive parameters of complex membership functions in the first

layer of ANCFIS architecture. In the next section, we describe the novel VNCSA

optimization technique, which we developed specifically for this application.

3.4 Variable neighborhood chaotic simulated annealing
algorithm

The development of a novel derivative-free algorithm aims to solve nonlinear

constrained optimization problems. The structure of the most constrained optimization

problems is essentially contained in the following:

minimize f(S) S e Rn,

81

subject to ct (S) = 0, i e E,

c,(S)>0, z e / , (3.59)

where f(S) is the objective function, S is the control variable, c,.(S) are additional

constraint functions, i = l,2,...,p. Eis the index set of equations or equality constraints

in the problem. / is the set of inequality constraints, and both of these sets are finite.

3.4.1 VNCSA algorithm

VNCSA is based on the Simulated Annealing (SA) algorithm. We hybridize the

SA algorithm with two 1-dimensional chaotic maps and a variable neighborhood strategy

for finding global minima. VNCSA still simulates the cooling of a physical system whose

possible energies correspond to the values of the objective function to be minimized, and

allows solution candidates of worse quality than the current solution (uphill moves) in

order to escape from local minima. The probability of an uphill move is reduced over

time during the search. The algorithm starts by producing a group of feasible solutions

satisfying all given constraints, by iterating the Logistic map from a random initial point

with the parameter |X=4.0 (fully chaotic behavior). As the Logistic map has a domain and

codomain of [0,1], we will in general have to execute a linear transform from [0,1] to the

domain of the individual control variables st. Candidate solutions that do not satisfy the

constraints are simply rejected, leaving only feasible solutions, of which the candidate

having the lowest value of the objective function is selected as the initial solution. The

annealing temperature parameter is also initialized from the objective values of the

feasible candidate solutions. Then the following steps are repeated until the stopping

condition is met: 1) A solution Snew from the variable neighborhood N(S) of the solution

82

Scurrent *s generated using the Ulam-von Neumann map; 2) Snew is checked for feasibility,

and discarded if it does not satisfy the constraints; 3) f{Snew),f{Scumnt)anA temperature

T are employed to determine if Snew is accepted as the new current solution.

3.4.1.1 Generating initial solution population

In order to avoid choosing the fixed points of the Logistic map as initial solutions,

we use a random generator to generate N uniform variates in the interval (0,1) as the

initial values of a set of chaotic variables, xifi, i = 1,2,...,N , where N is the number of

variables of the objective function. We then substitute xi0 into the Logistic map (Eq.

(2.56)) with// = 4.0 to obtain a new set of chaotic variables, xiJ+l, expressed by

x , y + 1 = 4 . 0 x x , y x (l - x , ;) , (3.60)

x,j=xlJ+l, (3.61)

where lis the index of variables of the objective function, and j is the iteration count of

logistic map.

We convert the chaotic variables xiJ+1 into the variables siJ+1 of the objective

function using a linear transform:

Sij+i =at+ (bi ~ ai)*xIJ+l, (3.62)

where ai,bl; are the lower and upper bounds of the variables sij+1 of the objective

function, respectively. Thus, a legal .v. .+1 between at and bt is generated through Eq.

(3.62). This process is repeated until ./reaches the maximum iteration count M , then set

the current solution Scumm to be the particular solution having the best value of the

objective function.

83

3.4.1.2 Initial temperature and final temperature
The initial temperature is selected so that the probability for an uphill-move is

quite high at the beginning of the algorithm. An appropriate initial temperature T0 is one

that leads to an average increase of acceptance probability p0of about 0.8 [76]. This

value of T0 will be completely dependent on the scaling of objection function/(S); it

can be estimated by calculating the average objective value increase observed on the

initial solution population Af+, giving us

T ° = _ 4 % P „) ' (3-63>

In VNCSA, the final temperature is defined as a fixed value, 0.01.

3.4.1.3 Neighbor selection
VNCSA gnerates new trial solutions 5mw based on the current feasible solution

£ cumnt ^y introducing small changes through the Ulam-von Neumann map, defined by.

S™x=SreM+Diyi^, (3.64)

y,J+l=l-2ylJt (3.65)

yt.j = yi.j«> (3 - 6 6)

where j , • is the chaotic variable of the Ulam-von Neumann map starting from random

initial values in (0,1) [55], iis the index of variable of objective function, i = 1,2,...,N,

N is the number of variables of the objective function, j is the iteration count of the

Ulam-von Neumann map, j = 0,1,... M , M is the maximum iteration count of the Ulam-

von Neumann map, and Dt defines the maximum change allowed in each control variable

(the neighborhood). The initial neighborhood is defined by

84

D,.=0.1xfo-a,), (3.67)

where a ^ a r e the lower and upper bounds of the control variables. The neighborhood

Di tunes the step size in Eq. (3.64) for each variable of the objective function. After

Lmax x M trials (L is the maximum value of iteration count / at each temperature, and

M is the maximum iterations of the Ulam-von Neumann map at each iteration count /),

to ensure a more efficient search space, the neighborhood D [43] is updated by

D,"w = (l - a)D™mnt + acoRt, (3.68)

where Rt is the magnitude of the successful change made to each control variable, a is

the damping constant controlling the rate at which information from Rt is folded into

Di with weighting CO. The values of a control the behavior of the VNCS A algorithm.

Generally speaking, the determination of the optimal values of two parameters

Lmai and M is application dependent, especially on the dimensions and constraint

intervals of the variables of the objective functions to be minimized. The best way to

select their values is by doing some trial-and-error experiments. To enable this algorithm

to converge to near optimal solutions for large-scale multi-peak nonlinear constraint

optimization problems, one way to do this is to make the parameters Lrmx and M random

variables within appropriate ranges, such that the algorithm can explore a wider area of

the input domain based on the chaotic series between -1 and 1 generated by Ulam-von-

Neumann chaotic map. If the number of variables and the intervals between the upper

bounds and lower bounds of variables are lager, the maximum value of the iteration count

I, Lmm, and the value of the iteration count of Ulam-von Neumann chaotic map, M ,

85

need to be initialized to larger values to ensure the algorithm to evaluate the more feasible

solutions.

3.4.1.4 Temperature update

The annealing schedule specifies the degree of uphill movement allowed during

the search. The simplest and most often used temperature decrement rule is the

exponential cooling scheme [5] [42], expressed by

Tk+1=0Tk, (3.69)

where /? is a constant close to, but less than,l. It is to be noticed that the value of

objective function is generally improved with larger /3 at the cost of expensive

computational effort.

3.4.1.5 The procedures on VNCSA algorithm

Begin

^current := GeneratemitialSolutioriPopulationAtLogisticMapO (Section 3.4.1.1)

T0 := SetInitializationTemperature() (Section 3.4.1.2)

While (T, <0.01) do

While(/<Lmax)do

While(m<M)

Snew :=PickNeighborAtUlam_von_NeumannMap() (Section 3.4.1.3)

iff(Snew)<f(Scurrem)then

c -= c
current ' new

else

86

accept Snew as new solution with probability

exp(-(/(Sn w)- /(5 r a r r e n /)) /r j

end if

end while

end while

UpdateNeighborhood(D) (Section 3.4.1.3)

UpdateTemperatureCTj) (Section 3.4.1.4)

end while

c — c
ubest ' ^current

output: Sbest viewed as optimization solution for x

End

3.4.2 Parameter Selection and Comparison on Benchmark Test
Functions

In this section, we test the VNCSA algorithm on several benchmark optimization

problems. Our purpose is twofold: first, we want to determine if VNCSA performs as

well as CSA2 [11] and ACO on known benchmark problems; second, we wish to

determine good values for the parameters a and CO in Eq. (3.68). These values will then

be used in our comparative experiments in Section 5; VNCSA will either be selected or

rejected for ANCFIS using these parameter settings. All of the problems selected are

minimization problems; wherever necessary, the original maximization problems can be

converted into minimizing problems by negation. Six test problems are presented here.

3.4.2.1 Unconstrained optimization

The first three problems are test functions for unconstrained global optimization: the

Goldstein-Price (GP) Function, Hartman's function 1 (HN1), and Hartman's function 2

87

Table 3.1 Parameters of VNCSA and CSA2 used in test functions

/

GP

HN1

HN2

'max

10

10

10

T • 'mm

0.01

0.01

0.01

a (CSA2)

1

1

1

ft

0.94

0.88

0.95

Anax

2

2

2

a (VNCSA)

0.99

0.99

0.99

CO (VNCSA)

0.95

0.95

0.95

M

400

400

400

Table 3.2 Parameters of ACO used in test functions

/

GP

HN1

HN2

N _ outer

10

5

10

N _ inner

10

5

5

N_search

20

10

10

M

10

5

10

a

1

l

1

fi

1

l

1

'transtion

0.1

0.1

0.1

7

Exp(-1.005)

Exp(-1.005)

Exp(-1.005)

P

0.7

0.7

0.7

*2 - x1

Fig. 3.8 The graph of Goldstein-Price function

(HN2) [11]. To ensure a fair comparison, the VNCSA algorithm uses the same parameter

values as CSA2; these are listed in Table 3.1, along with the values of a and co in

VNCSA. The parameters used in ACO are listed in Table 3.2.

88

45003
<
CO

o 40003

TO

•§ 35003

>>
c 30003
g
o
§ 25003
<D
O

£ 20003

« 15003
"o
CD
o 10003

S> 5003

>

10 20 30 40 50 60 70 80

Fig. 3.9 The iteration process using VNCSA algorithm

The first is the Goldstein-Price Function with several local minima,

/18 {X) = [l + (xj +x2+ if (l9 - Hjtj +3x1
2- 14x2 + 6xxx2 + 3x2

2)]

x[30 + (2x! -3x 2) 2 | l 8 -32x 1 + \2x? +48JC2 -36XJX 2 + 2 7 X 2
2) , |X,| < 2 , (3.70)

whose global minimum is min(/18(z j)=/ l g (0 , - l) = 3 . The graph of the Goldstein

function is shown in Fig. 3.8 and its iteration process is shown in Fig. 3.9 using VNCSA

algorithm.

The second is the Hartman's function 1 with 4 local minima,

/i9U)=-Zc*exP
i=l

3 . .

j=l

, 0 < x ; < 1 . (3.71)

89

where (ai:/) =
3 10 30

0.1 10 35

0.1 10 35

,(c,.)=(l 1.2 3 3.2),(p0):

0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

The global minimum is min(/19 (x *)) = f19 (0.114,0.556,0.852) = -3.86. Fig. 3.10

shows the iteration process of Hartmann's function 1 using VNCSA algorithm.

20 30 40 50

* M I I I I H I I M H I I I I I I I I

Fig. 3.10 The iteration process for Hartman's function 1 using VNCSA algorithm

120

Fig. 3.11 The iteration process for Hartman's function 2 using VNCSA algorithm

90

The third is the Hartman's function 2 with 6 local minima,

/2oU)=-Sc<exP
6 . .

-^{xj-pj , 0<Xj <1 (3.72)

where (fls) =

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

,(c,) = (l 1.2 3 3.2),

W =
0.1312 0.1696 0.5569 0.0124 0.8283 0.5886"

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1415 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

The global minimum is min(/20 (x *)) = f20 (0.201,0.15,0.477,0.275,0.311,0.657) = -3.32.

Fig. 3.11 shows the iteration process of Hartmann's function 2 using VNCSA algorithm.

Table 3.3 Testing results on unconstrained functions

/

GP

HN1

HN2

VNCSA

** = (0,-l)/i8(x*)=3

number of / evaluated: 89602

X* =(0.114851 0.555653 0.852542)

/l9\X*)= -3.862782

number of / evaluated: 43623

X* =(0.201708 0.146781 0.476745

0.275342 0.311652 0.657276)

./2o(x*)= -3.321995

number of / evaluated: 107604

CSA2

X* = (0,-l)/i8(x*)=3

number of / evaluated: 88682

X*=(0.120624 0.555664 0.852517)

/19(x*)=-3.862760

number of / evaluated: 42220

X* = (0.201635 0.147548 0.476804

0.275567 0.311628 0.657635)

/20(x*)=-3.321984

number of / evaluated: 105840

ACO

X* = (0,-l)/i8(x*)=3

number of / evaluated: 2393127

X*= (0.114622 0.555644 0.852544)

/19(x*)=-3.862782

number of / evaluated: 2225474

X* = (0.201728 0.146850 0.476699

0.275335 0.311669 0.657286)

/20(x*)= -3.321995

number of / evaluated: 2215046

91

Table 3.4 Parameters of VNCSA and CSA2 used in testing constraint functions

/

G4

G9

G10

^max

1.01

1.01

1.01

Mnin

0.01

0.01

0.01

a (CSA2)

1

1

1

P

0.98

0.98

0.98

^max

12

12

12

a (VNCSA)

0.99

0.99

0.99

a (VNCSA)

0.95

0.95

0.95

M

4100

4100

4100

Table 3. 5 Parameters of ACO used in test constraint functions

/

G4

G9

G10

N _outer

20

20

20

N _ inner

50

50

50

N _search

50

50

50

M

20

20

20

a

1

1

1

P

1

1

1

fyranstion

0.1

0.1

0.1

r

0.5

0.5

0.5

P

0.7

0.7

0.7

The results of our experiments using VNCSA, and CSA2 and ACO are shown in

Table 3.3. For each test case, we list the type of function / , the best solution reached X*,

and the minimum of function/(x*). Form the Table 3.3, we can see that the VNCSA

algorithm for unconstrained functions can find the more exact optimal solutions than the

CSA2 algorithm under the same parameters. In addition, the ACO algorithm is much less

efficient than the VNCSA algorithm since more feasible solutions are evaluated, which

results in very expensive computation.

3.4.2.2 Constrained optimization Problems

We also employed three difficult benchmark constrained functions to test the

performance of the VNCSA algorithm, denoted GA , G9 , G10 , respectively [77]. As

mentioned before, to ensure a fair comparison, the parameters used in VNCSA algorithm

are set to the same parameter values as CSA2, which are listed in Table 3.4, as well as the

92

values of a and co in VNCSA. The parameters used in ACO are listed in Table 3.5.

Again we only report the best parameter values after parameter exploration.

The first constrained problem can be defined by the function constraints

0 < 85.334407 + 0.0056858x2x5 + 0.00026x^4 - 0.0022053x3x5 < 92,

90 < 80.51249+ 0.0071317x2x5 +0.0029955x^2 -0.0021813x3
2 < 110,

20 < 9.300961 + 0.0047026x3x5 + 0.0012547 x^., - 0.0019085x3x4 < 25,

and the added variable constraints 78 < xv < 102, 33 < x2 < 45, 27 < x,- < 45, i = 3,4,5

with an objective function to be minimized :

G4{X) = 5.3578547x3
2 + 0.835689lx,x5 +37.293239^ -40792.141, (3.73)

The best solution obtained in 10 runs of a genetic algorithm [78] was

G4 (80.49,35.07,32.05,40.33,33.34) = -30005.7,

Whereas a better solution [79] is G4 (78.0,33.0,29.995,45.0,36.776) = -30665.7.

The iteration process for G4 function is shown in Fig. 3.12 using VNCSA algorithm.

-28000

w -28500

>
o) -29000
w

S3
C

o
I -30000

O -30500

-31000

-31500

20 40 60 80 100

Fig. 3.12 The iteration process for G4 using VNCSA algorithm

93

The second constrained function is the function with four nonlinear constraints

examined by Michalewicz, represented by

G9{x) = {xl -10)2 + 5(x2 -12)2 +x3
4 + 3(x4 - l l) 2

+ 10x5 + 7x6 + x7 -4x6x7-10x6-8x7 , (3.74)

subject to thefolio wing constraints:

127 — 2xj -4x2 - x 3 - 4 x 4 - 5 x 5 > 0 , 282-7X[-3x2 -10x3 - x 4 + x 5 > 0 ,

\96-2ixl-x1 -6x6 +8x7 >0, -4x t - x 2 -3xjX2-2x3 - 5 x 6 + l l x 7 > 0 ,

and bounds: -10.0 < xt < 10, i = 1,2,... 7.

The global minimum is

min G9 (x *) = G9 (2.330499,1.951372,-0.4775414,4.365726,-0.6244870,1.038131,1.594227)
=680.6300573.

1030

980
<
o

c

880

£ 830

es
•5 780

730

6 8 0 -j 1] 1^~" 1 " i r ! •" 1 1

28 38 48 58 68 78 88 98 108 118 128 138

Fig. 3.13 The iteration process for G9 by using VNCSA algorithm

94

The iteration process for G9 function is shown in Fig. 3.13 shows using VNCSA

algorithm.

The third is the function with 3 linear and nonlinear constraints, whose global

optimum is very hard to be found, since all six constraints are active at the global

optimum.

Gw {X) = xl + x2 + x3 , (3.75)

subject to

1 - 0.0025(x4 + x6) > 0, 1 - 0.0025(x5 + x7 - x4) > 0,

l-0.0l(x8 + x 5) > 0 , x,x6 -833 .33252JC 4 - 1 0 0 ^ +83333.333>0,

x2x7 -1250x5 -x 2 x 4 +1250x4 > 0, x3x8 -1250000-x3x5 +2500x5 > 0,

and bounds

lOO^Xj <10000, 1000<x ; <10000, i = 2,3, 10<x,. <1000, ? = 4,5,...,8.

up to now, the best global solution is

30000

Si 25000
o
z >
.= 20000

S 15000

I 10000

ra 5000 >

0 20 40 60 80 100 120 140

Fig. 3.14 The iteration process for G10 by using VNCSA algorithm

160

95

Table 3. 6 Testing results on constrained functions

/

G4

G9

GlO

VNCSA

X* =(78, 33, 27.070997,

45,44.969242)

G4(x*j=-31025.560237

X* =(2.330779, 1.951318, -0.476265,

4.365744, -0.624418,

1.037897,1.594240)

GgyX*) =680.630062

X* =(569.083822,1359.365096,

5120.876153, 181.157672,

295.164954,218.842328,

285.992718, 395.164954)

Gio(x*)=7049.325070

CSA2

X*=(78, 33, 27.071001,

45, 44.969231)

G 4(x"j =-31025.559909

X* =(2.327393, 1.953413, -0.480587,

4.361062, -0.621978,

1.044346,1.593403)

Gg\X*)=680.631086

X* =(588.353199,1317.481539,

5144.026145, 182.768374,

294.238954, 217.231446,

288.529420, 394.238954)

G10|x*)=7049.860884

ACO

X" =(78, 33.014567, 27.070785,

44.999999, 44.945957)

G4(x*)=-31024.901270

X* =(2.430184,1.901512,

0.602105,

4.413564, -0.510547,

1.512274, 1.969299)

G9[X*) =685.910576

N/A

X* =(579.3167,1359.943,5110.071,182.0174,295.5985,217.9799,286.4162,395.5979)

where minG10(x*) = 7049.330923. Fig. 3.14 shows the iteration process of G10 using

VNCSA algorithm.

Our results for these three functions are summarized in Table 3.6, which presents

the same information as Table 3.3. From Table 3.6, the minimum G(x*)obtained by

VNCSA is superior to the other two methods for all three functions. For function G4, all

three algorithms found better solutions than the present published solution. For

function G9, the minimum found by using VNCSA is almost the same as the present

global minimum published. For function G10, the ACO algorithm could not find a

feasible solution. VNCSA, however, found a solution that is slightly better than the

96

current published solution. Based on these experimental results, we have selected the

values a=0.99 and G>=0.95 for the experiments in Chapter 4.

97

4 Experimental Comparison of the Three Alternatives

in ANCFIS

We have compared the three alternatives for the layer-1 optimization algorithm

(VNCSA, CSA2, and ACO) under the ANCFIS architecture on six time-series

forecasting problems. One is a synthetic dataset generated using two sinusoid functions.

The five others are the well-known Mackey-Glass time series [5] [6], Santa Fe dataset A

(laser)[80][81], the commonly used annual Wolfer sunspot numbers[82]-[86], a wave-

heights prediction problem [82][87], and predicting the brightness of a variable star [82].

The six datasets exhibit what we term "approximately periodic" behavior: the

measurement of interest has a recurring pattern, but never actually repeats itself. The

Mackey-Glass and Santa Fe A time series, in particular, are known to be chaotic in

nature. The goal of these experiments is to determine which optimization technique will

be employed in the ANCFIS architecture. Our experimental design for each dataset

follows the usual forecasting methodology: a single-split, one-step ahead prediction

design where the chronological ordering of the data points is preserved, and the training

data are chronologically earlier than the test data. In all of the experiments, the root mean

squared error (RMSE) (a commonly used error measure in forecasting) is reported [88]

RMSE = I— y [desired output — predicted output, J . (4.1)

Since we apply the same mathematical optimization model (seen in Eq. (3.58))

with 4 variables , a,b,c,d, and the same constraints in ANCFIS for predicting all six

different time series datasets, we use the same values of parameters used in VNCSA,

98

Table 4.1 Parameters of VNCSA and CSA2 used in ANCFIS for time series data prediction
Algorithm

VNCSA

CSA2

'max

100

100

^min

0.01

0.01

P

0.98

0.98

-̂max

2

2

a

0.99

1

CO

0.95

M

400

400

Table 4.2 Parameters of ACO used in ANCFIS for time series data prediction

Algorithm

ACO

N _ outer

10

N _ inner

10

N _ search

50

M

10

a

1

P

1

fyranstion

0.1

y

0.95

P

0.6

CSA2, and ACO in all six time series forecasting experiments; these are shown in Table

4.1, and Table 4.2, separately; these are the best parameters found after exploration.

In ANCFIS, we use a heuristically select the input vector length by choosing the

number of points that covers one "period" of the function. In addition, the format of

input-output pairs should be like:

[x(t), x{t +1),..., x{t + n -1); x{t + n)], (4.2)

where n is the length of input vector presented to the network, and x(t + n) is the value to

predict.

For the comparison with the VNCSA-ANCFIS, we create a mapping for ANFIS

from 4 points of the time series spaced 6 apart — that is, \x{t), x{t + 6), x{t +12), x(t +18)]

to a predicted future value x{t +19).

4.1 Synthetic dataset
The synthetic dataset is generated by the formula:

0.5sin(0.2f + 0.67) + 0.3 + 0.25sin(0.5& + 0.1) + 0.15 (4.3)

sampled in intervals of 0.5 from [0, 750]. This gives a total of 1500 points. The

normalized data are shown in Fig. 4.1.The dataset-specific parameters used for this

99

Table 4. 3 Synthetic dataset parameter exploration

Parameter
Input vector length
Step size
Step size decrease rate
Step size increase rate
Epochs
Number of membership functions

Value(s)
65

0.01
0.8
1.1
100
2

experiment are listed in Table 4.3. Note that the number of membership functions is

fixed at 2 (in order to see if the two frequencies can be captured), and the length of the

input vector is set to 65. The first 1000 points are taken as training data and the final 500

are used as testing data. This gives us 935 input-output data pairs as the training data set

for ANCFIS while the remaining 500 pairs are the test data set.

We compare the results for VNCSA, CSA2, ACO, and ANFIS in Table 4.4.

Plainly, the RMSEs of both VNCSA and CSA2 decreased to zero, which were far less

than those of ACO and ANFIS. We provide further analysis of the VNCSA alternative in

Figs. 4.2 & 4.3; in Fig. 4.2 , we plot the predicted and actual outputs in part (a), and the

prediction errors in part (b). We plot the training RMSE for each epoch in Fig. 4.3.

Plainly, the ANCFIS and CSA2 exactly track this synthetic time series.

200 400 600 800 1000 1200 1400

Fig. 4.1 Synthetic dataset after normalization

100

Fig. 4.2 (a) synthetic time series test results and one-step-ahead prediction(desired values as dashed
line, and predicted values as solid line); (b) prediction error.

epoch number

Fig. 4.3 Training RMSE curves for synthetic time series

101

Table 4.4 Comparison testing RMSE for synthetic time series

Method

ANCFIS using VNCSA

ANCFIS using CSA2

ANCFIS using ACO

ANFIS

Test data size

500

500

500

500

RMSE

0

0

0.000012

1.69355e-005

Number of rules

2

2

2

16

4.2 Mackey-Glass Time Series

This time series is produced by the Mackey-Glass differential delay equation [6]

represented as

We use the same time series as Jang [5]: time step 0.1, initial conditionx(o) = 1.2and

t-ll, with 1000 points; these run from t=l24 to f=1123, to avoid initialization

transients. We use a window of 44 data points as our input vector (approximately one

period, see Fig. 4.4). This gives us 956 input-output data pairs. The first 456 pairs are

used as the training data set for ANCFIS while the remaining 500 pairs are the test data

set (in common with Jang's experiment [5][6]). The number of CMFs in Layer 1 was set

to three, and the step size, the step size increase rate and step decrease rate are set to

0.001, 1.1 , 0.8, respectively. We compare the results for VNCSA, CSA2, ACO, and

ANFIS in Table 4.5. Plainly, compared with CSA2 and ACO, VNCSA was superior, with

an RMSE that was roughly half that of the CSA2 algorithm, and far less than ACO.

Although ANFIS provided the best RMSE, its RMSEtm is larger than its RMSEchk, and

this is unusual. As Jang analyzed in [5] [6], this special case is caused by two reasons: (1)

the ANFIS has captured the essential components of the underlying dynamica; and (2)

102

124 324 524
Time

724 924 1124

Fig. 4.4 Mackey-Glass time series from t = 124 to 1123

Desired output Predicted output

(a)

-0.0025

624 674 724 774 824 874 924 974 1024 1074 1124

Time

(b)

Fig. 4.5 (a) Mackey -Glass time series test results from t=624 to 1123 and one-step-ahead
prediction(desired values as dashed line, and predicted values as solid line); (b) prediction error.

103

0.5

5
a> 0.4

« 0.3
c
(0
o
1 0.2 o g

0.1

0

l
lA I I I

A,
10 20 30 40

epoch number
50 60 70 80

Fig. 4.6 Training RMSE curves for Mackey-Glass series

Table 4.5 Comparison of testing RMSE for Mackey-Glass

Method

ANCFIS using VNCSA

ANCFIS using CSA2

ANCFIS using ACO

ANFIS

Test data size

500

500

500

500

RMSE

0.000688

0.001237

0.009546

0.000545665

Number of rules

3

3

3

16

the training data contain the effects of the initial conditions (x(t) is set to 0 for t < 0 in

the integration), which might not be easily accounted for in the essential components

identified by ANFIS. We provide further analysis of the VNCSA alternative in Figs. 4.5

& 4.6; in Fig. 4.5, we plot the predicted and actual outputs in part (a), and the prediction

errors in part (b). We plot the training RMSE for each epoch in Fig 4.6. Plainly, the

ANCFIS forecasts track this chaotic time series very closely.

We provide further analysis of the learning that takes place in Layer 1 in Table

4.6, where we present the three complex membership functions before and after the

training of the network. As per usual practice, these parameters are initialized to small

104

Table 4.6 Membership functions

1

2

3

INITIAL CMFS

0.4081861768*sin(0.1628570557*t

+0.5568542480)+0.5376982526;

0.0952898986*sin(0.0535736084 *t

+0.1979370117)+0.1264701374;

0.0042810123*sin(0.2807769775*t

+0.6464538574)+0.4306143397;

CMFs AFTER LEARNING

0.087973*sin(0.998037 *t

+ 79.364839)+0.861512;

0.022990*sin(0.000226*t

+49.514667)+0.173827;

0.064255*sin(0.000002*t

+85.287607)+0.463169;

random values prior to the start of the training process. The reader will note that

extensive changes take place; in particular, there are major changes in the frequency and

phase of the sine waves after training.

In order to demonstrate the parsimony of the VNCSA-ANCFIS network structure

parsimony, we illustrate ANFIS architecture used in [5] and VNCSA-ANCFIS network

structure, respecively. Fig. 4.7 is a VNCSA-ANCFIS architecture. Fig.4.8 illustrates an

ANFIS architecture that is equivalent to a four-input first order Sugeno fuzzy model with

sixteen rules. Assume that the length of input vector is also set to 44, the number of rules

will reach to 2U, while the number of rules in VNCSA-ANCFIS is only three. The

VNCSA-ANCFIS network architecture is much more parsimonious, thanks to the

windowed input format.

layer o layer 1 layer 2 layer 3 layer 4 layer 5 layer 6

Fig. 4.7 A VNCSA-ANCFIS architecture

105

Fig. 4.8 An ANFIS architecture with 4-input Sugeno fuzzy model with sixteen rules (The
connections from inputs to layer 4 are not shown)

4.3 Santa Fe dataset A

This was the first in a series of six datasets chosen for the Santa Fe time series

competition [89] in 1991. The dataset is composed of 1960 observations made on an

81.5-micron 14NH3 cw (FIR) laser. This dataset has been analyzed in [90]-[92].

106

1 _
I

0.9

0.8

0.7

0.6

•

0.5 im^i
0.4 JflJHLA
0.3 fl^HI^|
0.2 ^ ^ H ^ |
o.i jl^lP^I

0
0 200 400

.

600
1

800
1

1000
Time

1200

•

A U M

1 ' 1400 1600

'

Hffiffl

1
1800 2000

Fig. 4. 9 Santa Fe dataset A (laser) after normalization

1524 1574 1624 1674 1724 1774 1824 1874 1924 1974
Time

(a)

0.4

1524 1574 1624 1674 1724 1774 1824 1874 1924 1974
Time

(b)

Fig. 4. 10 (a) Santa Fe dataset A (laser)time series test results and one-step-ahead prediction! desired values as
dashed line, and predicted values as solid line); (b) prediction error.

107

0.1
_ 0.09
I 0-08
g 0.07
§ 0.06
» 0.05
§ 0.04
E 0.03 -
§ 0.02
"" 0.01

0
1

epoch number

Fig. 4.11 Training RMSE curves for Santa Fe dataset A (laser) series

Table 4.7 Comparison of testing RMSE for Santa Fe dataset A (laser) series
Method

ANCFIS using VNCSA

ANCFIS using CSA2

ANCFIS using ACO

ANFIS

Test data size

437

437

437

437

RMSE

0.060118

0.089928

0.091036

0.0888076

Number of rules

3

3

3

16

The normalized laser data are shown in Fig. 4.9. The number of membership

functions is fixed at 3, and the length of the input vector is set to 11, the step size, the step

size increase rate and step decrease rate are set to 0.001, 1.1, 0.8, respectively. The first

1523 points are taken as training data and the final 437 are used as testing data. This

gives us 1512 input-output data pairs as the training data set for ANCFIS while the

remaining 437 pairs are the test data set. We compare the results for VNCSA, CSA2,

ACO, and ANFIS in Table 4.7. Among these alternatives, VNCSA was superior, with an

RMSE that was roughly two-thirds those of CSA2, ACO, and ANFIS.

We again provide further analysis of the VNCSA results in Figs. 4.10 and 4.11;

we plot actual versus predicted outputs in Fig. 4.10(a), we also plot prediction errors in

108

Fig. 4.10(b). Fig. 4.11 shows training RMSE per epoch. Again, we see that ANCFIS

closely tracks this dataset.

4.4 Sunspots

The annual sunspot data time series was chosen because it is a commonly cited

time series dataset [83]-[86], [93]-[97]. The data contains the average number of

sunspots per year as measured from 1700 to 1979 (see Fig. 4.12). In our experiments, the

years 1700-1920 are used as training data. The remaining years up to 1979 are used as

testing data. This is consistent with the experiments from [86]. Other papers [85] [96]

have used the first 180 points as training data with the remaining years up until 1979 as

testing data.

The length of input vector is set to 12. Thus, the first 209 input-output pairs are

used as the training data set for ANCFIS while the remaining 59 input-output pairs are

the testing data set. The number of CMFs assigned to the input vector of the ANCFIS

was set to three, and the step size, the step size increase rate and step decrease rate are set

to 0.001, 1.1 , 0.8, separately.

1700 1750 1800 Tim>1850 1900 1950

Fig. 4.12 Sunspot series after normalization

109

The test RMSE results are listed in Table 4.8. Again, the VNCSA alternative

provided a better prediction with lower RMSE. The desired and predicted values for

testing data are very close in Fig. 4.13 (a); the prediction errors are plotted in Fig. 4.13(b)

depicts the difference between them on a much finer scale. Fig.4.14 shows the training

RMSE cureves.

(a)

AA^A fW
j vy^j

4xL

f MM
|N'1/V
1

IA f\
1920 1930 1940 1950 1960 1970 1980

Year

(b)

Fig. 4.13 (a) Sunspot time series test results from t=624 to 1123 and one-step-ahead prediction(
desired values as dashed line, and predicted values as solid line); (b) prediction error.

110

0.076

0.074

^ 0.072

<D 0.07

« 0.068
c
(0
CD

E 0.066

0.064

0.062

0.06

10 15 20
epoch number

25 30 35

Fig. 4.14 Training RMSE curves and testing RMSE curves for Sunspot series

Table 4.8 Comparison of testing RMSE for sunspot series

Method

ANCFIS using VNCSA

ANCFIS using CSA2

ANCFIS using ACO

ANFIS

Test data size

59

59

59

59

RMSE

0.086488

0.093512

0.089405

0.29319

Number of rules

3

3

3

16

4.5 Predicting Stellar Brightness

This is a time series that records the daily brightness of a variable star on 600

successive midnights, see Fig. 4.15. The dataset was normalized so that all measurements

fall in [0,1]. The first 480 data points are used as the training data set, while the

remaining 120 data points constitute the test data. We use an input length of 27 (again,

approximately one period), while the other parameters such as the number of complex

membership functions, step size etc. are the same as those for predicting the Mackey-

Glass time series. Thus, there are 453 input-output pairs in the training set. The test

RMSE results are listed in Table 4.9. Again, the VNCSA alternative provided a lower

111

RMSE (although this time only by a small amount). We again provide further analysis of

the VNCSA results in Figs. 4.16 and 4.17; actual versus predicted outputs are plotted in

Fig. 4.16(a), while prediction errors are plotted in Fig. 4.16(b). Training RMSE per epoch

is plotted in Fig. 4.17. Again, we see that ANCFIS closely tracks this dataset.

600

Fig. 4.15 The Star time series data before normalizing

(a)

(b)

Fig. 4.16 (a) the Star time series testing data from t=481 to 600(desired values as dashed line, and
predicted values as solid line); (b) prediction error

112

6
S

o

s

0 5 10 15 20 25 30 35
epoch number

Fig. 4.17 Training RMSE curves for Star series

Table 4.9 Comparison of testing RMSE for star brightness

Method

ANCFIS using VNCSA

ANCFIS using CSA2

ANCFIS using ACO

ANFIS

Test data size

480

480

480

480

RMSE

0.007578

0.007611

0.007943

0.0113775

Number of rules

3

3

3

16

4.6 Predicting Wave Height

This time series records forces on a cylinder suspended in a tank of water,

sampled every 0.15 seconds, and contains 320 data points as shown in Fig. 4.18. After

normalizing, we choose the first 256 points as the training data set, and the remaining 64

points as the testing data. We set the length of input vector to 16, and the other

parameters are the same as above, giving us 240 input-output pairs as our training set.

The test RMSE results are presented in Table 4.10. Once again, the VNCSA alternative is

the best. Further analysis is presented in Figs. 4.19 and 4.20; actual versus predicted

outputs are plotted in Fig. 4.19(a), while predictions errors are plotted in Fig. 4.19(b).

Training RMSE per epoch is plotted in Fig. 4.20.

113

50 100 150,.. 200
Time

250 300

Fig. 4.18 The waves time series data before normalizing

\.£.

1 •

0 . 8 -

0 . 6 -

0 . 4 -

0 . 2 -

0-

*j i

;,

+1 ,1

y -\

*'
1 1

V

1

rt A

v\ J* ijA

V

1

j j f

1 — '

257 267 277 287
Time

297 307 317

-0.15
257 267 277 287

Time
(b)

297 307 317

Fig. 4.19 (a) the waves time series testing data from t=257 to 320 desired values as dashed line, and
predicted values as solid line; (b) prediction error

114

0.1

0.04 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1— i—i i 1 1 1 1 1 1 r I I

1 6 11 16 21 26

epoch number

Fig. 4.20 Training RMSE curves for Waves series

Table 4.10 Comparison of testing RMSE for waves series

Method

ANCFIS using VNCSA

ANCFIS using CSA2

ANCFIS using ACO

ANFIS

Test data size

256

256

256

256

RMSE

0.058765

0.061642

0.062234

0.113619

Number of rules

3

3

3

16

Overall, our results showed that VNCSA appears to be the best alternative for the

layer-1 optimization technique in ANCFIS. VNCSA was consistently superior to CSA2

or ACO, or ANFIS in all six datasets (except the testing RMSE on Mackey-Glass time

series generated using ANFIS), and had a strong advantage in the synthetic time series.

For the chaotic Mackey-Glass time series, the testing RMSE of ANCFIS using VNCSA

is excellent, and very close to that of ANFIS. This also is another time series generated

by a deterministic mathematical function. The Wave Height dataset, the Star Brightness

dataset, and the sunspot dataset were the observations of physical phenomena, and thus

vulnerable to measurement noise; note that we did not perform any noise reduction on

115

these datasets. The Santa Fe dataset is actually not an approximately periodic dataset, but

ANCFIS with VNCSA is able to predict it more accurately than the other alternatives.

116

5 Summary and Future Work

In this thesis, we have described the development of the new ANCFIS neuro-

fuzzy system. Inspired by the Fourier series, which tell us any signal can be approximated

by a superposition of sinusoids, sine functions are selected as CMFs [1] to construct a

novel architecture, called ANCFIS. This system is the first machine learning architecture

to employ the new concept of complex fuzzy logic, as explored by Ramot [3] and Dick

[1]. ANCFIS tightly couples phase and magnitude, and implements rule interference. As

such, ANCFIS is intended to demonstrate the practical value of complex fuzzy logic, by

enabling new solutions to practical machine learning problems. Based on the discussion

of the phenomenon of regularity in [1], we have selected time series forecasting as the

class of problems to solve. We provided an overview of the ANCFIS architecture and

learning algorithm. We found that the learning algorithm could not be a pure gradient-

descent technique, because there is no closed-form expression for the derivative of the

error measure with respect to the complex fuzzy set parameters in ANCFIS. A derivative-

free optimization technique is thus needed.

We selected three alternatives for the Layer-1 optimization technique: ant-colony

optimization, a chaotic simulated-annealing algorithm from the literature, and a new

chaotic simulated-annealing technique developed specifically for ANCFIS. We described

this new technique, and performed several benchmarking experiments to validate it, as

well as to determine appropriate parameter values for the algorithm. We then compared

the performance of the ANCFIS architecture with all three of these alternatives on one

117

synthetic and five real-world time series datasets. We determined that our new algorithm,

VNCSA, was the most effective Layer-1 optimization algorithm.

We also compared our results with those of classic ANFIS architecture in both

performance and the number of rules. As the experiments demonstrated, the ANCFIS

networks were considerably smaller than an ANFIS network for the same time-series

problem. We indeed saw that ANCFIS could predict even a chaotic time series using only

3 rules; an ANFIS network for the same problem is expected to be considerably larger.

In future work, we must first complete a comparative performance analysis of the

ANCFIS architecture across numerous time series datasets. We will also compare

ANCFIS to different network architectures; radial basis function networks, for example,

are a common choice in time series prediction tasks [49]. This work, if successful, will

establish complex fuzzy logic as a viable and valuable addition to the field of

Computational Intelligence. Additional items of future work include further empirical

comparisons of VNCSA against other derivative-free optimization techniques, and the

development of alternative machine-learning approaches for complex fuzzy logic (e.g.

genetic algorithms).

118

6 References

[I] S. Dick, "Towards Complex Fuzzy Logic," IEEE Transactions on Fuzzy Systems, vol.
13, no. 3, June 2005, pp. 405 - 414.
[2] D. Ramot, R. Milo, M. Friedman, A. Kandel, "Complex Fuzzy Sets," IEEE
Transactions on Fuzzy Systems, vol. 10, no. 2, April 2002, pp. 171 - 186.
[3] D. Ramot, M. Friedman, G. Langholz, A. Kandel, "Complex Fuzzy Logic," IEEE
Transactions on Fuzzy Systems, vol. 11, no. 4, Aug. 2003, pp. 450 - 461.
[4] G. J. Klir, B.Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice
Hall, Englewood Cliffs, NJ, 1995.
[5] R. Jang, C.T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing A Computational
Approach to Learning and Machine Intelligence, Prentice Hall, 1996.
[6] R. Jang, "ANFIS: Adaptive-Network-Based Fuzzy Inference System," IEEE
Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, May-June 1993, pp. 665 -
685.
[7] R. Jang, "Neuro-Fuzzy Modeling for Dynamic System Identification," in Proceedings
of the 1996 Asian Soft Computing in Intelligent Systems and Information Processing, Dec
1996, pp.320-325.
[8] M. Dorigo, V. Maniezzo and A. Colorni, "Ant System: Optimization by a colony of
cooperating agents," IEEE Transactions on Systems, Man and Cybernetics - Part B, vol.
26, no.l, pp. 29-41, 1996.
[9] M. Dorigo and L. M. Gambardella, "Ant colony system: A cooperative learning
approach to the travelling salesman problem," IEEE Transactions on Evolutionary
Computation, vol.1, no.l, pp. 53-66, 1997.
[10] M. Dorigo, G. Di Caro and L. M. Gambardella, "Ant algorithms for discrete
optimization," Artificial Life, vol.5, no. 2, pp. 137-172, 1999.
[II] M. Ji, H. Tang, "Application of chaos in simulated annealing," Chaos, Solitons &
Fractals, vol. 21, no. 4, 2004, pp. 933-941.
[12] L. A. Zadeh, "Fuzzy sets," Inform. Control, vol. 8, 1965, pp. 338 - 353.
[13] J. M. Mendel, R. I. John and F. Liu, "Interval type-2 fuzzy logic systems made
simple," IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, Dec. 2006, pp.808-821.
[14] J. M. Mendel and R. I. John, "Type-2 fuzzy sets made simple," IEEE Transactions
on Fuzzy Systems, vol. 10, April 2002, pp. 117-127.
[15] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems, Prentice-Hall, 2001.
[16] P. Melin, O. Castillo, Hybrid Intelligent Systems for Pattern Recognition Using Soft
Computing; Springer Berlin / Heidelberg, 2005.
[17] J. M. Mendel, "Type -2 fuzzy sets and systems: an overview," IEEE Transactions on
Computational Intelligence, vol. 2, no. 1, Feb. 2007, pp.20-29.
[18] H. Hagnis, "Type-2 FLCs: A new generation of fuzzy controllers," IEEE
Transactions on Computational Intelligence, vol. 2, no. 1, Feb. 2007, pp.30-43.
[19] E. H. Mamdani, "Application of fuzzy logic to approximate reasoning using

linguistic synthesis," IEEE Transactions on Computers, vol. 26, no. 12, Dec 1977, pp.
1182-1191.
[20] M. Sugeno, and T. Yasukawa, "A fuzzy-logic-based approach to qualitative
modeling," IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, February 1993, pp. 7 - 3 1 .

119

[21] M. Sugeno and G.T. Kang, "Structure identification of fuzzy model," Fuzzy Sets and
Systems, vol. 28, no. 1, pp. 15-23, 1988
[22] T.Takagi and M. Sugeno, " Fuzzy identification of systems and its applications to
modeling and control," IEEE Trans, on Systems, Man and Cybernetics, vol.15, no. 1, pp.
116-132, 1985.
[23] Y. Tsukamoto, "An approach to fuzzy reasoning method," In Madan M. Gupta,
Rammohan K, Ragade, and Ronald R. Yager, editors. Advances in Fuzzy Set Theory and
Applications, pp. 137 - 149. North Holland, Amsterdam, 1979.
[24] T. C. Hsia. System identification: least-squares methods. B.C. Heath and Company,
1997.
[25] J.J. Buckley, " Fuzzy complex number," Fuzzy sets Syst ,vol.33,1989, pp.333-345.
[26] —, " Fuzzy complex analysis I: Differentiation," Fuzzy sets Syst. , vol.41, 1991,
pp.269-284.
[27] —, " Fuzzy complex analysis II: Integration," Fuzzy sets Syst.,vol.49, 1992, pp. 171-
179.
[28] J. J. Buckley and Y. Qu, "Solving linear and quadratic fuzzy equations," Fuzzy Sets
Syst., vol. 38, pp. 43-59,1990.
[29] — , "Solving fuzzy equations: a new solution concept," Fuzzy Sets Syst., vol. 39, pp.
291-301, 1991.
[30] L. Chen and K. Aihara, "Global searching ability of chaotic neural networks", IEEE
Trans. Circuits and Systems-I: Fundamental Theory and Applications, vol. 46, no. 8,
August, 1999, pp. 974-993.
[31] R. Konnur, "Additive chaotic forcing scheme for determination of the global
minimum of functions," Communications in Nonlinear Science and Numerical
Simulation, vol. 9, no. 5, October 2004, pp. 499-513.
[32] L. Chen and K. Aihara, "Transient chaotic neural networks and chaotic simulated
annealing", in M. Yamguti(ed.), Towards the Harnessing of Chaos. Amsterdam, Elsevier
Science Publishers B.V. pp. 347-352, 1994.
[33] L. Chen and K. Aihara, " Chaotic simulated annealing by a neural network model

with transient chaos", Chaotic simulated annealing by a neural network model with
transient chaos", IEEE Transactions on Neural Networks, vol.8, no. 6, 1995, pp.915-930.
[34] L. Wang, and K. Smith, "On chaotic simulated annealing", IEEE Transactions on
Neural Networks, vol. 9, no.4, July, 1998, pp. 716-718.
[35] L. Wang and F. Tian, "Noisy chaotic neural networks for solving combinatorial
optimization problems", Proc. International Joint Conference on Neural Networks.
(TJCNN 2000, Como, Italy, July 24-27, 2000)
[36] F. Tian, L. Wang, and X. Fu, "Solving channel assignment problems for cellular
radio networks using transiently chaotic neural networks", Proc. International
Conference on Automation, Robotics, and Computer Vision. (ICARCV 2000, Singapore)
[37] L. Wang, "Oscillatory and chaotic dynamics in neural networks under varying
operating conditions", IEEE Transactions on Neural Networks, vol. 7, no. 6, pp. 1382-
1388, 1996.
[38] L. Wang and K. Smith, "Chaos in the discretized analog Hop.eld neural network and
potential applications to optimization", Proc. International Joint Conference on Neural
Networks, vol. 2, 1998, pp. 1679-1684,.

120

[39] T. Kwok, K. Smith and L. Wang, "Solving combinatorial optimization problems by
chaotic neural networks", C. Dagli et al.(eds) Intelligent Engineering Systems through
Arti.cial Neural Networks vol. 8, 1998, pp. 317-322.
[40] T. Kwok, K. Smith and L. Wang, "Incorporating chaos into the Hopfield neural
network for combinatorial optimization", Proc. 1998 World Multiconference on
Systemics, Cybernetics and Informatics, N. Callaos, O. Omolayole, and L. Wang, (eds.)
vol. 1,1998, pp. 646-651.
[41] I. Tokuda, K. Aihara, and T. Nagashima, "Adaptive annealing for chaotic
optimization," Phys. Rev. E, vol. 58,1998, pp. 5157-5160.
[42] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, "Optimization by Simulated
Annealing," Science, vol. 220, pp. 671-680,1983.
[43] F. Busetti, "Simulated annealing overview",
(http://www.geocities.com/francorbusetti/saweb.pdf).
[44] V. Cerny, "A thermodynamical approach to the travelling salesman problem: an

efficient simulation algorithm," Journal of Optimization Theory and Applications, vol.45,
no. 1 1985, pp.41-51.
[45] L. Ingber, "Simulated Annealing: Practice Versus Theory." Math. Comput.
Modelling 18, 29-57, 1993.
[46] N. Metropolis; A. W. Rosenbluth; M. Rosenbluth,; A. H. Teller; and E. Teller,
"Equation of State Calculations by Fast Computing Machines." Journal of Chem. Phys.
vol. 21, no.6,1953, pp. 1087-1092,.
[47] P. J. M. van Laarhoven and E. H.L. Aarts, Simulated Annealing: Theory and
Applications, D.Reidel Publishing Company, Boston.
[48] V. J. Rayward-Smith, I. H. Osman , C. R. Reeves , G. D. Smith , Modern heuristic
search methods, Chichester; New York: Wiley, cl996.
[49] H. Kantz and T. Schreiber, nonlinear time series analysis, Cambridge University
Press, 2004.
[50] G. L. Baker and J. P. Gollub, Chaotic dynamics: an introduction, Cambridge
University Press, 1990.
[51] R. M. May, "Simple mathematical models with very complicated dynamics,"
Nature, vol. 26, 1976, pp. 459-467.
[52] J. J. Hopfield, "Neurons with graded response have collective computational
properties like those of two-state neurons," Proc. Nat. Acad. Sci. USA, vol. 81, May
1984, pp. 3088-3092.
[53] J. J. Hopfield and D. W. Tank, "Neural computation of decisions in optimization
problems," Journal of Biological Cybernetics, vol. 52, no.3 , July 1985, pp. 141-152,.
[54] E. Ippen, J. Lindner, and W. L. Ditto, "Chaotic Resonance: A Simulation," Journal
of Statistical Physics, vol. 70, no.l, January 1993, pp. 437-450.
[55] R. Rajamani, D. Levinson, P. Michalopoulos, J. Wang, K. Santhanakrishnan, X.
Zou, "Adaptive cruise control system design and its impact on traffic flow", From Web
Resource: http://www.cts.umn.edu/pdf/CTS-05-01 .pdf.
[56] Y. Jiang, "On Ulam-von Neumann transformations", Comm. in Mathematical Phys.
vol.172, no. 3, September, 1995, pp. 449-459.
[57] C.Z. Luo and H.H. Shao, "Evolutionary algorithms with chaotic mutations," Control
Decision , vol. 15, 2000, pp. 557-560.

121

http://www.geocities.com/francorbusetti/saweb.pdf
http://www.cts.umn.edu/pdf/CTS-05-01

[58] L. Yang and T. Chen, "Application of chaos in genetic algorithms," Commun. Theor.
Phys. vol. 38, 2002, pp. 168-172.
[59] M. Dorigo, T. Stutzle. "The ant colony optimization metaheuristic: Algorithms,
applications and advances," In F. Glover and G. Kochenberger, editors, Handbook of
Metaheuristics. Kluwer Academic Publishers, 2003.
[60] V. Maniezzo, L. M. Gambardella, Fabio de Luigi, "Ant colony optimization," in G.
C. Onwubolu, B. V. Babu, editors, New optimization techniques in engineering, Spring,
2004.
[61] A.J. Noest, " Discrete-state phasor neural nets," Physical Review A, vol.38, pp.
2196-2199, 1988.
[62] M.S. Kim, and C.C.Guest, "Modification of Backpropagation for complex-valued
signal processing in frequency domain," in Proc. Int. Conf. Neural Networks, San Diego,
CA, USA, June 17- 21,1990, vol. 3, pp. 27-31.
[63] H. Leung, and S. Haykin, " The Complex back propagation algorithm," IEEE Trans.
Signal Process, vol. 39,1991, pp.2101-2104.
[64] N. Benvenuto and F. Piazza, "On the complex backpropagation algorithm," IEEE
Trans. Signal Process, vol. 40, 1992, pp.967-969.
[65] G.M. Georgiou, C. Koutsougeras, "Complex domain backpropagation," IEEE
Transaction on Circuits and Systems II: Analog and Digital Signal Processing, vol. 39,
no. 5, 1992, pp. 330 - 334.
[66] T.Nitta, "An analysis of the fundamental structure of complex-valued neurons,"
Neural Processing Letters, vol. 12, 2000, pp.239-246.
[67] T.Nitta, "On the inherent property of the decision of melodies by complex-valued
network," Neurocomputing, vol. 50, 2003, pp.291-303.
[68] T. Kim and T. Adali, "Fully complex multi-layer perceptron network for nonlinear
signal processing," Journal of VLSI Signal Processing Systems for Signal Image and
Video Technology, vol. 32, 2002, pp. 29-43.
[69] T. Kim and T. Adali, "Approximation by fully complex multilayer perceptrons,"
Neural Computation, vol. 15, 2003, pp. 1641-1666.
[70] H. Akira, Complex-Valued Neural Networks, Springer, 2006.
[71] A. Malekzadeh-A, M. Akbarzadeh-T, "Complex-Valued Adaptive Neuro Fuzzy
Inference System-CANFIS," in Proc. 2004, World Automation Congress, Seville, Spain
vol. 17, June 28- July 1, 2004, pp. 477 - 482.
[72] Y. Li, Y. T. Jang, "Complex adaptive fuzzy inference systems," Soft Computing in
Intelligent Systems and Information Processing, Proceedings of the 1996 Asian, 11-14
Dec. 1996, pp. 551-556.
[73] J. Man, Z. Chen, S. Dick, "Towards inductive learning of complex fuzzy inference
systems", in Proc. NAFIPS '07, 24-27 June 2007, pp. 415-420.
[74] M. Gruber, Regression Estimators a Comparative Study, Academic Press Inc., 1990.
[75] P. R. Gill, W.Murray, and M. H. Wright, Practical Optimization. London: Academic
Press, pp. 136-137, 1981.
[76] R. Hentschke, M. Johann and R. Reis, Blue Macaw: A Didactic Placement Tool
Using Simulated Annealing, IFIP International Federation for Information Processing,
vol.192, Springer Boston, 2005, pp.37-47.

122

[77] Z. Michalewicz, "Genetic algorithms, numerical optimization and constraints," in
Proc. 6th Int. Con. Genetic Algorithms, 1995, pp.151-158. Morgan Kaufmann Publishers,
inc..
[78] A. Homaifar, C. X. Qi, S. H. Lai, "Constrained optimization via genetic algorithms,"
Simulation, vol. 62, no.4,1994, pp. 242-254.
[79] Himmelblau, D. "Applied Nonlinear Programming," McGraw-Hill. 1992.
Jan. 15,2003, pp. 733-745.
[80] E. Wan, "Time series data," www.cse.ogi.edu/~ericwan/data.html.
[81] A.S. Weigend, N.A. Gershenfeld, " Results of the time series prediction
competition at the Santa Felnstitute," in Proc. IEEE International Conference on
Neural Networks, vol.3,1993, pp.1786-1793.
[82] R. J. Hyndman, "Time series data library,"

(http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/).
[83] T.J. Cholewo, J.M. Zurada, "Sequential network construction for time series
prediction," in Proc. International Conference on Neural Networks, vol.4, 1997,
pp.2034-2038.
[84] M. Li, K. Mehrotra, C. Mohan, S. Ranka, "Sunspot numbers forecasting using
neural networks," in Proc. 5th IEEE International Symposium on Intelligent Control,
vol. 1, 1990, pp. 524-529.
[85] F.H.F. Leung, H.K. Lam, S.H. Ling, P.K.S. Tam, "Tuning of the structure and
parameters of a neural network using an improved genetic algorithm," IEEE Transactions
on Neural Networks, vol. 14, no. 1, Jan. 2003, pp. 79 - 88.
[86] J. Tsai j . chou, T. Liu, 'Tuning the structure and parameters of a neural network by using
hybrid Taguchi-genetic algorithm," IEEE Transactions on Neural Networks, vol. 17, no.
1, Jan. 2006, pp. 6 9 - 8 0 .
[87] Hong X., Harris C.J., "Experimental design and model construction algorithms for
radial basis function networks," International Journal of Systems Science, vol. 34, no. 1,
[88] R. J. Hyndman, A. B. Koehler, "Another look at measures of forecast accuracy,"
International Journal of Forecasting, Volume 22, 2006, pp. 679 - 688.
[89] A. Weigend, "The Sante Fe Time Series Conpetition Data," http://www-
psych.stanford.edu/~andreas/Time-Series/SantaFe.html
[90] U. Huebner, N. B. Abraham, and C. O. Weiss, "Dimensions and entropies of chaotic
intensity pulsations in a single-mode far-infrared NH3 laser," Phys. Rev. A 40, 1989, pp.
6354.
[91] U. Huebner, W. Klische, N. B. Abraham, C. O. Weiss, "On problems encountered
with dimension calculations," Measures of Complexity and Chaos, Plenum Press, New
York 1989, pp. 133.
[92] U. Huebner, W. Klische, N. B. Abraham, C. O. Weiss, "Comparison of Lorenz-like
laser behavior with the Lorenz model," Coherence and Quantum Optics VI, Plenum
Press, New York, 1989, pp. 517.
[93] H. H. Sargent, "A prediction for the next sunspot cycle," in Proc. 28th IEEE
Vehicular Technology Conference, 1978. vol. 28, 22-24 March 1978, pp. 490 - 496
[94] T. J. Cholewo, J. M. Zurada, "Sequential network construction for time series
prediction," in Proc. International Conference on Neural Networks 1997, vol. 4, 9-12
June 1997, pp. 2034 - 2038.

123

http://www.cse.ogi.edu/~ericwan/data.html
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-
http://psych.stanford.edu/~andreas/Time-Series/SantaFe.html

[95] J. Wu, M. Liu, "Improving generalization performance of artificial neural networks
with genetic algorithms," in Proc. IEEE International Conference on Granular
Computing 2005, vol. 1, 25-27 July 2005, pp. 288-291.
[96] T. T. Nguyen, C. P. Willis, D. J. Paddon, H. S. Nguyen, "A hybrid system for
learning sunspot recognition and classification," in Proc. International Conference on
Hybrid Information Technology 2006, vol. 2, Nov. 2006, pp. 257 - 264.
[97] T. Nobuhiko, H. van Dijk, "Combined forecasts from linear and nonlinear time
series models," International Journal of Forecasting, vol. 18, 2002, pp. 421- 438.
[98] L. A. Zadeh, "Evolution of fuzzy logic - from past to future", in Proc. IEEE
International Conference on NAFIPS 2001, Vancouver, Canada July 25-28, 2001.
[99] C. Schmid, "Dynamics of multidisplicinary and controlled Systems",
(http://www.esr.ruhr-uni-bochum.de/rtl/syscontrol/main.html).
[100] N. Soylemezogolu, The Logic of Fuzziness,
(http://www.math.harvard.edU/~hmb/issue2.l/FUZZY/fuzzy.html)
[101] J. M. Mendel, "Uncertainty, fuzzy logic, and signal processing," Signal Proc. J.,
vol. 80, no. 6, pp. 913-933, 2000.
[102] D. Moses, O. Degani, H.-N. Teodorescu, M. Friedman, and A. Kandel, "Linguistic
coordinate transformations for complex fuzzy sets," in Proc. 1999 IEEE Int. Conf. Fuzzy
Systems, Seoul, Korea, Aug. 22-25, 1999, pp. 1340-1345.
[103] A. Kaufman and M. M. Gupta, Introduction to Fuzzy Arithmetic. New York: Van
Nostrand Reinhold, 1985.
[104] H. T. Nguyen, A. Kandel, and V. Kreinovich, "Complex fuzzy sets: toward new
foundations," in Proc. 2000 IEEE Int. Conf. Fuzzy Systems, San Antonio, TX, May 7-10,
2000, pp. 1045-1048.

124

http://www.esr.ruhr-uni-bochum.de/rtl/syscontrol/main.html
http://www.math.harvard.edU/~hmb/issue2.l/FUZZY/fuzzy.html

