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Abstract

In this paper we find irreducible characters of G = SLk(ℤ/pnℤ), where

n ≥ 2, k = 2, 3 and, p is an odd prime. In the case k = 2 we give a construction

for every irreducible character of G without calculating the character values.

Our method is based on finding a normal subgroup of G and applying Clifford

theory.
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Chapter 1

Introduction

1.1 Understanding SLk(ℤ/pnℤ)

Definition 1.1.1. Given a commutative ring with unity R, the general linear group GLk(R) is

the group of invertible k × k matrices with entries in R, under the group operation of matrix

multiplication.

From linear algebra over a field F we know a matrix M with entries in F is invertible ⇔

detM ∕= 0. More generally if we consider linear algebra over a commutative ring with unity R

there is an analogous result shown below. The determinant of a square matrix M over a commutative

ring with unity can be defined exactly as for a square matrix over a field, and the usual elementary

properties of determinants carry over. We make use of the following facts carried over from standard

linear algebra:

(i) A,B ∈Mk(R) ⇒ detAB = detAdetB

(ii) M ∈ Mk(R) ⇒ M ⋅ adj(M) = adj(M) ⋅M = detM ⋅ Ik, where adj(M) is the transpose of the

matrix of cofactors.

Proposition 1.1.2. Let R be a commutative ring with unity, and let M ∈ Mk(R). Then M is

invertible ⇔ detM ∈ R×
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1.1. Understanding SLk(ℤ/pnℤ)

Proof. “ ⇒ ”

Let M ∈Mk(R)be invertible

⇒M ⋅N = Ik for some N ∈Mk(R)

⇒ det(M ⋅N) = det Ik

⇒ detM ⋅ detN = 1 using (i)

⇒ detM ∈ R× since (detM)−1 = detN in R.

“⇐”

Let M ∈Mk(R) with detM ∈ R×

⇒ (detM)−1 ⋅M ⋅ adj (M) = (detM)−1 ⋅ adj (M) ⋅M

= (detM)−1 ⋅ detM ⋅ Ik multiplying (ii) by (detM)−1

⇒M ⋅
(
(detM)−1 ⋅ adj (M)

)
=
(
(detM)−1 ⋅ adj (M)

)
⋅M = Ik

⇒M is invertible.

So, now

GLk(R) = {M ∈Mk(R) ∣ detM ∈ R×},

and we can define GLk(R)’s subgroup of interest:

Definition 1.1.3. Given a commutative ring with unity R, the special linear group SLk(R) is a

subgroup of GLk(R) with matrices having determinant 1.

Proposition 1.1.4. Let R be a commutative ring with unity, there is a short exact sequence:

1→ SLk(R)
inj−→ GLk(R)

det−→ R× → 1

Proof. To prove this we show the map det is surjective and image inj = ker det ([3],p.379). The

fact image inj = ker det follows directly form the definition of SLk(R), so we are left to show: det

2



1.1. Understanding SLk(ℤ/pnℤ)

is surjective. Let x ∈ R×

⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= x

⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= M ∈ GLk(R), by Proposition 1.1.2.

So we have det(M) = x and det is surjective.

Applying the first isomorphism theorem to this short exact sequence gives the following corol-

lary:

Corollary 1.1.5. Given a commutative ring with unity R we have:

SLk(R) ⊴GLk(R) and,

GLk(R)/SLk(R) ≃ R×.

3



Chapter 2

Preliminary Results

2.1 The Size of SLk(ℤ/pnℤ)

In the following proof we use the fact ([1],p.11):

∣GLk(ℤ/pnℤ)∣ = pk
2(n−1)

k∏
t=1

(
pk − p(t−1)

)
.

Proposition 2.1.1.

∣ SLk(ℤ/pnℤ) ∣=
p(k

2−1)(n−1)
k∏
t=1

(
pk − p(t−1)

)
p− 1

.

Proof. From 1.1.5 we have:

GLk(ℤ/pnℤ)/SLk(ℤ/pnℤ) ≃ (ℤ/pnℤ)×

⇒ ∣ GLk(ℤ/p
nℤ) ∣

∣ SLk(ℤ/pnℤ) ∣
=∣ (ℤ/pnℤ)× ∣

⇒∣ SLk(ℤ/pnℤ) ∣=
pk

2(n−1)
k∏
t=1

(
pk − p(t−1)

)
pn−1(p− 1)

Corollary 2.1.2.

∣ SL2(ℤ/pnℤ) ∣= p3n−2(p2 − 1)

∣ SL3(ℤ/pnℤ) ∣= p8n−5(p3 − 1)(p2 − 1)

4



2.2. Quadratic Residues of ℤ/pnℤ and the Subgroup S

2.2 Quadratic Residues of ℤ/pnℤ and the Subgroup S

In the last section of chapter 3 we will need the following preliminary results detailed in this section.

Definition 2.2.1. Let a,m be relatively prime integers. If there exists an integer x that satisfies

x2 ≡ a (mod m)

then a is said to be a quadratic residue of m. Otherwise, a is called a quadratic nonresidue of m.

In the group (ℤ/pℤ)× there are exactly p−1
2 quadratic residues of p. In this section we prove a

corresponding result for ℤ/pnℤ, along with another result which will help calculate the size of an

important subgroup of SLk(ℤ/pnℤ).

Proposition 2.2.2. In the group (ℤ/pnℤ)× there are exactly pn−pn−1

2 quadratic residues of pn.

Proof. Let a ∈ (ℤ/pnℤ)×. Our first step is to show the equation x2 ≡ a mod pn has exactly 0 or 2

solutions. To do this we show the equation x2 ≡ a mod pn can not have a unique solution and has

at most 2 solutions.

∙ Let x ∈ (ℤ/pnℤ)× be a solution so that, x2 ≡ a mod pn. Then (−x)2 ≡ a mod pn so, −x is

also a solution. Now if there is to be exactly one solution to x2 ≡ a mod pn we must have −x ≡ x

mod pn. But,

−x ≡ x mod pn ⇒ 2x ≡ 0 mod pn
p odd⇒ x ≡ 0 mod pn ⇒ x ∕∈ (ℤ/pnℤ)×

is a contradiction. Therefore, there can not be exactly one solution to x2 ≡ a mod pn.

∙ Let x1, x2 ∈ (ℤ/pnℤ)× be solutions to x2 ≡ a mod pn. First note, p ∤ (x1−x2) or p ∤ (x1 +x2)

since: p ∤ 2x1 = (x1 − x2) + (x1 + x2). Now

⇒ x21 ≡ x22 mod pn

⇒ x21 − x22 ≡ (x1 − x2)(x1 + x2) ≡ 0 mod pn

⇒ pn ∣ (x1 − x2)(x1 + x2)

⇒ pn ∣ (x1 − x2) or pn ∣ (x1 + x2) since: p ∤ (x1 − x2) or p ∤ (x1 + x2)

⇒ x1 ≡ x2 mod pn or x1 ≡ −x2 mod pn.

5



2.2. Quadratic Residues of ℤ/pnℤ and the Subgroup S

Therefore there can not be three (or more) solutions to x2 ≡ a mod pn and our first step has been

shown.

Now consider the set of all the squares in (ℤ/pnℤ)×:{
x21, x

2
2, . . . , x

2
pn−pn−1

}
,

and of course for each i: xi above is a solution to x2 ≡ a mod pn (letting a ≡ x2i mod pn). Therefore

each square in (ℤ/pnℤ)× is equivalent to exactly two choices of x2i , in other words we can write our

set in the form: {
x2i1 = x2i2 , x

2
i3 = x2i4 , . . . , x

2
ipn−pn−1−1

= x2ipn−pn−1

}
,

with exactly pn−pn−1

2 distinct elements. Meaning (ℤ/pnℤ)× has exactly pn−pn−1

2 quadratic residues

of pn.

Proposition 2.2.3. Let a ∈ (ℤ/pnℤ)×. a is a quadratic residue of pn ⇔ a is a quadratic residue

of p. Equivalently in terms of the Legendre symbol:(
a

pn

)
=

(
a

p

)
.

Proof. To prove this result, we show the inductive step: a is a quadratic residue of pn ⇔ a is a

quadratic residue of pn+1.

“⇒” Assume a is a quadratic residue of pn, so we can pick x1 ∈ ℤ with x21 ≡ a mod pn. This

means x21 + mpn = a for some m ∈ ℤ. Now, p ∤ a ⇒ p ∤ x1 ⇒ x1 mod pn+1 is a unit in ℤ/pn+1ℤ

gives:

(x1 + x−11 2−1mpn)2 ≡ x21 +mpn + lpn+1 ≡ a mod pn+1

for some integer l. Therefore, a is a quadratic residue of pn+1

“⇐” If a is a quadratic residue of pn+1 then we can pick x1 ∈ ℤ so:

x21 ≡ a mod pn+1 ⇒ x21 ≡ a mod pn.

Therefore, a is a quadratic residue of pn.

6



2.2. Quadratic Residues of ℤ/pnℤ and the Subgroup S

With the help of the two results above we investigate the size of an important subgroup of

G = SL2(ℤ/pnℤ). Let " be a quadratic nonresidue of p and define:

S =

{[
a b"
b a

]
∈ G

∣∣∣∣ a, b ∈ ℤ/pnℤ} .
Proposition 2.2.4. S is an abelian subgroup of SL2(ℤ/pnℤ)

Proof. Given s, s′ ∈ S we have:

s ⋅ s′ =

⎡⎢⎣a b"

b a

⎤⎥⎦ ⋅
⎡⎢⎣c d"

d c

⎤⎥⎦ =

⎡⎢⎣ac+ bd" (ad+ bc)"

ad+ bc ac+ bd"

⎤⎥⎦ =

⎡⎢⎣c d"

d c

⎤⎥⎦ ⋅
⎡⎢⎣a b"

b a

⎤⎥⎦ = s′ ⋅ s ∈ S,

so S is an abelian subgroup of SL2(ℤ/pnℤ).

Proposition 2.2.5. ∣ S ∣= (p+ 1)pn−1.

Proof. In ([1],p.12) the size of a very similar subgroup

S′ =

⎧⎨⎩
⎡⎢⎣ a b"

b a

⎤⎥⎦ ∈ GL2(ℤ/pnℤ)

∣∣∣∣∣∣∣ a, b ∈ ℤ/pnℤ
⎫⎬⎭ ,

is calculated as: (p2 − 1)p2n−2. Naturally we pick the homomorphism det : S′ −→ (ℤ/pnℤ)× and

use the first isomorphism theorem to show: S′/S ≃ (ℤ/pnℤ)×. We need to show det is surjective,

to do this we start by considering the case n = 1 and let Fp2 = ℤ/pℤ(
√
"), and Fp = ℤ/pℤ. Now

we have a Galois extension Fp2
/
Fp of degree 2 ([3], page: 566) so Gal(Fp2

/
Fp) = {1, �}. Define the

norm map:

N : Fp2 −→ Fp

x = a+ b
√
" 7−→ a2 − "b2 = (a+ b

√
")(a− b

√
") = x ⋅ �(x),

here the Galois automorphism � is defined by
√
" 7−→ −

√
". We can also consider x 7−→ xp which

defines an automorphism of Fp2 fixing Fp therefore it is the nontrivial element of Gal(Fp2
/
Fp) =

7



2.2. Quadratic Residues of ℤ/pnℤ and the Subgroup S

{1, �}. Thus we can also write �(x) = xp. Now pick v a generater of the cyclic group F×
p2

so

< vp+1 >= F×p . Finally pick an arbitrary (vp+1)i ∈ F×p and we have:

N(vi) = vi�(vi) = vi(vi)p = (vp+1)i

and so the norm map N is surjective. This shows when n = 1 the map det is surjective. For the

case n > 1 consider z ∈ (ℤ/pnℤ)×. We know from the case n = 1 we can write z = a2 − "b2 + pn∗

for some a, b, n∗. By using 2.2.3 we can pick y ∈ (ℤ/pnℤ)× so that y2 = a2 + pn∗ and we have:∣∣∣∣∣∣∣
y b"

b y

∣∣∣∣∣∣∣ = y2 − b2" = a2 + pn∗ − b2" = z.

Therefore det is surjective and we conclude:

∣ S ∣= ∣ S′ ∣
∣ (ℤ/pnℤ)× ∣

=
(p2 − 1)p2n−2

pn − pn−1
= (p+ 1)pn−1.
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2.3. Cubic Residues of ℤ/pnℤ and the Subgroup S

2.3 Cubic Residues of ℤ/pnℤ and the Subgroup S

In the last section of chapter 4 we will need the subgroup S (defined below) in this section we

calculate its size. In this section we let p > 3.

Definition 2.3.1. Let a,m be relatively prime integers. If there exists an integer x that satisfies

x3 ≡ a (mod m)

then a is said to be a cubic residue of m. Otherwise, a is called a cubic nonresidue of m.

An irreducible polynomial x3 − cx2 − bx− a ∈ ℤ/pℤ[x] was chosen in ([1],p.13) to define:

B =

⎡⎣ 0 0 a
1 0 b
0 1 c

⎤⎦ .
We define B in the same way but we are very careful of which irreducible polynomial we pick as

the following cases illustrate:

∙ If p ≡ 1 (mod 3) then let a be a cubic nonresidue b = 0, c = 0

∙ If p ≡ 2 (mod 3) then choose a, b and c = 0 so x3 − bx− a is irreducible.

With these choices we define:

S =
{
xI + yB + zB2 ∈ SL3(ℤ/pnℤ)

}
.

The choices for a, b, c will make sense below when we calculate the size of S. The following gives

the number of cubic residues in (ℤ/pnℤ)× (recall that we only consider n ≥ 2).

Proposition 2.3.2.

∣∣{x3∣∣x ∈ ℤ/pnℤ}∣∣ =

⎧⎨⎩ pn − pn−1 p ≡ 2 (mod 3)

pn−pn−1

3 p ≡ 1 (mod 3)

Proof. We start by referencing ([8],p.218) where they prove the proposition for n = 1. So to prove

our result as in 2.2.3, we show the inductive step: a ∈ (ℤ/pnℤ)× is a cubic residue of pr ⇔ a is a

9



2.3. Cubic Residues of ℤ/pnℤ and the Subgroup S

cubic residue of pr+1. “⇒” Assume a is a cubic residue of pr, so we can pick x1 ∈ ℤ with x31 ≡ a

mod pr. This means x31 +mpr = a for some m ∈ ℤ. Now, p ∤ a⇒ p ∤ x1 ⇒ x1 is a unit gives:

(x1 + x−21 3−1mpr)3 ≡ x31 +mpr + spr+1 ≡ a mod pr+1

for some integer s. Therefore a is a cubic residue of pr+1. “⇐” is shown with the same method

used in 2.2.3.

Now we can count the number of cubic residues in each case: when p ≡ 2 (mod 3) we have

p − 1 cubic residues of pn amongst each set: {ip + 1, ip + 2, . . . , ip + (p − 1)}i (by our inductive

step), and there are pn−1 such sets in (ℤ/pnℤ)×. Therefore there are pn−1 ⋅ (p − 1) = pn − pn−1,

cubic residues of pn. Similarly when p ≡ 1 (mod 3) we have p−1
3 cubic residues of pn amongst each

set: {ip+ 1, ip+ 2, . . . , ip+ (p− 1)}i so there are pn−1 ⋅ p−13 = pn−pn−1

3 , cubic residues of pn.

Proposition 2.3.3.

∣S∣ = (p2 + p+ 1)p2n−2

Proof. We use the same method from 2.2.5; so our goal is to calculate the image of det: S′ ={
xI + yB + zB2 ∈ GL3(ℤ/pnℤ)

}
→ (ℤ/pnℤ)×. We consider elements xI+yB+zB2 ∈ S′ and look

at their image:

(1) x3 ∈ Image(det) letting x ∈ (ℤ/pnℤ)×, y = z = 0

(2) ay3 ∈ Image(det) letting y ∈ (ℤ/pnℤ)×, x = z = 0

(3) a2z3 ∈ Image(det) letting z ∈ (ℤ/pnℤ)×, x = y = 0 .

Now we consider each case in our construction of B and use 2.3.2. When p ≡ 2 (mod 3) all elements

of (ℤ/pnℤ)× are cubic residues; so (1) gives Image(det) = (ℤ/pnℤ)×. When p ≡ 1 (mod 3) we

have chosen a to be a cubic nonresidue; so letting X be the subgroup of cubic residues (1), (2), (3)

respectively give the distinct coset X, aX, a2X ∈ Image(det). In this case each of these cosets have

size: pn−pn−1

3 , therefore again Image(det) = (ℤ/pnℤ)×. So we use ([1],p.14) to conclude:

∣S∣ = ∣S′∣
∣Image(det)∣

=
∣S′∣

∣(ℤ/pnℤ)×∣
=

(p3 − 1)p3n−3

pn − pn−1
= (p2 + p+ 1)p2n−2.

10



2.4. Character Theory

2.4 Character Theory

In this section we create a quick reference for the character theory used in this paper.

Definition 2.4.1. Let G be a group, and let V be a vector space. A representation of G in V is a

group homomorphism � : G→ GL(V ) from G to the general linear group GL(V ) of invertible linear

transformations of V . The representation � is irreducible if there is no proper nonzero invariant

subspace of V under �.

Alternatively we have a corresponding definition.

Definition 2.4.2. A (matrix ) representation of a group G is a group homomorphism between G

and GLk(ℂ), that is, a function

� : G→ GLk(ℂ)

such that �(gℎ) = �(g)�(ℎ).

Notice that this definition is equivalent to the above definition when the vector space V is finite

dimensional over ℂ. The parameter k (or in the above case, the dimension of V ) is called the degree

of the representation denoted dim(�).

Definition 2.4.3. Let G be a group. The Character � of a representation

� : G→ GLk(ℂ)

is defined as:

�(g) = tr(�g) (g ∈ G).

We say � is a character of G if � is the character of some representation of G. Further, � is an

irreducible character of G if � is the character of some irreducible representation of G. We define

the set Irr(G) to be the set of all irreducible characters of G. The degree of � is given by degree

of �.

Remark 2.4.4. By the definition, representations of degree 1 are also characters, these are called

linear characters. In fact, these are the only characters which are homomorphisms: since given a

character � of a representation �, which is a homomorphism,

11
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�(1) = �(1 ⋅ 1) = �(1)2 ⇒ �(1) = 1.

Also, �(1) = “degree of �” because:

�(1) = tr(�(1)) = tr(Idim(�)) = dim(�) = “degree of �”.

In [5],p.82 all irreducible representations of finite abelian groups are determined. Since rep-

resentations of abelian groups are always of degree 1 they are also characters. So all irreducible

characters of finite abelian groups are determined. We now state the theorem.

Theorem 2.4.5. Let G be the abelian group Cn1×. . .×Cnr . Let gi be a generator of Cni (1 ≤ r ≤ 1).

Let �i be nith roots of unity (1 ≤ r ≤ 1). Define the map:

��1,...,�r : G −→ ℂ

��1,...,�r(g
i1
1 . . . g

ir
r ) = �i11 . . . �

ir
r .

There are ∣G∣ choices for ��1,...,�r which give all the irreducible characters of G.

Definition 2.4.6. Let H ≤ G be a subgroup and suppose that � is a character of H. We say �

is extendible to G if ∃�, a character of G, such that �H = �. We call � an extension of � to G.

Given two subgroups with characters of degree 1 there is a very useful construction of an

extension to the product of the two characters.

Definition 2.4.7. Let � and  be characters of a group G. Then

[�,  ] =
1

∣ G ∣
∑
g∈G

�(g) (g)

is the inner product of � and  .

Proposition 2.4.8. ([6],p.21) Let � and  be characters of G. Then [�,  ] = [ , �] is a nonnegative

integer. Also � is irreducible if and only if [�, �] = 1.

Definition 2.4.9. Let H ≤ G be a subgroup and let � be a character of H. Then �G, the induced

character on G, is given by

�G(g) =
1

∣ H ∣
∑
x∈G

�∘(xgx−1),

12



2.4. Character Theory

where �∘ is defined by �∘(ℎ) = �(ℎ) if ℎ ∈ H and �∘(y) = 0 if y ∕∈ H. Letting g = 1 in the above

sum gives:

deg(�G) = deg(�)
∣ G ∣
∣ H ∣

.

Proposition 2.4.10. ([6],p.73) Let H < K < G and suppose that � is a character of H. Then

(�K)G = �G.

Lemma 2.4.11. (Frobenius Reciprocity) Let H ≤ G and suppose that � is a character on H

and that � is a character on G. Then

[�, �H ] = [�G, �].

Definition 2.4.12. ([6],p.78) Let N ⊲G. If � is a character of N and g ∈ G, we define �g : N → ℂ

by �g(ℎ) = �(gℎg−1). We say that �g is conjugate to � in G.

Lemma 2.4.13. ([6],p.78) Let N ⊲G and let �, � be characters of N and x, y ∈ G. Then

(a) �x is a character;

(b) (�x)y = �xy;

(c) [�x, �x] = [�, �];

(d) [�N , �
x] = [�N , �] for characters � of G.

Remark 2.4.14. Letting N ⊲G we can now consider the following group action: let G act on the

set Irr(N) by defining g ⋅ � = �g, for g ∈ G and � ∈ Irr(N). This is an action since �1 = �, and

by part (b) above. Recall the stabilizer for this action:

G� =
{
g ∈ G

∣∣∣ �g = �
}
.

When G� = G we say � is stable under G.

We now state a result from [6],p.82 which is of fundamental importance in character theory of

normal subgroups. This paper uses this theorem extensively.

13
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Theorem 2.4.15. Let N ⊲G, � ∈ Irr(N), and T = G�. Let

A = { ∈ Irr(T ) ∣ [ N , �] ∕= 0},ℬ = {� ∈ Irr(G) ∣ [�N , �] ∕= 0}.

Then

(a) If  ∈ A, then  G is irreducible;

(b) The map  7→  G is a bijection of A onto ℬ;

(c) If  G = �, with  ∈ A, then  is the unique irreducible constituent of �T which lies in A;

(d) If  G = �, with  ∈ A, then [ N , �] = [�N , �].

Corollary 2.4.16. Let N ⊲G and � ∈ Irr(N). Then �G ∈ Irr(G)⇔ G� = N .

Proposition 2.4.17. Let N be a subgroup affording the character � of degree 1, and let H be a

subgroup affording the character  of degree 1. If NH is a group with N ⊴ NH, �N∩H =  N∩H

and � stable under H then:

� : NH −→ ℂ

� : nℎ 7−→ �(n) (ℎ),

is a extension of � and  to NH .

Proof. First we show � is well defined. Consider two elements n1ℎ1, n2ℎ2 ∈ NH where n1ℎ1 = n2ℎ2,

we want to show �(n1ℎ1) = �(n2ℎ2) :

�(n1ℎ1)

= �(n1) (ℎ1)

= �(n2x) (x−1ℎ2) letting x = n−12 n1 = ℎ2ℎ
−1
1 ∈ N ∩H

= �(n2)�(x) (x)−1 (ℎ2) �,  are homomorphisms

= �(n2)�(x)�(x)−1 (ℎ2) �N∩H =  N∩H

= �(n2) (ℎ2)

= �(n2ℎ2).

14
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Also, � is a homomorphism:

�(n1ℎ1 ⋅ n2ℎ2)

= �(n1ℎ1n2ℎ
−1
1 ℎ1ℎ2)

= �(n1ℎ1n2ℎ
−1
1 ) (ℎ1ℎ2) using N ⊴NH

= �(n1)�(ℎ1n2ℎ
−1
1 ) (ℎ1) (ℎ2)

= �(n1) (ℎ1)�(n2) (ℎ2) since � is stable under H

= �(n1ℎ1) ⋅ �(n2ℎ2).

Therefore � is a character with degree 1 of NH.

Lemma 2.4.18. Let G be a group, N ⊲ G,S < G,S be abelian, and G = NS. If � ∈ Irr(N) is

such that deg(�) = 1 and � is stable under G then � is extendible to G.

Note: whenever � a character defined on a normal subgroup is extended to a group G, we also

have � stable under G.

Proposition 2.4.19. Let N ⊲G with G/N cyclic and let � ∈ Irr(N) be stable under G. Then �

is extendible to G.

Proposition 2.4.20. Let G be a group, H ≤ G. Let �,  be characters of G such that � ∈ Irr(G),

�H ∈ Irr(H), and [�,  ] ∕= 0. Then [�H ,  H ] ∕= 0.

Proof. Let �, �1, . . . �m be all the irreducible characters of G and �H , �1, . . . �l be all the irreducible

characters of H and so [5], p.142 gives:

 = d�+ d1�1 + . . .+ dm�m where d, di are non-negative integers and d ∕= 0

⇒  H = d�H + d1�1H + . . .+ dm�mH
by restricting to H

⇒  H = d�H +
m∑
i=1

⎛⎝di
⎛⎝ei�H +

l∑
j=1

(eij�j)

⎞⎠⎞⎠ where eij , ei are non-negative integers

⇒ [ H , �H ] = d+ (d1e1 + . . .+ dmem) ∕= 0 since d1e1 + . . .+ dmem is a non-negative integer
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Proposition 2.4.21. Given N ⊴G, and �̃ ∈ Irr(G╱N), then

� : G −→ ℂ

� : g 7−→ �̃(gN),

is an irreducible character of G, called the lift of �̃ to G. Also, � and �̃ have the same degree.

Proposition 2.4.22. Let N ⊲ G and let � ∈ Irr(G) and � ∈ Irr(N) with [�N , �] ∕= 0. Then the

following are equivalent:

(a) �N = e�, with e2 =∣ G : N ∣;

(b) � vanishes on G−N and � is invariant in G;

(c) � is the unique irreducible constituent of �G and � is invariant in G.

Theorem 2.4.23. (Gallagher) Let N ⊲ G,� ∈ Irr(G) be such that �N = � ∈ Irr(N). Then the

characters �� for �̃ ∈ Irr(G/N) are irreducible, distinct for distinct �̃, and are all of the irreducible

constituents of �G.

Theorem 2.4.24. (Clifford) Let N ⊲G and � ∈ Irr(G). Let � be an irreducible constituent of �N

and suppose � = �1, �2, . . . , �t are the distinct conjugates of � in G. Then

�N = [�N , �]
t∑
i=1

�i.

16



Chapter 3

Irreducible Character Degrees of
SL2(ℤ/pnℤ)

3.0 Introduction

In this chapter we let,

G = SL2(ℤ/pnℤ)

and find characters of G using 2.4.15. Our first step is to find a normal subgroup of G, so throughout

this chapter for an integer m, we let:

Lm =
{
I + pmA

∣∣∣ A ∈M2(ℤ/pnℤ), det(I + pmA) = 1
}
.

Proposition 3.0.1. Lm is a normal subgroup of G, with ∣Lm∣ = p3(n−m). Furthermore when

⌈n2 ⌉ ≤ m, Lm is abelian.

Proof. Start by considering the map

f : G −→ SL2(ℤ/pmℤ)

f : A 7−→ A mod pm.

The map f is a homomorphism since given A,B ∈ G

f(AB) = AB mod pm = (A mod pm) ⋅ (B mod pm) = f(A)f(B).

17
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Now ker(f) = Lm and we have Lm ⊴G. To find ∣Lm∣ we consider:

Km =
{
I + pmA

∣∣∣ A ∈M2(ℤ/pnℤ)
}
≤ GL2(ℤ/pnℤ).

The map det : Km −→ (ℤ/pnℤ)× has ker(det) = Lm so by the first isomorphism theorem:

∣Lm∣ =
∣Km∣

∣det(Km)∣
=

∣Km∣
∣{1 + pmx∣x ∈ ℤ/pnℤ}∣

=
p4(n−m)

pn−m
= p3(n−m).

Also, given that ⌈n2 ⌉ ≤ m, Lm is abelian because:

(I + pmA)(I + pmB)

= I + pm(A+B) + p2mAB

= I + pm(A+B) p2m = 0 since 2m ≥ 2
⌈n

2

⌉
≥ n

= I + pm(B +A) + p2mBA

= (I + pmA)(I + pmB).

Remark 3.0.2. Consider the map:

� : Lm −→M2(ℤ/pn−mℤ)

� : I + pmA 7−→ A mod pn−m,

which is well defined since given I + pmA, I + pmB ∈ Lm we have:

I + pmA = I + pmB ⇒ pmA = pmB ⇒ A ≡ B mod pn−m.

Also � is injective because:

A mod pn−m ≡ �(I+pmA) ≡ �(I+pmB) ≡ B mod pn−m ⇒ pmA = pmB ⇒ I+pmA = I+pmB.

Therefore we know Lm is in a one to one correspondence with �(Lm). So by picking an element

in �(Lm) we can uniquely determine an element in Lm. We now make a convention throughout

this paper to use this correspondence when in context; so it makes sense to say:

Lm =
{
I + pmA

∣∣∣ A ∈M2(ℤ/pn−mℤ), det(I + pmA) = 1
}
.

Note: the corresponding convention is also made on other subgroups of G.

18
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Now for the case ⌈n2 ⌉ ≤ m we classify Lm as an abelian group. This will provide us with

irreducible characters of Lm as all irreducible characters of any abelian group are known.

Proposition 3.0.3. Lm ≃ ℤ/pn−mℤ× ℤ/pn−mℤ× ℤ/pn−mℤ when ⌈n2 ⌉ ≤ m.

Proof. We start by defining the following matrices:

B1 = I + pm

⎛⎜⎝1 0

0 −1

⎞⎟⎠ , B2 = I + pm

⎛⎜⎝0 1

0 0

⎞⎟⎠ , B3 = I + pm

⎛⎜⎝0 0

1 0

⎞⎟⎠ .

Notice that when multiplying elements I + pmA, I + pmB ∈ Lm, as above we have the equality:

(I + pmA)(I + pmB) = I + pm(A+B),

so multiplication in Lm is determined by the addition A + B. We use this fact to calculate the

subgroups:

< B1 >=

⎧⎨⎩I + pm

⎛⎜⎝i 0

0 −i

⎞⎟⎠ ∣∣∣∣∣ i ∈ ℤ/pn−mℤ
⎫⎬⎭ ,

< B2 >=

⎧⎨⎩I + pm

⎛⎜⎝0 j

0 0

⎞⎟⎠ ∣∣∣∣∣ j ∈ ℤ/pn−mℤ
⎫⎬⎭ ,

< B3 >=

⎧⎨⎩I + pm

⎛⎜⎝0 0

k 0

⎞⎟⎠ ∣∣∣∣∣ k ∈ ℤ/pn−mℤ
⎫⎬⎭ .

Now,
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3.0. Introduction

∙ < B1 >< B2 >≤ Lm since Lm is abelian

∙ < B1 >,< B2 > ⊴ < B1 >< B2 > since Lm is abelian

∙ < B1 >
∩
< B2 >= I by examining the above subgroups

=⇒

< B1 >< B2 >=< B1 > × < B2 > by ([4],p.248) (internal direct product).

Similarly,

∙(< B1 > × < B2 >) < B3 >≤ Lm since Lm is abelian

∙ < B1 > × < B2 >,< B3 > ⊴(< B1 > × < B2 >) < B3 > since Lm is abelian

∙ < B1 > × < B2 >
∩
< B3 >= I < B1 > × < B2 > contains only up-

per triangular matrices while, < B3 >

contains only lower triangular matrices

=⇒

(< B1 > × < B2 >) < B3 >=< B1 > × < B2 > × < B3 > by ([4],p.248) (internal direct product).

So now we have the direct product:

< B1 > × < B2 > × < B3 >⊆ Lm.

By the definition of the direct product we can calculate the size

∣< B1 > × < B2 > × < B3 >∣ = pn−mpn−mpn−m = p3(n−m).

From 3.0.1 we also have ∣Lm∣ = p3(n−m). So the facts ∣Lm∣ = ∣< B1 > × < B2 > × < B3 >∣ and

< B1 > × < B2 > × < B3 >⊆ Lm imply:

< B1 > × < B2 > × < B3 >= Lm.
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Finally the map:

< B1 > × < B2 > × < B3 > −→ ℤ/pn−mℤ× ℤ/pn−mℤ× ℤ/pn−mℤ

Bi
1B

j
2B

k
3 7−→ (i, j, k) for i, j, k ∈ ℤ/pn−mℤ

is an isomorphism.

∴ Lm ≃ ℤ/pn−mℤ× ℤ/pn−mℤ× ℤ/pn−mℤ.

Remark 3.0.4. From this proof we can see that every element of Lm can be written uniquely in

the form Bi
1B

j
2B

k
3 for i, j, k ∈ ℤ/pn−mℤ. We will continue to use B1, B2, B3 in the next section.

Now that we know which abelian group Lm is we can use 2.4.5 to find it’s characters.
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2 .

3.1 An Irreducible Character of Degree pn−2(p2−1)
2 .

3.1.1 When n is Even.

In this subsection we assume n is even and define m so that: n=2m .

Our goal is to find all the ingredients to use 2.4.15 to find a character of G. We start by picking

three pm-th roots of unity: (1, !, 1), where ! is some primitive pm-th root of unity. Using these

roots of unity with 2.4.5 we can define a character of Lm:

�

[
1 + ipm jpm

kpm 1− ipm
]

= �1,!,1(B
i
1B

j
2B

k
3 ) = 1i!j1k = !j ,

where Bi
1B

j
2B

k
3 ∈ Lm as in 3.0.3. Our first step is to calculate the stabilizer of � with G acting on

Irr(Lm) (the group action used here is defined in 2.4.14).

Proposition 3.1.1.

G� = T =

⎧⎨⎩
⎡⎢⎣ � + apm bpm

c d

⎤⎥⎦
∣∣∣∣∣∣∣

a, b ∈ ℤ/pmℤ, c ∈ ℤ/p2mℤ,

d = (1 + pmbc)(� − apm), � ∈ {1,−1}

⎫⎬⎭ ,

and

∣ G� ∣= 2p4m.

Proof. The proof is by double inclusion:

”⊆” Let g =

⎡⎢⎣a b

c d

⎤⎥⎦ ∈ G�
⇒ �g = �

⇒ �g

⎡⎢⎣1 + xpm ypm

wpm 1− xpm

⎤⎥⎦ = �

⎡⎢⎣1 + xpm ypm

wpm 1− xpm

⎤⎥⎦ equality holding ∀x, y, w ∈ ℤ/pmℤ

⇒ �

⎛⎜⎝
⎡⎢⎣a b

c d

⎤⎥⎦
⎡⎢⎣1 + xpm ypm

wpm 1− xpm

⎤⎥⎦
⎡⎢⎣ d −b

−c a

⎤⎥⎦
⎞⎟⎠ = !y
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⇒ �

⎡⎢⎣1 + pm(2bcx+ bdw − acy + x) pm(−2bax− b2w + a2y)

pm(2dcx+ d2w − c2y) 1− pm(2bcx+ bdw − acy + x)

⎤⎥⎦ = !y

⇒ !−2 bax−b2w+a2y = !y

⇒ −2bax− b2w + a2y ≡ y mod pm since ! is a primitive pm-th root of

unity

⇒ a2 ≡ 1 mod pm letting: x = 0, y = 1, w = 0

& − 2ba ≡ 0 mod pm letting: x = 1, y = 0, w = 0

⇒ a ≡ ±1 mod pm by [7],p.157

& b ≡ 0 mod pm since −2a ∈ (ℤ/pmℤ)×

⇒ g =

⎡⎢⎣� + n1p
m n2p

m

c (1 + pmn2c)(� − n1pm)

⎤⎥⎦ for n1, n2 ∈ ℤ/pmℤ, and using:

d = (1 + bc)a−1, and � ∈ {1,−1}

⇒ g ∈ T

⇒ G� ⊆ T

”⊇” Let t =

⎡⎢⎣� + apm bpm

c d

⎤⎥⎦ ∈ T

⇒ �t

⎡⎢⎣1 + xpm ypm

wpm 1− xpm

⎤⎥⎦ for x, y, w ∈ ℤ/pmℤ
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= �

⎛⎜⎝
⎡⎢⎣� + apm bpm

c d

⎤⎥⎦
⎡⎢⎣1 + xpm ypm

wpm x− ipm

⎤⎥⎦
⎡⎢⎣ d −bpm

−c � + apm

⎤⎥⎦
⎞⎟⎠

= �

⎡⎢⎣ 1 + �(dx− cy)pm ypm

pm(2dcx+ d2w − c2y) 1− �(dx− cy)pm

⎤⎥⎦

= �

⎡⎢⎣1 + xpm ypm

wpm x− ipm

⎤⎥⎦
⇒ �t = �

⇒ t ∈ G�

⇒ T ⊆ G�

∴ T = G�. Also in the set T there are 2 choices for �, pm choices for each of {a, b} and, p2m choices

for c. These choices determine d so we have:

∣ G� ∣=∣ T ∣= 2 ⋅ pm ⋅ pm ⋅ p2m = 2p4m.

Our next step is to find an extension of � to G�

Proposition 3.1.2. Define the map:

 : G� −→ ℂ

 :

⎡⎢⎣� + apm bpm

c d

⎤⎥⎦ 7−→ !�b.

This map is an extension of � to G�. In other words  is a character of G� with  ∣Lm = �.
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Proof. We shall show  is a homomorphism telling us  is both a representation and a character

of G� with degree one (2.4.4).

Let:

A =

⎡⎢⎣� + apm bpm

c d

⎤⎥⎦ , A′ =
⎡⎢⎣�′ + a′pm b′pm

c′ d′

⎤⎥⎦ ∈ G�
Now,

 (AA′)

=  

⎡⎢⎣��′ + xpm (�b′ + bd′)pm

y z

⎤⎥⎦ for some x, y, z ∈ ℤ/p2mℤ

= !��
′(�b′+bd′)

= !��
′(�b′+b(1+b′c′pm)(�′−a′pm)) noting A′ ∈ G� gives:

d′ = (1 + b′c′pm)(�′ − a′pm)

= !�
′b′+�b+wpm for some w ∈ ℤ/p2mℤ and since

�2 = �′2 = 1

= !�
′b′+�b since ! is a pmth root of unity

=  (A) (A′),

so  is a character of G�. We also note:

 ∣Lm(I + pmC) = !C12 = �(I + pmC),

for all I + pmC in Lm. Therefore:

 ∣Lm = �.
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Finally we use 2.4.15:

∙ Lm ⊲G from 3.0.1

∙ � ∈ Irr(Lm) by our definition using 2.4.5

∙  ∈ Irr(G�) from 3.1.2

∙ [ ∣Lm , �] = 1 ∕= 0 since  ∣Lm = �

=⇒

� =  G is irreducible.

In conclusion we have calculated the character:

�(g) =  G(g) =
1

∣ G� ∣
∑
x∈G

 ∘(xgx−1),

with,

deg(�) =
∣ G ∣
∣ G� ∣

=
(p2 − 1)p6m−2

2p4m
=

(p2 − 1)p2m−2

2
=

(p2 − 1)pn−2

2
(2.4.9).

3.1.2 When n is Odd.

In this subsection we assume n is odd and define m so that: n=2m+1 . In this case we start with

Lm+1 as our normal subgroup of G. As before, we start by picking three pm-th (since: n−(m+1) =

m) roots of unity: (1, !, 1), where ! is some primitive pm-th root of unity. Using these roots of

unity with 2.4.5 we can define � a character of Lm+1:

�

[
1 + ipm+1 jpm+1

kpm+1 1− ipm+1

]
= �1,!,1(B

i
1B

j
2B

k
3 ) = 1i!j1k = !j ,

where Bi
1B

j
2B

k
3 ∈ Lm as in 3.0.3.

We can trace the proof of 3.1.1 (changing pm to pm+1 appropriately) to get the stabilizer of �:

G� = T =

{[
� + apm bpm

c d

]∣∣∣∣ a, b ∈ ℤ/pm+1ℤ, c ∈ ℤ/p2m+1ℤ,
d = (1 + pmbc)(� + apm)−1, � ∈ {1,−1}

}
although, in this case the size is different: ∣G�∣ = 2p2n+1. As a result inducing up a linear character

from G� to G (like in the even case) would not give our desired character because G� is too big.
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3.1. An Irreducible Character of Degree pn−2(p2−1)
2 .

To handle this problem we define:

N =

{[
� + apm bpm+1

c d

]∣∣∣∣ a ∈ ℤ/pm+1ℤ, b ∈ ℤ/pmℤ, c ∈ ℤ/p2m+1ℤ,
d = (1 + pm+1bc)(� + apm)−1, � ∈ {1,−1}

}
.

Proposition 3.1.3. N ⊴ T

Proof. First, the facts: N is a subset of the subgroup G� and for A,B ∈ N we have (AB)12 =

xpm+1 for some x ∈ ℤ/pmℤ imply N is a subgroup. Now we show N is normal in G� . Let

n =

⎡⎢⎣� + apm bpm+1

c d

⎤⎥⎦ ∈ N, t =

⎡⎢⎣�′ + a′pm b′pm

c′ d′

⎤⎥⎦ ∈ G�. Now,

∙ pm+1
∣∣ (tnt−1)12 ∙N is a subset of the subgroup G�

implies tnt−1 ∈ N ; therefore N ⊴G�.

Our next step is to find an extension of � to N. Tracing the proof of 3.1.2 gives the character:

 : N −→ ℂ

 :

[
� + apm bpm+1

c d

]
7−→ !�b.

this character is an extension of � to N . Again we have interest in the stabilizer.

Proposition 3.1.4. T = N.

Proof. We start by showing T is a proper subset of T . Let: t =

⎡⎢⎣1 pm

0 1

⎤⎥⎦ ∈ T , now:

 

⎛⎜⎝t
⎡⎢⎣1 + pm 0

0 1− pm + p2m

⎤⎥⎦ t−1
⎞⎟⎠ = !0 ⇒ !−2p

m−1
= !0 ⇒ pm−1 ≡ 0 mod pm

is a contradiction. Thus t ∕∈ T and we have: T ⊊ T . Now note:

∙N ⊆ T since  
(
n′n(n′)−1

)
=  (n′) (n) 

(
(n′)−1

)
=  (n) for n, n′ ∈ N

∙ [T : N ] = p since ∣ N ∣= 2p2n, ∣ T ∣= 2p2n+1

∙ T ⊊ T above

implying T = N .
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3.1. An Irreducible Character of Degree pn−2(p2−1)
2 .

We can now use 2.4.16 to get a character of T:

∙N ⊲ T from 3.1.3

∙  ∈ Irr(N) = Irr(T ) from 3.1.4

=⇒

 T is irreducible.

By the Frobenius Reciprocity theorem 1 =
[
 T ,  T

]
=
[
 , T

N

]
∕= 0. Now,  ∈ Irr(N),  Lm+1 =

� ∈ Irr(Lm+1) so we use 2.4.20 implying
[
 Lm+1 , ( 

T
N

)Lm+1

]
=
[
�,  TLm+1

]
∕= 0. Finally we use

2.4.15:

∙ Lm+1 ⊲G from 3.0.1

∙ � ∈ Irr(Lm+1) since deg(�) = 1

∙  T ∈ Irr(G�) from above recalling T = G�

∙
[
�,  TLm+1

]
∕= 0

=⇒

� = ( T )G =  G is irreducible.

The degree of � is:

deg( G) =
∣ G ∣
∣ N ∣

=
(p2 − 1)p3n−2

2p2n
=

(p2 − 1)pn−2

2
(2.4.9).
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3.2. An Irreducible Character of Degree pn−1(p+ 1)

3.2 An Irreducible Character of Degree pn−1(p+ 1)

We will use the same strategy as we used in the previous section, but this time we will start with

a different character of our normal subgroup (Lm and Lm+1) of G. To construct our character we

use the fact (ℤ/p2mℤ)× is cyclic ( [3], p.314 ) and define the injective homomorphism:

� : (ℤ/p2mℤ)× −→ ℂ×

� : vi 7−→ !i.

where ! is a (p2m−p2m−1)th root of unity and v is a generator of (ℤ/p2mℤ)×. Now define the map:

� : M2(ℤ/pnℤ) −→ ℂ×

� : A11 7−→ �(A11).

We use the map � throughout the next two subsections. � will be restricted to different

subgroups so it becomes a group homomorphism and therefore also a character of degree 1.

3.2.1 When n is Even.

In this subsection we assume n is even and define m so that: n=2m . Now for A,B ∈ Lm we have,

�Lm(AB) = �((AB)11) = �(A11B11) = �(A11)�(B11) = �Lm(A)�Lm(B) (∗)

so �Lm is a homomorphism and therefore an irreducible character (also a representation) of Lm.

As in the previous section we need to calculate the stabilizer of �Lm with G acting on Irr(Lm)

(2.4.14).

Proposition 3.2.1.

G�Lm = T =

⎧⎨⎩
⎡⎢⎣ a bpm

cpm a−1

⎤⎥⎦
∣∣∣∣∣∣∣
a ∈ (ℤ/p2mℤ)×,

b, c ∈ ℤ/pmℤ

⎫⎬⎭ ,

and

∣G�Lm ∣ = p4m−1(p− 1).

Proof. The proof is by double inclusion:
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3.2. An Irreducible Character of Degree pn−1(p+ 1)

”⊆” Let g =

⎡⎢⎣a b

c d

⎤⎥⎦ ∈ G�Lm
⇒ �gLm = �Lm

⇒ �(1 + pm(2bcx+ bdw − acy + x)) = �(1 + pmx) from tracing 3.1.1 with equality

holding ∀x, y, w ∈ ℤ/pmℤ

⇒ 1 + pm(2bcx+ bdw − acy + x) = 1 + pmx since � is injective

⇒ pm(2bcx+ bdw − acy) = 0

⇒

(1) pm2bc = 0 letting (x,w, y)=(1,0,0)

(2) pmbd = 0 letting (x,w, y)=(0,1,0)

(3) −pmac = 0 letting (x,w, y)=(0,0,1)

⇒ b = n1p
m since 2c is a unit in (1) or d is a

unit in (2)

⇒ a is a unit since one of a, b must be a unit

⇒ c = n2p
m since −a is a unit in (3)

⇒ d = a−1 since ad − bc = ad − n1n2p
2m =

ad = 1

⇒ g =

⎡⎢⎣ a n1p
m

n2p
m a−1

⎤⎥⎦
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3.2. An Irreducible Character of Degree pn−1(p+ 1)

⇒ g ∈ T

⇒ G�Lm ⊆ T

”⊇” Let t =

⎡⎢⎣ a bpm

cpm a−1

⎤⎥⎦ ∈ T

⇒ �tLm

⎡⎢⎣1 + xpm ypm

wpm x− ipm

⎤⎥⎦ for x, y, w ∈ ℤ/pmℤ

= �Lm

⎛⎜⎝
⎡⎢⎣ a bpm

cpm a−1

⎤⎥⎦
⎡⎢⎣1 + xpm ypm

wpm x− ipm

⎤⎥⎦
⎡⎢⎣ a−1 −bpm

−cpm a

⎤⎥⎦
⎞⎟⎠

= �Lm

⎡⎢⎣1 + xpm a2ypm

a−2wpm 1− xpm

⎤⎥⎦

= �Lm

⎡⎢⎣1 + xpm ypm

wpm x− ipm

⎤⎥⎦ since these matrices have the same

entry in position 1, 1

⇒ �tLm = �Lm

⇒ t ∈ G�Lm

⇒ T ⊆ G�Lm

Therefore T = G�Lm . Also, in the set T there are p2m − p2m−1 choices for a (the number of units
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3.2. An Irreducible Character of Degree pn−1(p+ 1)

in ℤ/p2mℤ) and pm choices for each of {b, c}. So we have:

∣ G�Lm ∣=∣ T ∣= (p2m − p2m−1) ⋅ pm ⋅ pm = p4m−1(p− 1).

Now the same argument in (*) shows �T is a homomorphism and therefore an extension of �Lm .

Finally we use 2.4.15:

∙ Lm ⊲G from 3.0.1

∙ �Lm ∈ Irr(Lm) �Lm a homomorphism with �Lm(1) = 1

∙ �T ∈ Irr(G�Lm ) �T a homomorphism with �T (1) = 1

∙
[
�T ∣Lm , �Lm

]
= [�Lm , �Lm ] = 1 ∕= 0

=⇒

� = �GT is irreducible.

In conclusion, we have calculated the character:

�(g) =
1

∣ G� ∣
∑
x∈G

 ∘(xgx−1),

with

deg(�) =
∣G∣
∣G�∣

=
(p2 − 1)p6m−2

p4m−1(p− 1)
= (p+ 1)p2m−1 (2.4.9).

3.2.2 When n is Odd.

In this subsection we assume n is odd and define m so that: n=2m+1 . Now the argument (*)

from the previous subsection shows �Lm+1
is an irreducible character of Lm+1. Again we turn our

attention to the stabilizer of �Lm+1
.

We can trace the proof of 3.2.1 (changing pm to pm+1 appropriately) to get the stabilizer of

�Lm+1
:

G�
Lm+1

= T =

{[
a bpm

cpm a−1(1 + cbp2m)

]∣∣∣∣ a ∈ (ℤ/p2m+1ℤ)×,
b, c ∈ ℤ/pm+1ℤ

}
,
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3.2. An Irreducible Character of Degree pn−1(p+ 1)

although, in this case the size is different: ∣T ∣ = p2n−1(p − 1). As a result inducing up a linear

character from T to G (like in the even case) would not give our desired character because T is too

big. As a result we must use the following subgroup:

N =

{[
1 + apm+1 bpm+1

cpm 1− apm+1

]∣∣∣∣ a, b ∈ ℤ/pmℤ,c ∈ ℤ/pm+1ℤ

}
,

and the argument in (*) tells us N affords the irreducible character �N .

Proposition 3.2.2. N ⊴ T.

Proof. We shall show: tNt−1 ⊆ N for all t ∈ T. Let t =

⎡⎢⎣ a bpm

cpm a−1(1 + cbp2m)

⎤⎥⎦ ∈ T and n =

⎡⎢⎣1 + xpm+1 ypm+1

wpm 1− xpm+1

⎤⎥⎦ ∈ N.

⇒ tNt−1

=

⎡⎢⎣ a bpm

cpm a−1(1 + cbp2m)

⎤⎥⎦ ⋅
⎡⎢⎣1 + xpm+1 ypm+1

wpm 1− xpm+1

⎤⎥⎦ ⋅
⎡⎢⎣a−1(1 + cbp2m) −bpm

−cpm a

⎤⎥⎦
=

⎡⎢⎣1 + (x+ a−1bwpm−1)pm+1 a2ypm+1

a−2wpm 1− (x+ a−1bwpm−1)pm+1

⎤⎥⎦ ∈ N.

Now calculate the stabilizer T�
N

.

Proposition 3.2.3.

T�
N

= H =

⎧⎨⎩
⎡⎢⎣ a bpm+1

cpm a−1

⎤⎥⎦
∣∣∣∣∣∣∣∣∣∣
a ∈ (ℤ/p2m+1ℤ)×,

b ∈ ℤ/pmℤ,

c ∈ ℤ/pm+1ℤ

⎫⎬⎭ .

Proof. We first show: H ⊆ T�
N
. Let

ℎ =

⎡⎢⎣ a bpm+1

cpm a−1

⎤⎥⎦ ∈ H, and n =

⎡⎢⎣1 + xpm+1 ypm+1

wpm 1− xpm+1

⎤⎥⎦ ∈ N,
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3.2. An Irreducible Character of Degree pn−1(p+ 1)

so we have:

⇒ �ℎ
N

(n)

= �N (ℎnℎ−1)

= �N

⎡⎢⎣1 + xpm+1 a2ypm+1

a−2wpm 1− xpm+1

⎤⎥⎦
= �N (n) since the matrices are equal in entry (1,1)

∴ H ⊆ T�
N
.

Next we show: T�
N
⊊ T. Let: n =

⎡⎢⎣ 1 0

pm 1

⎤⎥⎦ ∈ N , and t =

⎡⎢⎣1 pm

0 1

⎤⎥⎦ ∈ T. Now:

�N (tnt−1) = �(1 + p2m) ∕= �(1) = �N (n)

shows t ∕∈ T�
N

and we have: T�
N
⊊ T . Now note:

∙H ⊆ T�
N

∙ [H : T ] = p since ∣ H ∣= p2n−1(p− 1), ∣ T ∣= p2n(p− 1)

∙ T�
N
⊊ T

implies H = T�
N

.

Again the argument in (*) tells us H affords the irreducible character �H . To summarize the
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3.2. An Irreducible Character of Degree pn−1(p+ 1)

results of this subsection we give the lattice of subgroups involved:

G

p2m−1(p+1)

affording � (below)

G�
Lm+1

= T

p

affording �TH (below)

T�
N

= H

pm(p−1)

affording �H

N

p

affording �N

Lm+1

p3m

affording �Lm+1

< I >

To get an irreducible character of T we use 2.4.15 on the middle of the lattice above:

∙N ⊲ T from 3.2.2

∙ �N ∈ Irr(N) �N a homomorphism with �N (1) = 1

∙ �H ∈ Irr(T�N ) �H a homomorphism with �H (1) = 1

∙
[
�H ∣N , �N

]
= [�N , �N ] = 1 ∕= 0

=⇒

�TH is irreducible.

By Frobenius Reciprocity 1 =
[
�TH , �

T
H

]
=
[
�H , �

T
H

∣∣
H

]
∕= 0. Now, �H ∈ Irr(H), �H ∣Lm+1

=

�Lm+1
∈ Irr(Lm+1) so we use 2.4.20 implying

[
�H ∣Lm+1

, (�TH
∣∣
H

)
∣∣
Lm+1

]
=
[
�Lm+1

, �TH
∣∣
Lm+1

]
∕= 0.
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3.2. An Irreducible Character of Degree pn−1(p+ 1)

Finally we use 2.4.15 to get our irreducible character of G:

∙ Lm+1 ⊲G from 3.0.1

∙ �Lm+1
∈ Irr(Lm+1) from the argument in (*)

∙ �TH ∈ Irr(T ) from using 2.4.15 above

∙
[
�Lm+1

, �TH
∣∣
Lm+1

]
∕= 0

=⇒

� = (�TH)G = �GH is irreducible.

In conclusion, we have calculated the character:

�(g) =
1

∣ T ∣
∑
x∈G

�TH
∘
(xgx−1),

with

deg(�) = deg(�GH) =
∣G∣
∣H∣

=
p3n−2(p2 − 1)

p2n−1(p− 1)
= (p+ 1)pn−1 (2.4.9).
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3.3 An Irreducible Character of Degree pn−1(p− 1)

In this section we will use results from 2.2 where we defined the subgroup S of G. This subgroup

plays a key roll in this chapter. We will use the matrix:

B :=

(
0 "
1 0

)
,

where " is a quadratic nonresidue of p to define characters on both Lm and Lm+1.

3.3.1 When n is Even.

Again in this subsection we use our ongoing strategy of starting with a character of Lm. This time

define the map:

� : Lm −→ ℂ×

� : I + pmA 7−→ �tr(pmAB),

where given ! a p2mth root of unity and � is the injective map:

� : (ℤ/p2mℤ)+ −→ ℂ×

� : x 7−→ !x.

We see that � is a homomorphism:

�((I + pmA)(I + pmA′)) = �(I + pm(A+A′))

= �tr(pm(A+A′)B)

= �(tr(pmAB) + tr(pmA′B))

= �tr(pmAB)�tr(pmA′B)

= �(I + pmA)�(I + pmA′).

Thus, � is a character of degree one of Lm and we calculate its stabilizer (the action is defined in

2.4.14) recalling the subgroup S from 2.2.5.
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3.3. An Irreducible Character of Degree pn−1(p− 1)

Proposition 3.3.1.

G� = LmS

and

∣G�∣ = p4m−1(p+ 1).

Proof. ”⊆” Let t =

⎡⎢⎣a b

c d

⎤⎥⎦ ∈ G�:

⇒ �t = �

⇒ �(t(I + pmA)t−1) = �(I + pmtAt−1) = �(I + pmA) ∀A ∈M2(ℤ/pmℤ) with A11 = −A22

⇒ tr(pmtAt−1B) = tr(pmAB)

⇒ tr(pmAt−1Bt) = tr(pmAB) property of trace

⇒ tr(pmAt−1Bt− pmAB) = 0

⇒ pmtr(A(t−1Bt−B)) = 0 (∗)

Our next step is to show: pmt−1Bt = pmB.

∙ Letting A =

⎡⎢⎣0 1

0 0

⎤⎥⎦ in (*) gives:

pm ⋅ tr

⎡⎢⎣(t−1Bt−B)21 (t−1Bt−B)22

0 0

⎤⎥⎦ = 0⇒ pm(t−1Bt)21 = pmB21.

∙ Letting A =

⎡⎢⎣0 0

1 0

⎤⎥⎦ in (*) gives:

pm ⋅ tr

⎡⎢⎣ 0 0

(t−1Bt−B)11 (t−1Bt−B)12

⎤⎥⎦ = 0⇒ pm(t−1Bt)12 = pmB12.
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3.3. An Irreducible Character of Degree pn−1(p− 1)

∙ Letting A =

⎡⎢⎣1 0

0 −1

⎤⎥⎦ in (*) gives:

pm ⋅ tr

⎡⎢⎣ (t−1Bt−B)11 (t−1Bt−B)12

−(t−1Bt−B)21 −(t−1Bt−B)22

⎤⎥⎦ = 0⇒ pm(t−1Bt)11 = pm(t−1Bt)22,

noting: B11 = B22 = 0. Also,

t−1Bt =

⎡⎢⎣ d −b

−c a

⎤⎥⎦
⎡⎢⎣0 "

1 0

⎤⎥⎦
⎡⎢⎣a b

c d

⎤⎥⎦ =

⎡⎢⎣−ba+ dc" −b2 + d2"

a2 − c2" ba− dc"

⎤⎥⎦ .
So we have: pm(t−1Bt)11 = −pm(t−1Bt)22. Adding this equality with the equality pm(t−1Bt)11 =

pm(t−1Bt)22 from above gives: pm(t−1Bt)11 = pm(t−1Bt)22 = 0. Therefore pmt−1Bt = pmB.

Now;

pmBt = pm

⎡⎢⎣c" d"

a b

⎤⎥⎦ = pm

⎡⎢⎣b a"

d c"

⎤⎥⎦ = pmtB

⇒ d = a+ n1p
m , b = c"+ n2p

m, for some integers n1, n2

⇒ t =

⎡⎢⎣a c"+ n2p
m

c a+ n1p
m

⎤⎥⎦
Let g = a+ n12

−1pm, ℎ = c+ n22
−1"−1pm and assign:

s =

⎡⎢⎣g ℎ"

ℎ g

⎤⎥⎦ ⇒ ∣s∣ = g2 − ℎ2" = a(a+ n1p
m)− c(c"+ n2p

m) = ad− bc = 1,

so that s ∈ S. To complete the proof of our inclusion we use two cases.

CASE 1. c is a unit. We note that a2 − c2" ≡ 1 mod pm is a unit and assign:

x = wac−1 + n2(2c")
−1, y = c−1(−n12−1 − ax), w = −c−1(a2 − c2")−1(n12−1 + n2a(2"c)−1).

CASE 2. c is not a unit. This implies that b is also not a unit since b = c" + n2p
m, and this

implies a is a unit otherwise we would have p ∣ det t. Also, p ∣ c and p ∤ a implies a − c2"a−1 is a

unit, thus we can assign:

x = −a−1(n12−1 + yc), y = (a− c2"a−1)−1(n22−1 + n1c"2
−1a−1), w = a−1(cx− n22−1"−1).
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3.3. An Irreducible Character of Degree pn−1(p− 1)

Now in each case we have,⎡⎢⎣1 + xpm ypm

wpm 1− xpm

⎤⎥⎦ ⋅ s =

⎡⎢⎣a c"+ n2p
m

c a+ n1p
m

⎤⎥⎦ = t

∴ t ∈ LmS

(included in the appendix is some maple code to verify this matrix algebra)

“⊇” Let s ∈ S be arbitrary. The proof of 2.2.4 shows sB=Bs, so we have:

�s(I + pmA) = �tr(pmsAs−1B) = �tr(pmAs−1Bs) = �tr(pmAB) = �(I + pmA).

Therefore we have S ⊆ G� and Lm ⊆ G� (recalling Lm is abelian) so we have:

LmS ⊆ G�.

∴ LmS = G�.

We are left to find ∣LmS∣. Since Lm
∩
S =

⎧⎨⎩
⎡⎢⎣ 1 wpm"

wpm 1

⎤⎥⎦
∣∣∣∣∣∣∣w ∈ ℤ/pmℤ

⎫⎬⎭ , we have:

∣LmS∣ =
∣Lm∣ ⋅ ∣S∣
∣Lm

∩
S∣

=
p3m ⋅ (p+ 1)p2m−1

pm
since ∣S∣ was given in 2.2.5

= p4m−1(p+ 1)
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3.3. An Irreducible Character of Degree pn−1(p− 1)

To show the existence of a character of G� we use 2.4.18:

∙ Lm ⊲G� from 3.0.1

∙ S ≤ G� is abelian from 2.2.4

∙G� = LmS from 3.3.1

∙ � ∈ Irr(Lm), deg(�) = 1 shown above

=⇒

∃�′ ∈ Irr(G�) with �′∣Lm = �.

Finally, we note the additional needed ingredient and use 2.4.15:

∙
[
�′∣Lm , �

]
= 1 ∕= 0 since �′∣Lm = �

=⇒

� = �′G is irreducible.

In conclusion, this character has degree:

deg(�) =
∣ G ∣
∣ G� ∣

=
(p2 − 1)p6m+1

(p+ 1)p4m−1
= (p− 1)pn−1 (by 2.4.9).

3.3.2 When n is Odd.

Let n = 2m + 1. In this section we construct a character of Lm+1 and use 2.4.15. Although

building the ingredients to use 2.4.15 is quite involved so we start by outlining the procedure with
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3.3. An Irreducible Character of Degree pn−1(p− 1)

the following lattice:

G

p2m−1(p−1)

affording � = 
G using 2.4.15

G� = LmS

p+1

affording � an extension of 


Lm(L1 ∩ S)

p

affording 
 = �Lm(L1∩S) using 2.4.16

N(L1 ∩ S)

p

affording � an extension of �

Lm+1(L1 ∩ S)

pm

affording � an extension of �

Lm+1

p3m

affording �

< I >

Where we recall that,

Lm+1 =
{
I + pm+1A

∣∣∣ A ∈M2(ℤ/pmℤ), A11 = −A22

}
,

Lm =
{
I + pmA

∣∣∣ A ∈M2(ℤ/pm+1ℤ), det(I + pmA) = 1
}
,

L1 =
{
I + pA

∣∣∣ A ∈M2(ℤ/p2mℤ), det(I + pA) = 1
}
,

S =
{
A ∈ G

∣∣∣ A11 = A22, A12 = "A21

}
, " a quadratic nonresidue of p,

and define:

N =

{[
1 + apm+1 bpm

cpm+1 1− apm+1

] ∣∣∣∣ a, c ∈ ℤ/pmℤ, b ∈ ℤ/pm+1ℤ
}
.
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Following our lattice above our first step is to construct � a character of Lm+1. The method

for this step is the same as the method for the even case so we get a homomorphism:

� : Lm+1 −→ ℂ×

� : A 7−→ �tr(AB),

where given ! a p2m+1th root of unity � is the injective homomorphism:

� : (ℤ/p2m+1ℤ)+ −→ ℂ×

� : x 7−→ !x.

Now, � is a character of Lm+1 with degree 1. A similar calculation to the one used in 3.3.1 shows:

G� = LmS.

Our next step is to find � a character of Lm+1(L1 ∩ S).

Proposition 3.3.2. � is extendible to Lm+1(L1 ∩ S).

Proof.

∙ Lm+1 ⊴ Lm+1(L1 ∩ S) from 3.0.1

∙ L1 ∩ S is abelian from 2.2.4

∙ Lm+1(L1 ∩ S) ⊆ SLm = G� from above

=⇒ using 2.4.18

� is extendible to Lm+1(L1 ∩ S)

Let � be an extension of � to Lm+1(L1 ∩ S).

Taking a break from constructing characters we find the sizes of our subgroups in the above

lattice. We need to find these sizes in order to find the character degree’s. A key to the proof of

3.3.4 is the following version of Hensel’s lemma.
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Proposition 3.3.3. Given f(x) ∈ ℤ[x] with f(0) ≡ 0 mod p and f ′(0) ∕≡ 0 mod p then for each

k = 2, 3, . . . there is a unique xk mod pk so f(xk) ≡ 0 mod pk.

Proposition 3.3.4. ∣Lm+1∣ = p3m, ∣Lm+1(L1 ∩ S)∣ = p4m, ∣N(L1 ∩ S)∣ = p4m+1, ∣Lm(L1 ∩ S)∣ =

p4m+2, ∣LmS∣ = p4m+2(p+ 1).

Proof. ∣Lm+1∣ = p3m, and ∣Lm∣ = p3m+3 from 3.0.1. Looking at the choices for each entry of a

matrix in N we deduce ∣N ∣ = p3m+1. Furthermore:

N ∩ S =

⎧⎨⎩
⎡⎢⎣ 1 ypm+1"

ypm+1 1

⎤⎥⎦
∣∣∣∣∣∣∣ y ∈ ℤ/pmℤ

⎫⎬⎭ ,

so ∣N ∩ S∣ = pm. To calculate ∣L1 ∩ S∣ pick an arbitrary A ∈ L1 ∩ S and count the solutions to

det(A) = 1 :

∣A∣ =

∣∣∣∣∣∣∣
1 + xp yp"

yp 1 + xp

∣∣∣∣∣∣∣ = 1 for some x, y ∈ ℤ/p2mℤ

⇔ 1 + 2xp+ (xp)2 − (yp)2" = 1

⇔ f(x) = 2x+ x2p− y2p" ≡ 0 mod p2m (*)

Now, f(0) ≡ 0 mod p and f ′(0) ∕≡ 0 mod p so by 3.3.3 there is a unique x2m so f(x2m) ≡ 0

mod p2m. This means that for each y in (*) there is exactly one x which gives a solution. Therefore

there are p2m choices for x, y in (*) and by the above chain of equivalences there are p2m solutions

to det(A) = 1. As a result ∣L1 ∩ S∣ = p2m. By using the same method we calculate:

∣Lm ∩ S∣ = pm+1, ∣Lm+1 ∩ S∣ = pm.

Now,

∣Lm+1(L1 ∩ S)∣ = ∣Lm+1∣ ⋅ ∣L1 ∩ S∣
∣Lm+1 ∩ S∣

=
p3m ⋅ p2m

pm
= p4m,

∣N(L1 ∩ S)∣ = ∣N ∣ ⋅ ∣L1 ∩ S∣
∣N ∩ S∣

=
p3m+1 ⋅ p2m

pm
= p4m+1,

∣Lm(L1 ∩ S)∣ = ∣Lm∣ ⋅ ∣L1 ∩ S∣
∣Lm ∩ S∣

=
p3m+3 ⋅ p2m

pm+1
= p4m+2,
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3.3. An Irreducible Character of Degree pn−1(p− 1)

and using 2.2.5

∣LmS∣ =
∣Lm∣ ⋅ ∣S∣
∣Lm ∩ S∣

=
p3m+3 ⋅ (p+ 1)p2m

pm+1
= p4m+2(p+ 1)

We are now ready to construct an extension to N(L1 ∩ S). First notice since Lm+1 ⊆ N we

have N(L1 ∩ S) = NLm+1(L1 ∩ S), so to construct our extension consider the subgroups N and

Lm+1(L1 ∩ S) separately and use 2.4.17. Define a character of degree 1 on N:

�′ : N −→ ℂ×

�′ : n 7−→ �tr(nB),

which allows us to define the map:

� : N ⋅ Lm+1(L1 ∩ S) −→ ℂ×

� : n ⋅ l 7−→ �′(n)�(l) (n ∈ N, l ∈ Lm+1(L1 ∩ S)).

Proposition 3.3.5. � is an extension of �.

Proof. Since the proof of 3.3.7 shows �′ is stable under Lm+1(L1 ∩ S) we have two items left to

prove in order to use 2.4.17:

(1) N ⊴NLm+1(L1 ∩ S), and

(2) noting N ∩ Lm+1(L1 ∩ S) = Lm+1 (since Lm+1 ⊆ N and given x ∈ N ∩ Lm+1(L1 ∩ S) forces

pm+1∣x12) we need �′Lm+1
= �Lm+1

.

Since NLm+1 = N to show (1) our only concern is to show: (L1 ∩ S) is in the normalizer of

N. Given n = I + pmA ∈ N with A ∈ X =

⎧⎨⎩
⎡⎢⎣ pa b

pc −pa

⎤⎥⎦
∣∣∣∣∣∣∣ a, c ∈ ℤ/pmℤ, b ∈ ℤ/pm+1ℤ

⎫⎬⎭ and

I + psI + ptB ∈ L1 ∩ S, we consider the conjugate:
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(I + psI + ptB)n(I + psI + ptB)−1

= (I + psI + ptB)(I + pmA)(I + ps′I + pt′B) for some s′, t′ ∈ ℤ/p2mℤ

= I + pm(I + psI + ptB)A(I + ps′I + pt′B)

= M = I + pm(A+ pM ′) for some matrix M ′

⇒M11,M12,M21 have the desired form (1 + pm+1∗, pm∗, pm+1∗)

⇒ 1 = det(M) = M11 ⋅M22

⇒M22 = M−111 has the desired form 1− pm+1∗

⇒M ∈ N

∴ N ⊴NLm+1(L1 ∩ S).

Finally, for (2): since the image of �′ is defined exactly as the image of � it is clear that: �′Lm+1
= �.

Also � is an extension of � so by definition �Lm+1 = �. Therefore �Lm+1 = � = �′Lm+1
, and the

conditions in 2.4.17 are satisfied so � is an extension of �.

Our next goal is to use 2.4.16 to induce up � to obtain an irreducible character of Lm(L1 ∩ S).

The next two propositions give exactly the conditions needed.

Proposition 3.3.6. N(L1 ∩ S) ⊴ Lm(L1 ∩ S)

Proof. First show conjugating elements in L1 ∩ S by elements in Lm gives elements in N(L1 ∩ S).

Take I + ps ∈ L1 ∩ S, and I + pmA ∈ Lm so we have:

(I + pmA)(I + ps)(I + pmA)−1

= I + p(I + pmA)s(I − pmA) since: p(I + pmA)−1 = p(I − pmA)

= I + ps+ pm+1(As− sA)

= (I + ps)(I + pm+1(I + ps)−1(As− sA))

∈ (L1 ∩ S)N = N(L1 ∩ S).
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Since (L1 ∩S) is in the normalizer of N from the previous proof, we are left only to show N ⊴Lm.

By tracing the above proof we reduce this problem to proving: for every A ∈ X and I+pmC ∈ Lm

we have (I + pmC)A(I + pmC)−1 ∈ X (X as above). This is clear since for some matrix M we

have:

(I + pmC)A(I + pmC)−1 = (I + pmC)A(I − pmC + p2mC2) = A+ pM ∈ X.

Proposition 3.3.7. Lm(L1 ∩ S)� = N(L1 ∩ S).

Proof. First show: N(L1 ∩ S) = Lm(L1 ∩ S)�′ . We start by taking s ∈ S, n ∈ N and considering

the conjugate:

�′s(n)

= �tr(sns−1B)

= �tr(snBs−1) since: sB = Bs ∀s ∈ S

= �tr(nB) property of trace

= �′(n)

⇒ S ≤ G�′

⇒ L1 ∩ S ≤ Lm(L1 ∩ S)�′ since L1 ∩ S ≤ S

⇒ N(L1 ∩ S) ≤ Lm(L1 ∩ S)�′ since �′ is defined on N.

Thus far we have:

N(L1 ∩ S) ≤ Lm(L1 ∩ S)�′ ≤ Lm(L1 ∩ S),

but [Lm(L1 ∩ S) : N(L1 ∩ S] = p. Therefore to force the equality at hand we are left to find one

element in Lm(L1 ∩ S) which is not in Lm(L1 ∩ S)�′ . Considering x =

⎡⎢⎣ 1 + pm 0

0 (1 + pm)−1

⎤⎥⎦ ∈
Lm(L1 ∩ S), and n1 =

⎡⎢⎣ 1 pm

0 1

⎤⎥⎦ ∈ N , gives:

�′x(n1) = �(pm + 2p2m) ∕= �(pm).
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Therefore: N(L1 ∩ S) = Lm(L1 ∩ S)�′ . Since � is an extension of �′ we have: Lm(L1 ∩ S)� ≤

Lm(L1 ∩ S)�′ . Also, since � is defined on N(L1 ∩ S) we clearly get N(L1 ∩ S) ≤ Lm(L1 ∩ S)�. In

conclusion:

Lm(L1 ∩ S)� ≤ Lm(L1 ∩ S)�′ = N(L1 ∩ S) ≤ Lm(L1 ∩ S)�

∴ Lm(L1 ∩ S)� = N(L1 ∩ S)

Now using 2.4.16 with the last two propositions gives: 
 = �Lm(L1∩S) ∈ Irr(Lm(L1∩S)). Next,

we would like to get a description of 
, the following two propositions handle this problem.

Note that for each l ∈ Lm we have l(L1 ∩ S)l−1 ⊆ Lm+1(L1 ∩ S). This means Lm+1(L1 ∩ S) ⊴

Lm(L1 ∩ S), and the next proposition makes sense.

Proposition 3.3.8. � is stable under LmS.

Proof. First show � is stable under S, let s ∈ S, l ∈ Lm+1 and s1 ∈ L1 ∩ S now:

�s(ls1)

= �(sl(s−1 ⋅ s)s1s−1)

= �(sls−1 ⋅ s1) since S is abelian

= �(sls−1) ⋅ �(s1) � is a homomorphism and sls−1 ∈ Lm+1

= �(sls−1) ⋅ �(s1) � is an extension of �

= �(l) ⋅ �(s1) by the same argument showing �′s = �′ on page 47

= �(ls1).

We are left to show � is stable under Lm. Define the subgroups:

N1 =

⎧⎨⎩
⎡⎢⎣ 1 + apm+1 bpm+1

cpm 1− apm+1

⎤⎥⎦
∣∣∣∣∣∣∣ a, b ∈ ℤ/pmℤ, c ∈ ℤ/pm+1ℤ

⎫⎬⎭ ,

N2 =

⎧⎨⎩
⎡⎢⎣ 1 + apm bpm+1

cpm+1 1− apm + a2p2m

⎤⎥⎦
∣∣∣∣∣∣∣ b, c ∈ ℤ/pmℤ, a ∈ ℤ/pm+1ℤ

⎫⎬⎭ .
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Also these subgroups afford characters:

�1 : N1 −→ ℂ× �2 : N2 −→ ℂ×

�1 : x 7−→ �tr(xB), �2 : x 7−→ �tr(xB)

Now we can trace the proof of 3.3.5 replacing N with N1, N2 accordingly, this shows � can be

extended to both N1(L1 ∩S) and N2(L1 ∩S). This means � is stable under each of N,N1, and N2.

Noting: N,N1, N2 ⊆ Lm, N1 ∕⊈ N, N2 ∕⊈ NN1, ∣N ∣ = p3m+1, ∣NN1∣ = p3m+2, and ∣Lm∣ = p3m+3,

gives: N ⋅N1 ⋅N2 = Lm. Therefore � is stable under Lm.

Proposition 3.3.9. 

Lm+1(L1∩S)

= p ⋅ �.

Proof. Let g ∈ Lm+1(L1 ∩ S) :


(g) =
1

∣N(L1 ∩ S)∣
∑

x∈Lm(L1∩S)

�∘(xgx−1) 2.4.9

=
1

p4m+1

∑
x∈Lm(L1∩S)

�(xgx−1) since xgx−1 ∈ Lm+1(L1 ∩ S)

=
1

p4m+1

∑
x∈Lm(L1∩S)

�(xgx−1) � an extension of �

=
1

p4m+1

∑
x∈Lm(L1∩S)

�(g) 3.3.8 above

=
∣Lm(L1 ∩ S)∣

p4m+1
�(g)

=
p4m+2

p4m+1
�(g)

= p ⋅ �(g)

Lemma 3.3.10. Lm(L1 ∩ S) ⊴ LmS

Proof. Noting L1 ∩ S ⊴ S since S is abelian, Lm ⊴ G and l(L1 ∩ S)l−1 ⊆ Lm(L1 ∩ S) for l ∈ Lm

gives: Lm(L1 ∩ S) ⊴ LmS.
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Proposition 3.3.11. Lm ⋅ S╱Lm(L1 ∩ S) is cyclic

Proof.

Lm ⋅ S╱Lm(L1 ∩ S)

= Lm(L1 ∩ S) ⋅ S╱Lm(L1 ∩ S) L1 ∩ S ⊆ S

≃ S╱Lm(L1 ∩ S) ∩ S by the diamond isomorphism theorem

= S╱L1 ∩ S Lm ⊆ L1

≃ S′ =

⎧⎨⎩
⎡⎢⎣ x y"

y x

⎤⎥⎦
∣∣∣∣∣∣∣x, y ∈ ℤ/pℤ

⎫⎬⎭ by 1st iso. theorem with: A 7→ (Ai,j mod p)1≤i,j≤2

≃ �(S′) where � : S′ →
(
ℤ/pℤ[

√
"]
)×

is the natural map

≤
(
ℤ/pℤ[

√
"]
)×

is cyclic

We are now ready to construct � using 2.4.19:

∙ Lm(L1 ∩ S) ⊴ LmS 3.3.10

∙ Lm ⋅ S╱Lm(L1 ∩ S) is cyclic 3.3.11

∙ 
 ∈ Irr(Lm(L1 ∩ S)) stable under LmS 3.3.9, 3.3.8, and 2.4.22

=⇒


 can be extended to a character � of LmS.
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So we have � a character of the normal subgroup Lm+1, with G� = LmS affording �. There is one

more needed ingredient to prove in order to use 2.4.15:

∙
[
�∣Lm+1 , �

]
=
[

∣Lm+1 , �

]
since � is an extension of 


=
[
p�∣Lm+1 , �

]
3.3.9

= [p�, �] ∕= 0 since � is an extension of �

=⇒

� = �G is irreducible.

In conclusion this character has degree:

deg(�) = deg(�)
∣ G ∣
∣ G� ∣

= p
(p2 − 1)p6m+1

(p+ 1)p4m+2
= (p− 1)pn−1 ( by 2.4.9).
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3.4 Conclusion about Character Degrees

Theorem 3.4.1. G affords irreducible characters of the following degrees:

1, p− 1, p, p+ 1,
p− 1

2
,
p+ 1

2
, pm−1(p+ 1),

pm−2(p2 − 1)

2
, pm−1(p− 1), for 2 ≤ m ≤ n.

Proof. Consider the group homomorphism:

f : SL2(ℤ/pnℤ) −→ SL2(ℤ/pn−1ℤ)

f : A 7−→ (Aij mod pn−1)1≤i,j≤2.

By the first isomorphism theorem we have SL2(ℤ/pnℤ)╱Ker(f) ≃ SL2(ℤ/pn−1ℤ), so we can use

2.4.21 to lift every irreducible character of SL2(ℤ/pmℤ) for 1 ≤ m ≤ n− 1 to G. Noting: for n = 1

there are characters ofG with degrees 1, p−1, p, p+1, p−1
2 , p+1

2 ([9],p.71-73) and in this chapter we

found for n = 2, 3, 4, . . . there are characters of G with degrees pn−1(p+1), pn−2(p2−1)
2 , pn−1(p−1)

our result is shown.

Over the next two sections we find all the irreducible characters of G which gives the following

theorem.

Theorem 3.4.2. The character degrees stated in 3.4.1 are all the character degrees appearing in

the character table of G.
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3.5 Counting Characters

3.5.1 Conjugacy Classes

Letting " be a quadratic nonresidue of p the conjugacy classes of G are summarized in this table:

Table 1: Conjugacy Classes of SL2(ℤ/pnℤ)

Name Parameters Representative Number of Classes Size of Class

I� � ∈ {±1}
(
� 0
0 �

)
2 1

Bi��

0 ≤ i < n
� ∈ ℤ/pn−i−1ℤ
�2 = 1 + p2i+1�

(
� pi+1�
pi �

) n−1∑
i=0

2pn−i−1 p2n−2i−2(p2−1)
2

B
′
i��

0 ≤ i < n
� ∈ ℤ/pn−i−1ℤ
�2 = 1 + p2i+1�

(
� pi+1�"−1

pi" �

) n−1∑
i=0

2pn−i−1 p2n−2i−2(p2−1)
2

- - - i = 0 0 < i < n -

Ci��

0 ≤ i < n
�∈ (ℤ/pn−iℤ)×/{±1}
�2 = 1 + p2i"�2

(
� pi"�
pi� �

)
pn−1(p−1)

2 pn−i−1(p−1) p2n−2i−1(p−1)

Di�

0 ≤ i < n
� ∈ (ℤ/pnℤ)×

� ≡ ±1 mod pi

� ∕≡ ±1 mod pi+1

(
� 0
0 �−1

)
pn−1(p−3)

2 pn−i−1(p−1) p2n−2i−1(p+1)

Note: The element � ∈ (ℤ/pn−iℤ)×
/
{±1} is regarded as an element in (ℤ/pn−iℤ)× by considering

a one to one correspondence from a unique choice of the coset representatives of (ℤ/pn−iℤ)×
/
{±1}

to a subset of (ℤ/pn−iℤ)×.

Proof. We start by referencing ([2],p.3) where all the conjugacy class types of G′ = GL2(ℤ/pnℤ)

are given: I�, Bi��, Ci��, and Di��. Then restrict the parameters on these four class types to

give only classes in G. These (restricted) classes form a disjoint union of G since G is a normal

subgroup of G′. By calculating the centralizers in G of each representative of each class we discover

the classes given by I�, Ci��, and Di�� remain the same size in G but the classes given by Bi�� split

up in G. We now show for each choice of i, �, � each class

⎡⎢⎣ � pi+1�

pi �

⎤⎥⎦
G′

splits up into 2 classes
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in G: one class in G is represented by Bi�� =

⎡⎢⎣ � pi+1�

pi �

⎤⎥⎦ and the other class is represented by

B
′
i�� =

⎡⎢⎣ � pi+1�"−1

pi" �

⎤⎥⎦ . Since we can pick A =

⎡⎢⎣ 1 0

0 "

⎤⎥⎦ ∈ G′, so that:

ABi��A
−1 = B

′
i��,

we know B
′
i�� ∈ BG′

i��. Our next step is to show: B
′
i�� ∕∈ BG

i��. Let X =

⎡⎢⎣ x y

w z

⎤⎥⎦ ∈ G and look

for a contradiction from the equality:

B
′
i�� ⋅X = X ⋅Bi��

⇒ pi"y = pi+1w� (1)

& pi"x = piz (2)

(1)⇒ p∣y

⇒ p ∤ x, z since p ∤ 1 = xz − yw
(2)⇒ x"+ rpn−i = z for some integer r

⇒ −
(
x

p

)
=

(
x"

p

)
=

(
x"+ rpn−i

p

)
=

(
z

p

)
using 2.2.3

⇒ −1 =

(
x

p

)
⋅
(
z

p

)
=

(
xz

p

)
=

(
1 + yw

p

)
p∣y
=

(
1

p

)
= 1 a contradiction.

Finally we calculate the size of the centralizers of Bi�� and B
′
i�� in G as 2 ⋅pn+2i showing ∣Bi��G∣ =

∣B′Gi��∣ = p2n−2i−2(p2−1)
2 . Therefore the class BG′

i�� splits into exactly two classes in G and we have

found all the conjugacy classes in G.

By adding up the number of conjugacy classes of G we obtain:

Corollary 3.5.1. G affords exactly:

(pn+1 − 1) + 3(pn − 1)

p− 1

irreducible characters.
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3.5.2 The Number of Irreducible Characters For Each Degree

In this section we count the number of distinct irreducible characters for each degree. Our method

to construct irreducible characters of G is the same as in the first three sections of the chapter, but

in this section we generalize to find more characters. When n = 2m we define a character on Lm,

for an injective homomorphism � : (ℤ/pnℤ)+ → ℂ×, and for any 2 by 2 matrix B:

�B : Lm −→ ℂ×

�B : I + pmA 7−→ � ∘ tr(pmBA).

When n = 2m+ 1 we use the same notation and define:

�B : Lm+1 −→ ℂ×

�B : I + pm+1A 7−→ � ∘ tr(pm+1BA).

Regardless of the choice of B, �B is a group homomorphism and therefore a character of Lm and

Lm+1. We now list some lemmas which will be used to find distinct characters of G.

Lemma 3.5.2. Letting N ⊴ G, �1, �2 ∈ Irr(N) be non-conjugate, and  1 ∈ Irr(G�1),  2 ∈

Irr(G�2) with [ 1N , �1] ∕= 0 ∕= [ 2N , �2], gives �1 =  G1 , �2 =  G2 ∈ Irr(G) (by 2.4.15 part a)

furthermore �1 and �2 are distinct.

Proof. We show that �1N is not equal to �2N . By Frobenius Reciprocity 1 = [�1, �1] = [ 1, �1G�1
]

so [�1, �1N ] ∕= 0 and �1 is a constituent of �1N . Therefore by Clifford’s theorem �1N is a direct sum

of conjugates of �1. By the same reasoning �2N is a direct sum of conjugates of �2. Therefore, since

�1 and �2 are non-conjugate �1 and �2 are distinct.

Lemma 3.5.3. Letting N ⊴ G, � ∈ Irr(N) with distinct  1,  2 ∈ Irr(T ) with [ 1N , �] ∕= 0 ∕=

[ 2N , �] gives �1 =  G1 , �2 =  G2 ∈ Irr(G) (by 2.4.15 part a) furthermore �1 and �2 are distinct.

Proof. We use 2.4.15 part c).

Now given non-conjugate choices for �B or distinct characters of G�B we have tools when using

2.4.15 to count distinct characters of G. We make use of these tools in the proof below.
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3.5. Counting Characters

Letting Ri = ℤ/piℤ, S ≤ G so that T = G�B = LmS ( n = 2m or n = 2m+ 1) we summarize

the non-conjugate choices for �B and the number of resulting irreducible characters � for each case

in the following table:

Table 2: Number of Irreducible Characters of Each Type

B Parameters S Degree(�) # of �

(
0 p�
� 0

) � ∈ Rm−1
� ∈ {1, "}
" is a fixed

non-square unit

{[
x p�� y
y x

]
∈ G

}
pn−2(p2−1)

2 4pn−1

(
� 0
0 0

)
� ∈ R×m/{±1}

{[
x 0
0 x−1

]}
pn−1(p+ 1) pn−2(p−1)2

2

(
0 "
1 0

) " is any
non-square
unit in Rm

{[
x y"
y x

]
∈ G

}
pn−1(p− 1) pn−2(p2−1)

2

Note: The element � ∈ R×m/{±1} is regarded as an element in R×m by considering a one to one

correspondence from a unique choice of the coset representatives of R×m/{±1} to a subset of R×m.

Proof. We start by noting: S is abelian and G�B = LmS in each case. So when n is even 2.4.18

guarantees the existence of an extension of �B to G�B . Therefore we can always use 2.4.15 (directly)

to find � in the even case.

Case 1: Irreducible characters of degree pn−2(p2−1)
2 . When n=2m our table notes 2pm−1

choices of B giving �B non conjugate so 3.5.2 gives 2pm−1 distinct irreducible characters of G.

Using Gallagher’s theorem with the fact T/Lm is abelian we count distinct extensions of �B to T

as ∣T/Lm∣ = 2⋅p4m
p3m

= 2pm. Now for each choice of B, by 3.5.3, there are 2pm distinct irreducible

characters of G. Therefore there are at least

2pm−1 ⋅ 2pm = 4 ⋅ pn−1

distinct irreducible characters of degree pn−2(p2−1)
2 when n is even.
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3.5. Counting Characters

When n=2m+1 we follow a similar process to the one used in 3.2.2 on page 35:

G

p2m−2(p2−1)
2

affording � = �G using 2.4.15

T = G�B = LmS

p

affording �T using 2.4.15

T�′B = NS

2⋅pm

affording � an extension of �′B which ∃ by 2.4.18

N

p2

affording �′B an extension of �B defined below

Lm+1

p3m

affording �B

< I >

Where,

N =

⎧⎨⎩
⎡⎢⎣ 1 + apm bpm+1

cpm (1 + apm)−1

⎤⎥⎦
⎫⎬⎭ , and

�′B : N −→ ℂ×

�′B : n 7−→ � ∘ tr(B(n− I))

which has T�′B = NS.

To count the distinct irreducible characters of G we start by only looking at the middle of the

above lattice:

T

p

affording �T

T�′B

2⋅pm

affording �

N affording �′B

Now we consider � ∈ ℤ/pmℤ and � ∈ {1, "} which gives 2pm choices of B giving non-conjugate

choices for �′B in T . Therefore 3.5.2 gives 2pm distinct irreducible characters each afforded by
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3.5. Counting Characters

some choice of T (note T depends on B) using the construction outlined in the above lattice.

Now, for each choice of B we want to find distinct constructions of �T in the above lattice. Using

Gallagher’s theorem with the fact NS/N is abelian we count distinct extensions of �′B to T�′B = NS

as ∣NS/N ∣ = ∣NS∣
∣N ∣ = 2⋅p4m+2

p3m+2 = 2pm. So, 3.5.3 gives 2pm distinct choices for �T . Therefore there are

at least

2pm ⋅ 2pm = 4 ⋅ pn−1

distinct irreducible characters each afforded by some choice of T and can be induced up to give

an irreducible character of G. We want to show that each of the 4 ⋅ pn−1 characters induced up to

G are indeed distinct, suppose �1 and �2 are two choices from this list. Further suppose �1 was

constructed using �B1 ∈ Irr(Lm+1) and �1 was constructed using �B2 ∈ Irr(Lm+1). Then either

�B1 is non-conjugate to �B2 or �B1 = �B2 . In the former case �1 and �2 are distinct by 3.5.2 and in

the latter case �1 and �2 were both induced from the same choice of T and as a result are distinct

by 3.5.3. Therefore G affords at least

4 ⋅ pn−1

distinct irreducible of degree pn−2(p2−1)
2 when n is odd.

Case 2: Irreducible characters of degree pn−1(p + 1). When n=2m our table notes

pm−1(p−1)
2 choices of B giving �B non conjugate. Using Gallagher’s theorem with the fact T/Lm is

abelian, we count distinct extensions of �B to T as ∣T/Lm∣ = p4m−1(p−1)
p3m

= pm−1(p− 1). Therefore,

using 3.5.2 and 3.5.3, G affords at least

pm−1(p− 1)

2
⋅ pm−1(p− 1) =

pn−2(p− 1)2

2

distinct irreducible characters of degree pn−1(p+ 1) when n is even.
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3.5. Counting Characters

When n=2m+1 we follow a similar process to the one used in 3.2.2 on page 35:

G

p2m−1(p+1)

affording � = �G using 2.4.15

T = G�B = LmS

p

affording �T using 2.4.15

T�′B = NS

pm(p−1)

affording � an extension of �′B which ∃ by 2.4.18

N

p

affording �′B an extension of �B defined below

Lm+1

p3m

affording �B

< I >

Where,

N =

⎧⎨⎩
⎡⎢⎣ 1 + apm+1 bpm+1

cpm (1 + apm+1)−1

⎤⎥⎦
⎫⎬⎭ , and

�′B : N −→ ℂ×

�′B : n 7−→ � ∘ tr(B(n− I))

which has T�′B = NS. Our table notes pm−1(p−1)
2 choices of B giving �B non conjugate so 3.5.2 gives

pm−1(p−1)
2 distinct irreducible characters of G using the construction outlined by the above lattice.

Now, for each choice of B we want to find distinct constructions of � in the above lattice. Using

Gallagher’s theorem with the fact NS/N is abelian we count distinct extensions of �′B to NS as

∣NS/N ∣ = ∣NS∣
∣N ∣ = p4m+1(p−1)

p3m+1 = pm(p−1). So 3.5.3 gives pm(p−1) distinct choices for �T and using

3.5.3 again gives pm(p− 1) distinct choices for �G. Therefore G affords at least

pm−1(p− 1)

2
⋅ pm(p− 1) =

pn−2(p− 1)2

2

distinct irreducible characters of degree pn−1(p+ 1) when n is odd.

Case 3: Irreducible characters of degree pn−1(p− 1). This case is similar to the previous

cases when n is even, but different from the previous cases when n is odd.
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3.5. Counting Characters

When n=2m our table notes pm−1(p−1)
2 choices of B giving �B non conjugate. Using Gallagher’s

theorem we count distinct extensions of �B to T = G�B as ∣T/Lm∣ = p4m−1(p+1)
p3m

= pm−1(p + 1).

Therefore using 3.5.2 and 3.5.3 there are at least

pm−1(p− 1)

2
⋅ pm−1(p+ 1) =

pn−2(p2 − 1)

2

distinct irreducible characters of degree pn−1(p+ 1) when n is even.

When n=2m+1 we repeat the method from 3.3.2, for quick reference we recall the lattice

outlining the construction:

G

p2m−1(p−1)

affording � = 
G using 2.4.15

G� = LmS

p+1

affording � an extension of 


Lm(L1 ∩ S)

p

affording 
 = �Lm(L1∩S) using 2.4.16

N(L1 ∩ S)

p

affording � an extension of �

Lm+1(L1 ∩ S)

pm

affording � an extension of �

Lm+1

p3m

affording � = �B

< I >

Our table notes pm−1(p−1)
2 choices of B giving �B non conjugate, so 3.5.2 gives pm−1(p−1)

2 distinct

irreducible characters of G using the construction in the above lattice. Now for each choice of B we

want to find distinct constructions of � in the above lattice. We start by counting distinct extensions

of �B to Lm+1(L1 ∩ S). Using Gallagher’s theorem with the fact Lm+1(L1 ∩ S)/Lm+1 is abelian

we count distinct extensions of �B to Lm+1(L1 ∩ S) as ∣Lm+1(L1∩S)∣
∣Lm+1∣ = p4m

p3m
= pm. So we have pm

distinct choices for �, each of which can be extended to N(L1 ∩S) giving pm distinct choices for �.

The pm choices for � give pm choices for 
 which are distinct by 3.3.9 which says 

Lm+1(L1∩S)

= p ⋅�.
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3.5. Counting Characters

Now for each choice of 
 we use Gallagher’s theorem with the fact that LmS/Lm(L1∩S) is abelian

to count distinct extensions of 
 to LmS as ∣LmS∣
∣Lm(L1∩S)∣ = p + 1. So for each distinct choice of 


there are p+ 1 distinct choices for �. Finally we use 3.5.3 to get pm ⋅ (p+ 1) distinct choices for �.

Therefore there are at least

pm−1(p− 1)

2
⋅ pm ⋅ (p+ 1) =

pn−2(p2 − 1)

2

distinct irreducible characters of degree pn−2(p2−1)
2 when n is odd.

Theorem 3.5.4. The above table represents all the irreducible characters of G.

Proof. To show this we count the number of distinct irreducible characters of G we have found and

ensure that this equals the number given in 3.5.1. When n = 1 there are p+4 irreducible characters

of SL2(ℤ/pnℤ) having degrees less than or equal to p+ 1 ([9],p.71-73). For each 2 ≤ m ≤ n there

are irreducible characters of SL2(ℤ/pmℤ) as described in the above table. All of these irreducible

characters just listed can be lifted to G using the technique from the proof of 3.4.1. For p > 3 we

only need to look at the degrees to see that all of these lifted characters are distinct:

p(m-1)−1(p+ 1) <
pm−2(p2 − 1)

2
< pm−1(p− 1) < pm−1(p+ 1).

When p = 3 there is an issue since the first strict inequality above fails. Though in this case the lifted

characters remain distinct, to see this we look at the kernels of the lifted characters. The characters

given in row 2 of the above table lifted to SL2(ℤ/pmℤ) (of degree 3(m-1)−1(3 + 1)) = 4 ⋅ 3m−2)

have Lm−1 in their kernels but the characters of SL2(ℤ/pmℤ) given in row 1 of the above table

(of degree pm−2(p2−1)
2 = 4 ⋅ 3m−2) do not have Lm−1 in their kernels. We now add up the distinct

irreducible characters:
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3.5. Counting Characters

p+ 4 +
n∑
i=2

pi−2(p− 1)2

2
+
pi−2(p2 − 1)

2
+ 4pi−1

= p+ 4 +
pn−1 − 1

p− 1
⋅ (p− 1)2

2
+
pn−1 − 1

p− 1
⋅ (p2 − 1)

2
+ 4p

pn−1 − 1

p− 1

=
(p− 1)(p+ 4)

p− 1
+
pn−1 − 1

p− 1

(
(p− 1)2 + (p2 − 1)

2
+ 4p

)
=
p2 + 3p− 4

p− 1
+
pn−1 − 1

p− 1

(
p2 + 3p

)
=

1

p− 1

(
p2 + 3p− 4 + pn+1 − p2 + 3pn − 3p

)
=
pn+1 − 4 + 3pn

p− 1

=
(pn+1 − 1) + 3(pn − 1)

p− 1

which is exactly the total number of irreducible characters of G. Therefore we have indeed accounted

for every irreducible character of G.
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Chapter 4

Irreducible Character Degrees of
SL3(ℤ/pnℤ)

———————————————————————-

4.0 Introduction

In this chapter we let,

G = SL3(ℤ/pnℤ)

G′ = GL3(ℤ/pnℤ)

and find characters of G using 2.4.15. Our first step is to find a normal subgroup of G, so throughout

this chapter for an integer m, we let:

Lm =
{
I + pmA

∣∣∣ A ∈M3(ℤ/pn−mℤ), det(I + pmA) = 1
}

Km =
{
I + pmA

∣∣∣ A ∈M3(ℤ/pn−mℤ)
}
.

Km was explored in ([1]) and we make use of its similarity to Lm in this chapter (here we are using

the corresponding convention described in 3.0.2). The same method used in chapter 3 gives the

following proposition.

Proposition 4.0.1. Lm is a normal subgroup of G with ∣Lm∣ = p8(n−m). When ⌈n2 ⌉ ≤ m we have

Lm abelian and

Lm =
{
I + pmA

∣∣∣ A ∈M3(ℤ/pn−mℤ), T r(A) = 0
}
.
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4.1. An Irreducible Character of Degree p2n−4(p3 − 1)(p+ 1).

4.1 An Irreducible Character of Degree p2n−4(p3 − 1)(p+ 1).

We start by defining the map:

� : M3(ℤ/pnℤ) −→ ℂ×

� : A 7−→ �(A−111 ⋅A31),

where given ! a pnth root of unity � is the injective map:

� : (ℤ/pnℤ)+ −→ ℂ×

� : x 7−→ !x.

� will be restricted to subgroups giving us a homomorphism in each case.

4.1.1 When n is Even.

In this subsection we assume n is even and define m so that: n=2m . Now �Lm is a homomorphism

and therefore an irreducible character of Lm. We want to find the stabilizer of �Lm .

Proposition 4.1.1.

G�Lm =

⎧⎨⎩

⎡⎢⎢⎢⎢⎣
a x y

pmb z w

pmc pmd a+ pme

⎤⎥⎥⎥⎥⎦ ∈ G
⎫⎬⎭ = T,

and ∣∣G�Lm ∣∣ = p12m−1(p− 1).

Proof. “⊆” We start by letting B ∈ G�Lm and trace the exact steps taken in ([1], p.32-33) until

the point pm(BAB−1)31 = pmA31 for any A such that I + pmA ∈ Lm. In our case we can choose

any A ∈ M3(ℤ/pmℤ) with Tr(A) = 0 in contrast to ([1], p.32-33) where A can any choice in
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4.1. An Irreducible Character of Degree p2n−4(p3 − 1)(p+ 1).

M3(ℤ/pmℤ). As a result we get the system of equations:

(1) pm(B−111 B31 −B−131 B33) = 0 letting A11 = 1, A33 = −1, otherwise Aij = 0

(2) pmB−111 B32 = 0 letting A21 = 1, otherwise Aij = 0

(3) pm(B−121 B32 −B−131 B33) = 0 letting A22 = 1, A33 = −1, otherwise Aij = 0

(4) pmB−111 B33 = pm letting A31 = 1, otherwise Aij = 0

(5) pmB−121 B33 = 0 letting A32 = 1, otherwise Aij = 0.

Considering equation (4) we see that B−111 is a unit, so in (2) we have pm∣B32. This means (3)

reduces to pmB−131 B33 = 0 but equation (4) also gives B33 as a unit so we have pm∣B−131 . This

reduces (1) to pmB−111 B31 = 0, and our system of equations has been reduced to the same system

of 4 equations given in ([1], p.33) and we can finish tracing the rest of the proof given there. ”⊇”

is true since T = G′�Km

∩
G ⊆ G�Lm .

Lastly, consider the homomorphism det : G′�
Km
→ (ℤ/pnℤ)×. Notice that Image(det) =

(ℤ/pnℤ)× so we have:

∣∣G�Lm ∣∣ = ∣ker(det)∣ =

∣∣G′�Km ∣∣
∣(ℤ/pnℤ)×∣

=
p14m−2(p− 1)2

p2m−1(p− 1)
= p12m−1(p− 1).

Next note ([1], p.33) where it is shown why �T is a homomorphism (�T ∈ Irr(T )). This also

shows �Lm ∈ Irr(Lm) since Lm ≤ T. We can now repeat the steps taken in 3.1.1 on page 26 to get

a character � with:

deg(�) =
∣G∣∣∣G�Lm ∣∣ =

p16m−5(p3 − 1)(p2 − 1)

p12m−1(p− 1)
= p4m−4(p2 + p+ 1)(p2 − 1) = p2n−4(p3 − 1)(p+ 1).

4.1.2 When n is Odd.

In this subsection we assume n is odd and define m so that: n=2m+1 . Now �Lm+1
is an irreducible

character of Lm+1. By a similar method used in the previous section we calculate the stabilizer:

G�Lm =

⎧⎨⎩
⎡⎣ a x y
pmb z w
pmc pmd a+ pme

⎤⎦ ∈ G
⎫⎬⎭ = T,
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4.1. An Irreducible Character of Degree p2n−4(p3 − 1)(p+ 1).

with ∣∣G�Lm ∣∣ = p12m+7(p− 1).

In contrast to the even case we can not extend �Lm+1
directly to T, so we outline the plan with

the following lattice:

G

p4m−4(p2−1)(p2+p+1)

affording � = �GH using 2.4.15

G�
Lm+1

= T

p2

affording �TH using 2.4.15

T�
N

= H

p4m−1(p−1)

affording �H

N

p6

affording �N

Lm+1

p8m

affording �Lm+1

< I >

Where,

H =

⎧⎨⎩
⎡⎣ a x y

pmb z w
pm+1c pm+1d a+ pme

⎤⎦ ∈ G
⎫⎬⎭ , and

N =

⎧⎨⎩
⎡⎣ 1 + pma pmx pmy

pmb 1 + pmz pmw
pm+1c pm+1d 1 + pme

⎤⎦ ∈ G
⎫⎬⎭ .

Proposition 4.1.2.

N ⊴ T, with T�N = H, also ∣H∣ = p12m+5(p− 1), and ∣N ∣ = p8m+6.

Proof. First N ⊴ T since given I + npm ∈ N (so p∣n31, n32) and, t ∈ T we have: t(I + npm)t−1 =

I + pmtnt−1 ∈ N because p∣(tnt−1)31, (tnt−1)31.
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Now let T ′, H ′, N ′ be defined exactly as T,H,N were defined respectively but with G′ instead

of G. Notice ∣det(N ′)∣ = pm+1, and ∣det(H ′)∣ = p2m(p− 1) giving:

∣N ∣ = N ′

det(N ′)
=
p9m+7

pm+1
= p8m+6, ∣H∣ = H ′

det(H ′)
=
p14m+5(p− 1)2

p2m(p− 1)
= p12m+5(p− 1).

Finally we want T�N = H.

“⊆” Let

t =

⎡⎢⎢⎢⎢⎣
a x y

pmb z w

pmc pmd a+ pme

⎤⎥⎥⎥⎥⎦ ∈ T�N , t−1 =

⎡⎢⎢⎢⎢⎣
a′ x′ y′

pmb′ z′ w′

pmc′ pmd′ a′ + pme′

⎤⎥⎥⎥⎥⎦ , n = I+pm

⎡⎢⎢⎢⎢⎣
x1 x2 x3

x4 x5 x6

px7 px8 x9

⎤⎥⎥⎥⎥⎦ ∈ N.

So we have: �tN (n) = �(pm+1a′ax7 + p2m(a′cx1 + a′dx4 + c′ax9)) = �(pm+1x7), for all choices of

xi where n ∈ N. Letting x4 = 1 and xi = 0 otherwise we have a′dp2m = 0
a′ unit⇒ p∣d. Next we let

x1 = x2 = x4 = 1, x5 = −1, and xi = 0 otherwise: which gives a′cp2m = 0
a′ unit⇒ p∣c. Therefore

t ∈ H and T�N ⊆ H.

“⊇” noting that the same argument from the previous section shows �H ∈ Irr(H) implying

�N ∈ Irr(N) since N ≤ H, gives �H as an extension of �N implying H ⊆ T�N .

We can now repeat the steps taken in 3.2.2 on page 35 (using 2.4.15 twice) to get a character

� with:

deg(�) =
∣G∣
∣H∣

=
p16m+3(p3 − 1)(p2 − 1)

p12m+5(p− 1)
= p4m−2(p3 − 1)(p+ 1) = p2n−4(p3 − 1)(p+ 1).
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4.2 An Irreducible Character of Degree p2n−2(p2 + p+ 1).

We start by recalling the map � in 3.2 on page 29 and define the map:

� : M3(ℤ/pnℤ) −→ ℂ×

� : A 7−→ �(A11).

� will be restricted to subgroups giving us a homomorphism in each case.

4.2.1 When n is Even.

In this subsection we assume n is even and define m so that: n=2m . Now �Lm is a homomorphism

and therefore an irreducible character of Lm. Again our next step is to calculate the stabilizer of

�Lm .

Proposition 4.2.1.

G�Lm =

⎧⎨⎩

⎡⎢⎢⎢⎢⎣
a bpm cpm

dpm x y

epm z w

⎤⎥⎥⎥⎥⎦ ∈ G
⎫⎬⎭ = T,

and

∣G�Lm ∣ = p12m−3(p− 1)2(p+ 1).

Proof. “⊆” We start by letting B ∈ G�Lm and trace the exact steps taken in ([1], p.29-30) until

the point pm(BAB−1)11 = pmA11 for any A such that I + pmA ∈ Lm. In our case we can choose

any A ∈ M3(ℤ/pmℤ) with Tr(A) = 0 in contrast to ([1], p.29-30) where A was any choice in

M3(ℤ/pmℤ). As a result we get the system of equations:
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(1) pm(B−111 B11 −B−121 B12) = pm letting A22 = 1, A33 = −1, otherwise Aij = 0

(2) pm(B−121 B12 −B−131 B13) = 0 letting A11 = 1, A22 = −1, otherwise Aij = 0

(3) pmB−111 B12 = 0 letting A21 = 1, otherwise Aij = 0

(4) pmB−111 B13 = 0 letting A31 = 1, otherwise Aij = 0

(5) pmB−121 B11 = 0 letting A12 = 1, otherwise Aij = 0

(6) pmB−131 B11 = 0 letting A13 = 1, otherwise Aij = 0

(7) pmB−131 B12 = 0 letting A23 = 1, otherwise Aij = 0.

Multiply (3) by B11 implying: pm(B−111 B11)B12 = 0
(1)⇒ pm(1 + B−121 B12)B12 = 0, using this we

consider two cases. Considering the case when B12 is a unit for some x we have: 1 + B−121 B12 =

pmx ⇒ B−121 = pmx−1
B12

, so B−121 is also a unit. Otherwise if B12 is not a unit, then 1 +B−121 B12 is a

unit, so for some x we have: B12 = pmx. Next multiply (7) by B13 implying: pm(B−131 B13)B12
(2)
=

pmB−121 B
2
12 = 0. This means that both B12 and B−121 can not be units so the first case stated above

results in a contradiction and we must have the result of the second case: B12 = pmx for some x.

But this reduces (1) to pmB−111 B11 = pm so our system of equations has been reduced to the same

system of 5 equations given in ([1], p.30) and we can finish tracing the rest of the proof given there.

“⊇” is true since T = G′�Km

∩
G ⊆ G�Lm .

Lastly consider the homomorphism det : G′�
Km
→ (ℤ/pnℤ)×. Notice that Image(det) =

(ℤ/pnℤ)× so we have:

∣∣G�Lm ∣∣ = ∣ker(det)∣ =

∣∣G′�Km ∣∣
∣(ℤ/pnℤ)×∣

=
p14m−4(p− 1)3(p+ 1)

p2m−1(p− 1)
= p12m−3(p− 1)2(p+ 1)

Noting that �T is a homomorphism we can repeat the steps taken in 3.2.1 on page 32 to get a

character � with:

deg(�) =
∣G∣
∣G�Lm ∣

=
p16m−5(p3 − 1)(p2 − 1)

p12m−3(p− 1)2(p+ 1)
= p4m−2(p2 + p+ 1) = p2n−2(p2 + p+ 1).
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4.2.2 When n is Odd.

In this subsection we assume n is odd and define m so that: n=2m+1 . Now �Lm+1
is an irreducible

character of Lm+1. By a similar method used in the previous section we calculate the stabilizer:

G�Lm+1
=

⎧⎨⎩
⎡⎣ a pmb pmc
pmd x y
pme z w

⎤⎦ ∈ G
⎫⎬⎭ = T,

and

∣T ∣ = p12m+5(p− 1)2(p+ 1).

In contrast to the even case we can not extend �Lm+1
directly to T, so we out line the plan with

the following lattice:

G

p4m−2(p2+p+1)

affording � = �GH using 2.4.15

G�
Lm+1

= T

p2

affording �TH using 2.4.15

T�
N

= H

p4m−3(p−1)2(p+1)

affording �H

N

p6

affording �N

Lm+1

p8m

affording �Lm+1

< I >

Where,

H =

⎧⎨⎩
⎡⎣ a pm+1b pm+1c
pmd x y
pme z w

⎤⎦ ∈ G
⎫⎬⎭ , and

N =

⎧⎨⎩
⎡⎣ 1 + pma pm+1b pm+1c

pmd 1 + pmx pmy
pme pmz 1 + pmw

⎤⎦ ∈ G
⎫⎬⎭ .
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Proposition 4.2.2.

N ⊴ T, with T�N = H, also ∣H∣ = p12m+3(p− 1)2(p+ 1), and ∣N ∣ = p8m+6.

Proof. Let T ′, H ′, N ′ be defined exactly as T,H,N were defined respectively but with G′ instead

of G. We have from ([1], p.39) that N ′⊴ T ′ ⇒ N ′
∩
G⊴ T ′

∩
G ⇒ N ⊴ T . Also ∣ det(N ′)∣ = pm+1,

and ∣ det(H ′)∣ = p2m(p− 1) giving:

∣N ∣ = N ′

det(N ′)
=
p9m+7

pm+1
= p8m+6, ∣H∣ = H ′

det(H ′)
=
p14m+3(p− 1)3(p+ 1)

p2m(p− 1)
= p12m+3(p−1)2(p+1).

Finally considering n ∈ N we notice the determinate does not depend on n12 and n13 so we can

repeat the chain of equivalences given in ([1], p.40) to get T�N = H.

We can now repeat the steps taken in 3.2.2 on page 35 (using 2.4.15 twice) to get a character

� with:

deg(�) =
∣G∣
∣H∣

=
p16m+3(p3 − 1)(p2 − 1)

p12m+3(p− 1)2(p+ 1)
= p4m(p2 + p+ 1) = p2n−2(p2 + p+ 1).
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4.3 An Irreducible Character of Degree p3n−3(p− 1)2(p+ 1).

In this section we restrict p > 3 and use results from 2.3 where we defined the subgroup S of G:

this subgroup plays a key roll in this chapter. We will use the matrix:

B =

⎡⎣ 0 0 a
1 0 b
0 1 0

⎤⎦ .
where where a, b are defined on page 9.

4.3.1 When n is Even.

In this subsection we assume n is even and define m so that: n=2m . Now recall � as defined in

3.3.1 and define:

� : Lm −→ ℂ×

� : I + pmA 7−→ �tr(pmAB),

which is a homomorphism and therefore an irreducible character of Lm. Again our next step is to

calculate the stabilizer of �.

Proposition 4.3.1.

G� = LmS

and

∣G�∣ = p10m−2(p2 + p+ 1).

Proof. “⊆” We start by letting C ∈ G� and trace the exact steps taken in ([1], p.36-37) until the

point where tr(Apm(B − C−1BC)) = 0 for any A such that I + pmA ∈ Lm. In our case we can

choose any A ∈ M3(ℤ/pmℤ) with Tr(A) = 0 in contrast to ([1], p.36-37) where A was any choice

in M3(ℤ/pmℤ). By considering different choices of A we get:

pm(B − C−1BC) =

⎡⎢⎢⎢⎢⎣
x 0 0

0 x 0

0 0 x

⎤⎥⎥⎥⎥⎦
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for some x ∈ ℤ/p2mℤ. But since tr(pm(B − C−1BC)) = 0 we have: 3x = 0
3 a unit
=⇒ x = 0. Now our

equation has been reduced to pm(B −C−1BC) = 0 which is the same equation given in ([1], p.37)

and we can continue tracing the proof given there until we get C ∈ KmS
′ (where S′ is defined exactly

as S was defined but with G′ instead of G). Since C ∈ G we now have C ∈ KmS∩G, so to conclude

the proof of this inclusion we are left to show: KmS
′ ∩G = LmS. “⊆” Let (I + pmA)s ∈ KmS

′ ∩G

where, (I + pmA) ∈ Km, s ∈ S′ and det((I + pmA)s) = 1. Now pick

X =

(
1 + pm

(
−(A11 +A22 +A33)− 2zb

3

))
I + pmyB + pmzB2 ∈ Km ∩ S′.

We have:

(I + pmA)s

= (I + pmA)(X ⋅X−1)s

= ((I + pmA)X) ⋅ (X−1s)

∈ LmS since det(X) =
1

det(I + pmA)
and det(X−1) =

1

det(S)
.

Therefore KmS
′ ∩ G ⊆ LmS. “⊇” Is clear since Lm = Km ∩ G and S′ = S ∩ G. Finally we have

KmS
′ ∩G = LmS so that C ∈ LmS and G� ⊆ LmS.

“⊇” is true since we can follow the same argument in ([1], p.36).

Lastly consider the homomorphism det : Km ∩ S′ → (ℤ/pnℤ)×. Notice that:

Image(det) = {1 + pmx ∣ x ∈ ℤ/pmℤ} so we have: ∣Lm∩S∣ = ∣Ker(det)∣ = ∣Km∩S′∣
pm = p3m

pm = p2m.

Implying ∣LmS∣ = ∣Lm∣⋅∣S∣
∣Lm∩S∣ = p8m⋅p4m−2(p2+p+1)

p2m
= p10m−2(p2 + p+ 1).

We can repeat the steps taken in 3.3.1 on page 41 to get a irreducible character � with:

deg(�) =
∣G∣
∣G�∣

=
p16m−5(p3 − 1)(p2 − 1)

p10m−2(p2 + p+ 1)
= p6m−3(p− 1)2(p+ 1) = p3n−3(p− 1)2(p+ 1).
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4.3. An Irreducible Character of Degree p3n−3(p− 1)2(p+ 1).

4.3.2 When n is Odd.

In this subsection we assume n is odd and define m so that: n=2m+1 . We use the same method

used in 3.3.2 constructing a character of Lm+1 and using 2.4.15.

G

p6m−3(p−1)2(p+1)

affording � = 
G using 2.4.15

G� = LmS

p2+p+1

affording � an extension of 


Lm(L1 ∩ S)

p3

affording 
 = �Lm(L1∩S) using 2.4.16

N(L1 ∩ S)

p3

affording � an extension of �

Lm+1(L1 ∩ S)

p2m

affording � an extension of �

Lm+1

p8m

affording �

< I >

Where,

N =

⎧⎨⎩
⎡⎣ 1 + pm+1a pmx pmy

pm+1b 1 + pm+1z pmw
pm+1c pm+1d 1 + pm+1e

⎤⎦ ∈ G
⎫⎬⎭ .

Define the injective homomorphism: � as in 3.3.2 a define:

� : Lm+1 −→ ℂ×

� : A 7−→ �tr(AB),

Now, � is a character of Lm+1 with degree 1. A similar calculation to the one used in 4.3.1 shows:

G� = LmS. Repeating the method used in 3.3.2 we find � an extension of � to Lm+1(L1 ∩ S).

Next we find the sizes of our subgroups in the above lattice. To do so we use Hensel’s lemma

(as stated in 3.3.3) in the following proposition.

Proposition 4.3.2. ∣Lm+1(L1 ∩ S)∣ = p10m, ∣N(L1 ∩ S)∣ = p10m+3, ∣Lm(L1 ∩ S)∣ = p10m+6,

∣LmS∣ = p10m+6(p2 + p+ 1).
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Proof. Start by defining N ′ exactly as N was defined but with G′ instead of G, so:

∣N ∣ = ∣N ′∣
∣det(N ′)∣

=
p9m+3

pm
= p8m+3.

From 4.0.1 we have ∣Lm∣ = p8m+8. Now we find ∣L1
∩
S∣, let X = (1+px)I+pyB+pzB2 ∈ L1

∩
S.

To calculate ∣L1 ∩ S∣ pick an arbitrary X ∈ L1 ∩ S and count the solutions to det(X) = 1. For

x, y, z ∈ ℤ/pnℤ X has the form X = (1 + px)I + pyB + pzB2 so we want to count solutions of:

det(X) = 1 + p(3x+ 2bz) + p2g(x, y, z) = 1 for some polynomial g

⇔ f(x∗) ≡ x∗ + p ⋅ g(x, y, z) mod p2m (∗) letting x∗ ≡ 3x+ 2bz mod p2m.

Now, f(0) ≡ 0 mod p and f ′(0) ∕≡ 0 mod p so by 3.3.3 there is a unique x2m mod p2m so

f(x2m) ≡ 0 mod p2m. This means that for each y in (*) there is exactly one x∗ which gives a

solution. Therefore there are p2m choices for y in (*) and for each choice of y there are p2m

solutions for x and z in x∗ ≡ 3x+ 2bz mod p2m. As a result ∣L1 ∩ S∣ = p2m ⋅ p2m = p4m. By using

the same method we calculate:

∣Lm ∩ S∣ = p2m+2, ∣Lm+1 ∩ S∣ = p2m.

Now,

∣Lm+1(L1 ∩ S)∣ = ∣Lm+1∣ ⋅ ∣L1 ∩ S∣
∣Lm+1 ∩ S∣

=
p8m ⋅ p4m

p2m
= p10m,

∣N(L1 ∩ S)∣ = ∣N ∣ ⋅ ∣L1 ∩ S∣
∣N ∩ S∣

=
p8m+3 ⋅ p4m

p2m
= p10m+3,

∣Lm(L1 ∩ S)∣ = ∣Lm∣ ⋅ ∣L1 ∩ S∣
∣Lm ∩ S∣

=
p8m+8 ⋅ p4m

p2m+2
= p10m+6,

and using 2.3.3

∣LmS∣ =
∣Lm∣ ⋅ ∣S∣
∣Lm ∩ S∣

=
p8m+8 ⋅ p4m(p2 + p+ 1)

p2m+2
= p10m+6(p2 + p+ 1)

Now we can repeat the method used in 3.3.2 to obtain a character � of degree p3 of G�; giving

an irreducible character � of G with:

deg(�) = deg(�)
∣G∣
∣G�∣

= p3 ⋅
(
p16m+3(p3 − 1)(p2 − 1)

p10m+6(p2 + p+ 1)

)
= p6m(p− 1)2(p+ 1) = p3n−3(p− 1)2(p+ 1).
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Appendix

Appendix: Maple Commands

∙ Case: c is not a unit.

> y := ((1/2)*n[2]+c*n[1]*epsilon/(2*a))/(a-cˆ2*epsilon/a);
> x := -n[1]/(2*a)-y*c/a;
> w := c*x/a-n[2]/(2*a*epsilon);
> g := a+(1/2)*n[1]*p; h := c+n[2]*p/(2*epsilon);

y :=
(
1/2n2 + 1/2 cn1�

a

) (
a− c2�

a

)−1
x := −1/2 n1

a −
(
1/2n2 + 1/2 cn1�

a

)
c
(
a− c2�

a

)−1
a−1

w := c

(
−1/2 n1

a −
(
1/2n2 + 1/2 cn1�

a

)
c
(
a− c2�

a

)−1
a−1
)
a−1 − 1/2 n2

a�

g := a+ 1/2n1p

ℎ := c+ 1/2 n2p
�

> t := ‘.‘(
Matrix(2, 2, {(1, 1) = 1+x*p, (1, 2) = y*p,(2, 1) = w*p, (2, 2) = 1-x*p}) ,
Matrix(2, 2, {(1, 1) = g, (1, 2) = h*epsilon,(2, 1) = h, (2, 2) = g})):
map(simplify, simplify(t, {pˆ2 = 0}));[

a c�+ n2p

c a+ n1p

]
∙ Case: c is a unit.

> w := ((1/2)*n[1]+a*n[2]/(2*c*epsilon))/(-aˆ2/c+cˆ2*epsilon*1/c);
> x := w*a/c+n[2]/(2*c*epsilon);
> y := -n[1]/(2*c)-a*x/c;
> g := a+(1/2)*n[1]*p; h := c+n[2]*p/(2*epsilon);

w :=
(
1/2n1 + 1/2 an2

c�

) (
−a2

c + c�
)−1

x :=
(
1/2n1 + 1/2 an2

c�

)
a
(
−a2

c + c�
)−1

c−1 + 1/2 n2
c�

y := −1/2 n1
c − a

((
1/2n1 + 1/2 an2

c�

)
a
(
−a2

c + c�
)−1

c−1 + 1/2 n2
c�

)
c−1

g := a+ 1/2n1p

ℎ := c+ 1/2 n2p
�

> t := ‘.‘(
Matrix(2, 2, {(1, 1) = 1+x*p, (1, 2) = y*p, (2, 1) = w*p, (2, 2) = 1-x*p}),
Matrix(2, 2, {(1, 1) = g, (1, 2) = h*epsilon, (2, 1) = h, (2, 2) = g})):
map(simplify, simplify(t, {pˆ2 = 0}));[

a c�+ n2p

c a+ n1p

]

( Note the simplification: pm = p so that p2 = 0 )
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