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Abstract

In this thesis, a Reinforcement Learning (RL) method called Sarsa is used to

dynamically tune a PI-controller for a Continuous Stirred Tank Heater (CSTH)

experimental setup. The proposed approach uses an approximate model to train the

RL agent in the simulation environment before implementation on the real plant.

This is done in order to help the RL agent initially start from a reasonably stable

policy. Learning without any information about the dynamics of the process is not

practically feasible due to the great amount of data (time) that the RL algorithm

requires and safety issues.

The process in this thesis is modeled with a First Order Plus Time Delay

(FOPTD) transfer function, because almost all of the chemical processes can be

sufficiently represented by this class of transfer functions. The presence of a delay

term in this type of transfer functions makes them inherently more complicated

models for RL methods.

RL methods should be combined with generalization techniques to handle the

continuous state space. Here, parameterized quadratic function approximation

compounded with k-nearest neighborhood function approximation is used for

the regions close and far from the origin, respectively. Applying each of these

generalization methods separately has some disadvantages, hence their combination

is used to overcome these flaws.

The proposed RL-based PI-controller is initially trained in the simulation

environment. Thereafter, the policy of the simulation-based RL agent is used as

the starting policy of the RL agent during implementation on the experimental

setup. As a result of the existing plant-model mismatch, the performance of the

RL-based PI-controller using this primary policy is not as good as the simulation



results; however, training on the real plant results in a significant improvement in

this performance. On the other hand, the IMC-tuned PI-controllers, which are the

most commonly used feedback controllers are also compared and they also degrade

because of the inevitable plant-model mismatch. To improve the performance of

these IMC-tuned PI-controllers, re-tuning of these controllers based on a more

precise model of the process is necessary.

The experimental tests are carried out for the cases of set-point tracking and

disturbance rejection. In both cases, the successful adaptability of the RL-based

PI-controller is clearly evident.

Finally, in the case of a disturbance entering the process, the performance of

the proposed model-free self-tuning PI-controller degrades more, when compared

to the existing IMC controllers. However, the adaptability of the RL-based PI-

controller provides a good solution to this problem. After being trained to handle

disturbances in the process, an improved control policy is obtained, which is able

to successfully return the output to the set-point.
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Chapter 1

Introduction

1.1 Motivations and Objectives

PI-controllers are the most practically used controllers in industry [Astrom and

Hagglund, 1988]. The tuning of these controllers is of great importance as

it significantly affects their control performance. There are various methods

documented in the literature for the tuning of PI-controllers, which may not

necessarily result in the optimum gains of the controller due to either lack of any

optimization or the existing plant-model mismatch. Model based tuning methods

are generally related to the development of some form of the process model and

their performance is highly dependent on its accuracy. Yet, obtaining a precise

process model is a non-trivial task. In addition, if the dynamics of the process

change through time, considerable amount of time, effort, and money needs be

spent on re-tuning or re-designing of the in-use controllers.

These shortcomings motivate the application of reinforcement learning (RL)

methods in the dynamic tuning of PI-controllers. Model-free RL methods do not

require a model of the system (though any prior knowledge about the system,

such as a rough model, or a structure of the cost function, can be incorporated

into them to increase their performance). In addition, RL methods continuously

receive a feedback signal from their environment, so they sense any changes in the

dynamics of the process and adapt to those changes to keep the control performance

satisfactory.

Furthermore, RL methods have a simpler optimization step, compared to Model
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Predictive Control, or MPC, which is a popular control technique for industrial

multivariate control problems. MPC deals with a complex multi-step optimization

problem that is computationally expensive to solve online (specially for non-linear

systems). On the other hand, RL solves a single-step optimization problem, which

is an easier task to perform in real time.

The application of the RL methods to chemical process control is a harder task

compared to robotics, because chemical processes are involved with continuous

state and continuous action spaces. In addition, the key component of model-free

RL methods, exploration, can be troublesome in chemical processes because of

safety issues. Therefore, model-free RL methods should be adjusted for application

on a chemical process. To have a safer exploration, we have decided to keep the

structure of our controller fixed as a PI-controller, and use RL methods to set the

gains of this controller, instead of working with the control signal directly.

The proposed approach in this thesis builds a cost-to-go function from the

data obtained from closed-loop simulations and experiments. This cost-to-go

ensures that the cost-to-go-function-based RL methods do not need the model of the

system. Through the optimization of the cost-to-go, at each step of the simulation

or experiment, the best gains for the PI-controller are calculated, and then the

estimate of the cost-to-go function is corrected based on the feedback earned from

the process. Both simulation and experimental results are provided for set-point

tracking, while disturbance rejection is also tested on the experimental plant.

1.2 Overview

This thesis is organized as follows: Chapter 2 provides the theoretical background,

which is prerequisite for understanding the proposed approach in this thesis,

including an introduction to different RL methods and a brief description of several

tuning methods. Chapter 3, presents a literature review of some published papers

and theses, related to this topic. Chapter 4 explains the author’s research work and

contains the supporting simulation results, along with their experimental validation.

This is followed by the concluding remarks and future work in Chapter 5.

2



1.3 Contribution of this thesis

In this thesis, the application of model-free reinforcement learning methods is

examined on a practical case of study in process control. This case of study is

the dynamic tuning of a PI-controller for a Continuous Stirred Tank Heater (CSTH)

experimental setup. The RL approach used here does not require a dynamic model;

however any existing model, accurate or even otherwise, can be used to enhance

its performance. In fact, to prevent safety problems that may occur due to the

implementation of pure RL on the pilot plant, a rough model of the process is

assumed to be at hand. This rough model is used to built a simulation environment.

The RL agent is initially trained in this simulation environment. Thereafter, The

policy of the simulation-based RL agent is used as the initial policy of the RL

agent in experiment to begin training in experimental environment from a better

first policy. The process in the simulation environment is modeled as an FOPTD

transfer function. This type of transfer functions are more complicated for the

application of RL methods, as a result of their delay terms. In addition, because

of the continuity of the state space defined in this thesis, parameterized quadratic

function approximation in combination with k-nearest neighborhood is used as a

generalization technique. This combination is used as a means to overcome the

flaws of applying each of the mentioned generalization methods separately.

Finally, the successful implementation of the proposed approach is provided

on the CSTH pilot plant. To our best knowledge, we are the first to provided

experimental results for the application of RL methods on a chemical plant.

Through this experimental evaluations, significant adaptation is observed for the

RL-based PI-controller, which makes it an appealing approach in the case of process

model change.

3



Chapter 2

Theoretical Background

2.1 Introduction to PI-Controllers

PI-controllers are the most common single-input-single-output (SISO) feedback

controllers in-use in industry [Astrom and Hagglund, 1988]. This is mainly because

they are reliable and easy to implement by field engineers. The standard format of

the controller that is used in this thesis is shown in Equation (2.1):

ut = Kcet +Ki

∫ t

0

eτdτ (2.1)

in which et represents the feedback error of the system at time t and is shown in

Equation (2.2).

et = rt − yt (2.2)

Here rt is the set-point signal, while yt is the output value. In the discrete format,

the summation of the error takes the place of the integral term and Equation (2.1)

changes to Equation (2.3):

uk = Kcek +KiTs

k∑
j=0

ej (2.3)

In Equation (2.3), Ts is the sample time used for discretizing. Here, the sensor

noise and disturbances to the system are assumed to be unknown. As shown in

Equation (2.1), the control signal consists of two different parts: the proportional

and integral terms. Increasing the gain of the proportional part will reduce the

sensitivity of the output of the system to the load disturbances, while the integral

term drives the process output towards the set-point and eventually eliminates

4



the steady-state error [Seborg et al., 1989]. However, because the integral term

responds to the summation of the errors from the past, it may result in the

overshoot, undershoot or even produce oscillations in the output. To prevent the side

effects of the integral term, such as increasing the settling time and the overshoot

(undershoot), a derivative term can be added to the controller law [Seborg et al.,

1989]. This will speed up the rate at which the output changes. One disadvantage

of including the derivative action is its sensitivity to measurement noise, which in

the case of large noise and derivative gain, can result in an unstable system [Seborg

et al., 1989].

2.1.1 Tuning of PI-Controllers

The performance of a PI controller is highly dependent on its gains. If these gains

are chosen improperly, the output can show a big overshoot, become oscillatory, or

even diverge. The adjustment of these controller gains to the optimum values for

a desired control response is called tuning of the control loop. There are different

methods documented in the literature for the tuning of PI-controllers, which may

not necessarily result in the optimum gains of the controller. In addition, the most

effective tuning methods are model based. This means that they generally require

the availability of some form of the process model. There are also manual tuning

methods which can be relatively inefficient. In the following paragraphs some

common tuning methods are described and compared.

Ziegler-Nichols (Z-N) Method [Ziegler and Nichols, 1993]

The Ziegler-Nichols tuning method is a tuning technique presented both in online

and off-line modes. The online version of this method is summarized in the

following steps [Seborg et al., 1989]:

1. When the process reaches the steady state, set the integral (and derivative)

gains equal to zero, so in this way the controller just includes the proportional

term.

2. Put the controller in automatic mode with a small value of Kc.

5



Table 2.1: Controller settings based on the Ziegler-Nichols method

Ziegler-Nichols Kc Ki Kd

P 0.5Kcu — —
PI 0.45Kcu

1.2Kc
Pu

—
PID 0.6Kcu

2Kc
Pu

KcPu
8

3. Change the set-point by a small amount. This will make the output move

away from the set-point. Gradually increase the control gain till the output

continuously oscillates with constant amplitude. The value of Kc that has

resulted in this continuous cycling output is named the ultimate gain, and is

denoted by Kcu. The period of the corresponding continuous cycling output

is called the ultimate period and is denoted by Pu.

4. Applying the Z-N tuning rules mentioned in Table 2.1, calculate the PI-

controller settings.

5. Evaluate the current settings and fine-tune.

For the off-line version, the ultimate gain and period introduced in Ziegler-Nichols

tuning method are calculated based on the parameters of the model of the process.

In this thesis, our main process characteristic of interest is First Order Plus Time

Delay (FOPTD) transfer functions as the available model of the system. The general

format for FOPTD models is shown in Equation (2.4) where Kp, θ, and τ are the

gain, the time delay, and the time constant of the system, respectively. The reason

for choosing an FOPTD model is that, most of the industrial chemical processes

can be approximated by this type of transfer functions [Seborg et al., 1989].

G(s) =
Kp

τs+ 1
exp(−θs) (2.4)

For FOPTD transfer functions, the ultimate gain and period can be derived from

Equations (2.5) and (2.6).

τ =
Pu
2π

tan
[π(Pu − 2θ)

Pu
] (2.5)

Pu =
2πτ√

(KpKcu)2 − 1
(2.6)

6



As it is obvious from these two equations, the off-line Ziegler-Nichols tuning

method is model-based which means that it requires the dynamics in the form of

FOPTD.

This technique has several disadvantages. First of all, it can be time-consuming

to find the best possible gains based on this tuning method, when the process is

slow, or several trials are necessary. Secondly, this tuning rule is not applicable

to integrating or open-loop unstable plants because these processes are usually

unstable for big and small values of the gain [Seborg et al., 1989]. Finally, for

the first order models without time delays, Kcu does not exist [Seborg et al., 1989].

IMC Method [Garcia and Morari, 1982]

Internal Model Control, or IMC, is a model-based design method. This method

is effective when a reasonably precise model of the plant is available. One of

the advantages of the IMC method is that it has flexibility for model uncertainty

and tradeoffs between performance and robustness [Seborg et al., 1989]. The IMC

controller is designed in two steps:

1. As it is shown in Equation (2.7), the model of the process shown by G̃ is

divided into two parts: G̃+ and G̃−.

G̃ = G̃+G̃− (2.7)

where G̃+ includes any time delays and zeros in the right-half plane while it

has a steady-state gain of one. This gain should be equal to one to ensure that

G̃+ and G̃− are two unique terms. Based on the definition of G̃+, G̃− can be

considered as the invertible part of the model of the system.

2. Design the controller based on Equation (2.8).

G∗c =
1

G̃−
f (2.8)

where f is a low-pass filter with a steady-state gain of one and is defined in

Equation (2.9).

f =
1

(τcs+ 1)r
(2.9)

7



where τc is the desired closed-loop time constant. Also r is a positive integer

which usually is set to be one.

As Equation (2.8) shows, the IMC controller is designed based on the invertible

part of the dynamics of the plant. Hence, this controller is proved to be physically

realizable and stable [Seborg et al., 1989]. The non-invertible G̃+ limits the

performance of any controller applied to this process. In the case of open-loop

unstable processes, IMC should be modified, because the standard IMC design

method is rooted in the pole-zero cancelation [Seborg et al., 1989]. τc is the key

parameter in the IMC design method. As it can be concluded from Table 2.2, a

higher τc leads to a lower Kc and a lower Ki. This results in a more conservative

controller. The common guidelines on choosing the closed-loop time constant in

the IMC methods for FOPTD models are shown in Equations (2.10) to (2.12):

τc
θ
> 0.8 and τc > 0.1τ (2.10)

τ > τc > θ (2.11)

τc = θ (2.12)

Where τ and θ are the time constant and the time delay, respectively. For processes

with a dominant time constant, τdom, guideline (2.11) can be used by substituting τ

by τdom [Seborg et al., 1989].

Any IMC controller is shown to be equivalent to a standard feedback controller

[Seborg et al., 1989]. Hence, the IMC method can be used to derive PI or PID

controller settings for systems with different models. These tuning relations depend

on the low-pass filter introduced in Equation 2.9, and the way the time-delay of the

model is approximated.

The IMC-based tuning relations for FOPTD transfer functions are shown in

Table 2.2, for a PI and a PID controller. Here r in 2.9 is considered to be one. In

this thesis, IMC tuning rules are used to define six different IMC controllers for

comparative studies. This idea is explained with more detail later in Section 4.1.2.

8



Table 2.2: Controller settings based on the IMC method

Model KcKp Ki Kd

Ke−θs

τs+1
τ

τc+θ
Kc
τ

—
Ke−θs

τs+1

τ+ θ
2

τc+
θ
2

Kc
τ+ θ

2

Kcτθ
2τc+τ

2.2 Introduction to Reinforcement Learning

In the following sections the basic theories of Reinforcement Learning are de-

scribed. The structure and the explanations are mostly based on ”Reinforcement

Learning: An Introduction”, a book by Richard, S. Sutton, and Andrew G. Barto

[Sutton and Barto, 1998], as the author believes this book is one of the best

resources one can find in the philosophy and basics of Reinforcement Learning.

The amount and type of the information that is available from the environment

distinguishes various learning schemes. In this way, three main categories are

usually defined for learning methods: supervised learning, reinforcement learning

(RL), and unsupervised learning.

Supervised learning is mainly about function approximation and the generalized

mapping of inputs to outputs in a way that results in the best possible approximation

of the output for the entire input space. Here, in addition to the input/output pairs

of data, the desired behavior is explicitly mentioned.

In contrast to this, in unsupervised learning the only information provided by the

environment is the data set. Here, no evaluation of the desired output is available.

In this scheme a model is built by analyzing the data and is applied to future tasks.

The final category, which is of interest to us, sits between these two methods. In

RL, not only the data is provided, but also, after the agent’s interaction, an evaluative

feedback from the environment is sent to the learning agent stating how good the

output is. This evaluative feedback is different from the one in supervised learning

because it does not mention explicitly the desired input/output pairs.

RL is inspired by psychological and animal learning theories [Fu and Anderson,

2006]. All people, more or less, apply RL in their lives, while they are discovering,

for the first time, how to walk, ride a bike, ice skate, or train a pet. This Artificial
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Intelligence method deals with the big picture of a goal-directed problem; therefore,

it is particularly suitable for problems which include a long-term versus short-

term cost trade-off; to have the optimal solution to this type of problems, it may

sometimes be crucial to accept short-term costs in order to gain smaller costs in the

future.

RL has been applied successfully to different problems, such as robot control

and navigation [Connell and Mahadevan, 1993], elevator scheduling [Crites and

Barto, 1996], telecommunications [Singh and Bertsekas, 1997], and logic games

like poker, backgammon, and chess [Tesauro, 1995, 1994, Fogel et al., 2004].

In the next few sections, some common terms in Reinforcement Learning

will be defined. This will be necessary to proceed to the description of different

reinforcement learning methods.

Policy

The policy determines the behavior of the learner. For example, it can be a mapping

from a state to an action the learner ought to take in that state. As Sutton and Barto

say, “Policy is the core of a reinforcement learning agent in the sense that it alone is

sufficient to determine behavior ” [Sutton and Barto, 1998]. Policy in general can

be either stochastic or deterministic.

Immediate Cost Function (reward)

This term in the reinforcement learning related literature has different names, such

as immediate cost (or immediate reward), or reinforcement. In this thesis, the term

immediate cost will be used for this definition.

In RL, at each state, each action that the agent may take results in an immediate

reaction from the environment. This immediate reaction shows the immediate

desirability of that action and is represented by a single number. The objective

of reinforcement learning is to minimize the summation of the immediate costs

it receives through time. Just like the policy, the immediate cost can be either

stochastic or deterministic. Sutton and Barto compare this term to pleasure and

pain for biological systems [Sutton and Barto, 1998].
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In this thesis, immediate cost is defined as the squared error at each time step.

Cost-to-go Function

RL actions may affect, not only the immediate cost, but also the next state and all

the consequent immediate costs. While the immediate cost shows the cost at the

current stage, cost-to-go function indicates the long-term cost. The cost-to-go of

a state is the total amount of immediate costs that is expected to be received by

the learner in the future, if the process starts from that state. This term takes into

account the states that are likely to follow and their costs. Sutton and Barto compare

the cost-to-go function to the farsighted judgment of how happy or unhappy humans

are with their environment being in its specific state [Sutton and Barto, 1998].

The aim of defining the cost-to-go function is to find a way to receive less

cumulative immediate costs. In decision making, actions that will result in states

with the lowest cost-to-go are preferred to the ones that lead to the lowest immediate

cost.

The estimation of this cost-to-go function from the observations of the learner

is the most important part in most of the RL methods. Many studies have been

conducted on how to efficiently estimate the cost-to-go function [Samuel, 1959,

Bellman and Dreyfus, 1959, Holland, 1986, Anderson, 1987, Christensen and Korf,

1986, Chapman and Kaelbling, 1991, Tan, 1991, Yee et al., 1990, Dietterich and

Flann, 1995].

It should be noted that this term is also known as Value Function in the literature.

Model

A model is the estimate of the dynamics of the environment. Not all reinforcement

learning methods require the model of the environment. In fact, RL methods can be

divided into two groups: Model-based methods and model-free ones.

Markov Decision Process [Thompson, 1933, 1934, Robbins, 1952]

A Markov Decision Process, or MDP, is a tool to model a sequential decision-

making problem [Szepesvri]. Most process control problems can be represented as
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MDPs [Kumar, 1985]. MDPs are characterized by possessing the Markov property.

Possessing the Markov property basically means that the current state of the system

is sufficient for predicting its upcoming state. In this way, the current state of the

system can be considered as a compressed history of its past.

The Markov property is important in reinforcement learning methods because

decisions and cost-to-go functions are presumed to depend just on the current state

of the process. In this way, satisfying the Markov property for a process enables

us to predict the next state and the expected immediate cost by just knowing

the current state and RL action [Sutton and Barto, 1998, Kaelbling et al., 1996].

Accordingly, in reinforcement learning methods, the state of the process should be

chosen sufficiently informative to result in an MDP [Sutton and Barto, 1998].

In many real world environments, It is not possible for the RL agent to have a

complete observation of the state of the environment, though complete observability

is vital for learning methods based on MDPs. In the case of noisy or incomplete

observations of the state, the process is called a Partially Observable Markov

Decision Process, or POMDP. There are different methods that deal with POMDPs

of which the simplest one is just to ignore the incompleteness of the observations,

accept them as the states of the system, and implement the same learning procedures

as the MDP case. This approach, called state-free deterministic policies in RL

literature, may yield credible results in some cases, but there are no guarantees for

that [Kaelbling et al., 1996]. There are some other methods that deal with POMDPs,

such as state-free stochastic policies and policies with internal states; the former,

considers some mappings from observations to probability distribution over actions.

The latter, uses the history of the previous observations and actions to disambiguate

the current state.

Standard Structure of Reinforcement Learning

The standard structure of reinforcement learning is depicted in Figure 2.1. As this

figure shows, at each step of interaction, the reinforcement learning agent receives

two signals from the environment. The first signal is represented by x, which

contains information about the current state of the environment; the second is the
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Figure 2.1: Reinforcement learning standard structure

feedback of the plant to the previous action of the agent. This feedback is called the

immediate cost and is shown by c. Based on the current state of the system, the RL

agent chooses an action a, and implements it on the environment; as a response to

the action of the agent, the state of the environment changes and a new immediate

cost signal gets generated. The sole purpose of the agent during this process is to

find a policy π, that maps states to actions in a way that minimizes some long-run

measurement of the immediate cost signal [Kaelbling et al., 1996]. Accordingly,

the standard structure of the reinforcement learning consists of:

a set of states shown by S

a set of RL actions shown by A

a set of scalar immediate cost signal shown by R

The objective function that the RL agent tries to minimize can have different

formats. The most common objective functions are as follows:

The finite horizon objective function which optimizes at each step of time the

expected summation of the immediate costs for the next h step:

J(xk) = E
{ h∑

i=0

ck+i+1

}
(2.13)

The infinite horizon discounted objective function takes into account the long-term

immediate costs received, but the later the immediate cost is gained, the lower its
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importance is. Here discount factor γ has the role of geometrically discounting the

importance of the future immediate costs and bounding the infinite sum.

J(xk) = E
{ ∞∑

i=0

γkck+i+1

}
Where 0 ≤ γ < 1 (2.14)

Finally, the average reward objective function is defined to minimize the long-term

average of the summation of the immediate costs:

J(xk) = lim
h→∞

E
{1

h

h∑
i=0

ck+i+1

}
(2.15)

Process control tasks are usually continuous (and not episodic), as a result of

this characteristics, objective function introduced in Equations (2.13) is considered

improper for our proposed RL-based PI-controller. In addition, the average of

reward objective function introduced in Equation (2.15) gives the same weighting

factors to the immediate costs received through time. This is while error at the

beginning of set-point change is bigger and hence is more important to us. Also,

using Equation (2.15) may result in a time-consuming learning process. To give a

higher weighting factor to error at the beginning of set-point change, the discounted

infinite horizon objective function introduced in Equation (2.14) is used as the

objective function of the proposed approach in this thesis.

Almost all reinforcement learning methods are mainly constructed of two parts:

prediction and control. In the prediction part, the aim is to estimate the cost-to-go

of a specific policy as precisely as possible. This part is usually considered as the

most important step in reinforcement learning. The control part is to improve that

specific policy locally with respect to the current cost-to-go function. This idea is

shown in Figure 2.2.

2.2.1 Dynamic Programming [Bellman, 1957]

Dynamic Programming, or DP, is one of the main approaches in solving MDP

problems. DP was introduced by Bellman [Bellman, 1957]. In this section, this

concept is explained for finite MDP Problems; However, DP methods can also be

applied to problems with continuous state and action sets, being modified with the
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Policy Cost-to-go

Optimal Policy Optimal Cost-to-go

Improvement

Evaluation

Cost-to-go= Cost-to-go 
of the current policy

Policy= Greedy Policy based 
on the evaluated cost-to-go

Figure 2.2: The interaction of the prediction and the control part until they result in
the optimal cost-to-go and policy

generalization methods described in section 2.2.3. Here, the state and action sets

are shown by S and A(x) and the model of the environment is represented by the

transition probability and the expected immediate cost defined in Equations (2.16)

and (2.17), respectively. These terms are assumed to be precisely known for DP

methods.

Pa
xx′

= Pr{xk+1 = x
′ |xk = x, ak = a} (2.16)

Ca
xx′

= E{ck+1|ak = a, xk = x, xk+1 = x
′} (2.17)

Dynamic programming is a model based method that is used to calculate the optimal

solution of MDP problems. Given the perfect dynamics of the environment, DP

computes the solution of the Bellman optimality equation shown in Equation (2.18),

for the optimal cost-to-go, and Equation (2.19), for the optimal action-cost-to-go.

J∗(x) = min
a
E{ck+1 + γJ∗(xk+1)|xk = x, ak = a}

= min
a

∑
x′

Pa
xx′

[Ca
xx′

+ γJ∗(x
′
)] (2.18)
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Q∗(x, a) = E{ck+1 + γmin
a′

Q∗(xk+1, a
′
)|xk = x, ak = a}

=
∑
x′

Pa
xx′

[Ca
xx′

+ γmin
a′

Q∗(x
′
, a
′
)] (2.19)

All of these Equations hold for all x ∈ S, a ∈ A(x), and x′ ∈ S+; where S+ is S

plus a terminal state for episodic cases. The assumption of a precise model and the

great amount of computation required, limits the application of DP methods.

Policy Evaluation

Policy Evaluation deals with the estimation of the cost-to-go or the action-cost-to-

go of an existing policy, π. The goal here is to have an approximation of the cost-

to-go function as precise as possible, but no change will be applied to the policy in

order to improve it. The cost-to-go function is shown in Equation (2.20)

Jπ(x) =
∑
a

π(x, a)
∑
x′

Pa
xx′

[Ca
xx′

+ γJπ(x
′
)] (2.20)

where π(x, a) is the probability at which action a, at state x, under policy π is

chosen.

In dynamic programming methods, the transition probability and the expected

immediate cost are assumed to be known. In this way, Equation (2.20) can be

considered as a set of |S| simultaneous linear algebraic equations in which Jπ(x),

x ∈ S are their |S| unknown variables. Solving Equation (2.20) as a system of

equations is simple but time consuming or even practically impossible in large state

sets. So to find the solution of Equation (2.20), iterative methods are preferred. In

iterative policy evaluation, firstly a random value will be chosen as the initial value

of the cost-to-go, J0; then, the Bellman equation is applied to update the cost-to-go.

The Bellman equation as an update rule is shown in Equation (2.21).

Ji+1(x) = Eπ{ck+1 + γJi(xk+1)|xk = x}

=
∑
a

π(x, a)
∑
x′

Pa
xx′

[Ca
xx′

+ γJi(x
′
)] (2.21)

Here i shows the iteration number. As i→∞, Ji converges to Jπ for all x ∈ S. To

find Jπ for the entire state set, the whole state space should be visited repeatedly.

Iterative policy evaluation is summarized in Algorithm 1.
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Algorithm 1 Policy Evaluation [Sutton and Barto, 1998]
1: Define the policy which is going to be evaluated
2: for each x ∈ S do
3: Initialize J(x)
4: end for
5: ∆←∞
6: repeat
7: for each x ∈ S do
8: ν ←− Jπ(x)
9: Jπ(x)←−

∑
a π(x, a)

∑
x′ P

a
xx′

[Ca
xx′

+ γJπ(x
′
)]

10: ∆← max(∆, |ν − J(x)|)
11: end for
12: until ∆ is smaller than a positive number

Policy Improvement [Bellman, 1957, Howard, 1960, Watkins, 1989]

Knowing the cost-to-go function of a policy π, at state x, determines how good is

to follow that policy from that state; however it does not determine if π is the best

possible policy to follow from x. If Equation (2.22) holds for policies π and π′ , π′

is either as good as, or better than π.

Jπ
′

(x) ≤ Jπ(x) (2.22)

To further improve an existing policy, the possible changes to the policy (to the

action suggested by the policy), should be evaluated. This is easily possible based

on policy evaluation scheme explained in Section 2.2.1. Evaluating all the changes,

at all the possible states and choosing at each state the action that has a lower action-

cost-to-go under the existing policy is called policy improvement. In fact, this is

where action-cost-to-go functions play an important role. This idea is summed up

in Equation (2.23):

π
′

= argmin
a
Qπ(x, a)

= argmin
a
E{ck+1 + γJπ(xk+1)|xk = x, ak = a}

= argmin
a

∑
x′

Pa
xx′

[Ca
xx′

+ γJπ(x
′
)] (2.23)

Policy improvement will result in a strictly better policy except when the existing

policy is the optimal one [Sutton and Barto, 1998].
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Policy Iteration [Bellman, 1957, Howard, 1960]

Policy iteration is nothing but applying policy evaluation and policy improvement

repeatedly after each other to yield the optimal policy. This idea is illustrated below:

π0
Evaluation−−−−−−−→ Jπ0

Improvement
−−−−−−−−−→ π1

Evaluation−−−−−−−→ · · ·
Improvement
−−−−−−−−−→ π∗

Evaluation−−−−−−−→ J∗

Policy iteration is shown in Algorithm 2.

Algorithm 2 Policy Iteration [Sutton and Barto, 1998]
1: for each x ∈ S do
2: Initialize J(x) and the policy
3: end for
4: ∆←∞ {Policy Evaluation}
5: repeat
6: for each x ∈ S do
7: ν ←− Jπ(x)
8: Jπ(x)←−

∑
a π(x, a)

∑
x′ P

a
xx′

[Ca
xx′

+ γJπ(x
′
)]

9: ∆← max(∆, |ν − J(x)|)
10: end for
11: until ∆ is smaller than a positive number
12: Stop← true {Policy Improvement}
13: for each x ∈ S do
14: b← π(x)
15: π(x)← argmina

∑
x′ P

a
xx′

[Ca
xx′

+ γJ(x
′
)]

16: if b and π(x) are not the same, then set Stop as False
17: end for
18: if Stop is True then
19: Stop
20: else
21: Go back to Policy Evaluation
22: end if

Value Iteration

To overcome the computational cost of the policy evaluation in policy iteration,

Value Iteration method is introduced. Policy evaluation can be computationally

expensive because it requires multiple sweeps of the state space. This is while

value iteration truncates the evaluation step right after the first sweep. Although

the policy evaluation process is not performed completely, the convergence to the
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optimal policy is still guaranteed. Value iteration combines the policy improvement

and the trimmed policy evaluation as Equation (2.24):

Ji+1(x) = min
a
E{ck+1 + γJi(xk+1)|xk = x, ak = a} (2.24)

= min
a

∑
x′

Pa
xx′

[Ca
xx′

+ γJi(x
′
)]

In fact, value iteration is Bellman’s optimality Equation (2.18) modified to a back

up rule. The value iteration is shown in Algorithm 3. Here π(x) is the learned

policy.

Algorithm 3 Value Iteration [Sutton and Barto, 1998]
1: for each x ∈ S do
2: Initialize J(x)
3: end for
4: repeat
5: for each x ∈ S do
6: J(x)←− mina

∑
x′ P

a
xx
′ [Ca

xx
′ + γJ(x

′
)]

7: end for
8: until policy is good enough
9: π(x) = arg mina

∑
x′ P

a
xx′

[Ca
xx′

+ γJ(x
′
)]

In reinforcement learning literature, DP methods are also known as model-based

RL methods. In the few next sections some model-free RL methods are introduced.

2.2.2 Temporal-Difference Learning [Samuel, 1959, Klopf, 1972]

Temporal-difference or TD methods are used to solve the prediction problem.

The most important advantage of TD methods is that they do not require the

exact dynamics of the system; instead, they are based on experiences from the

environment. In these methods, different states are visited, different actions

are implemented, and their immediate cost is observed; then, based on these

interactions, the prediction of the cost-to-go and the policy are updated. Here, the

update rule for the cost-to-go is as follows:

J(xk)←− J(xk) + α[ck+1 + γJ(xk+1)− J(xk)] (2.25)
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As the target value in Equation (2.25) itself is an estimation, TD is considered as a

bootstrapping method. Equation (2.26) indicates how this target has been derived:

Jπ(xk) = Eπ

{ ∞∑
j=0

γjck+j+1|xk = x
}

= Eπ

{
ck+1 + γ

∞∑
j=0

γjck+j+2|xk = x
}

= Eπ

{
ck+1 + γJπ(xk+1)|xk = x

}
(2.26)

Based on Equation (2.25), the one step TD error is introduced:

δk = ck+1 + γJ(xk+1)− J(xk) (2.27)

TD methods update their estimation of cost-to-go at each step, which makes them

suitable for online implementations.

Sarsa [Rummery and Niranjan, 1994]

TD methods are just used to predict the cost-to-go of a fixed policy. In other words

they are applied in the case of the evaluation of a specific policy. On the other hand,

control concepts are applied for further policy improvement which is usually of

interest. For the case of policy improvement, action-cost-to-go function, Q(xk, ak),

is learned rather than cost-to-go function itself, J(xk). In this way the update rule

will be changed from Equation (2.25) to (2.28):

Q(xk, ak)←− Q(xk, ak) + α[ck+1 + γQ(xk+1, ak+1)−Q(xk, ak)] (2.28)

Here, Q(xk, ak) is the action-cost-to-go which is defined in Equation (2.29). As

this equation shows, action-cost-to-go is the expected weighted summation of the

immediate cost received if action a is implemented at state x.

Q(xk, ak) = Eπ

{ ∞∑
j=0

γjck+j+1|xk = x&ak = a
}

(2.29)

This algorithm is called Sarsa, by Sutton [Sutton, 1996]. Sarsa stands for the

sequence of State, Action, Reward, State, and Action happening consequently in

this algorithm. In this way, based on the current state, the current action is chosen

20



and implemented. After this, the reward (immediate cost) is received from the

environment and the next state is observed. Finally the next action is chosen based

on the observed next state. This algorithm is described next as Algorithm 4.

When the policy is ε-greedy (ε-greedy policies are defined later in Equation 2.47),

Algorithm 4 Sarsa [Sutton and Barto, 1998]
1: for each x ∈ S and a ∈ A do
2: Initialize Action-cost-to-go function
3: end for
4: for each run do
5: Initialize the first state, x
6: At state x choose action a that minimizes the action-cost-to-go function
7: With a small probability, ε, choose a random action and overwrite a with that

(Policy: ε-greedy)
8: for each step up to the end of run do
9: Implement action a and observe the consequent immediate cost c, and the

next state x′

10: At state x′ choose action a′ that minimizes the action-cost-to-go function
11: With a small probability ε, choose a random action and overwrite a′ with

that (Policy: ε-greedy)
12: Q(xk, ak)←− Q(xk, ak) + α[ck+1 + γQ(xk+1, ak+1)−Q(xk, ak)]
13: x←− x

′

14: a←− a
′

15: end for
16: end for

as long as all the state-action pairs are swiped for an infinite number of times, and ε

converges in the limit to zero, Sarsa is shown to converge to the optimal policy and

action-cost-to-go with probability of 1 [Sutton and Barto, 1998]. The very common

format for ε, to satisfy the convergence to zero in the limit, is ε = 1/k, where k is

the time index for discrete systems [Sutton and Barto, 1998].

Sarsa is chosen as the RL method of choice in this thesis because of three

reasons: First, we are interested in testing a model-free RL method. Second, value-

function-based RL methods are rarely used in the tuning of PI-controllers. Third,

Sarsa is easy to implement and understand and provided satisfactory results in the

preliminary stages of this research project.

21



2.2.3 Generalization

In the case that the state or the action set is not finite, visiting all the possible state-

action pairs is not possible; so it does not make sense to store a look-up table of

cost-to-go over the states (or the state-action pairs). Consequently, it is necessary

to generalize from the states that are learned (or state-action pairs), to the regions

that have not been visited. Also, in discrete cases, where the state or action has

many components, or the state or action set is huge, generalization can be used to

overcome the curse of dimensionality associated with the huge amount of memory,

data, and computation that is required.

The problem of learning in large spaces can be handled by generalization

techniques; which efficiently store the information and transfer it among similar

states and actions. In these techniques, approximated cost-to-go function at each

time step is represented as a parameterized function with the vector of parameters

usually shown by
−→
θt . It is this vector of parameters that is updated after each

interaction. The number of parameters normally will be smaller than the number of

states (state-action pairs); therefore, changing one parameter affects the estimated

cost-to-go of many states [Sutton and Barto, 1998].

Most of the generalization schemes try to minimize the mean-squared error

(MSE) over a distribution of the inputs, which is shown by P . In our case, the

MSE for an estimation of the cost-to-go Jk, with the parameter vector of
−→
θ k results

in Equation (2.30) as shown below.

MSE(
−→
θk ) =

∑
P (x)[Jπ(xk)− Jk(xk)]2 (2.30)

The distribution P in Equation (2.30) is to weight the errors of the cost-to-go of

different states. This is mainly because it is usually impossible to decrease the error

to zero for all the states [Sutton and Barto, 1998]. In other words, better estimation

of cost-to-go at some states will be achieved at the price of worse approximation

at others. If an identical error over the entire state (state-action) space is preferred,

then the function approximator should be trained with a uniform distribution of

samples over the entire state (state-action). The goal of a reinforcement learning

method in terms of MSE is to find the global optimum parameter vector, shown by
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−→
θ ∗ for which Equation (2.31) holds for all

−→
θ ∗:

MSE(
−→
θ ∗) ≤MSE(

−→
θ k) (2.31)

Satisfying this equation is sometimes possible for simple function approximators

like the linear ones; but it does not hold for complex function approximators

like neural networks or decision trees. In the case of complicated function

approximation, instead of a global optimum, a local optimum may be achieved

[Sutton and Barto, 1998].

Gradient-Descent Methods [Sutton, 1988]

Gradient-descent methods are considered as the most common function approxima-

tion methods in Reinforcement Learning [Sutton and Barto, 1998]. Here
−→
θ k has a

fixed number of components as shown in Equation (2.32)

−→
θk = [θk(1), θk(2), θk(3), . . . , θk(n)] (2.32)

The objective here is to minimize Equation (2.30). For this to happen, after each

interaction, the parameter vector is shifted by a small amount in the opposite

direction of the gradient of the error. This direction is chosen because along it

the error would reduce the most at that sample. Equations (2.33) and (2.34) show

this idea.
−→
θ k+1 =

−→
θ k −

1

2
α∇−→

θ k
[Jπ(xk)− Jk(xk)]2 (2.33)

−→
θ k+1 =

−→
θ k + α[Jπ(xk)− Jk(xk)]∇−→θ kJk(xk) (2.34)

Where∇−→
θ k
Jk(xk) is defined in Equation (2.35)

∇−→
θ k
Jt(xk) =

[∂Jk(xk)
∂θk(1)

,
∂Jk(xk)

∂θk(2)
, . . . ,

∂Jk(xk)

∂θk(n)

]
(2.35)

Here, α is known as the learning rate and should be positive, less than one, and

decreasing over time. This is a necessary condition for the convergence of the

gradient-descent method. To be more precise, if the learning rate is reduced in a way

that it meets the standard stochastic approximation condition in Equation (2.36),
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then the convergence of this method to a local optimum is certain [Sutton and Barto,

1998].
∞∑
k=1

αk =∞ and
∞∑
k=1

α2
k <∞ (2.36)

In Equation (2.36), the first condition is to assure that the learning steps are big

enough to eventually overcome initial conditions or random fluctuations [Sutton

and Barto, 1998]. The second condition is to guarantee convergence [Sutton and

Barto, 1998].

The reason for not eliminating the error totally on each interaction is that our

main objective is not to find a cost-to-go function for which its estimation error on

all the visited states is zero. instead, we are just seeking an estimation that balances

the error over the state space. If at each step, we change the parameters to eliminate

the error completely, our procedure may not result in that balance [Sutton and Barto,

1998].

In Equation (2.34), the true value of Jπ(xk) is usually unknown; instead,

an estimation of this value, νk, can be used to approximate Equation (2.34) by

Equation (2.37).

In addition to Equation (2.36), Equation (2.38) should hold for the convergence

of
−→
θ k to a local optimum [Sutton and Barto, 1998]. This equation basically means

that νk should be an unbiased estimation of Jπ(xk).

−→
θ k+1 =

−→
θ k + α[νk − Jk(xk)]∇−→θ kJk(xk) (2.37)

E{νk} = Jπ(xk) for each k (2.38)

Where E is the Expectation operator.

Linear Methods

As explained in Section 2.2.3, linear function approximators have the advantage of

resulting in the global optimum parameter vector. In this section the combination

of gradient descent methods with linear function approximation is described. Here

the approximate cost-to-go function, J(xk), is a linear function of
−→
θ k, the vector

of parameters. The dependency of the cost-to-go to the state is shown by a column
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vector of features with the same number of elements as the parameter vector. This

feature column vector is shown in Equation (2.39):

−→
φ x = [φx(1), φx(2), . . . , φx(n)]T (2.39)

Where n is the number of the parameters in
−→
θ k. As shown by a subscript in this

equation, features are a function of the state of the system.

In this way, the cost-to-go function will be approximated by the following equation:

Jk(x) =
−→
θ k

−→
φ xk =

n∑
i=1

θk(i)φxk(i) (2.40)

Substituting Equation (2.40) in Equation (2.37) results in Equation (2.41):

−→
θ k+1 =

−→
θ k + α[νk − Jt(xk)]

−→
φ T
xk

(2.41)

This equation is much simpler than the previous forms, mainly because, in this

case the gradient of cost-to-function with respect to the parameter vector will be as

simple as Equation (2.42):

∇−→
θ k
Jk(xk) =

−→
φ T
xk

(2.42)

Different functions can be used to make features from the states. Coarse Coding,

Tile Coding, and Radial Basis Functions, (RBF), are among the most popular ones

[Sutton and Barto, 1998]. The representation of states in terms of the features has

a great impact on the efficiency of the learning procedure in terms of the required

amount of data and computation. So, selecting the proper features for learning is a

vital issue [Sutton and Barto, 1998].

Quadratic Features

Quadratic approximation of the cost-to-go is also a linear function approximation

method. One should note that the linear term in “linear function approximation”

refers to the linearity in terms of the parameters vector, and not the features one.

Here, there exist a linear vector of parameters, and another vector of features, which

is the quadratic format of the state. This concept is shown in 2.43:

φ(x) = xk ⊗ xk (2.43)
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where⊗ is the element-wise crossing operator. In this way, the estimated cost-to-go

is defined as Equation 2.44:

J(x) =
−→
θ φx (2.44)

where θ is the vector of parameters. In this thesis, quadratic function approximation

is used around the origin as a means to provide stability around origin. This idea is

explained in detail in Function Approximation part of Section 4.1.3.

k-nearest neighborhood function approximation [Smart and Kaelbling, 2000]

k-nearest neighborhood, or k − NN is a type of lazy-learning method in which

the function for a specific point is approximated locally based on the values of its

k closest neighbors. k is a positive number and its value increases as the number

of the data points go higher. Usually a contribution factor is added to the function

approximation, so that the nearest neighbor has a more significant impact on the

value of the function, than the further ones. The most common contribution factor

is 1
d
, in which d represents the distance between the current point, and the neighbor.

k −NN can be considered as the generalized linear interpolation.

k−NN can be computationally intensive, as the size of the stored values grows by

time. To overcome this problem, different nearest neighbor search algorithms have

been proposed, which decrease the number of required distance evaluations.

Function Approximation for control problems

To apply function approximation to model-free control tasks, it is the action-

cost-to-go, Q(x, a) defined in Equation (2.29) that should be approximated by

generalization. For the linear function approximation case, the action-cost-to-go

is estimated through Equation (2.45). For discrete actions, it is the vector of

parameters in this equation that shows the dependency of the action-cost-to-go

on the implemented action. In this way, to each possible action, one vector of

parameters is assigned.

Q(x, a) =
−→
θaφx (2.45)
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The general gradient-descent update rule for action-cost-to-go function is shown in

Equation (2.46):

−→
θ ak,k+1 =

−→
θ ak,k + α[νk −Q(xk, ak)]∇−→θ ak,kQ(xk, ak) (2.46)

The target (νk) here is an approximation ofQπ(xk, ak), which can be any of the back

up values mentioned previously for action-cost-to-go [Sutton and Barto, 1998].

In this thesis, the state space is continuous. Hence, function approximation

is used for generalization of the action-cost-to-go over the state space. Quadratic

function approximation is used for a region close to origin in which the process is

assumed to be linear. On the other hand, k-nearest neighborhood is applied for the

rest of the state space. This procedure is explained with more details in Function

Approximation part of Section 4.1.3.

2.2.4 Exploration versus Exploitation

As mentioned in previous sections, the evaluative feedback of reinforcement

learning specifies how good the action taken is, but it does not give any information

about the best possible actions. At each point of time, the greedy action suggested

by the policy of the RL agent is the best known action so far, based on the learning,

but this does not mean that there is no better action that may result in a much

better performance. As a result of this characteristic, specially for a non-stationary

environment, continuous exploration by a trial and error search in the action set

is crucial to find the best actions. The exploratory actions may decrease the

performance of the system, as they may result in a higher cost-to-go rather than

a smaller one. Because of this, the rate of exploration should be adjusted to keep

the overall performance of the task satisfactory. For this, most of the time the greedy

action should be implemented. This challenge is known as the trade-off between

exploration and exploitation [Sutton and Barto, 1998]. The ε-greedy methods are

one of the most common schemes in this case [Sutton and Barto, 1998]. These

methods choose a random action at a small fraction of time, while the rest of the

time the greedy action is implemented. This is shown in Equation (2.47)

Π(x, a) =

{
argminaQ(x, a) With probability of 1− ε
arandom ∈ A(x) With probability of ε (2.47)
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where Π(x, a) is the policy at state x.

An ε-greedy policy is used here as the policy that Sarsa is aiming to learn.

2.2.5 Summary

In this section, the prerequisite background of this research thesis is provided. IMC

tuning rules introduced in Section 2.1.1 are used to define IMC-based-tuned PI-

controllers to compare our proposed approach with. Sarsa defined in Section 2.2.2

in combination with quadratic and k-nearest neighborhood function approximation

is used as the main RL method applied in this thesis. The policy of the RL agent

here is chosen to be ε-greedy. The immediate cost obtained as reinforcement from

the process is considered to be the squared output error, while the objective function

of the RL agent is set as the discounted infinite horizon summation of the immediate

costs received through time.

The following chapter provides a literature review on the tuning of PI-

controllers based on different RL methods and the gain scheduling of PI-controllers.

The literature review chapter is concluded with a paragraph on the comparison of

our proposed approach with the reviewed work from literature.
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Chapter 3

Literature Review

One of the reinforcement learning methods documented in the literature for the

tuning of PI or PID-controllers is the Continuous Action Reinforcement Learning

Automata, or CARLA, which was first introduced by Howell et.al. [Howell et al.,

1997]. This learning scheme has a set of probability densities used to define the

action set. CARLA chooses the RL actions in a stochastic trial and error process,

aiming to minimize a performance objective function, which usually is a function

of error over time. Howell et.al applies CARLA to the control of a semi-active

suspension system [Howell et al., 1997]. Here, the control goal is defined as

minimization of the mean squared acceleration of the vehicle body. The advantages

of CARLA are mentioned in its ability to operate over a bounded continuous action

sets, being robust to high levels of noise, and being suited to function in a parallel

computing environment. The cost-to-go function in this paper is defined as the

integral of the time-weighted squared error over a period of time (T=5s) which is

shown in Equation (3.1).

J =

∫ t=T

t=0

τ(et)
2dt (3.1)

CARLA is also applied to the control of engine idle-speed, both in a simulation

environment, and in practice [Howell and Best, 2000, Howell et al., 2000]. These

papers report a significant improvement in control performance, compared to that

of Ziegler-Nichols tuning method.

CARLA is used as an optimization approach for optimum tuning of PID

controllers in an automatic voltage regulator of a synchronous generator [Kashki

et al., 2008]. This paper explains CARLA in detail and compares its performance
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with that of Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). The

simulation results provided in this paper show a better efficiency and performance

for CARLA as opposed to the other two methods.

Gain scheduling is another concept that is comparable with what we perform

in this thesis. In gain scheduling, a global nonlinear controller is obtained

by interpolation or selection of local linear controllers around various operating

conditions [Shamma]. Here, the controllers are chosen based on some scheduling

variables, which are usually process outputs or inputs [Lee and Lee, 2008]. Static

gain scheduling schemes just use the current value of the scheduling variables to

make decisions. This may result in slow adaptation when the operating condition

is changed [Shamma and Athans, 1992]. Dynamic scheduling algorithms are not

as common as the static ones. These methods are integrated with a sort of a

dynamic scheduling variable, such as the history of the feed-back error [Jutan,

1989]. The dynamic gain scheduling methods are either controller-specific or hard

to implement on non-minimum phase processes [Lee and Lee, 2008]. In addition,

gain scheduling techniques have fundamental limitations, such as the requirement

of varying slowly for the scheduling variable [Shamma and Athans, 1992].

Value function (cost-to-go) based approaches are another way of applying

reinforcement learning in the tuning of PI-controllers. Lee and Lee use the

Approximate Dynamic Programming, or ADP, for some gain scheduling case of

studies [Lee and Lee, 2008]. Their method at each state, based on the evaluation of

the cost-to-go function of the next state, chooses the best control action among

the control signals suggested by the available controllers. The most important

advantage of this technique is that it overcomes the curse of dimensionality

by the followings: limiting the action space to the control parameters of some

specific controllers, bounding the state space to those visited during a closed-loop

simulation, and solving the Bellman optimality equation in an approximate manner.

The function approximator used by Lee and Lee [Lee and Lee, 2008] is the k-nearest

neighbor interpolation. In this paper both model-based and model-free approaches

are studied by simulating three different case studies.

Lee and lee [Lee and Lee, 2006] explain approximate dynamic programming in
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detail. In this paper, ADP is applied to process control and scheduling as a tool to

find the solution of the MDPs. Here, as a result of dealing with a large state space,

dynamic programming is approximated to decrease the amount of computation and

data storage and make this procedure more practical for industrial scenarios. Lee

and Lee [Lee and Lee, 2006] also studies the modification of the cost-to-go function

in a way that the system avoids visiting unknown areas of the state space. This is

done by adding a reverse function of the density of the data over the state space as a

penalty term to the cost-to-go function. While modifying the cost-to-go function in

this way is helpful in preventing the system from encountering safety issues, it also

may forbid the system from finding the optimal solution as a result of bounding the

regions of the state space which is going to be visited regularly. This disadvantage

of the penalty term may not be of much importance because using approximate

dynamic programming in the first place will result in a non-optimal solution. Lee

and Lee [Lee and Lee, 2006] study a paper machine headbox control problem. In

this study, the regulation performance of some linear model predictive controllers

with different input weights is compared to that of an ADP method. Providing

the state trajectory Lee and Lee conclude that the ADP method outperforms the

other linear model predictive controllers by switching between their control policies

through time. Here the numerical evaluations of the same case are also presented.

Anderson et.al. studies the combination of reinforcement learning with

feedback controllers by simulating the heating coil of the heating system of building

[Anderson et al., 1997]. In this paper, three different cases are studied. In the

first case, a feed-forward neural network is trained to reduce the error between the

temperature of the output air and the desired set-point, defining various objective

function. In the second case a neural network is used to predict the steady state

output of the PI-controller for the heating coil model. The performance of this

neural network on its own is mentioned to be poor compared to the PI-controller

because of not having the proportional term. Combining the trained neural network

with a proportional controller with optimum gain for that specific case, results in a

far better control performance in comparison to that of the PI-controller. Thirdly, a

table look-up Q-learning algorithm is used to train the reinforcement learning agent
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in combination with a PI-controller. In the third case, the output of the RL agent

is added to the output of the PI-controller. The immediate cost is also defined as

the squared error plus a term proportional to the square of the change in the action

from the previous time step to the current one. Anderson et.al include the action

change term in the immediate cost in order to reduce fluctuations in the control

signal and minimize the stress on the control mechanism. The performance of this

case is compared to that of the PI-controller in terms of RMS and it is shown that

the combination of reinforcement learning agent and the PI-controller leads to a

lower RMS by 8.5%. Also, in this paper the effect of the learning parameters, α

and γ is studied.

Anderson et.al. uses a neural network to reset the PI control loop when a

set-point change or an inlet disturbance occurs [Anderson et al., 1997]. This

paper reports a significant decrease in the rise time when their modification is in

effect. More important of that, an experimental section is included in this paper.

The HVAC apparatus and the control hardware used in this report is described in

detail. The PI-controller is tuned while the system was set to operate at the highest

expected gain, or, in other words, at low air flow and low water flow conditions. In

this way, the PI-controller would remain stable at all the other possible gain states.

A steady state model of the system is used for training the neural network. This

model is developed via the effectiveness-NTU method. Another neural network

is trained based on data collected directly from the experimental apparatus. The

control performance and the rise time of these three cases are compared: a tuned

PI-controller, the modified PI-controller with a neural network trained based on a

model, and a modified PI-controller with a neural network trained based on real

data. This comparison demonstrates a better control output performance for the

neural network plus PI-controller when real data is used to train the network. The

model based neural network also performs better than the PI-controller. Also it is

shown that when the set-point changes (which results in the change of the gain state

of the system from a high value to a low one) the rise time of the PI-controller

increases noticeably while it remains almost fixed for the neural network plus the

PI-controller. In addition, the response of the PI-controller is found to be slower
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than the other cases for disturbance rejection. Based on the explained simulations

and experiments, Anderson et.al. conclude that in an HVAC system, the addition

of a neural network to a PI-controller lowers the coil response time while it also

eliminates the sluggish control when the gain state changes from the one that the

PI-controller is tuned at [Anderson et al., 2001]. Delnero, in his master thesis,

[Delnero, 2001] explainers the same concept with more detail.

Tu provides another master thesis that approaches the modification of feedback

control systems with reinforcement learning methods [Tu, 2001]. In this thesis,

a discussion is provided on why a specific structure of reinforcement learning,

which is previously introduced by Kretchmar [Kretchmar, 2000], does not learn

the optimal policy. The reason mentioned for this problem is the absence of the

Markov property. As a solution, Tu suggests a new learning architecture based

on the state space analysis of the feedback control system. In the second part of

this thesis, two continuous reinforcement learning methods are applied to feedback

control which are said to outperform the previously applied discrete reinforcement

learning techniques. The discussion in this thesis is based on the simulation of a

simple first order plant. More complex dynamics are suggested for future work.

Hwang et.al introduce a technique in which reinforcement learning is used

to build artificial neural networks in order to linearize a non-linear system based

on feedback linearization theory [Hwang et al., 2003]. Later, the linearized

plant is controlled by a regular PI-controller. This model-free scheme is named

Reinforcement Linearization Learning System (RLLS). Simulation results of a

pendulum system is provided showing that the proposed RLLS method presents

better control reliability and robustness than traditional artificial neural network

techniques.

Ernst et.al. introduce interesting ideas about reinforcement learning in process

control [Ernst et al., 2009]. The main objective of this paper is to compare

Model Predictive Controllers, or MPCs, and reinforcement learning as alternative

approaches of deterministic control, in a unified scheme. This paper provides some

experimental results for designing a controller for an electrical power oscillation

damping case which has non-linear deterministic dynamics. These results are
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used to show the advantages and disadvantages of fitted Q-iteration reinforcement

learning method, over model predictive control. Ernst et.al. conclude that RL is

strong enough in the competition with MPC even when a good deterministic model

of the system is at hand. They also conclude that the applied RL method is slightly

more robust than the MPC approach while the MPC scheme is more accurate. When

a good model of the system is available this paper suggests that these two schemes

may be used together to prevent MPC from being trapped in a local optimum: fitted

Q-iteration should be applied in the off-line mode with samples from a Monte Carlo

simulation. On the other hand, MPC could start its optimization process from a

better initial guess, exploiting the policies accumulated by RL online, in addition

to the system’s model. In the case of not having an exact model of the system,

instead of running system identification techniques, the direct application of fitted

Q-iteration to the observation data is suggested.

Doya proposes a reinforcement learning scheme for continuous time system

without discretization of time, state, and action [Doya, 2000]. This paper uses

function approximation to approximate the value (cost-to-go) function and to

improve the policy of the reinforcement learning agent. The estimation of the

value (cost-to-go) function is based on minimizing the temporal difference, or TD,

error in a continuous-time format. To improve the policy, a continuous actor-

critic technique and a value-gradient based greedy policy are defined. For the

case of the greedy policy, a non-linear feedback control law using the gradient

of the value function (cost-to-go) and the model of the input gain is derived.

The performance of this scheme is examined on a nonlinear simulation case in

which the aim is to swing a pendulum up while posing some limits on the applied

torque. Based on these simulations, Doya reports that the continuous version of

the actor-critic accomplishes the task in much fewer number of attempts compared

to the conventional discrete actor-critic technique. In addition, the value-gradient

based method with a previously known or learned dynamics, outperforms the actor-

critic method. Thirdly, this paper compares the two different update rules for the

approximation of the value (cost-to-go) function: i) using the Euler approximation

and ii) applying the exponential eligibility traces. The conclusion of Doya for this
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comparison is that the addition of the eligibility traces results in a more efficient and

stable performance. Finally, the proposed algorithms are examined on a cart-pole

swing-up.

Gordon claims that the success of reinforcement learning methods in practical

tasks depends on the ability of combining function approximation and temporal

different methods [Gordon, 1995]. He mentions that it is very difficult to reason

about the function approximation in the regions that observation data does not

exist. Gordon, in this paper, presents a proof of the convergence for a broad

class of temporal difference schemes which use different function approximation

techniques such as k-nearest neighbor, linear interpolation, some types of splines,

and local weighted averaging. He also demonstrates the usefulness of these schemes

experimentally. Also, this paper provides a new approach of approximate value

iteration method.

To compare this thesis with the reviewed work in the literature, it should be

mentioned that, this thesis deals with a more complicated process, which includes

a delay term in the transfer function. To the best knowledge of the author, such

a delay term has not been considered in other RL related work. This thesis also

presents results on the model-free cost-to-go function based reinforcement learning

methods, which do not require the model of the plant, are adaptive, and can be

performed online. Moreover, the experimental validation section, can be mentioned

as a completely new part in this thesis. To the best knowledge of this author, this is

the first reported experimental evaluation of a model-free cost-to-go function based

reinforcement learning methods on a real pilot plant in the field of process control.
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Chapter 4

Dynamic Tuning of PI-Controllers
with Reinforcement Learning
methods

4.1 Methodology

The focus of study in this thesis is the tuning of PI-controllers. This is mainly

because these controllers are the most commonly used controllers in industry

[Astrom and Hagglund, 1988] and they are easy to understand and implement.

It is estimated that over 90% of the controllers in industry are of this type. The

performance of these controllers are highly related to their tuning parameters. If

these parameters are not chosen properly, these controllers would degrade process

performance, often significantly.

The operation of finding the best gains for PI-controllers is called tuning. There

are various tuning methods in the literature. The one that is of interest in this thesis

is known as the Internal model control (IMC) tuning method, which is described in

detail in Section 2.1.1. The IMC is chosen for comparative studies in this thesis,

mainly because it is one of the most common tuning methods in industry.

The IMC tuning approach has some shortcomings. For example, it requires a

precise model of the process which can result in poor performance when the exact

model is not available or the dynamics of the process change. In addition, the

IMC tuning approach suggests a range of tuning parameters for each process and

not an exact value. In this way, finding the best value of the tuning parameters,
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in the suggested range by the IMC, is often a challenging task. In this thesis,

reinforcement learning is used as a tool to overcome these shortcomings.

The following sections describe the steps taken to implement, evaluate and

compare the RL-based tuning approach with the IMC-based controllers on a

simulated and a computer-interface pilot scale process.

4.1.1 System Identification

One of the main characteristics of model-free RL methods is that they do not

require the model of the process in their procedure, but this does not mean that

any existing information about the model of the system should be ignored. In

fact, prior knowledge about the process can be used to enhance these methods.

In chemical processes, usually the model of the process is known to some degree.

In some cases, finding the precise model of the plant is straightforward, while in

others, system identification may not be easily performed. Nevertheless, if some

information is available about the model of the process, even if it is not very precise,

it is recommended to incorporate this knowledge into the model-free reinforcement

learning procedure, mainly because this makes the learning process faster and

easier. Therefore, in this thesis, a rough model of the process is assumed to be

at hand either through physical analysis or a simple system identification.

The experimental settings used here is a heated tank pilot plant which exists in

the computer process control laboratory at the Chemical and Materials Engineering

Department of the University of Alberta. Here, the controlled variable is the

temperature of the outlet water while the manipulated signal is the flow-rate of

the steam. This experimental setup is explained in Appendix A in detail.

An approximate First Order Plus Time Delay, or FOPTD model of the

mentioned plant can be obtained through a simple Random Binary Sequence (RBS)

excitation of the process and subsequent process identification from the input-

output data. Recall that the general format of FOPTD models are shown in

Equation (2.4). In addition, Equation (4.1) gives a continuous time state-space
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Table 4.1: Summary of the operating conditions used in the system identification of
the experimental plant:

Variable Value Unit
Steam Flow-Rate 6.5 kg

hr

Cold Water Flow-Rate 4.3 kg
min

Hot Water Flow-Rate 0 kg
min

Level of Water in the tank 30 cm
First Valve Closing 70 ◦

Second Valve Closing 60 ◦
Thermocouple 1 –

representation of FOPTD models.

x
′
t = − 1

τ
xt + Kp

τ
ut−θ

yt = xt
(4.1)

The identified model is presented in Equation (4.2). In this equation, the input

and the output are the steam flow-rate and the output temperature, respectively. In

addition, the unit for the former is Kg
hr

while the latter is measured in degrees of

Celsius (◦C). Here time is measured in seconds (s).

G(s) =
1.8

110s+ 1
exp(−20s) (4.2)

Comparing Equation (2.4) and Equation (4.2) results in Equations (4.3-4.5) which

define the process parameters of our plant.

Kp = 1.8 (4.3)

τ = 110 (4.4)

θ = 20 (4.5)

These model parameters are obtained for the operating condition described in

Table 4.1.

4.1.2 Defining the comparative IMC controllers

The identified model shown in Equation (4.2) is used to build a simulation environ-

ment. The RL agent is trained by interacting with it before being implemented on

the real plant.
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Based on the model of the plant, the domain suggested in Equations (2.10-2.12)

is calculated for the closed-loop time constant used in the IMC method. Then,

according to this domain, six different closed-loop time constants are chosen as

shown in Equation (4.6).

τc ∈ {τminc , τminc +
τmaxc − τminc

5
, τminc +

2(τmaxc − τminc )

5
, . . . , τmaxc }

(4.6)

where τminc and τmaxc are the minimum and maximum of the closed-loop time

constant, which are calculated as 16 and 110, respectively. Accordingly six different

PI-controllers are defined with their proportional and integral gains being derived

from the rules summarized in Table 2.2. The values for these closed-loop time

constants, and the gains are shown in Equations (4.7) and (4.8), respectively.

τc ∈ {16.0 34.8 53.6 72.4 91.2 110.0} (4.7)

GainSet =


1.6975 0.0154
1.1152 0.0101
0.8303 0.0075
0.6614 0.0060
0.5496 0.0050
0.4701 0.0043

 (4.8)

Here the first element in each row is the proportional gain, while the second term is

the integral gain.

4.1.3 Training in Simulation

To train the RL agent in a simulation environment, an RL algorithm named Sarsa,

which is described in detail in Section 2.2.2, is implemented with the objective

of combining the existing tuning parameters in a way that leads to a better

performance, and a model-free self-tuning PI-controller. A graphical representation

of this idea is shown in Figure 4.1. As this figure shows, a regular control loop is

modified by adding an RL agent parallel to the PI-controller. This RL agent, at each

time step, observes the state of the plant and sets the gains of the PI-controller as the

gains of one of the previously defined IMC controllers. The following paragraphs

describe the main elements of our proposed RL method, the pseudo-code of the

simulation part is also provided at the end of this section.

39



RL Agent

PI Controller ProcessSetpoint Contrrol Signal Output

Figure 4.1: The PI-controller loop modified by RL

State

As discrete systems are easier and more practical to implement and control [Elali,

2004], Equation (4.1) is discretized to Equation (4.9) by choosing the sample time

as Ts and assuming that time delay θ is the integer multiple of the sample time, Ts.

xk+1 = exp(−Ts
τ

)xk + Kp
τ

∫ Ts
0

exp(− t
τ
)dt uk− θ

Ts

yk = xk
(4.9)

Applying the state space realization rules results in a state defined by Equa-

tion (4.10):

x̂k =



yk
yk−1

uk−1

uk−2
...

uk− θ
Ts


(4.10)

As Equation (4.10) shows, this state includes the output of the process, while

the cost-to-go defined in Equation (4.22) contains the error of the system. To

generalize this method for all the possible set-points, and make tracking possible,

the state is modified from Equation (4.10) to Equation (4.11), by substituting the

output with the feedback error, ek and augmenting the control signal as shown in
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Equation (4.12).

x̃k =



ek
ek−1

ũk−1

ũk−2
...

ũk− θ
Ts


(4.11)

ũk =
SP

Kp

− uk (4.12)

Here SP and Kp are the set-point or target, and the process gain, respectively. In

this way, the set-point is included in the mapping of the state space to the cost-to-go.

Our case of interest is the application of model-free RL methods, which do not

need the exact values of the process parameters. This makes the state introduced

in Equation (4.11) improper, mainly because in order to calculate the augmented

control signal introduced in Equation (4.12), the process gain should be known.

This is in contradiction with the most important assumption of this thesis, which

is not knowing the exact dynamics of the process. To get around this problem,

Equation (4.11) is changed to Equation (4.13), by substituting the augmented

control signal with the difference of the control signal as defined in Equation (4.14)

and Equation (4.15), where ∆ek = ek − ek−1.

xk =



ek
ek−1

∆uk−1

∆uk−2
...

∆uk− θ
Ts


(4.13)

∆uk = uk − uk−1 (4.14)

∆uk = Kc,k∆ek +Ki,kTsek (4.15)

In this way, the set-point is incorporated in the state without the involvement of any

process parameters.

Another concern that may arise here is the size of the history of the control

signal that should be stored. As it can be concluded from the previously introduced

equations for states, this size depends on the time delay of the process. To follow
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Figure 4.2: The comparison of the error and the ∆u signals in an episode of learning

the assumption of not knowing the exact process parameters, it is suggested that

the maximum possible time-delay is estimated and the size of the state space is

determined based on that. In this way, one can be sure that the complete state of the

system is stored, although the delay of the process is unknown.

Simulation results show that defining the state as shown in Equation (4.13) does

not result in a learning process as good as it was expected. This can be because ∆u

varies in a wider domain compared to the control signal, u, or to the feedback error,

e. This results in a harder function approximation problem when the difference of

the control signal is used as a part of the state. In addition, there are some sudden

changes for this term, which makes the function approximation problem even more

troublesome. Both of these issues are shown in Figure 4.2, in which the error and

the ∆u signals are compared. As Figure 4.2 shows, the error signal has a smaller

range of change and is much smoother, compared to the ∆u signal. As a future

work to this thesis, more studies are suggested to investigate the reason for this

problem.

Therefore, Equation (4.13) is modified to Equation (4.16) by substituting error
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terms in the place of the difference of control signal terms (The number of the

components in the state vector is kept the same). This means that an observation

of the state is used in the place of the complete state of the process. In this way,

the process can be treated like a Partially Observable Markov Decision Process, or

POMDP. As explained in Section 2.2, one way of dealing with POMDPs is to store

the history of the measurements to disambiguate the state of the process. In the

same manner, here, the history of the feedback error has been stored to get a better

observation of the state.

xaugk =


ek
ek−1

ek−2
...

ek− θ
Ts
−1

 (4.16)

One should note that, the size of the state here is directly dependent on the time-

delay and sample-time of the model. In fact, as the ratio of the time-delay to the

sample-time goes higher, the size of the state increases, which results in a much

more difficult function approximation problem. In general, a value of 0.1 to 0.2 for

the ratio of the sample-time to the time-constant of the process is suggested.

As it can be concluded from Equation (4.16), the state set here is continuous.

Action

The reinforcement learning action here is the gains of the PI-controller shown in

Equation (4.17).

ak =

(
Kc,k

Ki,k

)
(4.17)

One should note that the same idea can be implemented for PID-controllers by

including the derivative gain in the RL action, in addition to the proportional

and the integral gains. For PID-controllers, the RL action will have an extra

component, which, in the case of continuous action-space, will result in a more

difficult optimization and learning process.

Action Set

The action set here is discrete and consists of the pairs of the gains for the PI-

controller. This set is presented in Equation (4.8).
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Learning Rate

The learning rate, which in this thesis is shown by α, is an important parameter

which should meet the standard stochastic condition, shown in Equation (2.36), to

result in a satisfactory learning performance [Sutton and Barto, 1998]. The learning

rate, initially starts as 0.9 and is considered to reduce with time, so it is defined as

Equation (4.18). If the learning rate is not chosen properly, the learning process may

diverge. It is worth mentioning that this parameter should always be non-negative

and less than unity. Equation (4.18) shows the function used as the learning rate in

this thesis.

αk =
0.9

Episode Number0.5
(4.18)

Here episode is a set-point tracking simulation for a fixed set-point. The simulation

episodes in our thesis start with the initial condition of
−→
0 and finish after 105 steps.

Discount Factor

The discount factor denoted by γ should also be non-negative and less than unity.

In this thesis, the discount factor is set to 0.95. A closer value to the unity for this

parameter results in a slower learning process; however the horizon in which the

cost-to-go is measured will be bigger. A bigger horizon leads to a bigger weighting

factor for the immediate costs received through time, which may decrease the size

of the overshoots and undershoots of the RL-based PI-controller. The number of the

consequential immediate costs that contribute to the cost-to-go is calculated through

Equation (4.19).

N =
1

1− γ
(4.19)

Here γ is the discount factor. For γ = 0.95, N is calculated to be 20. A higher

value for γ increases the value of N .

Exploration Rate

Exploration is another important concept that should be defined in reinforcement

learning algorithms. Exploration helps the RL agent to find the best possible

actions at each time step. The balance between exploration and exploitation is
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a common issue in reinforcement learning [Sutton and Barto, 1998]. Usually, ε-

greedy methods are used for exploration, which start with a high rate of exploration

that reduces through time and the exploitation becomes more dominant. Our

algorithm starts with 40% of exploration which reduces with the rate shown in

Equation (4.20):

Rk =
0.4

Episode Number0.1
(4.20)

In this way, most of the time the greedy RL action (gains of the PI-controller)

suggested by the current policy is implemented; while at other times, gains are

picked randomly from the action set for this controller.

Immediate cost

The immediate cost signal is the squared feedback error, which is shown in

Equation (4.21).

ck = e2k (4.21)

Objective Function

The objective function here is defined as J in Equation (4.22):

J =
∞∑
k=0

γkck Where γ = 0.95 (4.22)

Function Approximation

The state space in this thesis is continuous which brings up the idea of using

function approximation, for generalization. Here, the state space is divided into two

different regions. First, an area which is close enough to the origin, in which the

action-cost-to-go is sufficiently estimated with a quadratic function. Second, a far

region for which the action-cost-to-go is approximated by k-nearest neighborhood

explained in Section 2.2.3. Equation (4.23) presents this idea. (The way the

appropriate region for quadratic function approximation is chosen is explained later
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in this section)

Q(xaugk , ak) =


Q(xaugk , ak) read from the memory for |xaugk | ≥ δ & existing point∑n
i=1(COk ⊗NCostk)i/

∑n
j=1(COk)j for |xaugk | ≥ δ & new point

−−→
θak,kx

aug
k ⊗ xaugk for |xaugk | < δ

(4.23)

where ⊗ is the element-wise crossing operator, xaugk is defined in Equation (4.11),

θ is the row vector of parameters with the initial value of ~0, δ is a positive number

(in our thesis δ = 0.4), which defines the boundary between the regions close to

and far from the origin, CO is the contribution factor defined in Equation (4.24),

NCost is the vector of the cost of the neighbors, and < and ≥ are element-wise

operators.

CO = exp(−d2/λ2) (4.24)

Here, d is the distance between the neighbor and the new point, and λ is a positive

tuning parameter (In our thesis λ = 1.

The update rules for these function approximators are also provided in Equa-

tion 4.25).
Q(xaugk , ak) = Q(xaugk , ak) + α[ck+1 + γQ(xaugk+1, ak+1)−Q(xaugk , ak)] for |xaugk | ≥ δ
NCostk = NCostk + COk ⊗ (Q(xaugk , ak)−NCostk)/

∑n
j=1(COk)j for new points

−→
θ ak,k+1 =

−→
θ ak,k + α[Q(xaugk+1, ak+1)−Q(xaugk , ak)](x

aug
k ⊗ xaugk ) for |xaugk | < δ

(4.25)

In this thesis, for the k-nearest neighborhood function approximation, instead of

defining a value for the number of the neighbors involved in the estimation of

the cost of a new point, a sphere around the new point is determined as the

neighborhood for that, and any existing point in this area is put into account in

the approximation of the cost of it, later the update rule is applied to all the points

involved in the approximation. The radius of this sphere (r = 4) is obtained

from the comparison of the performance of different simulations with different

values of it. In addition, it is important to note that the predictions of a function

approximator in general are just valid for the regions of the state space that are

covered by previously visited points, unless the structure of the approximated

function is known [Smart and Kaelbling, 2000]. So, here, the dimensions of the

new state is compared with the dimension of its neighbors to make sure that function
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approximation is just used to interpolate among the neighbors, and extrapolation is

avoided.

To have an initial set of data points to start with, the process is controlled with

fixed-gain PI-controllers for the previously defined 40 different set-points. The

gains of these controllers are set as the gains introduced in Action Set past of

Section 4.1.3. The state-action points visited during these simulations and their

approximate action-cost-to-go are stored and used as the initial set of data points

for the k-nearest neighborhood function approximation. Here, the action-cost-to-go

value is estimated by calculating the weighted summation of the immediate costs

gained after visiting each pair of state and action. The weighted summation of

the immediate cost is known as return, and is shown in Equation (4.26), where

γ = 0.95, and ck = e2k.

R =
∞∑
k=0

γkck (4.26)

The pseudo-code of the initialization of the memory for k-NN is shown in

Algorithm 5.

Algorithm 5 Initialization of the state-action and cost memory for k-NN function
approximation

1: for each K ∈ GainSet do
2: for Set-point=-5:0.25:5 do
3: Use K to define a fixed-gain PI-controller
4: Set x and xaug to zero
5: Control the process by the defined controller and store all the visited state-

action points, and the earned immediate costs
6: end for
7: end for
8: for all the visited state-action pairs do
9: Approximately calculate the associated cost through

∑∞
k=0 γ

kck, where ck is
the immediate cost at each step

10: if the state-action pair is new then
11: Add the state-action pair and its mapped cost to the memory
12: end if
13: end for

Function approximation has a huge impact on the performance of the learning

process. If the function approximator is chosen wisely, learning will approach its
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optimum value faster, requiring less amount of data. As a result of this impact, it

is suggested to study on the function approximation and pick out the best possible

choice. For more information in this case refer to Section 2.2.3.

Defining the region around the origin for quadratic function approximation

To have stability near the origin, a quadratic function approximation is implemented

around the origin. It should be noted that any other structure for the function

approximation close to the origin may result in regulating problems. Also, it is

known from the optimal control theories that the optimal cost-to-go function for

an infinite-horizon state-feedback control problem for unconstrained linear systems

is a quadratic function of state [Astrom and Wittenmark, 1996]. The mentioned

reasons are used as a motivation of choosing a region close to the origin and

implementing quadratic function approximation in that part. For the rest of the

state-action space, k-NN approximation is used to estimate the cost-to-go function.

The reason for not using the quadratic function approximation for the entire state-

action space is that, this approximation method is really sensitive to the way the

state-action space is sampled. Each visit results in an update of the parameter vector,

which changes the cost-to-go of many other state-action pairs. Consequently, the

vector of parameters may fluctuate and not converge to a value for big state-action

spaces.

To find a region in which quadratic function approximation is precise enough,

the initial data, obtained from the simulations of different fixed-gain PI-controllers

is used. This data set is divided into different squares of data with varying

dimension. Then, on each set of data, a quadratic function is fitted and the squared

R is calculated for that. Comparing the squared R, the set of data that has the

biggest size and an acceptable squared R is chosen as the region near the origin

in which quadratic function approximation is implemented. This idea is shown in

Algorithm 6.

The simulation procedure of this thesis consists of two parts that are imple-

mented continuously one after the other. The first one is the learning or training

part. In which the RL agent interacts with the simulated environment and improves
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Algorithm 6 Defining the size of the region around the origin for quadratic function
approximation

1: for counter=1:20 do
2: Set NeighborSet(counter) = xaug for |xaug| < 0.1 ∗ counter.
3: Set CostSet(counter) as the set of the costs to which each member of

NeighborSet is mapped.
4: Fit a quadratic function on NeighborSet(counter) as X and

CostSet(counter) as Y.
5: Calculate R2(counter) for this fitting.
6: end for
7: Set r = 2
8: Set temp = R2(20)
9: for counter=19:1 do

10: if R2(counter) > temp then
11: Set r = 0.1 ∗ counter
12: end if
13: end for

its policy based on the reaction of the process. The learning simulation itself

includes 40 episodes of learning, in which a random-binary-signal is fed to the

system as the set-point, so as to cover different frequencies of change, and visit a

wider region of the state-space. The levels of this random-binary signal is set as

shown in Equation (4.27), in which b for each episode has a value between −5 to

+5 with the step-size of 0.25.

Level = [−b b] (4.27)

Each episode lasts for 105 sample-time steps to make sure that the output has

reached its steady-state value.

4.1.4 Evaluation of the RL policy

The second part of the simulation of this thesis is the evaluation part in which

the performance of the RL-based PI-controller is measured. In this part of the

simulation, the policy of the RL remains unchanged, and it is just used to set

the gains of the PI-controller and the evolution of the output is observed. This

part also includes 40 episodes of evaluation with 105 steps. In each episode the

set-point is fixed and has a value between −5 and +5 with the step-size of 0.25.
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To measure the control performance, the integral of the squared error, or ISE,

defined in Equation (4.28), is calculated in each episode, and the average of its final

value through the evaluative part, over the 40 episodes with different set-points, is

compared to that of the IMC for the same case.

ISE =
∞∑
k=0

e2k (4.28)

To show that learning is actually improving the policy of the RL Agent, learning

performance is also measured by calculating the average of the return or the

weighted summation of the immediate cost (which in this thesis is the squared

error) over those 40 episodes of evaluation with 40 different set-points. This value

is compared to that of the IMC, as well. The main reason for caring about return

as an evaluation of the learning performance, in addition to the ISE, is that return

is actually what the RL agent tries to learn and minimize, not the ISE. ISE is a

well-known control performance measurement in industry (not the return). For

these reasons, both return and ISE are evaluated and presented in this thesis. The

difference between return and ISE is in the discount factor of return, which makes

it bounded, unlike the ISE term.

The evaluation part is implemented after each 10 batches of learning episodes.

Each batch starts with an episode with the set-point of −5, and finishes with an

episode with the set-point of +5. The methodology of the simulation section of this

thesis is summarized in Algorithm 7.

4.2 Simulation Results

In this section, the simulation results for our proposed RL-based PI-controller

is provided for the case of set-point tracking. The experiments performed later

in Section 4.3.1 are also implemented for set-point tracking, while for this case

disturbance rejection studies are also carried out. The improvement resulted from

the learning simulations in the performance of the RL-based PI-controller, and its

comparison to the IMC controllers are shown in Figure 4.3. As it can be seen from

this graph, both the ISE and the return for the RL-based PI-controller decrease
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Algorithm 7 The algorithm of the simulation procedure
1: Identify the model of the plant roughly
2: Build a simulation environment based on the obtained model
3: Calculate the domain suggested for closed-loop time constants by IMC
4: Choose six different closed-loop time constants from the calculated domain
5: Calculate the IMC parameters based on the chosen closed-loop time constants
6: Build an initial set of data for function approximation with k − nn
7: Set δ = 0.4
8: Set the initial vector parameter,

−→
θ 0 =

−→
0

9: repeat {Training part}
10: for BatchCounter=1:10 do
11: for Set-point=-5:0.25:5 do
12: Initialize the first state, xaug =

−→
0

13: Calculate Q(xaug, a) from Equation (4.23) for all the RL actions
14: If the visited state-action pair is a new point, add it to the memory and

assign its cost-to-go , which is calculated in the previous step
15: Comparing the calculated Q(xaug, a) for all the possible RL actions,

choose the action that has the lowest Q(xaug, a) (greedy action)
16: Set a = greedy action, with a small probability ε overwrite a with a

random action from the action set
17: for each xaug visited through the episode do
18: Implement action a, observe the immediate cost c, and the next state

x
′

19: At state x′ set a′ as the greedy action as described before
20: With a small probability ε, choose a random action and overwrite a′

21: Implement the update rules introduced in Equation (4.25)
22: xaug ←− x

′

23: a←− a
′

24: end for
25: end for
26: end for
27: for Set-point=-5:0.25:5 do {Evaluation part}
28: Initialize the first state, xaug =

−→
0

29: Calculate the greedy action, a
30: for each xaug visited through the episode do
31: Implement action a and observe the consequent immediate cost c, and

the next state x′

32: At state x′ set a′ as the greedy action as described before
33: xaug ←− x

′

34: a←− a
′

35: Calculate Return =
∑∞

k=0 γ
kck

36: end for
37: end for
38: Calculate the average of the calculated Return over the set-points
39: until The improvement in the performance is negligible
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The Most Conservative IMC
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Figure 4.3: The performance improvement through the learning process, simulation
results for the identified model
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Figure 4.4: The comparison of the process output of RL and the IMC controllers in
simulation environment after learning
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Figure 4.5: The comparison of the control signal of RL and the IMC controllers in
simulation environment after learning
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Figure 4.6: The change in the gains of the RL-based PI-controller for the process
output shown in Figure 4.4

54



through the learning simulations and converge to a value which in the case of both

ISE and return is very close to the most aggressive IMC controller.

Figure 4.4 demonstrates the comparison of the process output of the RL-based

PI-controller and all the IMC controllers used in the action-set of the RL agent. As

it can be seen from this figure, the output response of the RL-based PI-controller,

most of the time, is as fast as the most aggressive IMC controller, while it shows a

lower overshoot (or undershoot). The same concept is shown for the control signal

in Figure 4.5. Figure 4.6 shows the gains used by the RL for the process output

shown in Figure 4.4. As this figure displays, the RL-based PI-controllers chooses

the highest gains for most of the time steps to result in a rapid convergence to the

set-point. It is just some steps after the implementation of the step change in the

set-point that RL reduces the gains in-use. As the former errors in the episode have

a higher share in return, trying to have a fast rising process, while reducing the

overshoot (or undershoot), seems reasonable to result in a low return, which is the

real objective of the RL agent. As the evolution of the return through the learning

period, and the value of the return for the most aggressive IMC controller shows,

it can be expected that eventually the RL-based PI-controller behaves like the most

aggressive IMC controller (fixed gain), which apparently has the optimum value

of the return and ISE. It is known from optimal control theories that the optimum

controller for an infinite-horizon state-feedback control problem for unconstrained

linear systems is a fixed gain PI-controller [Astrom and Wittenmark, 1996]. The

main reason for implementing the simulation part in this thesis is to obtain a

wise initial policy for the RL-agent in the experimental part. Through learning

in simulation environment, different state-action pairs are visited and their action-

cost-to-go is approximated for implementation on the experimental setup.

4.3 Experimental Validation

After obtaining simulation results, the simulation-based RL is trained on the real

plant and its performance is evaluated, both for set-point tracking and disturbance

rejection. For this, firstly the gains of the PI-controller are obtained from the
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simulation-based policy; then the control signal is calculated based on the measured

feedback errors; afterwards, this control signal, which is the steam flow-rate is set

on the plant; finally the new feedback error is measured.

As the first step, the performance of the imported policy is evaluated. As a result

of the possible plant-model mismatch, at this stage the performance of the RL agent

may not be as good as its performance in the simulation environment. Therefore,

starting from the policy learned in the simulation environment, RL agent is re-

trained interacting with the real process, so as it adapts to its new environment.

It should be noted that this is a way of incorporating any prior knowledge in our

model-free RL procedure. Learning from scratch on the real plant is not practical,

because it can be time-consuming and sometimes not safe enough. The algorithm

of this procedure is shown in Algorithm 8.

Algorithm 8 The algorithm of the experimental validation part
1: Start up the plant at its operating conditions mentioned in Table 4.1
2: Use the learned policy of the simulation-based RL agent as the initial policy of

the experimental part
3: Evaluate this initial policy
4: repeat
5: Train the policy on the pilot plant using Sarsa as described before
6: Evaluate the modified policy
7: until the desired performance is achieved

4.3.1 Set-point Tracking

Figure 4.7 presents the comparison of the process output for the RL-based PI-

controller, the most aggressive, and the most conservative PI-controllers. As it

can be concluded from this figure, the process output for both the RL, and the

most aggressive IMC controller shows some oscillations due to the existing model-

mismatch. This is while the most conservative IMC controller is very slow in

tracking the set-point. The control signal for the same evaluative episode is shown

in Figure 4.8. One should note that the control signal for the case of performing

experiments on the real plant, unlike the simulation part, is bounded due to the

physical constraints governing the real plant. Here the control signal is the flow-
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Figure 4.7: The comparison of the process output of RL and the most conservative
and the most aggressive IMC controllers on the real plant after being trained in
simulation environment.
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Figure 4.9: The change in the gains of the RL-based PI-controller for the process
output shown in Figure 4.7

rate of the steam, whose absolute value is bounded between zero and an upper

limit. In process control, variables are usually used in deviation format. Therefore,

the limits of the control signal shown in our results are shifted towards the negative

axis for 6.5kg
hr

, which is the operating value for the steam flow-rate. Whenever

the RL agent, (trained in the simulation environment) suggests a value beyond the

governing limits, that value is overwritten by the closest bound to it.

Figure 4.9 displays the gains applied by the RL agent during the evaluative

experimental episode. This figure shows a significantly higher amount of gain

change compared to Figure 4.6. This is mainly because of the existing model-

mismatch, and therefore, the wrong mapping from the states to the suitable gains.

To compare the performance of the RL-based PI-controllers against the IMC

controllers numerically, the ISE and the return are calculated during the same

evaluative episode, both for the RL and the IMC controllers. Figures 4.10

and 4.11 respectively present the progress of these two values during the evaluative

experimental episode. Table 4.2 also summarizes the final value of the ISE and
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Figure 4.10: The comparison of the ISE for RL and the most conservative and the
most aggressive IMC controllers through the initial episode of evaluation on the real
plant, after being trained in the simulation environment.
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Figure 4.11: The comparison of the return for RL and the most conservative and the
most aggressive IMC controllers through the initial episode of evaluation on the real
plant, after being trained in the simulation environment.
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Table 4.2: The comparison of the ISE and the return for the RL-based PI-controller,
the most aggressive IMC, and the most conservative IMC, in an evaluative episode
on the real plant, after being trained in the simulation.

RL The Most Aggressive IMC The Most Conservative IMC
Return 743 552 893

ISE 6046 6380 8838
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Figure 4.12: The improvement of ISE for the RL-based PI-controller through the
learning process on the real plant

return for the RL, the most aggressive, and the most conservative IMC controllers.

These values lead us to conclude that the RL-based PI-controller has a better ISE

compared to the most aggressive and the most conservative IMC controllers, while

it stands between these two controllers in terms of return.

Adaptation of the RL-based PI-controller in the case of set-point tracking

Next, the adaptability of the RL agent to model change is studied. For this aspect,

the RL agent is set to the training mode on the real plant, and once a while its

control and learning performance are re-evaluated. In this way, the first evaluation

is happened after two hours of training, while after that, training is stopped hourly,
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Figure 4.13: The improvement of return for the RL-based PI-controller through the
learning process on the real plant

Table 4.3: The improvement of the ISE and the return through the learning process
on the real plant.

Return ISE
The Initial Value 743 6046

2 Hours of Learning 593 5915
3 Hours of Learning 535 5852
4 Hours of Learning 524 5719
5 Hours of Learning 515 5450

and the policy of the RL agent is evaluated. Table 4.3 summarizes the obtained

values for the ISE and return during these re-evaluations. Also, Figures 4.12 and

4.13 are plotted based on the data provided in this table. As it shown by these

graphs, the performance of the RL-based PI-controller improves significantly after

being trained on the real plant. Therefore, it can be concluded that the RL agent

shows an indicative adaptability to the change in the process. Further improvement

in the performance of the RL-based PI-controller can be expected if more training

is performed.

In addition, Figure 4.14 compares the process output of the RL-based PI-
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Figure 4.14: The comparison of the process output for RL before and after learning
on the real plant.
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Figure 4.15: The comparison of the control signal for RL before and after learning
On the real plant.
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Figure 4.16: The comparison of the gains for RL before and after learning on the
real plant.

controller before and after learning on the experimental plant. As one can see in

this figure, the process output for the positive step changes in the set-point, shows

a significantly lower overshoot, and less oscillation. In the case of the negative

step change in the set-point, after the mentioned amount of learning, the RL agent

does not show any noticeable improvement. It should be mentioned that in the

case of the negative step-change in the set-point, the values suggested by the RL

agent violates the existing physical constrains, so for some parts of the evaluative

episode, the control signal is over-written by the constraint, and the suggestion of

the RL agent is not feasible. In addition, it is observed that the heating and cooling

dynamics of the plant are very different, due to the difference in the heating and

cooling surfaces, and the hysteresis of the control valve on the steam line. The

fitting results obtained for the identified model shows that this model has poorer

predictions for the negative steps rather than the positive ones. Based on all that was

mentioned, it can be concluded that the RL agent is dealing with a bigger change

between the simulated model and the real plant, when the step-change in the set-
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Figure 4.17: The comparison of the process output for RL and the most aggressive
and the most conservative IMC controllers after learning on the real plant.

point is negative. This results in an inherently harder learning problem, which may

require more time to show improvement in the performance, compared to the case

of the positive step-change.

Figure 4.15 shows the control signal for the process output shown in Fig-

ure 4.14, while Figure 4.16 presents the applied gains by the RL agent for the

same case. As it can be seen in Figure 4.15, the control signal of the RL-based

PI-controller shows some high overshoots or undershoots. This is mainly a result

of the way the objective function and immediate cost is determined in this thesis.

Here the former is defined as Equation (4.22), while the latter is determined in

Equation (4.21). As these equations shows, what we care about is the amount of the

error through time, not the applied control signal or its change. If the amount of the

applied control effort matters, a specific term, which is a function of the magnitude

of the control signal (for example the absolute value of the control signal) should

be added to the cost-to-go and the immediate cost.

The process output and the control signal of the RL-based PI-controller after

learning on the real plant is also compared to the process output and the control

signal of the most aggressive and the most conservative IMC controllers. The
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Figure 4.18: The comparison of the control signal for RL and the most aggressive
and the most conservative IMC controllers after learning on the real plant.

former is shown in Figure 4.17, while the latter is depicted in Figure 4.18. As these

figures present, RL-based PI-controllers performs significantly better than the IMC

controllers, after being trained on the experimental plant. This can be numerically

verified by comparing the ISE, which is 6380.6, 8838.3, and 5450.4 for the most

aggressive IMC, the most conservative IMC, and the RL-based PI-controller after

being trained on the real plant, respectively.

4.3.2 Disturbance Rejection

Next, the ability of the RL-based PI-controller is tested in rejecting disturbances.

For this test, first the test plant is started up at the operating condition and is set

to reach the steady-state. Then, at the steady-state, first a positive disturbance is

introduced to the plant, by opening the hot water valve, and setting the flow-rate

of the hot water at 0.3 kg
min

. Then, after sufficient time for the output to reach

steady-state, a bigger positive disturbance is applied to the system, by opening

the hot water valve more, and setting the flow-rate of the hot water at 0.9 kg
min

.

Finally, after enough time is passed for the process to reach steady-state, a negative

disturbance is introduced to the plant by closing the hot water valve, so the flow-
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Table 4.4: The disturbance rejection settings

Sign The Flow-Rate of the Hot Water kg
min

First Disturbance Positive 0.3 kg
min

Second Disturbance Positive 0.9 kg
min

Third Disturbance Negative 0.6 kg
min
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Figure 4.19: The comparison of the process output of RL and the most aggressive,
and the most conservative IMC in the case of disturbance rejection.

rate of the hot water is set to 0.6 kg
min

. The settings of the disturbance rejection steps

are summarized in Table 4.4. The same set of experiments are carried out for the

most aggressive and the most conservative IMC controllers, as a truth-ground for

comparison with the RL-based PI-controller.

Figure 4.19 displays the output of the RL-based PI-controller in comparison

with the IMC controllers. The first set of oscillations are in the start-up process.

Then, the effect of the first disturbance can be observed as the first jump in the

output, which happens for all the controllers around the sample time of 100.

Figure 4.19 shows that all the three controllers are successful in rejecting the

disturbance. Also, it is noticeable that the RL-based PI-controller shows an
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Figure 4.20: The comparison of the control signal of RL and the most aggressive,
and the most conservative IMC in the case of disturbance rejection.
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Figure 4.21: The comparison of the control signal of RL and the most aggressive,
and the most conservative IMC in the case of disturbance rejection.
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Figure 4.22: The comparison of the ISE for RL and the most aggressive, and the
most conservative IMC in the case of disturbance rejection.

overshoot almost as small as the most aggressive IMC controller, while the most

conservative IMC controller shows a much higher overshoot.

The second positive disturbance happens for each controller at a different time

step, as a result of the different settling times that these controllers have. The second

big positive disturbance is detected as the second big jump, in the output of the

process. As it can be seen from the graphs, all the controllers perform well, while

the RL-based PI-controller shows an overshoot smaller than the overshoot of the

most conservative IMC, and bigger than the overshoot of the most aggressive IMC.

Finally, the negative disturbance is introduced, which is observable in the graphs

with a sudden drop in the process output. As it is demonstrated by Figure 4.19,

the performance of both the RL-based, and the most aggressive IMC controllers

degrades in this case, while the most aggressive IMC controller is eventually able to

control the output on the set-point, unlike the RL-based PI-controller which shows

fixed oscillations. The control signal and the gains applied by the RL agent during

this evaluative episode are shown in Figures 4.20 and 4.21, respectively.
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To numerically compare the RL-based PI-controller with the IMC ones, Fig-

ure 4.22 is presented. This figure shows the progress of the ISE value for these

three controllers through the evaluative episode on disturbance rejection. As this

graph shows, the RL-based PI-controller performs slightly worse than the most

aggressive IMC controller, while it has a much higher performance compared to

the most conservative one.

Adaptation of the RL-based PI-controller in the case of disturbance

Finally, adaptation of the RL-based PI-controller is studied in the case of distur-

bance rejection. For this study, first a disturbance is introduced to the system by

opening the hot water valve, and setting the flow-rate of the hot water to 0.9 kg
min

.

Afterwards, the RL agent is set to learn by interacting with the process and setting

the gains of the PI-controller. Figure 4.23 demonstrates, the process output of

the RL-based PI-controller during this learning period. As this figure shows, at

the beginning the process output is highly oscillatory, because of the introduced

disturbance. After almost 1.5 hours, the RL agent adapts to the new environment

and succeeds in returning the output to the set-point. The Control Signal for the

same case is shown in Figure 4.24. Figure 4.25 shows the gains of the RL agent

during the learning process. As this figure shows, the dominant gain completely

changes when the RL-agent adapts to the new process.
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Figure 4.23: The improvement of the process output for the RL-based PI-controller
through the learning process in the case of disturbance rejection.
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Figure 4.24: The improvement of the control signal for the RL-based PI-controller
through the learning process in the case of disturbance rejection.
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Figure 4.25: The gains of the RL-based PI-controller through the learning process
in the case of disturbance rejection.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, a self-tuning PI-controller is designed based on reinforcement

learning methods. This controller is tested for set-point tracking both in simulation

environment and experimentally on the real plant. Disturbance rejection studies are

also carried out for the experimental validation part.

The most important characteristic of the proposed PI-controller is its adaptation

to the changes occurring in the dynamics of the process. The adaptability of this

controller is studied for set-point tracking and disturbance rejection. For both of

these cases appealing results are obtained. Based on the obtained results, the RL-

based PI-controller detects the process changes, and adapts to them in a way that a

satisfactory control performance is re-achieved. This adaptation takes some amount

of time depending on the severity of the change in the process, but it is eventually

accomplished.

Furthermore, to adjust the model-free RL method to experimental applications

and to prevent possible safety issues, an existing rough model of the process is used

in forming a simulation environment. The RL procedure used in the simulation

part of this thesis does not use any form of the model of the process. In this case,

the RL-based PI-controller shows a performance close to the most aggressive IMC

controller while it performs better than all the other IMC controllers. Afterwards,

the simulatively trained PI-controller is applied to the real plant. The adaptation of

this controller to the real process and through that its ability to overcome the plant-
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model mismatch is observed. The only reason for importing the simulation results

into the experiments is to prevent highly upsetting the plant at the beginning of the

learning process. Learning from scratch on the real plant is also possible because

the proposed approach is model-free, but it is not suggested due to safety issues.

Therefore, the simulation results in this thesis are used to help the RL-agent start

from a better initial point. As the performed experiments show, the IMC controllers

do not have a high performance on the real plant, due to the existing plant-model

mismatch. On the other hand, the RL-based PI-controller after being trained on the

experimental setup shows a much better control performance.

Finally, the RL-based PI-controller appears to be more sensitive to the distur-

bances entering the process, when compared to the IMC controllers. One should not

forget that the adaptability of the RL-based PI-controller overcomes this flaw. This

controller eventually adapts to the process that is changed due to the disturbance,

and brings the process output back to its set-point. This concept is shown in the last

set of experiments provided in the experimental validation section.

5.2 Future Work

The main suggestion of this thesis for future work is the implementation of the same

idea for the complete state of the system, and not just an observation of that. More

studies should be performed on the function approximation, when the complete

state of the system is in use. Using the complete state of the system can result in

significant improvement in the learning performance of the RL agent.

Also, it is suggested that a more data-efficient reinforcement learning method

is used for the same work as this thesis. The efficiency of a reinforcement learning

method mainly depends on its embedded function approximation method. Function

approximation methods are increasingly improving as a result of the high number

of researches that are currently being conducted on this popular field in computing

science. A more effective function approximator results in a more rapid learning

process. Consequently, a faster adaptation to the model mismatches or process

changes can be achieved. As an example, tile coding function approximation can
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be studied and compared with the proposed function approximation method in this

thesis.

In addition, testing the same approach for different objective functions (spe-

cially the average of reward) and different values for the discounting factor (γ) used

in the RL procedure would be appealing. A Higher value for the discounting factor

increases the optimization horizon of the RL agent, which may result in reducing

the amount of oscillation and the size of overshoots (undershoots). Defining the

objective function as the average of the reward (immediate cost) received through

time may also be effective in decreasing the size of overshoots (undershoots) and

improving the overall performance of the RL-based PI-controller. In addition, it is

appealing to consider a case in which limitations are forced on the size of the control

signal and its rate of change, or where the objective function includes logical rules.

The solution to this type of problems is not as straightforward as the case in which

the cost-to-go is just a function of the squared error. Hence, the RL-based approach

may show a significantly better performance compared to the conventional methods.

Finally it is suggested to consider comparing the proposed approach with the

conventional auto-tuning methods, such as self-tuning of PID-controllers based on

transfer function estimation [Schei, 1994], or auto-tuning of PID-controllers with

an online estimator combined by a static matrix precompensator [Yamamoto and

Shah, 2004].
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Appendix A

Continuous Stirred Tank Heater

A.1 Process description

The experiments of this thesis are carried on the Continuous Stirred Tank Heater

(CSTH) equipment (P6), located in the computer process control lab of the

Chemical and Materials Engineering department of the University of Alberta. This

experimental setup includes a transparent glass tank which has two inlet streams;

the cold and the hot water. A steam coil is also inserted in the tank, to control the

output temperature of the content of the tank. A baffle is positioned on the hot water

stream line to make turbulence in the flow and hence to obtain a well-mixed load

in the tank. Obtaining well-mixing is essential for assuming that the temperature

inside the tank at the steady state condition is constant and equal to the output

temperature. The schematic figure of this plant is shown in Figure A.1.

A.2 Process Control

There are two controlled variables in this process; The first one is the output

temperature, while the second one is the level of the load inside the tank. Both

of these variables can be controlled by conventional PID-controllers. In this thesis,

we are only concerned about the temperature control loop. Therefore, the process

is basically changed to a Single Input - Single Output (SISO) system by fixing

the level of the load. The remaining controlled variable which is the output

temperature is controlled by changing the flow-rate of the steam, as the manipulated

variable. Furthermore, the hot water valve is completely closed through the system
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Figure A.1: The schematic figure of the experimental equipment borrowed from the
related lab manual

identification process, and the set-point tracking experiments. In disturbance

rejection studies, different disturbances are introduced to the system by opening

the hot water valve, and setting the flow-rate of the hot water at a desired value.

This process has a time delay that can be set by choosing one of the four

thermocouples placed on the downstream. These thermocouples are positioned at

different distances from the exit point of the tank, therefore they result in various

transportation delays depending on this distance. It should be noted that the time

delay also depends on the flow-rate of the cold water. Increasing this flow-rate

results in a lower dead time for the system and hence a decreased delay for it. The

plant is integrated with DeltaV DCS developed by Emerson company. Through

this interface, real-time interaction between the process and the user is possible.

Simulink, the simulation environment developed by MathWorks, can also be used

as interface to communicate with the process. The latter is what is used in this thesis

to interact with the process.

PID-controllers in the process could be set into three different modes: manual,

that is used to have the process in the open-loop condition; auto, which is the closed-

loop format in order to control the process around a specific set-point, and cascade,

in which the slave loop is closed but its set-point is set by a master control loop.

Our experiments use a cascade loop to maintain a fixed level of load in the tank.
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