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Abstract 
 

Employing a combination of biochemistry and chemometrics, the field of metabolomics 

has the potential to reveal some very significant insights into biological pathways related 

to drugs and diseases.  This thesis explores this field in its depths; specifically focusing 

on Nuclear Magnetic Resonance (NMR) based methods.   The thesis begins with an 

exploration of the quantum level relationships of molecules, and how these coupling 

patterns evolve into an NMR spectrum.  The thesis will describe the development of a 

simplified spin simulation algorithm to predict NMR spin coupling patterns that are 

computed in fractions of a second and to build mathematically relevant basis functions.  

Later in the thesis, the issue of baseline distortions of real NMR experimental data is 

addressed by the development of an automated baseline correction algorithm.  Data 

reduction techniques are further analyzed to understand the importance of the quality of 

the data used in advanced chemometric methods.  For analysis of the data, the use of 

simple univariate techniques applied to NMR spectra of urine is explored to determine 

statistically significant biomarkers between disease states in asthma.  More advanced 

statistics in the way of multivariate models, namely Partial Least Squares – Discriminant 

Analysis (PLS-DA), were used to build predictive models of Streptococcus pneumoniae 

pneumonia from NMR spectra of urine.  Potential characteristics of the data that may 

invalidate assumptions required in our models were accounted for, such as ensuring the 

statistical normality of the S. pneumoniae pneumonia data by using log transformations.  

After the analysis, focus was given to the use of unique visualization techniques to 

further explore the complex relationships that exist between samples and variables, and 

relationships between variables.  As will be made evident, this thesis deals with the basic 

physics of an NMR signal to building highly sophisticated models to help understand the 

NMR spectra from complex mixtures.  All of these notions are important in the objective 

to garner the most information provided through an NMR experiment, as such to aid in 

the discovery of biochemical knowledge. 
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1. Introduction 
 

In recent years, with the advancement of computing technologies and biological 

sequencing technologies, there has been an ever growing interest in the area of 

bioinformatics.  With the completion of the human genome project in 2003 (Human 

Genome Program, 2003), scientists have been trying to make sense of this enormous 

volume of genomic data.  Mapping the human genome is but a small part of 

understanding human biology.  A systems biology approach to this research is to look at 

the human genome, transcriptome, proteome, and metabolome in conjunction.  The focus 

of this thesis is on the human metabolome, and the bioinformatics of the metabolome.  

The metabolome is described as the complete complement of all small molecules (<1500 

Da) metabolites found in a specific cell, organ or organism (Wishart et al., 2007). 

 

Metabolites are small molecules in the body, many of which are used in normal cellular 

functions.  Detection and quantification of metabolites can give useful information as to 

the condition of the cells in the body.  Metabolites can be measured from many biofluids 

(eg. cell cytoplasm, blood plasma, sputum, urine, etc.).  The choice of sample type 

usually depends on factors such as specificity and availability.  Measuring the 

metabolites within the cell cytoplasm should give results that are very specific to the 

condition of the particular cell samples.  However, the extraction of cellular cytoplasm 

would normally require invasive methods and as such requires much effort, so 

availability of the samples is limited.  Our research has mainly focused on metabolites 

found in urine. 

 

Urine is relatively easy to obtain.  The metabolite concentrations found in urine can be an 

indication of the health of a person.  However, measuring metabolites from urine will 

offer challenges in specificity, as many changes in metabolites levels could be a 

systematic effect of the disease itself.  It may be difficult find the root cause of the effects 

purely on metabolite levels. 
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After obtaining urine samples, there are many techniques that can be used for the 

detection and quantification of these metabolites.  Along with various separation 

processes of the sample, many of these techniques fall into two broad categories:  

Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS).  Both techniques 

have their unique advantages and disadvantages.  Our work is in collaboration with the 

Canadian National High Field Nuclear Magnetic Resonance Center (NANUC).  Nuclear 

Magnetic Resonance is used as the primary detection technique in this work, however 

many of the modeling techniques can be extended to Mass Spectrometry.  As will be 

discussed, the majority of the work involves getting the data to a point where meaningful 

statistical analysis can be done. 

 

1.1. Understanding the 1D 1H NMR Experiment 
Nuclear Magnetic Resonance (NMR) spectroscopy is a highly evolved field of science.  

We first provide a brief description of NMR theory as it pertains to the generating the 

NMR spectrum.  For a more detailed description of NMR theory, please refer to 

textbooks such as Evans (1995) and Goldman (1988).  NMR as an experimental 

technique has evolved over the years to yield many powerful applications today.  NMR 

experiments involve placing a sample inside a large uniform magnetic field.  Among the 

various atomic nuclei in this sample, there are many isotopes that have an intrinsic 

angular momentum and a magnetic moment.  The relationship between the two is 

proportional and called the magnetogyric ratio.  When a sample is placed in this magnetic 

field, the Larmor theorem states that the motion of the magnetic moment will be as a 

precession around this magnetic field.  This precession frequency is dependent on the 

field strength and nucleus of interest (Goldman, 1988).  All of this assumes an isolated 

magnetic moment.  There are many nuclei in biological samples that can give a NMR 

spectrum such as 1H, 13C, and some that cannot such as 12C and 16O.  Since this research 

is focused on metabolites from biological systems, focus will be on the 1H nucleus due to 

its abundance in organic compounds. 
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1.1.1. Free Induction Decay (FID) 

The Free Induction Decay (FID) signal is a time series signal detected from the NMR 

spectrometer.  Let us consider now a sample placed in a uniform magnetic field (Bo). 

(See Figure 1.1)  Under thermal equilibrium the 1H nuclei, which have a nuclear spin of 

½, will either align itself with or against the applied magnetic field.  The Schrödinger 

equation predicts that there will be a slightly higher population of spins aligned with the 

applied magnetic field than against it.  Hence, an overall magnetic moment is in the z 

direction (See Figure 1.1).  When a radio frequency (RF) pulse is applied to this system, 

energy is added to the system such that there is a slight shift in the population of 

magnetic moments towards the direction against the applied magnetic field (See Figure 

1.1). The process by which this system returns back to equilibrium is described as an 

exponential decay and has a time constant known as T1 (Evans, 1995). 

z 

y 

x 

Bo

 

Figure 1.1 – Longitudinal (Spin-Lattice) relaxation process in rotating frame. 

 

Another RF pulse can be designed such as to cause the magnetic moments to have phase 

coherence.  To describe this process, imagine the frame of reference that is rotating with 

the overall precession frequency, to be called the rotating frame.  In the rotating frame, 

under the assumption that there is a uniform magnetic field, all of the nuclei in the sample 
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will be precessing at the same frequency (ωo).  All of the nuclei however, will have their 

own phase, or a random starting point of rotation in space and time.  The effect of this is 

a uniform or zero magnetic moment in the x-y plane (See Figure 1.2).  When a RF pulse 

is applied to cause phase coherence, there is a shift in the magnetic moments such that 

they all have a similar phase.  This shift, in the rotating frame, will have an effect that 

causes the magnetic moments to be on one side, say in the positive y-direction.  The 

overall magnetic moment will then be non-zero in that direction (See Figure 1.2).  Due to 

various relaxation pathways, that will not be discussed here, the magnetic moments will 

eventually return back to a uniform equilibrium.  This relaxation is also described as a 

decaying exponential with a time constant known as T2.  Both T1 and T2, are relaxation 

mechanisms that are independent of each other (Evans, 1995). 

z 

y 

x 

Bo

 

Figure 1.2 – Transverse (Spin-Spin) relaxation process in rotating frame. 

 

In an NMR experiment, we are no longer in the rotating frame, but in a stationary frame 

called the laboratory frame.  In the laboratory frame, the bulk magnetization moment in 

the z direction is unaffected by the two differing frame of references.  However, in the 

laboratory frame, the magnetic moment that can be detected in the x-y plane will now be 

a sinusoid in the frequency of the precession frequency, with a decaying exponential 
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term. (See Equation 1.1)  We finally come to the description of the Free Induction Decay 

(FID) signal (M) from a NMR experiment. 

)/exp()sin( 2TttMM ⋅⋅⋅= οο ω     (1.1) 

Equation 1.1 gives a sinusoid with a decaying exponential term, observed in the 

laboratory frame.  Mo is the amplitude of the signal directly proportional to the number of 

nuclei being observed by the probe.  

 

1.1.2. Quadrature Detection 

Quadrature Detection is a hardware and software technique used to measure FID signals.  

This technique offers some unique advantages over normally acquired (single phase) 

FIDs.  One advantage is that this detector is phase sensitive.  This means that not only 

can the frequency of spin be detected, but the direction of the spin can also be detected.  

From a hardware implementation, one can imagine having two detectors that are able to 

sense with a 90o offset.  The implication of working with quadrature detected signals is 

that a simple power spectrum is not appropriate for converting a FID signal into a 

spectrum in the frequency domain.  A power spectrum is symmetric on both positive and 

negative axes.  A quadrature detected signal will produce unique spectra on both sides of 

zero frequency.  Thus, one could make use of this and store positive and negative relative 

frequencies from a central frequency, typically the frequency of protons on water 

molecules.  This then allows the NMR equipment to store very high frequencies and 

work around the Nyquist sampling theorem.  The Nyquist sampling theorem is discussed 

in detail in standard textbooks like Proakis and Manolakis (1996).  Typical precession 

frequencies of protons placed in a high magnetic field are in the order of hundreds of 

megahertz, sampling at half that frequency is still a sampling rate in the order of 

nanoseconds.  However, by using relative frequencies, one could use a smaller spectral 

bandwidth but shift the zero point to a central frequency.  This will allow storage of high 

frequency data without a very fast sampling rate.  Modern spectrometers use only one 

detector but split the signal into two channels, and perform a Hilbert transform on one of 

the channels.  A detailed discussion on Fourier and Hilbert transforms is available in 

Proakis and Manolakis, 1996.  The Hilbert transform in the frequency domain can be 
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simply described as follows: All negative frequencies of a signal get a +90o phase shift 

and all positive frequencies get a -90o phase shift (See Figure 1.3). 

Real 

Imaginary 

-90o

+90o

ϖ 

 

Figure 1.3 – Hilbert transform in the frequency domain. 

 

In this implementation, the direction of spin cannot be known, since there is still only one 

detector.  However, the use of relative frequencies still results in an efficient storage of 

data.  The quadrature detected signal results in two time series signals, which can be 

combined into one complex FID.  The central frequency is also chosen to be in the 

middle of frequencies of interest to maximize the observable frequencies.  Note that there 

is still the chance for aliasing frequencies outside of the observable frequency bandwidth.  

Sampling frequency and acquisition time are still important parameters to consider, in 

order to avoid aliasing.  The complex FID now needs to be converted to a useable 

spectrum in the frequency domain for spectroscopy.  The algorithm for conversion of 

quadrature detected FID signals to a spectrum is described in detail in Figure 1.4.  
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Figure 1.4 – Quadrature detected FID to spectrum conversion algorithm. 

 

Note that the final projection of the spectrum onto the real axis requires a phase angle.  

This is a process known as phase correction or “phasing”.  Ideally the conversion of a 

quadrature detected signal should result in a spectrum with a pure absorption line shape 

in the real part, and a pure dispersion line shape in the imaginary part.  As such the phase 

correction angle should be zero.  However, practically this is never the case and a mixture 

of absorption and dispersion line shapes can occur.  This phase angle (θ) is made up of a 

frequency independent (θ0) and frequency dependent (θ1) part (Hoch and Stern, 1996). 

 

The second part of this process is to convert a spectrum back into a quadrature detected 

FID signal.  Figure 1.5 describes this algorithm in detail.  For this backward process, an 

unknown imaginary channel is estimated by a Hilbert transform.  It is important to zero 

fill the time domain signal to twice the closest power of two in order to not incur any loss 

of information. 
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Figure 1.5 – Spectrum to quadrature detected FID conversion algorithm. 

 

The above algorithms allow for the lossless conversion between time and frequency 

domain signals.  Figure 1.6 shows the frequency domain FID signal of an NMR 

experiment.  As can be seen in Figure 1.6, the FID consists of both a real (blue) and 

imaginary (green) channel.  Figure 1.7 shows the frequency domain spectrum of the FID 

signal found in Figure 1.6.  Note that neither the time domain FID nor the spectrum is 

referenced and therefore only show data points in the x-axis.  Additional information 

collected during acquisition of the NMR data would be acquisition time.  Acquisition 

time in the x-axis of the FID signal will allow us to calculate the sweep width in the 

frequency domain.  Typically, NMR spectra are normalized in the frequency domain by 

the use of an internal standard.  This standard is used as a zero reference, and all other 

signals are calculated to be parts per million (ppm) chemical shift from this reference. 
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Figure 1.6 - FID of a typical NMR experiment showing real (blue) and imaginary (green) 
channels using quadrature detection. 

 

 

Figure 1.7 - Typical spectrum (frequency domain) of an NMR experiment. 

 

We finally arrive at a complete description of an NMR experiment.  This NMR 

experiment is the beginning of a workflow for NMR based metabolomics.  This complex 

spectrum contains in it a wealth of information on the underlying chemical makeup of the 

mixture. 
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1.2. Objective of the Thesis 
Understanding the NMR experiment, we now have the basis for exploring the 

information contained within this data.  This thesis will journey into the various aspects 

of NMR based metabolomics, and the methods by which we can extract this useful 

information.  Chapter 2 of the thesis will discuss the aspects of taking this complex 

spectrum from an NMR experiment to relevant biological models.  Once mathematically 

modeled, the inherent data can be more easily understood and manipulated in a 

statistically relevant manner.  Chapter 3 will address one of the major difficulties of 

working with the spectra of biological fluids, which is the presence of baseline 

distortions.  Chapter 4 will explore the effects of data modeling discussed in Chapter 2 to 

building multivariate statistical models.  These effects include over fitting and variable 

bias.  Chapter 5 will discuss the different statistical models and techniques for analyzing 

metabolomics data, with examples in both asthma and S. pneumoniae infection.  Chapter 

6 will apply a unique workflow of combining the techniques discussed in previous 

chapters on the modeling and prediction of Streptococcus pneumoniae infection.  Finally 

Chapter 7 will explore a novel technique of using normalized correlation difference 

maps. 
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2. NMR Data Preprocessing 
In this chapter, we discuss the practical implications of using NMR data in a 

metabolomics workflow.  Metabolomics is a combination of a powerful measurement 

technique such as NMR with chemometrics to extract biologically and statistically 

relevant results about metabolites from biological samples.  To properly perform 

chemometrics on NMR data, one must properly preprocess the data.  This chapter will 

discuss these methods of preprocessing NMR data, along with an in depth discussion on 

the targeted profiling technique, including the underlying spin simulated models used to 

identify and quantify the metabolites in the biofluid mixture. 

 

NMR data can be viewed as a series of x-y data points.  Along the x-axis lies the relative 

frequency at which the proton resonates, typically in the range of ~1000 Hz.  A more 

standardized unit is “ppm”, which is a magnet independent measurement of chemical 

shift, and is normalized to the magnetic field.  Along the y-axis are the signal intensities.  

The intensities are dependent on the gain of the receiver and the area described by this 

data is directly proportional to the number of protons that are detected by the relaxation 

processes.  At full resolution this data has a length that is a power of two; typical numbers 

are 32768 and 65536.  Data under this representation, although highly detailed with a 

wealth of information, is not very practical in its use in the area of metabolomics.  The 

study of metabolomics also combines NMR data from many different samples.  Both the 

size of the arrays and the number of samples requires the consideration of data reduction.  

There is a practical limitation in working with large datasets, and the following sections 

will discuss the various data reduction techniques that can be used in metabolomics. 

2.1. Binning 
Binning, or sometimes referred to as bucketing, is a term coined by Nicholson et. al 

(1999), to describe the process of reducing the number of variables by grouping the 

intensities into evenly spaced “bins” or range of x variables (See Figure 2.1). Intensities 

are added together.  This data is typically normalized with the total area of the spectrum.  

Aside from a reduction in the number of variables, another added benefit of binning a 
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spectrum is that small variations in chemical shifts of various peaks will be masked if a 

wide enough bin is chosen to cover the range of this variation.  There are however, 

disadvantages to using this data reduction technique.  As the width of the bins is 

increased, the less specificity there will be in determining what peaks are contained 

within each bin.  Both the objectives of accounting for chemical shift variations and 

maintaining bin specificity are two opposing objectives.  Determining an optimal bin 

width is not a trivial procedure.  Another disadvantage in binning is in having evenly 

spaced bins.  This often causes intensities from a single peak to be divided into two bins.  

Authors such as Lefebvre (2004) have proposed smart binning techniques which may 

help with the binning process. 

 

2.2. Targeted Binning 
One technique pioneered by Chenomx Inc. is termed targeted binning 

(www.chenomx.com).  By making use of a database of resonance locations for a library 

of metabolites, one can create custom bins or integral areas (See Figure 2.1). These bins 

can be customized to account for variations in pH and ionic strength of the mixture.  

Specific proton clusters can be individually labeled bins.  This technique of customized 

binning provides the flexibility to encompass all the resonances that belong to a specific 

metabolite into one variable.  The issues of resonance overlaps are still a problem in this 

technique, which can lead to over estimates of integral areas. 
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Figure 2.1 – Standard and targeted binning on histidine resonances. 

 

2.3. Measuring Compound Concentrations 
Another more elegant solution for data reduction of chemometric NMR data is to 

determine the compound concentrations a priori.  By doing so, this ensures that the 

variables are unique and comparable across samples in a multi-sample experiment.  One 

drawback of this methodology is in being able to both identify and quantify each 

compound in the spectrum accurately.  This task is also non-trivial.  Since any subsequent 

analyses of this data set is based on what compounds were actually identified, it is also 

possible to miss correlations that exists between compounds/variables that were not 

measured.  If identification and quantification is done thoroughly however, this method is 

the better choice as there are no ambiguities in what the variables are measuring.  It is in 

this author’s opinion that this methodology is more powerful than a thorough analysis of 

ambiguous variables, as the end result will still be ambiguous. 
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Identification and quantification of compounds can be done in both the time and 

frequency domains.  Review papers by Vanhamme et. al (2001) and Mierisová et. al 

(2001) give good overviews as to the current quantification techniques in both time and 

frequency domains.  Quantification in the time domain can be summarized as fitting the 

parameters of the FID equation, much like equation 1.1.  Equation 1.1 is for a single 

proton, a fit in the time domain will be a simultaneous fit of all protons known to be in 

the sample.  In the frequency domain, there are two broad categories for quantification.  

One category is techniques that are based on the integration of peak areas.  These 

techniques are very similar to binning described earlier, except that the range for 

integration can be chosen manually to avoid cutting a peak into two bins.  With 

integration techniques there are still open issues with overlapping peaks.  The other 

category of techniques is based on modeling the peak clusters in the frequency domain.  

Typically, these models are based on Lorentzian functions.  Theoretically, modeling peak 

clusters as Lorentzians is equivalent to modeling equation 1.1 in the time domain.  There 

are other functions that are used such as Gaussian or Voigt functions which are a mix 

between Lorentzian and Gaussian (Vanhamme et. al, 2001). 

 

One of the prime methods used in this work for metabolite concentration measurements 

is termed targeted profiling.  This is a technique again pioneered by Chenomx Inc.  

Chenomx provides software to identify and quantify metabolites (Weljie et. al, 2006).  

This software has the added benefit of a compound library database that relates clusters 

unique for each metabolite for a library of compounds.  These built in constraints make 

identification and quantification of overlapping peaks possible. 
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Figure 2.2 – Targeted profiling technique using Chenomx NMR Suite software. 

 

Figure 2.2 shows a screenshot of Chenomx NMR Suite 4.6.  Shown in this figure are the 

color coded resonances for a series of metabolites plus their associated concentrations 

determined using a reference peak. 
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2.4. Underlying Model to NMR for Quantification and 

Identification 
While the preprocessing technique of targeted profiling is useful in a metabolomics 

workflow, the challenge to such a technique is the appropriate mathematical model used 

to represent the pure component spectrum in a mixture of metabolites.  In this section we 

discuss the development of such a mathematical model for use in the targeted profiling 

technique. 

 

Spin simulation of proton resonances have been developed from the early works of 

Roberts (1962).  His work describes the spin-spin interactions between nuclei.  From a 

quantum level description, Roberts describes a framework for predicting NMR transitions 

that form in the frequency domain.  Each transition is a result of complex quantum 

energy interactions between different energy states of a proton.  These interactions are 

complex, and every single nucleus in a system has a level of interaction with each other.  

The solution to large systems is very time consuming, even on the fastest computers of 

today. 

 

A simpler set of equations was developed to estimate second order effects of only binary 

nuclei interactions.  This simplified spin simulator was developed in collaboration with 

Chenomx Inc.  The objectives of this work are to be able to simulate the FID signal of 

compounds and to be able to predict the spectral signature of compounds at varying field 

strengths. The basic principle behind the spin simulator is the FID equation.  In order to 

simulate the FID signal of compounds, we have to simulate the FID signal of individual 

clusters of a compound.  Since these signals are linearly additive, we can simply add the 

FIDs together to simulate the entire compound.  Again, the FID equation is given as 

follows: 
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Note that this equation is very similar to Equation 1.1, except an additional term Rx.  This 

term was added to account for features in the spectra that was due to exchange of protons, 

not sufficiently explained by T2 itself.  The parameters T2 and Rx are cluster specific and 

are measured either directly or indirectly from an acquired spectrum.  The parameters Mo 

and ωo are peak specific, and are calculated based on measurements of the cluster centers 

and j-coupling constants.  In order to estimate the peak locations, the cluster center is 

sequentially split into each new peak location for every j-coupling constant.  Therefore 

the total number of peaks for a cluster that has n j-coupling constants is 2n.  The 

amplitudes of each peak are not split evenly due to second order effects.  Second order 

effects happen when two clusters are coupled to each other and have very close chemical 

shifts.  For each split the amplitudes are modified based on an algorithm outlined in Table 

2.1. 

 

Table 2.1 – Amplitude modification for 2nd order effects. 

δω(i,k) <= 0 δω(i,k) > 0 

j(i,k)/abs(δω(i,k)) <= 1 j(i,k)/abs(δω(i,k)) > 1 j(i,k)/abs(δω(i,k)) <= 1 j(i,k)/abs(δω(i,k)) > 1 

Lower 

Frequency 

Peak 

Higher 

Frequency 

Peak 

Lower 

Frequency 

Peak 

Higher 

Frequency 

Peak 

Lower 

Frequency 

Peak 

Higher 

Frequency 

Peak 

Lower 

Frequency 

Peak 

Higher 

Frequency 

Peak 

+ 

(Ao/2)*(j(i,k) 

/abs(δω(i,k)) 

- 

(Ao/2)*(j(i,k) 

/abs(δω(i,k)) 

+ (Ao/2)*( 

abs(δω(i,k)/ 

j(i,k)) 

- (Ao/2)*( 

abs(δω(i,k)/ 

j(i,k)) 

- 

(Ao/2)*(j(i,k) 

/abs(δω(i,k)) 

+ 

(Ao/2)*(j(i,k) 

/abs(δω(i,k)) 

- (Ao/2)*( 

abs(δω(i,k)/ 

j(i,k)) 

+ (Ao/2)*( 

abs(δω(i,k)/ 

j(i,k)) 

 

Ao in Table 2.1 are the amplitudes of the peak previous to the split.  This modification is 

applied to cluster i, n number of times.  k being the kth split from 1 to n, since there are n 

J-coupling constants.  These equations require the parameters j(i,k) and δω(i,k).  δω(i,k) 

is calculated based on the knowledge of the absolute cluster centers.  These equations 

were developed based on what was a good model to predict this affect.  Figure 2.3 shows 

this effect on an AB spin system. 

Other equations can be found in textbooks such as Harris (1983).  These equations 

typically are based on knowledge of the weighted centers (by amplitude) of the clusters.  

Weighted centers require the knowledge of the amplitudes.  Since the objective of the 

spin simulator is to predict the amplitudes, the amplitudes are not known a priori.  An 
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iterative scheme is proposed in this thesis, where by the equations in Table 2.1 are used to 

first estimate the amplitudes in order calculate an estimated weighted center.  Then 

equations based on weighted centers found in Harris (1983) were subsequently used 

iteratively to give a better estimate of the amplitudes and weighted centers.  This 

algorithm was applied and only showed marginal improvement to the final amplitudes of 

the peaks.  The final algorithm implemented in Chenomx NMR Suite do not use 

equations from Harris (1983). 
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Figure 2.3 – 2nd order effects on an AB system, with decreasing distance between cluster 
centers. 
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Currently the cluster specific parameters of T2 and Rx are not measured.  Some 

reasonable values are used currently.  Future developments will be to either measure the 

possible values for T2 and Rx, or to estimate T2 and Rx parameters by optimizing those 

parameters under the current framework to match a measured spectrum. 

In order to test the spin simulation accuracy, a spectrum of tryptophan was used for the 

analysis.  In Figure 2.4, we first obtain the model parameters using an 800 MHz acquired 

spectrum of tryptophan.  In Figure 2.4, the parameters were adjusted such that the 

simulation matched the acquired spectrum perfectly.  To check the robustness of the 

parameters that were estimated, a separate simulation of the same compound tryptophan 

was performed, but at the lower field strength.  In Figure 2.5, the back calculated 

(predicted) spectrum at 500 MHz closely matches the acquired spectrum.  In this case, the 

same parameters estimated previously were used.  As can be seen in Figure 2.5, the 

predicted spectrum also matches the acquired spectrum quite well, including the second 

order effects. 

 ppm

Figure 2.4 – Spin simulator results of aromatic Tryptophan clusters at 800 MHz.  Purple is 
spin simulator results.  Black is an acquired 800 MHz spectrum.  Red is fitted spectra 
using Lorentzian curves to obtain parameters. 
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 ppm

Figure 2.5 – Spin simulator results for aromatic Tryptophan clusters at 500 MHz.  Purple is 
back calculated results, with parameters measured from 800 MHz.  Black is an acquired 
500 MHz spectrum. 

 

The new modified spin simulation algorithm is shown to be able to reproduce the line 

shapes of real spectra.  The innovation in the algorithm is in the time it takes to solve 

complex spin systems.  In Table 2.2 we show the execution times of solving a standard 

spin simulation as described in Roberts (1962).  We can compare these execution times 

with the modified algorithm, which has execution times <0.01 s for all the spin systems 

tested in Table 2.2.  Given the major performance gains of this algorithm, the spin 

simulator is now implemented fully into Chenomx NMR Suite.  The performance of this 

algorithm allows the simulation of spin-spin interactions in real time, as cluster centers 

are moving, or as J-coupling constants are changing. 
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Table 2.2 – Execution times for standard spin simulation algorithm. 

# of Execution1 Largest Submatrix # of Transitions # of Transitions2 RAM Usage3

Spins Time Size (n x n) (computed) (visible)  

2 < 0.01 s 4 4 4 128 B 

3 < 0.01 s 9 15 9 432 B 

4 < 0.01 s 36 56 42 1.59 KB 

5 < 0.01 s 100 210 64 5.7 KB 

6 < 0.01 s 400 792 286 21.7 KB 

7 0.05 s 1,225 3,003 597 80 KB 

8 0.3 s 4,900 11,440 1,124 306 KB 

9 1.1 s 15,876 43,758 6,814 1.12 MB 

10 7.6 s 63,504 167,960 22,449 4.33 MB 

11 66 s 213,443 646,646 75,947 15.0 MB 

12 6.7 min 853,776 2,496,144 ? 63.7 MB 

13 39.6 min 2,944,656 9,657,700 ? 244 MB 

14 4 hours 11,778,624 37,442,160 ? 947 MB 

15 24 hours 41,409,225 145,422,675 ? 3644 MB 
Notes: 

1. Execution time does not include time needed to render transitions on-screen. 

2. Many transitions that are computed have 0 height, and are thus invisible. 

3. RAM usage assumes matrix operations are performed on Java ‘double-precision’ numbers (Size of double: 8 bytes, Size of 

a Transition: 24 bytes) 
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2.5. Conclusion 
The results of the spin simulation show that the underlying model for generating NMR 

spectrum can be accurately modeled using estimated parameters from pure acquired 

spectra.  Moreover, this modified spin simulation algorithm is significantly faster than a 

full spin system calculation.  This algorithm is better suited for the simulation of spin 

systems in real time, and is an important step in the deconvolution of the spectrum into 

metabolite concentrations as mentioned earlier in this chapter.  Also, we can conclude 

that there are several different methods of preprocessing an NMR spectrum such as 

spectral binning, Targeted Binning, and Targeted Profiling.  The considerations for the 

method of preprocessing an NMR spectrum for statistical modeling will be explored in a 

later chapter. 
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3. Baseline Correction Problem and Some 
Automated Solutions 

One of the reasons for doing one dimensional NMR experiments is to identify peaks that 

correspond to various protons and then to accurately estimate the concentration of the 

compound that these protons belong to.  In order to do this properly, it is very important 

that the baseline of the spectrum is free from anomalies.  Some of these anomalies can be 

caused by errors in the first few points in the FID.  Another common cause of baseline 

problems is due to the signal from larger molecules.  In urine, these are typically large 

lipids and proteins.  In order to correct for these baseline signals, a possible solution is to 

model this baseline and subtract it from the original spectrum.  A manual method for 

modeling a baseline is to manually select points along the spectra that are considered a 

baseline point.  These points are then joined together by either straight lines or any order 

of a polynomial spline.  A description of splines can be found in Ahlberg et. al. (1967).  

More advanced techniques use automated algorithms to find baseline points.  What 

defines a baseline point is often a difficult task to determine.  Several methods proposed 

are to model the baseline based on the mechanism that generated the baseline signal. 

 

3.1. Automated Baseline Point Determination1 
Experimental nuclear magnetic resonance (NMR) spectra tend to contain baseline 

distortions artifacts which can be caused by a variety of different sources, including 

instrument drifts and unwanted macro molecule signals.  Metabolomics applications of 

NMR spectra often require the identification and quantitation of metabolites found in 

complex mixtures, since these mixtures can give a snapshot of the state of an organism.  

It is important to have a flat baseline in order to accurately quantify, hence the need for a 

good baseline correction algorithm.  Systematic baseline distortions also add unwanted 

correlations in spectral binning data when building correlation models. 
                                                 
1 Some of the material that appears in this section has been published in Journal of Magnetic Resonance.  

2007, 187(2), 288-292. 
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Early development on baseline correction algorithms includes work described by Pearson 

(1977), in which baseline correction can be broken into three steps.  The first step is to 

determine the signal and baseline noise in the spectrum.  The second is to use that 

information to build a model of the baseline.  This model can be represented using 

interpolated line segments, or cubic splines if a smoother line is desired.  Finally the 

third, and somewhat trivial step, is to “correct” the signal by subtracting the baseline 

model from the original signal.  Further developments by Zolnai et. al (1988), Heuer and 

Haeberlen (1989), Gunter and Wuthrich (1991), and Bartels et. al (1995) all follow this 

standard pattern and have made significant contributions to each step. 

 

While the problem of baseline correction in the realm of NMR signals is not new and 

there are some good solutions already available, in our experience the available methods 

work best on NMR spectra that do not have a very high signal density (Pearson, 1977, 

Gunter and Wuthrich, 1991, Bartels et. al, 1995).  Many existing algorithms tend to be 

overly aggressive, often destroying the line shapes of prominent peaks in spectra with a 

wide dynamic range of peak shapes and sizes.  The application of many of these methods 

to metabolomics data is therefore problematic, since NMR spectra of complex biofluids 

often result in very signal-dense spectra.  In this chapter we propose a new algorithm for 

baseline correction which addresses this problem in a way that does not destroy the line 

shapes of prominent peaks.  Our algorithm is designed for more densely populated 

spectra, but retains good performance in sparsely populated spectra as well.  The 

algorithm was developed based on our combined knowledge of both NMR signals and of 

the baseline distortions that are common in the realm of complex mixtures.  This chapter 

will focus on step one of the general three-step process: A systematic application of 

heuristic rules which can accurately determine the baseline points in a 1D NMR 

spectrum. 
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3.1.1. Approach 

This section contains a detailed outline of our baseline correction algorithm, as 

implemented in Chenomx NMR Suite 4.6.  The goal of the algorithm is to differentiate 

the regions of the spectrum (S) that are considered to be baseline noise from those that are 

considered to be signal.  This determination is then stored in a Boolean vector known as a 

signal map (SM).  SM has the same dimensions as S; each element contains information 

about whether the point corresponding in S is signal (true) or baseline noise (false). 

  

The first and most important step in the algorithm is the high pass signal identification 

step.  The objective here is to conservatively identify regions of the spectrum that are 

signal by looking at a modified version of S wherein all low frequency curves and rolls 

have been removed.  Once the signal regions are identified, everything else can be 

considered baseline points.  In order to accurately determine what is signal, the algorithm 

first attempts to calculate the standard deviation of the noise in S.  This is a common step 

in other baseline correction algorithms (Pearson 1977, Gunter and Wuthrich 1991, and 

Bartels et. al 1995).  However, the typical method for determining the standard deviation 

of noise by dividing the original spectrum (S) into multiple regions is insufficient.  

Rolling baselines and areas of high signal make it difficult to estimate the noise in a 

spectrum. 

 

To overcome this problem, the algorithm proposed here chose to first use a high pass 

filter on the spectrum.  Specifically, a moving average filter was used.  This filter is 

designed to pass 0.5% of the highest frequency through the Nyquist frequency.  The 

resulting signal is known as the high pass filtered spectrum (HPFS) and contains only the 

high frequency noise and signal.  Figure 3.1 shows a spectrum before and after the high 

pass filter has been applied.  Note this algorithm can be generalized to different nuclei 

spectra and therefore the author has removed the ppm x-axis to show the applicability to 

generalized sweep widths.  From Figure 3.1, we can also see the resultant spectrum is 

highly distorted and not very useful in itself.  However, the HPFS is still useful in 

obtaining a good estimate of the high frequency baseline noise, because rolls in the 

baseline have been removed, and signal dense areas have been narrowed. 
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Figure 3.1 – Top: Original spectrum (S) with a noticeable baseline distortion.  Bottom: High 
pass filtered spectrum (HPFS) showing the removal of the low frequency distortions.  Full 
sweep width is shown. 

 

At this point the HPFS is divided into evenly spaced segments, and the standard 

deviation of each segment is calculated.  A percentage (bfraction) of the segments with 

the lowest intensities are assumed to be baseline signal, and the standard deviation of 

only the points contained within these segments is recalculated (stdn).  bfraction can be 

adjusted based on the spectrum signal density.  A bfraction value of between 0.2 and 0.5 

was found to work well for complex mixtures. 
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Once stdn has been determined, the next step is to determine what percentage of the 

entire spectrum is signal.  We continue to use the HPFS and consider all points with 

absolute intensities greater than two times the standard deviation of the noise to be signal.  

The indices of these absolute intensities are sorted based on the intensities themselves 

and then used in the signal windowing step.   

 

The signal windowing step returns back to the original spectrum (S).  Each signal point 

found in the previous steps is now used as the center of a signal window.  The signal 

window width used is 0.2% of the total sweep width of the spectrum.  Each point inside 

of the signal window is now also marked as signal in SM.  Figure 3.2 shows a spectrum 

overlaid with the baseline points that were found after the signal windowing step. 

 

 

Figure 3.2 – Baseline points defined after signal windowing step.  Full sweep width is 
shown. 

 

The novelty of this algorithm is the use of a high pass filter.  However, it is also a 

weakness: the high pass filter applied to very tall or large peaks in a spectrum will often 

misidentify the tails of these peaks as baseline in the signal map.  In order to correct for 

this, a second step is applied.  The objective of this step is to determine the most 

prominent Lorentzian peaks in the spectrum and guarantee that their tails are marked as 

signals in SM.  This is because the tails of the most prominent peaks are often filtered out 

in the high pass filter, and misidentified as baseline signal due to their size relative to the 

signal window. 
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The first part of this step is to calculate the average or mean of the entire spectrum (S) in 

the frequency domain using only the positive values.  Then, using an automatic peak 

picking algorithm, peaks that are twice the mean of the spectrum are located.  The widths 

of the peaks are determined by walking halfway down both sides to find the half width of 

each peak.  The peaks are then mathematically modeled as pure Lorentzian lineshapes 

and the central portion of S that contains 95% of their area is marked as signal in SM.  

Note that this often fixes regions that were erroneously marked as baseline in previous 

steps. 

 

A 95% cutoff was needed because Lorentzian peaks have infinite tails.  The algebraic 

model for a Lorentzian is: 

 

( )22

2

4
)(

cxw
wAxL

−⋅+
⋅

=      (3.1) 

 

Where, for any given position x {Hz}, width w {Hz}, center c {Hz}, and amplitude A, 

the function L is the intensity of the Lorentzian at x.  Once these additional “signal 

points” are marked in SM, the determination of signal and baseline points is complete.  

Figure 3.3 shows the same spectrum as in Figure 3.2 with baseline points overlaid (in 

thick black) after correcting for prominent Lorentzian peaks.  You will notice the 

correction of the misinterpreted baseline points (in thick black).  The 95% regions from 

the picked Lorentzian peaks (A and B) and the region added to the SM (C) are also 

shown in Figure 3.3. 
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A C B

Figure 3.3 – Baseline points defined after correction for prominent Lorentzian peaks.  Full 
sweep width is shown. 

 

We showcase the algorithm’s ability to accurately determine the baseline points.  To 

model these points in a spectrum, the original baseline points were used and a simple 

linearly interpolated line was used to fill in the gaps between the baseline points.  A more 

sophisticated natural cubic spline model is used in Chenomx NMR Suite 4.6. 

 

3.1.2. Application 

The performance of the algorithm is demonstrated in the following two examples, which 

were acquired from different NMR spectrometers and have different baseline distortion 

problems.  As well, the first of these examples has a high signal density while the second 

example is sparse in signal density.  These spectra were also chosen to clearly show the 

algorithm’s ability to handle gross distortions in the baseline, while at the same time 

showing that it is able to non-destructively handle the more subtle baselines generated 

from the most advanced spectrometers today. 

 

For our first example, we applied the algorithm to an NMR spectrum of an acidic plant 

extract.  The exact details on the sample are unknown, however this spectrum was chosen 

for its obvious baseline distortion and signal density.  This sample was run through an 

NMR flow system on a 400 MHz Varian spectrometer using a vast1d pulse sequence.  

Some of the older flow systems, which make use of the ssfilter VNMR command, do not 

always create straight baselines.  As can be seen from the black line in Figure 3.4a, the 
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original spectrum had a fairly high signal density, as well as an obvious baseline 

distortion.  The baseline points identified by the algorithm are shown, along with linearly 

interpolated points in between the gaps (in thick black) in Figure 3.4b.  Finally, the 

baseline corrected spectrum (i.e. after subtraction) is displayed in Figure 3.4c. 

 

Our second example uses another acid extract sample acquired on an older JEOL 

Spectrometer, which did not have digital filtering.  The lack of digital filtering is 

probably the cause of this spectrum’s pronounced baseline roll.  This spectrum was 

acquired on a 500 MHz magnet using a single-pulse sequence.  Figure 3.5a shows the 

original spectrum.  Figure 3.5b shows the baseline points identified by the algorithm with 

linearly interpolated points in between the gaps (in thick black).  Figure 3.5c shows again 

the high quality spectrum after the baseline distortion has been removed. 

 

The baseline correction algorithm outlined was designed using characteristic distortions 

found commonly in spectra from complex mixtures.  It follows the established three-

stage template and aims at ensuring the accurate determination of baseline points without 

indentifying too many false positives.  The result is a high quality baseline correction 

algorithm that can be used in a variety of metabolomics applications. 
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A 

 

B 

 

C 

Figure 3.4 – A) Original spectrum of acidic plant extract.  B) Baseline distortion model.  C) 
Spectrum after baseline correction.  Full sweep width is shown. 
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A 

 

B 

 

C 

Figure 3.5 – A) Original acid extract spectrum.  B) Baseline distortion model.  C) Spectrum 
after baseline correction.  Full sweep width is shown. 
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3.2. Modeling Lipid Distortions 
In the second method, we propose to model the baseline in the frequency domain.  In 

order to model the baseline of a signal caused by large macromolecules, we first look at 

the signal of the macromolecules themselves.  Typically signal from these large 

macromolecules are very broad signals, due to the relatively fast decay rate (T2).  Figure 

3.6 shows a 1H NMR signal of a lipid extract from urine.  Lipid extraction was done 

using a chloroform/methanol liquid/liquid separation similar to the one described in Khan 

et. al (2002). 

 

 

Figure 3.6 – Modeling of 1H NMR signature of lipid extract in urine 

Using this signature of lipid extract a series of broad Beta curves, which mimic the broad 

signals of a large macromolecule, were fitted to nearly match the shape of the baseline as 

per Figure 3.6.  Beta curves were chosen to model these broad baseline signals.  Beta 

curves are given by the following equation: 

)()1(
),(

1
)1,0(

11 xIxx
baB

y ba ⋅−⋅⋅= −−     (3.2) 
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where a and b are parameters, and B(a,b) is the Beta function.  I(0,1)(x) makes this curve 

truncated between x values of 0 and 1.  This property of truncated tails offers some 

numerical advantages.  The Beta function is given by the following equation: 

( )
)(
)()(1),(

1

0

11

ba
badtttbaB ba

+Γ
ΓΓ

=−⋅= ∫ −−    (3.3) 

where Γ(x) is the gamma function. 

The parameters a and b were chosen to be the same value to produce a symmetric 

function.  The parameters used to fit the baseline were the area, span, and center for each 

Beta curve.  Of these parameters, only the areas were automatically optimized using a 

non-linear optimizer in Matlab.  After the lipid extract was fit, the same parameters were 

used to fit an unmodified urine spectra.  Again in this case, the area was automatically 

optimized for each curve.  Figure 3.7 shows an example of a baseline fit, using this 

algorithm.  Figure 3.8 shows the resulting spectrum after the baseline curve was 

subtracted from the original spectra. 

 

Figure 3.7 – Baseline model fit using a series of Beta curves in urine sample. 
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Figure 3.8 – Removal of baseline from original spectra. (Blue: original spectra, Red: 
spectra with baseline removed.) 

 

3.3. Time Domain Baseline Correction 
A third proposed method of performing baseline correction involves again the idea that 

these baseline signals are a result of macro molecules with small T2 values.  We make use 

of this information in the time domain.  The idea is to remove the signal from the 

beginning of the time domain signal, since most of the signal from these large macro 

molecules will have decayed in the beginning of the time series.  The time domain signal 

is truncated, and in order to retain the phase information, a linear backwards predictor is 

used to estimate the missing data without the macromolecule signal.  First attempts at this 

idea involve a simple autoregressive (AR) model to perform this backwards predictor.  

Figure 3.9 shows some preliminary results of this procedure. 
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Here a serum sample was run twice.  The first run was with a water suppression 

presaturation (presat) sequence (in blue), which involves a long low power radio 

frequency (RF) pulse used to saturate a specific frequency followed by a simple 90o
x 

pulse.  The second run was with a Carr-Purcell-Meiboom-Gill (CPMG) sequence (in 

green), which involves a 90o
x pulse followed by successive 180o

y pulses (Harris, 1983).  

As can be seen, the presat spectrum contains a very large baseline problem as compared 

to the CPMG spectrum.  In a CPMG spectrum, there is typically intensity loss due to 

relaxation in the longitudinal (z) direction as the sequence of pulses is applied.  This is 

naturally helpful in removing baseline, due to the fact that larger molecules also have 

very short T1 times.  So the intensities will first drop from these large molecules.  One of 

the measures of the effectiveness of the baseline correction algorithm will be to compare 

it to a CPMG spectrum, since CPMG pulse sequences have been used by others (Van et. 

al, 2003) to remove lipid signals in metabolomics data in the past. 

 

In this trial, the first 10% of the spectrum was removed from a 65535 data point FID.  

Again the backwards predictor was a simple AR model.  An AR model can be described 

by the following equation: 

( ) ( ) ( )nwknxanx
p

k
k +−⋅= ∑

=1
     (3.4) 

This describes a process that can be modeled as a linear combination of past 

measurements of itself with the addition of white noise (Proakis and Manolakis, 1996).  

Additional complexities can be added such as a time delay term.  In our trial, we used a 

second order AR model with a delay of one time step.  The model parameters were 

estimated using a least squares algorithm.  From Figure 3.9, we can see that this 

methodology does help with the baseline problem.  However, there appears to be some 

frequency dependent phase distortions that are present, most probably caused by the 

backwards predictor.  Further research needs to be done to look into the viability of this 

process and the removal of such distortions. 
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Figure 3.9 – Baseline correction scheme performed in the time domain.  Blue is the preset 
experiment spectrum, red is the baseline corrected spectrum, and green is the same 
sample done under a CPMG experiment. 

 

3.4. Conclusion 
The three methods described in this chapter are distinct methodologies that are used to 

solve the issue of baseline distortions.  The first of the three has the distinct advantage of 

being a general method of picking baseline points.  The last two methods are more 

specific and used known mechanisms of baseline distortion to reproduce the baseline 

model.  Both the automated baseline point algorithm, and lipid distortion beta curve 

methods work quite well, while more work needs to be done on the time domain method.  

Applying good baseline correction will clearly give better spectra for further use in 

statistical models and quantitative analysis. 
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4. Impact of Variable Reduction and 
Spectroscopic Distortions on Multivariate 
Statistical Models2 

 

Chapter 2 describes in detail various types of preprocessing that can be done to NMR 

spectra for the purposes of variable reduction and Chapter 3 outlines several techniques 

that can be used to resolve baseline distortions.  While these techniques help the overall 

quality of NMR spectra, the appropriateness and impact of such preprocessing techniques 

need to be explored in the context of metabolomics.  The implications on building 

multivariate statistical models for the purposes pattern recognition and prediction will be 

addressed in this chapter. 

 

Nuclear Magnetic Resonance (NMR) spectroscopy is a widely-used tool in the rapidly 

growing field of metabolomics, where the measurement of small molecule metabolites 

provides a chemical “snapshot” of an organism’s metabolic state (Lindon et. al, 2003). 

NMR is inherently quantitative and non-selective and therefore a wealth of chemical 

information can be extracted from single NMR spectrum. Metabolomics studies often 

couple NMR spectral data with principal component analysis (PCA) and other pattern 

recognition techniques to uncover meaningful patterns in data sets (Holmes and Antti, 

2002). Long-term goals of such computational model building include automation of data 

analysis as part of an integrated diagnostics platform (Wishart et. al, 2001) and 

personalized therapies (Clayton et. al, 2006). Building statistical models from NMR 

spectra can be problematic however, as spectral distortions present potentially 

confounding artifacts to techniques such as PCA (Defernez and Colquhoun, 2003, 

Halouska and Powers, 2006).  

 

                                                 
2 Some of the material that appears in this chapter has been previously presented and published for the 

Pacific Symposia on Biocomputing. 2007, 12, 115-126. 
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These distortions have an origin in the hardware (Siuda et. al, 1998), the type and nature 

of the sample, and choice of acquisition and processing parameters (Weljie et. al, 2006). 

For example, pre- and post-processing algorithms and the signal-to-noise (S/N) in the 

time domain will impact data quality. Metabolite signals in complex mixtures often span 

several orders of magnitude, thus requiring a significant dynamic range in the receiver. 

Furthermore, aqueous samples such as urine or plasma require suppression of the water 

solvent peak which is a 1000 times more concentrated than the metabolites of interest, 

resulting in distortions of the baseline and intensity of metabolite signals. Metabolites’ 

resonance frequencies, lineshapes, and linewidths will vary between samples within an 

NMR metabolomics dataset irrespective of hardware considerations. Factors influencing 

these chemical modulations include sample pH, ionic composition, and inter-metabolite 

interactions (Lindon et. al, 2000). As a result, statistical analyses require some form of 

pre-processing or data reduction to ensure that the variables of interest are representative 

of the underlying chemical data (Webb-Robinson et. al, 2005). 

 

In this chapter, the impact of spectral distortion on the quality of predictive statistical 

models built upon two alternative representations of preprocessed NMR data is assessed.  

A simulated dataset is used to model various types of spectral distortion in a systematic 

manner, and two techniques for dimensionality reduction, spectral binning and targeted 

profiling, are used to represent these simulated spectra. The results are assessed using the 

regression/classification extension of PCA, partial least squares for discriminant analysis 

(PLS-DA) (Umetrics, 2001). We validate our findings using a real-world data set of rat-

brain extracts. 

 

4.1. NMR Data Representations 
In Chapter 1, a description of an NMR experiment was given.  From the viewpoint of a 

single proton, the equation for an NMR experiment was also outlined. (See Equation 1.1).  

In Chapter 2 we describe a more complex situation of multiple protons that interact on a 

given molecule, which is modeled by a spin simulation.  Finally in this chapter we add 

another layer of complexity where by different molecules, which many contain multiple 
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protons, are all present in a complex mixture.  Couple that level of complexity with the 

fact that in metabolomics studies, one has many NMR experiments of different mixtures; 

clearly therefore the data that is required for metabolomics is quite complex and must be 

processed properly. 

 

For a mixture, an NMR spectrum can be viewed as a linear combination of characteristic 

signals for each compound that is present in a given sample. As the concentration of a 

particular compound changes, the characteristic signal for that compound responds in a 

linear fashion. Thus, an NMR spectrum can be viewed from a theoretical perspective as 

follows: 

[ ] [ ]

[ ]
[ ] [ ] [ ]nnnkkn

obs usacd

×××××

++⊗⋅=

1111

ε
       (4.1) 

where dobs is a [1xn] vector of the observed NMR data, c is a [1xk] vector representing the 

concentrations of k known compounds in the mixture, and s represents a matrix of the 

spectral signatures present in the solution. The variable a is a spectrum calibration 

function that is applied to each row of s to account for changes in the sample’s pH, ionic 

strength, etc. While the variable u represents unknown contributions to the signal from 

unknown metabolites, lipoproteins, or any other contributions to the signal that are not 

explicitly modeled using s. Finally, the observed spectrum contains noise that is 

introduced by the NMR hardware and processing algorithms, ε.  

4.1.1. Spectral Binning 

Spectral binning (Holmes and Antti, 2002) is a widely-used technique where the 

spectrum is subdivided into a number of regions, and the total area within each bin is 

used as an abstracted representation of the original spectrum. The area encapsulated by a 

bin would ideally capture all of the area associated with a given resonance across all 

spectra in the dataset, thereby mitigating the effect of minor peak shift and line width 

variations for a compound across samples. A typical 64k NMR spectrum would be 

reduced using bin widths of 0.04 ppm, resulting in ~250 bin integral values. Spectral 

binning is agnostic of the underlying generative model described in Equation 4.1, 
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however it is commonly used due to the ease of implementation and complete spectral 

coverage. 

4.1.2. Targeted Profiling 

Targeted profiling (Weljie et. al, 2006) is a technique that leverages a reference spectral 

database to directly recover the concentration matrix c from Equation 1, which is then 

used as the input to pattern recognition techniques such as PCA or PLS-DA. Targeted 

profiling can be viewed as a method of recovering the latent variables in the form of 

underlying metabolite concentrations that generated the observed spectral data. Because 

of its reliance on a spectral database s, targeted profiling does not directly model or deal 

with the unknown term u in Equation 4.1. Since u may contain potentially important 

latent chemical information, it can be calculated directly as the residual from Equation 

4.1, and spectral database-agnostic techniques such as spectral binning can be applied to 

u for subsequent analysis. 

4.2. Methods 

4.2.1. Synthetic Study 

Several synthetic data sets were generated with specific characteristics to simulate, in a 

systematically controlled manner, some of the key challenges inherent in working with 

NMR data. The data for the synthetic study was generated using Chenomx NMR Suite 

4.5 (Chenomx Inc., Edmonton, Alberta, Canada) compound database entries. Varying 

mixtures of twenty compounds, with the addition of DSS at 0.5 mM, were simulated. 

Compound concentrations for the following compounds were sampled randomly from a 

normal distribution: 2-oxoglutarate, acetate, acetone, alanine, betaine, carnitine, citrate, 

creatine, dimethylamine, fumarate, glucose, lactate, maleate, myo-inositol, taurine, 

tryptophan, tyrosine, urea, π-methylhistidine, τ-methylhistidine. Biologically viable 

population statistics of mean and standard deviation were used for each compound 

(Slupsky et. al, 2007) and these concentrations remained fixed from simulation to 

simulation. 
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Random uncorrelated noise was added to each spectrum in the frequency domain. Each 

spectrum was generated to have an equivalent amount of noise by an approximate signal 

to noise ratio (SNR) of 100:1. 

 

The effect of pH variability was simulated by randomly varying compound resonance 

frequencies within an empirically validated range. This range reflects the compound’s 

NMR frequency response to pH levels ranging from pH 4 to 9 as determined from pH 

curves of pure reference spectra. The magnitude of this range was controlled to test the 

effects of pH variation via a transform fraction parameter. A fraction of 1.0 allowed 

clusters to be transformed over the entire pH 4 to 9 range, while a fraction of 0.1 would 

allow for clusters to be transformed over 10% of the range, centered at pH 7.0. The actual 

pH range that this represents will be different for each compound depending on the 

relative pH sensitivity of the compound near pH 7.0. 

 

In order to generate two classes of spectra, the population statistics of one or more 

metabolites were changed for each simulation. The parameters used in each simulation 

are outlined in Table 4.1. 
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Table 4.1 – Simulation Parameters for Synthetic Study. 

Simulation # Parameters Value 
1 Number of Files 200 (100 of each class) 
 SNR 100 
 Transform Fraction 0.1 
 Group 1 Citrate/Tryptophan Mean ± Stdev 

(μmol) 
2318 ± 1496 / 5 ± 2 

 Group 2 Citrate/Tryptophan Mean ± Stdev 
(μmol) 

1031 ± 945 / 10 ± 2 

2 Number of Files 200 (100 of each class) 
 SNR 100 
 Transform Fraction 0.1 
 Group 1 Maleate Mean ± Stdev (μmol) 30 ± 15 
 Group 2 Maleate Mean ± Stdev (μmol) 60 ± 20 
3 Number of Files 200 (100 of each class) 
 SNR 100 
 Transform Fraction 1 
 Group 1 Citrate/Tryptophan Mean ± Stdev 

(μmol) 
2318 ± 1496 / 5 ± 2 

 Group 2 Citrate/Tryptophan Mean ± Stdev 
(μmol) 

1031 ± 945 / 10 ± 2 

 

4.2.2. Rat Brain Extracts 

This real-world dataset is based on a previously published (McGrath et. al, 2006) dataset 

and was kindly provided by Dr. Brent McGrath and Dr. Peter Silverstone (Department of 

Psychiatry, University of Alberta). Twelve adult male Sprague-Dawley rats brains were 

dissected into frontal (fcx) cortex, temporal cortex (tcx), occipital cortex (ocx) and 

hippocampus (hipp) regions according to stereotaxic demarcation (McGrath et. al, 2006). 

For spectral binning, bins widths of 0.04 ppm were used, with the following dark regions 

defined: DSS (the internal standard):  -0.1-0.1ppm, 0.6-0.7 ppm; methanol (a byproduct 

of the extraction process): 3.33-3.37 ppm; water: 4.5-5.5ppm; imidazole (the pH 

indicator): 7.13-7.5, 7.82-8.68 ppm.  
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The following compounds were identified and quantified using the targeted profiling 

technique (Weljie et. al, 2006) as implemented in Chenomx NMR Suite 4.5: 

4-Aminobutyrate Formate 

Acetate Hypoxanthine 

Adenosine Isoleucine 

Alanine Lactate 

Aspartate Leucine 

Betaine Lysine 

Choline Methanol 

Citrate N-Acetylaspartate 

Creatine Serine 

Creatinine Succinate 

Formate Taurine 

Fumarate Threonine 

Glutamate Tyrosine 

Glutamine Valine 

Glycerol Xanthine 

Glycine  
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4.3. Multivariate Statistical Modeling 
All multivariate modeling was performed using SIMPCA-P+ 11.0 from Umetrics Inc. 

The following equations describe the statistics used to measure the quality of the models 

generated: 
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 R2
X and R2

Y are calculated as the fraction of the sum of squares of all X and Y that the 

model can explain using the latent variables. Q2 is the fraction of the total variation in Y 

that can be predicted ( Ŷ ) using the model via seven-fold cross-validation.  Here m is the 

total number of observations in the model building set, n is the total number of 

observations in the hold out set, and X and Y represent the average over all observations 

in that set.  Note that results shown in this chapter are also cumulative R2
X, R2

Y, and Q2 

values, which is the average of all 7 cross-fold validation sets. 

 

Validation of the models was done using Permutations Tests.  This test randomly 

permutes the class labels and builds new models based on these permuted labels using the 

same number of components.  Permutations tests were performed using 100 

permutations.  Insignificant differences in the model quality parameters R2
Y and Q2 in the 

true model to the permuted models indicates that the true model was overfit with the 

currently available data and the number of components chosen. 
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4.4. Results 

4.4.1. Synthetic Data 

By systematically varying key properties of the synthetic data sets, several aspects of 

building statistical models on NMR data representations were assessed. The first issue 

assessed was the effect of noise on the spectra. Specifically, noise was added to the 

spectrum to see how robust both spectral binning and targeted profiling methods were at 

being able to recover the latent information in the data in the presence of noise. What was 

observed was that if the noise was completely uncorrelated, then both methods are very 

robust to varying noise levels. 

  

The next issue we examined was the choice of variable scaling and normalization 

methods, since this can have a large impact on the quality of results obtained from 

multivariate statistical methods such as PLS-DA. Normalization for all spectral binning 

data was to the total area of the NMR spectrum. No normalization was necessary for the 

targeted profiling results, since direct quantification can be obtained with the addition of 

an internal standard. Both the spectral binning data and targeted profiling data were mean 

centered and were scaled using unit variance (UV) or Pareto scaling. UV scaling involves 

weighting each of the variables by the variables’ group standard deviation, and has the 

advantage of not biasing statistical models towards large concentration compounds or 

high area bins. Pareto scaling involves weighting each of the variables by the variables’ 

group variance, which minimizes the impact of noise. Data from simulation #1 was used 

to evaluate the effects of these two scaling procedures. This simulation encoded class 

differentiation through citrate, present at relatively high concentrations, and tryptophan, 

present at relatively low concentrations. Figure 4.1a demonstrates that PLS-DA on UV 

scaled data can recover differences in both tryptophan and citrate, while the loadings plot 

of Pareto-scaled data (Figure 4.1b) is only able to distinguish the intense citrate signal. 

UV scaling was superior to Pareto scaling in recovering a model that accurately reflected 

the variables of interest (both low- and high-concentration metabolites) for targeted 

profiling data. 
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Figure 4.1 – PLS-DA models of simulation #1 (scores plot left, loadings plot right), showing  
targeted profiling data using a) unit variance scaling b) Pareto scaling. 

 

Overlap of NMR resonances from different metabolites is another issue hampering the 

analysis of complex biofluid spectra. Further complications arise from compound overlap 

with dominant peaks such as urea, where low intensity peaks are often lost in traditional 

analyses due to the overwhelming magnitude of the urea signal. Simulation #2 generated 

a dataset in which a single metabolite, maleate, differentiates the two classes and overlaps 

with the high concentration urea signal, which varies randomly (i.e. urea does not encode 

class discrimination). Figure 4.2 shows the scores, loadings, and permutations tests for 
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spectral binning and targeted profiling methods. One can see from the loadings plot in 

Figure 4.2b, that targeted profiling methods identify maleate as a significant metabolite 

even under severe overlap conditions, while spectral binning shown in Figure 4.2a fails to 

distinguish the maleate bin as being significant. Spectral binning is also prone to 

generating highly overfit models as shown by the permutation test in Figure 4.2, whereas 

targeted profiling models show no signs of overfitting. Permutation tests help assess 

overfitting by randomly permuting class labels and refitting a new model with the same 

number of components as the original model. An overfit model will have similar R2 and 

Q2 to that of the randomly permuted data. Well fit models will have R2 and Q2 values that 

are always higher than that of the permuted data. 

 

Sample matrix conditions such as pH and ionic strength can have profound effects on 

metabolites’ NMR resonance frequencies. These shifts can directly influence the quality 

of the models that are generated using NMR data, and were modeled with simulation #3. 

Both spectral binning and targeted profiling gave rise to models that were able to separate 

the data in the latent variable space. However, the quality of the model generated with the 

spectral binning data was low and resulted in overfitting as shown in permutation plots 

(Figure 4.3). This is due to the large number of variable weights used in the loadings 

(Figure 4.3a). A large number of variables share similar weights because the same 

significant resonances are now migrating over adjacent bins due to pH/ionic strength 

variation.  Models built on targeted profiling data, which accounts for the shifts in 

resonance locations directly in the modeling process, are able to separate the two groups 

and do not overfit the data (Figure 4.3b). 

 

The final effect studied is the impact of limited sample sizes on predictive capacity, a 

typical problem in metabolomics studies. The effect of sample size was shown using a 

subset from Simulation #3. The size of the dataset was reduced from 100 to 20 samples in 

each class. Even with a limited sample size, the targeted profiling approach resulted in 

well fit PLS-DA models, as assessed by the permutations tests (Figure 4.4b).  While the 

descriptive features of tryptophan and citrate are not as clearly distinguished in the 

loadings plot, the permutation plot indicates that even with a small number of samples the 
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data is not overfit.  The results for spectral binning, however, are quite deceptive, as the 

PLS-DA model shows very good separation of classes in the scores plot (Figure 4.4a). 

However, the model generated has an extremely high degree of overfitting – the majority 

of the randomly permuted models generate Q2 values higher than that of the non-

permuted model (Figure 4.4a). 
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Figure 4.2 – PLS-DA models (scores plot left, loadings plot center, permutation plot right)  
for a) spectral binning and b) targeted profiling methods under conditions of highly 
overlapping clusters (simulation #2). 
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Figure 4.3 – PLS-DA models (scores plot left, loadings plot center, permutation plot right)  
for a) spectral binning and b) targeted profiling methods under conditions of varying pH 
(simulation #3). 
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Figure 4.4 – PLS-DA models (scores plot left, loadings plot center, permutation plot right)  
for a) spectral binning and b) targeted profiling methods under conditions of varying pH 
and low sample size (simulation #3). 
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4.4.2. Rat Brain Extract 

The rat brain extract dataset is a real-world dataset that exhibits many of the phenomena 

we have seen in the synthetic dataset. The spectra contain noise, have metabolite 

resonances that shift due to pH, and have low-concentration metabolites that are 

important in differentiating the different brain regions, thus making it a suitable model 

dataset to validate our findings from the synthetic dataset. This dataset was acquired at 

high resolution (800MHz) and contains ~30 NMR-visible compounds. We did not find 

that the choice of variable scaling affected the quality of the generated models for this 

dataset. We therefore used unit variance scaling for the results shown below.  

 

We found that using spectral binning generated a model with slightly lower predictive 

accuracy than targeted profiling data: Q2 for spectral binning was 0.468, whereas Q2 for 

targeted profiling was 0.522.  

 

As in our synthetic dataset, we found that spectral binning-based results were prone to 

overfitting. To test for overfitting, we randomly permuted the class labels for the PLS-

DA analysis 100 times. With the spectral binning dataset, we found that some of the 

models generated with random permutations of the data had higher Q2 and R2 values than 

the non-permuted data. This is illustrated in Figure 4.5a. Internal validation of the model 

based on the targeted profiling representation of the NMR data do not exhibit the 

characteristics of an overfit model like that found in the spectral binning model, as shown 

in Figure 4.5b. The targeted profiling representation uses only 27 variables to represent 

the latent information in the dataset, thereby restricting the degrees of freedom available 

in the construction of a model, and reducing the capacity of the model to overfit the data. 
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Figure 4.5 – a) Internal validation of spectral binning, showing clear evidence of overfitting 
with random permutations of the data generating better R2 and Q2 values than the non-
permuted data. b) Internal validation of targeted profiling, showing clear decrease in 
performance on permuted data. 
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4.5. Conclusion 
This chapter describes how the inherent properties of NMR spectroscopy can impact the 

predictive ability of models built upon spectral binning and targeted profiling 

representations of NMR data by using a novel method for synthetically generating NMR 

spectra. The quality of predictive models built was quantitatively assessed, as was the 

relative robustness of these two methods. Under the experimental design chosen, both 

methods are very robust with respect to noise. In contrast, variable scaling methods can 

affect both the quality and interpretability of the models generated. For targeted profiling 

data, unit variance scaling generates a more robust data representation. Targeted profiling 

was also found to be an effective dimensionality reduction technique that, overall, is 

more robust with respect to spectral distortions and high dynamic range metabolites than 

spectral binning, and is less prone to overfitting than spectral binning models. These 

findings were validated on a real-world dataset of rat-brain extracts consisting of ~30 

NMR detectable metabolites, in which statistical models were less prone to overfitting 

based on a spectral profiling representation of the data. Spectral binning is a common 

method for data reduction due to the speed of analysis, while current targeted profiling 

implementations require interactive input and are relatively time-intensive. While the rat-

brain extract study represents a relatively simple dataset, targeted profiling has 

successfully been applied to extensive studies of serum (Weljie et. al, 2007) and urine 

(Slupsky et. al, 2006). As increasingly automated methods for quantitative profiling of 

NMR data become available, we expect database-driven targeted profiling to become the 

data-reduction method of choice. 

 

 

 

 56



5. Characteristics of Targeted Profiling Data and 
the Implications for Extraction of Useful 
Biological Information 

The topics discussed in previous chapters have been in the preprocessing and assessment 

of appropriate data representations of NMR metabolomics data.  Given a biological fluid 

such as urine or serum, one can use NMR to arrive at a simple data representation that 

contains information about the metabolic content of the biological fluid.  Using an 

appropriate experimental design, one can obtain a set of NMR data from a set of 

biological fluids.  The data for a set of experiments is what is used as a basis for 

multivariate statistics and chemometrics.  With Targeted Profiling data, the data 

representation is simply the concentrations of metabolites as extracted from the NMR 

spectrum.  Having concentrations allows for more creative uses of this data, and allows 

for better extraction of information from a dataset.  This chapter will outline the 

characteristics of Targeted Profiling data and how this data can be used to recover 

relevant biological information of the system that is being studied. 

 

5.1. Metabolite Concentrations 
One of the most simple and obvious uses of Targeted Profiling data is to look at 

metabolite concentrations directly.  With a certified internal standard, Targeted Profiling 

will give accurate concentrations of free metabolites within a biological fluid.  Using 

these concentration values, one can assess the metabolic state of a patient.  Normal ranges 

of certain metabolites are well known to physicians.  These ranges are often only accurate 

on specific analytical platforms and are not a measure of the absolute concentration of a 

particular metabolite within a biological fluid.  However, using NMR and Targeted 

Profiling results, new ranges can be easily formed as a basis for normal ranges for a 

variety of metabolites.  Figure 5.1 shows the metabolite levels in urine of three 

individuals.  The five metabolites measured are tracked over a 30 day period.  It can be 

seen in Figure 5.1 that metabolite levels are quite similar between different ages. 
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Figure 5.1 – Daily metabolite concentrations for 3 representative healthy men aged (A) 35 
years, (B) 34 years, and (C) 20 years from morning urines. While daily fluctuation can be 
observed, it is clear that metabolite homeostasis is well regulated within specific ranges 
for these compounds 

 

Using metabolite concentrations, one can compare differences between groups.  This next 

example is a comparison between 21 patients that were admitted with acute asthma and 5 
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normal patients.  The results of the NMR based metabolite measurements of their urine 

can be found in Figures 5.2 and 5.3. 
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Figure 5.2 – Metabolite measurements (Set 1) of Asthma (red) and normal (blue) patients 
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Figure 5.3 – Metabolite measurements (Set 2) of Asthma (red) and normal (blue) patients 

 

0

100

200

300

400

500

600

700

800

Dim
eth

yla
m

Form
a

Fuc
Fum

a
Gluc Glyc

iine
* te* os

e* rat
e

os
e* ne

*

m
M

 / 
M

 C
re

at
in

in
e

 

Figure 5.4 – Metabolite measurements (Set 3) of Asthma (red) and normal (blue) patients 
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Figure 5.5 – Metabolite measurements (Set 4) of Asthma (red) and normal (blue) patients 
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Figure 5.6 – Metabolite measurements (Set 5) of Asthma (red) and normal (blue) patients 

Tau
Thre

o

0

20

40

60

80

100

120

Trim
eth

yla
mine

Trim
eth

yla
mine

-N
-ox

ide
*

Tryp
top

ha
n*

Tyro
sin

e*

Vali
ne

myo
-In

os
ito

l

n-B
uty

rat
e

m
M

 / 
M

 C
re

at
in

in
e

 

 61



Figure 5.7 – Metabolite measurements (Set 6) of Asthma (red) and normal (blue) patients 
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As can be seen in Figures 5.2 to 5.7, there does appear to be group differences

metabolite concentrations for patients with acute asthma and those that are norm

Metabolites such as 2-oxoglutarate, succinate, 3-indoxylsulfate, 4-hydroxy-3-

methoxymandelate all appear to increase in patients with acute asthma.  While 

m

detectable levels in normal patients and are high

 

5.2. Analysis of Variance 
In the previous section, the example given by the asthma and normal patients show

differences between the two groups metabolite levels.  This difference can be seen 

graphically.  In order to test this hypothesis and test the statistical significance of 

differences between groups, one can perform an Analysis of Variance (ANOVA) test.

An ANOVA test is simply a t-test when comparing two groups.  To illustrate this, th

next example is again of patients admitted with an acute asthma exacerbation.  Urine 

samples were collected at the time of hospital admittance and again at a three-week 

follow-up visit (during which the corticosteroid Prednisone was prescribed).  These tw

datasets were also compared with normal patients without asthma.  We must also no

that when testing multiple hypothesis of significance on the same dataset as there are 

multiple measurements of metabolites, it is likely to obtain false positive results of 

significance.  A simple yet strict correction would be to apply a Bonferroni correction.  

Other methods and techniques can be used to help reduce the chances of false positives.  

In Figure 5.8 we sh

b

tr
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Figure 5.8 – Metabolite measurements of normal (Blue), asthma patients before treatment 
(purple), and asthma patients after treatment (green)  

 

Shown in Figure 5.8 are two compounds Glycine and Urea, that showed no statistical 

difference between pre-treatment, treated, and normal patients.  Two compounds that did 

show statistical significance of α<0.001, were hypoxanthine and xanthine.  From Figure 

5.8 we can see that both hypoxanthine and xanthine are elevated in asthma patients 

compared to normal patients.  As well, both levels of hypoxanthine and xanthine decrease 

to normal values after treatment.  Looking deeper at the metabolic pathway of 
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hypoxanthine and xanthine could lead to explanation of the drug’s action.  In Figure 5.9, 

we show two possible pathways for the decomposition of hypoxanthine to xanthine.  The 

first pathway is found in purine metabolism pathway.  The second is an extracellular 

reaction caused by reactive oxidants. (Marnett et. al, 2003) Reactive oxygen species 

produced by activated immunological cells (NADPH oxidase) may increase production 

of hypoxanthine and xanthine. O2
. produced by xanthine oxidase is not lipid soluble and 

cannot diffuse far from point of synthesis, but may be used by EPO to continue oxidative 

damage during pulmonary reperfusion. 
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Figure 5.9 – Possible pathways for hypoxanthine and xanthine relationship 

 

5.3. Metabolite Concentration Distributions 
One consideration for performing ANOVA and other statistical tests is that the variables 

must follow a normal distribution.  To show the distribution of metabolite concentrations, 

Targeted Profiling was performed on NMR spectra of urine samples from 59 normal 

patients.  A total of 81 metabolites were identified and quantified.  Histograms for each 

metabolite were plotted.  It was clear that the concentrations did not follow a normal 

distribution.  A log transformation was performed to data so the data fit a normal 

distribution more closely.  Figure 5.10 shows the histograms of a few compounds both 

before and after log normalization. 
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Figure 5.10 – Histograms of select metabolites before and after log transformation. 
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From Figure 5.10 we can see that in the population distribution of Creatine, Lactate, 

Glycine, and Lactose concentrations before log transformation is skewed.  This is not 

surprising as there is a hard constraint to one side of the population (concentrations 

cannot be negative).  The population distribution after performing a log transformation is 

much more normally distributed. (Figure 5.10)  Using the log transformed data in 

subsequent statistical tests that are based on normally distributed assumptions is highly 

recommended.  Although not all 81 of the metabolite distributions are shown in Figure 

5.10, the majority of the population distributions are skewed and can take advantage of 

the log transformation.  Only urea showed a normal distribution before transformation.  

This is probably due to large concentrations of urea found in urine, and the mean of the 

population being very far from the constraint at zero. 

 

5.4. Dilution Normalization of Urine Metabolites 
Another issue we wish to address is the question of normalization.  Urine samples taken 

at various times of the day, often end up having differing degrees of dilution.  

Normalization without any prior knowledge typically involves mean centering and unit 

variance assumptions.  However, since the objective is to remove the variance due to 

dilution of the urine, one way of normalization would be to normalize the concentration 

of the other metabolites by dividing the concentration of creatinine measured in the 

sample.  This method is very common for urine measurements due to the fact that 

creatinine is very consistent with dilution levels.   

 

Table 5.1 is a list of 15 compounds measured from urine samples obtained from a male 

population between the ages of 25-60.  Table 5.1 shows the mean concentrations and the 

standard deviations of each of the compounds listed.  Table 5.1 also shows the mean 

concentrations and the standard deviations of each of the compounds after it has been 

normalized to creatinine.  As can be seen there is a marked improvement in the standard 

deviations of the measured compounds.  Effectively, creatinine normalization removes 

the variance from creatinine or the variance due to the dilution of the sample.  
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The variance removed can help in classification when using unsupervised methods.  

However, when using supervised methods such as Partial Least Squares – Discriminant 

Analysis (PLS-DA), creatinine normalization is not necessary as the variance due to 

dilution will be in an orthogonal direction to that of the group classifier.  For 

unsupervised methods however, the variance due to dilution effects can be the dominant 

factor and must be taken into consideration. 

 

Table 5.1 – Metabolite concentration means and standard deviations before and after 
creatinine normalization. 

 Raw Data Creatinine Normalized  

Metabolite Mean 

{μM} 

Std. Dev. 

{μM} 

Mean 

{μM/mM(Cr)} 

Std. Dev. 

{μΜ/mM(Cr)} 

% 

Improvement 

in Std. Dev. 
Alanine 171.79 124.51 22.99 10.77 25.62% 

Citrate 1339.70 1112.32 180.82 99.83 27.82% 

Formate 140.24 103.74 20.22 11.60 16.59% 

Glucose 164.48 107.04 21.95 9.40 22.28% 

Glutamate 46.08 29.74 6.66 3.89 6.07% 

Glutamine 286.29 188.71 38.49 16.20 23.83% 

Glycine 738.84 633.73 101.78 69.66 17.33% 

Hippurate 1336.35 1386.98 193.62 173.48 14.19% 

Histidine 501.64 335.67 66.83 28.95 23.59% 

Isoleucine 11.06 6.43 1.53 0.57 20.88% 

Leucine 20.13 12.51 2.68 0.81 31.88% 

Taurine 227.80 242.54 30.53 23.71 28.82% 

Tiglylglycine 13.07 9.20 1.86 1.10 11.18% 

TMAO 329.61 536.71 46.18 64.52 23.13% 

Valine 19.13 12.12 2.54 0.72 34.95% 
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5.5. Conclusion 
This chapter outlined some of opportunities for data analysis that is offered by working 

with Targeted Profiling data.  Since the identification of the metabolites is done a priori, 

the interpretation of the results is much more meaningful and direct mapping onto 

metabolic networks is possible.  It was also shown that there are some considerations that 

must be given when working with Targeted Profiling data, especially in the distribution 

of the data.  Normality assumptions do not always hold when working with Targeted 

Profiling data.  The log transformation of data is not typically done with Targeted 

Profiling data, and should be considered in all cases.  Creatinine normalization for urine 

is well established, and when using unsupervised methods that make use of all the 

variance in the data, it was shown that the % variance attributed to creatinine variability 

or dilution can be anywhere between 6 to 35% for each metabolite.  Examples of patients 

with Diabetes and Asthma showed that with careful management of data characteristics 

such as proper normalization and transformation, the statistical results can be very useful 

in metabolomics. 
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6. 3Multivariate Models and Visualizations as 
Applied in a Streptococcus pneumoniae 
Study 

This chapter applies multivariate statistical techniques on NMR derived metabolomics 

data to detect Streptococcus pneumoniae infections.  New advanced multivariate 

visualization techniques are used, highlighting a number of cross variable interactions.  

Streptococcus pneumoniae is a major human pathogen causing life-threatening invasive 

diseases that can affect various parts of the body such as the lungs (pneumonia), blood 

(bacteremia) and meninges (meningitis), with high morbidity and mortality worldwide 

(Ridgway et. al, 1995). Furthermore, S. pneumoniae is one of the major causes of otitis 

media (middle ear infection), acute sinusitis (sinus infection), septic arthritis (joint 

infection), cellulitis (skin infection), upper respiratory tract infections, and causes other 

diseases including osteomyelitis (bone infection), peritonitis, endocarditis, and 

pericarditis (Dubost et. al, 2004, Kan et. al, 2006, Lopez et. al, 1999, Parada and Maslow, 

2000). People at increased risk for infection include children under 2 years of age, those 

65 years of age and older, people with compromised immune systems, people with 

chronic diseases such as diabetes, lung disease, cancer, kidney disease, people with 

impaired spleen function and smokers (Brandenburg et. al, 2000, Marrie, 2004, Mitchell, 

2000, Redelings et. al, 2005). In addition, there are a large number of nasopharyngeal 

asymptomatic carriers of S. pneumoniae (Lopez et. al, 1999, Faden et. al, 2002, Gillespie 

and Balakrishnan, 2000, Peterson, 2006). It is also not unusual that pneumococci carried 

in the nasopharynx are resistant to one or more antibiotics (Peterson, 2006). Each year, S. 

pneumoniae infects millions of people in the United States alone resulting in more than 

600,000 hospitalizations, with a mortality rate ranging from  5 – 22% (Mitchell, 2000, 

Bartlett et. al, 2000). 

 

                                                 
3 Some of the material that appears in this chapter has been previously presented by Chang et. al at 

Metabolomics Society 2nd Annual Conference, June 25-29, 2006, Boston, MA, U.S.A.. 
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Current diagnostics for S. pneumoniae infections require culture of a variety of specimens 

including sputum, bronchoalveolar lavage, cerebrospinal fluid, or blood, which can take 

several days for a positive result. To combat the lengthy diagnostic time, other tests have 

been developed such as the NOW test (Binax Inc.) which detects the cell wall 

polysaccharide of S. pneumoniae in the urine. However, the rate of detection for this test 

is only between 80 – 90% in bacteremic patients (Faden et. al, 2002), and since we don’t 

have a gold standard for those who have non-bacteremic pneumococcal pneumonia, we 

don’t really know if this test is of much value. Furthermore there is a 65% false positive 

rate in children who carry this microorganism in the nasopharynx (Faden et. al, 2002). An 

ideal diagnostic tool for S. pneumoniae infection would be something that is non-

invasive, requires a minimal amount of a readily available sample that is not 

contaminated by carriage of the organism at the site from which it is obtained, can be 

done reasonably quickly, has a high specificity, and is technically simple to implement. 

 

Recent advancements in the fields of genomics, transcriptomics, proteomics and 

metabolomics have led to proposals that a combinatorial or systems biology approach 

will lead to advanced diagnostics and therapeutics. Most “omics” studies rely on easily 

obtainable samples, such as urine or serum. However, the human biological system is 

complex, and human physiology is affected by many environmental factors such as diet, 

drugs, and symbiotic organisms (Nicholson et. al, 2005, Nicholson and Wilson, 2003). It 

is these factors that tend to complicate analyses and make interpretation difficult. Even 

so, much effort has been applied to find a few key differences between affected and 

unaffected individuals which may pave the way for earlier diagnostics and prognostics. 

 

There have been a number of successful studies using 1H NMR spectroscopy of urine to 

observe intestinal and urinary tract infections by various microbes (Gupta et. al, 2005, 

Van et. al, 2004, Wang et. al, 2004). Most NMR type analyses use raw NMR spectral 

data that provide no a priori information on the metabolites of interest to differentiate 

disease states. These types of analyses are difficult at best as 1H NMR is very sensitive to 

sample conditions such as pH and ionic strength. In this paper, we have assigned and 

followed more than 80 metabolites in 59 patients testing positive for S. pneumoniae in 
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one or more of blood, sputum, bronchoalveolar lavage or endotracheal tube secretions, 

and 59 healthy controls to determine whether individuals with a pneumococcal infection 

may be differentiated from a healthy population based strictly on urinary metabolites as a 

first step toward creating a more robust diagnostic specific for this disease. 

 

6.1. Experimental 
Sample Collection and Preparation (note: sample collection was done through Dr. 

Marrie and Dr. Erik Saude): 

Normal subjects: A total of 59 volunteer subjects, self identified as normal, constituted 

our control group. Urine samples were collected twice daily – once as the first void 

sample in the morning and the second around 1700 h. 

Patients with S. pneumoniae infections: A total of 59 patients infected with S. 

pneumoniae, as determined through cultures of blood, sputum, cerebrospinal fluid, 

bronchoalveolar lavage samples, endotracheal tube secretions, ascites or a combination of 

any of these, constituted our pneumococcal infection group.  

Written informed consent was obtained from each patient and normal subject before 

entering this study, and the study protocol was approved by the institutional ethics 

committee. 

Sample processing: Upon acquisition of urine samples, sodium azide was added to a 

final concentration of approximately 0.02% to prevent bacterial growth. Urine was placed 

in the freezer and stored at -80 ˚C until ready for preparation and data acquisition. 

Sample preparation: Urine samples from healthy individuals were prepared by adding 

70 μL of internal standard (Chenomx Inc.) (consisting of ~5 mM DSS, 100 mM 

Imidazole, 0.2% sodium azide in 100% D2O) to 630 μL of urine. Urine samples from the 

pneumococcal patients were prepared by adding 80 μL of the Chenomx internal standard 

to 820 μL of urine. Sample pH was adjusted to approximately 6.8 by the addition of small 

amounts of NaOH or HCl.  600 μL of sample was placed in a 5 mm NMR tube and stored 

at 4 ˚C until ready for data acquisition. 
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NMR data acquisition and processing: NMR spectra were acquired using the first 

increment of the standard NOESY pulse sequence on a 4-channel Varian INOVA 600 

NMR spectrometer with triaxial-gradient 5 mm HCN probe. All spectra were recorded at 

25 °C with a 12 ppm sweep width, 1 s recycle delay, 100 ms τmix, an acquisition time of 4 

s, 4 dummy scans and 32 transients.  1H decoupling of the water resonance was applied 

for 0.9 s of the recycle delay and during the 100 ms τmix. All spectra were zero-filled to 

128k data points and multiplied by an exponential weighting function corresponding to a 

line-broadening of 0.5 Hz. 

Concentration determination: Quantification of urinary components was achieved 

using the 600 MHz library from Chenomx NMR Suite 4.0 (Chenomx Inc., Edmonton, 

Canada), which uses the concentration of the added DSS to determine the concentration 

of metabolites. The Chenomx 600 database was validated against a set of known 

compound concentrations using the same NMR data collection parameters as used in this 

study and deemed accurate to better than 15% for all compounds reported. 

6.2. Statistical Analysis 
Partial Least Squares – Discriminant Analysis (PLS-DA) was performed using standard 

procedures as implemented in Simca P 11.0 (Umetrics, Umeå, Sweden). Input variables 

consisted of raw compound concentrations. Data were pre-processed by mean-centering 

and unit variance scaling prior to analysis. After building the PLS-DA models, a 

validation of these models was done by a permutation test.  One hundred random 

permutations of class labels were performed, and the R2 and Q2 of these new models were 

compared with the original model before permutations.  This test is a good indication of 

how well the original model was fit as compared to randomness. 

 

ANOVA was done using the program StatView 5.0.1 (SAS Institute Inc., Cary, NC, 

USA). Each metabolite was subjected to a log transformation prior to analysis. 
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Correlation maps were created by calculating correlation matrices between each of the 

log-transformed metabolite concentrations. The correlation of each element was 

calculated using (Johnson and Wichern, 1998): 

kkii
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⋅

=      (6.1) 

where sik is the sample covariance between i and k, and was calculated as follows: 
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An appropriate color gradient was mapped onto the correlation values.  A threshold was 

chosen to highlight important positive and negative correlations. 

 

Heat maps were calculated from log-transformed metabolite concentration data as the 

deviation of each metabolite of the pneumococcal dataset from the mean of that 

metabolite of the control. The data were calculated as follows: 

Control

ControlPP XX
σ

−
     (6.3) 
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6.3. Results 
A total of 59 patients with pneumococcal disease, hereafter referred to as the 

pneumococcal group, ranged in age from 6 days to 92 years (Table 6.1).  In addition to 

the positive cultures indicated in Table 6.1, S. pneumoniae was also isolated from the 

cerebrospinal fluid of 3 patients, and from ascites in 2 patients. The control group 

consisted of 29 males and 30 females ranging in age from 21 to 75 with a mean age of 43 

± 14 years. 

Table 6.1 – Selected features of the 59 patients with S. pneumoniae infection 

 Total Number 

(% of Total) 

Survivors 

(%) 

Non-Survivors 

(%) 

Number of Patients 59 (100%) 48 (81%) 11 (19%) 

Age (mean years ± SD) 56 ± 22 55 ± 22 59 ± 25 

Male Gender (no, %) 35 (59%) 25 (52%) 10 (91%) 

Diabetes as underlying 

chronic illness 
9 (15%) 5 (10%) 4 (36%) 

Bacteremia 38 (64%) 29 (60%) 9 (82%) 

Pneumonia 36 (61%) 28 (58%) 8 (73%) 

Bacteremic pneumococcal 

pneumonia 
23 (39%) 17 (35%) 6 (55%) 

Probable pneumococcal 

pneumonia* 
5 (8%) 4 (8%) 1 (9%) 

Possible pneumococcal 

pneumonia** 
16 (27%) 15 (31%) 1 (9%) 

*Probable pneumococcal pneumonia is defined as a positive culture in endotracheal tube secretions or 

bronchoalveolar lavage samples but not blood samples. 

**Possible pneumococcal pneumonia is defined as S. Pneumoniae isolated from respiratory culture, but 

does not meet criteria for pneumococcal pneumonia. 
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Figure 6.1 depicts a comparison of typical 1H NMR spectra obtained from sample urines 

of the control group (C,D) with approximate age and gender matched individuals from 

the pneumococcal group (A,B). Spectra were scaled according to the intensity of the 

creatinine resonances at approximately 3 and 4 ppm. While there are some differences 

between the spectra of the controls, there are major differences between the spectra of the 

controls versus the pneumococcal group. Citrate, which is a strong signal in the spectra 

from the control group, is very low in the spectra from the pneumococcal group. 

Carnitine and acetylcarnitine have much stronger signals in the spectra from the 

pneumococcal group versus the spectra from the control group. Of interest, the 58 year-

old pneumococcal female patient had very high levels of creatine. In many patients, but 

not all, creatine was elevated significantly. Other major differences between the control 

and pneumococcal spectra may be observed in the 6 – 8 ppm range. 

 
 

Figure 6.1 – 600 MHz 1H NMR spectra obtained from (A) 26 year-old male with a possible 
case of pneumococcal pneumonia, (B) 58 year-old female with bacteremic pneumococcal 
pneumonia, (C) Healthy 26 year-old male, (D) Healthy 57 year-old female. None of these 
patients had diabetes. 
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Examination of the distribution of metabolite concentrations, measured from NMR 

spectra relative to the concentration of the added shift standard, revealed that very few 

metabolites exhibited a normal distribution (not shown). For example, several of the 

pneumococcal patients had diabetes, and thus had extremely high levels of glucose in 

their urine. This type of behavior is not unexpected and is generally inherent in these 

types of data, especially where a hard constraint of zero concentration is found at one end 

of the distribution. Upon log-transformation, histograms revealed a normal distribution 

for all metabolites. Thus for all data analysis presented herein using metabolite 

concentration data, the concentrations were subjected to log-transformation. 

 

Univariate ANOVA was performed to test for significant differences in the means of 

each metabolite concentration between the control and pneumococcal group as well as 

the control and a subset of the pneumococcal group containing no diabetic patients. 

ANOVA revealed 37 out of the 82 measured metabolites had significantly different 

means, and removal of the diabetic patients had little or no effect on the results of the 

ANOVA. Some of the metabolites exhibiting major differences between the control and 

pneumococcal groups are summarized in Table 6.2 with their corresponding p-values. 
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Table 6.2 – Relative Metabolite Concentrations for patients with pneumococcal 
pneumonia. 

 Pneumococcal patients - No 
Diabetics 

All Pneumococcal patients 

Metabolite Relative 
Concentration 

p-value Relative 
Concentration 

p-value 

Acetylcarnitine ↑↑↑ <0.0001 ↑↑↑ <0.0001 
Acetoacetate ↑↑ <0.0001 ↑↑ <0.0001 

Carnitine ↑↑ <0.0001 ↑↑ <0.0001 
Acetone ↑↑↑↑ <0.0001 ↑↑↑↑ <0.0001 
Fumarate ↑ <0.0001 ↑ <0.0001 

Valine ↑ <0.0001 ↑ <0.0001 
Trigonelline* ↓↓ <0.0001 ↓↓ <0.0001 

Tyrosine ↑ <0.0001 ↑ <0.0001 
Isoleucine ↑ <0.0001 ↑ <0.0001 
Acetate* ↑↑ <0.0001 ↑↑ <0.0001 
Fucose ↑ <0.0001 ↑ <0.0001 

Taurine* ↑↑ <0.0001 ↑↑ <0.0001 
Citrate ↓ <0.0001 ↓ <0.0001 

myo-inositol ↑↑ 0.0001 ↑↑ <0.0001 
1-Methylnicotinamide* ↓ 0.0001 ↓ 0.0001 

Lactate* ↑↑ 0.0003 ↑↑ 0.0001 
Leucine ↑ 0.0005 ↑ 0.0001 

Dimethylamine ↑ 0.0005 ↑ 0.0002 
Threonine ↑ 0.0006 ↑ 0.0005 
Alanine ↑ 0.0010 ↑ 0.0003 

Hypoxanthine ↑↑ 0.0014 ↑↑ 0.0015 
Tryptophan ↑ 0.0026 ↑ 0.0012 

π-Methylhistidine* ↓ 0.0078 ↓ 0.0064 
Sucrose* ↑ 0.0130 ↑ 0.0313 
Creatine* ↑ 0.0151 ↑ 0.0126 
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These results may also be presented in heat-map format. Figure 6.2 shows a heat map 

showing relative metabolite levels of the log-transformed metabolite concentrations for 

each pneumococcal patient to the average of the control group. Metabolites are colored 

according to the degree of difference between the average control concentration and each 

patient’s individual concentration. The red color represents metabolites that increase 

whereas the green color represents metabolites that decrease. This figure is akin to a heat 

map used for gene microarrays as it illustrates the relationships between metabolite 

variables across the patient population in a similar manner as gene microarrays show the 

expression levels of genes. Figure 6.2 shows that acetylcarnitine, carnitine, acetone, 

acetoacetate and 3-hydroxybutyrate concentrations are elevated across virtually the entire 

pneumococcal patient population by at least 2 standard deviations. In contrast, citrate, 1-

methylnicotinamide and trigonelline were found to decrease across the pneumococcal 

patient population. Of interest, other compounds such as lactate, acetate and glucose 

appeared to be somewhat elevated in the pneumococcal group as compared to the control 

group, but not to the extent of the ketones or carnitines. Interestingly, the patients with 

diabetes and pneumococcal disease did not appear much different from the patients with 

only pneumococcal disease.  The x-axis in Figure 6.2 was sorted based on age and only 

for pneumococcal patients.  However with such a heat map, one could compare between 

groups such as pneumococcal and tuberculosis by plotting additional data beside each 

other.  The utility of this visualization technique is to quickly see metabolite patterns on 

an individual basis for a large number of samples. 
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Figure 6.2 – Heat Map Representation of metabolite concentrations for pneumococcal 
patients. Each value was obtained after log-transformation by subtracting the average 
metabolite concentration determined from the control population from the pneumococcal 
patient metabolite concentration and dividing by the standard deviation of the control 
population. The coloring, representing the magnitude of the deviation, is shown as a side-
bar. Those patients who died as a result of complications due to pneumococcal disease 
are indicated by the red arrows. Those patients who had diabetes are indicated by the 
asterisk. The patients are ordered from youngest (patient 1, 6 days old) to oldest (patient 
59, 92 years old). 

 

Multivariate PLS-DA was performed on the log-transformed pneumococcal and control 

datasets. A scores plot is shown in Figure 6.3A. A clear separation between the groups is 

observed. To test for significance of the model, a permutation test was done (Figure 

6.3B) where each metabolite dataset was randomly assigned to either the control or 

pneumococcal groups. 200 permutations were performed, and none of the random 

assignments approached the R2 or Q2 determined for the model. 
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To be sure that the separation was not affected by potential co-morbidities, such as 

diabetes, we removed the diabetic patients from the PLS analysis (Figure 6.3D). As was 

observed with the univariate analysis, the multivariate analysis was affected very little by 

excluding patients with diabetes, and permutation testing indicated a valid model (Figure 

6.3E). Inspection of the individual data points within the PLS-DA plots illustrates no 

further discrimination of the patient population based on age, gender, or death (data not 

shown).  

 

Figures 6.3C and 6.3F are loadings plots for the PLS-DA shown in Figure 6.3A and 6.3D 

respectively. The key metabolites separating the pneumococcal group from the control 

group are: citrate, trigonelline, 1-methylnicotinamide, acetoacetate, acetylcarnitine, 

carnitine, acetate, and acetone. Interestingly, these were shown to be significant in the 

univariate ANOVA as well as heat map data. 
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Figure 6.3 – (A) PLS-DA of the metabolite concentrations from all 59 pneumococcal 
patients and 59 healthy controls, (B) Permutations tests to validate model found in (A). (C) 
Loadings plot corresponding to (A). (D) PLS-DA of the metabolite concentrations from 50 
non-diabetic pneumococcal patients (removal of the 9 diabetic patient data) and 59 healthy 
controls. (E) Permuation test to validate model found in (D). (F) Loadings plot 
corresponding to (B). Controls, black crosses; pneumococcal patients, red circles. 
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While ANOVA and heat maps provide us lists of metabolites that differ, they give no 

information on the (in)dependence of metabolites to one another. Correlation maps can 

provide a wealth of information about the independence between and/or co-dependence 

of variables (Tangirala et. al, 2005).  The use of correlation maps described in this 

chapter is very similar to Statistical Total Correlation Spectroscopy (STOCSY) 

developed by Cloarec et. al (2005).  The main difference between the correlation maps 

described here and STOCSY is that this method uses metabolite concentrations as the 

input data to the maps, while STOCSY uses binned areas as input.  Figure 6.4 shows a 

comparison of the metabolite correlations between the control group and the 

pneumococcal group. In general, correlation maps are symmetric with one side of the 

diagonal mirroring the other side (the diagonal represents a 100% correlation of each 

metabolite to itself). Each cross-correlation yields interesting information about the 

metabolites. A positive correlation between two metabolites (red) indicates that as one 

metabolite increases in concentration, the correlated metabolite increases as well. A 

negative cross-correlation (blue) indicates that as one metabolite increases, the correlated 

metabolite decreases. Figure 6.4a and Figure 6.4b demonstrates striking differences 

between the control and pneumococcal correlation maps. In the control group, there are 

many metabolites that are positively correlated, whereas the correlation becomes less 

clear in the pneumococcal map.  It can be observed that there are more significant 

negative correlations in the pneumococcal map as highlighted in a blue color gradient. 
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A 

 

 

B 

Figure 6.4 – (A) Compound correlation map of health controls.  (B) Compound correlation 
map of pneumococcal patients. Red squares correspond to positive correlations and blue 
squares correspond to negative correlations. The diagonal represents 100% correlation of 
each metabolite to itself. Metabolites are indicated on each axis. 
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6.4. Discussion 
We expect that our analysis of the urinary metabolome of pneumococcal patients will be 

a combination of the host metabolome, the bacterial metabolome, and the host response 

to the bacterial infection which might include organ injury, muscle damage, cytokine 

response or neutrophil activation (Gillespie and Balakrishnan, 2000). Furthermore, we 

expect that some of the differences we observe between healthy controls and 

pneumococcal patients may be due to other diseases such as diabetes or kidney disease. 

However, we expect that since only a subset of the pneumococcal patients will have these 

diseases, they should not be a discriminating factor. 

 

Using both univariate and multivariate analysis techniques on metabolite concentrations 

determined for 82 compounds using 1H NMR spectroscopy, it was determined that 

several compounds were responsible for separating the pneumococcal group from the 

healthy controls (Table 6.2). The elevated levels of glucose and ketone bodies (acetone, 

acetoacetate, and 3-hydroxybutyrate) in some patients may due to the fact that some are 

diabetic (9 patients in total), but may also be indicative of alterations in energy substrate-

endocrine relationships. Indeed it has been found that the NMR spectra of urine from 

intra-operative patients showed increases in urinary excretion of alanine, ketone bodies, 

lactate and glucose over time that correlated specifically to the degree of surgical stress 

(Tatara et. al, 1999). Presumably, the ketone bodies indicate a shift to the use of fatty 

acids for energy production. As well, a rise in ketone body concentration coupled with a 

rise in acetylcarnitine concentration has also been shown in fasting healthy subjects 

(Bales et. al, 1986). Interestingly, we found increased levels of taurine which has been 

previously shown to be associated with liver damage (Kerai et. al, 1999). In a separate 

study, bacteremic pneumococcal patients were found to have high bililrubin 

concentrations (Shariatzadeh et. al, 2005). Some patients had high levels of 

trimethylamine-N-oxide (TMAO), dimethylamine, acetate, and lactate and low levels of 

citrate which has previously been shown to be related to kidney dysfunction (Bell et. al, 

1991, Foxall et. al, 1993, Wishart, 2005). 
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In the majority of patients with pneumococcal disease, acetylcarnitine and carnitine were 

substantially elevated (Figure 6.2). Synthesis of acetylcholine has been shown to be 

stimulated by glucose, carnitine or acetylcarnitine (Nalecz et. al, 2004). Carnitine has also 

been shown to be an essential cofactor for the transport of fatty acyl groups into the 

mitochondrial matrix (Calvani et. al, 2000). In addition, carnitine has been found to be 

metabolized into trimethylamine which is absorbed, converted to trimethylamine-N-oxide 

in the liver and excreted in the urine (Rebouche, 2004). This may explain higher levels of 

trimethylamine and TMAO in some patients. Of interest, acetylcarnitine has also been 

shown to be used in the brain for the production of releasable glutamate rather than as an 

energy source (Nalecz et. al, 2004). 

 

Univariate ANOVA suggests that any one of the 37 significant compounds should be a 

useful biomarker for pneumococcal disease. However, the best biomarker would only 

predict pneumococcal disease 80% of the time. This performance matches that of current 

testing technologies and it is not known at this time whether this biomarker would be 

specific for pneumococcal infection or for a number of other bacterial infections. Thus, 

multivariate analysis techniques, and in particular PLS-DA, was used for analysis. Out of 

59 pneumococcal patients, only one overlapped with the control set (Figure 6.3A). Upon 

examination of the medical records, it was determined that this patient was admitted to 

the ER because of a drug overdose who tested positive for S. pneumoniae in a sputum 

sample, but did not test positive in a blood culture. Since there was no evidence of 

pneumonia on chest x-ray, this patient was likely colonized with S. pneumoniae, 

suggesting that carriers and infected individuals may be differentiated. However, many 

more carriers need to be studied before we can make this conclusion.  

 

One question might be whether metabolites differentiating the control and pneumococcal 

groups are somehow interrelated, and if so, what the strength of the relationship between 

the variables is. Correlation maps (Figure 6.4) may provide clues as to metabolite 

relationships, affected metabolic pathways, and the source of the metabolite, whether 

from the human or bacterial metabolome. Furthermore, these relationships may well be 
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specific for different diseases due to differential immune responses, pathogen metabolites 

and stress metabolites, for example. Our results indicate that the difference between the 

pneumococcal group and the control group lies directly with the disease and may 

potentially be related to the nature of the infection and the resulting immunological host 

response. Interestingly, it has been shown that increased levels of creatine and π-

methylhistidine are related to muscle injury (Hickson and Hinkelmann, 1985, Threlfall et. 

al, 1981, Threlfall et. all, 1984). However we see a negatively coupled relationship 

between creatine and π-methylhistidine; as creatine concentration increases, π-

methylhistidine decreases.  Clearly, more work needs to be done to define why these 

metabolites behave in this manner in pneumococcal patients and which metabolites 

appearing in urine may be specific to the bacterial infection, acute lung injury and/or 

neutrophil activation.  

 

A survey of the pneumococcal patients who died (7 non-diabetics) revealed higher levels 

of lactate, leucine, and myo-inositol, and lower levels of 1-methylnicotinamide, citrate, 

acetylcarnitine, carnitine and taurine when compared to the survivors. One question that 

arises from this might be if the host response is somehow different in the patients who 

died, and whether we may be able to predict negative outcomes. Clearly, more data needs 

to be acquired to fully answer this question. 

 

6.5. Conclusion 
While the study of pneumococcal patients reveal distinguishing biomarkers from both 

univariate tests and multivariate statistical analyses, the validation of these biomarkers 

remains difficult.  The patterns of endogenous metabolites show a superficial, yet 

important effect of metabolism.  These effects are a good description of the phenotypic 

differences between diseased and non-diseased patients.  A full systematic view of these 

effects still needs to be explored.  Specificity of these biomarkers also depend very much 

on the control data used to building these models.  Further work needs to be done to 

validate this data for specificity. 
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7. Normalized Correlation Difference Maps and 
the Study of Relationship between Variables 

 

In previous chapters, we discussed the many tools needed for discovery of biologically 

relevant metabolite biomarkers using NMR.  One of the more successful tools relied on 

multivariate models.  PLS-DA models make use of the correlation structure between 

variables, both to reduce the model dimensions due to co-linearity and to use the 

correlation structure between classifying groups.  Such models are powerful as predictors 

of class separation, but are often very difficult to interpret and visualize.  Also seen in 

previous chapters, metabolites are ultimately what are generating the NMR data.  These 

metabolites form a complex network of interactions that PLS-DA models can only infer, 

but are difficult to interpret.  In this chapter, the use of normalized correlation difference 

maps will be shown as a novel method to indicate these co-relationships between 

metabolites.  The goal here is not to facilitate prediction, as with building PLS-DA 

models, but to assist with the interpretation of meaningful metabolite relationships. 

 

7.1. Mouse Model 
In this chapter, we will be using data obtained from pneumococcal infected mice.  The 

metabolites measured from mice urine corresponded well with the human study shown in 

previous chapters.  The mouse model work was done by Paige Lacy and Andriy 

Cheypesh at the University of Alberta.  The dataset included intra-tracheal injection of 

C57B16 mice with either bacterial growth media (sham) or growth media containing 107 

cfu of S. pneumoniae.  There was a total of 12 sham and 14 S. pneumoniae infected mice.  

47 metabolites were then profiled using Chenomx NMR Suite 4.62. 

 

 

 

 

 87



7.2. Results and Discussion 
Correlation maps were used to initiate this analysis, and are described in detail in Chapter 

6.  Using the 47 profiled metabolites as variables measured, correlation maps were 

generated showing the relationships between those variables for a specific group.  In this 

case there were two groups, SHAM and infected mice.  Figures 7.1 and 7.2 show the 

correlation maps for this data. 
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Figure 7.1 – Correlation map of SHAM mice showing relationships between measured 
concentration variables. (Red = Positive correlations, Blue = Negative correlations) 
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Figure 7.2 – Correlation map of infected mice showing relationships between measured 
concentration variables. (Red = Positive correlations, Blue = Negative correlations) 

 

 89



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

 

Figure 7.3 – Normalized correlation difference map, SHAM – infected.  (Red: Absolute 
differences >1) 

 

The normalized correlation difference (NCD) map (Figure 7.3) shows the difference 

(SHAM – infected) in correlation values between the two groups.  Visually, this is an 

easy way to see which variable relationships (correlations) have changed after infection 

of S. pneumonia.  Specifically, only the most significant differences between metabolites 

in SHAM and infected are highlighted in Figure 7.3. 

 

Another way to understand the data is to sort through each of the data points on the 

correlation map.  In Table 7.1, the correlation differences were sorted from highest to 

lowest, and correlation differences greater than one are shown.  Also shown in Table 7.1 

is the correlation value in each group of SHAM and infected, as well as the metabolites 
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that are associated to this correlation value.  Only the difference values greater than one 

are shown on this list, as these correlations are guaranteed a sign change from SHAM to 

infected.  That is not to say that there are not other correlations that have changed signs, 

however, these are the most dramatic changes after infection. 

 

Table 7.1 – Sorted list of correlation differences 

No. xindex yindex Corr_sham Corr_spneum Diff value Metabolite X Metabolite Y 

1 34 39 0.8621 -0.4038 1.2659 O-Acetylcarnitine Trimethylamine 

2 34 12 0.8874 -0.3009 1.1882 O-Acetylcarnitine Citrate 

3 42 12 0.6710 -0.4907 1.1617 Uracil Citrate 

4 42 36 0.7219 -0.4320 1.1539 Uracil Succinate 

5 34 36 0.8831 -0.2657 1.1489 O-Acetylcarnitine Succinate 

6 34 47 0.8879 -0.2421 1.1300 O-Acetylcarnitine trans-Aconitate 

7 34 32 0.8806 -0.2291 1.1096 O-Acetylcarnitine N-Carbamoyl-β-

alanine 

8 34 38 0.8702 -0.2335 1.1038 O-Acetylcarnitine Trigonelline 

9 34 40 0.7566 -0.3125 1.0691 O-Acetylcarnitine Trimethylamine 

N-oxide 

10 11 6 0.9578 -0.0809 1.0387 Choline Acetate 

11 36 20 0.7909 -0.2210 1.0119 Succinate Glucose 

 

 

Using the results from Table 7.1, Box and Whiskers plots were generated for each of the 

metabolites in the list.  These plots show the general distribution of the concentration 

values between the two groups.  These plots will hopefully highlight the specific 

correlations between the variables and indicate the differences. 
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Figure 7.4 – Box and Whiskers plots of O-acetylcarnitine, trimethylamine, citrate, and 
uracil. 
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Figure 7.5 – Box and Whiskers plots of succinate, trans-aconitate, N-carbamoyl-β-alanine, 

and trigonelline. 
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Figure 7.6 – Box and Whiskers plots of trimethylamine-N-oxide, choline, acetate, and 
glucose. 

 

The utility of the NDC maps lie in the ability to visualize all the pair wise correlations 

between variables in a large data set.  Using this visualization tool to reduce the variables 

of interest, we can easily find pairs of variables (metabolites) that are of importance when 

used to separate the two groups of SHAM and infected.  The next plots in Figures 7.7 and 

7.8 show the Box and Whiskers plots for ratios of two variables.  These plots show a 

better distinction between the two groups than the individual metabolites themselves.  

The reason for this is because the pair wise correlations highlight the unique relationship 

between pairs of variables ignoring the variability within the variable due to different 

samples itself.  A ratio of these variables will naturally highlight this relationship for all 

samples in the experiment. 
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Figure 7.7 – Box and Whiskers plot for ratio of O-acetylcarnitine and citrate 
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Figure 7.8 – Box and Whiskers plot for ratio of succinate and uracil 
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7.3. Conclusion 
 

The mouse model data was used to highlight the technique of normalized correlation 

difference maps.  Comparing these results with those of the human data in chapter 6, we 

see similar metabolites are highlighted due to S. pneumonia infection.  Similar 

metabolites found to be markers in both human and mice were trimethylamine-N-oxide 

(TMAO), dimethylamine, acetate, and citrate.  One metabolite that showed real 

significance in the mouse data and not in the human data is O-acetylcarnitine.  Using 

normalized correlation difference maps to highlight relationship between variables also 

proved useful in identifying ratios of metabolites that better distinguished the disease 

state than single metabolites themselves. 
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8. Conclusions 
NMR-based metabolomics starts with an NMR spectrum.  This spectrum represents 

various levels of complexity.  The most basic level is the quantum interactions between 

protons on a single molecule.  One of the major contributions of this thesis included the 

development of a modified spin simulation algorithm.  This was demonstrated to quickly 

simulate second order effects of proton coupling without the need for a computationally 

intensive full matrix diagonalization technique.  This is important because a quantum 

level understanding of NMR spin-spin interactions was useful in simplifying the NMR 

spectrum to mathematical representations that are easy to interpret and reproduce.  This 

development proved to be a major advancement for the Chenomx NMR Suite software.  

With this contribution, the metabolite database evolved from being a collection of peak 

(Lorentzian) based models to a collection of fully realized quantum models of 

metabolites. 

 

We further addressed another common issue with NMR spectra, namely that of baseline 

distortions.  An automated algorithm was developed to correct for such distortions.  The 

application of this algorithm was illustrated on two real datasets and has been shown to 

be effective at removing these distortions.  This is an important contribution to the field 

of NMR spectroscopy in general, and more specifically to metabolomics.  This is due to 

the fact that the algorithm was specifically designed to handle signal-dense spectra such 

as those found in metabolomics.  This algorithm provides a consistent baseline correction 

method for quantitative metabolite analysis.  This algorithm is now integrated into 

Chenomx’s NMR Suite software for metabolomics. 

 

We also demonstrated how the inherent properties of an NMR spectrum can impact the 

predictive ability of models built upon spectral binning and targeted profiling 

representations of NMR data by using a novel method for synthetically generating NMR 

spectra. The quality of predictive models built was quantitatively assessed, as was the 

relative robustness of these two methods.  Under the experimental design chosen, both 

methods are very robust with respect to noise. In contrast, variable scaling methods can 
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affect both the quality and interpretability of the models generated. We found for targeted 

profiling data, unit variance scaling generates a more robust data representation. Targeted 

profiling was also found to be an effective dimensionality reduction technique that, 

overall, is more robust with respect to spectral distortions and high dynamic range 

metabolites than spectral binning, and is less prone to overfitting than spectral binning 

models. These findings were validated on a real-world dataset of rat-brain extracts 

consisting of ~30 NMR detectable metabolites, in which statistical models were less 

prone to overfitting based on a spectral profiling representation of the data. Spectral 

binning is a common method for data reduction due to the speed of analysis, while 

current targeted profiling implementations require interactive input and are relatively 

time-intensive. As increasingly automated methods for quantitative profiling of NMR 

data become available, we expect database-driven targeted profiling to become the data-

reduction method of choice. 

 

Finally, after getting the full potential out of the data itself, we move on to appropriate 

multivariate techniques to best model and visualize this data.  We explored multivariate 

approaches to modeling and visualizing this data through an application to analyzing 

spectra from patients infected with Streptococcus pneumoniae.  We found solid 

discriminatory results from our PLS-DA models.  We also were able to visualize the 

wealth of variables and samples through a simple heat map visualization approach.  As 

well the interdependence of correlated variables was visualized through the use of 

compound correlation maps.  All of this helped uncover some clues as to the defining 

metabolic changes from healthy individuals to the pneumococcal group. 

 

Further, the use of correlation maps was explored to develop a new visualization 

technique known as normalized correlation difference (NCD) maps.  The NCD maps 

allowed us to highlight the most significant metabolite relationships shared between two 

distinct populations.  Using this new technique, we discovered that mice infected with S. 

pneumoniae also showed similar metabolic changes as humans after infection.  As well 

NCD maps proved to be a useful tool to determine pair-wise ratios between metabolites.  
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These ratios transformed into new variables that have better classifying power than 

individual metabolites alone. 
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