
University of Alberta 
 
 
 

A Developer-free Approach to Conventional Electron Beam Lithography 
 

by 

 
AI ZHI ZHENG 

 
 
 
 

A thesis submitted to the Faculty of Graduate Studies and Research  
in partial fulfillment of the requirements for the degree of  

 
 

Master of Science 
in 

Microsystems and Nanodevices 
 
 
 
 

Electrical and Computer Engineering 
 
 
 
 
 

©AI ZHI ZHENG 
Spring 2012 

Edmonton, Alberta 
 
 
 
 

 
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis 
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is 
converted to, or otherwise made available in digital form, the University of Alberta will advise potential users 
of the thesis of these terms. 

 
The author reserves all other publication and other rights in association with the copyright in the thesis and, 
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or 
otherwise reproduced in any material form whatsoever without the author's prior written permission. 



 

 

 

 

To my beloved parents, who sacrificed countless things to 

support me striving for a better future. 

 

To my loving and caring wife, Veronica, who always trusts 

and supports me unconditionally. 

  



 

Abstract 

In order to achieve the best results possible by electron beam lithography (EBL), 

many aspects of the different stages of EBL have to be carefully optimized.  In the 

exposure stage, dose, energy, aperture size, step size and working distance have to 

be carefully set.  In the development stage, an appropriate developer formula 

corresponding to the resist has to be chosen, as well as development temperature, 

duration, rinsing and drying method.  There are many challenges present in the 

co-optimization of the conditions mentioned above.  Particularly in the 

development stage, resist swelling, line edge roughness (LER) and pattern 

collapse are the major obstacles to achieving the ultimate in resolution.  What is 

noteworthy is that all three of these development problems are related to the 

liquid environment.  Therefore, if there is a way to avoid liquid developers, all 

problems associated with the liquid behaviour will be eliminated.  This thesis 

presents an approach that has the potential to fabricate dense structures without 

using liquid developers.  The work was mainly conducted in the low exposure 

energy regimes from 1 keV to 5 keV.  Two kinds of electron beam resist, 950k 

PMMA and ZEP 520A, were studied for their properties and behaviours 

throughout various processes such as optimized exposure, thermal development 

and reactive ion etching (RIE).  So far, 70 nm half-pitch gratings have been 

successfully patterned on both 950k PMMA and ZEP 520A without liquid 

development.  This validates a concept that may ultimately lead to widespread use 

of dry processing of EBL structures. 
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1 

1 INTRODUCTION 

Lithography (from Greek λίθος - lithos, 'stone' + γράφειν - graphein, 'to write') is 

a method for printing using a stone (lithographic limestone) or a metal plate with 

a completely smooth surface.  Its process as described in Encyclopedia – 

Britannica is:  

“In the lithographic process, ink is applied to a grease-treated 

image on the flat printing surface; nonimage (blank) areas, which 

hold moisture, repel the lithographic ink.  This inked surface is 

then printed – either directly on paper, by means of a special press 

(as in most fine-art printmaking), or onto a rubber cylinder (as in 

commercial printing).” [1] 

 

In the semiconductor industry, the stone is a silicon wafer and the pattern is 

written on polymer which is known as resist [2].  Lithography is a very important 

and widely used method that is employed in the fabrication of, for example, 

integrated circuits (IC), microelectromechanical systems (MEMS) and 

microfluidics. 

 

There are many kinds of lithography.  To name a few, they include 

photolithography, X-ray lithography, extreme ultraviolet lithography, charged-

particle lithography, neutral particle lithography, nanoimprint lithography, 
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scanning probe lithography, dip-pen nanolithography, magneto-lithography and 

so on.  Among all of its variants, electron beam lithography is probably the most 

popular for the formation of arbitrary nanoscale structures. 

 

In conventional positive tone electron beam lithography (EBL) processing, liquid 

developers are used to remove exposed broken-up resist through the dissolution of 

smaller and more soluble fragments of the resist.  However, liquid development 

introduces challenges such as optimization of developer formulation, time, 

temperature, etc.  In addition, dense structure definition is limited by factors such 

as resist swelling and capillary force induced pattern collapse.  Hence, a 

simplified development process that avoids liquid development could be quite 

attractive for EBL patterning of dense structures.  

 

At the beginning of this thesis in Chapter 2, I briefly introduced the EBL 

technique in general.  Then I have outlined the knowledge and research that are 

most relevant to my thesis work as well as the challenges in the field and reported 

attempts of solving them.  In Chapter 3, I elaborated on the motivation and the 

possibilities of developing an approach that would completely avoid the liquid 

development and then laid out a plan for my experiments.  In Chapter 4, I 

investigated the influence of exposure dose, energy and initial film thickness on 

the thickness reduction during exposure.  After that, in Chapter 5, I further 

explored the effect of post-exposure heating and reactive ion etching as strategies 

to assess the viability of a development procedure that completely avoids the use 
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of liquids.  Then, in Chapter 6, I described my attempts to create high resolution 

dense gratings by using the developer-free approach. I also compared the results 

with that of conventional liquid development.  Finally, in Chapter 7, I 

summarized the observations of my experiments and suggested possible 

improvements that can be further explored in the future.  



 

 

4 

2 ELECTRON BEAM LITHOGRAPHY 

2.1 Electron Beam Lithography (EBL) 

EBL is the most mature lithographic technique of all the alternatives to 

conventional photolithography [3], thanks to its long research and application 

history.  Since 1967 [4, 5], EBL has been widely studied in many industrial, 

educational and governmental institutions.  EBL is the major [6] nanoscale 

resolution capable, maskless [7] direct write lithographic technique. It utilizes a 

narrow focused electron beam to create patterns on a layer of electron sensitive 

resist through electron irradiation [6].  The energy level of electrons ranges from a 

few hundred electron volts (eV) [8-10] to about 100 keV [11-14]. 

 

Conventional EBL processes are comprised of four main stages: sample 

preparation, electron beam exposure, development and pattern transfer.  The most 

critical stages for performance are the exposure stage and the development stage.   

 

A simple illustration of the process is shown in Figure 2.1 and Figure 2.2.  As 

shown in Figure 2.1, a layer of electron sensitive resist, in this case PMMA, is 

first spin-coated onto a substrate (e.g. silicon, silicon dioxide, all type of 

semiconductors and metals, glass) and baked to harden the film and drive off the 

solvent; second, selected areas of the resist is exposed under the electron beam; 

third, the sample is immersed in a developer to selectively remove the resist from 

the exposed area [15]. 
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Figure 2.1 Patterning of electron sensitive resists [15] 

 

There are many factors that affect the resolution of EBL.  In the exposure stage, 

avoiding unwanted exposure of the resist is the key.  Such unwanted exposure is 

mainly caused by forward scattering (broadening of the beam due to scattering of 

the primary electrons), generation of secondary electrons and backscattering 

(electrons back scattered from the substrate resulting in exposure at distances 

much greater than the beam diameter, also known as the proximity effect) [6, 16, 

17].  In the development stage, challenges are resist swelling [18-25], pattern 

collapse [26, 27], micellization [6, 16] and line edge roughness (LER) [28].  Most 

of these problems are associated with the liquid development environment. 

 

After development, the temporary resist pattern is transferred into the substrate, 

typically either by lift-off or etching as shown in Figure 2.2 [15].  In the metal lift-

off process, a thin layer of metal, such as aluminum (Al), is sputtered or 

evaporated onto the developed resist.  Then the sample is immersed into a solvent 

that dissolves the remaining resist and the metal is therefore “lifted off” [15] 

expect where it directly contacts the substrate.  For PMMA, acetone is commonly 
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used as the solvent during lift-off.  In the reactive ion etching process, certain gas 

species are chosen to selectively etch the exposed materials while at the same 

time avoid etching the patterned resist as much as possible.  In this example, a 

plasma based on chlorine (Cl) gas is used as the etchant.  After all the exposed 

metal is etched away, the protective resist layer can be removed. 

 

Figure 2.2 Pattern Transfer Techniques [15] 

 

EBL has been mainly used for mask making for optical lithography and for 

directly writing on the wafer [29] and has a broad range of applications such as in 

the field of photonics, electronics, magnetic storage, microsensors, quantum 

communication, nanotubes and nanowires and superconducting single photon 

detectors [7].  
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2.2 Conventional EBL Process 

2.2.1 Sample preparation 

In the sample preparation stage, the substrate has to be first piranha cleaned to 

ensure good adhesion of the resist [16].  Then, if the substrate is going to be spin-

coated immediately after the piranha cleaning, a de-hydration bake is commonly 

employed.  Then, according to the needs, a layer of electron sensitive resist, or 

sometimes different layers of materials [30-34], is spin-coated by a spinner onto 

the substrate.  Commonly used substrate materials are silicon (Si), silicon on 

insulator (SOI) such as silicon on silicon dioxide (SiO2) or glass, but they can be 

all types of semiconductors such as gallium arsenide (GaAs) [14] and other SOIs 

such as silicon on sapphire [35] and quartz and sapphire [36], although less 

common.  Initially, the resist is dissolved in a solvent to facilitate dispensing onto 

the substrate.  The spin-coating is usually done with a high speed turntable and 

different thicknesses are achieved by spinning at different speeds.  The higher the 

centripetal acceleration, the lower the remaining thickness of resist after 

dispensing.  After the spin-coating, a pre-bake (soft bake) is required to harden 

the film, drive off the solvent and enhance the adhesion between resist and 

substrate.  The baking temperature, time and ambient (e.g. pressure) varies 

according to the resist/materials used.  Normally a hotplate is used for baking.  

However, other forms of baking such as vacuum hotplate/oven may provide 

certain advantages in some applications.  Finally, the sample is inspected by 
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spectral reflectance or ellipsometry to make sure that the correct thickness is 

obtained.  Then, the sample is ready for exposure. 

 

2.2.2 Exposure & Development 

Exposure and development are two separate but interdependent stages in the 

process.  These two stages are the most important stages in the EBL process and 

ultimately determine the performance of the technology.  All parameters in each 

of the stages have to be co-optimized to achieve the best result that is possible. 

 

Design of the exposure stage starts with the definition of patterns that are to be 

written and the exposure parameters.  There are many parameters involved during 

the exposure process such as aperture size, beam diameter, beam current, step 

size, aperture alignment, stigmation and working distance.  The most critical 

parameters in this stage are exposure energy and dose. 

 

During the exposure, a layer of electron sensitive material (resist) is exposed by a 

focused electron beam at designated locations.  The electron exposure induces a 

chemical change in the material.  For positive tone resist such as PMMA, chain 

scissioning occurs and the exposed resist becomes more soluble in a suitable 

developer.  For negative tone resist such as HSQ or calixarene, cross-linking 

occurs and the exposed resist becomes more resistant to dissolution. [6] 
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Generally, higher exposure voltages could achieve higher resolution more easily 

as a result of less forward scattering of electrons as they travel through the resist 

[37].  However, at the same time, higher voltages also have more extensive back 

scattering of electrons from the underlying substrate which leads to broadening 

and the so-called proximity effect [6, 37].  The intensity and range of 

backscattered electrons increases with the incident voltage.  At 50 keV, the range 

of the proximity effect is as large as 0.5 mm, causing a delocalization of exposure 

to the patterns over this area [17].  Meanwhile, at higher voltages, the sensitivity 

of the resist is reduced as electrons penetrate more deeply into the substrate and 

higher doses are required [38-41].  Consequently, higher voltages yield lower 

throughput due to increased exposure time.  Also, high voltages may lead to more 

underlayer damage [40, 41].  On the other hand, operating at low energy has 

several advantages, which include higher sensitivity, reduced charging, less 

proximity and heating effects, reduction in substrate damage and improved 

throughput [6, 10, 42-44].  Routinely considered as the resolution limiting factor, 

the forward scattering of low energy electrons can be minimized by using thinner 

resist [17] or alternatively be utilized to facilitate the lift-off process [45].  

Although conventionally EBL has usually been utilized at higher energy levels 

(typically between 30 and 100 keV), low-voltage electron beam lithography has 

been more prevalent in recent years thanks to the improvement in column 

architecture and the availability of high-density and stable electron sources such 

as the cold field emission source [41, 46-49]. 
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For a given energy, the exposure dose has a huge impact on the morphologies of 

the exposed areas which can be characterized as under-exposure, optimum 

exposure and over-exposure[6, 16, 37, 44].  Under-exposure is due to the 

insufficient dose to fragment or cross-link the polymer to modify the resist 

dissolution behaviour during development.  Over-exposure occurs when the given 

dose is so high that even the nominally unexposed regions receive enough dose to 

modify their dissolution behaviour and prevent development of the pattern.  A 

good example to illustrate this impact is shown in Figure 2.3 [6, 16].  In these 

articles, Mohammad et al. pointed out that the quality of gratings is not only 

strongly dependent on the exposure dose but also on the interline distance [6, 16].  

As can be seen in Figure 2.3 as well, over-exposure can result in additional 

morphologies such as pattern collapse and micellization. 

 

Due to forward scattering and the proximity effects during exposure, when 

exposing certain shapes, the dose distribution is non-ideal.  Some regions of the 

pattern may receive higher dose than expected and some regions may receive 

lower doses than expected.  In order to correct for this effect, manufactures of 

various EBL tools have been including an automatic dose adjustment feature in 

their tool’s software.  However, this is a complex task and not always achievable.  

So, at times, researchers still have to do optimization manually through analyzing 

the effect and making corresponding modifications to the patterns when designing 

the exposure process [50].  An example of such modification is shown in Ref. 

[51] by Mohammad et al. 
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 30 nm pitch 40 nm pitch 50 nm pitch 70 nm pitch 

125 

µC/cm2 

    

100 

µC/cm2 

    

75 

µC/cm2 

    

60 

µC/cm2 

    

50 

µC/cm2 

    

                                                                                 1 µm  

Figure 2.3  The effect of dose and interline distance on positive resist morphologies.  

SEM images of 30 nm, 40 nm, 50 nm, and 70 nm gratings fabricated in a 65-nm thick 

PMMA layer on a silicon substrate, with 10 keV electrons, at various area doses.  The 

gratings were developed for 5 sec. in a 1:3 MIBK:IPA solution at room temperature.  The 

lateral size of all images is 1 µm × 1 µm [6, 16]. 
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A large amount of experimental results show that development, together with 

exposure, is also a crucial stage in the EBL process [6, 16, 22-24, 37, 44, 52-62].  

Unlike the electron scattering in the exposure stage, the development process is 

difficult to predict theoretically [63], and the molecular mechanisms of 

development are still not fully understood [6].  The key parameters in the 

development stage that have been found to dramatically affect the morphologies 

and success of the developed structures [6] are developer formula [53, 56-58, 60, 

61], duration of development [57, 64, 64], process temperature [53, 55, 58, 65] 

and drying method [66-70].  Detailed discussions of the above parameters can be 

found in the following section 2.4 Liquid development of polymer resists on page 

19. 

 

2.2.3 Pattern transfer 

Pattern transfer is a process that transfers the exposed pattern from resist to the 

substrate or layer beneath the resist.  Two commonly used pattern transfer 

techniques are lift-off [33, 45] and etching [71, 72]. 

 

A simple illustration and introduction to the lift-off process has been given in the 

section 2.2 Conventional EBL Process and Figure 2.2 on page 5.  Lift-off works 

on the principle that the metal sticking to the substrate will not be lifted off during 

resist dissolution due to the adhesion to the substrate while the metal on top of the 

resist will be lifted off along with the resist that is stripped off from the substrate 

by solvent.  Forward scattering of low energy EBL can also be utilized in the lift-
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off process [45] as the resulting re-entrant resist profile facilitates the clean 

separation of metal on the substrate from that on the resist.  However, since there 

is an essential criterion for lift-off to work successfully which is that the exposed 

areas have to reach clearance to the substrate, I employed lift-off in my 

experiments to check whether clearance is reached. 

 

Etching is further divided into wet etch [10, 73] and dry etch such as RIE [74].  

Comparing to other pattern transfer techniques, RIE is a much more complex yet 

promising process.  In this thesis work, I have investigated the viability to 

combine the development and pattern transfer by RIE into a one step process.  

Such investigation can be found in section 5.2 Reactive Ion Etching on page 63.  

 

2.3 Electron beam resist 

Resists constitute a vast research topic, so I limited my discussions to only 

electron beam resist which is sensitive to electrons.  The operation of EBL relies 

on the exposure of the resist by electrons [75].  During the exposure, the resist 

undergoes physicochemical modifications due to the impact of electrons.  

Electron beam resists are classified into positive-tone or negative-tone by their 

behaviours during the exposure and development, and organic or inorganic by 

their chemical composition.  The major characteristics which define the 

performance of a resist include sensitivity, resolution, contrast and etch resistance 

[76].  Sensitivity is quantified by the minimum dose required to assure clearance 
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after development.  Resolution is defined by the minimum feature size achievable 

with the resist.  Contrast refers to how sharp is the transition from unexposed to 

exposed, which also has implications to resolution.  Etch resistance is 

characterized by the efficiency of different etching processes.  Other factors used 

to evaluate a resist include adhesion to different substrates and shelf life. 

 

2.3.1 Positive-tone resists 

Positive-tone resists undergo scission of bonds in the polymer chains under 

electron beam exposure [6, 16].  The main chain scissioning leads to a decrease in 

the average molecular weight [38, 77] and fragmentation of the resist is believed 

to be the dominating process during the exposure [6, 16, 78].  During the 

development, suitable solvent is chosen to preferentially dissolve the low 

molecular weight, small soluble fragments produced at the exposed areas [37], so 

that the desired pattern is obtained.  A brief introduction is given here to two of 

the most popular positive-tone polymer resists, PMMA and ZEP. 

 

2.3.1.1 PMMA 

Poly-methyl-methacrylate (PMMA) was the first polymer tested as a resist for 

EBL [79].  It is still the most widely used positive-tone resist [6, 16].  This 

popularity is mainly because of its capability to achieve high resolution (~10 nm) 

and easy processing.  PMMA is classified based on the average weight of the 

polymer chains.  Most used ones are 950,000 Daltons (950K) and 495,000 

Daltons (495K).  Usually, higher molecular weight PMMA provides higher 
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resolution; however, the sensitivity is reduced [53].  The electron beam exposure 

induces the chain scission down to methacrylic monomers or even smaller 

fragments [3] although longer oligomers are still sufficiently soluble.  It is 

generally accepted that the main process consists of a break of the main chain, 

although other scission mechanisms may also contribute as shown in Figure 2.4 

[80-83]. 

 

2.3.1.2 ZEP 

ZEP is a relatively new e-beam resist developed by Zeon Chemicals [84].  It has a 

few variants which are all positive-tone resist.  There are corresponding thinners 

(solvents) available to adjust the viscosity and specific developers for each kind.  

Interestingly, a recent study conducted by Koshelev et al. showed that ZEP 520A 

can also be developed in other developers which are not made specifically for it 

and the performance of ZEP 520A is greatly dependent on the developers chosen 

[84].  The molecular weight of the ZEP 520 family is 57,000 Daltons and ZEP 

7000 family is 340,000 Daltons.  The most widely used ones might be ZEP 520 

with o-dichlorobenzene as the solvent and ZEP 520A with anisole as the solvent 

and their common developer is ZED-N50 (n-amyl acetate based). 
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Figure 2.4  Generic reaction paths of radiation damage in PMMA.  Schematic diagrams 

showing generic reaction paths for radiation damage in PMMA.  Not all possible radical 

intermediates, indicated by (•), are shown.  (a) Abstraction of H from the main chain via 

b elimination with removal of the ester group.  The PMMA repeat unit is also indicated.  

(b) Scission of the main chain by (i) removal of the ester group, leading to a terminal = 

CH2, or by (ii) a direct process.  The radical species can undergo further reaction or 

decomposition (not shown).  [80-83] 
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A schematic of the chemical structure of ZEP 520A is shown in Figure 2.5.  

Comparing to the chemical structure of PMMA, the αCl group apparently gives it 

a higher sensitivity and the α-methylstyrene gives it a higher dry etch resistance 

[85].  In comparison to the performance of PMMA, ZEP has been reported to 

show a higher contrast [52, 83, 84], higher sensitivity [18, 85, 86], and better dry 

etch resistance [85, 86].  Most techniques that are applicable to PMMA can be 

also applied to ZEP, for example cold development [6, 37, 44, 55, 87, 88].  It has 

been argued that the performance of ZEP may even exceed that of PMMA if the 

EBL conditions are properly optimized [84].  

 

Figure 2.5  Chemical structure of a monomer unit of ZEP 520A.  Schematic of the 

chemical structure of ZEP 520A, a copolymer of α-chloromethacrylate and α-

methylstyrene [89]. 
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2.3.2 Negative-tone resists 

For negative-tone resists, such as hydrogen silsesquioxane (HSQ) or calixarene, 

bond cross-linking is the dominating process in the areas that are exposed by the 

electron beam.  The cross-linking process generates structures that are locally 

more resistant to dissolution [6] than non-exposed areas.  Consequently, after the 

development, exposed areas stay and non-exposed areas are dissolved.   

 

2.3.2.1 HSQ 

That HSQ can be used as a negative-tone e-beam resist was first discovered by 

Namatsu et al. [90-92].  HSQ is an inorganic resist that possesses many excellent 

features such as ultrahigh resolution [93, 94] of about 5 nm [95], minimum LER 

[93-98], excellent etch resistance [93-98], good stability under SEM inspection 

[95, 96] and small molecular size [99].  Commonly used developers for HSQ are 

(CH3)4N(OH) aqueous solvent with the product of TMAH [91, 95], CD26 and so 

on [94, 95].  Presently, HSQ is one of the most widely used negative-tone electron 

beam resists [93, 94] for sub-10 nm features [91].  The limitation that prevents it 

from extensive applications is its relatively poor sensitivity [95].   

 

Figure 2.6 illustrates the hypothetical mechanism of cross-linking in HSQ under 

the electron beam exposure.  The exposure breaks the SiH bonds, which are 

weaker than the SiO bonds, and consequently generates cross-linking of siloxane 

bonds in HSQ via unstable silanols resulting from the reaction with moisture [90]. 
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Figure 2.6  Cross-linking in HSQ under the electron beam exposure [90]. 

 

2.3.2.2 Negative-tone PMMA 

Interestingly, PMMA can be also used as a high resolution negative-tone resist 

[100, 101].  When exposed to a high dose (>10 times of the optimum dose for 

positive-tone performance), PMMA undergoes cross-linking [78, 100-102] and 

behave as a negative-tone resist.  Cross-linked PMMA is resistant to most 

solvents (e.g. acetone) and etchants [101].  The property of PMMA that it can 

perform as both positive and negative resist has been utilized for density 

multiplication [103-107] at the deep nanoscale. 

 

2.4 Liquid development of polymer resists 

Development is a vast and complex topic too, so I restricted my discussions to the 

aspects that are relevant to my thesis work.  These sections focus on the liquid 

development of two popular polymer resists, PMMA and ZEP.  
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The performance of a typical development process in EBL heavily depends on the 

developer formula, development temperature, duration, rinsing, and drying 

method [19].  Molecular weight has also been found to affect the resolution 

achievable by development with the same kind of resist used [17].  Finally, pre-

baking conditions and the solvent used to dilute/prepare the resist are factors that 

will also influence the overall process [19].  

  

2.4.1 Popular developers 

Developers are often a mixture of so-called solvent and non-solvent [108] or 

strong solvent and weak solvent.  A good developer should effectively remove the 

exposed resist while leaving the unexposed resist intact.  During the process of 

development, it should also cause minimum swelling and edge roughness.  Below, 

two kinds of popular developers for PMMA are reviewed. 

 

2.4.1.1 MIBK:IPA 

When developing PMMA, methyl isobutyl ketone (MIBK) mixed with isopropyl 

alcohol (IPA) is a very popular choice.  MIBK is a strong solvent for PMMA.  

IPA, on the other hand, is a very weak solvent for low molecular weight PMMA 

[109].  The mixing ratio between the two components has a great impact on 

various aspects of the development process.  The sensitivity of PMMA and 

thickness loss of the unexposed regions decreases with decreasing MIBK 

concentration while the contrast increases [110].  Significant surface roughening 
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is observed when the concentration of MIBK exceeds 50% [20].  Particularly, 

MIBK:IPA = 1:3 has been found to be the optimum ratio that provides high 

contrast, high resolution, moderate sensitivity and almost negligible thickness loss 

of the unexposed regions [110].  Thus, it has been the standard developer of 

PMMA [111] for a long time. 

 

2.4.1.2 IPA:H2O 

IPA:H2O is a co-solvent (the mixture is a stronger solvent than either separate 

component [109]) first proposed to be a developer for PMMA in 1987 by J. M. G. 

Cowie et al. and high resolution has been successfully achieved for applications 

[60].  Separately, neither of these components can develop PMMA effectively 

[110], although IPA is a weak solvent and the sensitivity using pure IPA is higher 

than that for IPA:H2O = 7:3 [110].  The concentration of IPA and H2O also has a 

similar impact on various aspects of development similarly to the case of 

MIBK:IPA.  However, unlike MIBK:IPA, the contrast and sensitivity do not vary 

monotonically with the relative concentration of IPA and H2O [110].  According 

to A. Olzierski and I. Raptis [110], when the relative concentration of IPA is in 

the 50 to 90% range, the contrast and sensitivity are high enough to be 

comparable with MIBK:IPA and in the range of 60 to 90%, the contrast almost 

stays the same.  Particularly, the sensitivity of MIBK:IPA = 1:1 is the same as that 

of IPA:H2O = 7:3 with less thickness loss of unexposed regions in the latter case 

[110].  A study conducted by A. Olzierski and I. Raptis [111] also showed that 

three times the sensitivity is achieved for IPA:H2O = 9:1 as for MIBK:IPA = 1:3 
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with the development time extended to about 4 to 5 min [111].  Comparing to 

MIBK:IPA, IPA:H2O is believed to improve surface and line edge roughness 

[110], to be more reliable for the fabrication of narrow structures [17], and finally 

to be more environmental friendly [110].  

 

2.4.2 Temperature 

Temperature is an important parameter in the development process because both 

diffusion coefficient and solubility are dependent on it [19]. 

 

Conventionally, most development is processed under room temperature 

conditions.  However, research has shown that the performance of electron beam 

resist such as resolution and contrast can be improved by lowering the 

temperature [54, 55, 65, 88, 109, 112].  L. E. Ocola et al. [65] investigated the 

temperature at 5 °C, M. J. Rooks et al. [109] explored the temperature range from 

0 to 20 °C, and W. Hu et al. [112] examined the temperature range from 4 to 8 °C.  

Later, L. E. Ocola and A. Stein [55] further looked at the temperature range from 

−17 to +32 °C.  Subsequently, B. Cord et al. [54] studied a wide temperature 

range from −70 to 15 °C and concluded that at approximately −15 °C is the 

optimum temperature for the standard MIBK:IPA = 1:3 developer.  At this 

temperature, resolution of the resist can be greatly enhanced without significant 

sacrifice of sensitivity [37, 44, 54].  It is noteworthy that temperatures trend does 

not continue to colder.  At −20 °C and below, the contrast drops dramatically.  
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Below about −50 °C, no development can occur [54] due to the significant drop in 

dissolution rate, making cold development not a useful technique anymore. 

 

The mechanism behind cold development has been studied by many researchers.  

A generally accepted hypothesis is that molecular weight of the resist surrounding 

the exposed areas are lower than more distant unexposed regions, due to partial 

exposure by scattered and secondary electrons.  These relatively small molecular 

fragments can be easily dissolved in developer at room temperature, reducing the 

resolution (lateral sharpness of the structure).  However, at lower temperatures, 

these partially exposed fragments became insoluble and resolution is restored.  

This mechanism also explains why cold development only works for chain 

scission based (positive-tone) resists [54, 55, 88, 109]. 

 

Cold development is really a breakthrough in an effort to make EBL an easier, 

more reliable, higher resolution process.  This technique is inexpensive and easy 

to apply [6, 37, 44, 54, 55, 88].  By varying the temperature, a trade-off between 

the contrast and sensitivity can be achieved [37, 44, 109].  One interesting fact is 

that cold development reduces the sensitivity of positive-tone PMMA but boosts 

the sensitivity of negative-tone PMMA [54].  Cold development has been shown 

to improve LER too [55].  The only disadvantage of cold development might be 

the higher doses required and hence longer exposure times [54]. 

 



 

 

24 

Mohammad et al. [6, 37, 44] recently conducted research employing low-energy 

exposures combined with cold development in this narrow range in an effort to 

gain more knowledge and make potential improvements.  A major finding in their 

work is that cold development substantially widens the applicable dose window, 

providing better control over properties of fabricated patterns such as aspect ratio; 

whereas, the decrease in sensitivity can be offset by the usage of low energy 

exposures [37, 44]. 

 

2.4.3 Development Time 

Development time is a simple yet critical process parameter.  It determines how 

long the resist remains in contact with developer.  The rate limiting mechanism 

behind the effect of development time is the solvent diffusion rate which is 

determined by the diffusion coefficients of solvent and polymer [6, 19]. 

 

2.4.4 Drying 

When drying is performed in a conventional manner, which is to blow dry with a 

nitrogen gun, pattern collapse is a frequently observed problem when fabricating 

dense structures.  This collapse can be attributed to two reasons.  First, the liquid 

trapped between dense structures has a surface tension that can cause collapse.  

Second, when the liquid effuses out of the structures, it carries away the 

aggregated polymers and produces a certain degree of sidewall roughness, which 

in turn destabilizes the fine resist structures and eventually can lead to collapse as 
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well [113].  The most effective way to solve this problem is through reducing the 

surface tension, for example by replacing the rinsing liquid with a supercritical 

fluid which has zero surface tension and high diffusivity [113-115].  The reason 

behind zero surface tension is that supercritical fluid does not have gas/liquid 

interface.  It can be considered as a high-density gas and a diffusible liquid at the 

same time [114].  A common supercritical fluid used for this purpose is 

supercritical carbon dioxide (CO2) [116].  The advantage of supercritical CO2 is 

that its supercritical conditions can be reached at a moderate temperatures and 

pressures, Tc = 31.1 °C and Pc = 7.38 MPa, respectively [115].  Supercritical 

drying has been shown to prevent pattern collapse, improve the mechanical 

stability, increase ultimate aspect ratio (2 to 3 times), potentially enhance 

resolution [113, 116], and improve sidewall roughness [117]. 
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3 MOTIVATIONS FOR  

A DEVELOPER-FREE APPROACH  

Although the conventional development stage has been studied and optimized for 

many years, there are still many challenges that have not yet been overcome.  A 

brief summary of such problems and known attempts to solve them are presented 

below. 

 

3.1 Challenges of liquid development environment 

3.1.1 Pattern collapse 

As mentioned in section 2.4.4 Drying, a major reason for pattern collapse is 

believed to be the surface tension of the liquid developer during drying.  A simple 

illustration of such mechanism is shown in Figure 3.1.  The surface tension of the 

liquid pulls the pattern walls towards each other and hence the collapse occurs.  

Furthermore, once the collapse happens at one point of the two gratings, it tends 

to zipper the rest of the gratings.  An example of such “zippering effect” is shown 

in Figure 3.2 [6]. 

 

Although supercritical drying can offset pattern collapse to some extent, this 

technique has been mainly applied to HSQ and it is not similarly efficient for all 

resists.  In addition, it also adds extra tool cost and process steps.  Moreover, the 
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aspect ratio achievable by supercritical drying only meets the requirements of 

certain applications. 

 

 

Figure 3.1  Surface tension (capillary force) induced pattern collapse.  The surface 

tension of the liquid pulls the pattern walls towards each other and hence the collapse 

occurs. 

 

  

Figure 3.2  Examples for collapsed dense gratings in PMMA, imaged by cross-sectional 

profiles (left) and plan-view (right) [6].  
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3.1.2 Swelling 

Swelling of partially exposed and unexposed resist during development is another 

challenge in EBL.  Swelling is determined by solvent diffusion rate and 

development time [118].   The diffusion for lower molecular weight fragments is 

faster than that of higher molecular weight fragments [118].  Hence, the swelling 

is most pronounced at the partially exposed areas surrounding the exposed 

feature.  Ultrasonic agitation is able to mitigate some swelling because the dose 

required to expose the resist in an ultrasonic agitation process is lower than that of 

conventional development process, when other development conditions are the 

same [118].  However, development time for ultrasonic agitation is usually longer 

than that of the conventional development process [17].  It is noteworthy that the 

mechanism of swelling [3, 108] implies that swelling cannot be completely 

eliminated as long as the liquid developer is involved. 

 

3.1.3 Edge roughness 

Edge roughness is another factor that limits the resolution.  It has been shown that 

softer developer [110], cold development [55], supercritical drying [117], and 

ultrasonic agitation [119] are able to improve the various aspects of roughness 

such as surface roughness, side wall roughness, and line edge roughness.  Line 

edge roughness is characterized by the deviation on one side of the straight line 

from its ideal form.  It becomes a problem when the feature size is smaller than 

100 nm because it affects the precision of line width and overlay control [120].  
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An example of line edge roughness is shown in Figure 3.3 [121].  It can be seen 

that the gratings in the left image have better line edge roughness than the gratings 

in the right image. 

  

Standard Deviation along each line 
0.5 – 1.3 nm 

Best to worst case 

Standard Deviation along each line 
0.2 – 0.8 nm 

Best to worst case 
Figure 3.3  An example of line edge roughness. [121] 

 

3.2 Motivations  

As discussed in the above sections, in conventional EBL processing, liquid 

developers are used to remove exposed/unexposed resist through the dissolution 

of more soluble fragments.  However, liquid development introduces challenges 

such as a need for optimization of developer formulation, time, temperature, etc.  

In addition, dense structure quality is limited by factors such as resist swelling, 

pattern collapse and edge roughness.  Notice that these problems are largely 

induced by the liquid development environment.  Hence, if a method can be 

developed such that it completely avoids the use of liquid developers, it should 
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also eliminate the difficulties associated with the liquid development.  A 

simplified development process that avoids liquid development and potentially 

even could include pattern transfer into a one step process would be quite 

attractive for EBL patterning of dense structures and beneficial to the industry.   

 

3.2.1 The enlightenment 

PMMA film thickness reduction after exposure was mentioned by W. H. Teh et 

al. in 2003 [122].  Later, PMMA film contraction resulting in a film thickness 

reduction after electron beam exposure but prior to development was observed by 

B. Cord et al. [54]  in 2007 and in his thesis 2009 [123].  More recently, H. Koop 

et al. [124] showed that PMMA exhibits shrinkage after the electron beam 

exposure.  Similar observations have also been reported by M. Kotera et al. [125].  

This year, the thickness reduction was observed again by S. Gorelick et al. [12].  

However, more detailed research regarding to this phenomenon has not been 

performed. 

 

Possible mechanisms for this effect include electron beam evaporation of resist   

or residual solvent, formation of volatile species through polymer fragmentation 

[78, 110, 126, 127], and resist densification [102, 122].  While relatively minor, 

this thickness reduction during electron beam exposure suggests a pathway to 

avoid liquid development.  In this thesis work, I explored the exposure conditions 

in an effort to make the thickness reduction more pronounced.  I also further 

investigated the post-exposure dry processing to extend the effect.  
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3.2.2 The plan 

The published experiments by W. H. Teh et al. [122], B. Cord et al. [54, 123], 

Koop et al. [124]  and Kotera et al. [125] were conducted at relatively high 

exposure energies between 20 to 30 keV and higher (100 keV in S. Gorelick et 

al.’s case [12]), and a relatively weak effect has been reported.  I believe that 

electron-resist interactions could be enhanced at lower energies due to the higher 

interaction cross-section [6, 38].  This suggests that exposure energy could be an 

important factor in thickness reduction.  Further, if electron induced 

fragmentation produces more volatile fragments, then post-exposure heating [128-

131] should enhance this effect.  Even partial thickness reduction could be 

sufficient, if anisotropic RIE [132-134] can preserve the height difference while 

the thinner resist areas are etched to clearance. 

 

In this thesis work, a developer-free approach to create nanometer scale patterns 

and/or structures in the resist by electron beam exposure has been investigated.  I 

have studied the effect of exposure dose, energy and initial film thickness on the 

ultimate resist thickness reduction during exposure.  I have further examined the 

effect of post exposure heating and reactive ion etching as strategies to assess the 

viability of a development procedure that avoids the use of liquids.  I have 

focused on popular PMMA and ZEP resists and compared their behaviours and 

characteristics through the whole process.  I have employed atomic force 

microscopy (AFM) and scanning electron microscopy (SEM) for assessing the 

effectiveness of this approach.  
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4 EXPOSURE OPTIMIZATION 

In this chapter, I have studied the effect of exposure dose, energy and initial film 

thickness on thickness reduction during exposure by electrons.  Two popular 

positive tone PMMA and ZEP resists are used.  Atomic force microscopy (AFM) 

and scanning electron microscopy (SEM) are employed for assessing the 

effectiveness of this approach. 

 

4.1 Common sample preparations 

The resists used were standard 950k PMMA (1 - 2 %) from MicroChem Corp and 

ZEP 520A (ZEP:Anisole = 1:3) from Zeon Chemicals LP.  PMMA samples were 

pre-baked at 150 °C for 5 min on a hot plate.  ZEP samples were pre-baked at 170 

°C for 10 min on a hot plate.  Different film thicknesses were obtained by varying 

spin-on conditions and measured by ellipsometry.  Most exposures were at 3 keV 

and 10 µm aperture and with a Raith 150 EBL system unless otherwise noted.  An 

array of 1 µm2 squares was chosen as our standard test structure because of its 

ease for AFM inspection and results calculation.  Grating structures down to 50 

nm half-pitch were also assessed using SEM. 

 

4.2 Data acquisition by AFM 

I have used two functions, bearing analysis and section analysis [135], of a Veeco 

Dimension 3100 atomic force microscope, to extract height difference 
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information and film thickness reduction information after electron beam 

irradiation.  Bearing analysis  

“provides a method of plotting and analyzing the distribution of 

surface height over a sample. This form of analysis may be applied 

to the entire image, or to selected areas of the image, using a 

rubberband box. Moreover, regions within the selected area can 

be blocked out by using “stopbands” to remove unwanted data 

from the analysis” [135].   

In my experiments, the parameters in bearing analysis were set such that a 

histogram was created which gave a distribution of depth at all sampled points on 

the surface with zero being the highest point.  Therefore, the difference between 

the two distribution peaks is the height difference between exposed and 

unexposed areas.  Section analysis was used to confirm the bearing results along a 

single scan line.  This provided a cross-sectional view of exposed pattern so that 

pattern distortions can be observed. 

 

Figure 4.1 is an example of how I have studied the dependency of various 

experimental parameters.  The sample in this experiment was 63 nm thick 950k 

PMMA on Si exposed at 3 keV with the dose of 600 µC/cm2.  Figure 4.1(a) is a 

flattened top view image with the height reference bar on the side.  We can get a 

rough estimate of height difference from the top view and also observe the surface 

roughness.  Figure 4.1(b) is the bearing analysis.  As mentioned above, the  
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Figure 4.1  Example of AFM data acquisition.  AFM images of 63 nm 950k PMMA on 

Si, exposed at 3 keV at 600 µC/cm2, without development.  (a) Flattened top view;  (b) 

Bearing Analysis;  (c) Section Analysis. 

 

difference between the two peaks is the height difference between exposed and 

unexposed areas and this value is denoted by ΔT in the following experiments.  

For this particular example, ΔT is 20 nm, which is about 32% of the initial film 

thickness.  Figure 4.1(c) is the section analysis.  In addition to inspecting the 
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height differences of individual or average cross sections, we can also observe the 

change of line width, line edge roughness, surface roughness and other 

distortions. 

 

4.3 Dose Dependency 

To help understand the results in the following sections, I defined an etch 

efficiency η (mm3/C) to describe how effective the electron beam is in reducing 

the film volume per unit dose.  Hence, η equals to ΔT divided by area dose, where 

ΔT is the raw height difference between exposed and unexposed areas. 

 

To determine dose dependency for ΔT and etch efficiency η, a series of 950K 

PMMA samples were exposed at the same energy but with varying doses.  The 

base dose at 3 keV is the clearance dose required for conventional liquid 

development.  The base doses at other energy levels were scaled proportionally to 

the energy to account for the energy dependence of the sensitivity [38, 44, 77].  

The detailed experimental conditions and numerical results are given in Table 4.1.  

Plots of ΔT vs. dose factor and η vs. dose factor are given in Figure 4.2 and 

Figure 4.3 respectively.  Initial film thickness is denoted as T0. 
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Table 4.1  Experimental conditions and numerical results for  

dose dependency of ΔT and η  

T0 Aperture Energy Dose Dose Factor* ΔT η 
(nm) (µm) (keV) (µC/cm2)  (nm) (mm3/C) 
  

31 
10 
10 
10 
10 

3 
3 
3 
3 

400 4 9.5 2.4 
600 6 10.6 1.8 
800 8 10.8 1.3 
1000 10 11.3 1.1 

 

63 

10 
10 
10 
10 
10 

1 
1 
1 
1 
1 

33 1 2.9 9.1 
66 2 5.5 8.3 

132 4 10.4 8 
198 6 14 7 
264 8 17.8 6.8 

 

63 
10 
10 
10 
10 

3 
3 
3 
3 

100 1 6 6 
200 2 10.8 5.4 
400 4 18 4.5 
600 6 20.3 3.4 

 

63 
10 
10 
10 
10 

3 
3 
3 
3 

100 1 6 6 
200** 2 10.5 5.3 
300** 3 15 5 
400** 4 18 4.5 
  

131 

20 
20 
20 
20 
20 

3 
3 
3 
3 
3 

200 2 20.6 10.3 
400 4 32.9 8.2 
600 6 37.4 6.2 
800 8 39.7 5 
1000 10 41.7 4.2 

*Dose factor equals dose normalized to the base dose at each energy level.  1 keV Base 

dose = 33 µC/cm2 ; 3 keV Base dose = 100 µC/cm2.  **Multiple-pass: higher dose is 

achieved by exposing the same area multiple times the base dose. 
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Figure 4.2  Dose dependencies of ΔT.  Sample was 950k PMMA on Si, no development. 

1 keV Base dose = 33 µC/cm2 ; 3 keV Base dose = 100 µC/cm2.  Fittings are logarithmic 

except for initial T = 63 nm 1 keV, which is linear.  *Dose factor equals dose normalized 

to the base dose at each energy level.  **Multiple-pass: higher dose is achieved by 

exposing the same area multiple times the base dose. 
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Figure 4.3  Dose dependencies of η.  Sample was 950k PMMA on Si, no development. 1 

keV Base dose = 33 μC/cm2 ; 3 keV Base dose = 100 μC/cm2.  Fittings are exponential.  

*Dose factor equals dose normalized to the base dose at each energy level.  **Multiple-

pass: higher dose is achieved by exposing the same area multiple times the base dose. 

 

The results in Figure 4.2 have clearly shown that dose is a very important 

parameter of the thickness reduction effect.  It can be seen that, in general, ΔT 

increases with dose to a certain level and then tends to saturate in a clearly non-

linear fashion.  This non-linearity tells that there are other factors involved 

beyond dose alone.   

 

More specifically, if comparing the trend lines for the initial film thickness of 31 

nm, 63 nm and 131 nm at 3 keV exposure, it is obvious that with the same dose 

and energy, thicker film exhibits a higher ΔT.  Further, by taking the derivative of 
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the trend lines, I found that the slopes of tangent lines increase with increasing the 

initial film thickness T0, which suggests that effect of dose is enhanced by T0.  

More evidence is presented in section 4.5 Initial Film Thickness Dependency on 

page 44.   

 

Meanwhile, all fittings in Figure 4.2 are logarithmic except for 1 keV, in which 

case the fitting is better described by linear dependence.  By comparing the trend 

line of initial thickness 63 nm at 1 keV with the trend line of initial thickness 63 

nm at 3 keV, I observed that the trend line of 1 keV does not show the tendency 

of saturation within the given dose regime, whereas the trend line of 3 keV has the 

tendency to saturate. This may suggest that at lower energies, it would take 

relatively higher equivalent doses before saturation happens in comparison with 

higher energies. Also, when the dose increased from 33 to 66 μC/cm2 (see also 

Table 4.1 ) in the trend line of 1 keV, ΔT increased from 2.9 to 5.5 nm, which 

corresponds to an increase of 0.079 nm per 1 μC/cm2. On the other hand, in the 

trend line of 3 keV, when the dose increased from 100 to 200 μC/cm2, ΔT 

increased from 6 to 10.8 nm, which corresponds to an increase of only 0.048 nm 

per 1 μC/cm2. This shows that in lower energy regimes, the same increment of 

dose has greater impact on ΔT in comparison with similar increment of dose in 

higher energy regimes. This may also suggest that under lower energies, resist has 

a higher tolerance to high doses before cross-linking becomes significant, and 

thus greater ΔT can be achieved. Both observations above also support the 

argument that lower exposure energy is important in this developer-free process.  
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Interestingly, the trend line for an initial thickness T0 = 31 nm and 3 keV 

exposure looks linear, but flat.  Notice that, in this case, ΔT does not increase 

significantly with increasing dose.  This is possibly because the penetration depth 

of 3 keV electrons is greater than the film thickness, which is 31 nm.  

Consequently, more energy is deposited into the substrate instead of the resist 

resulting in less interactions between electrons and the resist. 

 

At last, I have also investigated the effect of multiple-passes, which is a process 

giving higher doses by exposing the same area multiple times rather than a single 

time.  For example, a 400 µC/cm2 dose is achieved by exposing the same area 4 

times at 100 µC/cm2.  It can be seen that the result of multi-pass is the same as 

that of single exposure. 

 

As for the etch efficiency η, in general, it decreases with decreasing dose.  

Comparing the trend line of 31 nm, 63 nm and 131 nm initial film thicknesses at 3 

keV exposures, it can be observed that with the same dose and energy, thicker 

resist exhibits higherr η and the slopes of tangent lines also increase with 

increasing T0.  By comparing the trend lines of 63 nm initial film thickness at 1 

and 3 keV exposures, I found that 1 keV always has a higher η value.  This result, 

again, confirms that lower energy is more efficient for thickness reduction.  The 

result of multiple-pass is also the same as for single exposure. 
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Finally, although not shown here, from all the AFM results obtained up to this 

stage, I noticed that higher doses produced a smoother surface. 

 

4.4 Energy Dependency 

To study energy dependency, a series of samples were exposed at various 

energies with the doses scaled proportionally to the energy to account for the 

normal variation in sensitivity [38, 77].  The detailed experimental conditions and 

numerical results are given in Table 4.2.  Plots of ΔT vs. energy and η vs. energy 

are given in Figure 4.4 and Figure 4.5 respectively.  Initial film thickness is 

denoted as T0.  The doses in this experiment are scaled linearly with energy with 

the reference condition being the dose at 1 keV.  The resulting doses are referred 

to as the base doses, and the corresponding dose factors are equal to 1 for all 

energies. 

 

Table 4.2  Experimental conditions and numerical results  

for energy dependency of ΔT and η 

T0 Aperture Energy Dose Dose Factor* ΔT η 
(nm) (µm) (keV) (µC/cm2)  (nm) (mm3/C) 
  

62±1 10 

1 73.3 

1 

6.1 8.3 
5 366.5 11.6 3.2 
10 733 9.5 1.3 
20 1466 8.1 0.6 
30 2199 8.9 0.4 

*The doses in this experiment are scaled linearly with energy with the reference 

condition being the dose at 1 keV.  Therefore, the dose factor is 1 for all the energies. 



 

 

42 

 

Figure 4.4  Energy dependency of ΔT.  Sample was 62±1 nm 950k PMMA on Si, 

exposed at doses proportional to energy, no development.  Base dose = 73.3 µC/cm2 at 1 

keV.  In the fit formula, α = 0.66 and A = 4.17 eV.  The error of AFM experimental data 

points is ±2 nm. 

 

The results were obtained at constant dose factor.  Therefore, higher energy 

corresponds to proportionately higher dose, reflecting the lowered sensitivity.  

The ΔT first increases dramatically from 1 keV to about 5 keV and then decreases 

with increasing energy.  Clearly, at lower energies, the thickness reduction 

mechanism is very efficient and ΔT increases strongly with dose.  However, at 

higher energies, less absorption occurs in the resist and most of the electrons 

penetrate deeply into the substrate, thereby reducing the impact of the beam 

current. 
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Figure 4.5  Energy dependency of η.  Sample was 62±1 nm 950k PMMA on Si, exposed 

at doses proportional to energy, no development.  Base dose = 73.3 µC/cm2 at 1 keV.  In 

the fit formula, α = 0.66 and A = 4.17 eV. 

 

The etch efficiency, however, showed a very smooth and monotonic decrease 

with energy.  The decrease in etch efficiency is very significant from 1 keV to 

about 5 keV reflecting clearly the importance of low energy regimes for thickness 

reduction. 

 

Also included in these plots is a semi-empirical formula to fit the experimental 

results.  The form stems from the probability of an inelastic collision occurring 

within the resist per electron (1 − e−Nσt), where σ, ~ 1/E, is the inelastic collision 

cross section and E is the energy[38, 77], multiplied by the dose dependence, 
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which from Figure 4.2 appears to be a power law with ΔT ~ (dose)α.  Since in this 

experiment exposure dose is proportional to energy E, the resulting formula 

becomes ΔT ~ Eα (1 – e−A/E), where the parameters were fitted experimentally.  

The fitting captures the overall behaviour for ΔT and is also quite accurate for η.  

This suggests that electron collisions and the resulting fragmentation into volatile 

components is the dominant factor for thickness reduction, rather than energy 

deposition which would favour a resist evaporation mechanism.  Finally, the 

energy where ΔT peaked in Figure 4.6 may shift to a different value if different 

thickness film is used or a different set of doses is applied.  The reason is that both 

parameters will affect the electron-resist interactions and consequently alter the 

results. 

 

4.5 Initial Film Thickness Dependency 

Finally, the effect of initial film thickness T0 on ΔT was considered.  The detailed 

experimental conditions and numerical results are given in Table 4.3.  Plots of ΔT 

vs. T0 and η vs. T0 are given in Figure 4.6 and Figure 4.7 respectively.  Initial film 

thickness is denoted as T0. 

 

 

 

 



 

 

45 

Table 4.3  Experimental conditions and numerical results for 

initial film thickness dependency of ΔT and η 

T0 Aperture Energy Dose Dose Factor* ΔT η 
(nm) (µm) (keV) (µC/cm2)  (nm) (mm3/C) 

  
31 10 3 400 4 

9.7 2.4 
63 18 4.5 
131 20 32.9 8.2 

 
31 10 3 600 6 

10.9 1.8 
63 20 3.3 
131 20 37.4 6.2 

*Dose factor equals dose normalized to the base dose at each energy level. 

 

 

Figure 4.6  Initial film thickness dependencies of ΔT.  Sample was 950k PMMA on Si, 

exposed at 3 keV, no development. Diamonds: 400 µC/cm2; Squares: 600 µC/cm2. 
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Figure 4.7  Initial film thickness dependencies of η.  Sample was 950k PMMA on Si, 

exposed at 3 keV, no development. Diamonds: 400 µC/cm2; Squares: 600 µC/cm2. 

 

As can be seen from the above results, both ΔT and η increase in proportion to T0.  

If a surface dominated process such as electron beam evaporation were the main 

factor behind thickness reduction, then a strong T0 dependence would not be 

expected.  The linear behaviour evident in Figure 4.6 and Figure 4.7 supports a 

mechanism that depends on fragmentation throughout the volume such as 

production of volatile fragments.  

 

From the experimental results and discussions above, one can see that the 

mechanism of thickness reduction is complex and exposure dose, energy and 
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initial film thickness have to be all considered simultaneously in order to achieve 

the optimum exposure conditions.  
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5 POST-EXPOSURE PROCESSING 

The results above showed that exposure conditions can be optimized to increase 

the magnitude of thickness reduction at least up to 32%.  However, it is unlikely 

that full clearance can be reached by exposure alone.  Therefore, I proceeded with 

some post-processing techniques in an effort to reach total clearance without 

liquid development. 

 

I considered two approaches, heating and RIE.  As discussed above, the concept 

of heating is that it would drive off the remaining volatile fragments induced by 

electron beam exposure.  For RIE, I simply wish to preserve the already existing 

height difference while reducing the thickness of exposed areas to zero.  Under 

ideal circumstances, the fragmented exposed regions would be etched more 

quickly than the unexposed regions, thereby enhancing the height difference.  

However, this enhancement could be offset by a toughening in the exposed 

regions due to cross-linking by usage of high doses.   

 

I included ZEP resist in these experiments because it provides better etch 

resistance yet sharing some similarities with PMMA.  The resists used were 

standard 950k PMMA (1 - 2 %) from MicroChem Corp and ZEP 520A 

(ZEP:Anisole = 1:3) from Zeon Chemicals LP.  PMMA samples were pre-baked 

before exposure at 150 °C for 5 min on hot plate.  ZEP samples were pre-baked at 

170 °C for 10 min on hot plate. 
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5.1 Heating 

Following the electron beam exposure, some samples were baked on a hot plate.  

Detailed heating conditions and numerical results are given in Table 5.1 and 

Table 5.2 for PMMA and ZEP samples, respectively.  Temperatures ranged from 

47.5 to 290 °C.  Temperature readings were taken from the thermocouple meter 

connected to the hot plate.  Note that the glass transition temperatures for PMMA 

and ZEP are nominally 125 °C and 105 °C, respectively, although these may have 

been altered by conditions and processing. 

 

5.1.1 Heating of PMMA samples 

The experimental conditions and numerical results for PMMA heating 

dependency studies are given in Table 5.1.  The heating influence on ΔT and η are 

plotted in Figure 5.1 and Figure 5.2, respectively. 

 

Comparing the results of heating at 47.5 °C with those without heating, it can be 

seen that ΔT for 47.5 °C heating is slightly lower than that of un-heated sample at 

400 µC/cm2 dose.  Then at dose 600 µC/cm2, ΔT for 47.5 °C heating is slightly 

higher than that of un-heated sample.  This can be likely explained as within 

experimental error.  However, another possible explanation would be that due to 

moisture absorption.  At 400 µC/cm2 dose, fragmented PMMA due to electron 

beam induced chain scission absorbs more moisture than the PMMA exposed at 

600 µC/cm2 dose.  Because at 600 µC/cm2 dose, it is possible that cross-linking in 
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the resist due to the high dose just begins overtaking the chain scission.  

Consequently, localized resist densification and induced cross-linking reduced the 

absorption of moisture. 

Table 5.1  Experimental conditions and numerical results  

for PMMA heating dependency studies 

T0 Aperture Energy Dose Dose 
Factor* Heating ΔT η 

(nm) (µm) (keV) (µC/cm2)   (nm) (mm3/C) 
 

PMMA (Glass Transition Temperature is between 85 °C to 165 °C) 
 

31 10 3 
400 4 

No heating 
RT (23 °C) 

9.5 2.4 
600 6 10.6 1.8 
800 8 11.8 1.3 

1,000 10 11.3 1.1 
 

35 10 3 
100 1 

47.5 °C for 1 
min 

Not visible** 
200 2 6.5 3.3 
400 4 8.1 2 
600 6 11.1 1.8 

 

35 10 3 
100 1 

105 °C for 1 
min 

10.7 10.7 
200 2 23.3 11.7 
400 4 27.7 6.9 
600 6 21.1 3.5 

 

31 10 3 
400 4 

282 °C for 30 
min 

19.5 4.9 
600 6 18.5 3.1 
800 8 17.5 2.2 

1,000 10 15.4 1.5 
 

35 10 3 
100 1 

285 °C for 1 
min Clearance 200 2 

400 4 
600 6 

 

35 10 3 
100 1 

290 °C for 15 s Clearance 200 2 
400 4 
600 6 

*Dose factor equals dose normalized to the base dose at each energy level. 

**Exposed patterns could not be found by optical positioning microscope on the AFM. 
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Figure 5.1  Heating influence on ΔT for PMMA.  Sample was 950k PMMA on Si, no 

development. 3 keV Base dose = 100 μC/cm2.  *Dose factor equals dose normalized to 

the base dose at each energy level. 

 

The results for samples heated at 105 °C for 1 min with initial thickness T0 = 35 

nm showed that ΔT increased dramatically when dose increased from 100 to 

about 400 µC/cm2 and then began to drop at higher doses.  The dramatic increase 

may be attributed to the heating enhanced removal of small volatile products such 

as CO, CO2, CH3O and radical species [127].  The drop after 600 µC/cm2 is 

presumably the result of cross-linking in the polymer during exposure due to 

increased dose, making the exposed region more stable because an increase in Tg.  

It is noteworthy that total clearance was almost achieved at the dose of 400 

µC/cm2. 
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Figure 5.2  Heating influence on η in PMMA.  Sample was 950k PMMA on Si, no 

development. 3 keV Base dose = 100 μC/cm2.  *Dose factor equals dose normalized to 

the base dose at each energy level. 

 

When the temperature increased even higher to 282 °C with extended baking 

time, heating was not as effective in increasing ΔT as it was at 105 °C.  It is 

obvious that ΔT is falling when dose increases under this heating condition.  

However, there are several interesting results which should be noted, as shown in 

Figure 5.3(e-f). 

 

First, clearance has been achieved for the partially exposed areas surrounding the 

1 µm2 squares as shown in Figure 5.3(e-f).  Second, inside the fully exposed 1 

µm2 regions, square islands with non-zero height began to emerge as shown in 
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Figure 5.3(e-f).  These square islands are 5 to 6 nm in height and presumably arise 

as the result of cross-linking or carbonization of PMMA [136].  However, note 

that such island formation was also observed for 400 µC/cm2 dose, although it 

was not obvious.  Third, from this temperature onwards, the thickness of exposed 

and partially exposed PMMA was reduced while the thickness of un-exposed 

PMMA was increased.  Examples are shown in Figure 5.4. 

 

The sample in Figure 5.4 is a PMMA sample with initial thickness T0 = 35 nm, 

exposed at 3 keV energy with the doses of (a) 100 µC/cm2 ; (b) 200 µC/cm2 ; (c) 

400 µC/cm2 ; (d) 600 µC/cm2 ; and heated at 290 °C for 15 s.  In the figure, it can 

be observed that the thickness of the lines/walls surrounding the 1 µm2 squares 

and connecting the brighter spots/pillars decreases with increasing dose.  On the 

other hand, the thickness of the bright spots/pillars increases with increasing dose.  

Even more surprisingly, the height of these bright spots/pillars is more than 50 

nm, significantly exceeding the initial thickness T0 (35 nm).  This is a 

phenomenon which still needs to be understood.  A hypothesis is that  

“due to electron scattering, there is a gradient in molecular weight 

distribution as a function of distance from the exposed regions. 

Therefore there is a gradient of polymer glass transition 

temperatures as a function of position as well.” [55] 

According to this theory, there should be also a gradient of molecular mobility as 

a function of distance from the exposed regions when heated.  As the volatile 
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products evaporate and leave un-filled space, it may change the surface tension 

and the material may redistribute.   

 

Figure 5.3  Comparison for no heating vs. heating.  All samples were 950k PMMA on Si, 

exposed at 3 keV. Top view and cross-section view, respectively. (a-b) T0 = 31 nm, 1000 

µC/cm2, no heating. ΔT = 11 nm. (c-d) T0 = 35 nm, 600 µC/cm2, 105 °C for 1 min. ΔT = 

21 nm. (e-f) T0 = 31 nm, 1000 µC/cm2, 282 °C for 30 min. ΔT = 15 nm. Squares in the 

center are 5-6 nm in height. 
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Figure 5.4  Thickness reduction and shape distortion under heating.  950k PMMA 

samples with initial film thickness T0 = 35 nm, exposed at 3 keV, (a) 100 µC/cm2 ; (b) 

200 µC/cm2 ; (c) 400 µC/cm2 ; (d) 600 µC/cm2 ; and heated at 290 °C for 15 s. 

 

As for the origin of the over 50 nm pillars, it is possible that the heating induced 

some chemical conversion in the PMMA and a lower density material is formed.  

It is also possible that due to the surface tension of the material, the material is 

redistributed during the heating.  Finally, total clearance was achieved for this 

sample at all doses applied and no obvious island formation was observed. 
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Figure 5.5  Effect of heating time.  PMMA sample with T0 = 35 nm, exposed at 3 keV, 

both at 400 µC/cm2, heated at 285 °C for (a) 1min ; (b) 5 min. 

 

Figure 5.5 illustrates the effect of heating time.  The effect of heating time is 

relatively simple.  With longer heating times, the enhancement of thickness 

reduction is more pronounced.  However, the distortion induced by resist reflow 

becomes more severe too.  

 

One concern of heating, especially at very high temperatures, is the reflow and 

distortion of the pattern as demonstrated in Figure 5.3.  Figure 5.3(a-b) shows the 

profile for exposed but unheated PMMA.  Although clearance was not reached, 

the thickness reduction was more than 33% of the initial film thickness.  Figure 

5.3(c-d) shows the result after heating at 105 °C for 1 minute.  Note that the dose 

of Figure 5.3(c-d) was 600 µC/cm2, which resulted in ΔT of 21 nm, about 60% of 

the initial film thickness (35 nm).  Some reflow induced distortion began to 

develop but still remained moderate.  Figure 5.3(e-f) shows the result after 

annealing at 282 °C for 30 min.  The distortion due to the reflow is clear.  Also, as 
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mentioned above, clearance was achieved for the partially exposed areas around 

the perimeter of the exposed squares, where the height difference is around 31 nm 

and 5-6 nm tall 1 µm2 squares arose at the exposed sites, which may be due to the 

cross-linking or carbonization of PMMA [136] as a result of a long, high 

temperature baking.  In comparison with the unheated sample shown in Figure 

5.3(a-b), these two samples were exposed under exactly the same conditions.  

However, no island formation was observed for unheated sample.  This suggests 

that heating could change the positive or negative behaviour of PMMA even 

when exposed under the same conditions.  Further, it may imply that heating 

shifted the dose regime which determines the positive or negative behaviour to 

lower doses. 

 

Up to this point, it is certain that heating is more effective in the lower dose 

regimes if a positive-tone PMMA process is employed.  In Figure 5.6 and Figure 

5.7 below, a comparison is made in order to determine the optimum dose for 

heating under the selected conditions.  Two selected exposure doses, 400 and 600 

µC/cm2, are compared. 

 

By observing the plots, it is clear that the dose of 400 μC/cm2 gives better results 

than 600 μC/cm2.  Although at lower temperature, 600 μC/cm2 dose has higher 

ΔT and η, lower temperature is not the most efficient regime for these heating 

experiments.   
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Figure 5.6  Optimum exposure dose when heating for ΔT.  Sample was 950k PMMA on 

Si, no development. 3 keV Base dose = 100 μC/cm2, heating time was 1 min for both 

samples.  The temperature for unheated sample was presumed to be 23 °C. 

 

However, taking the distortion induced by high temperature into consideration, 

the optimum temperature to heat PMMA samples may be close to 105 °C.  As for 

heating time, shorter heating time will result in less distortion but also less 

enhancement of the thickness reduction. 

 

Finally, lift-off has been attempted for un-heated and heated PMMA samples.  

The results showed that due to the carbonization or other alternation of the resist 

structure, further post-processing steps are required for lift-off to be successful. 
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Figure 5.7  Optimum exposure dose in heating for η.  Sample was 950k PMMA on Si, no 

development. 3 keV Base dose = 100 μC/cm2 heating time was 1 min for both samples.  

The temperature for unheated sample was presumed to be 23 °C. 

 

5.1.2 Heating of ZEP samples 

Detailed heating conditions and numerical results of ZEP are given in Table 5.2.  

Plots of ΔT vs. dose and η vs. dose are shown in Figure 5.8 and Figure 5.9, 

respectively.  Due to the higher sensitivity of ZEP, the doses of ZEP samples were 

scaled 4 times lower than the doses applied to PMMA for good comparison.  

Therefore, since the base for PMMA at 3 keV was 100 µC/cm2, the base dose for 

ZEP at 3 keV was 25 µC/cm2.   
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Table 5.2  Experimental conditions and numerical results  

for ZEP heating dependency studies 

T0 Aperture Energy Dose Dose 
Factor* Heating ΔT η 

(nm) (µm) (keV) (µC/cm2)   (nm) (mm3/C) 
 

ZEP (Glass Transition Temperature is 105 °C) 
 

78 10 3 
50 2 

No heating 
4 7.9 

100 4 6 6 
150 6 8.2 5.5 
200 8 10.2 5.1 

        

78 10 3 
50 2 

75 °C for 30s 
4 7.9 

100 4 10.6 10.6 
150 6 18.2 12.1 
200 8 20.8 10.4 

        

78 10 3 
50 2 

100 °C for 
1min 

18.9 37.8 
100 4 37.9 37.9 
150 6 42 28 
200 8 44 22 

        

78 10 3 
50 2 

290 °C for 15s All patterns 
gone 

100 4 
150 6 
200 8 

*Dose factor equals dose normalized to the base dose at each energy level. 

 

First of all, the results of the unheated ZEP sample have confirmed that ZEP also 

exhibits thickness reduction after electron beam exposure.  Comparing to PMMA, 

ZEP has a lower percentage of thickness reduction relative to initial film thickness 

T0.  With a dose factor of 8 at 3 keV, ΔT of unheated ZEP sample is 13% of T0, 

whereas this value for unheated PMMA sample is more than 30% in most cases.  

This difference is explicable since less volatile products are produced by the 

scission of ZEP when exposed by electrons, more specifically due to the existence  
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Figure 5.8  Heating influence on ΔT in ZEP.  Sample was ZEP 520A on Si, no 

development. 3 keV Base dose = 25 μC/cm2.  *Dose factor equals dose normalized to the 

base dose at each energy level. 

 

of α-methylstyrene in ZEP.  Nonetheless, ZEP samples also demonstrated the 

effectiveness of heating, particularly at 100 °C. 

 

Also, no drop of ΔT after dose factor 4 is observed at 100 °C heating for ZEP 

while there is a significant drop of ΔT at 105 °C heating for PMMA.  This is 

probably because ZEP is more difficult to cross-link.  This property suggests that 

higher doses can be applied to ZEP to achieve more substantial thickness 

reduction.  It also seems that the trend of ΔT for ZEP is quite consistent under 

heating.  After dose factor of 4, the curve of 75 °C and the curve of 105 °C seem  
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Figure 5.9  Heating influence on η in ZEP.  Sample was ZEP 520A on Si, no 

development. 3 keV Base dose = 25 μC/cm2.  *Dose factor equals dose normalized to the 

base dose at each energy level. 

 

to have a constant difference between them.  This may suggest a linear 

temperature dependence of ΔT.  However, under the heating conditions of 290 °C 

for 15s, all patterns were gone in ZEP, whereas for PMMA samples, the patterns 

still existed after being heated under the same conditions.  This implies that ZEP 

is more sensitive, or in other words, less resistant to the effect of heating. 

 

To conclude, it should be noted that the optimum temperature may be close to the 

glass transition temperature of the resist.  However, this temperature may vary 
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depending on the molecular weight dispersity of the resist, the distribution of 

molecular weight, thickness of the film, and the material of the substrate. 

5.2 Reactive Ion Etching 

In addition to heating, I have also explored the potential of RIE to extend the 

thickness reduction effect.  Two kinds of RIE processes have been tested.  A 

normal RIE process at room temperature and an inductively coupled plasma RIE 

at −110 °C.  The normal RIE process was performed with a Trion Phantom RIE 

system.  The cryo-etch process was carried out by an Oxford Plasmalab System 

100 - ICP 180. 

 

5.2.1 Normal RIE process 

5.2.1.1 Preliminary RIE tests for both PMMA & ZEP samples 

The RIE study started with two preliminary RIE tests for PMMA and ZEP.  The 

experimental conditions and numerical results are given in Table 5.3 and Table 

5.4.  Tt is the bulk resist thickness after RIE. 

 

For both PMMA and ZEP samples, minor enhancement has been observed.  The 

enhancement of PMMA samples seems to be greater than that of ZEP samples.  

However, note that the T0 of PMMA RIE sample is 4 nm greater than the T0 of its 

reference sample. Therefore, the value of ΔT before RIE should be slightly 

greater than the referencing value.  Hence, the actual ΔT after RIE value may be 

lower than the reported one.  Meanwhile, the thickness of bulk resist was not 
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measured after RIE, so it is hard to quantify and compare the results in a 

percentage way (e.g. what is the enhancement in percentage of the thickness 

reduction of bulk resist).  Nevertheless, even without enhancement, if only the 

existing ΔT before RIE could be maintained during and after RIE while the 

exposed resist were etched to clearance, the RIE process would still be useful. 

 

Table 5.3  Experimental conditions and numerical results of 

preliminary RIE tests for PMMA samples 

Parameter Units Sample 1 Sample 2 
T0 (nm) 31 35 

Aperture (µm) 10 10 
Energy (keV) 3 3 
Dose (µC/cm2) 400 600 400 600 

Dose Factor*  4 6 4 6 
ΔT before RIE (nm) 9.5 10.6 9.5** 10.6** 

Pressure mTorr 

N/A 

5 
ICP power W N/A 
RF power W 0 

Gase & Flow Ratio sccm O2 = 20 
Time s 120 

Temperature °C RT 
Tt (nm) N/A 

ΔT after RIE (nm) 11.1 11.4 
Enhancement (nm) 1.6 0.8 

*Dose factor equals dose normalized to the base dose at each energy level. 

**Values are taken from the left sample. 
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Table 5.4  Experimental conditions and numerical results of  

preliminary RIE tests for ZEP samples 

Parameter Units Sample 1 Sample 2 
T0 (nm) 78 78 

Aperture (µm) 10 10 
Energy (keV) 3 3 
Dose (µC/cm2) 50 100 150 200 50 100 150 200 

Dose Factor*  2 4 6 8 2 4 6 8 
ΔT before RIE (nm) 4 6 8.2 10.2 4** 6** 8.2** 10.2** 

Pressure mTorr 

N/A 

5 
ICP power W N/A 
RF power W 0 

Gase & Flow Ratio sccm O2 = 20 
Time s 120 

Temperature °C RT 
Tt (nm) N/A 

ΔT after RIE (nm) 3.9 6.5 8.8 10.7 
Enhancement (nm) -0.1 0.5 0.6 0.5 

*Dose factor equals dose normalized to the base dose at each energy level. 

**Values are taken from the left sample. 

 

5.2.1.2 Effect of exposure voltage on RIE (PMMA samples) 

Next, I tested two more samples exposed at higher energies at 5 and 20 keV.  The 

detailed experimental conditions and numerical results are given in Table 5.5.  

The results above showed two samples, with the same initial thickness T0, and 

exposed at doses scaled linearly with energies.  Therefore, the dose for 20 keV is 

4 times higher than that of 5 keV.  In this case, the bulk resist thickness Tt was 

measured after RIE.  The 5 keV sample has a lower film thickness Tt after RIE 

than the 20 keV sample and yielded more enhancement.  Also, the ΔT before RIE 

of the 5 keV sample is 3.5 nm greater than that of the 20 keV sample and the ΔT 

after RIE of the 5 keV sample is 3.7 nm greater than that of the 20 keV sample.  



 

 

66 

These observations suggest that lower energy is more efficient than higher energy 

for RIE process as well.  The rest of the RIE experiments were conducted at 3 

keV for consistency and easy comparison with other experiments and processing.  

Comparing to the preliminary tests, this experiment was at higher pressure and 

lower gas flow with 10 W of RF power, just the opposite condition to the 

preliminary tests.  Yet, the RIE was still effective. 

Table 5.5  Experimental conditions and numerical results of  

RIE for PMMA samples exposed at 5 and 20 keV      

Parameter Units Sample 1 Sample 2 
T0 (nm) 61 61 

Aperture (µm) 10 10 
Energy (keV) 5 20 
Dose (µC/cm2) 366.5 1466 

Dose Factor*  1 1 
ΔT before RIE (nm) 11.6 8.1 

Pressure mTorr 100 100 
ICP power W N/A N/A 
RF power W 10 10 

Gase & Flow Ratio sccm O2 = 5 O2 = 5 
Time s 60 60 

Temperature °C RT RT 
Tt (nm) 34.6 35.9 

ΔT after RIE (nm) 11.9 8.2 
Enhancement (nm) 0.3 0.1 

*The doses in this experiment are scaled linearly with energy with the reference 

condition being the dose at 1 keV.  Therefore, the dose factor is 1 for both energies. 

 

5.2.1.3 Effect of RIE parameters (PMMA samples) 

Following the above experiments, I examined the effects of various etching 

parameters and their combinations.  So another set of experiments was completed.  

The detailed experimental conditions and numerical results can be found in Table 
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5.6.  Since the primary goal of RIE processing was to reach clearance, maximum 

ΔT before RIE was desired and hence high dose was applied. 

 

The results of this set of experiments were quite surprising.  First, it seems that, at 

least under these particular conditions, etching parameters did not affect the ΔT 

after RIE.  Second, ΔT reduced quite significantly.  These two observations may 

suggest that the cross-linked or carbonized PMMA is very resistant to RIE and 

this resistance increases with the depth from initial film surface.  Thus when 

certain depth is reached, the substance becomes so tough that the un-exposed 

resist is etched faster than exposed resist, thereby reducing the ΔT.  The easy-to-

etch layer before this occurs may be very thin.  This would explain why the 

preliminary tests showed the enhancements but not these experiments.  In addition 

to that, the doses of preliminary tests were not very high for PMMA and as 

already been discussed above, that ZEP has a higher tolerance to high dose before 

it begins to cross-link.  Therefore, such a layer may be thicker in the preliminary 

tests.  At last, the best result in this set of experiments is in the middle column 

where ΔT after RIE (13 nm) is about half of the bulk resist thickness after RIE Tt 

(27 nm).  However, even if RIE would etch to clearance while maintaining the ΔT 

at 13 nm, such small height difference would be of only a limited applicability.  

For this reason, other methods were explored. 
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Table 5.6  Experimental conditions and numerical results of  

the effects of RIE conditions on PMMA samples 

Parameter Units Sample 1 Sample 2 Sample 3 
T0 (nm) 106 106 106 

Aperture (µm) 20 20 20 
Energy (keV) 3 3 3 
Dose (µC/cm2) 1000 1000 1000 

Dose Factor*  10 10 10 
ΔT before RIE (nm) 38 38 38 

Pressure mTorr 50 50 5 
ICP power W N/A N/A N/A 
RF power W 20 10 200 

Gase & Flow Ratio sccm O2 = 10 O2 = 10 O2 = 50 
Time s 30 120 5 

Tt (nm) 66 42 71.6 
RF power W 10 10 200 

Gase & Flow Ratio sccm O2 = 10 O2 = 10 O2 = 50 
Time s 45 23 5 

Tt (nm) 38 27 62.8 
RF power W 

N/A N/A 
200 

Gase & Flow Ratio sccm O2 = 50 
Time s 5 

Tt (nm) 31.6 
Temperature °C RT RT RT 
ΔT after RIE (nm) 13 13 13 
Enhancement (nm) -25 -25 -25 

*Dose factor equals dose normalized to the base dose at each energy level. 

 

5.2.1.4 RIE for ZEP samples 

I have also tried a different gas combination on a ZEP sample.  The detailed 

experimental conditions and numerical results can be found in Table 5.7.  A plot 

of dose dependency for this sample is also included in Figure 5.10. 
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Table 5.7  Experimental conditions and numerical results for 

CF4:O2 RIE test on ZEP sample 

Parameter Units Sample 1 
T0 (nm) 78 

Aperture (µm) 10 
Energy (keV) 3 
Dose (µC/cm2) 50 100 150 200 

Factor*  2 4 6 8 
ΔT before RIE (nm) 4 6 8.2 10.2 

Pressure mTorr 50 
ICP power W N/A 
RF power W 100 

Gase & Flow Ratio sccm CF4:O2 = 25:3 
Time s 15 

Temperature °C RT 
Tt (nm) 56.5 

ΔT after RIE (nm) 2.7 5.1 7.6 9 
Enhancement (nm) -1.3 -0.9 -0.6 -1.2 

*Dose factor equals dose normalized to the base dose at each energy level. 

 

 

Figure 5.10  Dose dependency for CF4:O2 RIE test on ZEP sample. 
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It seems that the new combination of gases did not provide obvious advantages 

over the pure O2 recipe.  However, it is interesting to see that ΔT was better 

maintained with increasing dose up to about 150 µC/cm2.  This improvement 

suggests that there may be an optimum dose for RIE at given conditions.   

 

5.2.2 Cryo-etch process 

As the next step, I considered the cryo-etch process.  As discussed in the above 

sections, there is a gradient of glass transition temperature as a function of 

distance from the exposure site.  Due to this gradient, the Tg of the resist 

surrounding the exposed features is lower than the un-exposed resist but higher 

than the fully exposed resist.  Therefore, when cooled to low temperature, the un-

exposed resist and partially exposed resist would freeze faster and became harder 

than fully exposed resist.  If etched under this condition, it may improve the 

etching preference to the exposed resist and better maintain the ΔT.   

 

5.2.2.1 Cryo-etch for PMMA samples 

The first cryo-etch experiment was carried out on a sample which was exposed 

under the same conditions as the samples etched by normal RIE presented in 

Table 5.6. 

 

The detailed experimental conditions and numerical results are given in Table 5.8  

below.  I have also examined the morphology of resist after cryo-etch.  The results 

are shown in Figure 5.11. 
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Table 5.8  Experimental conditions and numerical results of  

first cryo-etch on PMMA sample 

Parameter Units Sample 1 Comment 
T0 (nm) 106  

Aperture (µm) 20  
Energy (keV) 3  
Dose (µC/cm2) 1000  

Dose Factor*  10  
ΔT before RIE (nm) 38  

Pressure mTorr 5 

De-scum 
ICP power W 150 
RF power W 20 

Gase & Flow Ratio sccm O2 = 20 
Time s 5 

Temperature °C −110 
Pressure mTorr 7.5 

Etching 
ICP power W 400 
RF power W 6 

Gase & Flow Ratio sccm SF6:O2 = 45:10 
Time s 15** × 4 = 60 

Temperature °C −110 
Tt (nm) 34  

ΔT after RIE (nm) 19.7  
Enhancement (nm) -18.3  

*Dose factor equals dose normalized to the base dose at each energy level. 

** The sample was taken out for inspection of film thickness after each 15 s etch. 
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Figure 5.11  Morphology of resist after cryo-etch.  950k PMMA on Si, exposed at 3 keV, 

1000 μC/cm2, no development. 1 µm squares and 500 nm lines with 500 nm spacing, 

respectively. (a-b) Before ICPRIE, initial film thickness = 106 nm, ΔT = 38 nm. (c-d) 

After ICPRIE at -110 °C, de-scum at 5 mTorr, O2 = 20 sccm, ICP = 150 W, RF = 20 W, 

5 s, etching at 7.5 mTorr, SF6:O2 = 45:10 sccm, ICP = 400 W, RF = 6 W, 60 s, film 

thickness = 34 nm, ΔT = 20 nm. 

 

Immediately after the exposure, the sample had a film thickness of 106 nm with 

ΔT = 38 nm.  After the cryo-etch, film thickness was reduced to 34 nm with ΔT = 

20 nm.  Note that ΔT was reduced too.  This means exposed region was etched 

slower than the unexposed region.  As mentioned above, the reason could be that 

the exposed region was hardened by resist cross-linking.  I also noticed that there 

were small pieces of PMMA re-deposited on the surface after RIE.  A possible 
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solution would be to add another de-scum procedure after the etching is done.  

Although in my experiments, normal RIE process did not have this issue, I 

believe that cryo-etch is a better process than normal RIE.  The major reason is 

that cryo-etch indeed preserved the ΔT better than the normal RIE process.  It can 

be observed by comparing this cryo-etch sample with other normal RIE samples 

in Table 5.6.  These samples were exposed under the same conditions (ΔT = 38 

nm) but subjected to different RIE processes.  For the samples which went 

through the normal RIE process, ΔT decreased to 13 nm; however, for the sample 

which went through the cryo-etch process, ΔT decreased to 20 nm. 

 

5.2.2.2 Dose dependency during cryo-etch for PMMA samples 

Since a dependency of dose during normal RIE for ZEP has been observed, 

another dose dependency study was conducted for the PMMA samples in the 

cryo-etch process.  The detailed experimental conditions and numerical results are 

given in Table 5.9 below.  The plots are shown in Figure 5.12.  Also, recall the 

results of energy dependency study from Figure 4.4 in page 42.  The ΔT peaked 

near 5 keV.  Therefore, a comparison between 3 and 5 keV has been made in this 

study too. 

 

The results showed that although cryo-etch did not enhance or preserve the ΔT, 

the ΔT increases with increasing dose up to about 400 µC/cm2 and then decreases 

with the dose.  This is consistent with the optimum heating dose value (see Figure 

5.1), which may suggest that the molecular mechanisms of scission and/or cross-
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linking in PMMA are dose dependent and undergo changes around 400 µC/cm2 

for 3 keV exposure, despite the difference in film thickness (35 nm for the sample 

in Figure 5.1 and 131 nm in this case).   

Table 5.9  Experimental conditions and numerical results of 

dose dependency during cryo-etch for PMMA sample 

Parameter Units Sample 1 Sample 
2 Comment 

T0 (nm) 131 131  
Aperture (µm) 20 20  
Energy (keV) 3 5  
Dose (µC/cm2) 200 400 600 800 1000 1000  

Dose Factor*  2 4 6 8 10 6**  
ΔT before RIE (nm) 20.6 32.9 37.4 39.7 41.7 38.1  
Temperature °C −110  

Pressure mTorr 5 

De-scum 
ICP power W 150 
RF power W 20 

Gase & Flow Ratio sccm O2 = 20 
Time s 10 

Pressure mTorr 7.5 
Cryo-
etch 

ICP power W 400 
RF power W 6 

Gase & Flow Ratio sccm SF6:O2 = 45:10 
Time s 10 

Pressure mTorr 5 

De-scum 
ICP power W 150 
RF power W 20 

Gase & Flow Ratio sccm O2 = 20 
Time s 10 

Pressure mTorr 7.5 
Cryo-
etch 

ICP power W 400 
RF power W 6 

Gase & Flow Ratio sccm SF6:O2 = 45:10 
Time s 30 30 

Tt (nm) 37.6 40.6  
ΔT after RIE (nm) 14.3 19 17.6 16.6 15.6 20.4  
Enhancement (nm) -6.3 -

13.9 
-

19.8 
-

23.1 
-

26.1 -17.7  

*Dose factor equals dose normalized to the base dose at each energy level. 

**Due to the higher energy, this dose is equivalent to 600 µC/cm2 at 3 keV. 
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Figure 5.12  ICPRIE dose dependency for ΔT.  Sample was 131 nm 950k PMMA on Si, 

exposed at 3 keV with no development.  ICPRIE was performed at -110 °C, de-scum at 5 

mTorr, O2 = 20 sccm, ICP = 150 W, RF = 20 W, etching at 7.5 mTorr, SF6:O2 = 45:10 

sccm, ICP = 400 W, RF = 6 W.  The process comprised 10 s de-scum and 60 s etch 

followed by another 10 s de-scum and 30 s etch. 

 

For this reason, it seems that lower dose regimes would be more effective in RIE 

too and the optimum dose at 3 keV may be close to 400 µC/cm2 as well.   

 

As for the optimum energy, the results of 5 keV is slightly better than that of 3 

keV.  This is also consistent with the conclusion of energy dependency studies 

(see Figure 4.4).  However, as discussed in section 4.4 Energy Dependency, the 

optimum energy may change depending on the initial film thickness and doses 

applied. 
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5.2.2.3 Cryo-etch for ZEP samples 

The same cryo-etch recipe has been applied to ZEP samples.  Furthermore, I also 

investigated the effect of several short etches with equal duration versus a single 

etch with the duration equal to the sum of short etching durations.  The detailed 

experimental conditions and numerical results are given in Table 5.10 below. 

Table 5.10  Experimental conditions and numerical results of 

cryo-etch for ZEP samples and the effect of etching time interval 

Parameter Units Sample 1 Sample 2 Comment 
T0 (nm) 78  

Aperture (µm) 10  
Energy (keV) 3  
Dose (µC/cm2) 200  

Dose Factor*  8  
ΔT before RIE (nm) 10.2  
Temperature °C −110  

Pressure mTorr 5 

De-scum 
ICP power W 150 
RF power W 20 

Gase & Flow Ratio sccm O2 = 20 
Time s 5 10 

Pressure mTorr 7.5 

Cryo-etch 
ICP power W 400 
RF power W 6 

Gase & Flow Ratio sccm SF6:O2 = 45:10 
Time s 15** × 3 = 45 45 

Tt (nm) 24 34  
ΔT after RIE (nm) Not visible*** 9.1  
Enhancement (nm) N/A -1.052  

*Dose factor equals dose normalized to the base dose at each energy level. 

** The sample was taken out for inspection of film thickness after each 15 s etch.    

***The patterns could not be found by optical positioning microscope on the AFM. 

 

The results above showed that there is a difference between several short etches 

versus a single long etch.  Note that the de-scum time of the single long etch 
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sample is longer than the multiple short time etch sample.  Therefore, more resist 

should be etched for the single long etch sample.  However, even with this 

difference, it seems that several short etches still produced more resist thinning of 

the bulk film.  More specifically, the bulk film thickness after etch (Tt) of multiple 

short etch sample is 24 nm, which is less than that of the single long etch sample 

(34 nm).  A possible explanation is as follows.  It normally takes about 5 s for a 

RIE system to stabilize to the set conditions.  This process is known as tuning.  

When operated under the auto mode, each time etch begins, the system will spin 

the tuning capacitor around trying to find the optimal tune.  Because of this 

repeating tuning process, overshoot may occur each time etch starts and hence 

produced more thickness reduction.  This effect is not desired because it adds 

uncertainty to the experiments.  To offset this effect, the system can be operated 

under the manual mode.  In this mode, after the first tuning, the position of tuning 

capacitor will not change and it should be in its optimal position for the rest of 

experiments as long as the same recipe parameters are set from run to run. 

 

Another observation from the above results is that the decrease of ΔT of ZEP 

samples after cryo-etch is less than that of PMMA samples.  Considering that ZEP 

samples also yielded less enhancements in preliminary RIE tests, I believe the 

reason is that ZEP is overall more resistant to RIE than PMMA [85, 86].  This is a 

positive factor for RIE process because it can preserve ΔT better.  However, ZEP 

also exhibits less thickness reduction after electron beam exposure, too.  

Therefore, there is a trade-off between the selection of PMMA and ZEP.  PMMA 
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exhibits more thickness reduction after electron beam exposure but suffers from 

the decrease of ΔT during RIE.  On the other hand, ZEP exhibits less thickness 

reduction after electron beam exposure but withstands the RIE and preserves ΔT 

better.  PMMA is easily cross-linked by high doses whereas ZEP is more tolerant 

to high doses before cross-linking becomes significant.  To conclude, although the 

work shown in this thesis focuses more on PMMA as it is an overall better 

understood resist, ZEP also has a potential to make this developer-free approach a 

better process and more investigations should be done to further realize its 

potential. 
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6 HIGH RESOLUTION TRIALS 

In this chapter, a few experiments for achieving high resolution dense gratings are 

presented.  The standard test structures used for the above experiments were 

relatively big (1 µm2 squares) so that both AFM inspections and calculations can 

be easily done.  However, I have managed to pattern dense high resolution 

gratings on both PMMA and ZEP samples without liquid development or post-

exposure processing.  A Hitachi S4800 was employed to inspect the samples. 

  

6.1 Challenges during SEM imaging 

A major problem during SEM is the resist damage due to SEM electrons.  The 

patterns are being erased during SEM, which in fact exposes the patterns again 

while imaging.  After zooming in and zooming out, the pattern was totally 

destroyed.  I have tried coating the samples with Cr.  Surprisingly, the contrast 

was reduced by coating, possibly because the metal layer evened out the patterns.  

I have also examined the effect of utilizing high exposure doses.  It seems that 

high dose created deeper patterns that were still recognizable after imaging and 

the image looks sharper too.  Also, I noticed that there are a few seconds for 

adjustments (focus and stigmation) before the patterns are totally destroyed.  This 

is how the successful images are taken.  However, due to the short time window 

for adjustments and the fact that the electron dose during SEM scales up with 

magnification and hence more damage to the pattern, higher magnification images 
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were not obtained.  Lastly, most of the images shown in the following discussions 

were obtained without Cr coating unless otherwise noted.      

 

6.2 70 nm half-pitch gratings 

So far, 70 nm half-pitch gratings have been successfully pattern on both PMMA 

and ZEP resist.  An example of the results is shown in Figure 6.1. 

 

Figure 6.1  70 nm half-pitch gratings on PMMA and ZEP.  SEM images of 70 nm half-

pitch gratings exposed at 3 keV, 7.5 μm aperture, no development, on (a) 72 nm 950k 

PMMA on Si, ~ 600 μC/cm2 (b) 64 nm ZEP 520A on Si, ~ 100 μC/cm2.  The dose range 

of the PMMA sample was from 100 to 900 µC/cm2 and the ZEP sample was from 25 to 

225 µC/cm2. 
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40 and 50 nm half-pitch gratings were achieved too.  However, due to the imaging 

challenge, the quality of the images was not very persuasive.  Thus the results are 

not included. 

 

6.3 Developer-free vs. Liquid development 

Finally, I made a comparison between liquid development and developer-free 

approach with ZEP samples.  The results are shown in Figure 6.2 

Developer-free Liquid development 

50 nm lines with 250 nm spacing, E-Beam, 3 keV, 7.5 µm aperture 

  

• 64 nm ZEP 520A 

• Area Dose = 200 μC/cm2 

(equivalent to Line Dose 40 

pC/cm) 

• No development 

• Not coated with Cr 

• 61 nm ZEP 520A 

• Line Dose = 40 pC/cm 

• Developed in ZED N-50 for 30 

s followed by 20 s rinse in 

MIBK 

• Coated with Cr 

Figure 6.2  Developer-free vs. Liquid development  
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It should be note that developer-free sample was not coated with Cr whereas the 

liquid development sample was coated with Cr.  Hence the image contrast of 

liquid development sample is better.  While the developer-free sample has likely 

not cleared down to the substrate, the contrast modulation observed does indicate 

that the thickness reduction is scalable to high resolution structures.  Although the 

doses employed in the experiments prior to this chapter are generally higher than 

the doses required for conventional liquid development, it seems that for dense 

gratings, it is also possible to achieve considerable thickness reduction at 

comparable doses to conventional liquid development for the pattern to be 

visualized.  For example, the samples from Figure 6.2 were exposed at equivalent 

doses though the unit was in area dose and line dose.  In other words, the value of 

dose is the same if converting the area dose to line dose or vice versa.  This 

suggests the possibility to utilize the developer-free approach at a lower dose 

regime that is closer to the conventional liquid development EBL process. 
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7 CONCLUSIONS & OUTLOOK 

7.1 Conclusions 

The purpose of this thesis work is to utilize the resist thickness reduction due to 

electron beam irradiation and investigate a patterning approach without the usage 

of liquid development.  I have employed heating and RIE as post-exposure 

processes in order to increase thickness reduction and obtain pattern clearance.  

Even without any post-exposure processing, I have observed substantial thickness 

reduction up to 38% by electron beam irradiation.  This reduction is likely due to 

the production of volatile fragments through the scission process in the resist.  

The thickness reduction induced by electron beam irradiation depends on 

exposure dose, beam energy, and initial film thickness.  The doses required for 

this process are generally higher than typical exposure doses used in standard 

liquid development processes.  Low exposure energy is particularly important to 

achieve thickness reduction.  Post-exposure heating can increase the height 

difference and even achieve clearance; however, at the risk of pattern distortion.  

The effectiveness of post-exposure heating is likely due to the evaporation of less 

volatile fragments.  There is an interaction between heating and optimum dose, 

probably because of cross-linking and carbonization.  To date, 70 nm half-pitch 

gratings have been successful patterned on both PMMA and ZEP without liquid 

development.  Further optimization of both exposure and post-processing is 

possible, with good prospect for a viable EBL patterning process that does not 

require liquid development. 
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7.2 Outlook 

Presently, the developer-free EBL patterning is at an early stage research.  Many 

parameters can be optimized in future experiments.  Based on the observations 

made, I believe the exposure dose should be reduced to about 400 µC/cm2 if 3 

keV energy is used for optimum results.  It would be helpful to further extend the 

modelling of energy dependencies with the ultimate goal to precisely predict the 

most efficient energy when other parameters vary.  

 

It would be also interesting to heat thicker samples since thickness dependency of 

physicochemical properties of PMMA have been observed [132].  It is possible 

that thicker resist would perform better in the heating process.  What also worth 

doing would be heating the samples in a vacuum ambient because lowered 

pressure may enhance the evaporation of volatile fragments. 

 

As for the RIE conditions, at this stage, further study is needed to find out 

whether ion sputtering etch or reactive ion chemical etch should be the principal 

process during the RIE, as well as how to balance these two factors.  Regarding 

the reduced etch preference to exposed resist during RIE, certainly further 

exploration in cryo-etch would be helpful.  In the meantime, the alternative would 

be to try out a soft post-exposure bake before RIE.  One can expect that the 

baking would harden the unexposed and partially exposed film so that their etch 

resistance is improved.  Through co-optimization with the exposure conditions, I 

expect total pattern clearance could be achieved with RIE as well. 
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For the imaging challenge, it would be worthwhile to try tilted imaging because 

that would provide more contrast.  Another alternative would be cleaving the 

sample in liquid nitrogen and imaging the cross-section of the pattern. 

 

Another non-trivial factor in the overall process is the pre-exposure sample 

preparations.  What kind of solvent the resist is prepared with and the residual 

solvent after pre-bake may also have an impact on the thickness reduction after 

electron beam exposure.  Therefore, the effect of pre-bake conditions such as 

temperature and time should be studied and considered in the overall process.  

 

Inspired by the research conducted by D. A. Czaplewski and L. E. Ocola [89], the 

applicability of second exposure after post-exposure processing may be explored.   

 

It would also be interesting to investigate the viability of this developer-free 

approach to other electron beam resists such as HSQ.  Because HSQ undergoes 

cross-linking when exposed by electron beam, it may exhibit thickness change 

too.  Other research has shown that it is possible to thermally develop calixarene 

resist [131], which may imply that thermal development may work for HSQ as 

well. 

 

Finally, because ion beam lithography has a number of similarities with EBL 

(such as ion beam induced chain scission in positive-tone resist and cross-linking 

in negative-tone resist) [137], and provides several advantages, for example a 
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high sensitivity [138], a developer-free resist processing may be extendable to this 

technology as well.  The possibility of resist thinning by ion beam processing is 

well known [139] and worth a further exploration.  Potentially this may lead to 

novel processing concepts building on a foreseeable convergence of lithographic 

and etching technologies.  
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