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A b s W tV '
Two studies were conducted to evaluate the consequences o f 

multidimensionality on equating outcomes when IRT true-score equating is employed 

under a common-items nonequivalent groups (CI-NEG) design. The Stocking-Lord 

(1983) scale transformation was employed. The first study was a simulation using 

realistic item parameters with two 68-item test forms, X and Y. A 2 (form 

parallelism) x 4 (correlation between dimensions) x 3 (group equivalence) x 3 

(location o f items measuring the second dimension) factorial design was employed, 

giving a total o f  72 conditions. Each condition was replicated 100 times, and 

measures o f M ean Absolute Difference and proportion o f examinees with a Score 

Difference that Matters (Dorans & Feigenbaum, 1994) were examined. The second 

study used real data taken from two separate licensure tests. Each test was split to 

create two forms. The scores from each form were equated to each other using 

equivalent and nonequivalent groups through the common-items nonequivalent 

groups design. The equating procedures were conducted in a manner identical to 

those used in the simulation study.

In the simulation study, equating with parallel forms tended to be robust under 

most conditions, but equating with nonparallel forms tended not to be robust even 

under unidimensional conditions. In both simulated and real data studies, when the 

second dimension items were among both the unique and common items, equating 

tended to be more robust than when the items were in the other two locations. 

Equating was least robust when the items measuring the second dimension were only 

represented in the com mon items. The simulation study results support the previously 

established relationship between the correlation between test dimensions and IRT
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equating robustness. In both studies, IRT equating using a CI-NEG design tended to 

be more robust when the groups were equivalent. Equating benefits were limited with 

nonparallel forms. In many nonparallel conditions, error associated with scores was 

larger when equating was performed than when unequated. Collectively, these results 

provide evidence that factors beyond just the degree o f multidimensionality present 

on tests mediate the robustness o f IRT equating, including form parallelism, the 

location o f the items measuring the second dimension, and group equivalence.
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M ultidimensionality and IRT Equating 1

Chapter 1: Introduction

Overview

Test score equating is a practice often used in large-scale testing programs in 

which multiple forms o f the same test must be administered to ensure test security and 

equity in the testing process. Test equating can be used to adjust for small differences in 

test form difficulty, so that test scores are equivalent. However, for equating to be useful, 

it must be conducted in such a way that the equated test scores are reliable and can be 

interpreted validly.

It should be emphasized that test equating can only be conducted on test forms 

that are intended to be parallel in test content, specifications, and difficulty (Kolen & 

Brennan, 2004, p. 10). For example, while it would be possible to equate scores from two 

forms o f  the same Grade 9 math test, it is not possible to equate scores from two Grade 9 

math tests that cover different concepts, nor would it be possible to equate scores from a 

Grade 9 math test to scores from a Grade 6 math test. Linking and scaling, respectively, 

are the methods that could be used to compare test scores in these two cases. Only 

equating allows for test scores to be used interchangeably (Kolen & Brennan, 2004, p.

10).

There are two main aspects o f equating that must be considered. The first 

consideration in equating test forms is the data collection design. In testing programs, the 

common-items nonequivalent groups design is used commonly. This design has a subset 

o f items that is identical on both tests. Performance on these items is used during 

equating to separate differences in item characteristics (difficulty, discrimination) o f the 

unique items on each test form from ability differences between the groups assigned to
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M ultidimensionality and IRT Equating 2

each test form. This design is used when groups cannot be assumed to be randomly 

equivalent, such as in cases where it is not possible to administer the test forms at the 

same time or to randomly assign examinees to test forms.

W ith the data collection design selected, the second consideration in equating is 

the statistical method to be used to equate the test forms. Item response theory equating is 

a popular method for test equating. Item response theory, or IR T1, is used often in test 

development and it is therefore advantageous to continue to use IRT during the equating 

process. IRT equating is based on the same theoretical underpinnings as IRT item and 

examinee calibration (Embretson & Reise, 2000) and so requires the same assumptions to 

be held: local independence, nonspeededness, and unidimensionality.

Unidimensionality is difficult to achieve under many operational testing 

conditions because most large scale tests measure complex constructs and/or require 

multiple skills. For the purposes o f this research, a test is defined as unidimensional if  it 

contains only one dim ension or if  it meets the criterion o f essential unidimensionality 

(Stout, 1987). By extension, a test is defined as multidimensional if  it contains two or 

more dominant dimensions and fails to meet the criterion o f essential unidimensionality.

M ost tests contain more than one dimension, even if  one dimension is dominant. 

As a result, multidimensional IRT (MIRT) models are necessary to account for additional 

dimensions. M ultidimensional equating models are still under development (e.g.,

1 It should be noted that IRT can be used in two contexts, 1) to refer to Item Response Theory as a general 
concept, including both unidimensional and m ultid im ensional m odels, and 2) to refer specifically  to 
unidimensional IRT. For the purposes o f  this dissertation, the acronym IRT refers only to unidimensional 
models and equating methods, while Multidimensional IRT (or MIRT) will be referred to specifically, if  
required.

2 Because o f  their natural connections, there is often confusion and/or vagueness when discussing 
constructs and dimensions (Reckase, 2006). It should be noted that while substantive constructs and 
statistical dimensions might align closely, it is not necessarily always the case and therefore it becomes 
important to treat these two concepts as distinct. See p. 5 for definitions.
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M ultidimensionality and IRT Equating 3

Oshima, Davey, & Lee, 2000) and are not widely used in practice. In the absence o f a 

MIRT equating methodology, practitioners often choose to use unidimensional IRT 

equating even when the underlying data structure is multidimensional. But what are the 

consequences o f failing to meet this assumption underlying the use o f IRT on equating 

outcomes?

Purpose

The purpose o f this research was to explore systematically four variables that are 

expected to affect equating outcomes using unidimensional IRT score equating with a 

common-items nonequivalent groups design when two dominant dimensions are present. 

There are several properties that can be used to choose criteria to evaluate the adequacy 

o f the equated outcomes. This research focused on the equity property, which stipulates 

that the scores o f tests, once equated, should be equivalent such that it does not matter 

which test form an examinee is administered. First, in order to have control over the 

variables, a simulation study was conducted. Four research questions were addressed:

1) W hat is the baseline error that is associated with equating? That is, how much 

error would be present if  scores on a test form were equated to scores on the same 

test form?

2) Flow does the correlation between dimensions affect both the magnitude of 

equating error and the proportion o f examinees with error in their equated scores 

that is large enough to matter?

3) Is the magnitude o f  equating error or the proportion o f examinees with equating 

error that is large enough to matter in their equated scores different if  the groups 

are randomly equivalent versus nonequivalent?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M ultidimensionality and IRT Equating 4

4) Does the location o f the items (unique, common, both unique and common 

locations) related to the second dimension have an effect on the magnitude of 

equating error and the proportion o f examinees who are affected by equating 

error?

Once these questions were addressed using a simulation design, data from two 

real tests were analyzed. The results o f the real data study were compared to the 

simulation study results to see if  they demonstrated the same patterns for the factors that 

were artificially manipulated during the simulation. I f  the results were found to align, 

then there is increased confidence that the simulation results are reasonable and might be 

generalizable to other real testing situations.

Rationale

This research is important because while, strictly speaking, IRT equating 

techniques should only be used under unidimensional conditions, there is some evidence 

to suggest that IRT equating is robust to violations o f this assumption under some 

conditions (Camilli, W ang & Fesq, 1995; De Champlain, 1996; Dorans & Kingston, 

1985). This study systematically explored key factors that might mediate the robustness 

o f  unidimensional IRT equating, including specific properties o f  the common-items 

nonequivalent groups design that have not yet been evaluated in the psychometric 

literature, including the location o f the items measuring the second dimension, the degree 

o f parallelism between the forms, and the degree o f group ability differences.

Glossary o f  Technical Terms 

Common-items Nonequivalent Groups Design: A  data collection design used for equating 

in which the groups o f  examinees administered each test form are assumed to be non
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M ultidimensionality and IRT Equating 5

equivalent in terms o f  ability. A correction for ability differences between groups is 

possible by comparing performance on a set o f  items that are common to both test forms. 

These common items are matched to either the remaining items on the test in terms o f 

difficulty and content specifications for an internal anchor (as used in the present study) 

or to all o f  the items on the forms being equated for an external anchor.

Construct: a substantive ability or trait that that is measured by an assessment or test 

(Reckase, 2006).

Dimension: a statistically determined aspect o f a data set. A dimension is a latent trait 

that is measured in the examinees by the some or all o f  the items on a test form. 

Dimension(s) m ay or may not align with the anticipated pattern o f results based on the 

construct(s) being measured. Therefore, differing substantive and statistical 

interpretations the performance o f  a test are possible.

Equating: A method to correct for small differences in difficulty between alternate forms 

o f the same test (built to the same specifications and difficulty) that allows test scores to 

be interchangeable.

Equity: “If  an equating o f  tests X and Y is to be equitable to each applicant, it must be a 

matter o f indifference to applicants at every given ability level 9 whether they are to take 

test X or test Y.” (Lord, 1980, p. 195)

Essential Unidimensionality: A test that contains only one dominant dimension along 

with one or more weaker dimensions that do not interfere with the measurement o f the 

dominant dimension meets the requirements o f essential unidimensionality. Often used as 

an operational definition o f unidimensionality in practical settings.
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Multidimensionality and IRT Equating 6

Item Response Theory (IRT): A test theory that models examinee performance based on 

the interaction between examinee characteristics (ability or abilities) and item 

characteristics (e.g., difficulty, discrimination).

Local Independence: An assumption o f IRT that requires that examinee responses to 

items be independent o f  each other after accounting for ability.

Multdimensional: A test that contains more than one dimension (or fails to meet the 

criterion for essential unidimensionality).

Parallel Test Forms: Two or more test forms that are built to the same content 

specifications and having matching statistical characteristics (for the purposes o f this 

dissertation, closely matching means and variances o f a- and /^-parameters).

Parameter. A property or characteristic o f an item or person that is expressed 

numerically.

Robust: Relating to a result (or results) o f a statistical procedure (in this case equating) 

that have an acceptable level o f error (an acceptable level can have multiple definitions, 

depending on the scenario), despite violation(s) to the assumption(s) o f the theory 

underpinning the procedure.

Scale Transformation: A statistical process by which test items that are not on the same 

scale are adjusted to be on a common scale.

Score Difference that Matters: Any score difference between the equated score and 

criterion score that is larger than one-half o f a reporting scale unit (i.e., a score difference 

that would be detected after scores were rounded for reporting).

Target Score: The actual score an examinee achieved on Form X, which acts as a 

standard for comparison for the equated Form Y scores (equated to Form X).
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M ultidimensionality and IRT Equating 7

Unidimensional: A test form that contains one dimension. A theoretical idea, as most real 

test forms will contain more than one dimension, but will meet the definition o f essential 

unidimensionality (see p. 5).

Organization o f  Dissertation 

The next two chapters will cover the relevant literature and methods used to 

conduct this simulation study. Chapter 2 is divided into two parts. The first part will 

introduce the relevant concepts o f equating, and more specifically, IRT equating, 

discussing the significance o f these concepts to the research question o f interest. The 

second part reviews and critiques the body o f literature dedicated to examining the effects 

o f  violating unidimensionality on IRT equating, highlighting the current understanding of 

the issue and what is still unknown. Chapter 3 contains the methods, procedures, 

dependent measures and software used to complete the research, which was approached 

using both simulated and real data analyses.

W ith the rationale, background, and methods outlined in Chapters 1, 2, and 3, 

Chapter 4 presents the results o f the simulation study, while Chapter 5 presents the results 

o f the real data study. In Chapter 6, the limitations o f both studies are outlined, followed 

by a discussion o f the results. The discussion includes the possible causes o f the observed 

results, the relation o f  the simulated results to the real data results, the relation o f these 

results to past studies, and conclusions about the implications o f this research for IRT 

equating applications. Finally, recommendations for future research are proposed.
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M ultidimensionality and IRT Equating 8

Chapter 2: Relevant Concepts and Literature Review 

Overview

Large-scale standardized testing is an important part o f education in North 

America. Students are administered many standardized tests over their lifetime. The 

decisions made from these test results can be as important as graduating from high 

school, being admitted to university, or being licensed to work in a chosen profession. 

Given the high-stakes nature o f these tests and the potentially adverse effects o f incorrect 

decisions based on these test scores, it is important that the entire testing process, from 

test development to score interpretation, be equitable. To protect equity, new test forms 

are often used for each administration in order to ensure that test items are not known to 

some examinees prior to the examination date. Ideally, alternate test forms would be 

parallel to previous test forms in both substantive content and statistical difficulty (Kolen 

& Brennan, 2004, p. 3). However, this task is nearly impossible to achieve during test 

development, especially if  a new test form is required for every test administration, or if 

items are not piloted to gather information on their statistical characteristics.

Additionally, pilot testing o f new test forms may not always align with actual 

performance during a real test administration because pilot results are based on small 

samples using incomplete or experimental test sections, and pilot samples are often not 

representative o f the population. As a result, differences between the test forms are a 

threat to equity that m ust be addressed.

Test score equating is a method used to adjust for score differences that occur 

between test forms. It provides a method for comparing and interpreting test scores from 

different forms. However, test equating is not infallible. Threats to the statistical
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assumptions that underpin the theory upon which equating methods are based have the 

potential to create faulty equating functions, resulting in systematic equating errors.

Faulty equating potentially poses as much threat to test equity as the original differences 

in form difficulty (Harris & Crouse, 1993).

W ith the stakes and implications o f testing being so high, it is important for all 

stakeholders to feel confident about the procedures used to come to decisions based on 

test scores. Because equating plays an important role in the testing process, it is important 

to investigate the conditions which might pose a threat to equating, and to document 

when and to what extent equating errors occur under specific conditions, so that testing 

practitioners can make more informed choices about which equating methods and 

procedures to use.

The following chapter is divided into two main sections. First, the relevant 

concepts o f  IRT equating are reviewed. The organization o f this section is intended to 

mirror the steps that are taken in conducting an equating study. Second, a critical review 

o f literature related to using unidimensional IRT under multidimensional conditions will 

provide a summary o f what is known about this topic to date, as well as demonstrate 

where there are gaps in the current body o f knowledge. A brief summary follows both 

sections.

Relevant IRT  Equating Concepts

This section reviews the concepts that are relevant to the research conducted to 

examine the effects o f multidimensionality on uni dimensional IRT equating, specifically 

its effects on equating equity. The review includes 1) general equating concepts 

including: a) properties o f  equating, b) data collection designs used for equating, and c)
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equating methods; 2) concepts specific to IRT equating, including: a) assumptions of 

IRT equating, b) dimensionality and data structure, c) two-parameter logistic IRT models, 

d) IRT param eter estimation, e) Stocking and Lord scale transformation, and f) IRT true 

score equating; and, finally; 3) criteria for assessing the adequacy o f equating, including 

a) simulated data, b) indices, c) circular equating, and d) practical criteria.

General Equating Concepts

Properties o f  equating.Thc relationship between the scores on test forms should 

possess three properties once equated: symmetry, invariance, and equity (Kolen & 

Brennan, 2004, pp. 10-13). These properties are desirable because they contribute to both 

the validity and reliability o f the equating function. These properties ensure that equating 

is contributing to the fairness o f the testing process.

The first property, symmetry, describes the relationship between the scores o f two 

equated test forms. Symmetry requires that the equation that converts scores from form X 

onto the scale o f form Y should be the inverse o f the equation to convert scores from 

form Y onto the scale o f  form X (Kolen & Brennan, 2004, p. 10). This property dictates 

that no advantage or disadvantage in final equated score exists because o f  the direction 

(Y to X or X  to Y) o f  the equating. The second property, invariance, requires that the 

equating function for any given subgroup in the population o f examinees should be the 

same for all other subgroups within the population (Kolen & Brennan, 2004, p. 13). This 

property implies that the tests must be free o f bias that would affect test scores. The third 

property, equity, also relates to avoiding bias in equating. This research will focus on the 

equity property as the criterion to evaluate equating outcomes.
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Lord (1980) stated, “If  an equating o f  tests X and Y is to be equitable to each 

applicant, it m ust be a matter o f indifference to applicants at every given ability level 6  

whether they are to take test X or test Y” (p. 195). This definition requires that both test 

forms measure the same psychological construct, and that the construct aligns closely 

with the dimension. From a statistical standpoint, this property requires that the 

conditional frequency distribution for the new form (after transformation) must be 

identical to the conditional frequency distribution for the old form at every 6 . To meet 

this requirement, the forms must have, at a minimum, equal means and variances.

Lord’s (1980) definition o f equity is now referred to as strong equity, and is 

considered a theoretical requirement rather than a practical rule. In practice, a less 

restrictive definition o f equity, known as weak equity, is used commonly (Morris, 1982). 

M orris’ definition o f  equity requires that examinees with the same true score have the 

same score on form X as on form Y, once the Y scores have been placed on the equated 

score scale. W eak equity also requires that the test forms measure the same psychological 

properties or area o f achievement. W eak equity is also known as first-order equity.

First-order equity (originally proposed by Divgi, 1981) is achieved when the 

means o f the X and equated Y conditional distributions are equal across the 0 distribution. 

In other words, the expected true score on X is equal to the expected equated score on Y, 

for all 6 . An additional equity criterion, second-order equity, requires the variances o f the 

conditional distributions be equal (Morris, 1982).

Equity is critical to research designed to examine the robustness o f equating using 

multidimensional data because it is the property that is most likely to be sensitive to 

equating error. According to Lord (1980), equity in unidimensional equating is
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potentially compromised under multidimensional conditions. The result o f poor equity in 

equating is bias. Bias occurs as a result o f equating when, for a given 6 , the expected 

performance on test X  is systematically better (or worse) than on test Y after the equating 

function has been applied (Bolt, 1999).

Data collection designs used fo r  equating.Theve are two important components to 

test equating: 1) the equating design that is used to administer the tests, and 2) the 

statistical method used to equate the tests. The equating design dictates how subsequent 

equating steps will be conducted. The most technically simple equating design is the 

random groups design. The random groups design is desirable because it makes equating 

calculations very straightforward, and only requires that each group take one test form. 

Any differences in test scores observed between test forms are attributed to differences in 

the forms themselves because the groups o f examinees are assumed to be randomly 

equivalent. However, this assumption is very difficult to meet in practice because 

alternate test forms are most often used at different times and in different locations. As a 

result, there is a need for an equating method that is able to account for differences 

between test form difficulties separate from group differences.

Another equating design is the single groups design. This design is similar to a 

repeated measures data collection design, where each person in the group acts as their 

own control for ability. Because both groups are identical in ability, any differences in 

ability are attributed to differences in form difficulty. This design is very strong in theory 

because the groups are identical, but is not usually practical in an operational setting 

because test-takers would be required to take both test forms, ideally at the same time.
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The additional testing burden can lead to fatigue and reduced motivation among 

examinees (not to mention being undesirable from a customer service point o f view).

A more practical design for equating is the common-items nonequivalent groups 

design. This equating design utilizes a set o f items that are common to all test forms. 

These common (sometimes called anchor) test items are used as a bridge between forms, 

where performance on the common items is used to control for the effects o f differences 

in ability between the groups so that equating across the forms can occur. This process 

requires an additional step in the equating process, adding complexity to equating 

calculations. However, this design is more feasible in practical testing situations because 

examinees only need to take one form and groups are not required to be randomly 

equivalent over time.

The importance o f  the characteristics o f the common items set (or anchor test) in 

this equating design cannot be overemphasized. The items in the common items set must 

be a surrogate o f  the remaining items on both test forms, both in statistical specifications 

and substantive content (Kolen & Brennan, 2004, p. 19). When the common items do not 

meet these requirements, the validity and reliability o f equating is threatened.

Equating methods. Once the equating design is selected, an equating method must 

be chosen. Three main classes o f equating methods are used with the common-items 

nonequivalent groups design: 1) linear, 2) equipercentile, and 3) IRT. Linear equating 

methods find a slope and y-intercept coefficient that is applied to the raw test scores to 

linearly transform them to the target score scale. As a result, the equating conversion line 

is linear, which implies the assumption that forms differ in difficulty uniformly across the 

entire score scale range. There are many different types o f linear equating methods,
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which differ greatly in procedure and complexity (e.g., Mean; Linear; Tucker (Gulliksen, 

1950, pp. 299-301); Levine observed and true score (Levine, 1955)), but as a group they 

are considered to be the simplest form o f equating.

Equipercentile methods (e.g., chain (Dorans, 1990; Livingston, Dorans, & Wright, 

1990), frequency estimation (Angoff, 1971; Braun & Holland, 1982)) use the cumulative 

score distributions from each form to equate the scores. Because they align the 

distributions, equipercentile conversions are typically non-linear. A score on one form is 

set to equal the score on the target scale that is o f the same percent rank in the cumulative 

score distribution o f  the target test form. Equipercentile methods are more accurate than 

linear conversions because they do not assume a linear relationship between forms. 

However, the cost o f a non-linear conversion is that larger sample sizes than those 

required for linear equating are required to ensure accuracy o f the conversion across the 

entire score range, so that sample sizes are adequate across the entire score scale.

IRT equating is a commonly used method, especially in cases where IRT is used 

in other steps o f  the testing process (e.g., test development). IRT also produces a non

linear conversion, but requires even larger sample sizes than equipercentile methods 

because adequate sample sizes are also required for accurate item and examinee 

parameter estimation. As a result, IRT equating methods are generally only used with 

large-scale assessments where several thousand examinees would take a form at any 

given administration. As with any other equating method, the assumptions that underlie 

the IRT procedures must be met in order for the results o f the equating to be accurate.
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Concepts Specific to IRT Equating

Assumptions o f  IR T  equating. IRT equating is based on three strong assumptions 

because o f  its connections to item response theory (IRT). These assumptions are 

unidimensionality, local independence, and non-speededness. O f these assumptions, two, 

unidimensionality and local independence, are critical to research examining the effects 

o f multidimensionality on IRT equating.

First, unidimensionality requires that there is one singular factor or trait that the 

test is measuring. Second, the items are assumed to be locally independent, so the 

response to one item is not dependent on the responses to any other items once the ability 

6 is accounted for. Local independence can also be called conditional independence, 

meaning that test items are independent o f each other once conditioned on ability 6. 

Mathematically, local independence is represented as:

P(Ui,U 2,...U„...Un 10) = />(£/, | Q)P(U2 10).../W , |0 ).../W „  |6)> 

where Ut is the response o f an examinee with ability 6 to item i o f n items. Local 

independence is an essential assumption o f maximum likelihood estimation, an important 

statistical procedure used commonly to estimate item and ability parameters in an IRT 

model. W hen local independence is compromised, so is the accuracy o f the maximum 

likelihood estimates (Hambleton, Swaminathan, & Rogers, 1991).

The first assumption o f IRT, unidimensionality, is a straightforward concept, at 

least in theory. A test is uni dimensional if  it measures only one trait. A test is 

multidimensional i f  it measures more than one trait. The second assumption o f IRT, local 

independence, is related to the first assumption. While distinct concepts,
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unidimensionality and local independence are linked in unidimensional IRT equating. 

Local independence requires that responses to items on a test be uncorrelated, conditional 

on the dimension or dimensions accounted for in the IRT model. If  a test is 

unidimensional, local independence is achieved automatically because only one trait 

related to performance exists. Unidimensionality is not a necessary condition for local 

independence; rather as long as all dimensions are fully explicated in the measurement 

model, local independence will be achieved (Hambleton, Swaminathan, & Rogers, 1991). 

However, it is important to note that when a unidimensional model is employed under 

conditions o f multidimensionality, not only is the assumption o f unidimensionality 

violated, but also the assumption o f local independence is violated.

D imensionality and data structure. Dimensionality refers to the number of 

distinct dimensions or factors that are present in a set o f test items. These dimensions are 

unique constructs, which might be related to one another, but that are distinct from one 

another in some meaningful way. Dimensionality can be assessed both substantively and 

statistically. In an ideal situation, the results o f both assessments closely align; however, 

this is not always the case.

As with many other areas o f psychometrics, assessing the dimensionality o f a test 

is not always straightforward. Pure unidimensionality is rarely observed in real tests with 

more than one item. Strictly speaking, unidimensionality is “the existence o f one latent 

trait underlying the data” (Hattie, 1985, p. 139). However, unidimensional and 

multidimensional are not mutually exclusive categories. A test may have essential 

unidimensionality, where one factor dominates a factor structure that contains weaker or 

theoretically unimportant additional factors (Stout, 1987).
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This weaker, less restrictive definition allows tests to meet the unidimensionality 

and local independence requirements o f IRT in practice. Stout (1987) defined essential 

unidimensionality statistically as a condition that is met such that there is one trait 6 

where the conditions o f  essential local independence are met (covariance among items 

approaches 0). In simple terms, essential uni dimensionality occurs when there is one 

strong or dominant dimension and one or more weak or inconsequential dimensions that 

do not interfere with the measurement o f the primary dimension (Stout, 1987, 1990). It 

could be argued, then, that multiple dimensions on a test, however well constructed, 

might be a natural consequence o f a test containing complex subject matter or even 

simple subject m atter in an applied setting. For example, the context used in passages on 

a reading comprehension test (e.g., sports, history, popular culture) might lead to a 

secondary dimension on a test if  more than one test item is assigned to each passage. 

However, the test would be essentially unidimensional if  the passage context (the 

secondary dimension) had a very small impact on the probability o f examinees answering 

the question correctly.

Essential unidimensionality might also be met when the correlations between 

dimensions is very high, such that the lesser dimensions do not interfere with the 

measurement o f the dominant dimension (Stout, 1990). For example, reading 

comprehension and vocabulary skills might be very highly related, so measurement of 

one dimension (assuming that the constructs align with the dimensions) does not hinder 

measurement o f  the other.

Stout’s T  is the test statistic that is employed to test for essential 

unidimensionality (Nandakumar & Stout, 1993). To use this statistic, the test items are
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split into three subtests. A short assessment test o f  homogenous items (i.e., assumed to be 

unidimensional) is designated A TI. These items are selected using either factor analysis 

or expert opinion, but does not include all o f the items that measure that dimension. A 

second assessment set with an equal number o f items is chosen to match the item 

difficulty distribution (but not necessarily dimension) with A TI, and is designated AT2.

A partitioning test (PT) is also created that contains all remaining test items. Examinee 

scores on PT are used to partition the examinees into K  groups based on the raw score on 

the PT items. A T-statistic is calculated for both ATI and AT2, based on the difference 

between estimated examinee and item p -v alue variance for each group k. Stout’s T  is 

based on the assumption that if  the ATI and PT are measuring the same dimension, then 

the 7-statistic for A TI will be small because the groups formed based on PT test scores 

will have small score variability within groups on the ATI test (the AT2 test statistic is 

used to correct for test length and difficulty differences between A TI and the total test). 

Thus, S tout’s T  is only significant (i.e., the null hypothesis, number o f dimensions = 1 is 

rejected) exceeds a critical value. The final T  value calculated:

r - ( 7 j - r 2/ V2) ,

where 7) is the T  statistic for ATI and T2 is the T  statistic for AT2. A significant T-value 

does not specify how  many dimensions are present on a test, only that more than one 

dimension is present. The program DIMTEST (Nandakumar & Stout, 1993) 

operationalizes Stout's procedure.

W hile Stout’s definition has been influential in dimensionality research (e.g.,

Bolt, 1999; DeChamplain, 1996; Meara, Robin, & Sireci, 2000; Nandakumar, 1991, 

1993), other methods o f assessing dimensionality exist. Another method is based on the
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analysis o f  the residual covariance matrix after fitting a non-linear factor analysis model 

to an item response matrix. The number o f factors for the analysis is set to the number o f 

factors hypothesized to underlie the item response matrix. This procedure is employed in 

the computer program NOHARM  (Fraser & McDonald, 1988).

If  most tests display at least some degree o f multidimensionality and there are 

potentially detrimental consequences to violating the assumptions o f IRT models, then it 

is important to examine test dimensionality before choosing an IRT model. However, 

assessing the dimensionality o f a test or set o f items is one of the most researched but 

least understood areas o f  IRT. Traditionally, the focus o f dimensionality assessment has 

been on determining if  a test is unidimensional (and thus whether unidimensional models 

and techniques can be used), rather than specifically trying to identify how many 

dimensions are present.

One o f the areas o f  uncertainty in assessing dimensionality is the judgm ent that 

must be made in the process. Using more than one method o f assessing dimensionality 

might yield different dimensional structures. For example, in a simulation study Finch 

(2002) found that NOHARM  tended to be more conservative (i.e., retaining a null 

hypothesis o f unidimensionality) than DIMTEST when the two-parameter logistic IRT 

model was fit to multidimensional data.

It is not always clear how many dimensions underlie a set o f response vectors in a 

data matrix, nor is it necessarily any clearer once the dimensionality o f the data has been 

assessed through statistical means. Therefore, more than one IRT model can be fit 

separately to any given data set. Once parameters have been estimated, it is useful to 

examine the goodness-of-model fit to the data. One approach to comparing IRT models is
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to assess their accuracy in reproducing the item response patterns o f  the original data 

(Embretson & Reise, 2000, p. 243). However, this type o f assessment o f model-data fit is 

still somewhat subjective, particularly in a case where it is not so important to determine 

which model is the best fit to the data (i.e., unidimensional versus multidimensional), but 

rather to determine if  a particular model fits the data adequately.

If  it is difficult to determine whether a test is unidimensional or multidimensional 

(Hattie, 1985), it is understandable why it might seem reasonable to apply unidimensional 

IRT techniques to data that may be deemed multidimensional. Unidimensional 

techniques are much simpler and easier to implement than multidimensional techniques 

because they require fewer subjects to achieve stable parameter estimates.

The correlation between dimensions in the data also affects dimensionality. If  the 

correlation between dimensions is high, a dimensionality assessment might determine 

only one dimension is present because the multiple dimensions present are so closely 

related. If  multiple dimensions are perfectly correlated (i.e., 1.0), then dimensions cannot 

be distinguished from each other, and the test is unidimensional. On the other hand, if  the 

correlation between dimensions is low, the dimensions are easier to distinguish from one 

another, and the test may be judged to be multidimensional.

A related concept to dimensionality is data structure, which refers to the way in 

which the dimensions are measured by the test items. There are two types o f 

multidimensional structures. Simple structure occurs when multiple dimensions arise 

because items on the test do not all measure the same dimension, but no items measure 

more than one dimension. Complex structure occurs when some or all items measure 

more than one identifiable dimension.
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Two-parameter logistic IR T  models. Once a decision about the dimensionality of 

the data has been made, an appropriate model must be selected. The two-parameter 

logistic (2-PL) model is relevant to a discussion o f equating because both the a- and b- 

parameters are affected by scale transformations o f IRT equating. These models are used 

on dichotomously scored items (i.e., correct/incorrect). By convention, these items are 

scored as 1 = correct, 0 = incorrect. The 2-PL model is defined by the equation:

Daj (Qr bl )

P . M i =X \ BT a n b, )  =
e

1 + e -̂C9,-A,>

where p y(9 )  is the probability that examinee j  with ability 9j will answer an item i 

correctly, xy is the response for item i by examinee j  (1= correct, 0= incorrect), a, is the 

discrimination parameter for item i, indicating where on the 9  scale the item will be 

maximally discriminating, b t is the difficulty parameter (expressed in the metric o f 6) of 

item i, and D  is the constant 1.7, which scales the logistic function close to the normal 

ogive function, p y (9) is in the closed interval [0,1], given that it is a probabilistic value. A 

higher p y(9 )  indicates the examinee is more likely to answer the item correctly, but does 

not guarantee a correct response ( nor does a low p - v alue guarantee an incorrect 

response) . The ability or theta (9) distribution is usually set, by convention, to the unit 

normal distribution (p = 0 ,c  = 1) with a lower bound o f -oo, and upper bound o f + qo. This 

convention is somewhat arbitrary (which will be o f importance in the discussion o f scale 

transformation later in this chapter). The a-parameter, as a measure o f the items’ 

discrimination is bound by -oo and + oo, though items with negative discrimination are 

undesirable because the probability o f answering the item correctly decreases with 

increasing examinee ability (Hambleton et al., 1991).
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The 2-PL model is also relevant to research examining multidimensionality 

underlying data because it has a multidimensional analogue, the M2PL model (Reckase, 

1979). The M 2PL model (shown here for two dimensions) is specified by:

p  (xv = 1 | 0 / ;aj , d, ) =  ---- (^8-^ry,
l + e

where xy is the response for examinee j  on item i, Oj is the vector o f order (1,2) containing 

the ability estimates for examinee j  on both dimensions 1 and 2, a; is the vector o f order 

(1,2) containing discrimination parameters a\ and a2 for item / and d, is a composite 

difficulty param eter for item i. Note how the 2-PL model can also be considered a special 

case o f the M 2PL model where the vectors Oj and a, contain only one 6 and a value, 

respectively and are therefore scalars, and d, is analogous to bt.

IR T  param eter estimation. Item and examinee parameter estimation, as mentioned 

earlier, can be conducted simultaneously using maximum marginal likelihood estimation 

(MMLE; Bock & Aitkin, 1981). For the purposes o f the proposed research, it is relevant 

to discuss M M LE because this is the method o f estimation used by the program BILOG 

(Mislevy & Bock, 1990), which was used in the present study.

To estimate parameters, maximum likelihood estimation methods must estimate 

either the item or ability parameters first, then use the estimated value(s) to find the other 

parameter(s). M MLE first estimates the item parameters, then the ability parameters. 

MMLE is based on the assumption that all examinee responses to a given item are 

independent o f each other in addition to local independence o f an individual exam inee’s 

responses to each item. Mathematically, this idea is represented by the formula:

p(x|0) = rib/(0)]Jrj[l-̂ (0)r>.
7=1
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where x is a vector o f  order (1 , j )  o f dichotomous outcomes for each examinee on that 

item (correct = 1, incorrect = 0) (Mislevy & Bock, 1990, p i -6). By integrating over 0, the 

probability o f a response vector becomes a function o f only the item parameter estimates. 

Parameter estimates o f a and b are found such that the likelihood o f the examinee 

responses to a given item is maximized. In other words, MMLE jointly estimates 

parameters a and b that would explain the pattern o f correct and incorrect examinee 

response to items that was observed. Once the item parameters are estimated, they are 

used to estimate examinee ability values. MMLE for estimating item and parameters 

requires large sample sizes in order to be able to produce stable parameter estimates. 

Large sample sizes are also important so that the prior approximate ability distribution 

fits the data (Hambleton et al., 1991).

The central basis for likelihood estimation o f a response vector is local 

independence. If  local independence is violated, then errors in parameter estimation can 

occur. Research in this area has pointed to errors in over estimating both difficulty and 

discrimination parameters (Ackerman, 1987, 1991; Yen 1993). I f  estimation errors occur 

because o f the presence o f a second dimension, it seems reasonable that test forms with 

lower correlations between the first and second dimensions would have greater parameter 

estimation errors associated with each test form than test form with higher correlations. 

This parameter estimation error in turn would make equating these test forms more prone 

to equating error than test forms with higher correlations between dimensions. Ackerman 

(1991) described this error as “filtering” (p.23) o f the multidimensional characteristics of 

the test items. It has been demonstrated previously that higher correlations between 

dimensions reduce the error associated with using a unidimensional model on
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multidimensional items (Ackerman, 1987, 1989). The direct link o f parameter estimation 

to IRT equating also means that error that occurs in the parameter estimation step would 

be expected to also contribute to equating error.

Stocking and Lord scale transformation. In IRT equating, when item parameters 

are estimated for each test separately, the items are set on a 6 scale that is relative to the 

ability levels o f  the examinees that took each test. If  two groups are non-equivalent, the 

item parameters that are estimated for each test form will be on discordant scales. This 

artifact is a result o f the general convention o f setting the mean ability to zero and the 

standard deviation to one for each sample when estimating the IRT item parameters. For 

example, items will appear more difficult on a test form that was administered to a group 

o f examinees with lower mean ability than if  they were administered to a group of 

examinees with higher mean ability. Therefore, it is necessary to first scale item 

parameters from each test form on to a common metric before the test scores can be 

equated. In the common-items design, the common-items set is used as a bridge between 

scales. The common items make it possible to separate differences in ability between 

groups from differences in item difficulty between test forms. For the purposes o f this 

proposal, the discussion o f equating will be framed in equating form Y to form X.

In the common-items design, form X and form Y are associated with scales P and 

Q, respectively. Scales P  and Q are assumed to differ by a linear transformation. The 

differences in common-item parameter estimates between test forms are used to calculate 

scaling coefficients that align the remaining items on both test forms. The A 

transformation coefficient adjusts the slope o f the 6 scale, while the B coefficient changes 

the y-intercept. The formula for A is:
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A = ^ ^ 5
aPi

while the formula for B  is:

B  = bFl -  A b Qi

(from Kolen & Brennan, 2004, pp. 162-163). By rearrangement, the formulas are:

aPi= ^ , a n d  bPi = A b Ql + B  
A

are used to transform each a and b parameter for item i from scale Q (Form Y) to scale P 

(Form X).

The Stocking and Lord procedure (Stocking & Lord, 1983) uses an iterative 

approach to find A and B  transformation constants that minimizes the function:

SLcrit -  ^  SLdiff (0 / ) ,
j

where:

i \V  i:V  A

In this formula, SL d iff is the squared difference between the test characteristic

curves o f  the com mon items set V in each test form, and a0i, b0i, aPj, and bPj are the a

and b param eter estimates for scales Q and P, respectively. Once the calibration 

coefficients have been calculated, they are used to adjust all test items onto the common 

metric. Based on usage in the equating literature, the Stocking and Lord procedure is a 

commonly used scale transformation (e.g., Bolt, 1999; Camilli, Wang, & Fesq, 1995; De 

Champlain, 1996; Dorans & Kingston, 1985; Stocking & Eignor, 1986; Thomasson,
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1993) and has been found to produce empirically the most accurate transformation results 

(Baker & Al-Karni, 1991).

Scale transformation methods are susceptible to error from using a model under 

conditions where the required assumptions are violated. As indicated earlier, local 

dependence caused by multidimensionality can lead to errors in estimating the a- and b- 

parameters (Ackerman, 1987; Yen 1993). These parameters are both used in the Stocking 

and Lord calculation o f A and B, and are also the parameters that are transformed onto the 

common scale. It seems plausible that the location o f the multidimensional items might 

be a factor in how much error is introduced. One might expect to see more error if the 

common items contain a second dimension because they are directly involved in the 

calculation o f the A and B scaling coefficients.

IR T  true score equating. W ith the test form parameter estimates on a common 

scale, it is now possible to equate the test scores. IRT true-score equating is based on the 

assumption that for every ability 0, there is a corresponding true score, x, on test X and 

test Y (xx and xy, respectively). xx and xyare the summed probabilities o f answering each 

item correctly, given the parameter estimates o f the item on the test and the ability o f the 

examinee, x in this case is distinct from the classically-based x (i.e., x = x + e), because of 

the link to 0. The basis for IRT true-score equating is the assumption that the true scores 

rx ( 6 j )  and xy(Qj) are equivalent, given dj . The underlying 0  acts as a link between test X 

and test Y that allows equating to occur.

The form X equivalent o f a form Y score is (from Kolen & Brennan, 2004, p.

176):

irtx(xy) = xx( x ~ ' ) , 0 < x y < K y ,
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where the xy' ’ is 0t corresponding to xy, and Ky is the maximum total test score. Finding Oj 

for each xy_1 requires using the Newton-Raphson procedure. The general form o f the 

Newton -R aphson procedure is:

/'(»)

where & is a starting value, 0+ is a new value that becomes f f  on the next iteration, f(0) is 

a function o f 0, and f ’(6) is the first derivative o ff(8). This algorithm is iterated until the 

difference between 8+ and O' meets a pre-specified stopping minimum value.

In IRT equating, the Newton-Raphson formula is specified as:

f ( 0 , )  =
i.Y

f X O j )  =  - Y j P ' v ( ° r a r b , )  ’

i:Y

where Y  is the set o f  all i items on form Y , and:

P (Oj ,ai,bi) = \ .7al /x  (1 -  )

(adapted from Kolen & Brennan, 2004, p. 177).

Once the 6/ is found it is substituted into the 2-PL model along with the form X 

item parameters to find py(0) for each item on form X, which are then summed to 

calculate xx. Because this procedure must be repeated for each xy, with several iterations 

for each xy, true-score equating is computationally intensive.

True-score equating is used often in research (e.g., Bolt, 1999; Camilli, Wang, & 

Fesq, 1995; De Champlain, 1996; Dorans & Kingston, 1985; Stocking & Eignor, 1986) 

possibly because the equating function is not score-distribution dependent. The main
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disadvantage o f  this method is that it is based on the true score, which cannot be directly 

found.

IRT scale transformation and equating methods are based on the same models 

and, thus, the same assumptions o f  the IRT parameter estimation models. The Stocking 

and Lord (1983) procedure and IRT true-score equating are often observed in the 

equating literature (e.g., Bolt, 1999; Camilli, Wang, & Fesq, 1995; De Champlain, 1996; 

Dorans & Kingston, 1985) making these methods appealing for further exploration. 

Criteria fo r  Assessing the Adequacy o f  Equating

W henever equating is conducted, it is useful to be able to assess how effective it 

was in aligning test scores and meeting one or more o f the requirements o f equating: 

symmetry, invariance, and equity. While having an evaluative procedure seems a logical 

step, no guidelines exist for how to do so. Harris and Crouse (1993) conducted a review 

of the types o f criteria that have been used to evaluate equating. They identifed four types 

that are relevant to the present research study: 1) simulated data, 2) indices, 3) circular 

equating, and 4) practical criteria.

Simulated data. Simulation studies are often used to assess the robustness o f 

equating (e.g., Bolt, 1999; Jodoin & Davey, 2003; Skaggs & Lissitz, 1986). The criterion 

in this case is whatever is specified by the researcher when the data are generated. Unlike 

a study that uses real data, which only has estimated parameters, a simulation study has 

pre-specified true item (e.g., difficulty), test (e.g., correlation between dimensions), and 

population (e.g., mean ability) parameters, which can be used as criteria for assessing the 

accuracy o f  equating results. For example, using a simulation design, Bolt (1999) used 

expected scores on the target test as the criterion to which expected equated scores were
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compared for each examinee. Expected true scores in IRT equating can be created for 

each examinee by summing the probabilities o f answering each item correctly that are 

computed when the known item and examinee parameters are used in the chosen IRT 

model.

Indices. Indices are a common type o f criteria that are employed to attempt to 

quantify the magnitude o f the equating error. Indices can be used to measure error both 

globally (i.e., one index value summarizes equating performance across the entire score 

scale) or locally (i.e., individual index values are calculated at many points along the 

score scale). Measures o f differences (e.g., Root Mean Squared Error (RMSE) and Mean 

Absolute Difference (MAD)) are commonly used types o f equating criteria (e.g., Bolt, 

1999; Hwong, Im, Si, Seong, & Kim, 2005; Klein & Jarjoura, 1985; Ricker & Von 

Davier, 2006). Typically, these indices are used in studies where many methods or sets of 

conditions are being compared to one another. In other words, the interpretation of 

indices is generally norm-referenced.

Circular equating. Circular equating refers to equating scores on a test form to 

itself, either directly or indirectly. Equating a test form to itself can be used as a means 

for evaluating the magnitude o f the equating error that is generated. For example if  scores 

from a single group examinees on one form were equated to themselves, the resulting 

conversion would be an identity function (Harris & Crouse, 1993). Using this design as 

the baseline, it is possible to evaluate what proportion o f observed equating error is 

computational error for the actual equating o f Form Y to Form X (Wang, Hanson & 

Harris, 2000).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M ultidimensionality and IRT Equating 30

Practical criteria. Another way o f assessing equating results is by using a 

practical definition o f  “good” equating and using it as a “yardstick” against which the 

goodness o f  equating results can be measured. One practical criterion is the definition o f 

a “score difference that matters” developed by Dorans and Feigenbaum (1994). They 

argued that any score difference that was detectable was meaningful from an equity 

perspective. A score difference that “matters” is a difference in scores between an 

equated score and a criterion score that is greater that one half o f  a scale score reporting 

interval. For example, i f  a scale is on a 10-point reporting interval, then a difference o f  5 

points or more would be detectable once scores were rounded. Any score difference that 

was smaller than a score difference that matters would be inconsequential to the 

examinees and therefore not o f concern for protecting equity.

A second type o f practical criterion that can be used is to choose a specific type o f 

equating data collection design and method as a “gold standard” to which other methods 

can be compared. For example, from a theoretical perspective, equating using an 

equivalent groups design is less prone to equating error than equating using a common- 

items nonequivalent groups design (Kolen & Brennan, 2004, p. 29). This type o f criterion 

has been employed in evaluating the equating results o f multiple types o f equating 

methods under various equating conditions (von Davier et al., 2005; Ricker & von 

Davier, 2006).

M any other types o f equating criteria exist. In addition to those discussed here, 

Harris and Crouse (1993) identified five additional types, but no definitive criterion class 

emerged as the best one to use. It was suggested that no one existing type o f criterion is 

universally appropriate, but rather that the best criterion would depend on the purposes of
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the equating and the evaluation. For example, when comparing equating methods, Tong 

& Kolen (2005) found that the methods that performed best against one type o f equity 

criterion would often perform poorest against another type o f equity criterion. No 

criterion has to be used as a single evaluative measure. Instead, they can be used in 

conjunction with one another, to develop a more complete picture o f  the efficacy of 

equating.

Summary

Test equating is a statistical solution to the problems that arise from having 

multiple test forms in large-scale testing programs. There are desirable properties o f test 

equating, in particular equity. These properties ensure that equating solves the issues 

surrounding scoring multiple test forms rather than creating more test scoring problems.

The data collection design is as critical to the equating process as the equating 

procedures themselves. The common-items nonequivalent groups design is used to 

overcome practical data collection issues, while still ensuring a link between test forms 

by means o f the common items. However, the common-items nonequivalent groups 

design introduces its own set o f issues about how the location o f the multidimensional 

items on the test m ight affect equating outcomes

IRT equating is a popular method o f equating large-scale assessments. It is a 

powerful type o f equating must requires that several key assumptions be met. Despite the 

apparent simplicity o f  the unidimensionality assumption, it is not always clear when it 

has been met. Therefore, it is important to explore the conditions under which the 

violations o f IRT equating assumptions might have a deleterious effect on outcomes that
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use IRT equating methods and to see when and where the violation o f assumptions start 

to matter.

To evaluate the robustness o f an equating method, a criterion or criteria are 

needed. Several types o f criteria exist, and can be used together to help interpret the 

equating results. The type o f  criteria that should be used will depend on the type o f 

question that is to be answered.

Review o f  Literature Specific to the Effects o f  Multidimensionality on IRT  Equating

A small literature exists that examines specifically the robustness o f IRT equating 

to violations o f the unidimensionality assumption. The literature presented in this chapter 

represents what is currently known about this topic, as well as pointing to what is not 

known or what variables have not been examined.

One o f  the most important factors to consider when reviewing past literature in 

this area is the definition or conception o f multidimensionality that was used in each 

study. Unidimensionality is a central tenet o f IRT equating. The definition of 

unidimensionality and, by default, multidimensionality, and its potential consequences to 

IRT equating are central to understanding how each study was designed, which 

dependent variables were examined, and what results were obtained.

The following summary o f  the literature is specific to testing the robustness o f 

unidimensional IRT equating using multidimensional data and includes the following for 

each study: 1) the authors’ definition o f multidimensionality; 2) data source, number of 

items used, and whether the data were real or simulated; 3) the correlation between 

dimensions; 4) a brief description o f the method, including the equating design, the 

independent factors manipulated, and the scaling and equating techniques used; 5) key
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results; and 6) a summary o f the importance or significance o f the study results. The 

studies are presented in chronological order, as each researcher thus far has attempted to 

build on the research that has been conducted previously. A discussion o f the emerging 

themes from this literature follows the review o f the individual studies.

Dorans and Kingston (1985)

One o f the earliest published studies that examined the effects o f 

multidimensionality on unidimensional IRT equating was conducted by Dorans and 

Kingston (1985). This study was conducted prior to the work o f Stout (1987, 1990) who 

defined essential unidimensionality operationally. They defined unidimensionality o f a 

test as being able to model examinee performance using only one 6. Their approach to 

operationalizing multidimensionality was to use two substantively different subscales as 

part o f the test forms. Dorans and Kingston (1985) reasoned that if  multidimensionality 

affected the results o f unidimensional IRT equating, then differences would be observed 

between calibrating the dimensions concurrently or separately.

Two highly correlated subscales o f real items (discrete verbal and reading 

comprehension items) from four separate forms o f the Graduate Readiness Examination 

(GRE, administration years not reported) were employed. The forms contained between 

53 and 55 operational and 47 to 55 non-operational discrete verbal items and between 22 

and 25 operational and 20 and 25 non-operational reading comprehension items. The 

correlation between subscales on each form was high (0.73-0.80). All other forms were 

equated to one form through either a random groups design or a common-items 

nonequivalent groups approach. Different sets o f common items were used for each scale 

calibration, depending on the form pair being equated. Scale calibration for the anchor
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test (common-items nonequivalent groups design) was conducted using Stocking and 

Lord’s (1983) method, using item parameter estimates calculated in three different ways:

(a) one single calibration o f  each test form for all test items (i.e., both subscales together),

(b) separate calibrations o f each test form for each subscale, and (c) a single calibration of 

the reference form and separate calibrations for each subscale on the equated form. All 

test forms were equated using true-score equating.

Dorans and Kingston (1985) found that while equating results were somewhat 

different depending on the calibration procedure used, IRT equating might be robust to a 

violation o f unidimensionality, at least in a case where the correlation between the 

dimensions was high. This result was both unexpected and significant based on previous 

theory that IRT models would fail if  the test contained more than one dimension.

High correlations between the two subscales used in this study (0.73 to 0.80) 

might have resulted in more robust equating results than with more distinct (i.e., less 

highly correlated) dimensions because the test was essentially unidimensional.

Stocking and Eignor (1986)

Stocking and Eignor (1986) defined unidimensionality indirectly via their 

operationalization o f multidimensionality in modeling examinee performance on different 

items. They used two sets o f  6 parameters to model examinee responses, one for each 

dimension. By inference, unidimensionality existed when one 6 only was required to 

explain examinee performance. Like Dorans and Kingston (1985), they used 

substantively distinct dimensions in their research.

Pre-equating is an equating design that is used commonly in large-scale testing 

programs, including the SAT, which was the data source for this study. Examinees are
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given a set (usually a test section) o f items in addition to the operational items on the test. 

The additional test section will be used as a real test section in a subsequent 

administration o f  the test. By administering the test in sections to a previous test group, 

the new test can be equated to old test forms prior to its actual administration, in a 

manner similar to the common-items design. It was observed that section pre-equating o f 

the SAT was producing unexpected equating errors. Stocking and Eignor (1986) 

evaluated multidimensionality as a source o f the equating error.

M ultidimensionality, they argued, was a potential source o f error because it 

violated the assumptions o f the equating model. It was reasoned that multidimensionality 

might be arising on the pre-equated section because the students knew the pre-equated 

section did not count in their own test score and thus were less motivated during this 

section. In this case, motivation becomes a secondary construct (and also dimension) for 

the items in this section.

Groups o f responses were simulated from real data for each o f three testing 

conditions. In condition 1, 60 SAT items were used. In conditions 2 and 3, 30 non

overlapping subsets o f the SAT items used in condition 1 were employed. All test forms 

also included the pre-equating section as a set o f 24 common items. In conditions 1 and 2, 

one ability estimate was used for all item responses. In condition 3, one ability estimate 

was used to simulate responses for the first 30 items, then a second lower ability estimate 

was used to simulate responses to the last 24 pre-equating items (simulating reduced 

motivation among examinees on the pre-equated section). No correlation between 

motivation and SAT achievement was reported. The authors did not indicate which linear
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scale transformation technique was used, but the resulting transformed data was equated 

using true-score equating.

The results o f the simulated conditions indicated a lack o f model fit when a 

second dimension was introduced (motivation) when compared to conditions when only 

one dimension was present (Condition 3 versus Conditions 1 and 2). This result was in 

the same direction as results observed in real equating situations, and was much larger in 

magnitude than under simulated conditions.

The findings o f Stocking and Eignor are significant because they separated the 

effects o f multiple dimensions on a test from differences between groups in mean ability 

on a single attribute. Ostensibly, they partitioned the effects of impact from test bias on 

equating results, highlighting an important reason to pursue this line o f research.

Camilli, Wang, and Fesq (1995)

Camilli, Wang, and Fesq (1995) were the first researchers to use the idea of 

essential unidimensionality as defined by Stout (1987) in studying IRT equating 

robustness to multidimensionality. However, they further defined the dimensionality o f a 

test as a validation argument (Messick, 1989) related to test content. As such, they also 

worked from a substantive rather than a purely statistical approach to select items to 

represent each dimension in their test forms. However, they did use statistical techniques 

to confirm their judgm ents.

Camilli et al. (1995) used six sets o f multidimensional data from the Law School 

Admission Test (LSAT) forms from 1989 and 1990. Each form included 94 and 98 items, 

respectively. The data were collected using a section pre-equating design. The 

multidimensionality o f the test forms was confirmed using factor analysis. On each test
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form, the correlation between the two dominant dimensions ranged between 0.68 and 

0.75. They used the same methods as Dorans and Kingston (1985), conducting separate 

and concurrent calibrations o f the distinct item subsets. They compared the true scores of 

the separate and concurrent calibrations to see if  differences occurred.

Similar to Dorans and Kingston (1985), Camilli et al. (1995) showed that score 

differences were small under multidimensional conditions, with the biggest differences 

occurring at the low and high ends o f the performance scale. They concluded that for the 

purposes o f equating, the LSAT might be essentially unidimensional. They also 

suggested that the robust results on this test might be due to good test construction, which 

ensures that tests are very similar in terms o f both content and statistics from 

administration to administration. This result suggests that the degree o f statistical 

matching between tests might be an important factor to explore.

DeChamplain (1996)

While never explicitly defined, De Champlain (1996) utilized essential 

unidimensionality in his research because both NOHARM  and DIMTEST were used to 

assess dimensionality and because both procedures employ this concept. De Champlain 

(1996) examined the underlying multidimensional structure o f real LSAT data to see if  it 

exerted differential effects on the equating scores o f  different subpopulations o f 

examinees. De Champlain argued that if  the population o f examinees was treated 

homogenously without accounting for differences in all salient dimensions, then some 

groups o f  examinees might be unfairly advantaged or disadvantaged by using 

unidimensional equating to get test scores.
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A section pre-equating design was used to collect the data for two LSAT test 

forms (years not reported), containing 101 and 102 items each. Both NOHARM and 

DIMTEST tests rejected the null hypothesis o f unidimensionality. The two-dimensional 

structure o f each test was confirmed using NOHARM  (Fraser & McDonald, 1988). The 

correlation between dimensions on each test was not reported. De Champlain randomly 

selected samples to create three equally sized populations o f Caucasian, African 

American, and Hispanic examinees. Separate unidimensional and multidimensional 

models were fit to the data o f each population and scale calibrations were conducted for 

each group using the Stocking and Lord procedure with scores equated using true-score 

equating. These scores were compared to the equated scores that were derived from 

calibrating and equating the population as a heterogeneous whole. In addition, the fit of 

the different dimensional models to item responses for each group was assessed using 

both NOHARM  and DIMTEST.

The results o f  the study indicated that a two-dimensional test fit well for the 

Caucasian and African American samples, but not for the Hispanic sample. Despite 

differences in the adequacy o f  model fit for each group, equating resulted in small score 

differences for each group, with most o f the differences occurring in the low tail o f raw 

scores. De Champlain concluded that having one equating function does not penalize 

subgroups o f  examinees, even though models were not the same for each subgroup.

These results provide further evidence that the IRT equating, when employing the 

Stocking and Lord (1983) and IRT true-score equating procedures, is robust to violations 

o f unidimensionality. However, this research is also based on real data. Consequently, the 

robustness o f  the results might also be due to the correlation between the dimensions. To
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this point in the literature review, no systematic examination o f factors affecting 

unidimensional IRT equating under conditions o f multidimensionality had been 

conducted.

Bolt (1999)

Bolt (1999) defined uni dimensionality implicitly as essential unidimensionality by 

the use o f NOHARM  to confirm the dimensional structure o f the TSAT data. Bolt (1999) 

conducted two studies. In the Study 1, Bolt compared the performance o f IRT true 

equating to linear and equipercentile methods under a section pre-equating design. Forty 

items selected from each o f the October 1992 and June 1993 TSAT forms were used to 

generate realistic data. Groups o f response vectors for four groups were simulated.

Each section o f the test was fit separately using the 2-PL model, then linked using 

Stocking and Lord’s (1983) procedure for transformation, with the old form items as the 

anchor (or common) items. The forms were equated using true-score, equipercentile, and 

linear methods.

On measures o f  equity, IRT equating performed the best overall. However, as 

Bolt (1999) pointed out, in some areas o f ability, particularly among examinees with 

either low ability on both dimensions or high ability on both dimensions, unidimensional 

IRT equating produced errors that indicated that while it performed the best o f all of the 

methods under multidimensional conditions, it still might not be appropriate for some test 

score inferences.

In Study 2, using the same section pre-equating design and Stocking and Lord 

scaling and true-score equating, Bolt (1999) created two 50-item, two-dimensional tests, 

where the only difference between the items on the two forms was that the difficulty on
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the second dimension was designated to be easier on the Y form items, resulting in the d- 

parameter that was systematically higher on the Y form items than the X form items. The 

correlation between dimensions varied at 0.3, 0.5, 0.7 and 1.0 across the conditions.

IRT methods performed about as well as other methods under multidimensional 

conditions when the correlation between dimensions was 0.7 or higher, but poorer 

(though only slightly so than equipercentile) when the correlation between dimensions 

was less than 0.5. Interestingly, the relative contribution o f multidimensionality to poor 

performance was minor relative to the equity that was present even when the correlation 

between dimensions was 1.0. However, Bolt suggested that differences in difficulty that 

are specific to one dimension (i.e., the tests are well matched on one dimension, but not 

on the other dimension) might be a condition where unidimensional equating would 

break down. W hat was not clear from the results was whether the equity was adequate 

under the various conditions. Bolt suggested that decisions about the adequacy o f equity 

would depend on w hether the practitioner requires equity at all combinations o f levels o f 

ability (local equity) or ju st good equity for the majority o f examinees (global equity).

A strength o f  this study is the systematic approach to examining equating under 

conditions o f multidimensionality. When compared to previous studies, all o f which 

employed real data, it is much easier to rule out other possible explanations or sources o f 

error that might also explain the results. These results also confirm the idea that the 

correlation between dimensions can have an impact on the degree to which 

multidimensionality will affect IRT equating.
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Jodoin and D avey (2003)

In this study, Stout’s (1987) dimension o f essential unidimensionality was 

employed, and by default, those tests that did not meet this definition were 

multidimensional.

Jodoin and Davey (2003) used items from two separate non-identified 

standardized tests to simulate data for these studies. The dimensional structure was 

confirmed to be essentially unidimensional for one test and multidimensional for the 

second. In the simulations, they examined the robustness o f unidimensional IRT equating 

techniques in the common-items nonequivalent groups design by introducing potential 

equating errors in two ways. In condition 1, each test form met conditions o f essential 

unidimensionality, but each test form in the equated pair measured a different substantive 

dimension (two test form pairs, with 29 and 48 items each, respectively, were created). 

Condition 2 used two sets o f test pairs (30 and 40 items each) that were well matched but 

each contained two dimensions. The correlation between dimensions for the test pairs 

was not reported.

Item parameters for each test form were estimated under nine different conditions. 

The first data set was unidimensional. Eight sets o f multidimensional parameters (with 

between two and 25 dimensions specified) were also created. The test forms were scale 

transformed using the mean/sigma method (Marco, 1977). No equating was conducted. 

Equating robustness was evaluated by examining the resulting A and B scale 

transformation coefficients. If  a scale transformation method is robust under the 

experimental conditions, then the expected mean value o f A is 1.0, and mean B  is 0.0. 

These are the expected values because it is generally standard practice to calibrate ability
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estimates on a N(0, 1) metric. The results o f the simulated conditions revealed that the 

unidimensional IRT equating was robust to the tests measuring different dimensions, but 

not to conditions where the tests were well matched but contained more than on one 

dimension.

The main limitation o f the Jodoin and Davey (2003) study is that equating 

robustness was a secondary consideration to other research questions and thus they failed 

to systematically investigate the effects o f multidimensionality on IRT equating. As a 

result, while the parameters used to generate the data were realistic, the test specifications 

were not. The items that were chosen as the common items were selected for their 

dimensional structure, but were not assessed for how well these common items were 

representative o f the unique items on each test form.

This study introduced the idea that the location o f the multidimensional items may 

have an impact on equating results, but only examined the condition o f 

multidimensionality occurring in the unique items. Location as an independent variable 

has not been systematically tested to date.

Emerging Themes fro m  the Literature

The research examining unidimensional IRT equating under conditions of 

multidimensionality has varied little in context (including the tests used for 

investigation), equating designs, and equating techniques. Based on its confirmed two- 

dimensional structure (e.g., Douglas, Kim, & Roussos, 1999), the LSAT has been a 

popular choice for studying multidimensionality and its effects on equating (Bolt, 1999; 

Camilli et ah, 1995; De Champlain, 1996). The section pre-equating design and the 

common-items nonequivalent groups designs are similar designs used in this research.
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The popularity o f the Stocking and Lord procedure and IRT true-score equating make 

them the most logical choices for further research, particularly for comparability to past 

work.

Based on this body o f research, it would seem that violating the assumption of 

unidimensionality does not cause large or significant errors in equating, provided that the 

correlation between dimensions is high (i.e., 0.7 or higher). Bolt’s (1999) systematic 

study on the strength o f the correlation between the dimensions gives greater credence to 

the results o f previous research where this variable was not controlled. Given that this 

variable is the only one that was the most commonly cited, it is logical to include this 

variable in future research, particularly in a simulation study where it and other variables 

could be varied systematically.

Another potential variable o f interest relates to what happens when 

multidimensional data is modeled as unidimensional. Bolt (1999) and Camilli et al.

(1995) refer to W ang’s (1986) idea o f a reference composite, whereby multiple 

dimensions are represented as a composite in one dimension. This idea suggests that 

when multiple dimensions are present, it is not just the most dominant dimension that is 

modeled in the unidimensional model, but a representation o f all dimensions that are 

present. If  all dimensions are present in the single dimension that is modeled, then it 

might be expected that a mismatch in difficulty on a dimension between test forms could 

produce greater equating error than a condition where multiple dimensions are present, 

but the tests match in difficulty on all dimensions. This idea has not been explored in the 

research to date.
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An interesting question also arises from the work o f Jodoin and Davey (2003). 

While Jodoin and Davey examined the common-items design, they only evaluated the 

effects o f  multidimensionality occurring among the unique items. Are there differences in 

equating outcomes when the multidimensional items occur among the common items, 

unique items, or in both sets o f items? Given the importance o f matching the 

characteristics o f the common and unique items under unidimensional conditions, it 

m ight be expected that less equating error would be observed in the common-items 

nonequivalent groups design when multidimensionality was present in both sets o f items 

(and thus the com mon and unique items match).

A major theme that emerges from this body o f literature is the need for the use of 

simulation studies to explore the effects o f different variables on IRT equating. With the 

exception o f Dorans and Kingston (1985), all o f the studies were conducted, at least in 

part, using a simulation design. However, most o f these studies have focused on using 

realistic item param eter estimates from a particular test (e.g., Camilli, Wang, & Fesq, 

1995; De Champlain, 1996; Stocking & Eignor, 1986), or the major focus o f the study 

was some other variable or aspect o f the study (Jodoin & Davey, 2003). As a result, most 

factors that have the potential to interact between multidimensionality and IRT equating 

have not been examined systematically.

The general focus o f  previous research has been assessing the appropriateness of 

IRT equating on particular sets o f unidimensional data. In the present study, the focus 

was on systematically exploring when and under what conditions unidimensional IRT 

equating is still appropriate for multidimensional data. The approach used was similar to 

that o f Bolt (1999). As such, the aim was to document where and under what conditions
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unidimensional IRT true score equating using a common-items nonequivalent groups 

design begins to break down.

Summary

Little research exists that explores systematically the effects o f specific variables 

on the robustness o f IRT equating using multidimensional data. Thus far, only the 

correlation between dimensions has been shown to modulate the effects o f 

multidimensionality on equating error. Other variables, including the matching on each 

dimension between test forms, and the location o f the multidimensional items in the 

common-items nonequivalent groups design have not yet been explored. These variables 

need to be examined methodically so that their effects can be better understood. In 

Chapter 3, the methods used to conduct a study to examine the effect o f these variables 

on equating equity are described.
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Chapter 3: Methods 

Introduction

Chapter 3 is divided into three main sections: 1) procedures for the simulation 

study, 2) procedures for the equating o f actual test data, and 3) a brief description o f the 

specialized computer programs used to conduct both o f the studies. The simulation 

design described in Section 1 was used so that group equivalence and correlation between 

dimensions could be tightly controlled. The real data analysis described in Section 2 was 

conducted to supplement the results o f  the simulation study. That is, i f  the results o f the 

real data analysis corroborate the results obtained in the simulation study, then an 

argument can be made that while the simulated data is artificial, the simulated equating 

results are a reasonable representation o f what could be observed in an actual testing 

scenario.

Section 1: Simulated Data  

The present section describes the procedures required to conduct the simulation study. 

The section is organized into the following seven subsections: 1) research design, 2) 

independent variables, 3) description o f the data source, as well as procedural information 

regarding, 4) test construction, 5) data generation, 6) data processing, and, 7) the 

dependent variables. Using this design, the independent variables, and the procedures 

described in these subsections, the following questions about IRT equating using the 

common-items nonequivalent groups design when two dimensions are present were 

addressed:
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1) W hat is the baseline error that is associated with equating? That is, how much 

error would be present if  scores on a test form were equated to scores on the same 

test form?

2) How does the correlation between dimensions affect both the magnitude of 

equating error and the proportion o f examinees with error in their equated scores 

that is large enough to matter?

3) Is the magnitude o f equating error (or the proportion o f examinees with equating 

error that is large enough to matter in their equated scores) different if  the groups 

are randomly equivalent versus nonequivalent?

4) Does the location o f the items (unique, common, both unique and common 

locations) measuring the second dimension have an effect on the magnitude o f 

equating error, or the proportion o f examinees who are affected by equating error?

Research Design

As shown in Table 1, a 2 (form parallelism) x 4 (correlation between the 

dimensions) x 3 (group equivalence) x 3 (location o f the items measuring the second 

dimension) factorial design was employed. This factorial design produced a total o f 72 

conditions.

Independent Variables

Form parallelism. This independent variable arose from a need to try to put the 

effects o f  the other independent variables into context. In operational situations, one test 

form is equated to another test form so that the scores are comparable across forms. 

However, it stands to reason that part o f the error associated with equating under different 

conditions is related to the computational error associated with equating, and not just the
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conditions under which the equating occurs. In other words, even under perfect equating 

conditions, there will always be non-zero error. The question is, how large does equating 

error have to be to be considered meaningful?

Table 1

Experimental Design - Form Parallelism (2 Levels) x  Correlation Between Dimensions (4 

Levels) x  Group Equivalence (3 levels) x Location o f  Dimension 2 Items (3 levels)

Form Correlation Group Location o f Dimension 2 Items
Parallelism Between Equivalencea BL UI Cl

Dimensions
EG (0.0)

Perfect NEGS (0.1)
(1.0) NEGM  (0.3)
High EG (0.0)

Parallel (0.7) NEGS (0.1) 
NEGM (0.3)

Low EG (0.0)
(0.3) NEGS (0.1) 

NEGM  (0.3)
No EG (0.0)
(0 .0) NEGS (0.1) 

NEGM  (0.3) 
EG (0.0)

Perfect NEGS (0.1)
( 1.0) NEGM  (0.3)
High EG (0.0)

Nonparallel (0.7) NEGS (0.1) 
NEGM  (0.3)

Low EG (0.0)
(0.3) NEGS (0.1) 

NEGM  (0.3)
No EG (0.0)
(0 .0) NEGS (0.1) 

NEGM  (0.3)
a E G  — E q u iv a le n t G ro u p s , N E G S  =  N o n e q u iv a le n t G ro u p s Sm all, N F.G M  =  N o n e q u iv a le n t G ro u p s  M odera te  
b BL = both locations, UI = unique items only. Cl = common items only

Two levels o f this independent variable were employed. First, in an attempt to 

gain a sense o f  “baseline” equating error, equating was conducted to equate Group Q 

Form X scores to Group P Form X scores. Equating Form X to itself was identified as the
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Parallel forms condition. The second level o f the independent variable is the Nonparallel 

forms condition, where Group Q Form Y scores were equated to Group P Form X scores.

Correlation between dimensions. Bolt (1999) selected correlations o f0 .3 ,0 .5 ,0 .7  

and 1.0 to systematically explore the relationship o f the correlation between dimensions 

and equating outcomes. He did not, however, include a condition where the dimensions 

were uncorrelated. Given that no large differences in performance were reported between 

the 0.3 and 0.5 conditions by Bolt (1999), correlations between the dimensions were set 

in the present study at 0.0, 0.3, 0.7, and 1.0 to represent No (N), Low (L), High (H) and 

Perfect (P) correlation conditions, respectively.

Group equivalence. Equating is intended to align test scores on different test 

forms for a given population. In cases where the common-items nonequivalent groups 

design is used, it is not assumed that the sample o f examinees at a given administration 

are equivalent to each other, even though they are assumed to have been drawn from the 

same population. Further, there are limits to how effective equating methods are at 

dealing with large group differences. Kolen and Brennan (2004, p. 286) suggest that 

group ability differences o f +0.3 standard deviations or larger will introduce error into 

equating using any method, and also identify IRT equating methods as among the most 

susceptible to this source o f error.

In the equivalent groups (EG) conditions, the groups taking each X (Group P) and 

Y form (Group Q) were specified to have bivariate normal distributions o f ability, with 

mean ability equal to zero 6, standard deviation equal to one for each dimension, and the 

correlation between the dimensions for a given condition. For the nonequivalent groups 

(NEG) conditions, the group taking Form X (Group P) remained unchanged, while the
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group taking Form Y (Group Q) was specified to have mean ability 0.10, and a standard 

deviation o f one for both dimensions in the NEG Small difference conditions; and mean 

ability 0.30, and a standard deviation o f one for both dimensions in the NEG Moderate 

difference conditions. These three conditions, Equivalent Groups (EG), Nonequivalent 

Small (NEGS), and NEG Moderate (NEGM), were intended to represent points on a 

continuum between ideal conditions and the most extreme group differences that might 

reasonably be accepted as meeting the condition o f group difference needed to conduct 

score equating.

Location o f  the items measuring the second dimension. In the present study, in the 

Both Locations (BL) condition, 16 Dimension two items were placed among the unique 

items and eight D imension two items were placed in the common items (see Table 2). For 

the Unique Items (UI) conditions, 16 Dimension two items were placed among the 

unique items on the test form, while in the Common Items (Cl) conditions, eight 

Dimension two items were placed among the common items. This variable is very 

important because if  differences among the conditions exist, it points to test construction 

procedures as a means o f controlling equating error.

Table 2

Test Specifications fo r  Simulation Study

Location o f U nique Item s Common Items
Dimensionality ' Dimension

One
Dimension

Two
Dimension

One
Dimension

Two
Both Locations 

(BL)
36 16 8 8

Unique Items 
(UI)

36 16 16 0

Common Items 
(Cl)

52 0 8 8
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Description o f  the Data Source

Item param eter estimates from the 1992 administration o f the Law School 

Admission Test (LSAT) were used as realistic item parameters to improve the 

generalizability o f the simulation results (Harwell, Stone, Tsu, & Kirisci, 1996). The 2- 

PL compensatory multidimensional (M2PL) model (Reckase, 1985) was used to model 

the parameter estimates for test construction. The LSAT is a realistic data set that is used 

frequently in studying dimensionality (e.g., Bolt, 1999; Camilli et al., 1995; Douglas,

Kim & Roussos, 1999; Walker, Gierl, Ackerman, Ricker, & Gosz, 2003). The test 

contains four separate subtests: logical reasoning (LR) 1 and 2, analytical reasoning 

(AR), and reading comprehension (RC), and contain 51, 24, and 27 items, respectively.

In statistical/substantive assessments o f dimensionality, the LSAT has been demonstrated 

to have two dominant dimensions, one composed o f items from AR, and one from the 

combination o f  LR and RC (Stout et al., 1996). For the purposes o f this research, only the 

statistical dimensionality o f  the test items was considered.

Test Construction

For the purposes o f  this study, parameter estimates for 103 LSAT items were taken 

from a previous research study (Walker et al., 2003). In the previous study, the 

parameters were estimated using NOHARM  (Fraser & McDonald, 1988) in confirmatory 

mode with two dimensions specified. The items were fit to a 2-PL compensatory MIRT 

(M2PL) model (Reckase, 1985) using the computer program NOHARM  (Fraser, 1988). 

Though the LSAT is typically modeled operationally as having a pseudo-guessing (or c-) 

parameter in addition to a- and 6-parameters, a 2-parameter model was chosen for two 

main reasons. First, in IRT equating the c-parameter is set to be invariant and therefore
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would not change as a result o f equating (Kolen & Brennan, 2004, p. 180). Second, 

models with more parameters require larger sample sizes for stable estimates, which 

would increase the computing demands o f  the analyses conducted in this study, making it 

less manageable.

Once the parameters were estimated, the items were categorized into Dimension 

one items, Dimension two items, and items that were not used for the purposes o f this 

study. The categorization was based on an operational definition o f an angular direction 

between 0 and 20 degrees, and 70 and 90 degrees for Dimensions one and two, 

respectively (W alker et al., 2003). This angular separation (that the mean angular 

direction o f the items measuring Dimension one and items measuring Dimension two are 

distinct from each other) between the dimensions o f this magnitude is considered to be 

approximate simple structure (Gierl, Leighton & Tan, 2006; Stout et al., 1996). The 

relationship between the angular separation between dimensions and the correlation 

expressed as a - 1.0 to 1.0 value is that the cosine o f the angular separation between 

dimensions is approximately equal to the correlation between the two dimensions (Leucht 

& Miller, 1992). In this case, if  an angular separation o f approximately 70 degrees 

(assuming an average angular direction o f about 10 degrees for Dimension one and 80 

degrees for Dimension two, the correlation between the dimensions is approximately 

0.34 .3 Based on the parameter estimates from the LSAT items, an additional 103 realistic 

items were created for the present study with similar item parameters to the Dimension 

one items and Dimension two items. These extra items were necessary to create two test

3 The correlation that is used for the purposes o f  the study is specified when the data are simulated. This 
correlation merely describes the original angular orientation o f  the items measuring each dimension as 
distinct from each other.
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forms that met the test specifications in terms o f dimensional content and statistical 

difficulty and discrimination.

For the present study, two test forms for each condition were created, Form X and 

Form Y, according to the following specifications. Each Form X and Y consisted o f 68 

items, chosen from the sets o f items generated using the LSAT items. The 68 items were 

divided such that 52 items were unique (or non-common) to each form and 16 items were 

common to both test forms in the pair o f forms that were equated (i.e., the common items 

for equating) A set o f  common items were specified by including a set o f items with the 

identical mean aj-, a.2-, and (/-parameters on both forms. For the unique items, Form X 

and Y were constructed to have closely parallel mean a /- and ci2- parameters, but with a 

0.20 mean difference in the (/-parameter. This difference was intentionally built in so that 

there were form differences that necessitated score equating. A mean difference o f 0.28 

was selected in order to be certain that the forms were not parallel. The common items 

were set to have nearly identical mean a /- and (^-parameter to the means o f  the unique 

items, with the mean (/-parameter set to be 0.10 from the mean (/-parameters o f the 

unique items o f both forms. Table 2 previously presented the test form specifications for 

each condition (see p. 50), and Table 3 presents the means and standard deviations for the 

parameters for each pair o f test forms. Appendixes A to C contain the specific item 

parameters for each test form.
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Table 3

M ean ai., a2., and d- parameters Dimensions One and Two fo r  Test Forms.

Location o f  Second 
Dimension/ 
Test Form ai a2 D

BLX" 0.410 0.373 -0.494
BLY 0.415 0.371 -0.342
UIX 0.466 0.272 -0.483
UIY 0.468 0.270 -0.330
CIX 0.520 0.170 -0.474
CIY 0.520 0.170 -0.321

a BL = both locations, UI = unique items only, Cl = common items only

The 16 com mon items constituted 23.5% o f the entire test length on all test forms, 

which was close to the suggested 20% guideline. That is, Kolen and Brennan (2004, p. 

313) advocate having the common items represent at least 20% o f the total items on the 

test forms to ensure that the number o f  common items is sufficient to adequately 

represent the unique items on the test form in content (relevancy and representation), as 

well as statistical properties. A review o f experimental IRT equating literature suggest 

that equating results may be adequate with between 5 and 15 common items, without 

consideration o f the total number o f test items (Cook & Petersen, 1987). With 16 

common items, both o f these suggested criteria were met. The items were selected for 

each section according the specifications in Table 2.

During the simulation, the sample o f  examinees specified as Group P was used to 

simulate responses to Form X. Group Q was used to simulate responses to Form Y. In 

addition, simulated responses were generated for Group Q to the 52 unique items from 

Form X, for a total o f 120 items simulated for Group Q (52 unique Form Y items + 16 

common items + 52 unique Form X items = 120). For test scoring and equating purposes,
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a Form X score and a Form Y score (each scored out o f  68) for all members o f Group Q

Group Q 
Total Score 
on Y

Group Q 
Total Score 
On X

The 16 com mon items acted as an internal anchor to Forms X and Y (i.e., the 

common items scores were included in the calculation o f the total score for each form). 

Further, for Group Q, the raw scores on the 16 common items were used in the 

calculation o f both Form X and Y total scores (i.e., responses to the common item set 

were generated once, but used in both total scores, so the anchor test scores for Group Q 

on Form X and Y were always the same).4 Generating a score on both forms for Group Q 

was necessary to create variables that com pare the Form  Y score equated to the scale o f 

Form X to the actual score (or target score) on Form X. In relation to real world testing

4 The use o f  the same common item responses in calculating total score for both forms was due to 
limitations o f  the data generation software, which could only simulate 120 items at a time. Please see 
chapter 6 for a discussion o f  the potential limitation o f  this procedure.

was

calculated (see Figure 1).

Group P Group Q

Group P 
Total Score 
on X

m

Hems

Common Items

Y items

Common Items

1PP
®£»X<iteins ■

''Ski/

Figure 1. Diagram o f Test Form for Group P and Group Q
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conditions, this procedure was equivalent to having one group o f examinees take both 

Form X and Form Y. Thus, for the parallel forms conditions, Group Q Form X scores 

were equated to Group P Form X scores, while in the nonparallel forms conditions,

Group Q Form Y scores were equated to Group P Form X scores.

Data Generation

In a simulation study, replications o f each experimental condition are conducted 

to provide more stable and reliable parameter estimates (Flarwell et al., 1996). For the 

purposes o f  this study, 100 replications o f each condition were generated.

Data for 100 sets o f 2,000 simulated responses were generated for each test form 

for each condition. The main consideration in specifying sample size is to ensure that 

there are sufficient numbers to ensure stable IRT parameter estimates. Hanson and 

Beguin (2002) found significantly higher squared bias, variance, and mean squared error 

in samples o f  1,000 versus samples o f 3,000 using a 3-PL unidimensional IRT model.

Bolt and Lall (2003) reported similar trends (between sample sizes o f 1,000 and 3,000) in 

root mean squared error in the M2PL model, but also found that increasing the number of 

test items from 25 to 50 items improved parameter estimate precision. A practical 

consideration in selecting sample size is that simulation processing times increase rapidly 

with increasing sample size. Given that the number o f  items on the tests is large (68 ,

120), a sample size o f 2,000 was adequate for reasonable measurement precision. As a 

result, 2,000 simulated responses were used for all conditions. M2gen2 (Ackerman, 2004) 

was used to generate examinee response data matrices for each replication.
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Data Processing

Once the data were simulated, the Group Q data were split into two 68-item data 

sets, one for Form Y and one for Form X (with the 16 common item responses included 

in both data sets). The Group Q Form X data were set aside for calculating dependent 

variables, while the Group Q Form Y data were used for equating to the Group P Form X 

data.

Unidimensional item parameters were estimated for each data set using BILOG  

(Mislevy & Bock, 1990). For this step, the unidimensional IRT 2-PL model was 

specified. At this point, the common items from the forms were calibrated relative to the 

other items within the respective test forms, and were thus on separate scales. The 

Stocking and Lord (1983) procedure was used to calibrate the forms. The program ST  (v. 

1.0, Hanson & Zeng, 1995b) was used to calculate scale transformation coefficients. 

These scale transformations were applied to the parameters o f all items o f the test form to 

be equated. The transformed parameters were used to run the program PIE  (v. 1.0,

Hanson & Zeng, 1995a) in order to conduct IRT true-score equating.

Dependent Variables

The dependent variables measure the performance of IRT true score equating with 

reference to the central aspect o f IRT equating, equity. Bolt (1999) argued that equity was 

the most important aspect o f IRT equating because the principle guiding IRT-based 

equating methods is Lord’s (1980) property o f  equity. In his book, Lord makes the 

statement, that in order to have true equity, it should be “a matter o f indifference to 

applicants at every given ability level 0 whether they are to take test X or test Y” (p. 195).
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The measures proposed here are slightly different from those proposed by Bolt 

(1999) and Thomasson (1993), who have previously measured first- and higher order- 

equity. Rather than using expected values o f X  given 6 (the vector containing 0\ and Oj) 

and equated Y  to X  (.x(Y)) given d values, it is possible to use the actual values for both of 

these tests for each simulated examinee who took form Y, which contained both the X 

and Y test items. This adjustment is advantageous because it allows the comparison 

between equated and actual test scores, rather than between equated and estimated test 

scores. For the purposes o f defining the dependent variables, the term “target score” 

refers to the actual score to which the equated score was compared for each examinee. It 

should be noted that the use o f a target score, which is an observed score (as opposed to a 

true score) on the actual target test, will contain a certain amount o f error associated with 

measurement that will make it unlikely for the equating errors to ever be exactly zero.

All dependent variable calculations and intermediate steps were conducted using 

Visual BASIC  in M icrosoft Excel.

As a second means o f gauging the importance or meaningfulness o f the equating 

error associated with equating Form Y scores to Form X scores, the dependent variables 

for this set o f conditions were also calculated using the raw, unequated Y scores. 

Calculating the dependent variables in this way indicated the magnitude o f the error 

associated with the Y scores if  they were used in place o f the X scores, but not equated.

Mean absolute difference. The mean absolute difference was calculated by using 

absolute value o f  the difference between their target score and their equated score for 

each simulated examinee in calculating the condition mean:
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n

E| xj~ in Ay j)
M AD = - ^ -------------------,x y  5n

where Xj is the Form X score for examinee j  , (. (y  f  is the equated Form X score for

examinee j ,  and n is the sample size. Similarly, when Group Q Form X scores were 

equated to Group P Form X scores, the formula is given as:

E k -,*,(*/)
J i . / f A  f )  _  J A ____________i v i s i i s xx( led-, — ,

n

where (. ( x / ) is the equated Form X score for examinee j. This dependent variable

assesses the magnitude o f  the differences between equated and target scores when 

positive and negative differences do not cancel each other out in the calculation o f the 

mean. W hen the raw Group Q Form Y scores were compared to Group P Form X scores, 

a mean absolute difference was also found between the target score and the unequated 

Form Y scores using the formula:

± V ,  -  > \
m a  d  -  — ________

1Y1-r L L J  x y ( Um q Uate d )  ’

where jy is the Form Y score for examinee j .  This measure represents the magnitude of 

the error associated with interpreting the Y scores as interchangeable with the Form X 

scores before equating was conducted.

As a final measure o f equity using MAD, the difference between the unequated 

and equated M ADs was calculated. This measure is referred to as the MAD gain value, 

because it represents the amount o f  error that is added or subtracted from the MAD when 

scores are equated. In other words, if  MAD gain is positive, equating was beneficial to
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improving equity o f the scores, whereas if  MAD gain is negative, more error is present in 

the score after equating, and therefore, equating was detrimental to score equity.

Percent o f  examinees with a score difference that matters. As a final, more 

practical measure o f  equity, the score difference that matters (SDTM) (Dorans & 

Feigenbaum, 1994) was employed. Dorans and Feigenbaum (1994) argue that from a 

conceptual standpoint, only a difference that is greater than one-half o f  a reporting scale 

unit matters to equating outcomes. Equated scores differences that are smaller than this 

criterion would be lost when final scores were rounded to the nearest full reporting scale 

unit. For the purposes o f  this research, the percentage o f examinees with an equated score 

on Form Y that differs by more than 0.5 from their actual test score on test form (or 

whose equated Form X score differs from their unequated Form X score) were calculated 

for each condition.

Just like MAD, percent SDTM was calculated for the equated score and 

unequated scores. The gain percent SDTM was calculated by finding the difference 

between the unequated SDTM and equated SDTM. A positive gain percent SDTM 

represents proportionally fewer people affected by a score difference that matters, while a 

negative gain score represents proportionally more people affected by a score difference 

that matters.

Section 2: Real Data Study 

In this section, the data and procedures used for the real data analysis are 

described. The section is organized into the following four subsections: 1) description of 

the data sources, 2) procedures, 3) data processing, and 4) dependent variables.
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Description o f  the Data Sources

Both o f the real datasets were taken from tests that are part o f the Praxis Series1M 

testing program. These tests are used as partial requirements for teacher licensure in 

several U.S. states. Both tests contained 120 multiple-choice items. All multiple-choice 

items had four response options. Normally, scores for these tests would be reported on a 

scale o f 100-200 , but for the purposes o f this analysis, only raw scores were used.

Test A was a test o f health and physical education content knowledge. This test 

contains several content categories, but can be substantively considered to contain two 

major dimensions: 1) health (50 items), and 2) physical education (70 items). A sample 

size o f 3,877, accumulated from administrations held between November 2003 and 

March 2005, was used for this analysis. One item that was identified as problematic 

during operational administration was not included in the analysis.

Test B was a test o f English literature and composition content knowledge. This 

test contains three content categories that can substantively be considered three major 

dimensions: 1) reading and understanding text (66 items), 2) language and linguistics (21 

items), and 3) composition and rhetoric (34 items). The two largest categories, reading 

and understanding text, and composition and rhetoric, were chosen for the purposes of 

this analysis. Only the items related to these two dimensions (100 items) were included.

A sample o f 4,226, accumulated from administrations o f one test form held between 

April and August 2005 were used for the analysis.

Procedures

This analysis was designed so that it would be possible to use the same dependent 

variables that were used in the simulation study. Therefore, instead o f equating two
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different forms o f the same test, each test was split into two forms and equated, so that 

equated scores could be compared to target scores (on the form to which the scores were 

equated) within examinees. All 120 items from Test A and 100 items for Test B were 

separately fit to the M2PL model using NO HARM  (Fraser, 1988). Then, the items for 

each form were split to create two separate forms (Form X and Form Y). The two new 

forms from each original form were created in three different ways: 1) Dimension two 

items among the unique items only, 2) Dimension two items among the common items 

only, and 3) Dimension two items among both the unique and common items. Thus, three 

test pairs were created from each original test form. The test specifications are outlined in 

Table 4. The test specifications for the number o f  items representing each dimension 

were limited by the number o f items on the original test form, as well as the number of 

items in each substantive dimension. The number o f items in each dimension was also 

constrained by an attempt to keep the relative proportion o f items representing each 

substantive dim ension similar to the proportions used in the simulation study (see Table 2 

in Section 1 o f  this chapter). In order to fulfill the test specifications for each set of 

conditions, not all items from the original test forms were included in the new forms. The 

item parameters for each test pair for Test A can be found in Appendixes D-F, and for 

Test B in Appendixes G-I.
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Table 4

Test Specifications fo r  Real Data Test Forms.

Location o f Second 
Dimension

U nique
Item s

Common
Items

Total
Items

Dimension Dimension

1 2 1 2

Test A Unique items 21 10 10 0 41
Common items 31 0 5 5 41
Both locations 21 10 5 5 41

Test B Unique items 20 10 10 0 40
Common items 30 0 5 5 40
Both locations 20 10 5 5 40

The selection process for the items for each test form was conducted using the 

following approach. Once the M 2PL parameters were obtained, the items were separated 

into Dimension one and Dimension two items according to the substantive dimension to 

which the item was originally designated. Each dimension for each test was sorted 

according to the ^-parameter estimates, from highest to lowest difficulty. Then the items 

were assigned to each form o f each test by placing the first item (the item with the 

highest difficulty) in each sorted dimension into Form X, then the second and third items 

(the second and third highest difficulties) into Form Y, the fourth and fifth items into 

Form X, swapping back and forth until the test specifications for that dimension were 

met. Then, using a more arbitrary approach, items from the remaining items in the sorted 

category were traded in and other items traded out, to ensure that the easier items were 

represented on the forms. Table 5 presents the resulting mean item parameter estimates 

for each form o f Test A, while Table 6 presents the mean items parameter estimates for 

each form o f Test B.
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Table 5

Mean ai~, 0 2 -, and d- parameter Estimates and Correlation between Dimensions One and

Two fo r  Test A Test Forms.

Location o f 
Second 

Dimension/ 
Test Form aj a2 d ri,2

BLXb 0.223 0.209 0.530 0.399
BLY 0.255 0.257 0.725 0.395
UIX 0.240 0.201 0.562 0.377
UIY 0.275 0.25 0.757 0.371
CIX 0.215 0.167 0.495 0.213
CIY 0.292 0.248 0.819 0.212

a r 12 denotes correlation between substantive dimensions on each test 
b BL = both locations, UI = unique items only, Cl = common items only

As Table 5 illustrates, the Test A form pairs used for equating had similar mean 

a/- and ^ -param eter estimates, with differences ranging 0.030 to 0.050 between forms 

for the BL and UI pairs, and a 0.080 difference between forms for the Cl pair, but 

differed on the mean ^-parameter estimates by about 0.200 for BL and UI pairs and about 

0.300 for the C l pair. Therefore, the test pairs for Test A were similar in form parallelism 

to the Form X  and Y pairs that were created for the simulation study. The correlation 

between the substantive dimensions on each form o f Test A was low (see Table 5). In 

Table 6 , the Test B form pairs used for equating are much more closely parallel, with 

differences o f between 0.010 and 0.050 for the a r  and a 9-parameter estimates. The d- 

parameter differences between forms were in the range o f 0.010 for the BL and UI form 

pairs, but were larger for the Cl form pairs with a difference o f 0.100 between forms. The 

Test B form pairs fall somewhere between the parallel forms and nonparallel forms 

conditions. The correlation between substantive dimensions for each form o f Test B was 

about halfway between low  and high.
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Table 6

Mean ai-, a2-, and d- parameter Estimates and Correlation between Dimensions One 

and Two fo r  Test B Test Forms.

Location o f Second 
Dimension/ 
Test Form ai a2 D r l f

BLXb 0.326 0.342 0.681 0.498
BLY 0.360 0.310 0.676 0.548
UIX 0.326 0.301 0.733 0.466
UIY 0.361 0.291 0.747 0.522
CIX 0.344 0.255 0.628 0.403
CIY 0.394 0.265 0.742 0.442

a r, 2 denotes correlation between substantive dimensions on each test 
b BL = both locations, UI = unique items only, Cl = common items only

Sample

Once the tests forms were created, the sample o f examinees was split into two 

groups, Group P and Group Q. For Test A, Group P had 1,939 examinees, while Group Q 

had 1,938 examinees. For Test B, both groups had 2,113 examinees. For the purposes of 

this study, Group P was “administered” Form X and Group Q was “administered” Form 

Y, but because data were available for both test forms, Group Q Form X data were 

retained as target scores for those examinees. The groups for each test were set by simply 

splitting the data files into half. This arbitrary splitting o f the data allowed for, but did not 

guarantee, some level o f group nonequivalence for the purposes o f comparison to the 

simulated data conditions.

Ability parameters for each group were found for each test form by combining 

groups P and Q, then calibrating the response data using the program  2D EA P version 1.0 

(Luecht, 1992). Table 7 displays the means and standard deviations o f the ability 

parameter estimates on both Dimension one and Dimension two for each group for Test 

A. Group P and Group Q were very similar in ability on both dimensions, with the largest
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difference between groups o f 0.040 6 on Dimension one on the UIX form. These groups 

were considered to be very close to randomly equivalent. Therefore, the results o f the 

Test A analysis were most directly comparable to the equivalent groups (EG) conditions 

o f the simulation study. It should be noted that while the means for each sample for each 

0 are near zero, as would be expected, the standard deviations are less than the expected 

value o f one. Luecht and M iller (1992) note a similar pattern o f smaller standard 

deviations than expected in some o f the initial documentation for this program.5 They 

attribute this result to bias in the variance-covariance matrix when expected a priori 

(EAP) estimation procedures are used in the program 2DEAP, and might be particularly 

noticeable in these test forms with very few items measuring each dimension. The bias 

can be considered a limitation o f the method. The raw scores on Dimension One and Two 

for Populations P and Q on Test A are presented in Appendix J. Comparison o f these raw 

scores between populations provides additional evidence that the assertion that the groups 

are comparable is a reasonable one.

5 Several test runs o f  this program with known simulated data produced similar results to those observed 
with the real data. Two dimensional data with sample means and standard deviations o f  0 and 1, 
respectively produced ability estimates for each 6 with means near 0 but standard deviations near 0.7 and 
0.8. Even with a correlation between dimensions specified as 1.0, standard deviations did not go over 0.8.
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Table 7

M ean and standard deviations o f  9 /, 9 2  fo r  Groups P  and Q fo r  Test A forms.

Location 
o f Second

Group P Group Q

Dimension e,a 9 2 0 i 92

BLXb 0.012 -0.001 -0.013 -0.002
(0.691) (0.673) (0.669) (0.678)

UIX 0.020 0.001 -0.020 -0.002
(0.706) (0.667) (0.687) (0.560)

CIX 0.014 0.013 -0.015 -0.016
(0.677) (0.560 (0.660) (0.556)

a Standard deviations are presented in brackets () 
b BL = both locations, UI = unique items only, Cl = common items only

Table 8 presents the mean and standard deviations o f the ability estimates for 

Dimensions one and two for both groups on Test B. On all forms, there was a group 

difference o f  approximately 0.1 9 favouring Group Q on both dimensions. Therefore, the 

results o f  the Test B analysis were most directly comparable to the nonequivalent small 

(NEGS) conditions o f the simulation study. Similar to that observed in Table 7, the 

standard deviations are not near one as would be expected. The raw scores on Dimension 

One and Two for Populations P and Q on Test B are presented in Appendix K. 

Comparison o f  these raw scores between populations provides additional evidence that 

the assertion that the groups are nonequivalent (with small differences) is a reasonable 

one.
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Table 8

M ean and standard deviations o f  0/t 6 2fo r  Groups P and Q fo r  Test B forms.

Location o f
Second
Dimension

Group P Group Q

Q f e 2 6, e 2
BLXb -0.053 -0.044 0.066 0.056

(0.770) (0.811) (0.769) (0.792)
UIX -0.051 -0.040 0.062 0.056

(0.766) (0.787) (0.743) (0.765)
CIX -0.057 -0.044 0.070 0.055

(0.776) (0.631) (0.785) (0.635)
a Standard deviations are presented in brackets () 
b BL = both locations, UI = unique items only, Cl = common items only

Equating Procedures

For each test, Group Q Form Y scores were equated to Group P Form X scores 

using the Stocking and Lord scale transformation (through the common items) and 

equated using IRT true-score equating. The same software that was used for the 

simulation study was used for these analyses.

Dependent Variables

To calculate the dependent variables, Group Q equated and unequated Form Y 

scores were compared to Group Q X scores for each individual. M ean absolute difference 

(MAD) and percent score difference that matters (percent SDTM) were both calculated, 

as well as the gain (difference between unequated and equated values) for each dependent 

variable for each test.

Section 3: Computer Programs

NO HARM

NOFIARM can fit unidimensional or multidimensional IRT models to response 

data, and can be specified to work in either confirmatory or exploratory mode. In 

confirmatory mode, the user provides the vector c containing the fixed guessing estimates
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(which in the case o f  the M2PL model are all set to 0), as well as the initial pattern 

matrices F and P. F is an n x m  factor matrix which specifies which m items belong to 

which n dimension(s), while P is an n x n correlation matrix which specifies the 

correlation matrix among the n dimensions. The numbers in each matrix are set to 0 if  the 

corresponding estimated value is to be fixed, 1 if  the corresponding value is to be 

estimated. Once these inputs are provided, NOHARM  estimates the parameters in F and 

P using the procedure outlined in McDonald (1982). The procedure uses a least squares 

minimization algorithm. It also produces a residual matrix and root mean square residual 

which can be used to assess the goodness o f  fit o f  the model to the data.

M2GEN2

M2GEN2 was used to generate the data for the simulation study. Once the desired 

means, variances, and correlation o f the bivariate normal distributions are specified, the 

program randomly selects thetas from the bivariate normal distribution according to those 

specifications. The seed for all random selections is based on the internal clock o f the 

computer CPU that is used to run the program. The program uses several International 

Mathematics and Statistical Library (IMSL) subroutines (e.g., IMSL, 1994). After two 

thetas are selected for an individual examinee the program goes through each o f the items 

and calculates a response vector o f zeroes and ones. The first step is for the program to 

calculate probabilities o f a correct response for each item for each examinee, based on the 

specified item parameters and the randomly selected examinee parameters. The second 

step is that the program again uses an IMSL subroutine to generate a deviate from a 

uniform distribution bound by zero and one. The program compares the probability o f a 

correct response to the deviate. If  the probability o f a correct response is greater than or
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equal to the probability o f  the deviate, the examinee is assigned a 1 (denoting a correct 

response) for the item. If  the probability is less than the probability o f the deviate, the 

examinee is assigned a 0 (denoting an incorrect response.) For each item, a new uniform 

deviate is selected for the purposes o f comparison. The program cycles through each item 

for an examinee and then repeats the process beginning with generating a second set of 

ability Os until the desired number o f response vectors (corresponding to number of 

examinees) has been generated (T. A. Ackerman, personal communication, May 24, 

2006).

BILOG

BILOG is a program that can estimate IRT item and parameter estimates for 

unidimensional data. Operationally, BILOG approximates the integration across 6 that is 

required for M M LE (described in Chapter 2) by applying a prior approximate distribution 

o f examinee abilities (a set o f quadrature points and corresponding density weights) to 

the data (Hambleton et al., 1991; Mislevy & Bock, 1990). Next, parameter estimates of a 

and b are found such that the likelihood o f the examinee responses to a given item is 

maximized. BILOG uses MMLE to jointly estimate the a and b parameters. The process 

that is used to estimate the parameters is called the expectation-maximization (EM) 

algorithm. The EM algorithm contains two phases. In the first expectation phase, 

expected values o f  the parameter estimates are calculated. These estimates are adjusted 

iteratively in the second maximization phase using the Newton-Gauss procedure that is 

used to find the root o f nonlinear functions (Bock & Aitkin, 1981). The Newton-Gauss 

procedure is very similar to the Newton-Raphson procedure (Lee & Jennrich, 1979) that
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is used in IRT true-score equating (described in Chapter 2). Examinee ability estimates 

are created based on the item parameter estimates.

ST

The program ST calculates scale transformations to align two sets o f parameter 

estimates on common items so that the transformation can in turn be applied to one set of 

parameter estimates to bring them onto a common scale with the other set o f parameter 

estimates (Hanson & Zeng, 1995b). ST can conduct the mean/mean (Loyd & Hoover, 

1980) and mean/sigm a (Marco, 1977) methods, as well as the test characteristic curve 

methods the Haebara (1980) and the Stocking and Lord transformation (1983). The 

formulas used to calculate the Stocking and Lord transformation function are identical to 

those presented in Chapter 2. The loss minimization routine DFPMIN (Press, Teukolsky, 

Yetterling & Flannery, 1994, p. 428) is used to find the transformation function.

PIE

PIE is a computer program that can be used for IRT true or observed score 

equating (Hanson & Zeng, 1995a). The program is based on the 3-PL model (Lord,

1980), but can be used for the 2-PL model if  all c-parameters are set to 0. PIE uses true 

score equating formulas identical to those identified in Chapter 2. The program uses the 

routine RTSAFE (Press et al., 1994, p. 366), which combines the Newton-Raphson 

procedure with a bisection routine to ensure that the Newton-Raphson stays within 

reasonable bounds.

2DEAP

To calculate two-dimensional MIRT parameter estimates for the data used in the 

real data study, the program 2DEAP version 0.1 (Luecht, 1992) was used. Similar to
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BILOG, 2DEAP approximates the item parameter estimates using MMLE. The program 

first applies a bivariate normal prior distribution to get the posterior likelihood 

distribution (2DEAP assumes orthogonal dimensions). The likelihood function used is an 

extension o f  the same likelihood used for the unidimensional case, but is based on a 

MIRT probability function (Reckase, 1985, 1997).

Chapter Summary 

In Chapters 1 and 2, an introduction to the research questions, as well as 

background information and a rationale for the study was provided. In this chapter, the 

definitions, procedures and programs used to conduct the simulation and real data studies 

were presented. In Chapter 4, the results o f the simulation study will be described and 

discussed, followed by Chapter 5 in which the results o f the real data study and their 

relation to the results in the simulation study are provided.
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Chapter 4: Results 

Introduction

The results o f the simulations are presented in this chapter in three sections. 

Section 1 contains results from all conditions using parallel forms. Section 2 contains the 

results from all conditions using nonparallel forms, while Section 3 contains all results 

examining the gain o f  equating versus not equating. A chapter summary follows the 

presentation o f  all o f  the simulated results.

The rationale for this organization was two-fold. First, it was logical to split the 

results using parallel forms from nonparallel forms because it was only possible to 

calculate the gain values o f equating versus not equating for the nonparallel forms. For 

the nonparallel forms, the criterion for comparing the raw unequated Y score for each 

examinee was their respective raw unequated X score. In contrast, for the parallel forms, 

the criterion and the score being compared are the same unequated X score and therefore 

the unequated difference for parallel forms would always be zero.

Second, upon preliminary examination o f the results it became apparent that, of 

the independent variables considered in this study, form nonparallelism made the largest 

contribution to equating error. W hen forms were not parallel6, the error associated with 

the conditions was much larger than the error associated with conditions where the forms 

were parallel. Given these findings, separating the results for the two levels o f this 

independent variable made describing the results more clear and concise.

6 It is important to note that the identical (and therefore perfectly parallel) forms in this study are used for 
the purposes o f  establishing an ideal baseline for study purposes and should not be viewed as a realistic 
condition in practice. In reality it is virtually impossible to generate perfectly parallel forms, and identical 
forms do not need to be equated.
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W ith this organization the results also make a logical progression. In the parallel 

forms results, the effects o f the correlation between dimensions, the location o f the items 

measuring the second dimension, and group equivalence under ideal conditions were 

evident. In the nonparallel forms results, the effect o f varying the forms systematically in 

mean difficulty from each other is introduced and, as explained above, the effect o f this 

additional variable dominated the effects attributable to the correlation between 

dimensions, the location o f  the items measuring the second dimension, and group 

equivalence. Finally, the gain results describe whether equating under each set o f 

conditions removes error from or adds error to the scores when compared to the 

magnitude o f  error that is present in the scores prior to equating.

Criteria fo r  Assessing the Meaningfulness o f  Equating Error and Gain Values 

The purpose o f  this study was to examine the robustness o f IRT equating using a 

common-items nonequivalent groups design under a set o f conditions that varied the 

multidimensional character o f the test forms, the location o f the items measuring the 

second dimension, the equivalence o f the groups, and the degree o f  parallelism between 

the forms. As mentioned in the previous chapter, the robustness was assessed using the 

mean absolute deviation (MAD) between the pairs o f unequated and equated scores and 

the percent o f examinees who have a difference greater than a score difference that 

matters, which in this study was half a score point (0.5). Given that equating error would 

likely never be exactly zero, it was necessary to develop criteria that could be used to 

decide if  equating under each set o f conditions was robust. For each dependent variable, a 

set o f criteria was developed to classify the magnitude o f errors into small, medium, and 

large error. These categories can be thought o f as analogous to the A-, B- and C-level
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effects used to interpret differential item functioning (DIF) (Roussos & Stout, 1996). 

Small error parallels A-level DIF, which is considered negligible. In this study, 

conditions with small error are considered robust. Medium error parallels B-level DIF, 

which is meaningful and should be addressed if  it is possible to do so, but might be 

acceptable in some situations. Large error parallels C-level DIF, which warrants 

immediate attention and suggests that if  found in the equated scores o f  this study, the IRT 

equating under those conditions was not a satisfactory method for creating scores that are 

interchangeable for interpretation.

Mean Absolute Difference

The M ean Absolute Difference (MAD) represents the average magnitude o f the 

error associated with an exam inee’s score for a given sample, regardless o f the direction 

o f the error. For test equating to be robust at the sample level, the equating error needs to 

be small enough that it would not be detectable once the equated score was rounded for 

reporting. This idea comes from Dorans and Feigenbaum’s (1994) concept o f a score 

difference that matters. Dorans and Feigenbaum (1994) suggested that any difference 

between equated and true scores that is “observable” once scores are rounded to the 

nearest reporting scale unit is meaningful and matters because it is visible. For example, 

if  test scores are on a scale where scores are reported in units o f 10, then any score 

difference o f  5 or greater would matter because it is larger than one-half o f a reporting 

scale unit, and would therefore result in a different reported score, once the scores were 

rounded. In this study, where the scores are reported on a 0 - 68 scale with a score 

interval o f 1, any MAD that was less than 0.5 was considered not meaningful. Therefore, 

a MAD o f less than 0.50 was set as the criterion for small error. The boundary between
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medium and large error was more difficult to establish. A medium level o f error might be 

anything that was 0.5 score points or greater but less than two percent o f the total 

possible score. Two percent error was an arbitrary decision but seemed like a reasonable 

error size that would not be strictly considered robust according to the score difference 

that matters criterion, but might still be considered an error o f acceptable size. For this 

study, two percent o f  a total possible score o f 68 is 1.36 score points. Any error that was 

two percent or greater would be large enough to be problematic when trying to compare 

examinees. Therefore, any MAD that was 1.36 or greater was considered large error.

Upon reviewing the data, discernible patterns within size categories (small, 

medium, large) also became evident. In order to interpret these patterns consistently, 

another criterion needed to be developed for determining when the MAD “increased” or 

“decreased” across conditions. A rule o f  0.05 score points, or one-tenth o f the 0.5 score 

point difference that matters criterion, was adopted for this purpose. For example, in 

Table 9, in the 0.3 correlation BL conditions, there was a 0.05 score point difference 

between EG (0.29) and NEGS (0.34), but only a 0.04 difference between NEGS and 

NEGM (0.38). In these two cases, the MAD increased between EG and NEGS, but there 

was no systematic difference between NEGS and NEGM.

Percent o f  Examinees with Score Difference that Matters

The proportion (expressed as a percent) o f examinees with a score difference that 

matters (percent SDTM) examines equating error differently than MAD, though it is 

based on the same set o f raw data and draws upon the same concept o f a difference that 

matters. MAD reflects the average magnitude o f  all o f the examinee differences to 

express the degree o f  error in the sample overall. In contrast, the percent SDTM is a
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count o f all examinee differences that have detectable error, based on the same 

“difference that matters” criterion described for MAD. Because o f what each dependent 

variable focuses on, their metrics are also different. For MAD, the metric is score points. 

For percent SDTM, the metric is percent o f  examinees. Percent SDTM is a more 

examinee-centered dependent measure because it makes a decision about the robustness 

o f equating for each individual first, which is then summarized in order to be able to 

make inferences about equating robustness at the sample level. By contrast, MAD also 

calculates the difference for each examinee, but when they are averaged, information is 

lost about how many people are affected.

Because the percent SDTM differs from the MAD in its underlying focus and 

metric, the percent SDTM requires a different operational definition o f robustness at the 

sample level. Ideally, the percent SDTM should be zero, meaning that no examinee has a 

score difference that mattered. However, this definition was not useful for interpretative 

purposes in this study because none o f the conditions was likely to meet this ideal 

criterion; therefore no condition would have been classified as robust. Instead, the 

criterion for robustness was developed based on the results for conditions where the test 

equating performance was expected to be the best using a common-items design (Bolt, 

1999; Kolen & Brennan, 2004, p. 294), and where the unidimensionality assumptions o f 

IRT equating were not violated (Kolen & Brennan, 2004, pp. 156-7). The results o f the 

perfect (1.0) correlation, equivalent groups (EG), parallel forms conditions were 

examined, and based upon these results, small error was defined as any value less than 

25.0 percent. For a boundary between medium and large error, any value o f percent 

SDTM that was 25.0 percent or greater, but less than 50.0 percent was defined as medium
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and any value that was 50.0 percent or greater was defined as large. The rationale for the 

50 percent cut-off was that an equating function that produced equated scores where 

more than half o f the examinees had a detectable level o f error could not be considered 

robust under any circumstances because the majority o f examinees had meaningful error 

in their scores.

An additional criterion was developed to frame changes in percent SDTM 

between conditions. Just like the rule used for MAD, one-tenth o f the “small” 

categorization was adopted as this value. A change o f 2.5 percent or greater must have 

occurred between conditions in order for the values to be systematically different.

Gain Values

Gain values, for both MAD and percent SDTM, are the differences between the 

unequated and equated errors for each respective condition. Gain values represent the 

magnitude o f error that was either added or subtracted from scores by equating. 

Establishing criteria for assessing gain values was approached differently than the 

approach used to establish criteria for assessing error because there are two factors to 

consider, the magnitude and direction o f gain. First, the magnitude o f gain is categorized 

into small, medium and large gain based on the original criterion corresponding to that 

dependent variable. In other words, for MAD the small criteria was less than 0.5, medium 

was 0.5 or greater but less than 1.36, and large was 1.36 or greater. For the percent 

SDTM, small gains were change o f less than 25 percent, medium gains were 25 percent 

or greater but less than 50 percent and large gains were 50 percent or greater.

Subsequent to determining the magnitude, the direction o f  the gain must be 

considered: positive gains indicate that there was less error present in the scores after
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equating and therefore equating was beneficial, while negative gains indicate that there 

was more error present in the scores after equating and therefore equating was 

detrimental. Changes to gains across conditions were also assessed relative to the same 

criteria that were established for the corresponding dependent variable. The sign o f the 

gain was also taken into consideration when examining differences in gain across 

conditions.

Section 1: Parallel Forms 

The results for the parallel forms conditions are presented in Table 9. For this 

table and all the tables that follow in this chapter, the classifications for small, medium 

and large error are identified by the font style. Values classified as small are presented in 

normal font, medium values are in bold normal font, and large values are in bold italics. 

Further, the structure o f  each table is the same. The correlations between dimensions are 

listed in column 1 followed by the group equivalence in column 2. The next three 

columns correspond to the location o f the dimension 2 items: included in both the 

common and unique item sets (column 3), only in the unique item sets (column 4), and 

only in the set o f common items (column 5). Given the purpose o f this study, the 

discussion is organized in terms o f the three locations o f the dimension 2 items.

Mean Absolute Difference

As indicated above, the third column o f data in Table 9 corresponds to the 

location o f the items measuring the second dimension in both the common and unique 

items sets (BL). W hen the correlation between dimensions was 1.0 or 0.7, the values for 

MAD were small at all levels o f group equivalence. W hen the correlation was 0.3, the 

MAD increased from EG to NEGS and NEGM, but again the MAD values for all three
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conditions were small. W hen the correlation between dimensions was 0.0, the MAD 

values for EG and NEGS were small, while the MAD value for NEGM  was medium.

In the fourth column o f Table 9, the items measuring the second dimension were 

among the unique items only (UI). When the correlation was 1.0, the MAD values were 

all small. W hen the correlation between dimensions was 0.7, all three MAD values were 

all small, but there was an increase in MAD from EG and NEGS to NEGM. When the 

correlation between dimensions was 0.3, the MAD increased from EG to NEGS to 

NEGM, but the MADs for EG and NEGS were small, while the MAD for NEGM was 

medium. W hen the correlation between dimensions was 0.0, the pattern o f increasing 

MAD as the groups became more nonequivalent was similar to, but more marked than 

the pattern when the correlation between dimensions was 0.3. In this case, the EG MAD 

was small, while the NEGS and NEGM MADs were both medium.
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Table 9

M ean Absolute Difference (MAD) fo r  Parallel Forms, by Correlation Between 

Dimensions, Group Equivalence, and Location o f  the Second Dimension Items

Correlation
Between
Dimensions

Group
Equivalence

Location o f Second Dimension Items
BLa UI Cl

Perfect EG (0.0) 0.25 0.32 0.29
(1.0) NEGS (0.1) 0.27 0.32 0.24

NEGM  (0.3) 0.28 0.34 0.28
High EG (0.0) 0.28 0.34 0.30
(0.7) NEGS (0.1) 0.31 0.31 0.34

NEGM  (0.3) 0.30 0.40 0.32
Low EG (0.0) 0.29 0.38 0.47
(0.3) NEGS (0.1) 0.34 0.43 0.48

NEGM  (0.3) 0.38 0.50 0.68
No EG (0.0) 0.32 0.42 0.49
(0.0) NEGS (0.1) 0.32 0.53 0.61

NEGM  (0.3) 0.56 0.82 1.33
Note: Values in normal text represent small errors (<0.50), values in bold represent medium errors (0.5 < x 
< 1.36), values in bold italics represent large errors (>1.36). 
a BL = both locations, UI = unique items only, Cl = common items only

In the fifth column, the items measuring the second dimension were present in 

only the common items (Cl). W hen the correlation between dimensions was 1.0, MADs 

for EG, NEGS, and NEGM  were all small, but MAD decreased from EG to NEGS. When 

the correlation between dimensions was 0.7, the MAD for EG, NEGS, and NEGM were 

also all small and did not differ systematically. W hen the correlation between dimensions 

was 0.3, the MADs for EG and NEGS were small and lower than the MAD for NEGM, 

which was medium. W hen the correlation between dimensions was 0.0, the MADs 

increased systematically as group nonequivalence increased. The MAD for EG was 

small, while M ADs for NEGS and NEGM were both medium.
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Percent o f  Examinees with a Score Difference that Matters

The results for percent SDTM are presented in Table 10. For the BL location 

(column 3), all levels o f group equivalence had small percent SDTMs when the 

correlation between dimensions was 1.0. W hen the correlation between dimensions was 

0.7, the percent SDTM increased from EG and NEGS to NEGM, but all percent SDTM 

values were still small. W hen the correlation between dimensions was 0.3, there was a 

more distinct trend o f  increasing percent SDTM for EG and NEGS to NEGM. For this 

correlation, the percent SDTM increased from EG to NEGS but were both small, while 

the percent SDTM for NEGM  was medium. Lastly, when the correlation between 

conditions was 0.0, percent SDTM for EG and NEGS were small and did not differ, 

while the NEGM  percent SDTM was large.

For the UI location (Table 10, Column 4), when the correlation between 

dimensions was 1.0, the percent SDTMs for the EG and NEGS conditions were small, 

while the NEGM  percent SDTM value was medium. W hen the correlation between 

dimensions was 0.7, the percent SDTMs were small for EG and NEGS and medium for 

NEGM. W hen the correlation between dimensions was 0.3, the percent SDTM for all 

three levels o f  group nonequivalence was medium, with an increasing pattern from EG to 

NEGS to NEGM. W hen the correlation between dimensions was 0.0, the pattern of 

increasing percent SDTM was more marked as the groups became more nonequivalent, 

with increases in percent SDTM from EG to NEGS to NEGM. Further, while the percent 

SDTMs for the EG and NEGS conditions were medium, the percent SDTM for the 

NEGM was large.
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In the Cl location (Table 10, column 5), when the correlation between dimensions 

was 1.0, percent SDTM for all group equivalence conditions was small, but there was a 

decrease in percent SDTM from EG to NEGS and then an increase from NEGS to 

NEGM. W hen the correlation between dimensions was 0.7,the percent SDTMs for all 

three group equivalence conditions were small. However, the percent SDTM increased 

from EG to NEGS, and then decreased from NEGS to NEGM. When the correlation 

between dimensions was 0.3, the percent SDTMs were medium for EG and NEGS and 

did not differ, while the percent SDTM was large for NEGM. W hen the correlation 

between dimensions was 0.0, there was a noticeable increase in the percent SDTM from 

EG to NEGS to NEGM. The percent STDM for EG was medium, while percent STDMs 

were large for both NEGS and NEGM.
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Table 10

Percent o f  Examinees with Score Difference That Matters (SDTM) fo r  Parallel Forms, by 

Correlation between Dimensions, Location o f  the Second Dimension, and Group 

Equivalence

Correlation
Between
Dimensions

Group
Equivalence

Location o f Dimension 2 Items
BLa UI Cl

Perfect EG (0.0) 13.4 21.9 16.7
(1.0) NEGS (0.1) 14.3 21.2 11.5

NEGM  (0.3) 15.0 25.4 14.9
High EG (0.0) 16.2 23.3 18.8
(0.7) NEGS (0.1) 15.5 21.9 23.6

NEGM  (0.3) 18.8 31.7 19.0
Low EG (0.0) 16.7 25.2 38.0
(0.3) NEGS (0.1) 24.7 34.8 37.9

NEGM  (0.3) 28.7 40.1 57.4
No EG (0.0) 19.2 31.1 36.7
(0.0) NEGS (0.1) 20.4 43.4 54.8

NEGM  (0.3) 51.6 70.4 84.1
Note: Values in normal text represent small errors (<25%), values in bold represent medium errors (25% < 
x < 50%), values in bold italics represent large errors (>50%). 
a BL = both locations, UI = unique items only, Cl = common items only

Summary
A pattern o f results begins to emerge from the MAD and percent SDTM results. 

In general, the errors were smaller when the correlations were higher, and increased as 

the correlations decreased. While the differences between the M ADs and percent STDMs 

among the different levels o f group equivalence were not clear for the higher levels of 

correlation, they became much sharper for the two lower correlations, with a general 

tendency o f increased error with increased group nonequivalence. The errors were also 

generally smaller if  the items measuring the second dimension were present in both the 

common and unique items sets, particularly at the lower correlations.
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Section 2: Nonparallel Forms

Mean Absolute Difference

The MAD results for the nonparallel forms are reported in Table 11. All MADs 

were large for all locations and, within locations, for all correlations between dimensions 

and levels o f group equivalence. The MAD values ranged from 3.25 in the 1.0 

correlation, EG, BL conditions to 3.89 in the 0.0 correlation, NEGM, Cl condition.

Differences among the MAD values emerged in the nonparallel forms results. For 

the BL location (Table 11, column 3), the MADs increased from EG and NEGS to 

NEGM when the correlation between dimensions was 1.0. When the correlation between 

dimensions was 0.7, the MAD for EG was smaller than the MAD for NEGS and NEGM. 

W hen the correlation between dimensions was 0.3, the MAD did not differ across 

conditions. W hen the correlation between dimensions was 0.0, the MAD did not change 

between EG and NEGS, but increased from EG to NEGM.

In the UI location (Table 11, column 4), when the correlation between dimensions 

was 1.0, the MADs increased from EG and NEGS to NEGM. The MADs did not differ 

when the correlation between dimensions was 0.7 and 0.3. Finally, when the correlation 

between dimensions was 0.0, the MADs increased from EG to NEGS, then decreased 

between NEGS and NEGM.

In the C l location (Table 11, column 5), when the correlation between dimensions 

was 1.0, the MADs increased from EG and NEGS to NEGM. When the correlation 

between dimensions was 0.7, the MAD increased from EG to NEGM. Lastly, when the 

correlation between dimensions was either 0.3 or 0.0, the MADs increased from EG to 

NEGS to NEGM.
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Table 11

Mean Absolute Difference (MAD) fo r  Nonparallel Forms, by Correlation between 

Dimensions, Location o f  the second dimension, and Group Equivalence

Correlation
Between
Dimensions

Group
Equivalence

Location o f Dimension 2 Items
BLa UI Cl

Perfect EG (0.0) 3.25 3.29 3.32
(1.0) NEGS (0.1) 3.28 3.29 3.33

NEGM  (0.3) 3.35 3.35 3.40
High EG (0.0) 3.26 3.33 3.33
(0.7) NEGS (0.1) 3.31 3.33 3.37

NEGM  (0.3) 3.34 3.37 3.41
Low EG (0.0) 3.31 3.32 3.35
(0.3) NEGS (0.1) 3.34 3.34 3.45

NEGM  (0.3) 3.35 3.37 3.60
No EG (0.0) 3.35 3.35 3.41
(0.0) NEGS (0.1) 3.37 3.67 3.55

NEGM  (0.3) 3.41 3.39 3.89
Note: Values in normal text represent small errors (<0.50), values in bold represent medium errors (0.5 < x 
< 1.36), values in bold italics represent large errors (>1.36). 
a BL = both locations, UI = unique items only, Cl = common items only

Percent o f  Examinees with a Score Difference that Matters

Table 12 presents the results for the percent SDTM for the non-parallel forms.

The percent SDTMs were large for all locations and within locations, for all conditions. 

The values ranged from 89.8 percent in the 1.0 correlation, EG, BL condition to 91.9 

percent in the 0.0 correlation, NEGM, Cl condition. The differences in the percent SDTM 

between conditions were too small to claim any systematic differences.
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Table 12

Percent o f  examinees with a score difference that matters (SDTM) fo r  nonparallel forms, 

by correlation between dimensions, location o f  the second dimension, and group 

equivalence,

Correlation
Between
Dimensions

Group
Equivalence

Location o f Second Dimension Items
BLa UI Cl

Perfect EG (0.0) 89.8 90.0 90.2
(1.0) NEGS (0.1) 90.1 89.9 90.4

NEGM  (0.3) 90.4 90.2 90.4
High EG (0.0) 89.9 90.2 90.1
(0.7) NEGS (0.1) 90.2 90.3 90.4

NEGM  (0.3) 90.3 90.4 90.6
Low EG (0.0) 90.1 90.2 90.5
(0.3) NEGS (0.1) 90.2 90.3 90.7

NEGM  (0.3) 90.5 90.6 91.0
No EG (0.0) 90.4 90.3 90.4
(0.0) NEGS (0.1) 90.6 90.5 91.2

NEGM  (0.3) 90.5 90.7 91.9
Note: Values in normal text represent small errors (<25%), values in bold represent medium errors (25% < 
x < 50%), values in bold italics represent large errors (>50%). 
a BL = both locations, UI = unique items only, Cl = common items only

Summary

In the nonparallel forms conditions, the effect o f the form nonparallelism was 

large relative to the effects o f the other independent variables. All locations and group

equivalence conditions within location had large errors. The patterns o f differences in the

MADs within location and condition were similar, though much more dampened, than 

patterns observed in the parallel forms case. In general, the errors were smaller when 

correlations were higher, and increased as the correlation between dimensions decreased. 

The errors were generally smallest within the conditions for the BL location, and were 

largest within the conditions for the Cl location. The errors were also generally smallest
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when the two groups were equivalent, and largest when the groups were moderately 

nonequivalent (NEGM). No patterns were observed in percent SDTM.

Section 3: Gain from  Equating Nonparallel Forms 

In this section, the gain realized by equating scores is reported. For each 

dependent variable, the unequated results are presented first in Table 13. The unequated 

results were calculated by finding the differences between the raw Y  and raw X  scores for 

each examinee in Group Q (the group whose scores were equated). If  the raw X  score for 

each examinee represents the target score for that examinee, then the unequated 

difference represents the error that is inherent in the raw Y  score as a representation o f the 

target score prior to equating.

The gains realized from equating are presented next in Table 14. The gain value is 

equal to the difference between the unequated results and equated results for each 

condition. These values describe the degree to which equating added or removed error 

from the Y  score as a representation o f the target X  score. Positive gain values occur when 

the unequated error was larger than the equated error, and indicate that there was a 

benefit to equating because it reduced the magnitude o f the difference (MAD) or the 

percentage o f examinees with a difference that matters (percent SDTM). Negative gain 

values indicate that equating increased the magnitude o f the difference (MAD) or 

increased with percentage o f examinees with detectable score differences (percent 

SDTM).

Mean Absolute Difference

Unequated results. The unequated MAD results are presented in Table 13. The 

unequated MADs for all locations and conditions within location without equating were
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large. The unequated MAD values ranged from 4.01 in the 1.0 correlation, UI, EG 

condition to 4.33 in the 0.0 correlation, NEGM, Cl condition.

W hile the values are all classified as large, there are still patterns o f increasing 

MAD present in results. For the BL location (Table 13, column 3), when the correlation 

between dimensions was either 1.0 or 0.7, the unequated MADs increased from EG to 

NEGS to NEGM. W hen the correlation between dimensions was 0.3, the unequated 

MAD increased from EG and NEGS to NEGM. When the correlation between 

dimensions was 0.0, the unequated MADs increased from EG to NEGS to NEGM.

In the case o f the UI location (Table 13, column 4), when the correlation between 

dimensions was 1.0, the unequated MADs increased from EG and NEGS to NEGM. 

W hen the correlation between dimensions was 0.7, the unequated MADs increased from 

EG to NEGS to NEGM. W hen the correlation between dimensions was 0.3, the 

unequated MADs increased from EG and NEGS to NEGM. When the correlation 

between dimensions was 0.0, the unequated MADs increased from EG to NEGS to 

NEGM.

Lastly, for the Cl conditions (Table 13, column 5), when the correlation between 

dimensions was 1.0 or 0.7, the unequated MADs increased from EG and NEGS to 

NEGM. W hen the correlation between dimensions was 0.3, unequated MAD increased 

from EG to NEGS and NEGM. Finally, when the correlation between dimensions was 

0.0, the unequated M ADs increased from EG to NEGS to NEGM.
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Table 13

Unequated M ean Absolute Difference (MAD) fo r  Nonparallel Forms, by Correlation 

between Dimensions, Location o f  the Second Dimension, and Group Equivalence

Correlation
Between
Dimensions

Group
Equivalence

Location o f Second Dimension Items
BLa UI Cl

Perfect EG (0.0) 4.02 4.01 4.14
(1.0) NEGS (0.1) 4.07 4.05 4.17

NEGM  (0.3) 4.13 4.13 4.26
High EG (0.0) 4.04 4.03 4.17
(0.7) NEGS (0.1) 4.10 4.09 4.21

NEGM  (0.3) 4.16 4.16 4.28
Low EG (0.0) 4.10 4.07 4.18
(0.3) NEGS (0.1) 4.13 4.10 4.24

NEGM  (0.3) 4.19 4.22 4.28
No EG (0.0) 4.11 4.09 4.22
(0.0) NEGS (0.1) 4.16 4.16 4.28

NEGM  (0.3) 4.24 4.23 4.33
Note: Values in normal text represent small errors (<0.50), values in bold represent medium errors (0.5 < x 
< 1.36), values in bold italics represent large errors (>1.36). 
a BL = both locations, UI = unique items only, Cl = common items only

Gain values. Gain values are presented in Table 14. All o f the gain values were 

positive, indicating that there was a benefit to equating under all conditions. The smallest 

gain was 0.44 in the Cl, 0.0 correlation NEGM  condition, and the largest gain was 0.87 in 

the Cl, 0.7 NEGM  condition. With the exception o f  the Cl, 0.0 correlation NEGM and 

UI, 0.0 correlation NEGS conditions, which had small gains (0.44 and 0.49, 

respectively), all o f  the gains were larger than a score difference that matters, but smaller 

than two percent o f  the score scale (1.36 points) and were therefore medium gains.

The change in gain pattern is somewhat different than what was observed for the 

MAD and unequated MAD values. In the BL conditions (Table 14, column 3), when the 

correlation between dimensions was either 1.0 or 0.7, no changes in MAD gain were
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observed between changing group equivalence conditions. When the correlation between 

dimensions was either 0.3 or 0.0, MAD gain increased from EG and NEGS to NEGM. 

Table 14

Gain Mean Absolute Difference (MAD) fo r  Nonparallel Forms, by Correlation between 

Dimensions, Location o f  the Second Dimension, and Group Equivalence

Correlation
Between
Dimensions

Group
Equivalence

Location o f Second Dimension Items
BLa UI Cl

Perfect EG (0.0) 0.77 0.72 0.82
(1.0) NEGS (0.1) 0.79 0. 76 0.84

NEGM  (0.3) 0.78 0.78 0.86
High EG (0.0) 0.78 0.70 0.84
(0.7) NEGS (0.1) 0.79 0 .76 0.84

NEGM  (0.3) 0.82 0.79 0.87
Low EG (0.0) 0.79 0.75 0.83
(0.3) NEGS (0.1) 0.79 0 .76 0.79

NEGM  (0.3) 0.84 0.85 0.68
No EG (0.0) 0.76 0.74 0.81
(0.0) NEGS (0.1) 0.79 0.49 0.73

NEGM  (0.3) 0.83 0.84 0.44
Note: Positive gain values indicate a benefit to equating, negative gain values indicate detriment 
attributable to equating. Values in normal text represent small gains (<0.50), values in bold represent 
medium gains (0.5 < x < 1.36), values in bold italics represent large gains (>1.36).
“ BL = both locations, UI = unique items only, Cl = common items only

In the UI conditions (Table 14, column 4), when the correlation between 

dimensions was 1.0, MAD gain decreased from EG and NEGS to NEGM. When the 

correlation between dimensions was 0.7, MAD gain decreased from EG to NEGS and 

NEGM. W hen the correlation between dimensions was 0.3, MAD gain decreased from 

EG and NEGS to NEGM . When the correlation between dimensions was 0.0, MAD gain 

decreased from EG to NEGS, then increased from NEGS to NEGM.

In the Cl conditions (Table 14, column 5), when the correlation between 

dimensions was either 1.0 or 0.7, MAD gain did not change with changing group 

equivalence. W hen the correlation between dimensions was 0.3, MAD gain decreased
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from EG and NEGS to NEGM. Finally, when the correlation between dimensions was 

0.0, MAD gain decreased from EG to NEGS to NEGM.

Percent o f  Examinees with a Score Difference that Matters

Unequated results. The unequated percent SDTM results are presented in Table 

15. In all conditions, the unequated percent SDTM was classified as large. The range of 

unequated percent SDTM  was from 91.6 percent in the 1.0 correlation, EG, UI condition 

to 93.0 in the 0.0 correlation, NEGM, Cl condition. The differences in unequated percent 

SDTM between conditions were too small to claim any systematic differences in the 

results.

Table 15

Unequated Percent o f  Examinees with a Score Difference that Matters (SDTM) fo r  

Nonparallel Forms, by Correlation between Dimensions, Location o f  the Second  

Dimension, and Group Equivalence

Correlation
Between
Dimensions

Group
Equivalence

Location o f  Second Dimension Items
BLa UI Cl

Perfect EG (0.0) 91.8 91.6 92.3
(1.0) NEGS (0.1) 92.0 92.0 92.4

NEGM  (0.3) 92.1 92.1 92.5
High EG (0.0) 91.9 91.8 92.4
(0.7) NEGS (0.1) 92.1 92.0 92.5

NEGM  (0.3) 92.4 92.5 92.8
Low EG (0.0) 92.2 92.2 92.5
(0.3) NEGS (0.1) 92.3 92.3 92.6

NEGM  (0.3) 92.5 92.9 92.6
No EG (0.0) 92.3 92.4 92.6
(0 .0 ) N E G S  ( 0 .1 ) 92.5 92 .5 92.8

NEGM  (0.3) 92.5 92.7 93.0
Note: Values in normal text represent small errors (<25%), values in bold represent medium errors (25% < 
x < 50%), values in bold italics represent large errors (>50%). 
a BL = both locations, UI = unique items only, Cl = common items only
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Gain values. The gain values for the percent SDTM are presented in Table 16. 

All gain values were positive, indicating that equating reduced the percent o f  examinees 

with a score difference that matters in all conditions. The values ranged from 1.2 percent 

in the 0.0 correlation NEGM  Cl condition, to 2.3 percent in the 0.3 correlation, NEGM, 

UI condition. All gain values were classified as small, and no systematic patterns were 

observed across conditions.

Table 16

Gain Percent o f  Examinees with a Score Difference that Matters (SDTM) fo r  Nonpar allel 

Forms, by Correlation between Dimensions, Location o f  the Second Dimension, and 

Group Equivalence

Correlation
Between
Dimensions

Group
Equivalence

Location o f  Second Dimension Items3
BLa UI Cl

Perfect EG (0.0) 2.0 1.6 2.1
(1.0) NEGS (0.1) 1.9 2.1 2.0

NEGM  (0.3) 1.8 1.9 2.1
High EG (0.0) 2.0 1.7 2.2
(0.7) NEGS (0.1) 1.9 1.7 2.1

NEGM  (0.3) 2.1 2.1 2.2
Low EG (0.0) 2.1 2.0 2.0
(0.3) NEGS (0.1) 2.1 2.0 1.9

NEGM  (0.3) 2.0 2.3 1.6
No EG (0.0) 1.9 2.1 2.2
(0.0) NEGS (0.1) 1.9 2.0 1.6

NEGM  (0.3) 2.0 2.1 1.2
Note: Positive gain values indicate a benefit to equating, negative gain values indicate detriment 
attributable to equating. Values in normal text represent small errors (<25%), values in bold represent 
medium errors (25% < x < 50%), values in bold italics represent large errors (>50%).
3 BL = both locations, UI =  unique items only, Cl = common items only

Summary

Unequated MAD and unequated percent SDTM displayed patterns similar to the 

patterns observed for the equated nonparallel forms. The gain results indicate that there
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was only a small benefit to equating, regardless o f location o f the common items and the 

conditions within location.

Chapter Summary

The results o f this simulation study suggest that o f all the factors manipulated in 

this study, form parallelism produced the largest effect. When forms were parallel, 

equating error tended to be small, but equating was sensitive to the effects o f the location 

o f the second dim ension items, correlation between dimensions, and group equivalence. 

W hen forms were nonparallel, the effects o f these other dependent variables were still 

evident, but the magnitude o f their effect was largely overshadowed by the effect o f form 

nonparallelism. In the nonparallel forms case, there was evidence o f a benefit to equating 

across all conditions, but the benefit was modest relative to the size o f the error that was 

present. The benefit o f equating to reducing error was diminished somewhat by lower 

correlations and larger group differences when the second dimension was present among 

the common items only (Cl location).

These results suggest several interesting points for discussion. But do the results 

reflect what would be observed with real data? In Chapter 5, the results o f real data 

analyses will be presented. These results will provide evidence that the results o f this 

simulation are realistic.
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Chapter 5: Real Data Study 

Introduction

To augment the simulation results presented in chapter 4, analyses on two real 

data sets were conducted. These analyses illustrate the effect that the location o f the items 

measuring the second dimension exerts on the robustness o f IRT equating when using a 

common-items nonequivalent groups design. This chapter is organized into the following 

sections: 1) the criteria for assessing the meaningfulness o f the equating errors and gains, 

2) real data results, 3) discussion o f the relation o f the real data results to the simulation 

study and, 4) a summary o f  the real data analyses.

Criteria fo r  Assessing the Meaningfulness o f  Equating Error and Gain Values

The criteria used to assess the meaningfulness o f  equating error and gain values 

were based on the same rationales that were used in the simulation study. The criterion 

for small MAD was less than 0.5 score points, because it represents a score difference 

that is undetectable. The criterion for medium MAD error was less than 2 percent o f the 

score scale (0.82 for test A and 0.80 for test B, respectively). The criterion for large MAD 

for Test A was 0.82 score points or greater and for Test B, 0.80 score points or greater. 

The same criteria that were used for percent SDTM in the simulation study were used for 

these analyses. These criteria were less than 25 percent for small, 25 percent to less than 

50 percent for medium, and 50 percent or greater for large, respectively.

Criteria were also used to quantify shifts in MAD and percent SDTM that were 

noticeable, but not large enough to cause changes in the small, medium, and large error 

categorizations. The criterion for MAD was 0.05 score points, which represents one-tenth 

o f  the score difference that matters (and the cut-off between small and medium errors).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M ultidimensionality and IRT Equating 96

Similarly, the criterion for the percent SDTM was 2.5 percent, also one-tenth o f the 

criterion for small percent SDTM error. Both o f these criteria are identical to what was 

used in the simulation study.

The gain attributable to equating was also examined in the real data. Just as in the 

simulation study, a positive gain reflects the amount o f error that was removed from the 

scores as a result o f equating. Conversely, a negative gain reflects error that was 

introduced into the scores as a result o f equating. The magnitudes o f the gains follow the 

same criteria for assessing error as their respective dependent variables. Further, the 

criteria for assessing differences in gain across conditions correspond to the “increasing” 

and “decreasting” criteria set for the dependent variable. Additionally, because it is 

possible to have a negative gain, shifts in gain are assessed relative to their sign as well as 

their magnitude. For example, in Table 19, the gain MAD for Test A for the BL location 

is 0.16 and -0.18 for the UI condition, which is a difference in absolute magnitude o f only 

0.02, but a relative difference o f -0.34. Therefore, a large negative difference is observed 

between the BL and UI locations.

Results

Test A

Mean absolute difference. The MAD results for Test A are presented in Table 17. 

For this table and all tables that follow in this chapter, the classifications for small, 

medium, and large error are identified using the font style used in the previous chapter. 

Small values are presented in normal font, medium values are in bold normal font, and 

large values are in bold italics. Further, the structure o f each table is the same. Each row 

represents a different derivation o f the dependent variables; the unequated values are
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presented in row  2, the equated values are presented in row 3, and finally, the gain values 

are presented in row 4.

For the unequated results (Table 17, row 1), the MADs were large for all 

locations. However, the MAD for the Cl location was larger than the MADs for both the 

BL and UI locations by over 0.5 score points. In the equated results (Table 17, row 2), the 

MADs were still large for all locations, but the difference between the MAD for the Cl 

location and the M ADs for the other locations o f the common items was much greater 

(1.31 and 1.35 score points than the BL and UI locations, respectively). When the gain of 

equating was examined (Table 17, row 3), the gain scores were small and positive for the 

BL and UI locations, indicating that equating reduced error in the scores. In the Cl 

location, the gain was also small, but was negative, indicating that more error was 

introduced by equating than was present prior to equating.

Table 1 7

Unequated, Equated and Gain MAD fo r  Test A.

Location o f Second Dimension Items
BLa UI Cl

Unequated MAD 2.96 2.94 3.52
Equated MAD 2.68 2.64 3.99
Gain MAD 0.28 0.30 -0.47
Note: Values in normal text represent small errors or gains (<0.50), values in bold represent medium errors 
or gains (0.5 < x < 0.82), values in bold italics represent large errors or gains (>0.82). Positive gain values 
indicate a benefit to equating; negative gain values indicate detriment attributable to equating. 
a BL = both locations, UI = unique items only, Cl = common items only

Percent o f  examinees with a score difference that matters. Table 18 presents the 

percent SDTM results for Test A. For the unequated results (Table 18, row  1), the 

unequated percent SDTMs for all locations were large. However, the unequated percent 

SDTM was larger for the Cl location than for the UI or BL locations. The percent 

SDTMs for the equated results (Table 18, row 2) were also all large. However the percent
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STDM for the Cl location was greater than the percent STDMs for both the BL and UI 

locations. The percent SDTM gains (Table 18, row 3) were small and positive for both 

the BL and UI locations, indicating a benefit o f  equating (reduction in error) in these 

conditions. The gain was and small and negative for the Cl location, indicating that 

equating introduced a small amount o f error in this location.

Table 18

Unequated, Equated and Gain Percent SD TM for Test A.

Location o f Second Dimension Items
BLa UI Cl

Unequated Percent SDTM (%) 88.9 89.2 91.6
Equated Percent SDTM (%) 88.2 88.0 93.0
Gain Percent SDTM (%) 0.7 1.2 -1.4
Note: Values in normal text represent small errors or gains (<25%), values in bold represent medium errors 
or gains (25% < x < 50%), values in bold italics represent large errors or gains (>50%). Positive gain values 
indicate a benefit to equating; negative gain values indicate detriment attributable to equating. 
a BL = both locations, UI = unique items only, Cl = common items only

Test B

M ean absolute difference.The MAD results for Test B are presented in Table 19. 

When the scores were unequated (Table 19, row 1), the MADs were large across the 

three locations. As with Test A, the unequated MAD for the Cl location was greater than 

the unequated M ADs for the BL and UI locations. For the equated MAD scores (Table 

19, row 2), the equated MADs for all locations were large. When equated, the MADs 

increased from the BL location to the UI location to the Cl location, with the MAD for 

the Cl location being much larger (2.25 and 1.91 score points, respectively). The MAD 

gain (Table 19, row  3) was small and positive for the BL location, but small and negative 

for the UI location and large and negative for the Cl location.
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Table 19

Unequated, Equated and Gain MAD fo r  Test B.

Location o f  Dimension 2 Items
BLa UI Cl

Unequated MAD 2.63 2.63 2.97
Equated MAD 2.47 2.81 4.72
Gain MAD 0.16 -0.18 -1.75
Note: Values in normal text represent small errors or gains ( 0 .5 0 ) ,  values in bold represent medium errors 
or gains (0.5 < x < 0.80), values in bold italics represent large errors or gains (>0.80). Positive gain values 
indicate a benefit to equating; negative gain values indicate detriment attributable to equating. 
a BL = both locations, UI = unique items only, Cl = common items only

Percent o f  examinees with a score difference that matters. The percent SDTM 

results for Test B are presented in Table 20. When the scores were unequated (Table 20, 

row 1), the percent SDTMs were large across the three locations. The unequated percent 

SDTM for the C l location exceeded the unequated percent SDTMs for both the BL and 

UI locations. The values o f the percent STDMs for the equated scores (Table 20, row 2) 

followed a similar trend, with the largest value, to a greater degree, for the Cl location. 

The percent SDTM gain (Table 20, row 3) for the BL location was small and positive, 

indicating that equating was beneficial (i.e., less error was present after equating), while 

it was small and negative for the UI and Cl locations, indicating that equating was 

detrimental. The negative impact o f equating was greater for the Cl location than it was 

for the UI location.
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Table 20

Unequated, Equated and Gain percent SD TM for Test B.

Location o f  Dimension 2 Items
BLa UI Cl

Unequated Percent SDTM (%) 86.9 86.9 90.6
Equated Percent SDTM (%) 86.7 87.9 95.3
Gain Percent SDTM (%) 0.2 -1.0 -4.7
Note: Values in normal text represent small errors or gains (<25%), values in bold represent medium errors 
or gains (25% < x < 50%), values in bold italics represent large errors or gains (>50%). Positive gain values 
indicate a benefit to equating; negative gain values indicate detriment attributable to equating. 
a BL = both locations, UI = unique items only, Cl = common items only

Relationship o f  Real Data Results to Simulated Data Results 

The Test A and Test B mean item, test, and examinee parameters align most 

closely with the nonparallel forms, 0.3 correlation equivalent and nonequivalent groups 

(for Test A and Test B, respectively) conditions from the simulation study. Therefore, 

these simulated conditions are the most logical conditions to use as a point o f comparison 

between the simulated and real data results. Several points arise from this comparison.

First, the nonparallel forms simulated results produced large MAD and percent 

SDTM errors. A similar magnitude o f errors was also observed for both Test A and Test 

B. This similarity suggests that the large errors observed in the simulation were 

comparable to what is observed in real data.

Second, when examining the effect o f location, there are some differences 

between the simulated and real data results. In the simulated conditions (Table 14 and 

Table 16 for MAD and percent SDTM, respectively), the gains across locations were 

approxim ately equal. In the real data conditions, the BL and UI locations produced 

similar results, which were less error-prone than the Cl location.7 BL and UI location

7 In saying there is an advantage to the BL and UI locations, it is important to qualify the assertion by also 
observing that all three locations still produced large errors in both MAD and percent SDTM, in both 
unequated and equated results. For Test B, the UI location had small negative gains.
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gain results for Test A (Table 17 and Table 18 for MAD and percent SDTM, 

respectively), are similar to each other and are small but still positive, while the Cl 

location gain results are negative. For Test B, the gain results are slightly different (Table 

19 and Table 20 for MAD and percent SDTM, respectively). For MAD gain, the BL 

location showed a small reduction in error through equating, while the UI location 

produced a small increase in error and the Cl location produced a large increase in error. 

A similar pattern was observed in the percent SDTM gain, the only difference being that 

the Cl location produced only a small increase in error.

Interestingly, while the real data results are not similar in pattern to the simulated 

data results to which their parameters most closely match, the results do look very similar 

to the simulated 0.3 correlation, nonequivalent moderate (NEGM) conditions, as well as 

to the 0.0 correlation, nonequivalent small (NEGS) and NEGM conditions. This 

similarity suggests that the simulated data results are realistic, though the results might 

overestimate the robustness o f the equating.

Third, when compared to the simulated data, the real data gains were also much 

smaller, again suggesting that although the patterns in the simulated data were similar to 

those observed in the real data, they demonstrated a greater level o f  robustness for low 

correlations than the real data results did. Test B had a higher correlation between 

dimensions than did Test A. However, the gains for Test A were still better (i.e., larger 

positive and smaller negative gains) than the gains for Test B.

Fourth, the Test A groups were nearly equivalent while the Test B groups had a 

small group nonequivalence (see Table 8, p. 68), which might explain why the gains for 

Test A were better than these gains for Test B. This result aligns with the simulated data
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results that revealed an advantage o f  improved group equivalence, particularly at the 

lower correlations.

Summary

The MAD for all conditions was large, in both the unequated and equated 

conditions. Once equated, however, the MAD was decreased for the BL location for both 

Test A and Test B, and for the UI location for Test B. MAD was increased for the Cl 

location for both Test A and Test B, and for the UI location on Test B. The same pattern 

o f  results was observed for percent SDTM. The characteristics o f these test forms were 

most similar to the nonparallel forms, 0.3 correlation, EG and NEGS conditions o f the 

simulated data. The results o f the real data analysis o f Test A and B produced similar 

patterns o f results to those conditions, suggesting that the simulated data results were 

reasonable, although they might have overestimated robustness o f IRT equating using a 

CI-NEG design, particularly when the correlations were low. These results also suggest 

that the link between the correlation between dimensions and equating robustness is not 

as straight forward as what has been demonstrated previously (e.g., Bolt, 1999), but 

rather is mediated by form parallelism, group equivalence, and the location o f the items 

containing the second dimension.
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Chapter 6: Discussion, Conclusions, and Recommendations

Introduction

The preceding two chapters provided the results o f analyses for both simulated 

and real data. This chapter contains a summary o f the study, a discussion o f the results, 

and the conclusions and recommendations that arise from the findings. First, a brief 

summary o f the design and procedures for both studies will be outlined, followed by a 

listing o f the key results. Then, the limitations o f the study design and the results o f the 

analyses in light o f these limitations will be discussed. A general discussion o f the results 

will follow, which will consider the likely causes o f equating error in relation to the 

observed patterns in the results. It will also include where this research fits in relation to 

what was previously known about the influence o f multidimensionality on the robustness 

o f IRT equating, what questions this research answered, and what questions either arise 

or remain. Finally, conclusions, implications for practice, and directions for future 

research are presented.

Summary o f  Purpose and Procedure

Simulation Study

The purpose o f  the simulation study was to systematically study the effects o f 

multidimensionality on the robustness o f IRT equating when using a common items 

nonequivalent groups design. The research design for this study included four fully- 

crossed independent variables: form parallelism (parallel forms-0.00, nonparallel forms- 

0.20), the correlation between the dimensions present on the test forms (None-0.0, Low- 

0.3, High-0.7, Perfect-1.0), group equivalence (Equivalent-0.00, Nonequivalent Small-0.1 

0, Nonequivalent Moderate-0.3 0), and the location o f the items measuring the second

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M ultidimensionality and IRT Equating 104

dimension (common items, unique items, both common and unique items locations).The 

LSAT was used to determine the values o f the item parameters used to generate the data. 

Test Forms X and Y were constructed so they were well matched statistically, with each 

form including a set o f  common items that were representative o f  the unique items on 

each form. Data were generated for two samples: Group P (for Form X) and Group Q (for 

Forms X and Y). Each condition was replicated 100 times with 2,000 examinees per test 

form. Data were processed using previously established statistical programs that are used 

by current testing agencies, including BILOG  (Mislevy & Bock, 1990) to fit the 2-PL 

model to the data, and ST  (Hanson & Zeng, 1995b) and PIE  (Hanson & Zeng, 1995a) to 

conduct the Stocking and Lord scale transformation and IRT true score equating, 

respectively. The dependent variables were designed to capture error that contributes to 

loss o f equity in true score equating, both in terms o f the magnitude o f  the error (Mean 

Absolute Difference), as well as the proportion o f examinees that are affected by a score 

difference that is meaningful (Percent o f Examinees with a Score Difference that 

Matters), by comparing equated scores to actual target test scores. Gain values for each 

dependent variable were also calculated to determine if  equating made the error inherent 

in scores better or worse by comparing equated scores to unequated scores for each 

examinee.

Real Data Study

The real data study used the results from two teacher licensure tests (Test A and 

Test B) to see if  the results were similar to those observed in the simulated data. Data 

from one group o f examinees were split and treated as two test forms, so that the equated 

scores on one form could be compared to the actual scores on the other form. The Test A
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form pairs had close to the same form differences as in the Nonparallel forms conditions, 

and the correlations between the substantive dimensions were low (0.2-0.4). Test A 

examinee samples were similar in ability (with the largest observed group difference 0.04 

in the UI condition), like the Equivalent groups conditions. The Test B form pairs had 

differences between the forms that were somewhere in between the Parallel and 

Nonparallel forms conditions (0.00(9 -0.100) and the correlations between substantive 

dimensions fell between low and high (0.4-0.5), according to the definitions used in the 

simulated conditions. The Test B examinee samples had a small difference in mean 

ability between the groups (about 0.10), similar to the Nonequivalent Small conditions in 

the simulation study. The same statistical methods, procedures, programs, and dependent 

variables that were used in the simulation study were used in the real data study.

Summary o f  Findings 

The simulation and real data analyses yielded several results. The key results 

were, as follows.

• In the simulation study, when the forms were perfectly parallel, equating tended 

to be robust under most conditions, but when the forms were not parallel (as set in 

this study), equating tended not to be robust even under unidimensional 

conditions, with errors exceeding the large error criteria for both MAD (>1.36) 

and percent SDTM (>50.0%).

• In both the simulated and real data studies, where the items measuring the second 

dimension were located in the test forms mattered. When the second dimension 

items were among both the unique and common items, equating tended to be 

more robust than when the items were in the other two locations considered. More
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specifically, when the items were among only the unique items, equating was 

somewhat compromised, but equating was least robust when the items measuring 

the second dimension were represented only in the common items.

• In the simulation study, the previously established relationship between the 

correlation between the dimensions on a test form and the robustness o f IRT 

equating was confirmed; as the correlation increases, so does the robustness of the 

equating.

• In both the simulated and real data studies, IRT equating using a CI-NEG design 

tended to be more robust when the groups were equivalent.

•  In both the real data and simulation studies, the benefit o f equating was somewhat 

limited when the forms were not parallel. In many nonparallel conditions, the 

error associated with the scores was larger when equating was performed than 

before the scores were equated.

Limitations o f  the Studies

Form Parallelism

Only two levels o f this variable were used: a parallel forms and nonparallel forms. 

The parallel forms were selected because it was the ideal case. The nonparallel forms 

difference was set to 0.26 because the difference was large enough to ensure that the 

effects o f the variable would be observable. However, unlike the correlation between 

dimensions, which included several levels o f the variable, there are limits to the 

conclusions that can be drawn about what effect form difficulty differences have on the 

robustness o f IRT equating. A more systematic approach to varying the degree o f form
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parallelism is necessary to draw conclusions about what level o f form parallelism is 

required to ensure robustness under differing conditions.

Confound between Number and Location o f  Second Dimension Items

In this study, the location o f the items measuring second dimension results must 

be interpreted with care to acknowledge that the location o f the second dimension items 

is confounded by the number (and by extension, proportion) o f Dimension two items. 

Referring to Table 2 (chapter 3), in the BL location, eight Dimension one common items 

represented 36 unique Dimension one items, while eight Dimension two common items 

represented 16 unique Dimension two items. In the UI location, 16 Dimension one 

common items represented 36 Dimension one items, while the 16 unique Dimension two 

items had no representation in the common items. In the Cl location, eight Dimension 

one common items represented 52 unique Dimension one items, while eight Dimension 

two items made up the remainder o f the common items. In this set o f test specifications, 

the Cl location had the fewest number o f items representing Dimension two, while in the 

UI location the Dimension two items were not represented in the common items at all.

The BL location had neither o f these issues. It is not clear if  location o f the second 

dimensions itself made a difference, or if  the number o f items representing each 

dimension was more important. Additional investigations o f the effect o f location of 

second dimension items where the number and proportion o f common items are varied 

would give greater confidence in the inferences about the effects o f location o f the second 

dimension on equating robustness.
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Real Data Limitations

An important limitation o f the real data analyses is that the test forms were not 

equated in their “real” state. Rather, each real test form was split into two test forms, so 

that data were available for both test forms for all examinees. An ideal situation would 

have been a single-groups data collection design, whereby data for two entire forms of 

each test would be available for a single group. Another option would have been to use 

only test repeaters who had data available for multiple forms. However, the number o f 

examinees would have been severely limited, and the ability level o f the examinees 

would have been unrepresentative o f the population o f first time examinees. This is 

because only examinees with low test scores (who failed the test) would be repeat test- 

takers. Despite this limiting condition, the results o f the real data analyses suggest that the 

outcomes in the simulation study were realistic.

A second im portant point to consider is the possibility o f  model misfit in the data. 

While NOHARM  was run using a two dimensional M2PL model in confirmatory mode, 

no further models with additional dimensions were run to compare their goodness-of-fit 

to those o f the two dimensional model. Model misfit might contribute to the larger 

equating errors that were observed in the real data conditions than were observed in the 

simulated conditions. However, the fact that similar patterns o f results were observed 

despite the possibility o f this misfit further suggests that the simulation results were 

realistic.
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Discussion

Independent Variables and their Interactions

Form parallelism. This independent variable addressed the first research question 

outlined in chapter 1: W hat is the baseline error that is associated with equating? That is, 

how much error would be present if  scores on a test form were equated to scores on the 

same test form?

This research question was addressed by the parallel forms analyses. In these 

analyses, scores from a single test form (Form X) were equated, which, as perfectly 

parallel forms, should not require equating. The magnitude o f the difference between the 

equated X scores and the actual X scores provided the basis for assessing how much error 

was inherent in equating under ideal circumstances. It is important to note that while 

these results act as a baseline for the purposes o f research, such an ideal as equating 

perfectly parallel (i.e., identical) forms would never occur in reality.

When the forms were parallel, the MAD was either small or medium, regardless of 

the levels o f  the other variables. While medium-sized errors are not robust according to 

the definitions used in this study, they might be considered an acceptable level o f error, 

depending on the purpose and use o f the test scores. However, the percent SDTM proved 

to be more sensitive to error than MAD, and large errors that would not be considered 

acceptable or are too large to ignore were observed in some conditions. What makes 

these results even more interesting is that when the forms are parallel, equating is not 

necessary; any error that was introduced by equating can be considered negative gain 

because more error was introduced by equating than existed in the unequated score.
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The pattern o f  results was similar for both MAD and percent SDTM in the 

parallel forms conditions, with two exceptions: when the correlation between dimensions

o

was either perfect (1.0) or high (0.7), equating produced small errors. These results are 

in keeping with previous research (Bolt, 1999; Camilli et al., 1995; Dorans & Kingston, 

1985) that suggests IRT equating will be robust to multiple dimensions, as long as the 

correlation between the dimensions is 0.7 or higher (i.e., the dimensions are closely 

related to one another). The results were more complicated as the correlation between 

dimensions decreased from high to low (0.3) and to no correlation (0.0). When the 

second dimension items were in the BL location and the groups were either equivalent 

(EG) or had small group differences (NEGS), equating was robust (i.e., errors were 

small), but were larger when the groups had moderate differences (NEGM). In the UI and 

Cl conditions, the MAD was still robust at the 0.0 and 0.3 correlation levels, as long as 

the groups were equivalent (EG). But as the correlations grew smaller and the groups 

more nonequivalent, errors became increasingly larger for both the MAD and percent 

SDTM. The errors due to the Cl location tended to be larger than in the UI location.

The results o f  the parallel forms analyses suggest that under some conditions, IRT 

equating is robust to the presence o f multiple dimensions. The results o f the analyses 

suggest that even under ideal circumstances where forms are perfectly parallel, the 

presence o f distinct dimensions can only be tolerated with good test design (BL location) 

and even then only if  the groups taking each form do not differ substantially from each 

other. That is, the errors associated with these conditions were small enough that equity 

would be preserved in the reported scores according to the definitions used in this study.

8 The exceptions to this statement were the percent SDTM for the 1.0 and 0.7 correlation, NEGM, UI 
conditions, where medium-sized errors were observed.
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As such, these results suggest that under some conditions o f  multidimensionality, group 

equivalence, and location o f  items measuring the second dimension, perfectly parallel 

forms that should not require equating fail to meet Lord’s strong equity criteria (Lord, 

1980, p. 195).

In the simulation study, the form parallelism variable made, by far, the largest 

contribution to the variability o f both the MAD and percent SDTM error. When the forms 

were strictly parallel (i.e., the baseline condition), the equating errors were several times 

smaller than when forms were nonparallel. However, these analyses also indicated that 

even under ideal circumstances where forms are perfectly parallel, the presence of 

distinct dimensions can only be tolerated with good test design (BL location) and even 

then only if  the groups taking each form do not differ too much from each other. The 

results o f the analyses o f  the real data for Test B also suggested that near parallel forms is 

not a guarantee o f robust equating, even when the second dimension is represented in the 

common and unique items (BL location).

The magnitude o f the equating errors were so much larger in the nonparallel 

conditions that it was much more difficult to see the patterns produced by the other 

variables that were observed in the parallel forms analyses. While the patterns that were 

observed in the nonparallel forms were similar to those observed in the parallel forms 

results, they were less obvious because the changes in error were small relative to the 

amount o f error contributed by form nonparallelism.

The nonparallel forms results indicate that, when forms are not perfectly parallel 

(which is a likely scenario, given the form differences in Test A and Test B), IRT 

equating will not be robust even when the forms are unidimensional (i.e., correlation =
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1.0). In the real data analyses, the Test B forms were more closely parallel than the Test 

A forms. Despite this, Test A had smaller equating errors overall than Test B. However, 

the results were not robust for both Test A and Test B. Taken together, these results 

cannot be used to make specific recommendations about how closely parallel tests have 

to be in order to obtain robust equating results. However, the results o f  the analyses of 

both the simulation and real data sets did reveal that when forms differed in difficulty by 

0.28, equating was not robust, regardless o f the degree o f  group differences, the location 

o f  the items measuring the second dimension, or whether the test was multidimensional 

or unidimensional. These results suggest that form differences equal to or greater than 

0.20  would not be recommended for IRT equating because equating actually introduces 

more error than was present before equating.

These results demonstrate that other factors in addition to the multidimensional 

character o f  the test forms mediate equating robustness. Besides form differences, group 

differences and the test design (in terms o f location o f items measuring the second 

dimension) also played a role in the degree o f equating errors that were observed. Their 

respective roles are discussed in greater detail next.

Correlation between dimensions. The second research question addressed was: How 

does the correlation between dimensions affect both the magnitude o f equating error and 

the proportion o f  examinees with error in their equated scores that is large enough to 

matter? This research question is at the heart o f the research study because the degree of 

the two-dimensional character o f the test forms was operationalized by the correlation 

between the dimensions. W hen the correlation between dimensions is perfect, the test is 

unidimensional because the dimensions cannot be distinguished from one another. As the
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correlation between dimensions decreases, the dimensions become more distinct from 

one another, and therefore the lower the correlation, the more clearly the violation o f the 

unidimensionality assumption.

As discussed previously in the section on form parallelism, the results provide 

further evidence o f  decreasing robustness with increasing multidimensionality (i.e., lower 

correlations), particularly in the parallel forms conditions. The same patterns were also 

observed to a lesser extent in the nonparallel forms conditions. These results are 

consistent with previous research: Bolt (1999), Camilli et al. (1995), Dorans and 

Kingston (1985), and DeChamplain (1996) found that IRT equating was robust to 

multidimensionality when the correlation between dimensions was 0.7 or greater. 

However, the results o f this study also suggest that the relationship between 

multidimensionality and robustness o f IRT equating is mediated by the other factors 

explored in the study.

First, while form parallelism played a major role in the overall size o f error, its 

interconnection with the correlation between dimensions appears to be, at most, minor. 

The change in the magnitude o f errors as correlation between dimensions decreased was 

reasonably similar between the parallel and nonparallel form conditions o f the simulation 

study. In fact, the relationship was more evident in the parallel forms conditions than in 

the nonparallel forms conditions, but this observation might be due to the large effect of 

form differences in the nonparallel forms conditions, which seemed to minimize the 

effect o f all other variables.

Second, group differences worked together with the changes in correlation 

between dimensions such that the effects o f a lower correlation on the magnitude o f
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equating error appeared to be amplified by increasing group nonequivalence. When 

groups were equivalent, equating was more likely to be robust, even at lower correlations. 

As the groups became increasingly nonequivalent, proportionally larger equating errors at 

each correlation between dimensions were evident.

Third, the negative effect o f lower correlations on equating robustness was 

dampened if  the test forms were designed with second dimension items placed among 

both the com mon and unique items (BL). Conversely, the effect o f decreasing correlation 

between dimensions was much more evident when the second dimension items were 

among the common items only (Cl). These results provide evidence o f the need for the 

common items (anchor test) to be representative o f all dimensions o f the test form in 

order to minimize equating error.

Group equivalence. Inclusion o f this independent variable addressed the third 

research question: Is the magnitude o f equating error or the proportion o f examinees with 

equating error that is large enough to matter in their equated scores different if the groups 

are randomly equivalent versus nonequivalent? The common-items nonequivalent groups 

(CI-NEG) design is intended to disentangle test form differences from group differences. 

For this reason common items need to be a surrogate o f the rest o f the test form so 

performance on the common items can be compared between the groups to make 

inferences about the groups’ relative abilities. However, while the CI-NEG is a data 

collection design that can be employed to account for group differences when group 

equivalence cannot be assumed, previous research indicates that there are limits as to 

how different the groups can be before the robustness o f equating is threatened (see Cook 

& Peterson, 1987, for a review). Kolen and Brennan (2004, p. 286) suggested that group
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differences o f 0.361 or higher can cause significant problems to equating, and that IRT 

equating is particularly sensitive to group differences. Perhaps it is because large group 

differences give greater opportunity for error in determining form differences. IRT might 

be more susceptible to group differences because this factor plays a key role in how the 6 

scales are aligned in the transformation step.

The results o f this research provide further evidence on the limits o f IRT equating 

to handle group differences, at least beyond a difference o f 0.16, even when the forms are 

perfectly parallel. Group equivalence interacted with both the correlation between 

dimensions and the location o f the items measuring the second dimension. Among both 

the parallel and nonparallel forms results, errors generally increased9 in size at any given 

correlation between dimensions as the group nonequivalence got larger.

The effect o f  the location o f the items measuring the second dimensions also 

seemed to be amplified by group differences, with the Cl location having the largest 

errors, followed by the UI location, and then the BL location. The differences between 

the locations tended to be larger as the groups became increasingly more nonequivalent. 

Given the limitations o f IRT equating at handling group differences, it is not surprising 

that having a more balanced and representative set o f common items is advantageous. 

Klein and Jarjoura (1985) found a similar advantage o f  a well-designed common items 

set when groups differed from one another when equating using linear and equipercentile 

methods.

Location o f  items measuring second dimension. This variable addresses the fourth 

research question: Does the location o f the items (unique, common, both unique and

9 There was no trend in percent SDTM observed in the nonparallel forms results, but the general trend was 
observed in the parallel percent SDTM, and parallel and nonparallel MAD results.
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common locations) containing the second dimension have an effect on the magnitude o f 

equating error, or the proportion o f  examinees that are affected by equating error? In this 

study, the location o f  items measuring the second dimension was really a proxy for test 

design. Does test design influence the robustness o f  IRT equating when multiple 

dimensions are present? The results for both simulated and real data suggest that the 

design o f  the common item set does make a difference to the amount o f equating error 

observed. In general, the smallest errors were associated with the BL conditions, where 

the second dimension items were present among both the common and unique items. The 

results o f this study are similar to those observed by Camilli et al. (1995).

However, this variable was evaluated in greater detail in this study and, therefore, 

provides further information about the implications o f test design. In the parallel forms 

conditions, the UI location tended to produce similar results to the BL location until the 

correlation between dimensions was low, and the differences became larger as the groups 

became increasingly more nonequivalent. The Cl location tended to have more error at all 

conditions, but appeared to be more sensitive to the correlation between dimensions and 

group nonequivalence. In the nonparallel forms conditions, the differences between BL 

and UI were much less obvious, perhaps because the overall magnitude o f  the error was 

so much larger. However, the Cl conditions still had larger errors, particularly when the 

correlation between dimensions was low.

The relationship between the correlation between dimensions and the location of 

the second dimension items was even more evident in the results for the real data sets.

The equated error tended to be smaller for the BL location than for the UI location which, 

in turn, had smaller errors than the Cl location. In fact, the gain for the Cl locations for
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both tests was negative, indicating that more error was introduced than eliminated during 

equating. In contrast, the gain for the UI location was positive for Test A and negative for 

Test B, while the gain for the BL location was positive for both tests. The difference in 

results between the simulated and real data may be due, in part to the correlation 

between dimensions on Test A and Test B, as these two forms tended to be low, which 

decreased the robustness o f equating.

The results to both the simulated and real data analyses indicated that the location 

o f the second dim ension items became more important as the correlation between 

dimensions decreased, and to a lesser extent, as the groups became increasingly 

nonequivalent. W hen the correlation between dimensions was higher (test was more 

unidimensional), the differences between the location conditions were not as great as 

when the correlation between dimensions were lower.

The advantage o f the BL location, particularly when the correlation between 

dimensions was low, appears to be due to the need for representation o f the unique items 

by the common items. When both dimensions were represented in the common item set, 

IRT equating was robust to the violation o f  the unidimensionality assumption. The most 

likely reason would be that less error is generated in the scale transformation step, where 

the examinee performance on the common items is used to find a transformation that is 

applied to all o f the items.

It is interesting to note that the UI location tended to perform better than the Cl 

location even though in both circumstances the common items set was not representative 

o f the test as a whole. In the UI location, the common items fail to represent the second 

dimension. In the Cl location, the common items represent a second dimension that is not
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present among the unique items. One reason why the Cl performance was poorer is 

because the common items are the bridge between the forms. The common items allow 

the separation o f score variability due to form difficulty from score variability due to 

differences in group ability or abilities. The more representative the common items are of 

the remaining test items, the more accurately the differences between the groups and the 

forms can be estimated. W hen the number o f common items was held constant, the 

presence o f items measuring Dimension two among the common items reduced the 

number o f items representing the Dimension one in the Cl location. In contrast, in the UI 

location, Dimension one was well represented in the common item set, while Dimension 

two, constituting a relatively smaller portion o f the unique items, was not represented at 

all. The results o f these analyses suggest the latter scenario is less susceptible to error, but 

must be interpreted with care given the confound between location and number of 

Dimension two items.

General Discussion

The results o f  the two studies conducted in this dissertation indicate that it is difficult, 

i f  not impossible, to describe the effect o f  one variable on IRT equating error in the 

presence o f multiple dimensions without discussing the interaction o f  that variable with 

all o f  the other variables considered in the study design. Form parallelism, the correlation 

between dimensions, group equivalence, and the location o f items measuring the second 

dimension interact to create a complicated set o f  outcomes. That the pattern o f results 

observed are complex seems reasonable, given that the main purpose o f the study was to 

more fully map the effects o f multidimensionality on IRT equating results under different
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conditions. These new findings were intended to contribute to and build on what was 

already known based on previous research in this area.

Previous Research

A brief summary o f  the results o f  previous studies provides us with the following 

picture: past research points to the robustness o f IRT equating to multidimensionality 

under some, but not all, conditions, including when the correlation between dimensions 

on the test is high (Camilli et ah, 1995; DeChamplain, 1996; Dorans & Kingston, 1985; 

Stocking & Eignor, 1986). The location o f  the items measuring the second dimension 

was identified as a variable o f  interest, although it had not been studied systematically 

(Jodoin & Davey, 2003). What other variables might play a role in robustness under 

conditions o f  multidimensionality were not clear because the studies (with the exception 

o f Jodoin & Davey, 2003) were conducted with real data. A simulation study conducted 

by Bolt (1999) confirmed that equating results had less error associated with them when 

the correlation between dimensions was high versus when it was low. His results also 

suggested that the degree o f multidimensionality that test forms contain makes a 

relatively small contribution to the total amount o f equating error that is observed. What 

the other factors might contribute to the error was not studied in any systematic fashion. 

Bolt (1999) stated that it was not clear under which conditions that equity was sufficient, 

and that sufficiency o f  equating would depend on the type and purpose o f the test.

Present Study

The results o f the present studies suggest that all o f the variables that were studied 

play a role in determining the magnitude o f equating error. This study replicated the 

results observed by Bolt (1999), but then expanded our scope o f understanding about why
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equating might not be robust, even when the correlation between dimensions was high. It 

also demonstrated conditions under which IRT equating might be robust even when the 

correlation between dimensions was low. In the following paragraphs, the discussion will 

also turn to trying to explain why the levels o f  these variables produce the results that 

were observed.

When IRT true score equating using the CI-NEG design, there are three main steps in 

the process where error might be introduced. The first is in the param eter estimation step, 

where the raw  data are converted to numeric representations o f the item characteristics. 

The second step is the scale transformation, where the metrics o f the two sets o f 

parameters (one set from each form) are aligned onto a common scale via comparison o f 

performance on the common items. The final step is the actual equating, where the scores 

from one form are adjusted to be equivalent to the scores on the other form. Because 

these steps are linked, it is also possible that error can be cumulative. That is, small errors 

introduced in one step can be added to small errors introduced in another step, so that the 

final equating results have larger errors.

In the present study, the conditions with parallel forms were intended to act as control 

conditions, to gain a sense o f how much equating error observed in the studies was 

random error. W hat was not expected was that under some conditions, equating error 

would be large enough to be classified as not robust. Kolen and Brennan (2004, p. 11), 

stated, when referring to the equity property o f equating, that . .if  identical forms could 

be constructed, there would be no need for equating.” . Perfectly parallel (identical) forms 

do not require equating because they are equitable. Rather, any difference in performance
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between separate administrations o f parallel forms is attributable solely to group 

differences.

When equating using parallel forms in an IRT design, it would be expected that the 

equating errors would be small, because no adjustments to scores should be required once 

the scales are transformed onto a common metric. Any error that is observed under these 

conditions would have originated in either the parameter estimation or the scale 

transformation step. The error associated with parallel forms conditions in the simulation 

seem to have come from several different variables that acted cumulatively. The results 

reproduced the outcomes in Bolt (1999), where equating results were robust when the 

dimensions on the test were highly correlated. But equating results were also robust when 

the correlation was low so long as the groups were equivalent and the anchor set was 

representative o f  both dimensions on the test. Each o f the other three variables seemed to 

exert its own effect.

As the dimensions on a test become more distinct from each other, parameter 

estimation is more prone to error because the model that is fit to the items will not force 

the creation o f  a reference composite (Wang, 1986). Ackerman (1987, 1989) 

demonstrated that greater dimensional distinctness increases error associated with the 

parameter estimates. Presumably this is because the parameter estimation procedures 

attempt to capture the overall picture o f all o f the items in the composite, when the items 

measuring Dimension two clearly do not fit. This misfit would cause errors in the 

estimation o f all items, and the error would be greater the more distinct the dimensions 

were from each other.
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The effects o f  increasingly distinct dimensions was modulated by group equivalence. 

When groups were equivalent, equating errors were smaller and equating was more likely 

to be robust. As the groups became more nonequivalent, errors tended to be larger. But 

why does group nonequivalence matter in an equating design that is intended to account 

for such differences? The answer seems to be that just like equating is intended to make 

minor adjustments to scores, the common-items nonequivalent groups design is only 

intended to account for minor differences between groups within a specific population. If 

group differences are large enough, then the groups are no longer considered to be 

selected from the same population. Kolen and Brennan (2004, p. 286) suggest that 

differences o f 0.36  or greater between groups are large enough to introduce error into 

equating . Group equivalence would play a significant role in the scale transformation 

step, because larger differences between groups would make estimating the 

transformation coefficient A and B to transform scale Q to scale P more prone to error 

because larger adjustments would be required.

Jodoin and Davey (2003) found IRT equating to not be robust to multidimensionality 

when the second dimension was present only in the unique items. The present studies 

supports the Jodoin and Davey (2003) results, but further refined the relationship between 

location o f the second dimension items and the presence o f multiple dimensions on a test. 

The effects o f multidimensionality were modulated by the location o f the items that 

contained the second dimension. This result is significant because it reinforces the 

importance o f  good test design to robust equating. When tests were designed to account 

for both dimensions among both the unique and common items (i.e., the BL conditions), 

equating results tended to be robust at lower correlations than when tests included a
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second dimension, but only in either the unique (UI conditions) or the common items (Cl 

conditions). Further, equating results tended to have more error, and were not robust at 

higher correlations than other location conditions when the second dimension was only 

present in the common items. The possible mechanism is that the common item set is 

directly involved in the estimation o f the A and B  scale transformation coefficients. If the 

common item set contains a second dimension that the unique items do not, then there are 

items on the anchor test that are used in assessing the relative performance o f the groups 

that are not representative o f the remaining items on the test. W ith fewer items to use for 

estimating the scale transformation coefficients, there is more likely to be error in the 

estimates. If  the dimensions on the test are closely related, then examinee performance on 

the common items measuring the second dimension are likely to have some utility for 

predicting performance on the remaining test items. But as the dimensions become more 

distinct, performance on the Dimension two items are not related to performance on the 

dimension one items, so error is introduced into the scale transformation when they are 

used in the estimation step. W hen only the unique items contains a second dimension that 

the common items do not, the error in the scale transformation would arise from the 

common items not fully representing the remaining items on the test, meaning that 

estimation o f performance on the Dimension two items is not adjusted appropriately. 

Presumably, this error is less because it affects fewer items. Having the Dimension two 

items in both location protects equity (creates less error) because the contribution o f the 

Dimension two items to the scale transformation is appropriate. It is appropriate because 

Dimension two items exist among the unique items on the test, and all o f the unique 

items have representation in the calculation o f the scale transformation coefficients.
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The form differences in the nonparallel forms conditions made the greatest 

contribution to equating error, based on the difference in the magnitude o f error when 

forms were nonparallel versus parallel. The likely reason for the increase in error is two

fold. First, when forms are not parallel, they do not have an identical relationship 

between the com mon items and the remaining unique items. The difference in the 

relationship can contribute to error during the scale transformation. Second, when forms 

are not parallel, there is a greater difference between scores that must be overcome in 

equating.

Benefits o f  Equating

One o f the unique aspects o f  this research was the use o f calculating gain values for 

each condition. Beyond simply quantifying the magnitude o f error associated with each 

condition, the gain values indicated how much benefit (or cost) was attributable to 

equating. That is, did equating provide any benefit to reducing the discrepancy between 

the equated test score and the target score and, therefore, improve equity?

The results o f the simulation study indicated that regardless o f the conditions, 

there was always some benefit to equating when forms were not parallel; that is, on 

average, scores were always closer to the target scores with equating. However, the 

magnitude o f the benefit was small relative to the magnitude o f the error, especially in 

terms o f reducing the percent SDTM. The degree o f the gain tended to get only slightly 

larger as the groups became more nonequivalent, with no systematic patterns attributable 

to changes in the correlation between dimensions or the location o f the items measuring 

the second dimension. In contrast, the real data results demonstrated that in some cases, 

equating can make errors larger. When the common items were representative o f the
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unique items on the test (BL), equating decreased error, while having a second dimension 

present in the common items only (Cl) tended to cause scores to be further from the 

target scores after equating.

A further exam ination o f parallel forms conditions also suggests that when forms 

are very closely parallel, additional error could be introduced by equating that would pose 

a greater threat to equity than not equating, depending on the correlation between 

dimensions, the location o f  the items measuring the second dimension, and the 

equivalence o f  the groups who are administered each form. If the tests are nearly parallel 

but these characteristics are at undesirable levels, then equating could actually make 

equity worse, because the errors introduced by a faulty equating conversion are larger 

than the original score differences between closely parallel forms. Combined, these 

results suggest that caution should be used when equating test forms. It should not be 

assumed that equating is always beneficial, especially if  the dimensions on the test are 

distinct from each other, the groups taking each form might differ in ability, and if  the 

forms are built such that the dimensions are not proportionately represented among both 

the unique and common items.

Definitions/Criteria fo r  Robustness

As reflected by the nonparallel forms simulation and real data results, no 

conditions were robust according to the definitions o f robustness established for the 

present studies. This lack o f robustness extended to the 1.0 correlation conditions o f the 

simulation, where the test was strictly unidimensional and therefore the 

unidimensionality assumption o f IRT equating was not violated. When examining these
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results, a question arises: If  not even the unidimensional conditions met the definitions of 

robustness, were the criteria set out for the analyses too stringent?

The criteria that were established for this study were based on two main 

considerations. First, was there a theoretical or at least rational guideline that existed in 

the equating literature? Dorans and Feigenbaum’s (1994) score difference that matters fit 

that description and also seemed a reasonable expectation for equating error to be robust. 

Second, it also seemed likely that a more lenient definition, one that would not be 

considered robust, strictly speaking, but that might still be acceptable in a testing standard 

is that while testing programs might program was necessary. The rationale for this second 

be constantly striving for an ideal condition, often factors that are not controllable prevent 

meeting ideal conditions. Consequently, psychometricians and other testing staff are left 

to decide what level o f  error might be acceptable, given the purpose and stakes o f the test. 

In the absence o f  a specific guideline, an error that was less than two percent o f the total 

possible score was selected because less than two percent seemed like an error size that 

was small enough to be at least tolerable in most testing situations.

Selecting criteria for the percent score difference that matters (SDTM) was a more 

challenging task. No criteria for this variable existed because no published reports could 

be found that had employed percent SDTM. It was also a more difficult set o f criteria to 

develop because it meant that decision had to be made as to what percentage o f 

examinees it is acceptable to give inequitable scores. To solve this issue, the errors for the 

parallel forms, 1.0 correlation, equivalent groups (EG) conditions were examined to 

select the definition o f small error that implies robustness, which resulted in the selection 

o f 25% or less criterion. The second criterion, between 25% and 50% for medium-sized
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error, was selected because o f the rationale that no percentage higher than 50% could 

possibly be considered acceptable.

An alternative, less conservative approach to selecting and developing criteria for 

interpreting both dependent variables would have been to use the nonparallel forms, 1.0 

correlation, equivalent groups conditions as starting point. The rationale for using the 

results o f these conditions as the basis for making this decision is that in these conditions, 

the assumptions o f IRT equating still hold. However, upon examining the results, it was 

decided that even in the cases where the test forms were unidimensional and the groups 

were equivalent, a MAD over 3.25 score points, which translates into 4.8% difference on 

the 68-point scale, and particularly percent SDTM in the range o f 90% and over did not 

seem reasonable definitions o f “robust” or even “tolerable.”

Conclusions

The results o f this study indicate that IRT equating using a common-items 

nonequivalent groups design under conditions o f multidimensionality can be robust, but 

under very restricted conditions. The forms must be parallel or nearly parallel, the groups 

must be very nearly randomly equivalent, and the common items must represent both 

dimensions that are present in the test forms to be equated. As soon as any o f these 

variables start to deviate from these near-perfect conditions, robustness is threatened. The 

results o f  the real data analyses suggest that as conditions deteriorate, equating can 

actually begin to contribute more error than would be present if  scores were not equated.

The results o f  this dissertation support the findings o f Bolt (1999) who reported 

that the effects o f multidimensionality on equating error are minor relative to other 

variables. Certainly in the present study, the magnitude o f the differences between forms
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played the largest role in the equating error. When forms deviated from perfect 

parallelism, the magnitude o f error increased markedly. Further, the group differences 

also played an important role. The more nonequivalent the groups, the larger the errors 

associated with equating. Finally, the design o f  the test forms, in relation to where the 

items measuring each dimension are located, had an influence on the degree o f error 

observed. W hen the test forms were designed to have both dimensions represented in 

both the common and unique items, the amount o f error observed was much smaller than 

when the items were not placed in both item sets. The increase in error associated with a 

decreasing correlation between dimensions was attenuated by ensuring that the common 

item set was a surrogate o f  the remaining items on the form.

Overall, equating did a poor job  o f removing the error that was present between 

the observed score and the target score. In the simulation study, errors were always 

reduced by equating. However, the results o f the analyses o f the real data sets were not so 

positive, as equating actually introduced more error in some o f the real data conditions. 

Clearly, IRT equating under conditions o f  multidimensionality is not a “silver bullet” that 

can align test scores, but rather is constrained by many variables, including form 

differences, group differences, the correlation between dimensions, and the location of 

the items measuring each dimension.

Implications fo r  Practice 

O f the four variables examined in this study, the correlation between dimensions 

is determined by the test content (laid out in the test specifications), group differences by 

the examinees, and only form parallelism and location o f the items measuring the second 

dimension by the test developer, once the test specifications are in place. Hopefully,
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while only two o f  these variables can be controlled, it is possible to be aware o f the 

values o f  the other two variables so that good decisions can be made about whether or not 

IRT equating with multiple test dimensions is feasible.

I f  test specifications require that a test contain multiple distinct dimensions that 

are not highly correlated, then IRT equating might be suitable, provided that other 

variables, including form parallelism, group equivalence, and location o f the items 

measuring each dimension, fall within reasonable parameters. However, if  there is an 

expectation that groups will differ between form administrations (i.e., groups are not 

expected to be equivalent), then IRT equating is not a good solution for a test that 

contains multiple dimensions. For example, if  it is expected that a population will 

improve performance over time due to improved instruction or some other factor, then 

the group differences that result might prove problematic for IRT equating, particularly if 

the correlation between dimensions on the test is also low (less than 0.7).

It is important to assess the dimensional structure o f test forms and to identify 

which items are measuring each dimension. As these results indicate, the location o f the 

items measuring the second dimension matters. Knowing which items measure the 

second dimension can help prevent unnecessary equating error by enabling the test 

developer to assemble the form, including the common item set, while being mindful of 

the dimensional structure. Testing dimensional structure can be especially helpful if the 

multiple dimensions do not fall exactly along the same lines as the test specifications.

While it might seem unlikely that a test developer would inadvertently include 

items measuring a second dimension into only the common item set, the results from the 

location measuring the second dimension items conditions could have implications for
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vertical equating applications. Briefly, vertical equating is used across different levels o f 

abilities, as an attempt to capture growth and development o f examinees over time. For 

example, to be able to monitor progress o f students as they move through the education 

system, it is important to be able to compare results o f standardized tests at one grade 

level to the results at the next grade level to see if  improvements in performance are 

occuring. One o f the issues in this type o f equating is that it would be very easy for 

additional unintentional dimensions to be added because the populations at each grade 

level have different characteristics. For example, if  a set o f math word problems that were 

designed for fifth graders were used as a set o f common items to a test for fourth graders, 

the items might measure one dimension on the fifth grade test (math ab ility ), but two 

dimensions on the fourth grade test (math and reading abilities). This difference would 

occur because the fifth graders, as a group, have sufficient reading ability, but the same 

item separates both weak and strong math and reading abilities in the fourth graders. This 

is an issue that would require empirical study to confirm the similarity in data structure 

across grade levels.

The ability to design parallel forms will be limited by the availability and quality 

o f pilot test data. Data collected from well-designed pilot studies can be used to construct 

tests that are sensitive to statistical characteristics o f the items if  the data are used to 

conduct dimensional assessments. Pilot testing can be an expensive addition to a testing 

program, but would be highly recommended for those wishing to use IRT equating on 

complex assessments.

The results o f this study, while informative, provide little in the way o f specific 

guidelines when deciding whether or not IRT equating would be an appropriate method
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for a given testing situation. Instead, the results provide some points for consideration 

when making a decision and suggest that when tests are well-designed, forms closely 

parallel, and groups are randomly or at least close to equivalent, multidimensionality is 

generally well tolerated. The results also suggest that if  these factors are not well 

controlled, multidimensionality is a relatively small problem compared to the errors 

contributed by the other factors. Additionally, there are many other potential factors, such 

as the test length, anchor test length (number o f common items), as well as other as yet 

unidentified factors that might also complicate the issue o f robustness. Much research is 

required before specific guidelines for IRT equating test forms with multiple dimensions 

will be possible.

Implications fo r  Further Research

Form Parallelism

The results o f the current study suggest that when forms are parallel, multiple test 

dimensions are reasonably well tolerated. One simple way in which test forms can be 

made more parallel is to add proportionally more common items. That is, to the extent 

possible, a new form should contain as many o f the same items as the reference form as 

possible. In the current studies, only about one-quarter o f  the items were common 

between the new and reference forms, but perhaps better equating results would be 

possible with a larger proportion o f common items. A more systematic investigation o f 

this variable using a simulation design, varying form differences between 0.0 and 0.20 

would be helpful to determine how closely parallel forms must be in order for IRT 

equating to be robust. A guide to the number o f  common items relative to the total 

number o f test items required to be robust, depending on the degree o f  test
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multidimensionality, would be helpful in determining if  IRT equating would be feasible 

for a specific testing purpose. For example, i f  equating was robust to multidimensionality 

under a set o f  conditions, but only if  the forms contained 90% common items, IRT 

equating might not be desirable because it requires the reuse o f  too many items to be 

useful for security reasons, whereas a 50% requirement might be more reasonable.

Group Equivalence

In the simulation and real data for Test B, the groups were nonequivalent on both 

Dimensions one and two. Different results may occur if  the group differences were 

located on only one dimension. A systematic examination o f this variable would be 

useful, especially considering that if  dimensions are distinct it is unlikely that the groups 

would differ from one another in the same manner on each dimension.

Anchor Test Structure

A potential confound in this study that should be addressed is the number o f items 

measuring the second dimension on each form confounded with the location o f those 

items on the form. A systematic investigation o f the format o f the common items set 

could be designed (with variables like anchor test length, number o f items in each 

dimension, and proportional representativeness o f each dimension on the common items 

set) in a simulation design. This study could help better understand why the location of 

the Dimension two items mattered to equity under conditions o f multidimensionality.
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Dimensional Structure

The dimensional structure employed in this research was limited to two 

dimensions and test forms consisted only o f  items that distinctly measured either 

Dimension one or Dimension two, but not both. This simplistic dimensional structure is 

not realistic. When a statistical dimensionality assessment is conducted, many items will 

be identified that measure multiple dimensions simultaneously. For example, 26 o f o f 90 

original LSAT items used as a basis for generating the simulated data in the present 

studies had complex 2-dimensional structure on the basis o f their angular direction 

(between 20 and 70 degrees). The effect o f these items on the robustness o f IRT equating 

has yet to be explored.
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Appendix A

Item Parameters fo r  simulation study Forms X  and Y fo r  test constructed with second  

dimension present among common and unique items (BL)

Common Items Unique “X" Items Unique “Y" Items
ai 02 d a, a2 d a, a2 d
0.840 0.073 -0.341 0.701 0.000 -0.818 0.401 -0.010 -0.618
0.572 0.026 -0.062 0.513 0.001 -0.087 0.613 -0.001 0.013
0.487 0.099 -0.646 0.431 0.004 -1.456 0.431 -0.002 -1.156
0.488 0.097 -0.024 0.611 0.014 -0.560 0.491 0.044 -0.369
0.740 0.075 0.300 0.725 0.017 -0.732 0.725 0.048 -0.632
0.454 0.045 -1.279 0.628 0.017 -0.621 0.728 -0.025 -0.321
0.554 0.083 -0.099 1.041 0.031 -0.712 0.921 0.031 -0.612
0.466 0.049 -0.949 0.525 0.016 -0.153 0.425 0.075 0.042
0.166 1.316 0.353 0.733 0.025 -0.696 0.780 0.075 -0.496
0.226 0.866 -0.360 0.605 -0.024 -0.300 0.505 0.064 -0.400
0.110 0.899 -0.251 0.543 0.025 -0.909 0.560 0.023 -0.629
0.125 0.873 -0.656 0.508 0.038 -0.149 0.368 0.067 -0.049
0.072 1.175 -0.764 0.681 -0.052 0.046 0.741 0.050 0.246
0.060 0.536 -0.760 0.321 0.025 -1.135 0.521 0.070 -0.935
0.121 0.822 -0.714 0.510 0.041 -0.463 0.610 0.091 -0.263
0.084 0.949 -0.635 0.371 0.034 0.425 0.471 0.046 0.625

0.518 0.050 -0.394 0.718 0.060 -0.194
0.608 0.059 -0.314 0.408 0.069 -0.114
0.327 0.033 -0.946 0.427 0.093 -0.676
0.609 0.063 -0.839 0.559 0.073 -0.639
0.724 0.075 -0.998 0.824 -0.085 -0.798
0.479 0.050 0.115 0.379 0.080 0.335
0.505 0.053 -0.524 0.555 0.046 -0.324
0.470 0.060 -1.349 0.390 0.050 -1.149
0.624 0.086 -0.916 0.524 0.076 -0.716
0.543 0.077 -0.109 0.443 0.087 0.091
0.817 0.214 -0.511 0.613 0.075 -0.202
0.534 0.143 -0.890 0.465 0.075 -1.093
0.440 0.120 0.478 0.703 0.084 0.410
0.640 0.175 -0.391 0.412 -0.074 0.165
0.522 0.143 -0.220 0.668 0.131 -0.236
0.337 0.093 -0.796 0.744 0.145 0.905
0.566 0.167 -1.423 0.681 0.187 1.144
0.808 0.249 -0.134 0.680 0.186 -1.112
0.492 0.171 -0.468 0.658 0.151 -0.262
0.628 0.197 1.400 0.560 0.186 -0.319
0.115 0.500 -0.775 0.127 0.300 -0.585
0.205 0.891 -0.430 0.220 1.189 -0.221
0.161 0.833 -0.639 0.163 0.688 -0.440
0.137 0.741 -0.812 0.143 0.811 -0.611
0.202 0.913 -0.029 0.235 1.111 0.165
0.119 0.730 -0.705 0.089 0.753 -0.524
0.113 0.735 -0.017 0.113 0.712 0.186
0.165 1.182 -0.768 0.155 1.067 -0.554
0.182 1.362 0.416 0.188 1.366 0.611
0.110 1.174 -0.995 0.116 1.097 -0.800
0.128 1.213 -0.470 0.056 1.258 -0.270
0.120 1.202 -0.603 0.111 1.111 -0.403
0.032 0.458 -1.145 0.073 0.471 -0.945
0.056 0.944 -0.666 0.078 0.956 -0.466
0.051 1.252 -0.828 0.038 1.155 -0.628
0.023 0.738 -0.713 0.049 0.838 -0.513

Note. Dimension two items are noted in italics.
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Appendix B

Item Parameters fo r  simulation study Forms X  and Y fo r test constructed with second 

dimension present am ong unique items only (UI)

Common Items Unique "X" Items Unique "Y" Items
ai a2 d at 02 d a, a2 d
0.459 0.005 -0.798 0.701 0.000 -0.818 0.401 -0.010 -0.618
0.847 0.123 -0.311 0.513 0.001 -0.087 0.613 -0.001 0.013
0.634 0.065 -0.790 0.431 0.004 -1.456 0.431 -0.002 -1.156
0.340 0.013 0.578 0.611 0.014 -0.560 0.491 0.044 -0.369
0.740 0.073 -0.291 0.725 0.017 -0.732 0.725 0.048 -0.632
0.472 0.056 0.088 0.628 0.017 -0.621 0.728 -0.025 -0.321
0.437 0.099 -0.596 1.041 0.031 -0.712 0.921 0.031 -0.612
0.488 0.097 0.026 0.525 0.016 -0.153 0.425 0.075 0.042
0.740 0.075 0.350 0.733 0.025 -0.696 0.780 0.075 -0.496
0.454 0.045 -1.229 0.605 -0.024 -0.300 0.505 0.064 -0.400
0.554 0.083 -0.049 0.543 0.025 -0.909 0.560 0.023 -0.629
0.466 0.059 -0.899 0.508 0.038 -0.149 0.368 0.067 -0.049
0.808 0.035 -0.023 0.681 -0.052 0.046 0.741 0.050 0.246
0.492 0.111 -0.268 0.321 0.025 -1.135 0.521 0.070 -0.935
0.628 0.167 -1.396 0.510 0.041 -0.463 0.610 0.091 -0.263
0.601 0.012 -0.518 0.371 0.034 0.425 0.471 0.046 0.625

0.518 0.050 -0.394 0.718 0,060 -0.194
0.608 0.059 -0.314 0.408 0.069 -0.114
0.327 0.033 -0.946 0.427 0.093 -0.676
0.609 0.063 -0.839 0.559 0.073 -0.639
0.724 0.075 -0.998 0.824 -0.085 -0.798
0.479 0.050 0.115 0.379 0.080 0.335
0.505 0.053 -0.524 0.555 0.046 -0.324
0.470 0.060 -1.349 0.390 0.050 -1.149
0.624 0.086 -0.916 0.524 0.076 -0.716
0.543 0.077 -0.109 0.443 0.087 0.091
0.817 0.214 -0.511 0.613 0.075 -0.202
0.534 0.143 -0.890 0.465 0.075 -1.093
0.440 0.120 0.478 0.703 0.084 0.410
0.640 0.175 -0.391 0.412 -0.074 0.165
0.522 0.143 -0.220 0.668 0.131 -0.236
0.337 0.093 -0.796 0.744 0.145 0.905
0.566 0.167 -1.423 0.681 0.187 1.144
0.808 0.249 -0.134 0.680 0.186 -1.112
0.492 0.171 -0.468 0.658 0.151 -0.262
0.628 0.197 1.400 0.560 0.186 -0.319
0.115 0.500 -0.775 0.127 0.300 -0.618
0.205 0.891 -0.430 0.220 1.189 0.013
0.161 0.833 -0.639 0.163 0.688 -1.156
0.137 0.741 -0.812 0.143 0.811 -0.369
0.202 0.913 -0.029 0.235 1.111 -0.632
0.119 0.730 -0.705 0.089 0.753 -0.321
0.113 0.735 -0.017 0.113 0.712 -0.612
0.165 1.182 -0.768 0.155 1.067 0.042
0.182 1.362 0.416 0.188 1.366 -0.496
0.110 1.174 -0.995 0.116 1.097 -0.400
0.128 1.213 -0.470 0.056 1.258 -0.629
0.120 1.202 -0.603 0.111 1.111 -0.049
0 .032 0 .4 5 8 - 1.145 0  073 0.471 0.246
0.056 0.944 -0.666 0.078 0.956 -0.935
0.051 1.252 -0.823 0.038 1.155 -0.263
0.023 0.738 -0.713 0.049 0.838 0.625

Note. Dimension two items are noted in italics.
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Appendix C

Item Parameters fo r  simulation study Forms X  and Y fo r  test constructed with second 

dimension present among common items only (Cl)

Common Items Unique "X" Items Unique "Y" Items
ai a2 d at 02 d ai 02 d
0.840 0.073 -0.341 0.701 0.000 -0.818 0.401 -0.010 -0.618
0.572 0.026 -0.062 0.513 0.001 -0.087 0.613 -0.001 0.013
0.487 0.099 -0.646 0.431 0.004 -1.456 0.431 -0.002 -1.156
0.488 0.097 -0.024 0.611 0.014 -0.560 0.491 0.044 -0.369
0.740 0.075 0.300 0.725 0.017 -0.732 0.725 0.048 -0.632
0.454 0.045 -1.279 0.628 0.017 -0.621 0.728 -0.025 -0.321
0.554 0.083 -0.099 1.041 0.031 -0.712 0.921 0.031 -0.612
0.466 0.049 -0.949 0.525 0.016 -0.153 0.425 0.075 0.042
0.166 1.316 0.353 0.733 0.025 -0.696 0.780 0.075 -0.496
0.226 0.866 -0.360 0.605 -0.024 -0.300 0.505 0.064 -0.400
0.110 0.899 -0.251 0.543 0.025 -0.909 0.560 0.023 -0.629
0.125 0.873 -0.656 0.508 0.038 -0.149 0.368 0.067 -0.049
0.072 1.175 -0.764 0.681 -0.052 0.046 0.741 0.050 0.246
0.060 0.536 -0.760 0.321 0.025 -1.135 0.521 0.070 -0.935
0.121 0.822 -0.714 0.510 0.041 -0.463 0.610 0.091 -0.263
0.084 0.949 -0.635 0.371 0.034 0.425 0.471 0.046 0.625

0.518 0.050 -0.394 0.718 0.060 -0.194
0.608 0.059 -0.314 0.408 0.069 -0.114
0.327 0.033 -0.946 0.427 0.093 -0.676
0.609 0.063 -0.839 0.559 0.073 -0.639
0.724 0.075 -0.998 0.824 -0.085 -0.798
0.479 0.050 0.115 0.379 0.080 0.335
0.505 0.053 -0.524 0.555 0.046 -0.324
0.470 0.060 -1.349 0.390 0.050 -1.149
0.624 0.086 -0.916 0.524 0.076 -0.716
0.543 0.077 -0.109 0.443 0.087 0.091
0.817 0.214 -0.511 0.613 0.075 -0.202
0.534 0.143 -0.890 0.465 0.075 -1.093
0.440 0.120 0.478 0.703 0.084 0.410
0.640 0.175 -0.391 0.412 -0.074 0.165
0.522 0.143 -0.220 0.668 0.131 -0.236
0.337 0.093 -0.796 0.744 0.145 0.905
0.566 0.167 -1.423 0.681 0.187 1.144
0.808 0.249 -0.134 0.780 0.186 -1.112
0.492 0.171 -0.468 0.658 0.151 -0.262
0.628 0.197 1.400 0.560 0.186 -0.319
0.451 0.081 -0.154 0.601 0.050 -0.151
0.189 0.026 -1.233 0.388 0.066 -1.033
0.847 0.072 -0.711 0.817 0.060 -0.311
0.543 0.081 -0.109 0.534 0.080 -0.690
0.461 0.082 -0.478 0.440 0.061 -0.336
0.650 0.057 -0.591 0.640 0.060 -0.191
0.672 0.061 -0.620 0.522 0.101 -0.020
0.268 0.033 -0.896 0.337 0.093 -0.596
0.377 0.071 -0.134 0.257 0.071 0.096
0.610 0.076 0.160 0.590 0.034 0.280
0.574 0.063 -1.529 0.514 0.021 -1.529
0.784 0.083 -0.549 0.845 0.130 -0.049
0.566 0.147 -1.523 0.566 0.060 -1.223
0.878 0.089 -0.134 0.827 0.089 0.066
0.552 0.011 -0.368 0.492 0.141 -0.168
0.728 0.024 1.100 0.628 0.098 1.250

Note. Dimension two items are noted in italics.
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Appendix D

Item Parameters fo r  Test A Forms X  and Y  fo r  test constructed with second dimension 

present among common and unique items (BL)

Common Items Unique "X" Items Uniq,ue "Y" Items
aj ai d ai a2 d ai d
0.189 0.297 -0.339 0.247 0.144 1.081 -0.186 0.348 -0.019
0.105 0.263 1.095 0.477 0.453 1.526 0.189 0.125 0.875

-0.008 0.181 0.922 0.154 0.015 0.381 0.358 0.192 1.320
0.281 0.264 1.486 0.113 0.343 0.264 0.347 0.246 0.760
0.038 0.118 -0.714 0.372 0.291 1.388 -0.050 0.376 -0.323
0.050 0.200 0.075 0.318 0.233 1.171 0.122 0.132 0.861
0.119 0.037 -0.438 -0.036 0.691 -0.218 0.307 0.279 0.992
0.308 0.305 0.166 0.081 -0.013 -0.086 0.229 0.128 1.223
0.486 0.443 1.248 0.214 0.174 -0.435 0.309 0.308 0.819
0.724 0.627 1.988 0.080 0.532 0.722 0.079 0.340 -0.753

0.139 0.122 1.675 0.342 0.223 0.443
0.235 0.189 0.051 0.259 0.301 0.872
0.338 0.116 0.089 0.282 0.276 2.065
0.089 -0.041 -0.282 0.474 0.370 0.243
0.247 0.210 0.447 0.296 0.098 0.419
0.162 -0.004 0.112 0.453 0.248 1.355
0.259 0.158 0.363 0.212 0.145 1.329
0.092 0.068 0.898 0.105 0.120 0.021
0.338 0.162 1.176 0.106 0.140 1.404
0.099 0.147 0.915 0.187 0.150 1.788
0.196 -0.003 0.129 0.216 0.140 0.127
0.422 0.201 1.247 0.384 0.225 1.271
0.278 0.118 0.620 0.250 0.214 1.177
0.244 0.115 0.872 0.435 0.389 0.369
0.056 0.191 -0.058 0.486 0.451 1.997
0.233 0.198 0.302 0.486 0.471 2.434
0.230 0.008 0.423 0.229 0.283 -0.187
0.434 0.355 0.738 0.137 0.312 0.474
0.328 0.238 0.637 0.446 0.304 -0.226
0.373 0.198 0.699 0.468 0.392 0.359
0.051 0.212 - 0.615 0.216 0.069 0.762

Note. Dimension two items are noted in italics. For the real data analyses, dimension one and two items were 
determined by content.
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Appendix E

Item Parameters fo r  Test A Forms X  and Y fo r test constructed with second dimension 

present among unique items only (UI)

Common Items Unique “X” Items Uniqiye "Y” Items
ai a2 d ai a2 d ai a2 d

0.119 0.037 -0.440 0.247 0.144 1.081 -0.190 0.348 -0.020
0.267 0.230 0.554 0.477 0.453 1.526 0.189 0.125 0.875
0.222 0.132 1.280 0.154 0.015 0.381 0.358 0.192 1.320
0.119 0.037 -0.440 0.113 0.343 0.264 0.347 0.246 0.760
0.275 0.290 0.101 0.372 0.291 1.388 -0.050 0.376 -0.320
0.223 0.000 0.436 0.318 0.233 1.171 0.122 0.132 0.861
0.489 0.460 2.267 -0.036 0.691 -0.218 0.307 0.279 0.992
0.308 0.305 0.166 0.081 -0.013 -0.086 0.229 0.128 1.223
0.137 0.312 0.474 0.214 0.174 -0.435 0.309 0.308 0.819
0.215 0.043 -0.040 0.080 0.532 0.722 0.079 0.340 -0.750
0.724 0.627 1.988 0.139 0.122 1.675 0.342 0.223 0.443

0.235 0.189 0.051 0.050 0.200 0.075
0.338 0.116 0.089 0.282 0.276 2.065
0.089 -0.041 -0.282 0.474 0.370 0.243
0.247 0.210 0.447 0.296 0.098 0.419
0.162 -0.004 0.112 0.453 0.248 1.355
0.259 0.158 0.363 0.212 0.145 1.329
0.092 0.068 0.898 0.105 0.120 0.021
0.338 0.162 1.176 0.106 0.140 1.404
0.099 0.147 0.915 0.187 0.150 1.788
0.196 -0.003 0.129 0.216 0.140 0.127
0.422 0.201 1.247 0.384 0.225 1.271
0.278 0.118 0.620 0.250 0.214 1.177
0.244 0.115 0.872 0.435 0.389 0.369
0.056 0.191 -0.058 0.486 0.451 1.997
0.233 0.198 0.302 0.486 0.443 1.248
0.230 0.008 0.423 0.486 0.471 2.434
0.434 0.355 0.738 0.229 0.283 -0.187
0.328 0.238 0.637 0.446 0.304 -0.226
0.373 0.198 0.699 0.468 0.392 0.359
0.051 0.212 -0.615 0.216 0.069 0.762

Note. Dimension two items are noted in italics. For the real data analyses, dimension one and two items were 
determined by content.
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Appendix F

Item Parameters fo r  Test A Forms X  and Y fo r  test constructed with second dimension 

present among common items only (Cl)

Common Items Unique “X" Items Unique "Y" Items
ai d a, 02 d ai a 2 d

0.189 0.297 -0.340 0.139 0.122 1.675 0.342 0.223 0.443
0.105 0.263 1.095 0.027 -0.002 -0.371 0.282 0.276 2.065

-0.010 0.181 0.922 0.267 0.230 0.554 0.174 0.155 0.755
0.281 0.264 1.486 0.296 0.236 1.724 0.474 0.370 0.243
0.038 0.118 -0.710 0.235 0.189 0.051 0.222 0.132 1.280
0.050 0.200 0.075 0.338 0.116 0.089 0.275 0.110 1.123
0.119 0.037 -0.438 0.275 0.290 0.101 0.261 0.061 -0.262
0.308 0.305 0.166 0.089 -0.041 -0.282 0.259 0.301 0.872
0.486 0.443 1.248 0.247 0.210 0.447 0.223 0.000 0.436
0.724 0.627 1.988 0.162 -0.004 0.112 0.296 0.098 0.419

0.259 0.158 0.363 0.453 0.248 1.355
0.123 0.096 0.362 0.212 0.145 1.329
0.092 0.068 0.898 0.105 0.120 0.021
0.338 0.162 1.176 0.106 0.140 1.404
0.099 0.147 0.915 0.187 0.150 1.788
0.196 -0.003 0.129 0.216 0.140 0.127

-0.029 0.030 1.671 0.457 0.446 2.568
0.422 0.201 1.247 0.384 0.225 1.271
0.125 0.184 -0.879 0.250 0.214 1.177
0.278 0.118 0.620 0.435 0.389 0.369
0.244 0.115 0.872 0.486 0.451 1.997
0.258 0.061 0.586 0.432 0.320 1.212
0.056 0.191 -0.058 0.489 0.460 2.267
0.233 0.198 0.302 0.486 0.471 2.434
0.128 -0.049 -0.153 0.258 0.172 0.639
0.230 0.008 0.423 0.229 0.283 -0.187
0.434 0.355 0.738 0.418 0.295 0.379
0.328 0.238 0.637 0.137 0.312 0.474
0.373 0.198 0.699 0.215 0.043 -0.038
0.051 0.212 -0.615 0.446 0.304 -0.226
0.216 0.069 0.762 0.468 0.392 0.359

Note. Dimension two items are noted in italics. For the real data analyses, dimension one and two items were 
determined by content.
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Appendix G

Item Parameters fo r  Test B Forms X  and Y fo r test constructed with second dimension 

present am ong common and unique items (BL)

Common Items Uniqxye “X” Items Uniqixe "Y” Items
ai a2 d a\ a2 d as a2 d

0.709 0.408 -0.403 0.068 -0.035 -0.052 0.433 0.000 0.873
0.367 0.360 1.947 0.369 0.185 0.012 0.346 0.203 0.705
0.679 0.384 -0.042 0.255 0.160 0.209 0.398 0.390 1.724
0.323 0.226 -0.280 0.141 -0.020 -0.417 0.377 0.194 0.567
0.534 0.439 1.327 0.401 0.196 1.008 0.496 0.322 0.903
0.532 0.377 1.066 0.401 0.231 0.421 0.158 0.081 0.335
0.270 0.027 0.431 0.426 0.407 1.779 0.252 0.132 0.296
0.390 0.569 1.869 0.565 0.370 0.716 0.430 0.210 0.808
0.187 0.633 0.764 0.469 0.361 1.080 0.545 0.237 0.603
0.081 0.366 0.420 0.098 0.027 -0.427 0.338 0.291 1.034

0.282 0.194 0.890 0.247 0.167 1.234
0.346 0.295 0.986 0.494 0.147 0.496
0.303 0.179 0.507 0.411 0.247 -0.317
0.334 0.102 0.083 0.269 0.197 0.438
0.250 0.215 1.100 0.409 0.144 -0.233
0.464 0.308 0.959 0.471 0.380 0.749
0.169 0.219 0.480 0.483 0.247 0.450
0.178 0.164 -0.437 0.358 0.067 0.600
0.362 0.287 1.145 0.556 0.244 0.166
0.221 0.223 1.099 0.328 0.284 0.871
0.346 0.371 0.829 0.409 0.186 0.034
0.673 0.733 1.342 0.188 0.234 0.927
0.296 0.413 1.386 0.165 0.239 1.518
0.088 0.375 0.731 0.272 0.571 1.103
0.174 0.572 0.652 0.361 0.523 0.420
0.430 0.768 1.465 0.152 0.362 0.290
0.288 0.916 1.194 0.331 0.515 1.554
0.273 0.873 1.190 0.584 0.741 0.280
0.045 0.548 0.640 0.159 0.693 1.114
0.254 0.250 -0.410 -0.082 0.373 0.399

Note. Dimension two items are noted in italics. For the real data analyses, dimension one and two items were 
determined by content.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Multi dimensionality and IRT Equatingl50

Appendix H

Item Parameters fo r  Test B Forms X  and Y fo r test constructed with second dimension 

present among unique items only (UI)

Common Items Unique “X” Items Uniq\xe "Y" Items
at a2 d a, a2 d a, #.? d

0.437 0.236 0.835 0.068 -0.035 -0.052 0.433 0.000 0.873
0.241 0.251 1.938 0.369 0.185 0.012 0.346 0.203 0.705
0.566 0.474 1.804 0.255 0.160 0.209 0.398 0.390 1.724
0.268 0.136 0.431 0.141 -0.020 -0.417 0.377 0.194 0.567
0.496 0.404 1.056 0.401 0.196 1.008 0.496 0.322 0.903
0.351 0.247 0.664 0.401 0.231 0.421 0.158 0.081 0.335
0.323 0.207 1.235 0.426 0.407 1.779 0.252 0.132 0.296
0.341 0.265 -0.432 0.565 0.370 0.716 0.430 0.210 0.808
0.534 0.439 1.327 0.469 0.361 1.080 0.545 0.237 0.603
0.532 0.377 1.066 0.098 0.027 -0.427 0.338 0.291 1.034

0.282 0.194 0.890 0.247 0.167 1.234
0.346 0.295 0.986 0.494 0.147 0.496
0.303 0.179 0.507 0.411 0.247 -0.317
0.334 0.102 0.083 0.269 0.197 0.438
0.250 0.215 1.100 0.409 0.144 -0.233
0.464 0.308 0.959 0.471 0.380 0.749
0.169 0.219 0.480 0.483 0.247 0.450
0.178 0.164 -0.437 0.358 0.067 0.600
0.362 0.287 1.145 0.556 0.244 0.166
0.221 0.223 1.099 0.328 0.284 0.871
0.270 0.027 0.431 0.409 0.186 0.034
0.346 0.371 0.829 0.188 0.234 0.927
0.673 0.733 1.342 0.165 0.239 1.518
0.296 0.413 1.386 0.272 0.571 1.103
0.088 0.375 0.731 0.361 0.523 0.420
0.174 0.572 0.652 0.152 0.362 0.290
0.430 0.768 1.465 0.331 0.515 1.554
0.273 0.873 1.190 0.584 0.741 0.280
0.045 0.548 0.640 0.159 0.693 1.114
0.254 0.250 -0.410 -0.082 0.373 0.399

Note. Dimension two items are noted in italics. For the real data analyses, dimension one and two items were 
determined by content.
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Appendix I

Item Parameters fo r  Test B Forms X  and Y fo r  test constructed with second dimension 

present am ong common items only (Cl)

Common Items Uniq\ue “X” Items Uniqiie ‘T " Items
ai a2 d ai a2 d a, o2 d

0.709 0.408 -0.403 0.068 -0.035 -0.052 0.433 0.000 0.873
0.367 0.360 1.947 0.437 0.236 0.835 0.411 0.396 1.900
0.679 0.384 -0.042 0.369 0.185 0.012 0.346 0.203 0.705
0.323 0.226 -0.280 0.255 0.160 0.209 0.251 0.173 1.050
0.534 0.439 1.327 0.141 -0.020 -0.417 0.432 0.136 1.047
0.532 0.377 1.066 0.401 0.196 1.008 0.398 0.390 1.724
0.270 0.027 0.431 0.241 0.251 1.938 0.377 0.194 0.567
0.390 0.569 1.869 0.401 0.231 0.421 0.496 0.322 0.903
0.187 0.633 0.764 0.566 0.474 1.804 0.158 0.081 0.335
0.081 0.366 0.420 0.565 0.370 0.716 0.252 0.132 0.296

0.469 0.361 1.080 0.546 0.159 0.248
0.268 0.136 0.431 0.430 0.210 0.808
0.361 0.148 -0.155 0.426 0.285 1.241
0.098 0.027 -0.427 0.545 0.237 0.603
0.496 0.404 1.056 0.408 0.395 1.892
0.351 0.247 0.664 0.409 0.356 1.459
0.323 0.207 1.235 0.338 0.291 1.034
0.282 0.194 0.890 0.494 0.147 0.496
0.346 0.295 0.986 0.411 0.247 -0.317
0.303 0.179 0.507 0.269 0.197 0.438
0.334 0.102 0.083 0.383 0.076 -0.411
0.341 0.265 -0.432 0.161 0.155 1.388

-0.051 -0.350 -0.062 0.471 0.380 0.749
0.250 0.215 1.100 0.483 0.247 0.450
0.464 0.308 0.959 0.358 0.067 0.600
0.169 0.219 0.480 0.556 0.244 0.166
0.178 0.164 -0.437 0.328 0.284 0.871
0.362 0.287 1.145 0.409 0.186 0.034
0.221 0.223 1.099 0.188 0.234 0.927
0.673 0.733 1.342 0.533 0.385 0.490

Note. Dimension two items are noted in italics. For the real data analyses, dimension one and two items were 
determined by content.
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Appendix J

Mean raw scores (and standard deviations) fo r  Dimensions One and Two fo r  Groups P

and Q on Forms X fo rm s o f  BL, JJI and C l on Test A.

Location Group P Group Q
o f Second Dimension Dimension Dimension Dimension
Dimension One3 Two One Two

17.14 9.92 17.06 9.93
BLbc (3.10) (1.97) (3.14) (2.01)

20.73 6.70 20.56 6.74
UI (3.54) (1.60) (3.59) (1.59)

23.44 3.22 23.27 3.19
Cl (3.82) (0.89) (3.87) (0.91)
a Standard deviations are presented in brackets () 
b BL = both locations, UI = unique items only, Cl = common items only 

BL, UI, and Cl tests had different numbers o f Dimension One and Dimension Two items. BL tests had 26 Dimension
One and 15 Dimension Two items, UI tests had 31 Dimension One and 10 Dimension Two items, and Cl tests had 36
Dimension One and 5 Dimension Two items.
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Appendix K

Mean raw scores (and standard deviations) fo r  Dimensions One and Two for Groups P  

and Q on X  Forms o f  BL, UI and C l on Test B.

Location Group P Group Q
o f Second Dimension Dimension Dimension Dimension
Dimension Onea Two One Two

16.47 10.83 17.13 11.11
BLb,c (3.57) (2.60) (3.53) (2.55)

20.68 7.51 21.41 7.70
UI (4.05) (1.92) (3.95) (1.85)

23.87 3.32 24.67 3.42
Cl (4.65) (1.13) (4.54) (1.13)
a Standard deviations are presented in brackets () 
b BL = both locations, UI = unique items only, Cl = common items only 

BL, UI, and Cl tests had different numbers o f Dimension One and Dimension Two items. BL tests had 25 Dimension
One and 15 Dimension Two items, UI tests had 30 Dimension One and 10 Dimension Two items, and Cl tests had 35
Dimension One and 5 Dimension Two items.
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