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Abstract

This thesis introduces random walk (RW) planning as a new search paradigm for satisficing planning

by studying its theory, its practical relevance, and applications. We develop a theoretical framework

that explains the strengths and weaknesses of random walks as a tool for heuristic search. Based

on the theory, we propose a general framework for random walk search (RWS). We identify and

experimentally study the key components of RWS and for each component, design and test practical

and adaptive algorithms. We study resource-constrained planning as an application of RWS and

show that the developed techniques implemented on top of RWS greatly outperform the state of the

art in solving resource-constrained tasks. While RWS alone can lead to inefficient long plans, we

introduce efficient postprocessing techniques that can significantly improve the results. We push the

state of the art in planning by developing several RW planners that have strong performance in terms

of both coverage and solution quality.
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Chapter 1

Introduction

1.1 Automated Planning

Planning is one of the fundamental cognitive abilities that differentiate Homo Sapiens from other

species. Anticipating the future, humans are able to plan their actions to avoid dangerous situations

and achieve their goals efficiently. To plan successfully, an agent must have a basic understanding

or model of the possible actions and their effects on the environment. The agent can get the model

from other agents, e.g., a chess player who learns the rules from his coach, or learn it by interacting

with his environment, e.g., a toddler who learns the constraints on his body movements by trial and

error. Automated planning studies algorithms that, given a model of the world, generate a plan to

achieve predefined goals. Success in automated planning not only facilitates the development of

autonomous agents but also reduces the programming time and cost by serving as an alternative to

developing problem specific solvers.

1.1.1 Representation

Regardless of how the domain model is obtained, a formal representation should be used to express

the model. In a planning system a good representation facilitates the planning process and provides

tools to describe the world concisely and accurately. Most of the classical planners, which are the

focus of this thesis, use either STRIPS (Fikes & Nilsson, 1971) or SAS+ (Bäckström & Nebel, 1995)

formalisms to model a planning problem. Both formalisms are able to encode problems with state

spaces which are exponentially larger than the size of the encoding itself. This compression power

makes it easier to reason about problems with big state spaces. The following gives the formal

definition of STRIPS representation.

Definition 1 (STRIPS). A STRIPS planning task is a tuple Π = (P, I,G,A, c) where

• P is a set of propositions.

• I ⊆ P is the initial state.

• G ⊆ P is the goal.
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• A is a set of actions. Each a ∈ A is a triple (prea, adda, dela) of subsets of P .

• c : A→ R≥0 is a cost function assigning a cost to each action.

A state is identified with the set of propositions s ⊆ P that are true in the state. Action a is

applicable to s if prea ⊆ s; the result of executing a is (s \ dela) ∪ adda. A plan π is a sequence of

actions that are applicable one after another starting from I , and result in a state s ⊇ G. The cost

of the plan is the sum of the individual costs of all actions in the plan.

While STRIPS is a classical representation that uses sets of propositions to model states, SAS+

is a state-variable representation that represents a state by a tuple of values of a finite number of

state variables: [v1, . . . , vn]. For a formal definition of SAS+ see (Helmert, 2006).

Any formalism used for classical planning including STRIPS and SAS+ is based on a restricted

model of the world including the agent and its environment (Ghallab, Nau, & Traverso, 2004). The

restricted model assumes that:

• The environment is fully observable, finite and static (it only changes when the agent acts).

• Actions are discrete, instantaneous (have no duration), and deterministic (the state of the world

after applying the action is known).

• States are discrete.

Although these assumptions limit the application of classical planners, they can provide use-

ful abstractions for more general problems. For instance, (Yoon, Fern, & Givan, 2007) introduce

the planner FF-replan, the top performer in the International Probabilistic Planning Competitions

IPPC-2004 and IPPC-2006, that uses the classical planner FF (Hoffmann & Nebel, 2001) to solve

problems with nondeterministic actions. FF-replan uses FF to find a plan for an abstract version of

the problem, in which all the actions are deterministic. FF-replan executes the computed plan and

replans whenever an action generates an unexpected outcome.

In spite of the simplifying assumptions in the restricted model, classical planning is hard: given

a STRIPS planning problem Π and an integer k > 0, the decision problems corresponding to plan

existence (Is Π solvable?) and plan length (does Π have a solution of length≤ k?) are both PSPACE-

complete (Bylander, 1994). The same holds for SAS+ (Helmert, 2006). Theoretically, STRIPS and

SAS+ representations have equivalent expressive power: one can be translated to the other with a

constant factor overhead (Ghallab et al., 2004).

1.1.2 Planning Methods

Given a representation of a planning problem, what algorithms can be used to solve the problem?

Most state-of-the-art planners use state-space search: the planner searches a state space in which

each state corresponds to a state of the world and each state transition corresponds to an action of

2



the agent. The dominance of state-space search is mainly due to the successful development of

domain-independent heuristics since (Bonet & Geffner, 2001). Alternative methods include plan-

space planning (Penberthy & Weld, 1992), SAT-based planning (Kautz & Selman, 1996), and tech-

niques based on planning graphs (Blum & Furst, 1997).

Plan-space search: plan-space planners search the space of partial plans: every state is a partial

solution and every transition modifies the solution by adding a new action or a new ordering of

actions to the partial plan. Searching the plan space can avoid wasting time permuting unnecessary

orderings of actions. However, to the best of our knowledge, the heuristic functions available for

plan space are not as effective as recent heuristics developed for state space.

SAT-based planners: SAT-based planners use strong SAT solvers (Eén & Sörensson, 2003;

Selman, Kautz, & Cohen, 1993) to solve planning problems translated to CNF formulas. SAT-based

planners operate in an iterative manner: in each iteration the SAT solver checks whether a solution

of length k exists. SAT-based planners usually start with a small k, and increase it after each iteration

until a solution is found. General SAT solvers are ignorant of the fact that the given problem is a

planning problem.

Planning graphs: the idea of planning graphs was first used in Graphplan (Blum & Furst,

1997). A planning graph is a layered graph that alternates between propositional and action layers:

the propositional layer 0 contains all the propositions in the initial state. The action layer i ≥ 0

contains all the actions that have all their preconditions in propositional layer i. The propositional

layer i + 1 contains all the propositions in layer i plus the add effects of actions in layer i. The

planning graph also keeps track of mutex pairs at each level i: pairs of propositions that cannot

both be true at level i. Mutexes are inferred from the negative interactions of actions achieving

the propositions. Graphplan constructs the planning graph layer by layer until it reaches a layer

containing all goal propositions. At this stage a backtracking search algorithm is used to chain the

goals backward to the initial state using the information in the graph. If the process fails, when a

goal proposition cannot reach the initial state without violating mutexes, then the planning graph is

extended by one more layer. Graphplan plus memoization is a complete algorithm and is guaranteed

to generate solutions with optimal makespan. For details, including the termination condition see

(Blum & Furst, 1997).

Although the above techniques are not the mainstream, they are still relevant: ideas based on

planning graphs are used to derive heuristics (Hoffmann & Nebel, 2001); the planner LPG (Gerevini,

Saetti, & Serina, 2003), which uses local search to find a solution in the planning graph, has always

been a strong alternative when state-space planners fail; and new developments in SAT-based plan-

ning are emerging that introduce planning-specific SAT solvers (Rintanen, 2012).
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1.1.3 Planning Using Heuristic Search

Heuristic search is the most effective technique for state-space search. The seminal paper by

Bonet and Geffner (2001) introduced two heuristics hadd and hmax, which are classified as delete-

relaxation heuristics.

The additive and max heuristics: The delete relaxation Π+ relaxes a STRIPS problem Π by

removing the negative effects of the actions: once a proposition becomes true in a state, it remains

true in all successor states. h+, the cost of an optimal solution for Π+, is a lower bound on the cost

of any solution for Π. While the problem of computing h+ is NP-complete, approximations such

as hadd and hmax can be computed in polynomial time. Both hadd and hmax estimate the cost of

reaching a set of propositions P (P can be the goal or preconditions of an action) by aggregating

the cost estimates of each individual proposition p ∈ P . While hadd uses the sum of the estimates:

hadd(P ) =
∑
p∈P h

add(p), hmax uses the maximum: hmax (P ) = maxp∈P hmax (p). The cost

estimate of a proposition p is computed recursively based on the cost of actions achieving p and

the cost estimate of their preconditions; the cost estimate of propositions satisfied in the current

state is 0. While hmax underestimates h+ and can be used as an admissible heuristic, hadd is

more informative. An implicit assumption in the hadd computation is that propositions are achieved

independently. This leads to over-counting of actions that can be used to achieve more than one

proposition.

The fast forward heuristic: Hoffmann and Nebel (2001) address the over-counting issue by

explicitly building a solution, a relaxed plan, for Π+. The emerging heuristic is the venerable hFF .

The computation of hFF has two phases: in the first phase the relaxed planning graph, a planning

graph without mutexes, is built. In the second phase a plan is extracted from the relaxed planning

graph. Unlike Graphplan, no backtracking is needed: in absence of mutexes, every plan that satisfies

the goal suffices. The explicit plan construction helps FF to avoid over-counting by reusing actions

that are already in the plan. The cost or length of the plan is used as the heuristic function.

Causal graph and Context enhanced additive heuristics: Delete-relaxation heuristics by na-

ture ignore the negative interactions between actions. The causal graph heuristic hCG (Helmert,

2006) and its successor, the context enhanced additive heuristic hcea (Helmert & Geffner, 2008) do

not have this limitation. Instead of relaxing the problem by ignoring all negative effects, hCG re-

laxes the problem by implicitly forming subtasks and overlooking some of the interactions between

them. hCG relies on two high-level representations, Causal Graphs (CG) and Domain Transition

Graphs (DTG), that are built on top of SAS+. While CG explicitly expresses the causal relations

between state variables, DTG shows how a single variable transitions between different values. The

heuristic function operates on these constructs to form effective subtasks. hCG assumes that no

circular causal relation exists between state variables: this holds, for example, in a transportation

domain in which the actions that affect the location of goods have preconditions on the location of

vehicles but not vice versa. If CG contains circular causal relations, then hCG relaxes the problem
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by breaking the circles. hcea is a generalization of hCG that works with circular causal relations

without breaking them. While hCG is explained procedurally, hcea is defined mathematically using

recurrence relations. This formal definition reveals that there is a relation between hcea and hadd : if

all the state variables are binary, then hcea is the same as hadd .

The landmark heuristic: landmarks (Hoffmann, Porteous, & Sebastia, 2004) are propositional

formulas that must be satisfied at least once in every valid plan. Richter and Westphal (2010) were

the first who used landmarks to derive heuristic estimates. The heuristic function is called hLM .

Unlike its predecessors, hLM is a path-sensitive heuristic: the value of the heuristic function de-

pends both on the evaluated state s and the path reaching s. The heuristic estimates the number

of landmarks that need to be achieved before reaching the goal. While hLM alone is weaker than

other heuristic functions such as hFF and hcea , using it in a multi-heuristic setting with other heuris-

tic functions is the main reason that LAMA (Richter & Westphal, 2010) outperformed every other

planner in IPC-2011 and IPC-2008.

1.1.4 Search Algorithms

Aside from the heuristic function, the search algorithm itself also plays a key role in the performance

of a planner. Most of the algorithms that serve as the search engine of top planners are categorized

as best first search (BFS).

Best first search: BFS uses an evaluation function f(.) to rank the states. The underlying

principle is to always expand the state s that has the lowest f(s), hence the name. BFS uses a

priority queue to keep states ordered. The evaluation function is the key factor differentiating BFS

algorithms. In A*, for example, f(s) = g(s) + h(s), where g(s) is the cost of reaching s and h(s)

is the heuristic value of s. The most common BFS in planning is Greedy Best First Seach (GBFS)

(Russell & Norvig, 2010): top planners such as LAMA, Fast Downward, and many others built on

top of these planners use variations of enhanced GBFS to at least find the first solution. GBFS only

uses the heuristic values to rank the states: f(s) = h(s). The idea is to move towards a goal as

quickly as possible with no concern about solution quality. After finding the first solution using

GBFS, most of the current planners such as LAMA switch to a more conservative search algorithm

such as WA*, another BFS algorithm with ranking function f(s) = g(s) + w × h(s) with w ≥ 1.

When w = 1, WA* is the same as A*. WA* achieves a trade-off between runtime and solution

quality by adjusting the weight w. Recently, as the result of cross-fertilization of ideas between the

heuristic search and planning communities, more elaborate search algorithms are being developed

and tested on planning benchmarks (Thayer & Ruml, 2008; Thayer, Stern, Felner, & Ruml, 2012).

Local search: Local search has also been explored in the context of planning. A prominent

example is Enforced Hill Climbing (EHC), used by the FF (Hoffmann & Nebel, 2001) planner. Like

standard hill climbing, EHC iteratively expands a successor that decreases the current heuristic. Hill

climbing becomes trapped in a local minimum or plateau if there is no such successor state. Once
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trapped at the current state s, EHC runs a breadth first search to force the search out of the local

minimum or plateau by finding a state s′ with h(s′) < h(s). EHC fails if breadth first search

exhaustively searches all the reachable states and finds no escape: this happens when the current

state is a dead-end. FF does not use any restarting mechanism for EHC: when EHC fails, FF starts

from scratch using GBFS. Another successful application of local search to planning is the planner

LPG (Gerevini & Serina, 2002). The local search explores the space of partial plans inside the

planning graph, which is fundamentally different from the state space used in planners such as FF

and Arvand.

1.1.5 Search Enhancements

Planning systems rarely use the basic version of the search algorithms: they usually customize

the algorithm for planning problems by using search enhancements. Common enhancements are

deferred evaluation, preferred operators and multi-heuristic search: these are all the legacy of the

successful planners FF and FD.

Deferred evaluation: Deferred evaluation delays the heuristic evaluation of a node until it is

expanded: in absence of the heuristic value, the parent’s heuristic value is used to rank the nodes in

the priority queue. The idea is to save time by just evaluating the states that are expanded: this pays

off when heuristic computation is very costly, the branching factor is large, and only a small portion

of generated states gets expanded.

Preferred operators: As mentioned earlier, heuristic functions such as hFF not only compute a

cost estimation, they also find an actual solution plan for the relaxed problem. Hoffmann and Nebel

(2001) showed that information other than just the length or cost of the relaxed plan can be used to

improve the search: they limit EHC to only consider actions that at least achieve one proposition

used in the relaxed plan. These actions are referred to as Preferred Operators (PO). Other heuristic

functions such as hCG , hcea , and hLM have adopted the same notion. Richter and Helmert (2009)

refer to Preferred Operators as “actions that contribute to solving the relaxed version of the task”.

Helmert (2006) proposes a different and less aggressive way of using preferred operators: multiple

queues. BFS is modified to use two queues: one only for preferred successors, states generated by

preferred operators, and one for all the successors. While preferred successors go into both queues,

non-preferred successors only go into the second queue. For expansion, BFS alternates between the

two queues. Since the number of preferred operators is usually much lower than the total number of

applicable actions, preferred successors have a higher chance to be expanded. For a detailed study

of the performance of preferred operators and its interaction with deferred evaluation, see (Richter

& Helmert, 2009). Beyond preferred operators, the planners YAHSP (Vidal, 2004) and Macro-FF

(Botea, Müller, & Schaeffer, 2007) use the actions in the relaxed plan to build macro actions.

Multi-heuristic search: If multiple heuristics have different strengths and weaknesses, then

they can complement each other. The common way to use multiple heuristics in BFS is to use
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multiple queues (Helmert, 2006): one for each heuristic function. The search alternates between

queues to select the next state. Each time a state is expanded, it is evaluated using all the heuristic

functions and is inserted into all the queues. The ordering of the states in the queue is determined by

the corresponding heuristic function. Therefore, each time that a state is expanded, it has the lowest

heuristic value according to at least one of the heuristic functions. This approach can be seen as

running multiple searches in parallel and sharing the information about visited states.

1.2 Contributions of this Thesis

This work introduces Random Walk Search (RWS) as an alternative to standard systematic search.

Chapter 2 proposes a theoretical model (Nakhost & Müller, 2012) for comparing the performance

of random walk (RW) and systematic search methods. This model gives well-founded insights into

the relative strengths and weaknesses of these approaches. One main result is that in contrast to

systematic search methods, for which the branching factor plays a decisive role, the performance of

random walk methods is determined to a large degree by the regress factor (rf ), the ratio between

the probabilities of progressing towards and regressing away from a goal with an action. Besides rf ,

the other key variable affecting the average runtime of basic random walks on a graph is the largest

goal distance (D) in the whole graph, which appears in the exponent of the expected runtime. For

large values of D, restarting random walks (RRW) can offer a substantial performance advantage.

At each search step, with probability r a RRW restarts from a fixed initial state s. It is shown that the

expected runtime of RRW depends only on the goal distance of s, not on D. In addition to the work

already presented in (Nakhost & Müller, 2012), the analysis in this chapter is extended to search

spaces that contain dead ends.

Based on the theory developed in Chapter 2 and detailed experiments, Chapter 3 proposes a

general framework for random walk planning (Nakhost & Müller, 2013). The approach is to build a

random walk planner from scratch, identifying and exploring alternative designs and key questions

regarding random walk search along the way. Six major insights are:

1. Adjusting the restarting parameter according to the progress speed in the search space per-

forms better than any fixed setting.

2. A high state evaluation frequency is usually superior to the endpoint-only evaluation used in

earlier systems.

3. Biasing the action selection towards preferred operators of only the current state is better

than Monte Carlo Helpful Actions, which depend on the number of times an action has been

a preferred operator in previous walks.

4. Random walks are beneficial using a wide range of heuristic functions.

5. Even simple forms of random walk planning can compete with systematic search.
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6. Random walk search scales better than GBFS when the heuristic accuracy decreases.

The resulting planner, Arvand-2013, is a very competitive system which performs at the same level

as top planners such as LAMA (Richter & Westphal, 2010). In 33 out of 45 International Planning

Competition (IPC) domains, Arvand-2013 achieves the largest coverage and in 5 domains, it is the

single winner of the domain.

Chapter 4 studies the application of random walk planning to resource constrained planning

(Nakhost, Hoffmann, & Müller, 2012). The need to economize limited resources, such as fuel or

money, is a ubiquitous feature of planning problems. If the resources cannot be replenished, the

planner must make do with the initial supply. It is then of paramount importance how constrained

the problem is, i.e., whether and to which extent the initial resource supply exceeds the minimum

need. While there is a large body of literature on numeric planning and planning with resources, such

resource constrainedness has only been scantily investigated. We start to address this in more detail.

We generalize the previous notion of resource constrainedness, characterized through a numeric

problem feature C ≥ 1, to the case of multiple resources. We implement an extended benchmark

suite controlling C. We conduct a large-scale study of the current state of the art as a function of

C, highlighting which techniques contribute to success. We introduce two new techniques on top

of the random walk planner Arvand-2009, resulting in a new planner Arvand-RC, that, in these

benchmarks, outperforms previous planners when resources are scarce (C close to 1).

Compared with systematic search, random walk search can solve much harder problems but

may produce overly costly and long plans. Chapter 5 proposes a simple but effective method for

plan improvement: Plan Neighborhood Graph Search (PNGS) (Nakhost & Müller, 2010). This

method finds a new, shorter plan by creating a plan neighborhood graph PNG(π) of a given plan

π, and then extracts a shortest path from PNG(π). Experiments show that PNGS combined with

Action Elimination (Nakhost & Müller, 2010; Fink & Yang, 1992) significantly improves not only

random walk planners, but also top systematic search planners such as LAMA. The Aras postpro-

cessor implementing these methods improves the best known results for 62 problems used in IPC-

2008. Section 5.6.4 shows that Arvand-2013 integrated with an improved version of Aras (Nakhost,

Müller, Valenzano, & Xie, 2011) performs as well as top systematic search planners such as FDSS2

(Helmert, Röger, & Karpas, 2011) and achieves the highest IPC score in 4 out of 14 IPC-2011

domains.

During this study of random walk search several random walk planners have been developed:

Arvand-2009 (Nakhost & Müller, 2009), Arvand-LS (Xie et al., 2012), Arvand-RC (Nakhost et al.,

2012), ArvandHerd (Valenzano, Nakhost, Müller, Schaeffer, & Sturtevant, 2012), Arvand-2011

(Nakhost et al., 2011) and Arvand-2013. Chapter 6 briefly introduces each planner and discusses

how each fits in the general framework developed in Chapter 3.

This thesis contains material from, and extends, the following publications:

• Nakhost, H., & Müller, M. (2013). Towards a second generation random walk planner: an
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experimental exploration. In Proceedings of the Twenty-Third International Joint Conference

on Artificial Intelligence, IJCAI 2013, to appear. [Chapter 3]

– A journal version of this paper is prepared and will be submitted to JAIR.

• Nakhost, H., & Müller, M. (2012). A theoretical framework to study random walk planning.

In Proceedings of the Fifth Annual Symposium on Combinatorial Search, SOCS 2012, 2012.

[Chapter 2]

– A journal version is submitted to AI Communications.

• Nakhost, H., Hoffmann, J., & Müller, M. (2012). Resource-constrained planning: A Monte

Carlo random walk approach. In Proceedings of the Twenty-Second International Conference

on Automated Planning and Scheduling, ICAPS 2012, pp. 181–189, 2012. [Chapter 4 and

Section 6.2]

– I designed the algorithms, implemented all the code for the search algorithms and the

problem generators. I also ran all the experiments. Jörg Hoffmann helped on designing

the experiments and preparing the papers.

• Xie, F., Nakhost, H., & Müller, M. (2012). Planning via random walk-driven local search.

In Proceedings of the Twenty-Second International Conference on Automated Planning and

Scheduling, ICAPS 2012, pp. 315–322, 2012. [Section 6.4]

– I collaborated on developing the algorithm, designing the experiments, and preparing

the paper. Fan Xie implemented all the code and ran all the experiments.

• Valenzano, R., Nakhost, H., Müller, M., Schaeffer, J., & Sturtevant, N. (2012). ArvandHerd:

Parallel planning with a portfolio. In Proceedings of the Twentieth European Conference on

Artificial Intelligence, ECAI 2012, pp. 113–116, 2012. [Section 6.5]

– I contributed to the algorithm design. I also implemented the Arvand part of the system

and provided support to run experiments: developed the system that runs the experi-

ments. Rick Valenzano implemented the parallel code, ran the experiments and did the

most of the writing.

• Valenzano, R., Nakhost, H., Müller, M., Schaeffer, J., & Sturtevant, N. (2011). ArvandHerd:

Parallel planning with a portfolio. In The 2011 International Planning Competition, IPC

2011, Universidad Carlos III de Madrid, pp. 15–16, 2011. [Section 6.5]

• Nakhost, H., Müller, M., Valenzano, R., & Xie, F. (2011). Arvand: the art of random walks. In

The 2011 International Planning Competition, IPC 2011, Universidad Carlos III de Madrid,

pp. 15–16. [Section 6.3]
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– I designed and implemented almost all the algorithms in Arvand-2011. Rick Valenzano

helped me in designing the parameter learning system. He also implemented a new

command processing system for Arvand. Fan Xie worked on ideas to use UCT for

planning. I prepared the paper.

• Nakhost, H., Hoffmann, J., & Müller, M. (2010). Improving local search for resource-

constrained planning. Extended abstract in Proceedings of the Third Annual Symposium on

Combinatorial Search, SOCS 2010, pp. 81–82, 2010. [Chapter 4 and Section 6.2]

• Nakhost, H., & Müller, M. (2010). Action elimination and plan neighborhood graph search:

Two algorithms for plan improvement. In Proceedings of the Twentieth International Con-

ference on Automated Planning and Scheduling, ICAPS 2010, pp. 121–128, 2010. [Chapter

5]

• Nakhost, H., & Müller, M. (2009). Monte-Carlo exploration for deterministic planning. In

Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, IJ-

CAI 2009, pp. 1766–1771, 2009. [Section 6.1]
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Chapter 2

A Theoretical Framework to Study
Random Walk Planning

This chapter proposes a formal framework for comparing the performance of random walk and

systematic search methods. Fair homogenous and infinitely regressable homogenous graphs are

proposed as graph classes that represent characteristics of the state space of prototypical planning

domains, while still allowing a theoretical analysis of the performance of both random walk and

systematic search algorithms. This gives well-founded insights into the relative strength and weak-

nesses of the approaches. The close relation of the models to some well-known planning domains is

shown.

2.1 Introduction

Random walks, which are paths through a search space that follow successive randomized state tran-

sitions, are a main building block of prominent search algorithms such as Stochastic Local Search

techniques for SAT (Selman, Levesque, & Mitchell, 1992; Pham, Thornton, Gretton, & Sattar, 2008)

and Monte Carlo Tree Search in game playing and puzzle solving (Gelly & Silver, 2008; Finnsson

& Björnsson, 2008; Cazenave, 2009).

While the success of RW methods in related research areas such as SAT and Monte Carlo Tree

Search serves as a good general motivation for trying them in planning, it does not provide an ex-

planation for why RW planners perform well. Previous work has highlighted three main advantages

of random walks for planning:

• Random walks are more effective than systematic search approaches for escaping from regions

where heuristics provide no guidance (Coles, Fox, & Smith, 2007; Nakhost & Müller, 2009;

Lu, Xu, Huang, & Chen, 2011).

• Increased sampling of the search space by random walks adds a beneficial exploration com-

ponent to balance the exploitation of the heuristic in planners (Nakhost & Müller, 2009).
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• Combined with proper restarting mechanisms, random walks can avoid most of the time

wasted by systematic search in dead ends. Through restarts, random walks can rapidly back

out of unpromising search regions (Coles et al., 2007; Nakhost et al., 2012).

These explanations are intuitively appealing, and give a qualitative explanation for the observed

behavior on IPC benchmarks. Typically, planners are evaluated by measuring their coverage, run-

time, or plan quality in such benchmarks. To give a deeper understanding of RW planning, this

chapter provides a theoretical analysis of how RW and other search algorithms behave on idealized

classes of planning problems which are amenable to such analysis. The main goal is a careful theo-

retical investigation of the first advantage claimed above - the question of how RW manage to escape

from plateaus faster than other planning algorithms.

2.1.1 A First Example Motivating the Study of Random Walks

As an example, consider the following well-known plateau for the FF heuristic, hFF , discussed in

(Helmert, 2004). This heuristic estimates the goal distance by solving a relaxed planning problem

in which all the negative effects of actions are ignored. Consider a transportation domain in which

trucks are used to move packages between n locations connected in a single chain c1, · · · , cn. The

goal is to move one package from cn to c1. Figure 2.1 shows the results of a basic scaling experiment

on this domain with n = 10 locations, varying the number of trucks T from 1 to 20. All trucks start

at c2. The results compare basic Random Walk Search (RWS) from Arvand-2009 (Chapter 6) and

basic Greedy Best First Search (GBFS) from LAMA-2011. Figure 2.1 shows how the runtime of

GBFS grows quickly with the number of trucks T until it exceeds the memory limit of 64 GB. This

is expected since the effective branching factor grows with T . However, the increasing branching

factor has only little effect on RWS: the runtime grows only linearly with T .

2.1.2 Choice of Basic Search Algorithms

All the examples in this chapter use state of the art implementations of basic, unenhanced search

methods. GBFS as implemented in LAMA-2011 represents systematic search methods, and the

RWS implementation of Arvand-2009 represents random walk methods. Both programs use hFF

for their evaluation. All other enhancements such as preferred operators in LAMA and Arvand,

multi-heuristic search in LAMA, and MHA in Arvand are switched off.

The reasons for selecting this setup are:

1. A focus on theoretical models that can explain the substantially different behavior of random

walk and systematic search methods. Using simple search methods allows a close alignment

of experiments with theoretical results.

2. Enhancements may benefit both methods in different ways, or be only applicable to one

method, so may confuse the picture.
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3. A main goal here is to understand the behavior of these two search paradigms in regions where

there is a lack of guiding information, such as plateaus. Therefore, in some examples even

a blind heuristic, which only distinquishes between goal and non-goal states, is used. While

enhancements can certainly have a great influence on search parameters such as branching

factor, regress factor, and search depth, the fundamental differences in search behavior will

likely persist across such variations.

2.1.3 Contributions

This chapter improves and extends the results reported at the SOCS 2012 conference (Nakhost &

Müller, 2012). The main contributions are:

Regress factor and goal distance for random walks: The key property introduced to analyze

random walks is the regress factor rf , the ratio of two probabilities: progressing towards a goal and

regressing away from it. Besides rf , the other key variable affecting the average runtime of basic

random walks on a graph is the largest goal distance D in the whole graph, which appears in the

exponent of the expected runtime.

Fair Homogenous graph model: In the homogenous graph model, the regress factor of a node

depends only on its goal distance and in a fair graph a random step changes the goal distance at most

by one unit. Theorem 3 shows that the runtime of RW mainly depends on rf . As an example, the

state space of Gripper (Long et al., 2000) is close to a fair homogenous graph.

Bounds for other graphs: Theorem 4 extends the theory to compute upper bounds on the

expected runtime for graphs which are not homogeneous, but for which bounds on the progress and

regress chances are known.

Strongly homogenous graph model: In strongly homogenous graphs, almost all nodes share

the same rf . Theorem 5 explains how rf and D affect the hitting time. A transport example is used

for illustration.

Model for Restarting Random Walks: For large values of D, restarting random walks (RRW)

can offer a substantial performance advantage. At each search step, with probability r a RRW

restarts from a fixed initial state s. Theorem 6 gives the expected runtime of RRW on Homogenous

Graphs, relaxing the fairness condition. Furthermore, Theorem 7 proves that the expected runtime

of RRW depends only on the goal distance of s, not on D.

Extension to infinitely regressable and non-fair graphs: In infinitely regressable graphs and

non-fair graphs, a random step can arbitrarily increase the goal distance. The main contributions

here are Lemma 2 and Theorem 6.

Compared to the conference version, the current chapter introduces the extension to infinitely

regressable and non-fair graphs. It also contributes more elegant, simpler proofs of Lemma 1 and

Theorem 4.
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Figure 2.1: Average runtime of GBFS and MRW varying the number of trucks (x-axis) in Transport
domain. Missing data means memory limit exceeded.

2.2 Background and Notation

Notation follows standard references such as (Norris, 1998). Throughout this chapter, the notation

P (e) denotes the probability of an event e occurring, G = (V,E) is a directed graph, and u, v ∈ V

are vertices.

Definition 2 (Markov Chain). The discrete-time random process X0, . . . , XN where each Xi, 0 ≤

i ≤ N , is a random variable defined over a set of states S is Markov(S,P) iff P (Xn = jn|Xn−1 =

jn−1, . . . , X0 = j0) = P (Xn = jn|Xn−1 = jn−1). In the matrix P(pij), pij = P (Xn =

jn|Xn−1 = in−1) are the transition probabilities of the chain. In time-homogenous Markov chains

as used in this thesis, P does not depend on n.

Definition 3 (Distance dG). dG(u, v) is the length of a shortest path from u to v in G. The distance

dG(v) of a single vertex v is the length of a longest shortest path from a node in G to v: dG(v) =

maxx∈V dG(x, v).

Definition 4 (Successors). The successors of u ∈ V is the set of all vertices in distance 1 of u:

SG(u) = {v|v ∈ V ∧ dG(u, v) = 1}.

Definition 5 (Random Walk). A random walk on G is a Markov chain Markov(V,P) where puv =
1

|SG(u)| if (u, v) ∈ E, and puv = 0 if (u, v) /∈ E.
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The restarting random walk model used here is a random walk which restarts from a fixed initial

state swith probability r at each step, and uniformly randomly chooses among neighbour states with

probability 1− r.

Definition 6 (Restarting Random Walk). Let s ∈ V be the initial state, and r ∈ [0, 1]. A restarting

random walk RRW (G, s, r) is a Markov chain MG with states V and transition probabilities puv:

puv =



1− r
|SG(u)|

if (u, v) ∈ E, v 6= s

r +
1− r
|SG(u)|

if (u, v) ∈ E, v = s

0 if (u, v) /∈ E, v 6= s

r if (u, v) /∈ E, v = s

A RW is the special case of RRW with r = 0.

Definition 7 (Hitting Time). Let M = X0, X1, . . . , XN be Markov(S,P), and u, v ∈ S. Let

Huv = min{t ≥ 0 : Xt = v ∧X0 = u}. Then the hitting time huv is the expected number of steps

in a random walk onG starting from u which reaches v for the first time: huv = E[Huv]. Therefore,

hvv = 0.

To keep analyses simple, this study focuses on graphs with single goal vertex v ∈ V . However,

the obtained results can be easily used for problems with a set of goals X ⊆ V . Let the hitting time

hu(X) be the average number of steps until a vertex x ∈ X is reached for the first time and G′ be a

modified version of G in which each goal node x ∈ X has a single outgoing edge to a newly added

dummy vertex g. Then hu(X) = hug − 1.

Definition 8 (Unit Progress Time). The unit progress time uuv is the expected number of steps in a

random walk after reaching u for the first time until it first gets closer to v. Let R = RRW (G, s, r).

Let Uuv = min{t ≥ Hsu : dG(Xt, v) = dG(u, v)− 1}. Then uuv = E[Uuv].

Definition 9 (Progress, Regress, Infinite Regress and Stalling Chance; Regress Factor). Let X :

V → V be a random variable with the following probability mass function:

P (X(u) = v) =


1

|SG(u)|
if (u, v) ∈ E

0 if (u, v) /∈ E
(2.1)

Let Xu be short for X(u). The progress chance pc(u, v), regress chance rc(u, v), infinite regress

chance irc(u, v) and stalling chance sc(u, v) of u regarding v, are respectively: the probabilities

of getting closer, further away, infinitely further away or staying at the same distance to v after one
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random step at u.

pc(u, v) = P (dG(Xu, v) = dG(u, v)− 1)

rc(u, v) = P (dG(Xu, v) > dG(u, v))

irc(u, v) = P (dG(Xu, v) =∞)

sc(u, v) = P (dG(Xu, v) = dG(u, v))

The regress factor of u regarding v is rf(u, v) = rc(u,v)
pc(u,v) if pc(u, v) 6= 0, and undefined otherwise.

In a Markov Chain, the probability transitions play a key role in determining the hitting time. In

all the models considered here, the movement in the chain corresponds to moving between different

goal distances. Therefore it is natural to choose progress and regress chances as the main properties.

Theorem 1. (Norris, 1998) Let M be Markov(V,P(pij)). Then for all u, v ∈ V with u 6= v,

huv = 1 +
∑
x∈V

puxhxv,

(2.2)

Theorem 2. Let s, u, v ∈ V , R = RRW (G, s, r), Vd = {x : x ∈ V ∧ dG(x, v) = d}, and

Pd(x) be the probability of x being the first node in Vd reached by R. Then the hitting time huv =∑dG(u,v)
d=1

∑
x∈Vd

Pd(x)uxv .

Proof. Let the random variable Xd denote the first vertex at goal distance d from v that R reaches

after visiting u (Figure 2.2 shows a schematic representation of these variables). Let 1{Xd}(x) be an

indicator random variable which returns 1 if Xd = x and 0 if Xd 6= x. Then

Huv =
dG(u,v)∑
d=1

∑
x∈Vd

1{Xd}(x)Uxv (2.3)

Since 1{Xd} and Uxv are independent,

E[Huv] =
dG(u,v)∑
d=1

∑
x∈Vd

E[1{Xd}(x)]E[Uxv]

huv =
dG(u,v)∑
d=1

∑
x∈Vd

Pd(x)uxv

2.2.1 Heuristic Functions, Plateaus, Exit Points and Exit Time

What is the connection between the models introduced here and plateaus in planning? Using the

notation of (Hoos & Stützle, 2004), let the heuristic value h(u) of vertex u be the estimated length

of a shortest path from u to a goal vertex v. A plateau P ⊆ V is a connected subset of states which
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dG(u,v) 

d 

Uxv 

Huv 

Xd=x Xd-1 u s v 

Figure 2.2: An illustration of the proof for Theorem 2. Circles represent nodes.

share the same heuristic value hP . A state s is an exit point of P if s ∈ SG(p) for some p ∈ P ,

and h(s) < hP . The exit time of a random walk on a plateau P is the expected number of steps in

the random walk until it first reaches an exit point. The problem of finding an exit point in a plateau

is equivalent to the problem of finding a goal in the graph consisting of P plus all its exit points,

where the exit points are goal states. The expected exit time from the plateau equals the hitting time

of this problem. In practice, the search time of planners is often dominated by periods spent in such

attempted escapes from plateaus and local minima.

2.3 Fair Homogenous Graphs

A fair homogeneous (FH) graph G is the main state space model introduced here. Homogenuity

means that both progress and regress chances are constant for all nodes at the same goal distance.

Fairness means that an action can change the goal distance by at most one.

Definition 10 (Homogenous Graph). For v ∈ V , G is v-homogeneous iff there exist two real func-

tions pcG(x, d) and rcG(x, d), mapping V ×{0, 1, . . . , dG(v)} to the range [0, 1], such that for any

two vertices u, x ∈ V with dG(u, v) = dG(x, v) the following two conditions hold:

1. If dG(u, v) 6= 0, then

pc(u, v) = pc(x, v) = pcG(v, dG(u, v)).

2. rc(u, v) = rc(x, v) = rcG(v, dG(u, v)).

G is homogeneous iff it is v-homogeneous for all v ∈ V . pcG(x, d) and rcG(x, d) are called progress

chance and regress chance of G regarding x. The regress factor of G regarding x is defined by

rfG(x, d) = rcG(x, d)/pcG(x, d).

Definition 11 (Fair Graph). G is fair for v ∈ V iff for all u ∈ V , for all x ∈ SG(u), |dG(u, v) −

dG(x, v)| ≤ 1. G is fair if it is fair for all v ∈ V .

Lemma 1. Let G = (V,E) be FH and v ∈ V . Then for all x ∈ V with d = dG(x, v), hxv has the

same value which we call hd.
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x 

i 

j 

pd qd 

1-pd-qd 

Vd Vd+1 Vd-1 

ud+1 uxv 

Figure 2.3: An illustration of the behaviour of random walks after visiting a node x at the goal
distance d.

Proof. Let pd = pcG(v, d), qd = rcG(v, d), cd = 1 − pcG(v, d) − rcG(v, d), D = dG(v), and

Vd = {x : x ∈ V ∧ dG(x, v) = d}. If d > 0, then each x ∈ Vd is connected to at least one node at

goal distance d− 1. Thus, pd > 0. The main proof step uses induction from d+ 1 to d to show that

for all x ∈ Vd, uxv has the same value which we call ud. To prove the induction step, assume for

all x′ ∈ Vd+1, ux′v = ud+1. The base case for d = D will be shown at the end of the proof since

it uses a similar setup as the induction step. After visiting x ∈ Vd one of the following three cases

happens for the random walk (Figure 2.3):

• with probability pd it performs a (d− 1)-visit.

• with probability 1− pd − qd it stalls at the same goal distance d hitting some node i ∈ Vd.

• with probability qd it regresses to the goal distance d+ 1 and after on average ud+1 step it hits

some j ∈ Vd.

Therefore for d < D,

uxv = qd(ud+1 + ujv) + (1− pd − qd)uiv + 1

The following shows for all i, j ∈ Vd, uxv = ud. Letα = arg maxk∈Vd
(ukv) and β = arg mink∈Vd

(ukv).

Then,

uαv = qd(ud+1 + ujv) + (1− pd − qd)uiv + 1

≤ qd(ud+1 + uαv) + (1− pd − qd)uαv + 1

≤ qd
pd
ud+1 +

1
pd

18



Furthermore,

uβv = qd(ud+1 + ujv) + (1− pd − qd)uiv + 1

≥ qd(ud+1 + uβv) + (1− pd − qd)uβv + 1

≥ qd
pd
ud+1 +

1
pd

Therefore,

qd
pd
ud+1 +

1
pd
≤ uβv ≤ uxv ≤ uαv ≤

qd
pd
ud+1 +

1
pd

uxv =
qd
pd
ud+1 +

1
pd

= ud (2.4)

For the base case d = D, for all x ∈ VD

uxv = (1− pD)uiv + 1

uαv ≤
1
pD

uβv ≥
1
pD

uxv =
1
pD

= uD (2.5)

The lemma now follows from Theorem 2:

hxv =
dG(x,v)∑
d=1

∑
k∈Vd

Pd(k)ukv =
dG(x,v)∑
d=1

ud = hd

Theorem 3. Let G = (V,E) be FH, v ∈ V , pi = pcG(v, i), qi = rcG(v, i), and dG(v) < D. Then

for all x ∈ V ,

hxv =
dG(x,v)∑
d=1

βD D−1∏
i=d

λi +
D−1∑
j=d

(
βj

j−1∏
i=d

λi

)
where for all 1 ≤ d ≤ D, λd = qd

pd
, and βd = 1

pd
.

Proof. According to Equations 2.4 and 2.5,

ud = λdud+1 + βd (0 < d < D)

uD = βD

By induction on d, for d < D

ud = βD

D−1∏
i=d

λi +
D−1∑
j=d

(
βj

j−1∏
i=d

λi

)
(2.6)
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Robot Gripper pc rc rf b d
A full 1

2
1
2 1 1 4|A|+ 2

A empty |A|
|A|+1

1
|A|+1

1
|A| |A| 4|A| − 1

B full 1
2

1
2 1 1 4|A|+ 1

B empty 1
|B|+1

|B|
|B|+1 |B| |B| 4|A|

Table 2.1: Random walks in One-handed Gripper. |A| and |B| denote the number of balls in A and
B.

This is trivial for d = D − 1. Assume that Equation 2.6 holds for d+ 1.

ud = λd

βD D−1∏
i=d+1

λi +
D−1∑
j=d+1

(
βj

j−1∏
i=d+1

λi

)+ βd

= βD

D−1∏
i=d

λi + λd

D−1∑
j=d+1

(
βj

j−1∏
i=d+1

λi

)
+ βd

= βD

D−1∏
i=d

λi +
D−1∑
j=d+1

(
βj

j−1∏
i=d

λi

)
+ βd

d−1∏
i=d

λi

= βD

D−1∏
i=d

λi +
D−1∑
j=d

(
βj

j−1∏
i=d

λi

)

Then by Theorem 2 for hxv ,

hxv =
dG(x,v)∑
d=1

βD D−1∏
i=d

λi +
D−1∑
j=d

(
βj

j−1∏
i=d

λi

)

The largest goal distance D and the regress factors λi = qi/pi are the main determining factors

for the expected runtime of random walks in homogenous graphs.

2.3.1 Example domain: One-handed Gripper

Consider a one-handed gripper domain, where a robot must move n balls from room A to B by using

the actions of picking up a ball, dropping its single ball, or moving to the other room. The states of

the search space fall into four categories shown in Table 2.1. For each category the branching factor

b, the progress chance pc, the regress chance rc and the regress factor rf are shown. The search

space is fair homogenous: any two states with the same goal distance d have the same distribution

of balls in the rooms and also belong to the same category. The graph is fair since no action changes

the goal distance by more than one. The hitting time is given by Theorem 3.

Figure 2.4 plots the predictions of Theorem 3 together with the results of a scaling experiment,

varying n for both random walks and greedy best first search. To simulate the behaviour of both

algorithms in plateaus with a lack of heuristic guidance, a blind heuristic, where all the states except
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Figure 2.4: The average number of generated states varying the number of balls (x-axis) in Gripper
domain.

the goals have the same heuristic value, is used which returns 0 for the goal and 1 otherwise. Search

stops at a state with a heuristic value lower than that of the initial state. Because of the blind heuristic,

the only such state is the goal state. The prediction matches the experimental results extremely well.

Random walks outperform greedy best first search. The regress factor rf never exceeds b, and is

significantly smaller in states with the robot at A and an empty gripper - almost one quarter of all

states.

2.3.2 Biased Action Selection for Random Walks

Regress factors can be changed by biasing the action selection in the random walk. It seems natural

to first select an action type uniformly randomly, then ground the chosen action. In gripper, this

means choosing among the balls in the same room in case of the pick up action.

With this biased selection, the search space becomes fair homogenous with q = p = 1
2 . The

experimental results and theoretical prediction for such walks are included in Figure 2.4. The hitting

time grows only linearly with n. It is interesting that this natural way of biasing random walks is

able to exploit the symmetry inherent in the gripper domain.
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2.4 Extension to Bounds for Other Graphs

While many planning problems cannot be exactly modelled as FH graphs, these models can still

be used to obtain upper bounds on the hitting time in any fair graph G which models a plateau.

Consider a corresponding FH graph G′ with progress and regress chances at each goal distance d

respectively set to the minimum and maximum progress and regress chances over all nodes at goal

distance d in G. Then the hitting times for G′ will be an upper bound for the hitting times in G. In

G′, progressing towards the goal is at most as probable as in G.

Theorem 4. Let G = (V,E) be a fair directed graph, s, v ∈ V , and D = dG(v). Let pmin(d)

and qmax(d) be the minimum progress and maximum regress chance among all nodes at distance

d of v. Let G′ = (V ′, E′) be an FH graph, v′, s′ ∈ V ′, dG′(v′) = D, pcG′(v′, d) = pmin(d),

rcG′(d) = qmax(d), and scG′(d) = 1 − pmin(d) − qmax(d). Then starting at the same goal

distance the hitting time in G′ is an upper bound for the hitting time in G, i.e., hsv ≤ h′s′v′ if

dG(s, v) = dG′(s′, v′).

Proof. The first step is to show for all 0 ≤ d ≤ D, scG′(d) ≥ 0. Let qx and px be the regress and

progress chance of node x ∈ V , and Vd = {x|x ∈ V ∧ dG(x, v) = d}, and j = arg maxx∈Vd
(qx).

Then,

qmax(d) = qj ≤ 1− pj ≤ 1− pmin(d)

qmax(d) + pmin(d) ≤ 1

scG′(d) ≥ 0.

Assume for all x ∈ Vd, uxv ≤ u′d, where u′d is the unit progress time at distance d of v′.

According to Theorem 2,

hsv =
dG(s,v)∑
d=1

∑
x∈Vd

Pd(x)uxv

≤
dG(s,v)∑
d=1

∑
k∈Vd

Pd(x)u′d

≤
dG(s,v)∑
d=1

u′d
∑
k∈Vd

Pd(x)

≤
dG′ (s′,v′)∑
d=1

u′d

≤ h′d

To prove uxv ≤ u′d by induction, assume for all x′ ∈ Vd+1, ux′v ≤ u′d+1 (the induction step;

again the base case is shown later). After visiting x ∈ Vd one of the following three cases happens

for the random walk:

22



• with probability px it performs a (d− 1)-visit.

• with probability qx it regresses to the goal distance d+ 1 and, on average, after at least ud+1

steps it hits i ∈ Vd.

• with probability 1− px − qx it stalls at the same goal distance d hitting j ∈ Vd.

Then for d < D,

uxv ≤ qx(ud+1 + uiv) + (1− px − qx)ujv + 1.

The following shows that for all i, j ∈ Vd, uxv = ud. Let α = arg maxi∈Vd
(uiv). Then for

d < D,

uαv ≤ qα(u′d+1 + uiv) + (1− pα − qα)ujv + 1

≤ qα(u′d+1 + uαv) + (1− pα − qα)uαv + 1

≤ qα
pα
u′d+1 +

1
pα

≤ qmax(d)
pmin(d)

u′d+1 +
1

pmin(d)

Furthermore, according to Equation 2.4,

qmax(d)
pmin(d)

u′d+1 +
1

pmin(d)
= ud (2.7)

Therefore, uxv ≤ uαv ≤ ud. Analogously, for the base case d = D, for all x ∈ VD

uαv ≤ 1
pα
≤ 1
pmin(d)

≤ u′d.

2.5 Fair Strongly Homogeneous Graphs

A fair strongly homogenous (FSH) graph G is a FH graph in which pc and rc are constant for all

nodes except goal nodes and nodes at maximum distance. FSH graphs are simpler to study and

suffice to explain the main properties of FH graphs. Therefore, this model is used to discuss key

issues such as dependency of the hitting time on largest goal distance D and the regress factors.

Definition 12 (Strongly Homogeneous Graph). Given v ∈ V ,G is strongly v-homogeneous iff there

exist two real functions pcG(x) and rcG(x) with domain V and range [0, 1] such that for any vertex

u ∈ V the following two conditions hold:

1. If u 6= v then pc(u, v) = pcG(v).

2. If d(u, v) < dG(v) then rc(u, v) = rcG(v).
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G is strongly homogeneous iff it is strongly v-homogeneous for all v ∈ V . The functions pcG(x) and

rcG(x) are respectively called the progress and the regress chance of G regarding x. The regress

factor of G regarding x is defined by rfG(x) = rcG(x)/pcG(x).

Theorem 5. For u, v ∈ V , let p = pcG(v) 6= 0, q = rcG(v), c = 1 − p − q, D = dG(v), and

d = dG(u, v). Then the hitting time huv is:

huv =

{
β0

(
λD − λD−d

)
+ β1d if q 6= p

α0(d− d2) + α1Dd if q = p
(2.8)

where λ = q
p , β0 = q

(p−q)2 , β1 = 1
p−q , α0 = 1

2p , α1 = 1
p .

The proof follows directly from Theorem 3 above. When q > p, the main determining factors in

the hitting time are the regress factors λ = q/p and D; the hitting time grows exponentially with D

and polynomially, with degree D, with λ. As long as λ and D are fixed, changing other structural

parameters such as the branching factor b can only increase the hitting time linearly. Note that also

for q > p, it does not matter how close the start state is to the goal. The hitting time mainly depends

on D, the largest goal distance in the graph.

2.5.1 Analysis of the Transport Example

Theorem 5 helps explain the experimental results in Figure 2.1. In this example, the plateau consists

of all the states encountered before loading the package onto one of the trucks. Once the package is

loaded, hFF can guide the search directly towards the goal. Therefore, the exit points of the plateau

are the states in which the package is loaded onto a truck. Let m < n be the location of a most

advanced truck in the chain. For all non-exit states of the search space, q ≤ p holds: there is always

at least one action which progresses towards a closest exit point - move a truck from cm to cm+1.

There is at most one action that regresses, in casem > 1 and there is only a single truck at cm which

moves to cm−1, thereby reducing m.

According to Theorem 4, setting q = p for all states yields an upper bound on the hitting time,

since increasing the regress factor can only increase the hitting time. By Theorem 5,−x
2

2p+( 2D+1
2p )x

is an upper bound for the hitting time. If the number of trucks is multiplied by a factor M , then p

will be divided by at most M , therefore the upper bound is also multiplied by at most M . The worst

case runtime bound grows only linearly with the number of trucks. In contrast, systematic search

methods suffer greatly from increasing the number of vehicles, since this increases the effective

branching factor b. The runtime of systematic search methods such as greedy best first search, A*

and IDA* typically grows as bd when the heuristic is ineffective. Regarding the memory usage,

since RW in its simplest form only store the current state of the walk, increasing the number of

trucks does not increase the number of states stored, however, the size of the state grows linearly.

This effect can be observed in all planning problems where increasing the number of objects of a

specific type does not change the regress factor. Examples are the vehicles in transportation domains
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such as Rovers, Logistics, Transport, and Zeno Travel, or agents which share similar functionality

but do not appear in the goal, such as the satellites in the satellite domain. All of these domains

contain symmetries similar to the example above, where any one of several vehicles or agents can

be chosen to achieve the goal. Other examples are “decoy” objects which cannot be used to reach the

goal. Actions that affect only the state of such objects do not change the goal distance, so increasing

the number of such objects has no effect on rf but can increase b. Techniques such as plan space

planning, backward chaining planning, preferred operators, or explicitly detecting and dealing with

symmetries can often prune such actions.

Theorem 5 suggests that if q > p and the current state is close to an exit point in the plateau,

then systematic search is more effective, since random walks move away from the exit with high

probability. This problematic behavior of RW can be fixed to some degree by using restarting

random walks.

2.6 Analysis of Restarting Random Walks

While FH graphs provide bounds for RW on any fair graph, Infinitely Regressable Homogenous

(IRH) graphs provide bounds for RRW on any strongly homogenous graph. A random step on an

IRH graph either gets closer to the goal, stalls at the same goal distance or hits a dead end state – a

state with no path to the goal. To keep the analysis simple, it is assumed that all nodes have at least

one outgoing edge. Therefore, a RW can never reach a state where no action is available.

Definition 13 (Infinitely Regressable Homogenous Graph). Given v ∈ V ,G is infinitely regressable

(IR) v-homogeneous iff for any vertex u ∈ V there exists at least one vertex x such that (u, x) ∈ E

and there exist three real functions pcG(.), scG(.), and ircG(.) with domain V and range [0, 1] such

that for any vertex u ∈ V the following three conditions hold:

1. If u 6= v then pc(u, v) = pcG(v).

2. irc(u, v) = ircG(v).

3. sc(u, v) = 1− ircG(v)− pcG(v).

G is IRH iff for any v ∈ V it is IR v-homogeneous. The functions pcG(x), scG(x) and ircG(x)

are respectively called the progress chance, the stall chance and the infinite regress chance of G

regarding x.

Lemma 2. Let G = (V,E) be an IRH graph. Let RRW (G, s, r) be a restarting random walk.

Then, for all v, x, x′ ∈ V with dG(x, v) = dG(x′, v) = d and d ≤ dG(s, v), hxv = hx′v .

Proof. Let p = pcG(v), c = scG(v), and i = ircG(v). Similar to Lemma 1 by induction on the

goal distance d, we show that for d ≤ dG(s, v), uxv = ud. Let Vd = {x : x ∈ V ∧ dG(x, v) = d}.
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Figure 2.5: An illustration of the behaviour of random walks in an IRH graph.

Assume for the induction step that for all x′ ∈ Vd+1, ux′v = ud+1. Once more, the proof for

the base case follows later. Whenever the random walk transitions to a deadend, it restarts after on

average 1
r steps (the expected value of a geometric distribution with the success probability r). After

each restart a random walk needs on average Ud+1 =
∑dG(s,v)
i=d+1 ui steps to visit a state with the goal

distance d (d-visit). Therefore, after visiting x ∈ Vd one of the following four cases happens for the

random walk (Figure 2.5):

• with probability r it restarts from s and after on average Ud+1 steps performs the next d-visit

hitting some node n ∈ Vd.

• with probability c(1− r) it stalls at the same goal distance d hitting some j ∈ Vd.

• with probability i(1 − r) it transitions to a deadend and after on average 1
r + Ud+1 steps it

performs the next d-visit hitting some k ∈ Vd.

• with probability p(1− r) it performs a (d− 1)-visit.

Therefore, for d < dG(s, v),

uxv = r(Ud+1 + unv) + c(1− r)ujv + i(1− r)(1
r

+ Ud+1 + ukv) + (1− r)

Note that restarting itself is not counted as a random walk step. The following shows that the identity

of nodes n, j and k does not matter. Let α = arg maxx∈Vd
(uxv) and β = arg minx∈Vd

(uxv). Then,

uαv ≤ r(Ud+1 + uαv) + c(1− r)uαv + i(1− r)(1
r

+ Ud+1 + uαv) + (1− r)

≤ (r + i(1− r))Ud+1 + (1− r)(1 + i/r)
(1− r)(1− i− c)
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Furthermore,

uβv ≥ r(Ud+1 + uβv) + c(1− r)uβv + i(1− r)(1
r

+ Ud+1 + uβv) + (1− r)

≥ (r + i(1− r))Ud+1 + (1− r)(1 + i/r)
(1− r)(1− i− c)

Therefore,

uxv = uαv = uβv = ud =
(r + i(1− r))Ud+1 + (1− r)(1 + i/r)

(1− r)(1− i− c)

The base case d = dG(s, v) has the same four cases, except that after restarting, the random walk

immediately performs the d-visit at s:

uxv = rusv + c(1− r)ujv + i(1− r)(1
r

+ ukv) + (1− r)

uxv = uαv = uβv = ud =
(1 + i/r)

(1− i− c)

The lemma now follows directly from Theorem 2:

hxv =
dG(x,v)∑
d=1

∑
k∈Vd

Pd(k)ukv =
dG(x,v)∑
d=1

ud = hd

Theorem 6. Let G = (V,E) be an IRH graph, v ∈ V , p = pcG(v) > 0, c = scG(v), and

i = ircG(v). Let R = RRW (G, s, r) with 0 < r < 1. Then the hitting time hsv ∈ Θ
(
βλds−1

)
,

where β = i+r
rp , λ = i

p + r
(1−r)p + 1 and ds = dG(s, v).

Proof. According to Theorem 1 and Lemma 2,

h0 = 0

hx = rhds + c(1− r)hx + i(1− r)(1
r

+ hds) + (1− r) + phx−1

Let ux = hx − hx−1 then

ux = (1− r) (phx−1 − phx−2 + chx − chx−1)

= (1− r)(pux−1 + cux)

=
(1− r)p

1− c+ cr
ux−1

Since c = 1− p− i

ux =
(1− r)p

i(1− r) + p(1− r) + r
ux−1

= λ−1ux−1
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For x < ds,

ux = λds−xuds

hx =
x∑
i=1

ui

= uds

x∑
i=1

λds−i

= λds−x(
λx − 1
λ− 1

)uds

The value uds
is the progress time from the goal distance ds. Therefore,

uds = ruds + c(1− r)uds + i(1− r)(1
r

+ uds) + (1− r)

= (r + (1− r)(1− p))uds
+ (i/r + 1)(1− r)

=
i+ r

pr

= β

Therefore,

hds
= uds

+ hds−1

hds
= β + βλ(

λds−1 − 1
λ− 1

)

hds ∈ Θ
(
βλds−1

)
(2.9)

The next theorem shows how the results for IRH graphs can be used to derive bounds for any

strongly homogeneous graph, even if it is not fair.

Theorem 7. Let G = (V,E) be a strongly homogeneous graph, v ∈ V , p = pcG(v) > 0

and q = rcG(v). Let R = RRW (G, s, r). The hitting time hsv ∈ O
(
βλd−1

)
, where λ =(

q
p + r

p(1−r) + 1
)

, β = q+r
pr and d = dG(s, v).

Proof. For any goal distance x, hx ≤ 1
r + hd. This is because the random walk on average restarts

from s after 1
r steps. The right hand side of this inequality is the hitting time of a random walk

stuck in an infinitely large dead end. Therefore, with the pessimistic assumption that each time the

random walk regresses from the goal the walk is in a deadend, we can obtain an upper bound for

a homogenous graph using the theorem for IRH graphs. It is enough to simply replace i with q in

Equation 2.9.

Therefore, by decreasing r while λ decreases, β increases. Since the upper bound increases

polynomially (the degree depends on d(s, v)) by λ and only linearly by β, to keep the upper bound
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Figure 2.6: The Average number of generated states varying the goal distance of the starting state
(x-axis) and the restart rate in the Grid domain.

low a small value should be chosen for r, especially when d(s, v) is large. The r-value which

minimizes the upper bound can be computed from Equation 2.9.

Comparing the values of λ in the hitting time of RW and RRW, Equations 2.9 and 2.8, the base

of the exponential term for RRW exceeds the regress factor, the base of the exponential term for RW,

by r
p(1−r) + 1. For small r, this is close to 1.

The main advantage of RRW over simple random walks is for small d(s, v), since the exponent

of the exponential term is reduced from D to d(s, v) − 1. Restarting is a bit wasteful when d(s, v)

is close to D.

2.6.1 A Grid Example

Figure 2.6 shows the results of RRW with restart rate r ∈ {0, 0.1, 0.01, 0.001} in a variant of the

Grid domain with an n× n grid and a robot that needs to first pick up a key at location (n, n), then

unlock a door at (0, 0). The robot can only move left, up or down, except for the top row, where it is

also allowed to move right, but not up.

In this domain, all states before the robot picks up the key share the same hFF value. Figure 2.6

shows the average number of states generated until this subgoal is reached, with the robot starting

from different goal distances plotted on the x-axis. Since the regress factors are not uniform in

this domain, Theorem 7 does not apply directly. Still, comparing the results of RRW for different
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r > 0 with simple random walks where r = 0, the experiment confirms the high-level predictions

of Theorem 7: RRW generates slightly more states than simple random walks when the initial goal

distance is large, d ≥ 14, and r is small enough. RRW is much more efficient when d is small; for

example it generates three orders of magnitude fewer states for d = 2, r = 0.01.

2.7 Related Work

Random walks have been extensively studied in many different scientific fields including physics,

finance and computer networking (Gkantsidis, Mihail, & Saberi, 2006; Fama, 1965; Qian, Nassif,

& Sapatnekar, 2003). Linear algebra approaches to discrete and continuous random walks are well

studied (Norris, 1998; Aldous & Fill, 2002; Yin & Zhang, 2005; Pardoux, 2009). The current

chapter mainly uses methods for finding the hitting time of simple chains such as birth–death, and

gambler chains (Norris, 1998). Such solutions can be expressed easily as functions of chain features.

Properties of random walks on finite graphs have been studied extensively (Lovász, 1993). One

of the most relevant results is theO(n3) hitting time of a random walk in an undirected graph with n

nodes (Brightwell & Winkler, 1990). However, this result does not explain the strong performance

of random walks in planning search spaces which grow exponentially with the number of objects.

Despite the rich existing literature on random walks, the application to the analysis of random walk

planning seems to be novel.

2.8 Conclusion

The study of FH graphs provides insights regarding the key features, regress factor rf , the initial goal

distance, and in case of non-restarting walks the largest goal distance D, that affect the performance

of RW. Analysis of RRW shows a big advantage for restarting: the hitting time decreases with the

initial goal distance. IRH graphs help analyzing the behaviour of RRW in non-fair graphs including

those that have dead ends. The results also suggest that future work on adjusting the restarting rate

r, and biasing techniques has a great potential.
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Chapter 3

Random Walk Search: an
Experimental Exploration

The current chapter proposes a general framework for random walk search and begins a systematic

study of the design space and alternative choices for building a random walk planner inside the

framework. What are effective ways of restarting? How should RWS explore the local neighbor-

hood and control the distribution of samples? How to balance between computation time and the

information gained in each sample? Where in the search space should the algorithm focus to sample

from and how long should it continue exploring?

3.1 Introduction

The most common current technique for building satisficing planning systems is heuristic search

(Bonet & Geffner, 2001). In IPC-2011, it was used by 25 out of 27 planners in the deterministic

satisficing track. Most of these planners use greedy search algorithms such as GBFS, WA* and

Enforced Hill Climbing. These algorithms mainly exploit the evaluation function and do not explore

the search space much. This lack of exploration hurts performance in case of inaccurate evaluations,

which are very common with the automatically generated heuristic functions of domain independent

planning. A search algorithm that is more robust with inaccurate or misleading heuristics is not only

valuable, but essential to improve the state of the art.

This chapter proposes random walk search as an alternative. The assumption is that random walk

explorations in many cases, especially when the heuristic values are inaccurate, can reach a lower

heuristic value with fewer state generations or evaluations than the standard greedy approaches.

While Chapter 2 confirms this assumption for plateaus, Section 3.4.4 provides more evidence by

studying the performance of RWS as a function of heuristic accuracy, regress factor, and solution

depth, showing that RWS scales better than GBFS when heuristic accuracy decreases. The RWS

framework is built based on the insights gained from the RW theory (Chapter 2) and detailed exper-

iments exploring the design space. To keep the scope of the experiments feasible, this research only
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studies algorithms that use state-space local search.

Local search has its own strengths and weaknesses that are inherited by the developed algo-

rithms: while the search is not guaranteed to find a solution, if it finds a solution, it finds it fast; it

also tends to use much less memory than alternative systematic approaches. Despite these legacies,

the behaviour of the search can still vary a lot depending on the neighborhood relation and the step

function (Hoos & Stützle, 2004). Local search is a repetitive process of performing search steps that

jump from the current state si to the next state si+1, which is selected from the local neighborhood.

While the neighborhood relation determines the set of neighbors, and hence, the candidates for si+1,

the step function selects one of them as si+1.

To determine the neighbors, RWS samples the search space using random walks: each sample

is considered as a candidate for si+1. Therefore, due to the stochastic nature of random walks, the

neighborhood relation is not static. However, the distribution of the sampled states is a function of

the parameters controlling the length of random walks, the evaluation rate, and the action selection

bias: fixed settings for these parameters lead to a fixed distribution. Likewise, the step function in

RW search is determined by the parameters that control restarting and jumping (restarting here is

considered as a search step). While the parameters affecting the neighborhood relation determine

local exploration, restarting and jumping strategies control the global exploration.

3.1.1 Contributions

The current chapter takes the reader on a journey of building a RW planner, answering key research

questions regarding RW search by running careful experiments. The questions can be categorized

into three categories:

1. Local exploration. What is an effective way to control the length of walks (Sections 3.4.1 and

3.4.3)? Does it pay off to not evaluate all the generated states (Section 3.5)? How to use extra

information such as preferred operators to bias action selection (Section 3.7)?

2. Global exploration. Which state should be selected as the next state (Section 3.6)? How to

control global restarting (Sections 3.4.1 and 3.4.2)?

3. The effect of the heuristic function. How does RW search perform in presence of different

heuristic functions (Section 3.8)? How does RW search behave as a function of heuristic

accuracy change (Section 3.4.4)?

Experiments are designed to answer these and other questions stemming from the unproven as-

sumptions and design alternatives left unexplored in previous research on RW planning (Nakhost &

Müller, 2009; Nakhost et al., 2012; Xie et al., 2012; Valenzano et al., 2012). Key findings are as

follows:

• Adjusting the restarting parameter according to the progress speed in the search space per-

forms better than any fixed setting.
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• A high state evaluation frequency is usually superior to the endpoint-only evaluation used in

earlier systems (Nakhost & Müller, 2009).

• Biasing action selection towards preferred operators of only the current state is better than

Monte Carlo Helpful Actions (Nakhost & Müller, 2009), which depend on the number of

times an action has been a preferred operator in previous walks.

• Random walks are beneficial using a wide range of heuristic functions.

• RW search scales better than GBFS when the heuristic accuracy decreases.

• Even simple forms of random walk planning can compete with systematic search.

3.2 Related Work

3.2.1 RW planning

Random Walk planning for classical satisficing planning started with Arvand-2009 (Nakhost &

Müller, 2009). Arvand-2009 uses forward chaining local search that starts from the initial state.

The steps in the local search form a sequence of actions connecting the current state to the next

state. At each step, Arvand-2009 uses bounded random walks to sample the local neighborhood in

order to determine the next state. After sampling n states, the search transitions (jumps) to the sam-

pled state with lowest heuristic value. Arvand-LS (Xie et al., 2012) is a successor of Arvand-2009

that uses a combination of local greedy best first search and random walks. The use of memory and

the more systematic search allows Arvand-LS to generate better quality solutions. Nakhost et al.

(2012) developed Arvand-RC, a RW planner that significantly improved the state of the art in re-

source constrained planning. Arvand-RC augments Arvand-2009 with a more elaborate restarting

mechanism called smart restarts and a new jumping strategy called on-path search continuation.

Arvand-2011 (Nakhost et al., 2011), the RW planner that competed in IPC-2011, is an anytime ver-

sion of Arvand-2009 that uses the postprocessing system Aras (Nakhost & Müller, 2010) to generate

high quality solutions. Roamer (Lu et al., 2011), which is strongly influenced by Arvand-2009, uses

GBFS enhanced by RW to escape from local minima or plateaus. For more details see Chapter 6.

The Arvand-2013 planner built here is not an exact copy or superset of previous Arvand versions

containing all their features. There are two reasons for this: first, the building process is guided

by the lessons learned from these previous systems and therefore naturally the components and

ideas considered in this version are different. Second, in order to keep the scale of the experiments

feasible and focused on the major open problems, alternative designs that have fewer parameters to

tune are preferred. For example, instead of the complicated RW length scheduling mechanism used

in all previous versions of Arvand, which contained three different parameters, the simpler idea of

restarting random walks (Nakhost & Müller, 2012) is used, which has only a single parameter.
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3.2.2 Other Local Search Planners

The Identidem planner (Coles et al., 2007) performs a two-level nested local search to find the goal.

The first level guides the global search in a hill-climbing manner and uses the second level of local

search to escape from local minima. Each run of the second level local search is called a probe. A

probe starts from the current state, the entrance to the local minimum, and at each step selects one

of the successors according to their heuristic value: states with lower heuristic value have a higher

chance to be selected. A probe terminates when it reaches a depth threshold or an exit-point with

improved heuristic value. Compared with RW, probes are much more costly: they generate and

evaluate all the successor states along the path. Probes are also heavily biased towards low heuristic

values.

3.2.3 Stochastic Local Search

Stochastic Local Search (SLS) (Hoos & Stützle, 2004) techniques have long been used for the kind

of combinatorial optimization problems where every search state is a solution, and the goal is to

maximize a given evaluation function. The closest SLS algorithm to RW search is Iterated Local

Search (ILS) (Lourenco, Martin, & Stützle, 2003). This method starts from the initial state and at

each step, first performs a perturbation on the current state s, and then performs a local search on

the perturbed state. Based on an acceptance criterion, ILS either selects the state emerged from the

local search as the next state or reverts to s. A variation of RW search that jumps to the first endpoint

with lower heuristic can be seen as a special case of ILS: a random walk performs the perturbation

and the local search phase is omitted. However, the more general setting of RW, where the jumping

can be delayed until a number of walks are run, goes beyond the ILS framework: while ILS does not

remember states that are rejected, RW search keeps the best sampled state with the lowest heuristic.

3.2.4 Rapidly Exploring Random Trees

A related technique to RW search is Rapidly Exploring Random Trees (RRT) (LaValle, 2006), a

popular algorithm in motion planning and pathfinding. The core idea is to build a tree inside the

search space that quickly covers different regions of the search space. This allows the algorithm

to efficiently explore regions that would not be explored by only using heuristic guidance. RRT

builds its tree in an iterative manner: in each iteration, it either explores or exploits. For exploration,

the tree is extended towards a state uniformly randomly chosen from the whole search space. For

exploitation, the tree is extended towards the goal. For both operations RRT first uses a heuristic

function to select the state s in the tree that is closest to the target (a goal or a random state), then

uses a search algorithm to extend a branch from s towards the target.

The main challenge of using RRT in planning is to randomly sample from the state space: the

full state space in planning is usually exponentially larger than the actual reachable state space,

and determining whether a state is reachable or not can be as hard as solving the planning problem
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itself. Alcázar, Veloso, and Borrajo (2011) partially addressed this issue by using mutexes, pairs of

propositions that cannot both be true in any reachable state. Their planner uses efficient techniques

to find subsets of all possible mutexes and discards sampled states that violate the obtained mutexes.

(Alcázar & Veloso, 2011) improved the sampling process using landmarks information: states that

satisfy a landmark or a possible landmark predecessor, propositions that can be used to achieve a

landmark, are sampled more often. The resulting planner BRT scored 49 units lower than Arvand-

2011 and ranked 13th out of 27 participants in IPC-2011 (Coles et al., 2012).

3.3 The Experimental Framework

Arvand-2013 is built on top of the FD (Helmert, 2006) code base. This facilitates fair comparisons

with other search algorithms implemented in FD; it ensures that all algorithms use the same suc-

cessor generator, the same implementation of the heuristic function, and the same data structures to

represent states and actions.

All experiments throughout this chapter are run on a 2.5 GHz machine with 4 GB memory

limit, and unless otherwise mentioned, the runtime cut-off was set to 30 minutes. The results for

randomized planners are averaged over 5 runs, which is mandated by computational resource limits

but already quite reliable, especially in cases of frequent restarts within each run. The main focus

throughout the current chapter is on the number of problems solved and the runtime.

Like most experimental studies on AI planning, experiments are run on IPC benchmarks. The

benchmarks provide a diverse set of domains and problems. Despite several studies (Helmert, 2008;

Hoffmann, 2005, 2011) on understanding these domains, most of the search space features such as

branching factor and solution depth are uncontrolled, and unknown for all but the smallest instances

in most of these domains. It is therefore hard to precisely quantify the behaviour of algorithms

solely based on experiments on IPC domains. Extra experiments are run on an artificial domain

(AD) introduced by (Richter & Helmert, 2009), where input parameters can precisely control many

features of the search space and the heuristic function. By using this artificial domain, the interplay

between the parameters of the algorithm and problem features such as branching factor and heuristic

accuracy is studied carefully.

3.3.1 An Artificial Domain to Control Key State Space Parameters

AD enables users to control the solution depth sd, the length of a shortest path from the initial state

to the closest goal, the branching factor bf , and the regress factor rf . The state space underlying an

AD problem forms an undirected graph where all states have the same bf and rf . The only exception

are the goal states, in which rf is undefined.

To be able to test the latest versions of RW and systematic search, an AD simulator is reimple-

mented in a recent FD codebase (August, 2012). The simulator provides a successor generator that

enables the search algorithms to navigate the state space. The simulator also includes an artificial
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heuristic, proposed by (Richter & Helmert, 2009), with an input 0 ≤ hac ≤ 1 that controls the

heuristic accuracy. Let ds be the actual goal distance of a state s. The heuristic value of the state s

is set to a random value in range [0, dshac]. Therefore, regardless of hac, a state closer to the goal

has a higher chance of getting a smaller heuristic value. Thus, the heuristic values are positively

correlated with the goal distances. Section 3.4.4 discusses how this positive correlation affects the

behaviour of systematic and RW search.

3.4 Baseline: a Simple RW Planner

This section introduces the general structure of RWS and studies two of its fundamental features: the

length of random walks and the restarting strategy. The key questions regarding these features are

explored experimentally. Does the effectiveness of a restarting strategy depend on the walk length

distribution? Is there a robust strategy performing well across all or at least most planning domains?

If not, is it possible to dynamically learn the most effective strategies?

To answer these questions, the idea is to start building Arvand-2013 with a simple algorithm,

which allows to isolate the effect of restarting and the walk length distribution. Algorithm 1 shows

the pseudocode, a forward chaining local search. Each run of Arvand-2013 consists of one or more

search episodes, and terminates as soon as the most recent episode meets a termination condition.

Each episode starts from the initial state state0 and performs a series of search steps until it meets a

restarting or termination condition. Let hmin be the minimum heuristic value reached in the current

episode. Each search step stepi starts from statei−1 and ends in statei with h(statei) < hmin.

At each stepi, the planner runs random walks to select statei. As soon as random walks reach a

state sampledState with h(sampledState) < hmin, the algorithm jumps to sampledState by

setting statei = sampledState. The algorithm records the sequence of actions reaching statei

from state0. The termination condition holds in two cases:

• A goal state is reached. In this case, the sequence of actions that starts from state0 and reaches

the goal is returned as the solution.

• A time or a memory limit is exceeded. In this case, the planner terminates without returning

any solution.

Whenever a restarting condition holds, the algorithm starts a new search episode by resetting the

current state to s0. Arvand-2013 can use two different mechanisms for restarting: restarting thresh-

old and restarting rate. When using a restarting threshold tg , local search restarts when the most

recent tg walks have not reached a heuristic lower than hmin: this is similar to all previous versions

of Arvand. An alternative is to use a restarting rate rg (g stands for global): if the last walk leaves

hmin unchanged, then the algorithm restarts from the initial state with probability rg . Restarting

rates are common in combinatorial optimization (Hoos & Stützle, 2004) and are easier to analyze

than restarting thresholds as in Section 2.6.
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Algorithm 2 gives the pseudocode for random walks. Unlike other versions of Arvand (Chapter

6), the base algorithm evaluates all visited states. A walk stops early if it reaches a heuristic value

lower than hmin, a goal state, or a dead end; otherwise it runs until a termination condition holds.

Like restarting random walks (Chapter 2), the algorithm uses a local restarting rate rl (l stands for

local): at each step, the walk terminates with probability rl. In the absence of early stops, the

length of walks is geometrically distributed with mean 1
rl

. The restarting rates rl and rg are used for

different purposes. While the local restarting rate rl determines the length of the walks, the global

restarting rate rg determines when to stop an episode. As the heuristic function, Arvand-2013 uses

the cost-sensitive version of hFF (Hoffmann & Nebel, 2001) from the FD code base.

The remainder of this section studies the effects of these mechanisms for global and local restart-

ing. It also presents parameter studies for these mechanisms.

Algorithm 1 Random Walk Search
Input Initial State state0, goal condition G and
Output A solution plan
Parameters tg and rl

currentState← state0
hmin ← h(state0)
loop
sampledState← RandomWalk(currentState, G, hmin, rl)
if sampledState ⊇ G then

return the plan reaching the sampledState
else if sampledState 6= Deadend and h(sampledState) < hmin then
currentState← sampledState
hmin ← h(currentState)

else if Restart() then
currentState← state0 {restart from initial state}
hmin ← h(state0)

end if
end loop

3.4.1 Restarting: Parameter Study

Figure 3.1 shows the effect of tg , rg and rl on the coverage of Arvand-2013 in ten of the fourteen

IPC-2011 (Coles et al., 2012) domains. To improve readability, the results for Transport, Barman and

Openstacks are omitted: none of the configurations solves more than 10% in Barman and Transport,

and all configurations solve more than 90% in Openstacks and Pegsol. The key observations are as

follows:

• Even this very basic RW planner can solve a large percentage of IPC problems. For a detailed

comparison with other search algorithms, see Section 3.4.4.

• The results for tg and rg follow the same pattern: large tg values perform well in the same

domains where small rg perform well, and similar for small tg and large rg .
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Algorithm 2 Random Walks
Input currentState, goal condition G, hmin, and rl
Output sampledState

loop
sampledState← currentState
A← ApplicableActions(currentState)
if A = φ or h(sampledState) =∞ then

return Deadend
end if
a← UniformlyRandomSelectFrom(A)
sampledState← apply(sampledState, a)
if h(sampledState) < hmin or sampledState ⊇ G then

return sampledState
end if
with probability rl: return sampledState

end loop

• None of the settings for global or local restarting performs well across all the domains. Differ-

ent configurations work for different domains. For example, while shorter walks, i.e., larger rl,

perform better in Nomystery and Woodworking, they are worse than longer walks in Tidybot

and Visitall. Similarly, while in Elevators restarting less often, tg = 10000 or rg = 0.0001,

increases the coverage compared to frequent restarting, tg = 100 or rg = 0.01, in the domains

of Nomystery, Floortile, Parcprinter and Tidybot, restarting more often is better.

• The best value for each parameter rarely depends on the value for the other one. For example,

larger rl, independently from the frequency of global restarting, always wins in Nomystery

and Woodworking; and always loses in Tidybot and Visitall. Also while higher tg is never

worse in Woodworking or Elevators, it is detrimental in the other domains.

In light of these results, finding a robust setting for tg , rg and rl that works well across all

domains seems infeasible. This is not surprising in domain-independent planning, where the char-

acteristics of target problems vary widely. Incorporating a parameter learning system seems essential

in order to fully realize the potential of RW.

3.4.2 Adaptive Global Restarting

Why does Arvand-2013, using a small restarting threshold, perform well in domains such as El-

evators, but fail in domains such as Floortile and NoMystery? Is it possible to learn an effective

restarting strategy online? Figures 3.2.a and 3.2.b show more detailed data for two typical examples

from Elevators and Floortile. The figures plot hmin as a function of the number of RW for two

different tg values. In Floortile, the heuristic decreases very quickly at first, then stops when either a

dead end or a very big heuristic plateau is reached. Therefore, in this domain, using large tg wastes

lots of time in dead ends and plateaus. In contrast, restarting more often with a small tg increases the

exploration and the chance of reaching the goal. The data in Elevators shows the opposite behaviour:
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Coverage of RWS varying rl [0.1 0.01 0.001 in all (a) – (f)], tg [100 1000 10000 in (a),
(b) and (c)], and rg [0.01 0.001 0.0001 in (d), (e), and (f)].

hmin makes steady, slow progress towards 0. Fast restarts stop this steady progress of the search

before it hits a goal.

Let Vw (V and w stand for velocity and walks, respectively) be the average heuristic improve-

ment per walk. Then, on average h(state0)
Vw

walks are needed to reach h = 0. Adaptive global

restarting (AGR) is a learning algorithm that adjusts tg by continually estimating Vw and setting

tg = h(state0)
Vw

. Algorithm 3 gives the pseudocode. The algorithm starts with the initial tg = 1000

and after each episode, updates both tg and the estimate for Vw. Before the ith episode, AGR

measures V iw, the average number of random walks to reach hmin and sets Vw = Avgj≤i{V jw}.
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Figure 3.2: hmin vs. the number of walks for (a) Elevators-03 and (b) Floortile-01

Figure 3.3 compares adaptive restarting to restarting with fixed tg . Although AGR is not always

the best setting in all the domains, it is a robust setting resulting in either best or close to best results.

Arvand-2013 using AGR and rl = 0.01 solves in total 149 problems, 22 more problems than the

best setting for a fixed threshold: tg = 100 and rl = 0.01. In the tests, the initial value of tg was set

to 1000.
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(a)

(b)

(c)

Figure 3.3: Coverage of AGR versus fixed threshold restarting varying tg [100 1000 10000 in all (a)
– (c)] and rl [0.1 in (a), 0.01 in (b), 0.001 in (c)]
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Algorithm 3 Random Walk Search using AGR
Input Initial State state0 and goal condition G
Output A solution plan
Parameters tg and rl

currentState← state0; hmin ← h(state0)
numRestarts← 0; numWalks← 0; lastImprovingWalk ← 0
Vw ← 0
loop
sampledState← RandomWalk(currentState, G, hmin, rl)
numWalks ++
if sampledState ⊇ G then

return the plan reaching the sampledState
else if sampledState 6= Deadend and h(sampledState) < hmin then
currentState← sampledState
hmin ← h(sampledState)
lastImprovingWalk ← numWalks

else if numWalks− lastImprovingWalk > tg then
V iw ← (h(state0)− hmin)/lastImprovingWalk
Vw ← (V iw − Vw)/numRestarts+ Vw {update the estimate}
tg ← h(state0)/Vw {update tg}
currentState← state0{restart from initial state}
hmin ← h(state0)
numWalks← 0; numRestarts+ +

end if
end loop

3.4.3 Adaptive Local Restarting

Analogous to the analysis for global restarting, Figure 3.4 shows hmin as a function of number of

evaluated nodes in Visitall-15 and Elevators-05 for rl = {0.1, 0.01, 0.001} and tg = 10000. Let

Ve(r) (e stands for evaluations) be the average heuristic improvement per evaluation when rl = r.

The larger Ve, the faster the search progress towards the goal.

The value Ve can explain why the best setting for Visitall is the worst for Elevators and vice

versa. While smaller rl leads to faster progress (larger Ve) in Visitall, it is slower (smaller Ve) in

Elevators. Therefore, the larger is Ve(r), the more effective is rl = r.

Adaptive local restarting (ALR) is a multi-armed bandit solver (Gittins, Glazebrook, & Weber,

2011) that estimates Ve(.) to learn the best rl setting. Before running each random walk, ALR

selects rl from a candidate set C = {r1, . . . , rn}. ALR treats each ri, 1 ≤ i ≤ n, as a bandit

arm. Selecting a value for rl is analogous to playing the arm. For each ri, ALR keeps track of

the average number of evaluations avge(ri) and the average heuristic improvement avgh(ri) (for

negative heuristic improvements, 0 is inserted into the computation of avgh(ri)). The algorithm

uses avgh(ri)
avge(ri)

as an estimation for Ve(ri). ALR uses ε-greedy (Sutton & Barto, 1998) to sample

the arms based on the estimated Ve(ri): with probability ε, 0 ≤ ε ≤ 1, it selects one of the arms

uniformly randomly and with probability 1− ε it selects one of the arms with largest Ve(ri).

Figure 3.5 compares ALR using ε ∈ {0.1, 1} with three fixed settings rl = 0.1, 0.01, 0.001. To
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ensure the results are comparable, the candidate set C = {0.1, 0.01, 0.001}. For all the configu-

rations, AGR is used to control global restarting. When ε = 1 ALR always selects rl uniformly

randomly. The key observations are as follows:

• ALR performs robustly across all domains: the gap between ALR and the best setting for

a domain is never more than 10%, except in Elevators where rl = 0.1 solves 15% more

problems.

• Sampling based on Ve(.) shows a small advantage over uniform sampling: in total, ε = 0.1

solves 6 (2%) more problems than ε = 1 (uniform sampling).

3.4.4 Comparison with Systematic Search

While the above parameter studies give valuable insights regarding random walks, they do not ex-

plain how they perform compared with common systematic algorithms such as GBFS and WA*.

How does Arvand-2013, at this stage of development, compare with systematic search using the

same amount of information? Which characteristics of a problem make random walks a better

choice? Is it true that random walks perform better when the heuristic values are more inaccurate?

Does the regress factor have any effect in non-plateau search regions? Does the regress factor also

affect the systematic search? To answer these questions, experiments were run on all IPC domains

and the artificial domain introduced in Section 3.3. While the IPC experiments give the big picture

of how RW search compares with systematic search, the tests on AD show how the characteristics

of search space and heuristic function such as solution depth, regress factor, and heuristic accuracy

affect RW and systematic search.

The tested algorithms include GBFS, WA* varyingw ∈ {1, 2, 3, 5} as in LAMA-2011 and EHC.

Although EHC is a local search and is not categorized as a systematic search, unlike RWS, it uses

a systematic exploration of the local neighborhood. To keep the results comparable to the basic

RWS in Arvand-2013, all tested algorithms use a single heuristic function hFF , the same heuristic

function as in Arvand-2013, and no preferred operators. Figure 3.6 shows the coverage on IPC

domains. The results confirm that:

• RW search and GBFS have very different strengths and weaknesses: while RW search solves

25% to 80% more problems than GBFS in Elevators, Parcprinter, and Visitall, GBFS solves

35% to 75% more problems in Barman, Parking, and Sokoban.

• RW search is quite competitive with standard systematic search using the same information:

Arvand-2013 in total solves 2% more problems than GBFS.

• Generally, WA* performs weaker than both RWS and GBFS. In total RWS solves 22 (8%)

more problems than the best w setting. WA* has the same strengths and weaknesses of GBFS
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Figure 3.4: hmin vs. the number of evaluated states for (a) Visitall-14 and (b) Elevators-05

with the exceptions of much weaker performance in woodworking and stronger performance

in Floortile and Nomystery.

• RWS significantly outperforms EHC across all domains. In total RWS solves 97 (35%) more

problems.

Experiments on AD test the effect of three parameters: solution depth, regress factor, and heuris-
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Figure 3.5: Coverage of ALR and local restarting with fixed rate varying ε [1 0.1] and rl [0.1 0.01
0.001]

tic accuracy. Like the experiments in (Richter & Helmert, 2009), the branching factor was fixed to

25. After some initial experiments, the settings rl = 0.1 and tg = ∞ were used for Arvand-2013.

Therefore, the algorithm never restarts: since there are no dead-ends or extensive plateaus in AD,

after several search steps, the local search is almost always at a state closer to the goal than the initial

state. Thus, restarting often hurts.

Figure 3.7 summarizes the results. The plots show the average number of generated nodes for

both GBFS and RW search as a function of the regress factor rf , the heuristic accuracy hac, and the

solution depth sd. The key observations are as follows:

• Unlike in plateaus, the regress factor significantly affects the performance of GBFS: for ex-

ample, GBFS on a problem with rf = 24, depending on the solution depth, evaluates 2 to

5 orders of magnitude more nodes than when rf = 1. It is unclear if this is a general phe-

nomenon or an artifact of the well-behaved heuristic model of the artificial domain: no matter

what the heuristic accuracy is, the heuristic values are positively correlated with the goal dis-

tance. Therefore, rf , which is a function of goal distance, is correlated with the distribution

of heuristic values. This is not the case in a plateau where there is no correlation between the

heuristic values and the goal distances.

• Random walks scale better than GBFS when the solution depth sd increases: up to the limits

of our tests, in all cases GBFS starts out as more efficient for small sd but is eventually
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(a)
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(c)

Figure 3.6: Coverage of RWS compared with (a) GBFS (b) WA* (w ∈ {1, 2, 3, 5}) and (c) EHC in
IPC-2011
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overtaken by RW as the solution depth increases. Let the crossing point C(rf , hac) be the sd

value where both algorithms search the same number of nodes. For example, when rf = 24

and hac = 0.4, C(24, 0.4) = 80. The data suggest that first, C(rf , hac) is unique. Second,

the number of nodes generated by RW divided by the number of nodes generated by GBFS

decreases monotonically with sd for all fixed rf and hac.

• Compared with GBFS, random walks perform better as the heuristic becomes less accurate:

when keeping rf fixed, C(rf , hac) decreases when hac decreases. For example,

C(24, 0.6) = 110 > C(24, 0.4) = 80.

• Compared with GBFS, random walks perform better when rf is larger: when keeping hac

fixed, C(rf , hac) decreases when rf increases. For example,

C(8, 0.6) = 130 > C(24, 0.6) = 110.

3.5 The Rate of Heuristic Evaluation

Although heuristic values provide key information to guide search, they do not come for free: heuris-

tic computation consumes resources such as time and memory. Algorithms such as deferred eval-

uation, implemented in Fast Downward (Helmert, 2006), and RW search, implemented in Arvand-

2009, use evaluation policies to guide the search using fewer heuristic evaluations. Deferred eval-

uation in GBFS delays the heuristic evaluation of a node until it is expanded: in absence of the

heuristic value, the parent’s heuristic value is used to rank the nodes in the open list. Arvand-2009,

in a more radical way, avoids evaluating all intermediate generated states before the endpoint of a

random walk. The following questions are addressed by tests focused on the evaluation policy: How

effective is it to just evaluate endpoints? How often should a RW planner evaluate states?

Experiments were run to test different evaluation scenarios. Instead of evaluating all states,

Arvand-2013 is modified to evaluate the endpoint of all random walks and evaluate other states with

probability peval. When peval = 1, the algorithm is the same as in previous sections, and when

peval = 0, it is the same as MRW in Arvand-2009. For all configurations, ALR (ε = 0.1) and AGR

are used to control local and global restarting. Figure 3.8 shows the coverage and average runtime

in IPC-2011 when varying peval. The results divide the domains into four categories:

• Domains where more evaluation always hurts: Arvand-2013 can solve all instances of Open-

stack, Visitall and Woodworking even when peval = 0; RW search is so effective in these

domains that higher evaluation rates only increase the runtime. Tidybot is similar but harder:

Arvand-2013 solves the most problems when peval = 0. In Tidybot, the heuristic function

is very costly and misleading: a blind random walk search that only goal checks the states,
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(a)

(b)

Figure 3.7: The number of evaluated states by RW search and GBFS when varying rf [1 2 4 8 16
24 in (a) and (b)], sd [shown on the x-axis in (a) and (b)] and hac [0.4 in (a), 0.6 in (b)]
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and uses no evaluations, solves 90% of Tidybot instances. Only one planner, BRT(Alcázar &

Veloso, 2011), could solve more in IPC-2011.

• Domains where always evaluating more often pays off: Parcprinter and Nomystery. The

running time decreases monotonically with increasing evaluation rate. In these domains, the

information gained from evaluation is always worth the cost.

• Domains where peval = 0 provides too little information and peval = 1 is too costly: an

evaluation rate in between works the best. In the tests, Elevators, Floortile, and Parking were

of this type.

• Domains where the results are the same for all tested peval > 0: Scanalyzer, Pegsol, Sokoban,

and Transport.

In these experiments, RW search uses the heuristic computation only for the heuristic values.

However, preferred operators can be obtained from most of the common heuristic functions in plan-

ning at no additional cost. Using preferred operators to guide random walks might change the results

in favour of higher evaluation rates. The baseline results above confirm that for at least some do-

mains and heuristic functions it pays off to evaluate less and search more.

3.6 Testing Greedy vs. Delayed Jumping

Nakhost and Müller (2009) suggested a delayed commitment strategy to move through search space:

instead of greedily jumping to the first state with a lower heuristic value, run n walks and then jump

to the state with the lowest heuristic value. The assumption is that jumping to a state yielding a

larger heuristic improvement increases the chance of getting closer to the goal. However, large n

can lead to wasting lots of time without leading to larger heuristic improvements. The question

is whether the additional exploration is worth the cost. Based on past experience, we believe that

the answer depends on search space characteristics such as the correlation between the heuristic

values and the goal distances, the distribution of heuristic values, and the distribution of the states

sampled by random walks. Deriving a model to determine an effective n based on key search space

characteristics is a topic for future research.

Nakhost and Müller (2009) also proposed a simple intuitive algorithm based on acceptable

progress (AP) to dynamically control n. The algorithm stops exploration if a state with small enough

h-value is reached. The progress of candidate state s measures the decrease (if any) in hmin in this

state: P (s) = max(0, hmin−h(s)). As soon as progress exceeds an acceptable progress threshold,

exploration is stopped and the candidate state is immediately selected. Let stepi be the search step i

starting from statei−1 and ending in statei. The progress made at stepi, Pi = P (statei). Accept-

able progress, APi, is defined as a weighted combination of progress made in earlier search steps,

AP1 = P1, APi+1 = (1−α)APi+αPi, with a parameter α, 0 ≤ α ≤ 1. Higher α values put more
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(a)

(b)

Figure 3.8: Coverage (a) and average runtime (b) in the IPC-2011 benchmark domains varying
peval [0 0.25 0.5 0.75 1]. For unsolved instances, the time limit of 1800 seconds is inserted into the
computation of average runtime.

50



emphasis on recent progress. The algorithm uses an initial value of n to limit the exploration in the

first search step. AP is used in all previous versions of Arvand, but it has never been thoroughly

tested in isolation.

The following experiments evaluate the potential of the delayed commitment strategy and de-

termine how effectively AP can control it. To run the tests, Arvand-2013 is modified as follows:

for each search step, first run n walks. If a state s with h(s) < hmin is found during these n

walks, then jump to the best such s, otherwise keep running walks until such a state is found or a

restarting/termination condition holds. AGR and ALR (ε = 0.1) are used to control global and local

restarting. The evaluation rate peval is set to 0.5. When n = 1, the search behaves exactly as in the

previous section.

Figure 3.9 shows the coverage and average runtime of Arvand-2013 using four fixed settings

n ∈ {1, 10, 100, 1000}. Using larger n means more exploration. The results of AP using the initial

n = 1000 and α = 0.9 are also included. The key observations are as follows:

• Parcprinter is the only domain where more exploration can lead to a significant improvement:

Arvand-2013 with n = 100 solves 25% more problems than when n = 1. In other domains,

more exploration either has no significant effect or hurts.

• While AP performs slightly better than the best fixed n in Elevators, Floortile, Parking and

Tidybot, it does not perform well in Parcprinter where more exploration is beneficial: AP

solves 25% less Parcprinter problems than setting n = 100.

3.7 Biasing Action Selection

Using Homogenous graphs, Chapter 2 showed that biased action selection can significantly decrease

the runtime of random walks by decreasing the regress factor. This section studies Monte Carlo

Helpful Action (MHA) and Monte Carlo Deadlock Avoidance (MDA), two techniques to bias ran-

dom action selection according to the information gathered from the earlier random walks (Nakhost

& Müller, 2009). Both techniques update scores Q(a) for any possible action a, and sample from a

Gibbs distribution, which is a function of the scores, to select the actions. Let s be the current state.

The probability p(a, s) that the action a is chosen among all the applicable actions A(s) is set to

P (a, s) =
eQ(a)/T∑n

b∈A(s) e
Q(b)/T

The temperature T stretches or flattens the probability distribution, and therefore, determines

how much the action selection prefers actions with larger scores. High temperatures yield (nearly)

uniform action selection. To compute Q(a) scores, Arvand only considers the statistics gathered

from the current state and reinitializes the scores as soon as it jumps to another state. Specific

choices of the Q(a) function for MHA and MDA will be discussed in the following subsections.
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(a)

(b)

Figure 3.9: Coverage (a) and average runtime (b) of Arvand-2013 in the IPC-2011 benchmark do-
mains using fixed n [1 10 100 1000] and AP. For unsolved instances, the time limit of 1800 seconds
is inserted into the computation of average runtime.
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3.7.1 Monte Carlo Helpful Action

In the previous implementation of MHA (Nakhost & Müller, 2009),Q(a) counts the number of times

an action is preferred in the current search step. Therefore, the preferred operators of the current

state are treated in the same way as any other preferred operators. This seems counterintuitive:

one would expect that the current preferred operators get higher priority. This is not addressed in

Arvand-2009 because that planner only evaluates the endpoint of walks, and the preferred operators

for intermediate states are unknown. Preferred operators are only available for the states that are

evaluated. Section 3.5 shows that evaluating some intermediate states usually pays off. Therefore, it

makes sense to use a modification of MHA that gives higher priority to current preferred operators,

if they are known. The following scoring method gives such a system. Let n(a) be the number of

times that action a has been a preferred operator, and maxN be the maximum n(a) among all the

possible actions. The score Q(a) is set to:

Q(a) =

{
maxN ×W + n(a)(1−W ) if a ∈ preferredOperators(s)

n(a) Otherwise

The parameter W , 0 ≤ W ≤ 1, controls the weight of the current preferred operators: the

larger W , the higher the chance that a current preferred operator is selected. If the current preferred

operators are unknown, the scoring function preforms the same as in the original MHA.

Figure 3.10 compares the coverage of Arvand-2013 using uniform selection (no MHA) and

MHA when varying temperature and W . In all the configurations, peval = 0.5, n = 1, ALR(ε =

0.1) and AGR are used.

Let MHA(w, t) denote MHA using W = w and T = t. The key observations are as follows:

• MHA is very effective: significant improvements are achieved in Barman, Transport, Eleva-

tors, and Parking. While RW with no biasing solves no problem in Barman and only 2 (10%)

problems in Transport, MHA(1, 10) solves 18 (90%) problems in Barman and 20 (100%)

problems in Transport. The same configuration MHA(1, 10) also increases the coverage in

Elevators and Parking by 65% and 40%, respectively. In total, Arvand-2013 solves 54 more

problems (19%) with MHA than without.

• Using only the current preferred operators (W = 1) works the best: Consistently across all

domains, MHA(1, t) performs better than MHA(0.5, t), and MHA(0.5, t) performs better

than MHA(0, t).

• Using W = 1, in most domains the performance peaks at relatively low temperatures of

T = 10 and T = 100. The exceptions are Parcprinter and Tidybot, where the performance

peaks at the lowest tested temperature of T = 1, and at the highest temperature of T = 1000,

respectively.
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(a) w = 0

(b) w = 0.5

(c) w = 1

Figure 3.10: Coverage of MHA versus uniform action selection (no MHA) varying T [1 10 100
1000 in all (a) – (c)] and w [0 in (a), 0.5 in (b), 1 in (c)]
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3.7.2 Monte Carlo Deadlock Avoidance (MDA)

MDA (Nakhost & Müller, 2009) tries to avoid dead-end states by penalizing actions that appear in

failed walks. Let S(a) and F (a) be the number of successful and failed random walks that contained

action a, respectively. Then set Q(a) = 0 if F (a) + S(a) = 0, and Q(a) = −F (a)/(S(a) + F (a))

otherwise.

Figure 3.11 shows the coverage of MDA varying temperature. In this experiment, Arvand-2013

uses n = 1, peval = 1, ALR(ε = 0.1) and AGR. The data shows that:

• MDA clearly increases the coverage in Parking and Tidybot. Some settings of MDA also out-

perform uniform action selection (no MDA) in Parcprinter, Nomystery, Elevators and Trans-

port. However, the results seem noisy for these domains.

• In IPC-2011, MDA is not as effective as MHA. While MHA can increase the coverage by as

much as 90% (Figure 3.10), the largest improvement achieved by MDA is 25% in Parking.

Figure 3.11: Coverage of MDA versus uniform action selection (no MDA) varying T [0.1 0.5 2.5
12.5]

3.8 The Effect of the Heuristic Function on RW planning

All the previous research on RW planning has been focused on cost-ignorant hFF , the FF heuristic

(Hoffmann & Nebel, 2001) that assumes that all the actions have unit cost. Therefore, it is unclear
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(a)

(b)

Figure 3.12: Coverage of Arvand-2013 (RWS) and GBFS with (a) and without (b) preferred opera-
tors (PO) using cost-sensitive (+cost) and cost-ignorant hFF .
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whether random walks are only effective for hFF or whether they are also useful with other heuristic

functions. The interaction of RW search with cost-sensitive heuristics is also unknown. Nakhost

and Müller (2012) partially address these questions by developing a theoretical model in which the

effectiveness of random walks in escaping a plateau is a function of search space characteristics that

are independent of the heuristic function used, namely regress factor and the shortest escape path.

However, the use of random walks is not limited to plateaus, and even if it was, a heuristic function

can affect the performance if it only forms plateaus in parts of search space where regress factors

tend to be either high or low. More fundamentally, the shape and the size of the plateaus change with

different heuristic functions. Also, heuristic functions may not form any plateau or local minima in

some cases.

This section takes an experimental approach to evaluating the effect of the heuristic function: it

tests Arvand-2013 with different heuristic functions and compares the results with common system-

atic search algorithms used in planning.

3.8.1 Cost Sensitivity

Most of the common heuristic functions provide both cost-sensitive and cost-ignorant estimations.

While the former estimates the cost of the cheapest path to the goal, the latter estimates the length

of the shortest path to the goal. Once a heuristic function finds a solution for an abstract problem,

the cost and the length of the solution can be used respectively for cost-sensitive and cost-ignorant

estimations. It is known that cost estimators usually lead to better quality plans at the expense of

larger runtime (Wilt & Ruml, 2011; Cushing, Benton, & Kambhampati, 2011). That is why most of

the anytime planners such as LAMA and recent versions of FD first use a cost-ignorant heuristic to

find the first solution and then switch to cost-sensitive heuristics to improve the quality. Figure 3.12

compares Arvand-2013 with GBFS using both cost-sensitive and cost-ignorant implementations of

hFF . RWS in Figure 3.12 denotes a setting of Arvand-2013 that uses greedy jumping (n = 1), the

evaluation rate peval = 1, adaptive local restarting ALR(ε = 0.1), and adaptive global restarting.

RWS+PO(MHA) uses the same parameters as well as MHA(1,10). All tested algorithms use the

same cost-sensitive hFF introduced by LAMA, which uses the actual action costs plus one in order

to avoid problems with zero-cost actions (Richter & Westphal, 2010). The key observations are as

follows:

• Although cost-sensitive hFF is usually detrimental, it increases the coverage of both RWS

and GBFS in two domains: Floortile and Woodworking. The reason is that the action costs in

Floortile and Woodworking provide useful information to solve the task. In Floortile, multiple

robots should paint a grid of tiles without stepping on already painted tiles. The only way to

solve the tasks is to start painting from the upmost row and proceed downward. The cost of

moving up is larger than moving in any other direction. Therefore, the states in which the robot

is already in an upper location have a lower cost estimation: the relaxed plan includes fewer
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“move up” actions. That is why, unlike cost-ignorant heuristics, which have no direction pref-

erence, a cost-sensitive heuristic tends to move the robot up, if possible. Nakhost et al. (2012)

report a similar behaviour for cost-augmented encodings of resource constrained problems,

where an action cost reflects the amount of the resource consumed by the action. Using this

encoding, a cost-sensitive heuristic decreases the chance of running out of resources (hitting

deadends) by choosing cheaper paths.

• Arvand-2013 is less susceptible to cost-sensitive estimations when it uses preferred operators:

while the cost-sensitive heuristic decreases the coverage of RWS by 6% (16 problems), it

decreases the coverage of MHA only by 0.3% (1 problem). This is not the case for GBFS:

once preferred operators are used, the total coverage gap between cost-ignorant and cost-

sensitive versions increases from 35 (12%) to 58 (21%) problems.

3.8.2 The Effect of Changing Heuristic Function in RWS

The next experiment studies the effect of different heuristic functions on RWS. The tested heuris-

tic functions are hcea (Helmert & Geffner, 2008), hCG (Helmert, 2006), hM&S (Helmert, Haslum,

& Hoffmann, 2007a), and hgoalcount , the goal count heuristic. The first two are among the most

common heuristic functions used in planning. hM&S is also tested as a representative of abstraction

based heuristics such as pattern databases (PDB), which are very common in other heuristic search

domains. Finally, hgoalcount is tested for being one of the simplest heuristic functions available for

planning: it counts the number of goal propositions satisfied at the evaluated state. In this experi-

ment, all the tested heuristics ignore the action costs. Figure 3.13 shows the coverage for RWS and

GBFS with and without preferred operators, varying the heuristic function.

The results confirm that the effectiveness of RW planning is not limited to hFF , and also show

that the advantage of RWS over GBFS increases when hFF is replaced by hcea : the overall 3%

(9 problems; Figure 3.12) coverage lead of RWS over GBFS increases to 13% (37 problems) with

hcea . The following summarizes the results for each tested heuristic. PO(h) denotes the preferred

operators obtained from heuristic function h.

• hcea : RWS outperforms GBFS, both with and without preferred operators, solving from 2

(10%) to 18 (90%) more problems in Barman, Elevators, Visitall, Transport, Floortile, Par-

cprinter and Woodworking. Parking and Sokoban are the only domains where GBFS clearly

wins by solving 2 (20%) to 9 (45%) more problems. In total, RWS solves 14 (5%) more prob-

lems than GBFS and RWS+PO solves 37 (13%) more problems than GBFS+PO, a version

of GBFS that uses two queues: one for preferred successors and one for all successors (see

Chapter 1).

• hCG : the results are mixed: while RWS solves 4 (20%) to 17 (85%) more problems than

GBFS in Elevators, Parcprinter, Visitall, and Woodworking, GBFS solves 2 (10%) to 17
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(75%) more problems in Parking, Pegsols, Scanalyzer, Sokoban, and Transport. In contrast to

PO(hCea) and PO(hff), which significantly improve RWS in most domains, PO(hcg) has a

negative effect in Tidybot, Parcprinter and Transport and either no or little positive effect in

other domains. For GBFS, although PO(hcg) is only detrimental in Tidybot, it is still less

effective than PO(hCea) and PO(hff) overall.

• hgoalcount : While GBFS solves 2 (10%) to 6 (30%) more problems in most domains, RWS

solves 14 (70%) more problems in Openstacks. Overall, RWS is about level with GBFS,

solving 5 (2%) fewer problems.

• hM&S : while both RWS and GBFS are much worse than with the other tested heuristics,

RWS never performs better than GBFS. In Parking and Transport, GBFS solves respectively

17 (85%) and 11 (55%) more problems than RWS. In total, GBFS solves 32 (11%) more

problems. It is still unclear if this performance gap is due to a fundamental shortcoming

of RW dealing with admissible and consistent heuristics such as hM&S , or the effect of the

settings used in Arvand-2013, which are tuned with common heuristic functions in satisficing

planning.

(a) hcea (b) hCG

(a) hgoalcount (b) hM&S

Figure 3.13: Coverage of RWS and GBFS with and without PO (if possible) varying the heuristic
function [ hcea in (a), hCG in (b), hgoalcount in (c), hM&S in (d) ]

While the experimental analyses of the individual components of RW search provides many
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practical insights regarding effective algorithms for each component, two observations stand out:

1. The importance of adaptive systems: since RWS is not designed for a specific domain, it is

crucial to be able to adapt its parameters to the given tasks. This becomes more important for

search algorithms like RWS that instead of systematically exploring all the states, selectively

sample parts of the search space: the effective distribution of samples depends on the search

space characteristics of the input problem. ALR and AGR provide practical guidelines for

developing such adaptive systems. The key idea is to use an online learning algorithm that

rewards the progress in the search space.

2. The big effect of action selection biasing: as the theory developed in Chapter 2 predicts and

experiments in Section 3.7 confirm, action selection biasing can significantly improve the

performance of RW search. MHA serves as a successful example of a biasing technique.

Our intuition is that action selection biasing towards preferred operators reduces the effective

regress factor, i.e., MHA increases the chance of sampling a state with a smaller goal distance.

3.9 Arvand-2013 as a planning system

The focus so far has been on isolated studies of different components of RW search. Planning, how-

ever, is not only about designing heuristic search algorithms: building powerful planning systems

is also important. The experiments in this section compare Arvand-2013 as a complete planning

system with other state-of-the-art planners. To achieve its full potential, Arvand-2013 is augmented

with a learning subsystem, first used in Arvand-2011 (Nakhost et al., 2011), that finds the best

configuration for a given problem.

3.9.1 Configuration Learner

Similar to adaptive local restarting introduced in Section 3.4.3, the problem of selecting a configu-

ration for RW search can be viewed as an instance of a multi-armed bandit problem. Instead of using

a single configuration, Arvand-2013 starts with an input set of configurations C. Before running a

search episode, the planner first uses a bandit algorithm to select the configuration c ∈ C. When the

episode ends, the performance of c is evaluated using hmin, the minimum heuristic value reached. If

hi is the heuristic value of the initial state, then the reward assigned to c is max(0, 1− (hi/hmin)).

In the current implementation, the upper confidence bounds (UCB) algorithm (Auer, Cesa-Bianchi,

& Fischer, 2002) is used for configuration selection. UCB uses the following formula to select the

next configuration:

arg max
c∈C

(
Q(c) + β

√
n(c)
N

)
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Here,Q(c) is the average reward assigned to c, n(c) is the number of episodes configured with c,

N is the total number of episodes run so far, and β ≥ 0 is the exploration constant, which balances

exploration with exploitation: larger β results in more exploration. After some initial experiments,

the default value of β is set to 0.5. Table 3.1 lists the three configurations used by Arvand-2013. All

three configurations use hFF . For extensive tests evaluating a similar configuration learner for the

planning system ArvandHerd see (Valenzano et al., 2012).

Configuration Bias Eval. Rate Jumping Glob. Restarts Loc. Restarts
Config 1 MHA(w = 1, T = 10) peval = 1 n = 1 AGR ALR(ε = 0.1)
Config 2 MHA(w = 1, T = 10) peval = 0.5 n = 100 AGR ALR(ε = 0.1)
Config 3 MDA(T = 0.5) peval = 0 n = 1 AGR ALR(ε = 0.1)

Table 3.1: Configurations used in Arvand-2013

3.9.2 Experiments on All IPC Benchmarks

Experiments compare Arvand-2013 with the top three planners which solved the most problems in

IPC-2011: LAMA-2011, FDSS2, and Probe, as well as a new version of the RW planner Roamer,

which ranked 6th by this measure. The IPC-2011 version of Roamer were affected by a bug in the

PDDL-to-SAS+ translator used. This issue has been fixed in the version of the planner used in the

current experiments. Table 3.2 shows the coverage for all tested planners in all IPC domains. For

domains that were used in more than one competition, the instances from the most recent competi-

tion are used, since they tend to be larger and harder. Table 3.2 shows the number of tasks in each

domain in parentheses. Since Probe does not support derived predicates, the four domains that use

these are scored separately. The key observations are as follows:

• Arvand-2013 is a strong and competitive system, solving 1547 problems without derived

predicates plus 114 problems with derived predicates. Arvand-2013 is about level with the

state-of-the-art planners LAMA-2011 (1540 + 119) and FDSS2 (1530 + 135). The fact

that FDSS2 is a sequential portfolio system running different BFS algorithms using different

heuristic functions while Arvand-2013 uses hFF only, makes these results even more impres-

sive. Arvand-2013 clearly outperforms Probe (1422 + 0) solving 118 more problems with no

derived predicates, and beats Roamer (1507 + 128) by 26 problems.

• In 33 out of 45 domains, Arvand-2013 achieves the largest coverage and in 5 domains: Air-

port, Notankage, Tankage, Storage, and Optical telegraphs, more than any other tested plan-

ner, Arvand-2013 is the single winner of the domain. Arvand-2013 solves between 1 to 6

problems more than the second best planner in these domains: this result and the fact that

Arvand-2013 uses only little memory make Arvand-2013 a good candidate for a sequential or

parallel portfolio.

• Arvand-2013 performs much weaker than the other tested planners in Sokoban and PSR. In

these domains, in order to achieve the goal or escape from a plateau, very often a specific
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sequence of actions with a fixed ordering should be executed. Random walks have a very

low chance to find such a sequence. An interesting future work is to use memory to avoid

re-exploring irrelevant parts of the search space, and hence, increase the escape chance.

3.10 Conclusions

The general structure of RWS is based on local search. The key components of the search deter-

mining the neighborhood relation and step function are identified and experimentally explored. The

experiments provide practical insight regarding the effect of the parameters and adaptive techniques

to adjust them. Tests on AD and IPC domains show that RWS is a strong alternative to systematic

search.
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Domain Arvand-2013 LAMA-2011 FDSS2 Probe Roamer
Airport (50) 44 31 43 38 31
Assembly (30) 30 30 30 30 30
Barman (20) 20 20 15 20 18
Blocks (35) 35 35 35 35 35
Cyber Security (30) 30 30 30 27 30
Depot (22) 19 20 19 22 17
Driverlog (20) 20 20 20 20 20
Elevators (20) 20 20 18 20 16
Floortile (20) 4 5 6 5 2
Freecell (80) 80 79 80 79 79
Grid (5) 5 5 5 5 5
Gripper (20) 20 20 20 20 20
Logistics (28) 28 28 28 28 28
Miconic (150) 150 150 150 150 150
Miconic Full ADL (150) 139 136 139 45 137
Miconic Simple ADL (150) 150 150 150 150 150
Movie (30) 30 30 30 30 30
Mprime (35) 35 35 35 35 35
Mystery (30) 19 19 19 14 19
Nomystery (20) 15 13 13 7 10
Notankage (50) 50 44 43 45 44
Openstacks (20) 20 20 15 13 20
Parcprinter (20) 20 20 20 13 7
Parking (20) 18 20 18 16 15
Pathways (30) 30 30 30 29 28
Pegsol (20) 20 20 20 20 19
PSR Small (50) 50 50 50 50 50
Rovers (40) 40 40 40 40 40
Satellite (36) 32 35 36 31 36
Scanalyzer (20) 19 20 20 18 20
Schedule (150) 150 150 150 150 150
Sokoban (20) 1 19 18 17 15
Storage (30) 30 19 21 22 27
Tankage (50) 44 41 41 43 39
Tidybot (20) 15 16 15 18 15
TPP (30) 30 30 30 30 30
Transport (20) 19 17 16 19 18
Trucks (30) 16 13 19 8 12
Visitall (20) 20 20 6 20 20
Woodworking (20) 15 20 20 20 20
Zenotravel (20) 20 20 20 20 20
Total (no derived predicate) (1661) 1552 1540 1533 1422 1507
Optical Telegraphs (48) 8 4 6 - 2
Philosophers (48) 44 34 48 - 48
PSR Large (50) 19 31 31 - 28
PSR Middle (50) 43 50 50 - 50
Total (1857) 1666 1659 1668 1422 1635

Table 3.2: Number of problems solved in all IPC.
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Chapter 4

Resource-constrained Planning: a
Random Walk Planning Approach

While heuristic search, mostly based on standard greedy algorithms such as GBFS, is currently

the most common method for most varieties of planning, its ability to solve critically resource-

constrained problems is limited: current planning heuristics are bad at dealing with this kind of

structure. To address this, one can try to devise better heuristics. An alternative approach is to

change the nature of the search instead. The exploration power of random walks and their ability

to handle uninformative and misleading heuristic values makes RW search a strong alternative. The

current chapter introduces new techniques smart restarts and on-path search continuation imple-

mented in the RW planner Arvand-RC, also referred to as A2, which significantly improves the state

of the art in resource-constrained planning (RCP). Other contributions include a new benchmark

suite controlling C, a numeric problem feature that characterizes the resource constrainedness, an

extended notion of C for tasks with multiple resources, and a large-scale study of the performance

of a diverse set of planning methods as a function of C.

4.1 Introduction

Planning is the art of acting intelligently, thus a key aspect of it is the prudent consumption of

resources. Indeed, planning with resources, and more generally numeric planning, is one of the most

prominent topics in the planning literature (Koehler, 1998; Haslum & Geffner, 2001; Fox & Long,

2003; Hoffmann, 2003; Gerevini et al., 2003; Edelkamp, 2003, 2004; Coles, Fox, Long, & Smith,

2008; Dvorak & Barták, 2010). Many applications of planning involve controlling autonomous

agents with limited resources such as energy, fuel, money, and/or time.

Here, we investigate consumable resources (Haslum & Geffner, 2001). These cannot be replen-

ished, i.e., the planner must make do with the initial supply. That situation occurs quite frequently.

Consider, for example, the energy supply in underwater robotics, the fuel supply in space travel,

fixed project budgets, and fixed delivery deadlines.
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We consider the special case where all resources are consumable. We will refer to this as

resource-constrained planning (RCP). This specific case is still relevant, but has been given scant at-

tention in the literature (all existing approaches deal with much more general settings). In particular,

only two previous studies (Hoffmann, Kautz, Gomes, & Selman, 2007; Gerevini, Saetti, & Serina,

2008) consider resource constrainedness: the amount by which the initial resource supply exceeds

the minimum need. This can be measured in terms of a constant C ≥ 1, namely the maximum num-

ber by which we can divide the resource supply without rendering the task unsolvable. The closer

C is to 1, the more constrained is the problem; C = 1 enforces minimal resource consumption.

Obviously, C links to the complexity of (approximate) optimization of resource consumption in the

underlying domain. In practice, one would expect planning to become harder as C approaches 1.

But what is the state of the art in this situation? Which techniques tend to work well, and which do

not? Can we design tailored techniques without losing performance elsewhere?

The literature hardly answers these questions. In the IPC benchmarks, C is not a controlled

quantity. The single exception is IPC-2011 NoMystery contributed as part of (an earlier stage of) this

work. Only two previous works (Hoffmann et al., 2007) and (Gerevini et al., 2008) run experiments

controlling C. Each considers only one domain, with a single resource. Each runs a small selection

of planners, drawing conclusions about which of these is most effective, but not about how we could

design algorithms that work better.

4.1.1 Contributions

We herein begin to address RCP in more detail. We generalize its investigation to domains with

multiple resources. We extend the existing suite of RCP benchmarks with controlled C, introducing

one new domain, and generalizing NoMystery to include more than one resource. The benchmarks

and generators are publicly available. Controlling C requires domain-specific consumption-optimal

solvers, to determine the minimum amount of resources needed. Hence these new benchmarks

contribute considerable implementation work.

We conduct a large-scale study of the current state of the art in RCP as a function of C. Amongst

other observations, we show that, despite all the new developments in satisficing planning, Hoffmann

et al.’s and Gerevini et al.’s conclusion about the performance of planners using delete-relaxation

heuristics, which declines dramatically as C approaches 1, still holds. Together with the previously

observed resource persistence in delete-relaxed plans (Coles et al., 2008) – which act as if what

was once true will remain true forever – this motivates our attempt to emphasize RW search. The

working hypothesis is that adding more exploration of the search space, as opposed to exploitation

of the heuristic, will make planners less susceptible to errors in that heuristic.

We design two improvements to RW search introduced in Chapter 3. These improvements,

called smart restarts (SR) and on-path search continuation (OPSC), aim to improve the balance

between exploitation and exploration, by trading off previous progress against the risk of repeating
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previous mistakes. We call the resulting planner Arvand-RC. In our RCP benchmark suite, Arvand-

RC almost universally outperforms all other planners when C is close to 1. This goes to show that

algorithmic improvements are possible in this specific situation.

To verify whether this improvement comes at the price of performance losses in other planning

domains, we run tests on the IPC-2011 benchmarks. On-path search continuation can be detrimen-

tal, while smart restarts improve performance there as well. We study the parameters influencing

Arvand-RC’s performance, and the effect of interactions between multiple resources.

We next define RCP and summarize the relevant literature. We then discuss resource con-

strainedness C, and describe our RCP benchmark suite. We explain our enhancements to Arvand,

report our experiments, and conclude.

4.2 Planning with Resources

We define our RCP formalism, and summarize the most relevant prior work in the area. We outline

the role of planning with resources in the IPC benchmarks.

4.2.1 RCP Formalism

In resource-constrained planning (RCP), STRIPS planning tasks are extended with a set R of re-

source identifiers as well as functions i : R 7→ Q≥0 and u : A × R 7→ Q≥0. i(r) denotes the

initial amount of resource r ∈ R, and u(a, r) is the amount of r consumed when executing action

a. Sufficient resource availability is requested by additional resource preconditions taking the form

s(r) ≥ u(a, r).

Clearly, RCP is related to optimization of resource consumption, as a decision problem. But it is

not, in general, the same thing in practice. In many applications, the primary objective is to optimize

some other criterion, such as timespan or amount of data collected. The resources then only serve to

encode a fixed budget that the plan has to make do with. This is the situation we aim at addressing

here.

4.2.2 Previous Work

RCP is a special case of planning with resources, which in general allows resource production in

addition to consumption. In turn, planning with resources is a special case of numeric planning.

The latter was emphasized in the IPC-2002 (Fox & Long, 2003). A prominent line of planners

(Hoffmann, 2003; Gerevini et al., 2003; Edelkamp, 2004; Gerevini et al., 2008) handling this uses

direct extensions of delete-relexation heuristics, via “numeric relaxed planning graphs”. As observed

by Coles et al. (Coles et al., 2008), this kind of heuristic suffers from resource persistence. Relaxed

plans act as if resource values persist forever, and are therefore fundamentally unsuited for reasoning

about resource consumption.
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Considering not general numeric planning, but planning with resources more specifically, Coles

et al. address resource persistence in their LP-RPG planner. They extend relaxed planning with

more informed numeric reasoning via linear programming (LP). In a nutshell, the numeric relaxed

planning graph is encoded into mixed integer linear program (MILP), and the LP relaxation is used

to provide informed upper and lower bounds for each resource. As Coles et al. point out, this is

useful to avoid detrimental phenomena arising from the interaction between resource producers and

consumers. However, as our experiments will show, for tightly constrained RCP this more informed

heuristic is unfortunately still not good enough.

Other work on planning with resources makes use of very different heuristics, based on Graph-

plan (Koehler, 1998) and the hm family (Haslum & Geffner, 2001). The Filuta system (Dvorak

& Barták, 2010) uses dedicated reasoners to resolve resource conflicts during a plan-space search;

there is no heuristic guidance estimating resource consumption.

4.2.3 IPC Benchmarks

Many IPC benchmarks incorporate planning with resources in some form. However, only few of

these are RCP domains as considered here, namely: IPC-1998 Mystery and Mprime (fuel); IPC-

2002 Satellite (fuel); IPC-2006 TPP (money) and Trucks (time, i.e., strict delivery deadlines); IPC-

2011 NoMystery (fuel). IPC-2002 Rovers has energy consumption, but includes also a “recharge”

operator.

Several other IPC domains feature resource consumption, yet impose it as an optimization crite-

rion, not as a hard constraint. Since this does not force satisficing planners to make do with a given

budget, it is quite different from the situation we are interested in here. That said, anytime plan-

ners may incrementally reduce resource consumption, and eventually bring it below the thresholds

required. We evaluate this option, using LAMA-2011 in our experiments.

4.3 Resource Constrainedness

We formalize RCP constrainedness in terms of a parameter C. We describe our benchmark suite

controlling C, and summarize previous findings from doing such control.

4.3.1 Characterizing Resource Constrainedness

For the case of a single resource, R = {r}, considered in previous work (Hoffmann et al., 2007;

Gerevini et al., 2008), defining resource constrainedness C is straightforward. C should measure

the factor by which the initial resource supply, i(r), exceeds the minimum need. This can be derived

from the equation i(r)
C = M , where M is the minimal resource consumption of any plan for the

task.

In case there are several resources, matters are not that simple since there is no unique “minimum

need”. A small amount of resource r might be compensated for by a big amount of resource r′. In
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other words, to define a unique value M , we would need to aggregate resource values (e.g., by

their sum or maximum). However, there is no one aggregation method that is adequate across all

possible domains. The solution we propose is to define C based on the notion of pareto-minimality.

Reformulating i(r)
C = M to max{C | i(r)C ≥M}, we observe that the above definition corresponds

to downscaling i(r) until it hits the pareto frontier given by the single pareto-minimal solution M .

We generalize this simply by downscaling the whole vector i until it hits the more general pareto

frontier.

For assignments M,M ′ : R 7→ Q≥0, we write M ≥ M ′ to denote pointwise domination. M is

pareto-minimal if: (a) the task is solvable when setting i := M ; and (b) for anyM ′ whereM ≥M ′,

and M(r) > M ′(r) for at least one r ∈ R, setting i := M ′ renders the task unsolvable. Denoting

byM the set of all pareto-minimal assignments, we define C as max{C | ∃M ∈ M : i(r)C ≥ M}.

In other words, C is the largest factor by which we can downscale the initial resource supply without

rendering the task unsolvable.

Computing C for a given planning task is, obviously, hard. Such computation may be useful

(e.g., to configure planners), but is not our focus here. Instead, we wish to design benchmarks

controlling C, in order to investigate how planning algorithms scale in that parameter. Our method-

ology for doing so is to implement domain-specific solvers computingM, i.e., all pareto-minimal

resource supplies. Benchmark instances with resource constrainedness C are obtained by selecting

some M ∈M, and setting i := C ×M .

4.3.2 RCP Benchmark Domains Controlling C

Given the need to develop domain-specific consumption-optimal solvers, it is not easy to implement

benchmarks controlling C. Our RCP benchmark suite currently consists of three domains, namely

NoMystery, TPP, and Rovers. The generators as well as all test instances used here are available at

http://code.google.com/p/rcp-benchmark-suite/.

TPP is the same domain as used in IPC-2006. An agent with a given budget needs to buy a

set of products from different markets, selling at different prices. The resource is money. Gerevini

et al. (2008) implemented a generator allowing to control C, however that generator is not available

anymore. Our test suite contains the original instances.

NoMystery is the same domain as used in IPC-2011. A set of packages must be transported

between nodes in a graph; actions move trucks along edges, or load/unload packages. Each truck

has its own fuel supply, which it consumes when moving. In the original generator we provided for

IPC-2011, instances were restricted to have only a single truck (and thus only a single resource).

Our extended generator removes this restriction. Our test instances contain two trucks, which is

already quite challenging to solve for the domain-specific optimal solver as well as for state of the

art domain-independent planners.

Rovers is the domain used in IPC-2002, except that we removed the “recharge” operator to fit
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the domain into the RCP framework. The goal is to take a number of rock samples and images,

and transfer them to a lander. Each rover has an energy supply, and all actions consume energy. We

implemented a generator from scratch, allowing an arbitrary number of rovers. For the same reasons

as in NoMystery, our test instances contain two rovers.

In all three domains, the resource amounts in our test instances (initial supply and per-action

consumption) are integer, since Arvand-RC does not handle numeric variables. The integer values

are encoded into STRIPS in the straightforward fashion, using one proposition per possible value.

Arvand-RC is not even explicitly aware of the resources. As we will see, its performance is very

good despite this. Every other planner in our experiments is supplied with the encoding leading to

best performance.

4.3.3 Previous Findings when Controlling C

In previous experiments controlling C, Hoffmann et al. (2007) use an older version of the NoMys-

tery domain, whose generator contained bugs, while Gerevini et al. (2008) use the TPP benchmark

described above. Both experiments run satisficing heuristic search planners using relaxation heuris-

tics: different versions of FF (Hoffmann, 2003), LPG (Gerevini et al., 2003), and MIPS (Edelkamp,

2003). Both observe that the performance of all these planners degrades dramatically as C ap-

proaches 1, yet less so for LPG than for the other planners. The latter observation is part of the

motivation for our work. The similarity of the heuristics employed – which as observed by Coles

et al. (2008) are not informative here – suggests that the advantage of LPG is mainly due to its local

search paradigm. We show that one can push the performance margins far higher still, based on

highly explorative RW search.

4.4 Improving RW Search

The Arvand-RC planner is built on top of Arvand-2009, which is a RW planner developed as part of

this thesis. To understand the techniques introduced here it is enough to know that Arvand-2009 uses

the general RWS framework: local search empowered by RW sampling, and peval = 0, evaluating

only the endpoints of random walks. For more details, see Chapter 6. Arvand-RC introduces two

improvements on Arvand-2009 which work especially well for RCP: On-Path Search Continuation

(OPSC) and Smart Restarts (SR).

4.4.1 On-Path Search Continuation

Like all algorithms explored in Chapter 3, Arvand-2009 uses what we call End-Point Search Con-

tinuation (EPSC): after jumping to a sampled endpoint e, Arvand-2009 commits to all the actions

on the path to e. The drawback for RCP is that, if some of the random actions leading to e consume

too many resources and the problem becomes unsolvable, then all search effort from this point until
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the next restart is wasted. This can cause severe search inefficiencies when resources are tightly

constrained.

The new technique of On-Path Search Continuation (OPSC) avoids commitment to all ac-

tions leading to e, while still benefiting from the guidance of the selected path to e. Let S =

{s0, s1, . . . , sk} be the states visited along the path from the initial state s0 = I to the current end-

point sk = e. EPSC chooses sk as the starting point of all random walks within the current search

step. OPSC generalizes this by choosing, for each individual random walk, the starting point ac-

cording to some fixed probability distribution over S. In all the experiments reported here, OPSC

uses a uniform probability distribution over S. The method for updating S is analogous to EPSC.

In each search step, after running the random walks, OPSC selects an endpoint e with minimal hFF

value. S is then changed to the path from I to e.

4.4.2 Smart Restarts

The second innovation in Arvand-RC is a modified restarting strategy. Arvand-2009 restarts from

scratch in every new search episode, discarding all previous information. However, previous episodes

may contain valuable partial paths, which ultimately ended in failure only because of bad actions

later on. Smart Restarts (SR) in Arvand-RC try to preserve information by maintaining a fixed-

capacity pool of the most promising episodes so far.1 Smart restarts begin at a state along the

trajectory of such an earlier episode, instead of returning to the initial state every time. The method

selects a random episode from the pool, then selects a random state along that episode as the next

restarting point. If the pool is empty, it selects the initial state.

Let p denote the fixed pool capacity, i.e., the maximum number of episodes stored in the pool.

The “worst” episode in the pool is replaced whenever the pool is full and a new “better” episode

is discovered. The quality of an episode is defined as the smallest hFF value along its trajectory

〈s0, . . . , sn〉. Let smin be the earliest state among those states with minimum heuristic value. Then

the partial trace 〈s0, . . . , smin〉 is the candidate for inclusion into the pool. The motivation for defin-

ing smin as the earliest such state is that the amount of resources consumed grows monotonically

along an episode.

Restarting from a pool of episodes balances exploration and exploitation, and therefore can

increase the chance to quickly reach promising regions of the search space. If the pool capacity p is

small, then the search is more greedy and concentrates on the hitherto best traces. Large pools lead

to more exploration, which intuitively might improve performance on hard instances given sufficient

time. In contrast, with limited time, more focus on exploitation should be beneficial.

Arvand-RC does not use smart restarts until an initial number N of search episodes has been

completed. This avoids a heavy bias towards these early episodes.

1Solution-guided search (Heckman & Beck, 2011)) is a successful related algorithm in Scheduling. It differs significantly
in context and technical details.
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4.5 Experiments

Based on initial tests, we set N = 50 and p = 50 in Arvand-RC. For all the experiments MHA(T =

10,W = 0) is used to run RW. All the other parameters inherited from Arvand are set to their default

values. We run tests on the three RCP domains NoMystery, TPP and Rovers, as well as on IPC-2011

domains, on a 2.5 GHz machine with 2 GB memory limit. The runtime cut-off was set to 30 minutes

for small instances, and to 40 minutes for large instances (see below). Results for the randomized

planners LPG, Arvand-2009, Arvand-RC and their variants are averaged over 10 runs per instance.

For the RCP domains, we used several different encodings. The first uses propositions to repre-

sent the integer-valued resource levels; the second uses numeric variables. For tasks with a single

resource r, we created cost-augmented variants of both, setting the cost of each action a to its con-

sumption u(a, r). For LAMA, we also supplied an anytime cost-augmented variant, requiring to

minimize consumption of r, removing the resource preconditions s(r) ≥ u(a, r) but counting a task

as solved only if the returned plan satisfied these. To exploit the ability of LPRPGP of handling

preferences, we also used an encoding where the resource preconditions are changed to preferences

and a unit cost is assigned to each preference violation; therefore, reducing the cost of violations

translates to decreasing the number of actions that over-consume the resources. For each (planner,

domain) pair, we show data for the most effective encoding for that pair.

A wide range of planners was tested, including Arvand-2009 and Arvand-RC as well as two

variants Arvand-RC(SR) and Arvand-RC(OPSC) which use only one of the two new techniques;

FF (Hoffmann & Nebel, 2001), the top performer at IPC-2000; LPG (Gerevini et al., 2003), the top

performer at IPC-2002; Fast Downward Autotune 1 (FD-AT1) and Fast Downward Autotune 2 (FD-

AT2) (Helmert, 2006), improved versions of the top performer at IPC-2004, whose parameters were

optimized on IPC benchmarks; LAMA2011 (Richter & Westphal, 2010), the latest version of the top

performer at IPC-2008 and IPC-2011; the recent SAT-based planners M and Mp (Rintanen, 2012)

which are very competitive across many domains, and do not suffer from the weakness of relaxation

heuristics in planning with resources; and LPRPGP (Coles et al., 2008; Coles & Coles, 2011), the

most recent version of the LPRPG planner whose improved heuristic addresses that weakness.

We also ran several optimal planners, to check whether these are more effective for small C, as

was previously observed by Hoffmann et al. (2007) for their step-optimal SAT-based numeric plan-

ner, num2sat, in a NoMystery test suite. Other than this, a comparison to the satisficing planners is

not intended and should not be made. We include num2sat as well as: Merge-and-Shrink (M&S)

(Helmert, Haslum, & Hoffmann, 2007b; Nissim, Hoffmann, & Helmert, 2011), a state abstraction

heuristic; LM-cut (Helmert & Domshlak, 2009), the best known admissible relaxation heuristic; Sel-

max (Domshlak, Karpas, & Markovitch, 2010), which uses machine learning to selectively choose

a heuristic per-state; and the optimal version of Fast Downward Autotune (FD-AT-OPT) (Fawcett,

Helmert, Hoos, Karpas, Röger, & Seipp, 2011).

Our RCP benchmark set consists of 450 instances. These are obtained from a smaller set of

71



“base” instances, where C = 1.0. The benchmarks with larger values of C are generated by in-

creasing the initial resource supply in these base instances. This setup ensures that the results across

different C values are exclusively due to the level of resource constrainedness. The instances in

TPP are the ones originally designed by Gerevini et al. (2008). The 5 base instances each have 1

agent, 8 markets and 8 products, and each is modified to obtain instances with C = 1.1, . . . , 1.5. In

each of NoMystery and Rovers, to demonstrate scaling, we designed a “small” and a “large” group.

The small groups have 2 resources and 25 base instances, the large groups have a single resource

and 5 base instances. In the large groups, having several resources was not feasible for the optimal

solvers implemented inside the generators. Each base instance is modified to obtain instances with

C = 1.1, . . . , 1.5, 2.0. Small NoMystery instances contain 2 trucks, 9 locations, and 9 packages;

large ones use 1 truck, 12 locations, and 15 packages. Small Rovers instances feature 2 rovers, 11

locations, and 16 objectives; large ones include 1 rover, 15 locations, and 20 objectives.

The base instances were generated randomly, except that in the small groups – where there are

several resources – we explored a second interesting problem feature, namely the distribution of

the resource budget. We first generated 5 instances randomly. Then, we selected 5 pareto-optimal

resource allocations for each of these, yielding 25 base instances. The selection was made so that we

included: an allocation in which the total amount of resources is assigned to one of the trucks/rovers

(this is analogous to a problem with one resource); an allocation that is closest to where the resources

are evenly distributed between trucks/rovers; and 3 others in between these two extremes.

Figure 4.1 summarizes coverage results in the RCP benchmarks. Missing data indicates that a

planner did not solve any instance for that domain; the single exception is Arvand-RC(OPSC), not

shown in Figure 4.1 (a,b,c) because there it almost coincides with Arvand-RC. The most effective en-

coding for each planner is: numerical encoding - FF, M, Mp, LPG, LPRPGP, and num2sat; proposi-

tional encoding - LM-cut, M&S, Selmax, and FD-AT-OPT. propositional for small domains, propo-

sitional + costs for large domains and TPP - LAMA, FD-AT1, FD-AT2, Arvand, and all Arvand-RC

variations. Exceptions: For LAMA in large-rovers and TPP, propositional + costs with no hard

constraints was best. The main observations are:

(i) Optimal planners can be effective for scarce resources, but only in small instances.

(ii) The improved heuristic of LPRPGP is not sufficient to obtain competitive performance here.

(iii) Current satisficing planners excel when resources are plentiful, but fail quickly as they get

scarce. The same holds for M and Mp.

(iv) RWS can be a powerful tool to attack RCP. In particular, Arvand-RC almost universally out-

performs other planners when C is close to 1.

(v) Arvand-RC has a consistent and significant advantage over Arvand-2009, showing the effec-

tiveness of smart restarts and on-path search continuation.
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(a) Rovers, small (b) Rovers, large

(c) NoMystery, small (d) NoMystery, large

(e) NoMystery, small (optimal planners) (f) TPP

Figure 4.1: Coverage of planners over resource constrainedness C, in (a,b) Rovers, (c,d,e) No-
Mystery, and (f) TPP. Randomized planners are run 10 times per instance, where each run counts
separately towards coverage.

To see (i), note that none of the optimal planners solved any instance, in any domain other than

small NoMystery. In the latter domain – compare Figures 4.1 (e) and (c) – optimal planners are

more effective than satisficing planners, when C is close to 1. For M&S, the value of C has little

73



(a) Arvand-RC in large NoMystery, C = 1.0 (b) Arvand-RC in large NoMystery, C = 1.1

(c) Arvand-RC(SR) in large NNoMystery, C = 1.0 (d) Arvand-RC(SR) in large NNoMystery, C = 1.1

(e) Arvand-RC in small NoMystery (f) Arvand-RC in small Rovers

Figure 4.2: Coverage of Arvand-RC as a function of different parameters. (a,b,c,d) vary the runtime
cut-off, and the pool size p for smart restarts (x-axis; for p = 0, smart restarts are turned off). (e)
and (f) vary the distribution of budget across resources (see text).

effect. All optimal planners fail as instance size increases (Figure 4.1 (d)).

Regarding point (ii), LPRPG does not solve any instance in Rovers, and is quite weak also

in NoMystery and TPP. Point (iii) is obvious in all the plots showing data for satisficing planners
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Domain Arvand A2 (SR) A2 (OPSC) A2 LAMA FD-AT1 FD-AT2 M Mp LPRPGP
Barman 0% 0% 0% 0% 100% 100% 0% 0% 0% 10%
Elevators 100% 100% 25% 20% 100% 95% 90% 5% 65% 80%
Floortile 5% 10% 10% 5% 25% 20% 45% 0% 0% 10%
Nomystery 95% 95% 95% 100% 50% 45% 80% 80% 75% 35%
Openstacks 100% 100% 100% 100% 100% 95% 50% 0% 0% 85%
Parcprinter 100% 100% 100% 100% 100% 100% 85% 100% 100% 35%
Parking 15% 15% 0% 0% 95% 65% 75% 0% 0% 35%
Pegsol 100% 100% 100% 100% 100% 100% 100% 85% 100% 100%
Scanalyzer 85% 90% 85% 85% 100% 100% 90% 50% 80% 90%
Sokoban 10% 10% 5% 10% 90% 95% 85% 0% 10% 45%
Tidybot 85% 85% 80% 85% 80% 70% 75% 0% 30% 95%
Transport 65% 70% 35% 35% 85% 75% 70% 0% 5% 0%
Visitall 65% 70% 65% 65% 100% 10% 40% 0% 0% 20%
Woodworking 100% 100% 5% 15% 100% 100% 65% 100% 100% 0%
Total 66% 68% 50% 51% 88% 76% 68% 30% 40% 46%

(a) Coverage

Domain Arvand A2 (SR) A2 (OPSC) A2 LAMA FD-AT1 FD-AT2 M Mp LPRPGP
Barman 1800 1800 1800 1800 5 256 1800 1800 1800 1669
Elevators 12 12 1414 1478 47 173 340 1735 634 637
Floortile 1783 1687 1626 1749 1372 1452 996 1800 1800 1666
Nomystery 164 142 194 54 900 1023 381 561 457 1192
Openstacks 26 24 92 60 44 289 1128 1800 1800 546
Parcprinter 8 8 21 20 0 0 273 0 0 1171
Parking 1778 1648 1800 1800 408 1097 926 1800 1800 1561
Pegsol 21 63 5 7 2 0 14 330 4 82
Scanalyzer 271 207 276 286 21 102 202 937 362 192
Sokoban 1635 1665 1711 1705 322 129 464 1800 1622 1180
Tidybot 385 335 681 606 392 584 753 1800 1268 221
Transport 651 569 1219 1243 523 634 705 1800 1711 1800
Visitall 28 40 662 633 42 1621 1128 1800 1800 1448
Woodworking 102 78 1710 1602 12 16 647 1 1 1800
Total 619 591 944 932 292 527 697 1283 1076 1083

(b) Runtime

Table 4.1: Coverage (a) and average runtime (b; in seconds) in the IPC-2011 benchmark domains.
For unsolved instances, the time limit of 30 minutes is inserted into the computation of runtime.

(Figure 4.1 (a,b,c,d,f)). For the heuristic planners, this can be expected given the pitfalls of relaxed

planning and was previously observed in much smaller experiments by Hoffmann et al. (Hoffmann

et al., 2007) and Gerevini et al. (Gerevini et al., 2008). For M and Mp, it is quite interesting that

their behavior over C is similar to that of the heuristic planners. It is not clear to us what causes this

behavior; a plausible explanation could be that these planners, too, act in a rather greedy way.

Point (iv) is evident from the results of Arvand-RC and Arvand-2009, in all the domains. With

small C, Arvand-RC vastly outperforms all other planners, by factors of 6 and more in coverage.

The only exceptions are LAMA in large Rovers (Figure 4.1 (b)); FD-AT2, M, and Mp in small

NoMystery (Figure 4.1 (c)); and LPG in TPP (Figure 4.1 (f)). Of these, LAMA’s prowess in large

Rovers is due to the anytime cost-augmented encoding, and does not extend to small Rovers (Fig-

ure 4.1 (a)) with several resources. FD-AT2, M, and Mp fall behind significantly in large NoMystery

(Figure 4.1 (d)). LPG is competitive with Arvand-RC only in TPP.
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Point (v) is also evident. In fact, in these benchmarks, neither smart restarts nor on-path search

continuation ever hurt performance when added to Arvand-2009. Their effectiveness does depend on

the domain, though. In Rovers, it is slightly better to use smart restarts only (as pointed out, Arvand-

RC(OPSC) almost coincides with Arvand-RC there). In NoMystery, both techniques contribute to

the improvement over Arvand. In TPP, smart restarts have a beneficial effect but on-path search

continuation is more important by far.

For smart restarts, an influential parameter is the pool capacity p. Two observations are clear

from the data in Figure 4.2 (a,b,c,d):

(vi) Pool size induces a sweet-spot behavior in both Arvand-RC and Arvand-RC(SR), especially

for small values of C.

(vii) As the time-out increases, the sweet-spot behavior tends to become more pronounced, and

the best value for p tends to become larger.

An intuitive explanation for both is that, as previously discussed, p controls the exploitation-exploration

trade-off in smart restarts. Larger pools yield a more explorative search, which may pay off by solv-

ing more instances – but only if there is enough time. With limited runtime, a more greedy search

may succeed more often.

Figure 4.2 (e,f) examines the performance of Arvand-RC as a function of the distribution of the

resource budget. On the x-axis, we distinguish the 5 qualitatively different pareto-optimal resource

allocations described above: x = 1 stands for an allocation assigning the whole budget to just one of

the two resources, whereas x = 5 stands for an allocation assigning the budget as evenly as possible,

i.e., minimizing the difference between the initial resource supplies. In between, we interpolate such

that this difference decreases monotonically with growing x. Each value of x corresponds to 5 base

instances, and the data shown are averages. The data is noisy, but still allows to observe:

(viii) Distributing the resource budget more evenly results in worse performance, especially

with small C.

An intuitive explanation is that a more even distribution of the budget implies that the planner needs

to reason more about which resource to use.

Finally, we ran our new planners on the standard IPC-2011 benchmarks, to cross-check whether

their superior performance in RCP is bought at the price of deteriorated performance in other set-

tings. All the planners were run under IPC-2011 conditions: 2GB memory and 30 minutes runtime;

Table 4.1 confirms that smart restarts work well on IPC benchmarks – Arvand-RC(SR) has better

coverage than Arvand. On-path search continuation, by contrast, can be detrimental. The reduction

in coverage stems mainly from 4 of the 14 domains.
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4.6 Conclusion

We all must consume our resources prudently, and so must planners in a multitude of applications.

While this general issue has long been researched, not much has been done to specifically address

the RCP situation where resources are scarce and cannot be replenished. Starting to investigate this

more carefully, we have shown that state of the art planners typically behave very badly. We have

demonstrated the potential of random walk search to improve this, and contributed an extended test

base for future research.
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Chapter 5

Plan Improvement Using
Postprocessing

This thesis, so far, has been focused on studying random walks as a tool that helps planners to

solve more problems. The quality of solutions, however, is also of great importance. Chapter

2 demonstrates that long random walks containing many randomly selected actions are useful to

escape plateaus but not all these random actions are necessary to achieve the goals. This chapter

studies effective postprocessing techniques implemented in the system Aras that decrease the cost

of solutions by removing irrelevant actions and finding new shortcuts. A great advantage of the

developed methods is that they are general: they can be used for any planning method and are not

limited to RW planning.

5.1 Introduction

Satisficing planners can solve much harder instances than optimal planners but may generate plans

that are far from optimal. Earlier planning competitions have emphasized coverage in terms of total

number of problems solved, as well as raw speed. The focus of IPC-2008 and IPC-2011 was on

quality: finding the best plan with a given finite amount of resources. Much work in satisficing

planning has gone into generating a high quality plan directly. Such systems output a single plan

and then stop. In contrast, anytime planners such as LAMA (Richter & Westphal, 2010) and LPG

(Gerevini et al., 2008) aim to quickly find a lower-quality plan, then improve it over time. While the

framework introduced in LAMA and LPG can serve as a general guideline to improve solutions, the

specific techniques such as using WA* with smaller weights in LAMA and restarting from a partial

plan in LPG cannot be directly used in other planing systems such as RW planners that rely on

inherently different search algorithms. A useful alternative is to improve plans in a postprocessing

phase.

Fink and Yang (1992) analyze plan improvement as a problem of removing unjustified parts

of the original plan. They also propose a greedy algorithm, which is here referred to as Action
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Elimination (AE), to remove actions that are unnecessary to achieve the goals (AE is also developed

as a part of this research, independently of (Fink & Yang, 1992). However, since (Fink & Yang,

1992) significantly predates this work, the algorithm itself is not presented as a contribution of this

research). AE can only remove actions from the original plan and is incapable of finding new paths

by considering actions outside the plan. This issue is resolved here by combining AE with the much

stronger postprocessing method of Plan Neighborhood Graph Search (PNGS), which cannot only

remove unnecessary actions but also find new paths in the state space.

5.1.1 Contributions

This chapter contributes to the plan improvement research in three ways:

• The development of the effective postprocessing algorithm Plan Neighborhood Graph Search

(PNGS).

• A postprocessing system Aras that implements and combines AE and PNGS.

• A detailed experimental analysis of AE and PNGS both as standalone methods and in combi-

nation.

Both AE and PNGS can take any valid plan as input and attempt to improve it. AE is a fast algorithm,

while PNGS works in anytime fashion. Both AE and PNGS improve the performance of all the

planners tested as measured by the IPC metric. In contrast to LAMA, AE and PNGS search for

local improvements “near” an existing plan. In contrast to LPG, they search in state space not plan

space.

There are many ways to measure plan quality. Two popular metrics for unit cost actions are

sequential plan length measured in total number of actions, and makespan, the shortest execution

time of a plan if actions can be executed in parallel. The IPC metric for non-uniform action costs

(including zero) is additive cost, with the total cost of a plan defined as the sum of all action costs.

5.2 Related Work

Weighted A*, or WA* (Ratner & Pohl, 1986), produces plans that are within a constant factor W

of optimal. The LAMA planner, winner of the two last competitions IPC-2008 and IPC-2011, uses

GBFS to quickly produce an initial plan, then switches to WA* with and gradually reduces the

weight W, while using the best found plan for additional pruning. Anytime A* (Hansen & Zhou,

2007) also uses successive runs of WA*. While LAMA restarts the search from the initial state each

time a solution is found, Anytime A* continues the current search with new parameters. Anytime

Window A* (Aine, Chakrabarti, & Kumar, 2007) uses A* within a window in the search space that

moves in a depth first manner. The size of the window is increased when a solution is found.
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The path improvement methods Joint and LPA* (Ratner & Pohl, 1986) and ITSA* (Furcy, 2006)

are closely related to Plan Neighborhood Graph Search and a detailed comparison will follow later.

The LPG planner (Gerevini et al., 2008) uses heuristic local search in plan space. It optimizes

an objective function that measures the difficulty of resolving the inconsistencies and the estimated

cost of the solution. When LPG is used as an anytime system for plan improvement, it restarts from

a partial plan, obtained from the current best plan by removing some actions randomly, preferring

the most expensive ones. An added numerical constraint on the cost forces the next solution to be

cheaper.

For the makespan metric, the post-processing approaches of (Do & Kambhampati, 2003; Veloso,

Pérez, & Carbonell, 1990; Bäckström, 1998) aim to reduce the make-span of a given totally ordered

plan by converting it to a partially ordered plan. Since these approaches do not change the set of

actions in the plan, they do not improve the cost according to the other metrics above. In planning

by rewriting (Ambite & Knoblock, 2001), domain-specific rules rewrite a given plan into a better

quality one. Rewriting rules are given by an expert or learned from training examples (Upal, 1999).

5.3 Two Approaches to Plan Improvement

While there is a number of current algorithms for plan improvement in the weighted A* family,

there has been no recent work on the general case when the quality of the initial plan is unknown.

This is surprising since such plans are arguably most in need of improvement! The two methods AE

and PNGS studied here take any plan produced by a satisficing planner and try to improve it. The

methods produce no global guarantees on the solution quality. However, any known quality bound

for the input plan, such as W in a plan produced by WA* with an admissible heuristic, implies a

corresponding tighter bound on the improved plan.

Both AE and PNGS search for the best possible plan within a neighborhood of similar plans, but

use different concepts of neighborhood. AE only removes actions from a given plan. PNGS exactly

solves a shortest path problem in a neighborhood of a plan consisting of states close to the plan’s

trajectory in state space.

5.4 Action Elimination

Given a plan π, the goal of Action Elimination is to find a shorter plan by removing actions from π.

Definition 14 (Reduction). Let Π be a planning task, π a plan for Π, and π′ a subsequence of π. π′

is a reduction of π, denoted by reduct(π, π′), iff π′ is also a plan for Π.

Definition 15 (Minimal Reduction). Let π be a plan and π′ be a reduction of π. π′ is a minimal

reduction of π if for every π′′ such that reduct(π, π′′), cost(π′) ≤ cost(π′′).
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A minimal reduction is a lowest-cost plan that can be achieved by removing actions. Finding

a minimal reduction can be difficult: the corresponding decision problem is NP-complete (Fink &

Yang, 1992).

Algorithm 4 Action Elimination
Input Initial State s0, plan π = (a1, . . . , an), and

goal condition G
Output A plan reduction
s← s0
i← 1
repeat

mark ai {try to remove ai}
s′ ← s
for j ← i+ 1 to length(π) do

if aj is not applicable to s′ then
mark aj

else
s′ ← apply(s′, aj)

end if
end for
if s′ satisfies G then

remove marked actions from π {commit}
else

unmark all actions
s← apply(s, ai)

end if
i← i+ 1

until i > length(π)
return π

5.4.1 A greedy Algorithm for Action Elimination

Action Elimination iteratively improves a given plan π = (a1, . . . , an) by computing a plan re-

duction in each iteration. The details are given in Algorithm 4. Starting from a1, the algorithm

tentatively tries to remove one action a. After removing a, all other actions that lose their support -

at least one of their preconditions becomes unsatisfied - are removed from the plan. If the reduced

sequence remains a solution, the algorithm commits to this new plan. Otherwise, the plan is restored

to the state before a was removed. The process continues until all actions in the remaining plan have

been tried. Validating a single reduction takes O(n × p) time, where p is the maximum number of

preconditions of an action. The time complexity of the whole algorithm is O(n2 × p).

Algorithm 4 is just one specific, simple implementation of the idea of using successive plan

reductions and cannot identify all the removable actions. In general, different reduction sequences

do not necessarily lead to a unique irreducible plan. For example, if the original plan contains two

redundant but different ways of achieving the same goal, a sequence of reductions could remove

either one (but not both).
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Name pre add del
OPk φ {k} {p}
OPr φ {r} φ
OPp φ {p} {q}
OPq {k} {q} φ

Table 5.1: Definition of actions in a planning task example.

Algorithm 4 does not identify all the removable actions. Consider a planning task with ini-

tial state {p, q}, goal state {p, q, r} and the four actions defined in Table 5.1. In the plan π =

(OPk, OPp, OPr, OPq), only OPr is necessary and OPk, OPp and OPq can be removed. The al-

gorithm first marks OPk, causing OPq to lose its support and be marked as well. However, since

the remaining sequence (OPp, OPr) is not a plan, this step fails and nothing is removed. Next,

the algorithm tries OPp, but again the remaining sequence is not a plan. Therefore, no action is

removed from the plan by Algorithm 4. The main reason of this failure is that the algorithm focuses

on positive effects, and does not properly capture the negative interactions between interleaving

subsequences.

5.5 Plan Neighborhood Graph Search

Most state of the art planners behave in a “greedy” way in terms of a heuristic function. They

only examine a tiny subset of the state space, following narrow paths guided by their heuristic. In

contrast, the search of optimal planners is much broader since A* with admissible heuristics needs

to expand every state with f -value below the minimum solution cost. Plan Neighborhood Graph

Search (PNGS) takes a middle ground between these two approaches. The plan neighborhood graph

represents a subset of the state space “near” the existing plan that is wider than the path searched

by greedy planners. Like optimal planners, it finds the best possible solution in a search space.

However, like satisficing planners, this search is limited to a small part of the whole state space.

PNGS uses local search around the plan trajectory to build the neighborhood graph, then extracts a

shortest path from this graph.

Let M be a graph search method, such as breadth-first or best-first search. M must be able to

expand the graph of a finite search space one node at a time from a given start state s0 to generate a

sequence of states (s0, s1, s2, . . . , sn). To be useable in PNGS,M must provide a method edgeto(s)

that returns the edge along which state s was most recently reached in the search.

For a given expansion limit L, let L′ ≤ L be the number of states actually expanded by M

starting from s0. Let v(s0,M,L) = {si|0 ≤ i ≤ L′} be the set of all these states and e(s0,M,L) =⋃
i=1···L′ edgeto(si) be the set of directed edges generated in this search.

Neighborhood graph search expands a given seed graph SG = (V,E) by running M from

each start state in V with exploration limit L. The neighborhood graph of SG is defined as

NG(SG,M,L) = (
⋃
x∈V v(x,M,L), E ∪

⋃
x∈V e(x,M,L)). Algorithm 5 gives pseudocode.
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Algorithm 5 Computation of Neighborhood Graph
Input A subgraph (V,E) of a state space with

V = {v0, . . . , vn}, E ⊆ V × V , nonnegative integer
L, and search method M

Output The graph NG(V,M,L)

V ′ ← V
for i← 0 to n do
M.initialize(vi) {search neigborhood of vi}
for j ← 1 to L do
s←M.get next state()
if is null state(s) then

return (V ′, E)
end if
V ′ ← V ′ ∪ s
E ← E ∪M .edgeto(s)

end for
end for
return (V ′, E)

Let π = (a1, . . . , an) be a plan, Sπ = {s0, . . . , sn} the set of all states visited when executing

π, with si = apply(s0, (a1, ..., ai)) for 0 < i ≤ n, and Eπ = {(s0, s1), . . . , (sn−1, sn)} the edges

linking successive states in the plan. With M and L defined as above, the L-plan neighborhood

graph of π is defined as PNG(π,M,L) = NG((Sπ, Eπ),M,L). Informally, PNG(π,M,L)

contains the original seed plan augmented by the union of the neighborhoods constructed using M

around each state along the plan π.

The number of vertices in PNG(π,M,L) is bounded by (L + 1) × (n + 1). While building

a neighborhood graph, all goal states are identified. A lowest-cost path from s0 to a goal state in

the graph is built by a standard Dijkstra-type shortest path algorithm. If the search method M uses

forward search, backward chaining from the goal states works well since the branching factor in

regression is often much smaller. For backwards plan extraction, the priority queue in Dijkstra’s

algorithm is initialized with all goal states in PNG(π,M,L).

A simple anytime version of PNGS can be implemented by iteratively doubling the exploration

limit L up to a resource limit. Each iteration starts with the best plan from the previous iteration

as seed plan. One benefit of the exploration limit L is that it corresponds directly to the amount of

resources used by the search method M . Methods such as breadth-first and best-first search need

time and memory at most linear in the number of states.

The notion of plan neighborhood graph can be extended to multiple input plans as well as mul-

tiple local search methods. For multiple input plans, compute the neighborhood graph of the union

of all input plans. If Sπ0 , Eπ0 , Sπ1 and Eπ1 are the states and action edges of plans π0 and π1, then

PNG(π0 ∪ π1,M,L) = NG((Sπ0 ∪ Sπ1 , Eπ0 ∪ Eπ1),M,L). Different search methods M0 and

M1 can be used to construct a merged neighborhood combining the expansion strategies of each
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method as PNG(π, {M0,M1}, L) = PNG(π,M0, L) ∪ PNG(π,M1, L).

Extended neighborhood graphs utilize several input plans and/or search methods in order to find

a better plan. Using multiple input plans allows PNGS to search near good-quality fragments of

several different plans. Multiple search methods may allow better exploration of the state space.

5.5.1 Local Search Methods for PNGS

The experiments reported here use either a single search method, MA∗, or a combination of two

search methods MA∗ + Mbbfs : MA∗ is derived from the baseline uniform cost search algorithm

from the optimal track of IPC-2008 (Helmert, Do, & Refanidis, 2008). It performs a “blind” A*

search with the heuristic h set to 0 for goal states and to the minimum action cost in the problem

for other states. However, as in LAMA (Richter & Westphal, 2010), MA∗ is modified to better deal

with the zero cost actions present in several competition domains. Since blind A* never expands

any other action as long as zero cost actions are available, all action costs are increased by 1 while

building the neighborhood graph. For extracting the shortest path, they are reset to the true action

cost to guarantee that the returned plan’s cost never exceeds the input plan’s cost.

The combined search MA∗ +Mbbfs uses forward MA∗ search as well as backward breadth first

search (bbfs). Bbfs generates predecessor states and actions that lead to a given state, ignoring action

costs.

5.5.2 Comparison of PNGS with Related Work

Joint and LPA* (Ratner & Pohl, 1986) improve a given plan by using an optimal solver. The optimal

solver searches for shortcuts between any pair of states that are a fixed distance d apart in the input

plan. In contrast to these approaches that redefine the goal state for each search, PNGS always uses

the original goal states of the planning problem for its search. Another key difference is that instead

of searching for each shortcut in isolation, PNGS builds the complete neighborhood graph before

extracting a shortest path. In the example in Figure 5.1, building a neighborhood graph improves on

separate searches. Here, M is the A* algorithm with the blind heuristic, L = 4, and the input plan

has three states. When A* is run from each point separately, it fails to improve the input plan, as in

Figures 5.1.b and 5.1.c. However, PNGS improves the cost by 5 units.

ITSA* (Furcy, 2006) improves a given path in a graph using an A* search restricted to a tunnel

near the given path π. The tunnel contains all states s with dist(s, π) ≤ d, where dist(s, π) is

defined as the minimum cost path from any state in π to s. ITSA* successively increases d in each

iteration and terminates when a memory limit is exceeded. In (Furcy, 2006), ITSA* was tested

on problems with unit-cost actions, setting d = 0, 1, 2, · · · . For the experiments in this chapter on

domains with non-uniform costs, d was set to the minimum distance among all unexplored states, as

is standard practice in iterative deepening A* with non-unit costs. Each iteration runs until the first

goal state is expanded.
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Figure 5.1: (a) The input plan. (b) and (c) Separate local searches fail. (d) The neighborhood graph
contains an improved plan.

Compared to ITSA*, PNGS uses a different search control and separates neighborhood creation

from search. In contrast to the L parameter in PNGS, the search effort of ITSA* iterations can not

be easily predicted from the d parameter in domains with nonuniform branching factor. ITSA*’s

distance function can also lead to an unbalanced expansion at different points along the input plan,

since its number of states expanded corresponds to the number of low-cost paths available. ITSA*

expands many more nodes in regions where many cheap actions are available.

Building and searching the neighborhood simultaneously as in ITSA* allows some more prun-

ing. One advantage of the two phase computation in PNGS is that different action costs can be

used in each phase, which works better for domains with zero-cost actions. The option to merge

neighborhoods generated by different search methods with complementary strengths is also useful.

5.6 Experiments

The ARAS plan postprocessor implements Action Elimination and PNGS on the basis of the Fast

Downward (FD) (Helmert, 2006) framework. MA∗ and Mbbfs are implemented as local search

methods. For direct comparison, ITSA* was implemented in the same environment. Increased

action costs are also used in ITSA* to avoid problems with zero cost actions. This improves the

performance but might lead ITSA* to a plan of higher cost. ARAS supports propositional PDDL2.2,

excluding derived predicates, as well as action costs in PDDL3.1. ARAS and LPG were used to

improve the results of the Arvand-2009 (Nakhost & Müller, 2009) and FF (Hoffmann & Nebel,

2001) planners in the IPC-2004 domains Pipesworld Tankage, Pipesworld NoTankage, Airport and

85



Satellite. Further, ARAS is compared to ITSA* in all IPC-2008 domains on plans produced by

Arvand-2009, FF, and the top four planners from the competition: LAMA, FFsa, FFha, and C3.

Currently, LPG does not support IPC-2008 domains. The input plans for ARAS were generated by a

single run of the latest available version of each planner. Tests used a 2.7 GHz AMD processor with

4GB memory and 30 minutes time limit per problem.

5.6.1 Experiment 1: Postprocessing for IPC-2008 Domains

Tests used the IPC scoring function, the cost of the best plan produced by any planner divided by the

cost of the generated plan, with the cost of the best plan produced by any satisficing planner at the

IPC-2008 competition divided by the cost of the generated plan. Unlike the competition itself, and

in order to measure progress since then, a plan that is better than the best IPC-2008 plan achieves a

score higher than one.

For the planners returning a single plan, FF, FFsa, FFha and C3, the planner is run until it finds

a solution. The remaining time up to 30 minutes total is used to improve the plan with ARAS or

ITSA*.

Figure 5.2: Total IPC score for varying cutoff times combining LAMA with MA∗, MA∗ + Mbbfs

and ITSA*

Both LAMA and Arvand-2009 can run in an anytime setting. Given both an anytime planner

and an anytime postprocessor, an experiment was run to determine a reasonable allocation of time

between them as follows: first, the planner is run until a fixed cutoff time is reached. If no solution
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is found yet, it is kept running until the first solution is found. Next, the postprocessor is used to im-

prove the planner’s best generated plan until the 30 minute timeout. The cutoff time is varied from 0

to 30 minutes in 1 minute intervals. Figures 5.2 and 5.3 show the total scores of LAMA and Arvand-

2009 over all IPC-2008 domains, when combined with the postprocessors MA∗, MA∗ +Mbbfs , and

ITSA*. For comparison, the baseline shows the anytime planner stopped at the cutoff time without

any postprocessing. For both LAMA and Arvand-2009, the PNGS methods outperform ITSA*.

MA∗ + Mbbfs and MA∗ are very close for Arvand-2009. MA∗ + Mbbfs is slightly superior for

LAMA. The best schedule for LAMA is 24 minutes (or until the first plan is found) for the plan-

ner followed by 6 minutes for ARAS, while for Arvand-2009 the optimum is at 18 + 12 minutes.

For both planners, the performance curve is almost flat for cutoff times ranging from about 7 to 26

minutes.

Figure 5.3: Total IPC score for varying cutoff times combining Arvand-2009 with MA∗, MA∗ +
Mbbfs and ITSA*

The results for all tested planners on IPC-2008 are summarized in Figure 5.7. For each plan-

ner/postprocessor pair the total score, and the score obtained in each domain is shown. LAMA

and Arvand-2009 use the cutoff times determined above. Cybersecurity is included in the totals,

but no detail graph is shown; in this domain, postprocessors did not improve any plan except some

generated by Arvand-2009.

The total scores shown in the bottom right of Figure 5.7 on page 94 illustrate that postprocessing

would have provided an advantage in the IPC-2008 competition: any of the planners that took
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places 3-5, FFsa, FFha, and C3, would have improved to second place. Both ARAS and ITSA*

find substantial improvements for many LAMA and FF plans as well, advancing the state of the art.

ARAS seems to be most effective on problems consisting of several loosely coupled subtasks.

In these domains, due to low interaction between different parts of a plan, effective local improve-

ments are possible. For example, all postprocessors perform very well in the transportation domains

Transport and Elevator. In other domains, results vary greatly by planner. Postprocessing in Pegsol

gains more than 10 points for FF variants and C3, and 4 points for Arvand-2009. However, there is

very limited scope for improvement for LAMA, since it already solves 27 out of 30 tasks optimally

in this domain.

In PNGS,MA∗+Mbbfs outperformsMA∗, especially in domains where local improvements are

effective. Although the size of the largest neighborhood graph is equal for both search methods in

these experiments, their structure is totally different. InMA∗+Mbbfs , the expanded states are closer

to the plan, which contributes to finding better shortcuts.

In contrast, in Openstacks such local improvements are hard. This domain models a combi-

natorial optimization problem, with the goal of minimizing the maximum number of stacks used

in manufacturing. It seems very unlikely to find a shortcut in solutions for this planning domain.

Actions that affect the total cost - adding a stack - completely change the search neighborhood;

propositions showing the availability of the added stacks will be present in all successive states.

This makes it difficult to locally improve plans. Most of the improvements in this domain are ob-

tained on smaller tasks where the largest neighborhood graph is large enough to contain a new goal

state. In this domain, using all memory for MA∗ works better than splitting it between MA∗ and

Mbbfs.

BothMA∗ andMA∗+Mbbfs usually outperform ITSA*, which has trouble when there are large

cost differences between actions. For example, in Transport, pick up and drop have unit cost, while

the distance-dependent cost of drive is usually much larger. ITSA* tends to explore sequences

of many cheap actions, but largely ignores crucial drive actions. For example in Transport-14 the

cheapest driving action has cost 12, and ITSA* reached a maximum d = 71, while the neighbor-

hood graph of PNGS with MA∗ contained some nodes up to a cost of 253 from the input graph. It

found a solution of overall cost 2217 compared to ITSA*’s 2617.

Figures 5.4 and 5.5 show the effect of varying expansion and distance limit using Elevators-22

as an example. The input plan was generated by LAMA and has a cost of 663. The size of the

neighborhood graph in PNGS grows linearly with the expansion limit. The growth rate of ITSA*

varies depending on the average branching factor in the explored regions at each iteration.

5.6.2 Action Elimination

Figure 5.6 reports results for two configurations of ARAS that use Action Elimination: AE represents

a single run of Action Elimination. PNGS + AE* runs PNGS and Action Elimination alternately:
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Figure 5.4: Plan cost and size of neighborhood graph for MA∗ when varying the expansion limit in
Elevators-22.

Figure 5.5: Plan cost and nodes expanded by ITSA* with varying d in Elevators-22.
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AE is used before each iteration of PNGS. MA∗ + Mbbfs are used as search methods in PNGS.

This combination works better than either AE or PNGS alone. Running AE alternately helps to

remove actions that are no longer necessary due to reductions made by the previous iteration of

PNGS. For example, if PNGS replaces a sequence of actions s with a less expensive alternative,

then previous actions that were supporting propositions used by s may become redundant. PNGS

cannot easily identify such redundancies since paths excluding these actions do not often hit another

state in the plan; usually all nearby states in the plan already contain the effects generated by earlier,

now redundant actions.

Table 5.4 lists the problem instances in which ARAS improved on the best previously known

results. For each problem, the cost of the best previously known plan, the cost of ARAS’ improved

plan, and the base planner whose plan was used as the input are shown. An interesting entry in

this table is Woodworking problem 13. While the original plans generated by the five planners had

very different costs and lengths, after running ARAS with PNGS + AE*, all of them converged to the

same cost 445, which improved on the previously best result of 555. Out of the total of 270 instances

tested, ARAS with PNGS + AE* improved the best previously published results for 60 instances.

On average, a PNGS run consists of 10 to 12 iterations and each iteration takes 30 seconds. AE

is much faster: the average time for a single run is less than a second.

5.6.3 Experiment 2: IPC-2004 - ARAS vs LPG

Table 5.2 summarizes the results for IPC-2004 with an IPC metric: cost of the best plan computed

in all experiments divided by cost of the generated plan. Arvand-2009 plans were generated by a

single run of the planner. LPG results are averaged over five runs. The timeout for planning and

then postprocessing was set to 30 minutes total.

ARAS performs much better than LPG in improving the longer plans generated by Arvand-2009.

The results are close for FF-generated plans, with a slight overall edge for ARAS. LPG and ARAS

have different strengths since they search different spaces. Long plans with a large branching factor

in plan space affect LPG much more than ARAS, while a large branching factor in state space does

not necessarily slow down LPG’s search in plan space. Apart from the search space, the heuristic

search in LPG is better suited to find global alternatives for good quality plans generated by planners

such as FF, than to finding local improvements in a long Arvand-2009 plan.

The results for Arvand-2009 in Satellite are interesting. In this domain, Arvand-2009 gener-

ates solutions with many unnecessary actions. LPG, focusing more on causal relations, is much

better than PNGS in removing irrelevant actions. However, the combination of action elimination

and PNGS can beat LPG: action elimination identifies irrelevant actions while PNGS searches for

shortcuts.
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Figure 5.6: IPC scores of planners LAMA, Arvand-2009, FF, FFsa, FFha, and C3 with ARAS
versions AE, PNGS, PNGS + AE*.
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Arvand-2009

Postprocessor No Tankage Tankage Airport Satellite Total

None 15.26 16.20 44.6 5.01 81.07
LPG 41.43 27.22 46.53 32.43 147.62
AE 27.73 21.81 44.6 16.11 110.25
PNGS 44.26 39.98 45 23.68 152.92
PNGS+AE* 45.6 42.47 45 33.62 166.69

FF

Postprocessor No Tankage Tankage Airport Satellite Total

None 25.57 16.88 35.2 33.9 111.55
LPG 33.01 18.37 36.47 35.45 123.30
AE 26.39 16.93 35.2 34.58 113.1
PNGS 34.66 21.45 35.6 34.67 126.38
PNGS+AE* 34.81 21.45 35.59 34.98 126.83

Table 5.2: Combining Arvand-2009 and FF with ARAS (AE, PNGS, PNGS+AE*) and LPG in four
IPC-2004 domains.

5.6.4 Integration with Random Walk Planning

An anytime system integrating Arvand-2013 and an improved version of Aras is developed and

tested. In this version, Aras runs PNGS+AE* but instead of using a fixed expansion limit L, it starts

with initial L = 1000 and doubles L after each iteration. Therefore, the size of the neighborhood

graph gradually increases over the time. The process continues until a memory or time limit is

reached.

The whole integrated system works as follows: first a solution is found by Arvand-2013. This

solution is saved and fed into anytime Aras to be improved. After Aras reaches its memory limit,

which is set to 2 GB (no time limit is used; depending on the task and the input plan Aras hits the

memory limit in 5 to 80 seconds), a new round of search plus postprocessing starts. This process of

alternating Arvand-2013 and Aras continues until the time limit is reached. Any time a plan with

better quality is found, it is saved.

Arvand-2013 also uses a bounding mechanism to stop episodes or random walks that already

exceed the cost of a previously found solution. The solution bound, however, is only updated by

plans generated by Arvand-2013 itself: the solution costs achieved by Aras are too tight for Arvand

and significantly lower the probability of reaching any solution. Bounding using postprocessed

plans, therefore, greatly decreases the number and diversity of the consecutive input plans for Aras:

this has a detrimental effect on the best-quality plan that can be achieved by the system. (Xie,

Valenzano, & Müller, 2013) studies the effect of the diversity and the number of input solutions on
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the outcome of Aras. A similar system integrating Aras and RW planning was first used and tested

in Arvand-2011.

Domain Arvand-2013 LAMA-2011 FDSS2 FDSS1 Roamer
Scanalyzer 16.17 15.63 16.91 17.70 15.46
Pegsol 19.88 19.88 16.02 14.70 18.11
Floortile 5.00 4.46 6.35 5.44 1.63
Tidybot 11.22 14.53 11.23 14.82 13.03
Nomystery 13.39 11.33 10.80 13.33 9.51
Transport 12.10 12.39 9.14 9.46 14.39
Parcprinter 19.00 18.87 18.95 16.65 5.83
Elevators 8.64 10.62 8.70 12.41 11.74
Visitall 11.89 15.84 3.08 2.77 16.89
Parking 10.11 16.96 12.40 8.72 8.34
Woodworking 12.75 14.23 18.42 18.56 11.78
Barman 19.93 17.15 10.86 14.31 15.30
Sokoban 1.00 16.28 13.90 15.88 13.22
Openstacks 11.83 18.36 11.11 12.68 17.57
Total 172.88 206.52 167.88 177.43 172.80

Table 5.3: IPC score of the top three planners in IPC-2011, and of the two RW planners Arvand-2013
and Roamer.

To see how Arvand-2013 performs regarding the solution quality, experiments are run to com-

pare Arvand-2013 with the top three planners achieving the highest IPC scores, which reflects the

quality of the generated solutions, in IPC-2011: LAMA-2011, FDSS2, and FDSS1. Comparisons

are also made with the RW planner Roamer, which achieved the 5th best IPC score in IPC-2011.

Table 5.3 summarizes the results. The cost of the best known plans generated in IPC-2011 is used

to compute the scores. While the search component in Arvand-2013 is not tuned for quality, overall

Arvand-2013 scores lower than LAMA but is very competitive with other top planners, scoring 5

points higher than FDSS2, the third planner in IPC-2011. The improved Roamer performs better

than its competition version, scoring at the same level of Arvand-2013. Arvand-2013 achieves the

highest score in 4 domains: Pegsol, Nomystery, Parcprinter and Barman. Arvand-2013 also im-

proved the best known plans for 15 tasks, 13 of which are from the Barman domain. This level of

performance from RW planners is very promising and make them a strong alternative not only to

increase the coverage but also to achieve high-quality solutions.

5.7 Conclusions

Experiments with the two plan improvement methods implemented in ARAS, Action Elimination

and Plan Neighborhood Graph Search, show substantial improvements of a large variety of plans

and for all tested planners. It is also shown that RW planning integrated with Aras achieves very

competitive quality scores.

The limitation of the postprocessing techniques is that they can only find local improvements

near the previous plan. This approach is ineffective in domains such as Cybersecurity or Openstacks.
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Figure 5.7: IPC scores of planners (LAMA, Arvand-2009, FF, FFsa, FFha, and C3) combined
with no postprocessors (base), ITSA*, ARAS MA∗ and ARAS MA∗ + Mbbfs . Total scores include
Cybersecurity.
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Table 5.4: Problems where ARAS improved the best known plans. “Best Known”
is the cost of the best previously known plan generated by a planner. “ARAS” is
the cost of the improved plan. For each pair of task and configuration the base
planner is shown. Multiple entries indicate that the same result was achieved for
input plans from more than one planner. “Total” (last row) show the number of
tasks in which the configuration could improve on best known results.

Problem ITSA* MA∗ MA∗ + Mbbfs AE PNGS + AE* Best Known ARAS

Elevators 03 -
LAMA , Arvand-2009 LAMA , FFsa -

LAMA , Arvand-2009
70 66

FFha , FFsa, C3 FFha , FFsa, C3

Elevators 04 - C3 - - - 93 88

Elevators 06 - FFha FF - Arvand-2009 121 86

Elevators 07 - LAMA - - - 100 92

Elevators 08 - LAMA , FF LAMA - FF 94 88

Elevators 09 - LAMA LAMA - LAMA 101 99

Elevators 10 - - - - LAMA 187 146

Elevators 11 FF , FFsa FF , FFsa FF , FFsa - Arvand-2009, FF, FFsa 108 91

Elevators 12 - - FF - FFsa 157 130

Elevators 13 - - FFha - - 186 142

Elevators 14 - LAMA - - - 208 183

Elevators 15 - - - - FFha 261 200

Elevators 16 - - - - LAMA 287 213

Elevators 17 - - - - FF , FFsa 356 238

Elevators 18 - - - - FFsa 387 293

Elevators 19 FF - - - - 311 297

Elevators 20 - LAMA LAMA - LAMA 429 247

Elevators 21 - FF - - FF 195 163
Continued on next page. . .
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Table 5.4 – Continued
Problem ITSA* MA∗ MA∗ + Mbbfs AE PNGS + AE* Best Known ARAS

Elevators 22 - - - - FF 362 312

Elevators 23 - - LAMA - LAMA 321 274

Elevators 24 - - - - FFha 541 439

Elevators 25 - - - - FFha 571 507

Elevators 26 - - - - FFha 809 547

Elevators 27 - - - - LAMA 773 489

Elevators 28 - - FF - FF 724 681

Elevators 29 - - - - LAMA 1045 605

Elevators 30 - - - - FF 769 694

Parcprinter 15 FF
LAMA , Arvand-2009 LAMA , Arvand-2009 LAMA , FFha LAMA , Arvand-2009

1695510 1695507FF , FFha FF , FFha FFsa , C3 FF , FFha

FFsa , C3 FFsa , C3 FFsa , C3

Parcprinter 16 FF
LAMA , FF LAMA , FF LAMA , FFha LAMA , FF

1675410 1675408FFha , FFsa FFha , FFsa FFsa , C3 FFha , FFsa

C3 C3 C3

Parcprinter 17 FF
LAMA , FF LAMA , FF LAMA, FFha LAMA , FF

1713580 1713576FFha, FFsa, C3 FFha , FFsa, C3 FFsa , C3 FFha , FFsa, C3

Parcprinter 19 -
Arvand-2009 , FF Arvand-2009 , FF LAMA , FFha LAMA , FF

3353260 3353256
FFha , FFsa, C3 FFha , FFsa, C3 FFsa , C3 FFha , FFsa, C3

Parcprinter 20 FF
FF , FFha FF , FFha FFha , FFsa FF , FFha 2754190 2754187
FFsa , C3 FFsa , C3 C3 FFsa , C3

Pegsol 28 FFsa

LAMA , Arvand-2009 LAMA , Arvand-2009
-

LAMA , Arvand-2009
16 12FF , FFha FF , FFha FF , FFha

FFsa , C3 FFsa , C3 FFsa , C3
Continued on next page. . .
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Table 5.4 – Continued
Problem ITSA* MA∗ MA∗ + Mbbfs AE PNGS + AE* Best Known ARAS

Pegsol 29 -
LAMA , Arvand-2009 LAMA , Arvand-2009

-
LAMA , Arvand-2009

14 11FF , FFsa FF , FFsa FF , FFsa

C3 C3 C3

Pegsol 30 - C3 LAMA , C3 - LAMA , C3 25 19

Transport 03 - - - - FFsa 369 357

Transport 05 - - - - FFha 597 588

Transport 07 - - LAMA - LAMA 1260 861

Transport 08 - - - - FF 1216 947

Transport 09 - - LAMA - LAMA 1001 805

Transport 10 - LAMA LAMA - LAMA 1285 1083

Transport 13 FFha , FFsa -
LAMA , Arvand-2009

-
LAMA , Arvand-2009

1125 959
FF , FFha, FFsa FFha , FFsa

Transport 14 - - - - FF 2157 1513

Transport 15 - - - - Arvand-2009 2954 2306

Transport 16 - - - - LAMA 4928 3692

Transport 17 - - - - FFha 4193 3826

Transport 18 - - LAMA - LAMA 4151 3707

Transport 19 - - - - LAMA 7648 5533

Transport 20 - - - - LAMA 6773 5761

Transport 23 - - - - FF 837 825

Transport 24 - - FFha - - 1301 1034

Transport 25 - - - - Arvand-2009 1833 1496

Transport 26 - - LAMA - LAMA 2502 2260
Continued on next page. . .
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Table 5.4 – Continued
Problem ITSA* MA∗ MA∗ + Mbbfs AE PNGS + AE* Best Known ARAS

Transport 27 - - - - FF 3317 2917

Transport 28 - - - - LAMA 3027 2867

Transport 29 - - - - FFha 3294 2505

Transport 30 - - - - FF 5513 5102

Woodworking 03 C3
FFha , FFsa FFha , FFsa -

FFha , FFsa 620 445
C3 C3 C3

Woodworking 04 - C3 - - - 835 755

Woodworking 05 FF , C3 - - - FF 685 545

Woodworking 07 - - - - Arvand-2009 1230 1070

Woodworking 08 C3 C3 C3 - C3 1465 1460

Woodworking 10 - - - - Arvand-2009 1525 1470

Woodworking 13 -
LAMA , FF LAMA , FF

-
LAMA , FF

555 445
FFha , FFsa FFha , FFsa FFha , FFsa, C3

Woodworking 14 C3 - - - - 585 485

Woodworking 15 - FFsa - - - 885 815

Woodworking 18 - - - - FFha , FFsa 1310 1260

Woodworking 25 C3 - - - - 650 640

Woodworking 26 FF - - - - 1000 985

Woodworking 27 C3 C3 C3 C3 C3 900 870

Woodworking 30 - - - - C3 1605 1515

Total 15 25 29 6 60 - -
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Chapter 6

Random Walk Planners

The current chapter gives an overview of the planning systems developed as an outcome of the

research for this thesis. The algorithmic features that deviate from what is explored in Chapter 3 are

briefly explained and the default configurations are given.

6.1 Arvand-2009: Establishing the foundation

Arvand-2009 (Nakhost & Müller, 2009) is the first RW planner developed. The general structure of

the algorithm follows the same principles introduced in Chapter 3: random walks are used inside

a local search framework to form the neighborhood by sampling from the search space. The key

features different from what is discussed so far are the length scaling of RW, the use of biasing as a

fallback strategy, non-progressive (NP) jumps and global restarting.

Walk length scaling: Instead of using a local restarting rate rl, Arvand-2009 uses a length bound lb.

At each search step, the algorithm starts with an initial lb. If the best seen h-value, hmin, does not

change quickly enough, lb is increased and the sample space iteratively expands. If the algorithm

encounters better states frequently enough, lb remains unchanged.

Biasing Activation: Arvand-2009 uses both MDA and MHA as fall-back strategies. The planner

always starts with pure random walks using uniform action selection, and falls back to one of these

biasing techniques only when one of the following thresholds is exceeded: MHA is switched on if

the average branching factor exceeds 1000. Otherwise, MDA is activated whenever more than 50%

of random walks hit a dead-end.

Non-progressive Jumps: Arvand-2013 keeps running random walks until either it reaches a state

s with h(s) < hmin or a restarting condition holds. In contrast, if Arvand-2009 does not reach

a lower heuristic value after running numW walks, then it jumps to the state s that has the lowest

h-value among the sampled states, even if h(s) > hmin. The heuristic value of the current state can

increase.

Global Restarting: In contrast to Arvand-2013, which uses either tg or rg to control global restart-

ing, Arvand-2009 uses a threshold on non-progressive jumps. The planner restarts after maxNPJ
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Parameters Pure RW MDA(T = 0.5) MHA(w = 0, T = 10)
α 0.9 0.9 0.9
numW 2000 2000 2000
initialLengthW 10 1 10
extendingPeriod 0.1 0.1 0.1
extendingRate 1.5 2 1.5
maxNPJ 7 7 7

Table 6.1: Default configurations for Arvand-2009.

non-progressive jumps.

6.1.1 Default Configuration

Table 6.1 shows the default parameter values. These values were determined based on initial ex-

periments on a subset of IPC-2004 domains. The parameters extendingPeriod and extendingRate

control the length scaling. For example, the values of 0.1 and 1.5 for pure RW mean that if hmin

does not decrease over 0.1 × numW random walks, then initialLengthW is increased by a factor

of 1.5.

Most parameter settings in Table 6.1 are the same for all three biasing schemes, except for length

extension in MDA. The intuition was that most of the early random walks in problems with a high

density of dead-end states are aborted. Therefore, the initial value of initialLengthW is lowered to

one, in order to decrease the probability of hitting a dead-end in early walks. A larger extendingRate

enables MDA to explore more in the later walks.

Arvand-2009 uses acceptable progress to control the jumping mechanism. Setting α = 0.9

heavily biases the acceptable progress towards recent progress in the search. Settings for the tem-

perature T reflect the fact that the average Q-values are much larger for MHA than for MDA.

6.2 Arvand-RC: Using RW Search for RCP

(Nakhost et al., 2012) show that RW search significantly outperforms systematic search in prob-

lems with scarce resources. Arvand-RC is an outcome of this research that uses the RW search

principles. Compared to its predecessor Arvand-2009, Arvand-RC uses a new restarting technique

smart restarts and a new jumping strategy called on-path search continuation. Both techniques were

described in detail in Chapter 4.

6.3 Arvand-2011: Learning the Best Configuration and Using
Aras

Arvand-2011 (Nakhost et al., 2011) is a successor of Arvand-2009 that instead of using MHA and

MDA only as fallback strategies, includes them in a set of candidate configurations and uses the
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UCB algorithm (Section 3.9) to select one. Arvand-2011 also benefits from a full integration with

the postprocessor Aras (Chapter 5) to achieve high-quality solutions.

6.3.1 Default Configuration

Configurations Config 1 Config 2 Config 3
bias MHA(w = 0, T = 10) MHA(w = 0, T = 10) MDA(T = 0.5)
initialLengthWalk 1 10 1
extendingRate 2 1.5 2

Table 6.2: The configurations used in Arvand-2011

The default configuration learner of Arvand-2011 uses the three configurations shown in Table

6.2: two MHA versions with initial length of RW 1 and 10; and one MDA with initial length 1.

Since in some problems running a search episode might be quite slow, and in the initial phase of

UCB all the configurations are tried once, the best configuration might not be selected enough times

to be able to solve the task. To remedy this problem, for the initial episodes a smaller number of

random walks per search step is used to speed up the learning process. Specifically, for the first three

episodes numW is set to 100 and for the following episodes numW is doubled up until it reaches

the maximum 2000.

Like Arvand-2009, Arvand-2011 uses acceptable progress withα = 0.9 for jumping and maxNPJ

is set to 7. Arvand-2011 uses smart restarts and shares the pool between different configurations.

This can have a positive effect of using different configurations for different parts of the search space:

a configuration c1 can start searching from a state s along a path traversed by another configuration

c2.

6.4 Arvand-LS: Random Walks with Memory

RW search as explored in Chapter 3 and implemented in Arvand-2009, Arvand-RC and Arvand-

2011 does not use memory for duplicate state detection. This design choice has both advantages

and disadvantages: the emerging planners can perform under very tight memory constraints, which

proved to be a valuable feature for a solver in a portfolio (Valenzano et al., 2012). Re-expanding

states, however, can waste computational time. Arvand-LS (Xie et al., 2012) uses an effective way

to benefit from memory by combining systematic and RW explorations.

Figure 1 compares the search strategies of Arvand-LS and Arvand-2009. Both planners use

random walks to explore the search space near a starting point s0. After each exploration phase, both

algorithms update s0 to an explored state with minimum h-value and start the next search step from

this new s0. Unlike Arvand-2009, RW-LS performs a local Greedy Best-First Search starting from

state s0 during exploration. The search uses well-known enhancements such as delayed evaluation

and a second open list containing only states reached via preferred operators (Helmert, 2006). RW-

LS evaluates the best state s retrieved from an open list, and also performs a random walk starting
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Figure 6.1: The search strategies of Arvand-2009 (left) and Arvand-LS (right). From (Xie et al.,
2012).

from s ending in a state r. States in the open list are ordered by a linear combination of the heuristic

values h(s) and h(r), that is, w × h(s) + h(r). The parameter w controls the trade-off between

exploration and exploitation.

6.4.1 Default Configuration

Arvand-LS initializes numWalks to 100. After each restart from the initial state, this value is

doubled, up to a maximum of 3200. There are two reasons for this doubling strategy: as long

as no plan to a goal state is found, larger local searches help increase the probability to find a

solution; after a solution is found, larger searches increase the fraction of in-tree actions, as opposed

to random walk actions, in the solution, which helps improve plan quality. This strategy of doubling

numWalks is inspired by the way UCB adjusts numWalks in Arvand-2011. The weight w in

the combined heuristic function of RW-LS is set to a large value, w = 100, after some initial

experiments on IPC-2011. h(r) is often used only for tie-breaking, but it seems to be very successful

in that because it makes the search more informed in large plateaus. Like Arvand-2009 maxNPJ =

7: in tests, the algorithm was robust against changes to maxNPJ in the interval [1..14]. Performance

declined slowly for larger values of this parameter.

Many of the details of how random walks of Arvand-LS are performed are identical to Arvand-

2011. Parameters are expressed as a tuple (initialLenW , extensionRate, extensionPeriod , bias).

The three configurations used are:

• config-1: (10, 2, 0.1,MHA(T = 10 ,W = 0 ))

• config-2: (1, 2, 0.1,MDA(T = 0 .5 ))
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• config-3: (1, 2, 0.1,MHA(T = 10 ,W = 0 ))

The algorithm cycles through these configurations, starting with config-1 and changing at each

restart.

6.5 ArvandHerd: Parallel portfolio

ArvandHerd (Valenzano et al., 2012), the winner of the IPC-2011 multi-core track (Coles et al.,

2012), is a portfolio planner that combines LAMA-2008 (Richter, Westphal, & Helmert, 2011)

with several instances of Arvand-2011. Given a machine with n cores, ArvandHerd runs one in-

stance of a modified LAMA-2008 on 1 core and n − 1 instances of Arvand-2011 on the remaining

cores. LAMA-2008 is modified by using randomized operator ordering and restarting whenever the

memory limit is reached. Furthermore, for tasks with non-uniform action costs, ArvandHerd runs

LAMA-2008 with three heuristics: cost-sensitive and cost-ignorant versions of hFF as well as hLM .

All these modifications are shown to improve the coverage of LAMA-2008 (Valenzano et al., 2012).

All instances of Arvand-2011 use the same restarting pool and share the UCB configuration

learner. LAMA-2008 also has access to the pool, and whenever it finds a new solution it adds the

solution trajectory. ArvandHerd uses both bounding and postprocessing to improve the quality of the

solutions. Any time a solution is found, an instance of Aras is run on the same core to improve the

quality. Both LAMA-2008 and ArvandHerd run in anytime mode. While LAMA-2008 uses the cost

of the best solution found by any method as a bound, such pruning is ineffective for Arvand-2011,

which instead only uses the best cost of a solution found strictly with Arvand-2011 as a bound. As

Chapter 5 also discusses, creating a diverse set of plans with Arvand-2011 and improving them with

Aras is more effective than forcing Arvand-2011 to create low cost plans directly by using the global

bound.

6.5.1 Default Configuration

Since ArvandHerd is a portfolio planner, it contains parameters that control how the resources are

shared between portfolio members. The effective settings for these parameters depend heavily on

the available memory and time resources. The following explains the settings used in IPC-2011.

The wall-clock time limit in the competition was 30 minutes and the memory limit was 6 GB. The

planner could use up to 4 cores on a shared memory system.

ArvandHerd ran LAMA on one core and three copies of Arvand-2011 on the remaining three

cores. Any time a solution is found, an instance of Aras is created and run on the current solution.

If the initial solution was found by Arvand-2011, Aras is given a 60 second time-limit. If the initial

solution was found by LAMA, Aras is given a 40 second time-limit. This limit is lower for LAMA

since that planner already has a fairly effective plan improvement scheme.

As the memory requirements of Arvand-2011 are limited to space for the current trajectory, the
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best random walk seen thus far, the walk pool, and the UCB configuration selection, it uses much

less than the 6 GB memory limit. This is not the case for Aras and LAMA. As such, these processes

need to be prevented from exhausting all the memory given to the planner, thereby crashing the

whole system, and preventing further search by the processors running Arvand-2011. To address

this problem, the PNGS phase of each Aras instance is limited to using only 500 MB, and the total

memory of the open and closed lists in LAMA is set to 2.7 GB. If the Aras limit is hit, Aras quits

and returns the best solution found so far. If the LAMA limit is hit, the current search iteration is

ended and the open lists are emptied. The next iteration of LAMA then begins with the possibility

that the diversity introduced by changing the weight and tie-breaking may avoid the mistakes made

on the previous iterations. If the final 0-weight iteration also runs out of memory, this processor

starts running another copy of Arvand-2011 instead.

ArvandHerd uses the following four configurations to run random walks:

• config-1: (10, 1.5, 0.1,MHA(T = 10 ,w = 0 ))

• config-2: (1, 1.5, 0.1,MHA(T = 10 ,w = 0 ))

• config-3: (3, 1.5, 0.1,MDA(T = 0 .5 ))

• config-4: (1, 2, 0.1,MDA(T = 0 .5 ))

The activation level and size of the walk pool is set to 100. Other parameters controlling RW

search are the same as in Arvand-2011.
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Chapter 7

Conclusions

The current chapter summarizes the contributions of this thesis and proposes several directions to

follow for future work.

7.1 Summary of Contributions

This thesis proposed RW search as an effective framework for satisficing planning. It started with a

theoretical study that revealed the potential of using RW exploration. Based on the insights gained

from the theoretical models and detailed experiments, several planning systems were developed that

improved the state of the art in resource-constrained planning, parallel planning, and satisficing

planning in general. Beyond the design and study of new search algorithms, this thesis has made

significant contributions to research areas including RCP and plan improvement by providing new

benchmarks and effective postprocessing techniques.

Chapter 2 introduced homogenous graphs as a framework to study the performance of restarting

and non-restarting random walks in plateaus. The key characteristics that affect the performance of

RW are: regress factor, the largest goal distance D and the initial goal distance. The conclusion was

that in domains with a regress factor smaller than the effective branching factor and the initial goal

distance close to D, RW exploration is much faster than systematic exploration. Another result is

that the runtime of restarting random walks does not depend on D. This leads to a big advantage

when the initial goal distance is small. Connections between the theoretical models and the planning

benchmarks were also studied, and it was shown how the results in these models provide upper

bounds for more general graphs.

Chapter 3 used an experimental approach to build and study effective search algorithms that use

random walks. Key parameters affecting the local and global exploration were identified and tested.

In terms of algorithm design this study had several significant outcomes:

1. The general RWS framework, which uses RW exploration in a local search.

2. The adaptive systems ALR and AGR that dynamically adjust two key parameters: the global

restarting rate and the length of walks.
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3. The biasing techniques MHA and MDA that use information such as preferred operators and

the frequency of dead-end states to significantly improve the performance.

4. A configuration learning system that uses bandit algorithms to find the most effective config-

uration of the planner.

Chapter 3 also presented a detailed study of the design space of RWS, providing valuable insights

regarding the effect of other parameters such as the heuristic function, the jumping strategies, and

the rate at which the states are evaluated.

Chapter 4 studied RWS as a tool to solve RCP problems. This study made significant contribu-

tions to RCP by extending the notion of resource constrainednessC to the case of multiple resources,

and building two new benchmarks, NoMystery and Rovers, with problem generators that allow to

control C. The development of these generators involved designing and implementing efficient

domain-specific optimal solvers. Extensive experiments were also run to measure the performance

of a wide range of satisficing and optimal planners as a function of C. RWS improved by smart

restarts and on-path search continuation significantly outperformed other planners when C is close

to 1. The problem generators and the benchmark problems created for this research are publicly

available.

Chapter 5 introduced novel postprocessing techniques, PNGS and PNGS+AE, to improve so-

lution quality. The developed algorithms are fast and are not dependent on any planning system.

Even top planning systems such as LAMA, which are designed to generate high-quality solutions,

can greatly benefit from the developed techniques. Chapter 5 also proposed an effective method

that integrates RW planning with postprocessing. This anytime system performs at the level of top

systematic planners and achieves the highest score in four IPC-2011 domains.

Chapter 6 showed how principles of RWS can be used to build effective planning systems includ-

ing the winner of the IPC-2011 multicore track, ArvandHerd. Compared with common satisficing

planners, RW planners inherently have very different strengths and weaknesses. This makes them an

appealing choice for portfolio planners such as ArvandHerd. This work on ArvandHerd explored a

simple effective way of exploiting the strengths of RW. A related contribution is the planning system

Arvand-LS, which uses the RWS framework combined with local GBFS.

7.2 Limitations and Open questions

The following discusses some of the limitations of the current research and proposes interesting

directions for future work. The topics follow the same order as in the thesis.

7.2.1 Theoretical Framework for RW Planning

A limitation is that the relation between the theoretical models and the results of the experiments on

RW planning is not clear. The main reason is that the distribution of the values for the key parameters
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such as regress factors are unknown for full planning benchmarks. Another key reason is the lack

of a model for studying the effect of search enhancements. Answering the following open questions

can establish the relation between theory and practice more clearly.

Relation to full planning benchmarks: Can they be described within these models in terms of

bounds on their regress factor? Can the models be extended to represent the core difficulties involved

in solving more planning domains? What is the structure of plateaus within their state spaces, and

how do plateaus relate to the overall difficulty of solving those instances? Instances with small

state spaces could be completely enumerated and such properties measured. For larger state spaces,

can measurements of true goal distances be approximated by heuristic evaluation, by heuristics

combined with local search, or by sampling?

Effect of search enhancements: To move from abstract, idealized algorithms towards more realistic

planning algorithms, it would be interesting to study the whole spectrum starting with the basic

methods studied in this thesis up to state of the art planners, switching on improvements one by one

and studying their effects under both RW and systematic search scenarios. For example, the RW

enhancements MHA and MDA (Chapter 3) should be studied.

Hybrid methods: Develop theoretical models for methods that combine random walks with using

memory and systematic search such as (Lu et al., 2011; Xie et al., 2012).

Tighter bounds: FH graphs can be used to obtain upper bounds for any fair graph and IRH graphs

provide upper bounds for any homogenous graph. Finding tighter bounds for arbitrary graphs is an

interesting future work.

Backtracking random walks: A fundamental problem with non-restarting random walks is that

they cannot recover from a dead end. This can be fixed either with restarting or backtracking. While

Chapter 2 analyzes the former in detail, the latter is left as future work. Backtracking RW remembers

the path traversed from the start state to the current state s and randomly selects the next state from

the augmented successor set (SG(s) ∪ p(s)), where SG(s) contains all successors of s and p(s) is

the predecessor of s. It might be possible to extend the results for non-restarting RW on FH graphs

to backtracking walks in any homogenous graph. The idea is that if we measure the goal distance of

a state s based on the paths that the random walk can traverse from s, then backtracking walks can

never change this distance by more than one unit. An advantage is that the graph will be fair using

this measure. A complication, however, is that this new measure is not static and changes depending

on the path that the walk uses to reach s.

7.2.2 Random Walk Search Framework

The RWS framework introduced here is limited to local search. Therefore, all limitations of local

search are inherited: the search algorithm is incomplete and it might keep getting stuck in promising

local minima or dead-ends and never recover from them even with restarting. Future work includes

investigating alternative designs beyond the local search framework and also several unexplored
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possibilities inside the framework.

Exploration in path-commitment: In all the planners developed here, except Arvand-RC, the

implicit strategy is to randomly explore the states regardless of their heuristic value, but commit

(jump) to the one that has the lowest h-value. The underlying assumption is that local exploration

is much cheaper than path-commitment: if a RW expands a bad state, e.g., a dead end, the only

thing that is wasted is the time used to run the rest of the walk. However, if the algorithm jumps

to a bad state, the whole time spent to run the rest of the episode is wasted. However, exploration

in path-commitment can be effective if it is balanced with the cost of a possible mistake. The on-

path search continuation used in Arvand-RC partially addresses this issue by decreasing the cost of

commitment. Other search strategies such as simulated annealing (Hoos & Stützle, 2004) are also

interesting to explore: In this method, a biased random choice that favours lower heuristic values is

used to decide whether to commit or not.

The parameter n in the RWS framework, the number of walks before jumping, also affects the

path-commitment strategy. A larger n increases the number of samples and the chance of committing

to a state with lower heuristic value. Deriving a model to determine an effective n based on key

search space characteristics is also an interesting topic for future work.

Multiple Heuristics: As Chapter 1 explains, state of the art planners such as LAMA and Fast

Downward can combine multiple heuristics by using multiple queues. Since RWS does not use

open lists, the idea of using multiple queues is not directly applicable. However, the same general

principles of running parallel searches and sharing information can be used. Algorithm 6 gives

the pseudocode of such a technique for RW with multiple heuristics. Compare this algorithm with

Algorithm 1 (Chapter 3), which uses only one heuristic: Instead of having just one currentState

and one variable hmin, the algorithm keeps a separate current state currentState[i] and hmin[i] for

each input heuristic function hi. To run a random walk, the algorithm selects one of the current states

uniformly randomly as the starting point. For all heuristic functions hi the algorithm updates both

currentState[i] and hmin[i] as soon as it samples a state s with hi(s) < hmin[i]. The algorithm

restarts from the initial state if the last TG walks did not decrease any of the hmin values. The

random walks are the same except that evaluations of states uses all heuristics, not just one. The

effectiveness of such an algorithm remains to be investigated.

Beyond local search: Random walks are not fundamentally limited to local search. Roamer (Lu

et al., 2011) is an example of successful application of RW exploration to global search. A key

question here is whether the main advantages of RW and systematic exploration can be combined.

A systematic way of running random walks combined with duplicate detection might be the answer.

An algorithm using similar concepts is Monte Carlo Tree Search (Browne et al., 2012), which uses

a combination of systematic in-tree exploration and random playouts. Although the research on

Arvand-LS focuses on local search, it explores some of these concepts.
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Algorithm 6 Random Walks with Multiple Heuristics
Input Initial State s0, goal condition G

available actions A and heuristic functions (h1, . . . hn)
Output A solution plan
Parameters rl

Initialize currentState to a list containing n copies of s0
hmin ← [h1(s0), h2(s0), . . . , hn(s0)]
loop
startState← selectRandomly(currentState)
sampledState← RandomWalk(startState, G, hmin, rl)
if sampledState ⊇ G then

return the plan reaching the sampledState
else if sampledState 6= Deadend then

for i = 1→ n do
if hi(sampledState) < hmin[i] then

(currentState[i], hmin[i])← (sampledState, hi(sampledState))
end if

end for
end if
if Restart() then

Initialize currentState to a list consisting of n copies of s0 {restart from initial state}
hmin ← [h1(s0), h2(s0), . . . , hn(s0)]

end if
end loop

7.2.3 Resource-constrained Planning

A limitation of RWS developed for RCP is that they do not exploit an explicit encoding of resources.

The danger here probably would be to not over-fit the algorithms and lose too much performance

elsewhere. Apart from this, important topics for future research include: developing more problem

generators that allow to control C, understanding the behaviour of various algorithms, such as M

and Mp, better; and investigating to what extent we can devise automatic configuration methods for

deciding whether or not to switch these tailored techniques on.

7.2.4 Plan Improvement

While compared with anytime systems such as LAMA, Aras is much faster, it is limited to local

improvements. That is why Aras does not improve solutions in domains such as Openstacks and

Cybersecurity. There are many promising directions for future work on plan improvement:

• Improve Action Elimination to be more efficient and find more reductions. Action Elimination

can be formulated as an optimization problem. Search algorithms such as hill-climbing could

be used to find better solutions.

• Aras is capable of processing multiple input plans at the same time. Experimental results show

a rather large variation in the improvability of different plans for the same problem instance.

Therefore, using a large number of input plans should increase the chances of the system to
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find good improved plans. Inputs for ARAS could include many diverse plans as in (Srivastava

et al., 2007), or multiple randomized solutions generated by a RW planner.

• Instead of expanding nodes uniformly, adapt the search effort per node in PNGS.

• Focus more on avoiding expensive actions in PNGS.

• Use PNGS during the search to improve partial plans.

• Investigate the effect of macros on plan improvability: for example, compare ARAS on plans

produced by standard FF (Hoffmann & Nebel, 2001) and Macro-FF (Botea, Enzenberger,

Müller, & Schaeffer, 2005).

7.2.5 Planning Systems

Arvand-2013 has been built with many and easily exposed parameters according to the Program-

ming by Optimization (PbO) paradigm (Hoos, 2012). Work with Chris Fawcett has started on tuning

the system both for overall performance and on a per-domain basis using the ParamILS configurator

(Hutter, Hoos, Leyton-Brown, & Stützle, 2009). Other interesting work includes building a new

version of ArvandHerd using Arvand-2013 and LAMA-2011, and to make the planning systems

developed here open source.
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