
Equivalences in Material Structures 

by 

Kalan Parker Kucera 

 

  

A thesis submitted in partial fulfillment of the requirements for the degree of 

  

Doctor of Philosophy 

in 

Materials Engineering 

Department of Chemical and Materials Engineering 

University of Alberta 

  

 

  

  

 

 

 

© Kalan Parker Kucera, 2024



ii 

 

Abstract 

Structure dictates every property and behavior of a material. Concepts of structure used within 

the field of materials science and engineering (MSE) are diverse, ranging from quantum level 

phenomena, to the practical development of macroscale components. The sheer volume of 

variables, scales, and models used to represent some aspect of material structure is immense. 

There is no current framework for bringing all of the concepts of material structure together, 

outside of a set of four relations, colloquially known as the materials paradigm. The paradigm 

relates process to structure to properties to performance, and serves as the ontological basis for 

the consolidated discipline of materials.  

Given that general approach, this thesis offers a new framework for the interpretation, analysis, 

and validation of materials structures by incorporating concepts of general systems from outside 

of MSE. In this interdisciplinary work, concepts from various systems philosophies, quantum 

theory, information theory, category theory, and logic are described and selected as desirable 

components for a fuller notion of material structure. The idea of an enriched material structure 

leads to the construction of a functional framework for the analysis of aspects of materials 

systems on the basis of criteria of equivalence. If structure is more generally defined as that 

which is invariant across change, then equivalence is a natural determinate of shared structure. A 

multi-component structural equivalence framework is proposed, composed of five different 

senses of structure: definitional, empirical, informational, categorical, and theoretical. 

The proposed structural equivalence framework organizes the different forms of structure which 

are drawn out of the multivariate analysis offered by each individual form. Through the rigorous 

definition of each form, models of materials structure in any arrangement can be equated with 
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others, in order to parse out structure. Definitional equivalence can measure how much overlap 

the vocabularies and foundational concepts two models might share. Empirical equivalence can 

measure the overlap, or translatability, of the data sets produced by methods within each theory. 

Informational equivalence can measure the available communication pathways between data 

(and other) sets within models. Categorical equivalence can compare inherent, or associated, 

mathematical structures between models. Finally, theoretical equivalence can measure the 

overlap or translatability of two theories on the basis of the shared structure between the models 

of those theories (which take the other forms of equivalence into account). This thesis holds that 

these five senses of equivalence provide a richer version of abstract structural modeling and 

validation than is currently used. 

Using this structural equivalence framework, different aspects of materials structure are 

investigated including: the general structural form of a conceptual multi-scale bridging technique 

between atomistic and continuum computational methods; a validation of informational 

structures produced by variances across X-ray diffraction results for copper samples processed in 

different manners; a survey of the general structures of creep models for copper; and an analysis 

of the variable used to represent average grain size in two different creep models for copper. The 

results of these investigations illustrate the utility—and current boundaries—of the structural 

equivalence framework when applied directly to concrete materials systems.  

 

The work in this thesis is wide ranging, and offers contributions to multiple fields of study. For 

those in MSE, it offers new techniques of model validation, model construction, data analysis, 

and integration of methods from information science and logic. The novel approach of the 

structural equivalence framework also presents an opportunity for re-evaluation of historical 
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data; a method to recontextualize experiments into the modern ‘vocabulary’ of the discipline. For 

those outside of MSE, it offers an insight into the approaches, techniques, and a touchpoint for 

integration of other fields with the vast created knowledge of MSE. Furthermore, this thesis 

offers an enriched materials ontology, inclusive of multiple structural concepts in an attempt to 

continue to build towards the goal of an all-encompassing science of materials.  
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Chapter 1: Introduction 

Introduction 

 

The history of materials has been a long journey in search of knowledge in strange and difficult 

terrain, finally to return to the familiar scene with vastly better understanding. 

 Cyril Stanley Smith, “Matter versus Materials: A Historical View” 

 

1.1: Material Structure 

The first time a person took a hammer to a piece of iron, there was no modern conception of 

atoms, of dislocations, or of strengthening mechanisms. There was simply the effect that—with 

each subsequent hammer blow—the material became more difficult to deform. Only through 

centuries of science and engineering advances were the cause and effect of structural changes to 

properties, like those of a hand-wrought piece of iron, discovered and cataloged. The reality that 

we inhabit involves a seemingly infinite number of systems from the macroscale to the atomic 

scale interacting with one another, structuring the world around us. Every conceivable object is 

definable as the set of interactions—both internal and external—of which it is a part, so a study 

of structure is inherently a study of sets of interactions and their behavior and evolution through 

various states. 

 

To consider the concept of structure is to explore the one universal commonality between every 

material in existence, that their properties and behavior are dependent upon structure. As the 

world surrounds us in materials of every sort, structured objects and systems of structured 

objects are inescapable. In order to better understand the forces that structure these systems, and 

determine and predict the behavior of materials, models of these systems and mechanisms are 

designed and tested, providing quantitative analysis of their structure. This being the approach to 

the consensus understanding of the physical world, it would seem imperative that methods of 

designing, constructing, and combining the models of materials be rigorous and navigable from 

within, or across, any set of material theories.  
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Materials are not the only structured systems, nor the only objects that are modeled as systems. 

Mereological questions—those concerning the relationship between parts and wholes—abound 

throughout both the physical and social sciences, and have been studied by philosophers since 

antiquity. The physical sciences have used empirical and analytical techniques to great effect, in 

order to isolate new components of physical structure and study their properties and behaviors. 

Components only tell half of the story of the objects of our daily lives, though, and there have 

been many obstacles confronting efforts to fully explain systems of materials solely in terms of 

their constituent parts. Outside of the physical sciences, the past century has seen a variety of 

philosophers and social scientists who have worked to invigorate and expand the holistic 

philosophies of the early 19th century. If a goal of the physical sciences is to integrate holistic 

ideas into the existing frameworks of physical systems, it seems vital that the rigorously defined 

ontologies of various systems theories and philosophies be studied for conceptual landscapes 

which may bridge to the islands of scientific specialization. 

 

In the field of Materials Science and Engineering (MSE), the keystone of the approach to model 

construction is a set of relations known as the materials paradigm. MSE has always been an 

interdisciplinary field [1], and the paradigm is the only heuristic that captures a general 

relationship shared between any materials system. A conception of the materials paradigm, and 

the relations between Process, Structure, Properties, and Performance (PSPP) is shown below in 

Figure 1. 

 

Figure 1: The common tetrahedral representation of the materials paradigm. 
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This paradigm illustrates the dependence of materials thinking on the concept of structure, a 

point discussed in more detail in section 2.1. The interdependence of the quantities of interest to 

MSE illustrates the degree to which models of material behavior are expected to incorporate 

variables representing the contributions of those structures. Every materials model relates 

structures, or some structural change, across landscapes of environmental energetic stimuli.  

 

Given the importance of structure to materials modeling, it is important to be able to articulate 

what structure is, specifically in a materials context, and what the consequences of a structure-

centric epistemology are with regards to the methods of model building within the discipline. 

The sheer number of materials, materials models, variables used across the materials modeling 

space, and contexts of interest to material behavior makes it difficult to knit together a rigorous, 

consolidated concept of structure across materials spaces. In order to elucidate a coherent theory 

of material structure, there should exist a framework against which the behavior of materials 

systems, variables, models, and states of systems can be compared and contrasted, and the 

relationships between these concepts can be mapped. Building this framework would require a 

coherent set of methods to determine when, where, and how there may exist equivalences 

between two concepts. These equivalence points will illuminate the various senses of materials 

structure, and how they are modeled. 

 

Material objects are modeled as interacting systems of increasingly smaller objects. Models of 

lower scale phenomena serve to predict the behavior of macroscale objects. These models predict 

behavior on the basis of the manner in which collections and aggregates of objects interact with 

one another, and with the environment within which they are situated. There exist methods of 

this kind of process for physical systems containing levels of self-similar interaction objects. 

Cascading mereological (part-whole) relations have been treated with various techniques of 

bridging, the most successful of which is renormalization and the renormalization group. In 

physics, renormalization is a method of connecting small and large scale effects by accounting 

for the infinities in their respective models that arise due to self-interactions [2]. While this is an 

incredibly effective method, its specificity is such that direct application to various empirical 

models, or data analysis methods within MSE is not currently feasible, so this approach is not 

treated here. 
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The use of formulae, equations, and operations to predict variable evolution within materials 

systems presupposes that, within some range of values, there exist equivalent concepts and 

structures which may be tethered to one another in order to study complex, and connected, 

phenomena. What is the formal basis to determine whether or not one variable / state / model / 

theory is the same as another, as we chain these concepts together across the spectrum of 

materials science? Determining the answer to this question requires first determining what the 

epistemological methods of model building, and systems theories, have been to this point in 

MSE. The most generalized approach in the field is the aforementioned ‘materials paradigm,’ 

and every behavior or model can be tagged into one or more of the sets drawn between process, 

structure, property, and performance. What these concepts illustrate is that across scales and 

evolutions of state, material phenomena are interpretable as dispositions that physical systems, 

and components of physical systems, have in response to various stimuli. These stimuli govern 

how the cascading sets of relations through materials systems emerge, and show the boundaries 

of the physics and models used to predict phenomena. 

 

Across this model space, experiments highlighting the behavior of materials systems point to 

different conceptual objects that can be used to determine the structure of those systems; 

structure both in the sense of the physical components, and of the invariants established within 

the model space that determine the bounds and efficacy of the models being used. Finding 

invariants across these interfaces means also determining where, and in what manner, various 

components of materials systems are equivalent to one another. If materials systems are 

compositions of assemblages of scaling and aggregating interactions, as all indications seem to 

be, then the question of when and how objects and relations are equivalent to one another 

becomes key to building a rigorous and precise network of structured models for materials 

systems. 

 

To capture the full picture of phenomena, there must be a cascade of determinable equivalences. 

If we want to say that two objects are equal according to a theory, or between translatable 

theories—a theoretical equivalence—then we must first determine any conditional equivalences 

the theories may have. Specifically, we want to build models of theories which possess multiple 
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equivalence determinates to capture the multiple conceptual forms of structure determined 

herein. Each form of equivalence allows for the construction of a robust and well-defined idea of 

material structure. 

 

An idea of physical structure, built upon the structure of the experiments, models, and theories 

that give rise to the contents of that physical structure, is an approach which changes the 

epistemological priors and approaches of the discipline. The shift appears primarily in the 

migration from an object-based conceptualization of structure, to a relational one. Components 

of physical structure, in this sense, are rendered as collections of relations and meta-relations that 

are both more primed to highlight interactions with other objects, and well defined in terms of 

their local and global relational space. 

 

With a method to illustrate the relational basis of materials science, we can then inform our 

definition of a general sense of ‘system’ and ‘structure.’ A meta-analysis of multi-scale materials 

structures can serve as a basis for analysis of systems and structure in general, with a framework 

of equivalences providing a means of testing connections between sets of interacting objects in 

any context. This approach forms a new basis for building, testing, and iterating upon models of 

materials systems, one centered on a local to global cascade of relationality, and based on the 

disposition of nodes of interaction. 

 

Through the construction of this framework of equivalences, and application of it to multiple 

facets of materials research and modeling, we have developed a new approach to conceptualizing 

materials structure, and have created an apparatus for testing the cohesiveness and translatability 

of materials models in many different contexts. Through the use and refinement of this method, 

we believe that the modeling landscape of materials science and engineering can build a more 

rigorous web of connections between the theories and models which make up the modern science 

of materials. These connections can then be tested against a consensus framework of relational 

invariants representative of various material structures. 
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To summarize the above, this thesis hopes to provide detailed answers to the following research 

questions: 

 What are the epistemological approaches to model construction and refinement 

within MSE, and in other systems theories? 

 What criteria of equivalence can be formulated to capture the various senses in 

which variables, states, models, and theories are structured? 

 Given a framework of the criteria of equivalence above, how would that affect the 

epistemological approaches to modeling within MSE? 

 How does our interaction with materials systems inform our interpretation of the 

‘structure’ of general systems? 

 

1.2: Scope of This Work 

This work is interdisciplinary, and aims to take a survey of approaches to the structure of 

systems from various social science perspectives and philosophies. This survey is then used to 

find general properties that a variety of systems of interacting objects may share. The synthesis 

of these properties can be used to inform the development of a novel interpretation of the concept 

of material structure. As stated, this idea of structure is based on finding a framework consisting 

of sets of relational equivalences between variables, models, states, or systems. Using these 

criteria serves as a method to analyze the interfaces between models, and can be used as a check 

on different types of models, including cross-functional and scale-bridging types. 

 

Chapter 2 begins with a broad description of a materials ontology, the viewpoints and 

epistemological commitments of MSE. Section 2.1 takes this ontology and, through exploration 

of the manner in which the discipline approaches problems within the field, illuminates the key 

concepts needed to integrate the wide collection of materials problems into a universal 

framework. Section 2.2 goes into further depth on the concepts of system and structure within 

MSE. These sections serve as an overview of the current state of the field, and set a reference 

against which various ontologies and interpretations of systems theories may be compared and 

contrasted. 
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Following this background, section 2.3 presents a description of various approaches to systems 

from branches of philosophy. These include brief analyses of works by Alexander Bogdanov, 

Henri Bergson, Gilbert Simondon, Alfred North Whitehead, Bertrand Russell, and Gilles 

Deleuze. A relevant thread present through the analysis of these works is a concept of process 

ontology, the idea that systems may be defined as the emergence of behaviors of sets of relations 

that objects—including systems—may have as a whole.  

 

This holistic approach helps to inform section 2.4, a summary of what is known as the relational 

interpretation of quantum mechanics, first proposed by Carlo Rovelli. This interpretation centers 

on the primacy of interaction between systems, and the resulting properties produced by these 

interactions. Although the theory deals with quantum systems, the applicability of the approach 

to larger systems is theorized by Rovelli [3] and is further expounded upon in this work. The 

concepts included set the groundwork to attempt a subtle shift in the proposed modeling 

approach from an object-oriented to a relational-oriented approach. 

 

Changing the modeling interpretation also requires reinterpreting what kinds of data and 

information are produced by the general act of measurement. Section 2.5 discusses the 

downstream effect of an evolving view of systems building on the data meant to capture physical 

behavior and mechanisms of materials systems. The section includes discussion of how systems 

are measured, what types of data these measurements produce, and what commonalities sets of 

measurements can have. The characterization of the empirical content produced through 

measurement of materials systems allows for discussion of the structure of data sets, and the 

types of relations that appear specifically in empirical modeling. 

 

Central to any analysis of data is the information theory pioneered by Claude Shannon in the 

mid-20th century. Section 2.6 explores how empirical, and other forms of data collected and 

produced within MSE, can be seen as a form of communication between systems, leading to a 

new set of relational functions between the data sets of MSE. These include those representative 

of engineering judgment, a crucial part of assessing performance criteria of materials systems. 

Through the steps of contextualization of data, different types of informational entropy are also 

explored, and their relevance to modeling within MSE are discussed.  
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Section 2.7 goes into more detail on the types and structures of models prevalent within MSE. 

These can include empirical models, analytical models, computational models, and other 

algorithmic / big-data models. The differences, and connections, between the modeling types are 

discussed, and then an analysis of what, if any, mathematical structures are used within each 

modeling category, and across the interfaces of combined models. Across this modeling space, 

MSE practitioners use a similar pathway of model construction and iteration proposed by M. F. 

Ashby [4], and that model building process is discussed in detail.  

 

Collections of models are what constitute theories. Theories are built on models, variables, and 

data that can be grouped into a larger bin on the basis of some shared properties. Section 2.8 

discusses the phenomenology of theory construction, and the interplay between models and the 

theories they construct. The structuring potential of theories and their models is discussed, as 

well as the establishment of criteria of equivalence between physical theories on the basis of the 

structure of their constituent models.  

 

Judging relations between variables, models, systems, and theories requires an abstract set of 

tools in order to capture various forms of interactions. These tools should be mathematical in 

nature, and able to capture properties of like objects, sets of those objects, relations between the 

objects within the sets, and relations between sets of those objects. In light of those requirements, 

section 2.9 presents the field of category theory as a solution. A description of categories, 

morphisms, functors, and natural transformations—-among other mathematical objects—-is 

presented, along with their properties and potential applications. Categories are shown to fit the 

needs of criteria building, and as tools to capture the mathematical structure of objects of study. 

Discussion of applications to equivalence criteria and model building in the context of category 

theory is then presented.  

 

Section 2.10 builds upon the concept of criteria of equivalence, proposing that the strength of the 

relation between two theories which share any sort of potentially equivalent objects—be they 

variables, states, systems, etc.—may be judged on the basis of a cascading framework of 

equivalence. This cascade of criteria includes discussion of five forms of equivalence, including 

definitional, empirical, informational, categorical, and theoretical. Each form builds upon the 



9 

 

prior form, increasing the strength of equivalence between theories as greater connections are 

able to be identified between the two. These ideas of equivalence form the crux of the analysis 

performed in later sections. 

 

In section 2.11, a through-line between all of the mentioned concepts is drawn, and the overall 

approach to building a comparative analytical framework is proposed. A synthesis of abstract 

theory and practical knowledge-building is illustrated, justifying the use of equivalence 

frameworks as a method of model and theory analysis. Contributions from each of the topics 

described are folded into the conceptual space of the materials paradigm and material structure. 

Armed with perspective from the far reaching survey presented in Chapter 2, a new materials 

ontology is proposed. This ontology incorporates the knowledge presented and provides a new 

foundation upon which the abstract comparative framework—the central contribution of this 

thesis—may be built. This section is intended to summarize the justification of the approach 

chosen, and to serve as a springboard for the discussion of the methods used within the thesis. 

 

The methods of building the proposed framework are presented in Chapter 3. First, a general 

approach to the determination of equivalence is defined based on finding invariants within the 

object(s) being analyzed. This section defines the parameters of what to look for within the 

object(s) of interest. Following a general definition, each form of equivalence proposed is then 

explored in detail. The following forms of equivalence are formally defined in the indicated 

sections, and assigned postulates used to determine the basis of equivalence of that particular 

form: 

 

1. Definitional Equivalence 

2. Empirical Equivalence 

3. Informational Equivalence 

4. Categorical Equivalence 

5. Theoretical Equivalence 
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After being defined, it is shown how these criteria fit together in order to form a cohesive and 

sensible progression, building the strength of structural equivalence as each set of criteria are 

met. Combined, the five forms of criteria define the structural equivalence framework. 

 

Following this discussion, methods of rendering data and models in the context of the proposed 

framework are presented. This approach includes a proposal on methods to identify like objects 

within the landscape of materials, primarily on the basis of lists of applicable mathematical 

structures and potential mappings between them. Additionally, this section will provide an 

overview of a process of categorification, which takes data and information presented in a set-

theoretic landscape and translates them into categorical terms. These discussions will lay out the 

manner in which each step of abstraction and generalization can be applied to various 

components of materials theories and models, creating the meta-analytic framework proposed. 

 

With the methods in hand, Chapter 4 presents the results of the application of the proposed 

framework of equivalences, and model interpretative techniques, to a variety of applied materials 

modeling scenarios. The equivalence framework is specifically applied to different models in 

order to highlight its efficacy with regards to cross-model variables, cross-theory models, cross-

system states, and cross-scale interfaces. Using these examples, the effectiveness of the 

equivalence framework is illustrated as a method of discovery for the structure, and structuring 

potential, of materials systems. Discussion around the examples elucidate the importance of 

translation (mapping) as a condition of equivalence. This section will go into detail on this point, 

showing that the ability to translate structures across the boundaries of modeled objects is the 

primary method of teasing out equivalences between the two (or more) objects of inquiry.  

  

Following this discussion, Chapter 5 concludes the thesis and proposes future directions for the 

topics presented within. Using the preceding results, it is shown that this work presents a new 

conception of material structure. This novel concept is backed by the new methods of finding 

invariants, and conversely equivalences, within the mathematical structures of the objects of 

interest presented within this work. By finding and cataloging these equivalences for a variety of 

materials systems, a new method of checking combined models has been developed for any 
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combination of like, abstract objects within materials systems. A description of potential uses 

within the discipline of MSE is presented for this framework. 

 

In addition to the contributions to MSE, this interdisciplinary work also contributes new 

approaches to systems theories in other fields. These contributions are discussed in section 5.1, 

showing both that this work can lead to greater synthesis between MSE and various philosophies 

of science, and that the form of this analysis has the potential to open the whole body of 

materials research for analysis by non-engineering technical fields. Additionally, the limitations 

of this approach both directly to MSE, and for interdisciplinary applications are discussed, 

including the limits of using a meta-analytical framework on predictive and multiscale modeling, 

and the limits of data restructuring for use within the framework. Finally, in section 5.3 various 

proposals for future work are presented. 
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Chapter 2: Background and Literature Review 

Background and Literature Review 

 

As humans, we belong to that component of nature given to organizing and structuring. We not 

only physically organize ourselves and our environment, but we also organize our perceptions of 

the physical world into abstract structures. 

—L.L. Whyte, “Hierarchical Structures” 

 

2.1: The Materials Paradigm 

Currently within MSE practice, there is no single unified approach to the gamut of experiments 

and research projects conducted within the field. Overlapping with approaches from solid state 

physics, chemistry, and other engineering disciplines, experiments and research nominally 

contained within MSE are often set-up with different sets of assumptions and ontological priors. 

While research may involve metals, ceramics, polymers, etc., little is done to fit a given 

university’s or department’s research into a cohesive framework centered around a concept of 

what all materials have in common. This leaves a gap in creating definitions of unifying 

approaches to the way that materials are, and what they say about the ways in which materials 

systems relate to one another.  

 

The most primitive, and closest analogous version of a materials ontology comes in the form of 

the oft invoked materials paradigm. As mentioned in Chapter 1, the materials paradigm is the 

general set of relationships between ‘process,’ ‘structure,’ ‘property,’ and ‘performance,’ 

(PSPP). Applied broadly, the paradigm states that, for any materials system, these sets of 

relations hold. Materials are generally differentiated from matter by their utility to human beings 

[5], and so the materials paradigm couches the performance aspects of materials systems—their 

appropriateness for use in various human contexts—in terms of the physical changes a structure 

undergoes, and the sets of properties instantiated by each structure produced for some human 

desire or need.  

 



13 

 

The modern form of the paradigm from Figure 1 came into existence over the course of several 

decades. First mentions of structure-process relations of materials begin as early as 1964 when 

Moffatt, et. al. discussed the centrality of them in their work Structure and Properties of 

Materials [6]. One of the first diagrams with all four elements of the modern paradigm appeared 

in the draft plan for the Materials Processing Center, opened in 1980 and pictured in Figure 2 

below [1]: 

 

Figure 2: An early version of the materials paradigm, from [1]. 

 

Though not yet in the tetrahedral format, this draft is one of the first documented instances of all 

four of the PSPP elements being presented as interconnected, and central to an understanding of 

MSE as a unified discipline. Interestingly this also highlights the contributions of both empirical 

and analytical (“scientific”) knowledge within the context of materials modeling.  

 

Throughout the following decades, materials became an increasingly important focal point for 

research directions within the government of the United States. Reports such as Materials and 

Man’s Needs [7] and Materials Science and Engineering for the 1990s [8] served as touchpoint 

reviews of the progress of MSE as a discipline, and were drivers of the unified approach of the 

sub-disciplines of the field. In the latter, the first recorded version of the materials tetrahedron 

appeared [8], relating the so-called “four elements of materials science and engineering” and 

shown below in Figure 3: 
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Figure 3: Materials tetrahedron relating the “four elements” from [8]. 

 

This iteration would eventually appear in most textbooks introducing students to MSE, and as a 

staple of introductory MSE courses. This conceptual framework began to fulfill the unspoken 

promise of the transition from separate fields of study to a centralized materials science by 

providing a conceptual node to which every materials system could connect. Though rarely 

presented as such, the set of PSPP relations forms the central concept around which any unity of 

materials may be built. It can, therefore, be classified as an ontology. The Oxford English 

Dictionary defines an ontology “a set of concepts and categories in a subject area or domain that 

shows their properties and the relations between them” [9], and it is clear to see that—in a 

qualitative manner—the materials paradigm qualifies as a materials ontology.  

 

Generally, the paradigm was interpreted as giving equal importance to the process, structure, and 

properties in relation to how they affect the performance of a given materials system. Yet it 

becomes increasingly more clear that every aspect of materials systems relies on the physical 

structure that the system exhibits—the components and arrangement of those components at 

whatever scale is of interest to a particular observer. In this way, the idea of material structure 

and its downstream effects have become the most comprehensive definition of ‘materiality.’ As 

the modern sense of materials arose from practical encounters with the world throughout history, 

this conception of materials derives also from the way in which practitioners learn and are 

taught; from an epistemology of experience, like those described in the experiential learning 

theories of Kolb [10] or the constructivist theories of Piaget [11].  
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In this sense of materiality, the causal chain between sets of structural components and their 

relationships to the environment in which they are placed becomes clearer. Process is the 

reaction of material structure to energetic input; Properties are measures of the typical response 

of material structure to various stimuli; Performance is the response of material structure, and 

hence properties, to specific contexts of use. Each of the p-vertices of the tetrahedron involves 

some composition of structural changes, shorthand for specific arrangements, and evolutions of 

arrangements, of the components of physical structure that make up materials systems. These 

sets of relations can be summarized as: 

 

Performance = {Structure - Property relations}                                     (1) 

   Properties =               {Structure - Process relations}                                      (2) 

                  Process = {Structure - Energy - Time relations}                           (3) 

 

This approach to the paradigm couches everything in terms of structure, and provides a structural 

lens to this ontology. Static structures have fixed properties, and dynamic structural evolutions—

either natural or teleological—are disposed towards certain dependent pathways of change—

known as mechanisms. This dispositional causation is the central method of interpreting the 

ways in which structural systems behave, with the {Structure-Energy} relations being 

synonymous with thermodynamics and the {Structure-Time} relations being synonymous with 

kinetics.  

 

The paradigm serves as the most general guide for materials research and modeling, a compass 

pointing in cardinal directions. From even a cursory analysis, it is clear that structure is the most 

important, and indispensable, concept within this ontology. Structure is the causal engine that 

powers material properties and performance, the origin and terminus of processing, as well as the 

lens through which thermodynamics and kinetics are filtered into reality. Yet, often, cardinal 

directions are insufficient to find your way from one place to another, and what is needed is a 

detailed roadmap. How might the materials paradigm be enriched with even more detail? This 

work proposes that this enrichment can occur through the addition of conceptual density, 

specifically around alternative interpretations and forms of structure.  
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…when they are mingled with themselves and with one another there is an endless variety of 

them, which those who would arrive at the probable truth of nature ought duly to consider. 

—Timaeus, “Plato’s Timaeus” 

 

2.2: Materials Systems and ‘Structure’ 

Physical structure is the first and primary sense of structure present across the range of materials 

models. Materials systems are generally understood to be systems of various structural 

components occurring at length scales from the atomistic level (nm or Å scale) to the continuum 

level (m scale). At the lowest relevant scale, the arrangement of atoms—how they are 

structured—is mostly determined by interatomic bonding [6]. The strength of these bonds vary 

depending on the valence state of the atoms, and the number and type of elements within the 

system. In metals, bonding begets long range order and a crystalline structure, while in polymers 

or ceramics the types of bonds present produce a less ordered structure, with amorphous or semi-

crystalline structures. 

 

As atoms aggregate, new mesoscale structures are formed, such as molecules in polymers, or 

crystallite grains in metals. Materials systems with their various scales are considered 

hierarchical, where the lower scale components of a material necessarily comprise and (to some 

extent) inform the behavior of the scale immediately higher from it. While each subsequent scale 

does inform the next in an upward length scale cascade—and is causal sine qua non—there are 

also emergent phenomena at each new level [12].  

 

One of the most important of these emergent phenomena with regards to the behavior of 

materials are often called defects. Within crystalline materials, such as most metals, there are a 

variety of defects which may often be categorized as interruptions within the long range order of 

the crystalline structure. These defects, which include vacancies, dislocations, and grain 

boundaries, have an outsized role on the arranging powers of points within these materials 

systems and an exaggerated effect on the properties of the macroscopic material objects. The 
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same expression of non-idealized aspects of physical structure is true of all other classes of 

materials to some degree [13]. 

 

In the materials ontology derived from the materials paradigm, every small change in structure at 

any scale, has some effect on the properties of the material system, its processibility (how and 

through what mechanisms a processing change may be enacted), and on its performance in an 

application. What this entails is that, in order to fully characterize the ways in which materials 

systems behave, MSE practitioners want to be able to model all of these phenomena as 

simultaneously as possible. There exists an intense degree of difficulty to this aim, though, 

because of various challenges including the synthesis of various physical approaches, the many 

body problem, and the limits of computational power [14], [15]. 

 

As previously mentioned, materials are generally assumed to be interacting systems of various 

physical objects, arranged according to the laws governing those objects at different scales, e.g., 

bonding, or as C.S. Smith puts it “a result of the interplay between the requirements of the 

physical forces operating between the individual parts and the mathematical requirements of 

space filling” [5, p. 3]. Many of the organizing relations of a given physical component are 

relevant only in an intrascale manner, because the volume of affect of the interacting parts 

resides only on the length scale of those parts. Only in aggregation do the combined effects of 

individual interactions combine to feed the dispositional potential of the lower scale effects up 

the chain of length, and this is the emergent nature of multiscale materials systems.  

 

Each of the relations of physical, material components is governed by the same physical forces 

found in physics, simply at different resolutions. For instance, atomic bonding is a result of the 

interaction space between nuclei of varying Z, their resultant electronic structures, and the 

electromagnetic (EM) bonding force between various assemblages of the nuclei and electrons. At 

the molecular scale, combinations of lower scale forces in the forms of ions combine using 

various configurations of their EM bonding force to create larger scale assemblages of nuclei and 

electrons. As bound atomic aggregates continue to grow in number, the types of new structures 

that are being formed diverge, and the classes of materials are roughly formed. 
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These senses of material, and of material structure, are historical, arising from the development 

of use and design of the various objects of ‘engineering’ or ‘design’ interest throughout time. 

While the structure of a metal or a ceramic can now be differentiated on the basis of some 

characterization techniques such as electron microscopy, processes of differentiation have 

existed as long as someone could judge whether one material was harder or softer than another, 

for instance. Indeed, with the exception of those macroscale objects which we judge primarily 

via direct sensory interactions, every individual measurement or interaction with the conceptual 

objects of substructure is mediated through a characterization device or technique.  At every 

stage of the process, a model of varying complication is introduced and iterated upon in order to 

characterize the structure and process of structuring inherent in each material, and of each 

component in that material. In the engineering context, these models are designed specifically to 

be able to detect and predict the outcome of some mechanism of structural change that a material 

system will undergo within a specified environment.  

 

The function of models within MSE at least implies that any method that would tie together 

different conceptions of various length scale phenomena would have to involve tying together 

the conceptual landscape, an abstracted version of the physical structures, or structures being 

measured, in the context of the technique being used for its measurement. If this implication is 

correct, then it is important for the conceptual landscape of models of multiscale materials 

systems to be well and rigorously defined. While the materials systems described by these 

models do follow various empirical and analytical formulas that inform our conception of the 

overall behavior of these systems, it is informative to look at other systems theories to see what 

they may be able to offer MSE on a conceptual basis.  

 

And so each one, according as he has been accustomed to join and connect the images of 

things in this or that way, will pass from one thought to another. 

—Spinoza, “Ethics” 

2.3: Survey of Systems Philosophies  

2.3.1: What are systems philosophies? 

Systems philosophies, and approaches to systems theories, have been a part of the evolution of 

natural philosophy from the mereological theories of Plato and Aristotle [16]. Hypotheses about 
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the physical structure of objects, comparisons between systems of objects, and their behaviors 

trace back to various Pre-Socratic philosophers, Plato, and Democritus. In the centuries that 

followed, debates about systems often centered around two concepts. One is sometimes called 

“corpuscular theory” [5]—the theory that every system is equal to a sum of its parts, and that the 

behavior of that system is describable wholly by accurate accounting of the behavior of its 

constituent parts. The other is sometimes known as “holism,” a concept typically traced back to 

Aristotle that looks at a system as an emergent entity that cannot be reduced solely to the 

property of its parts [17]. These conceptual divisions are generally called reductionism and 

antireductionism, both of which include a variety of interpretations of reality based on the 

particular approach. 

 

With the advent of characterization methods capable of perceiving smaller and smaller 

components of physical systems, along with the formalization of quantum electrodynamics, the 

19th and 20th centuries saw an explosion of newly discovered components of physical structure. 

This boon of discovery had an effect of pushing research generally towards more reductionist 

subjects, trying to understand the individual properties and behaviors of newly discovered 

components of physical systems [18]. The resulting ‘silofication’ of many disciplines is still 

visible in overviews of the research of MSE, Physics, and other university departments.  

 

Yet, concurrently with the trend towards further reductionism within the sciences, more holistic 

approaches to systems began to appear within various philosophies of science. One of the 

branches of this evolution arose from interpretations and iterations on the work of Ernst Mach, a 

“founder of the philosophy of science” who “more than anyone else bridged the divide” between 

philosophy and science [19]. While Mach himself was not a systems philosopher, he was 

massively influential on philosophers and scientists of the early 20th century who would lay the 

foundation for modern systems theories [20, p. 118]. One of Mach’s biggest contributions was in 

recasting sensory events and measurements in relational terms, where instead of measuring 

objects directly, what human measurement entails is measuring the interaction between multiple 

objects. The manner in which systems interact is what produces properties of systems, i.e., it is 

the interaction itself which produces the properties. Phenomena are borne of relation, rather than 

manifesting from individual systems and their properties [20]. These ideas, along with his work 
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in physics and other topics, directly influenced other philosophers and scientists of the early 20th 

century, and provided his contemporaries with topics worthy of debate.  

 

From Mach and others, philosophers of the era began to construct various schema of systems, 

both general and otherwise. Through their work, concepts about what systems were, how they 

were constructed, and why they behaved in the manner in which they do, evolved. These 

concepts were teased out in various ways, assessed, and iterated upon, creating many modern 

theories of systems. As has been established, materials are systems of physical objects, systems 

of structures, systems of properties, and behaviors, all which come together to form our 

conception of what it is to be a material. There are general relations that every material system 

shares, something that the first materials scientists and engineers had to have understood in order 

to undertake the consolidation of their various backgrounds under a single banner. 

 

If it is a given that materials are systems, then a question becomes, “how might a science of 

materials be informed by various philosophies of systems?” Given the wealth of sources on the 

topic, and the desire to iterate upon our existing ontology of materials, a survey of systems 

theories is presented below. Through a brief and limited discussion of the ideas of six different 

philosophers—Alexander Bogdanov, Henri Bergson, Gilbert Simondon, Alfred North 

Whitehead, Bertrand Russell, and Gilles Deleuze—we will examine concepts and theories from 

each that will enrich the material ontology we seek to establish, and provide a roadmap towards a 

framework of structure to be applied to problems in MSE. 

 

2.3.2: Bogdanov 

Bogdanov was a Russian revolutionary, writer, physician, and philosopher who worked 

prodigiously across this broad range of fields until his death in 1928. He is generally considered 

to be the first to propose a theory of systems, what he called ‘Universal Organizational Science,’ 

or ‘Tektology’ after the Greek τέκτον, meaning ‘builder’ or ‘mason’ [21], [22]. Using this theory, 

Bogdanov cast matter, living organisms, and societal systems as dynamic entities, all governed 

by the same rules of what he called “positive selection” and “negative selection,” the relations of 

systems undergoing changes in relation to their environment. The balance between selections he 

termed a sense of “structural stability” [23, p. 206]. 
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Bogdanov also expanded upon some of Mach’s ideas of perception, proposing that perceptions 

of physical objects were collective, a combination of both the sensations interpreted by an 

individual, but also the collected perceptions passed to an individual through learning. This idea 

made clear to Bogdanov that objects had both an internal and an external environment which 

affected their behaviors where, “Each and every complex [his term for ‘system’] is constantly 

tending toward its own internal equilibrium in a process of constant interaction with each other 

complex it is in contact with and, through them, with all other complexes” [22, p. xlii]. These 

processes define the physical objects, and redefine for Bogdanov the central interest of systems. 

If systems are dynamic, with rich inner and outer flows of energy, then it is these processes of 

flow rather than centers of mass, or energy, which should be of primary interest. “Thus the 

Tektological cosmos is constantly moving toward a myriad of local equilibria and, in this 

process, actively changing the conditions of those equilibria. Thus the cosmos does not exist as 

state but as process” [22, p. xlii]. 

 

Characterized in this manner, it makes sense to say that Bogdanov was also one of the first to 

propose a process philosophy, an approach that characterized the inherent dynamism of systems. 

As Bogdanov saw it, the processes occurring in the growth and shrinking of a droplet of water, 

or in a collective of workers, must follow some of the same general laws, writing: 

 

“My initial point of departure consists in the fact that structural relations can be 

generalized to the same degree of formal purity of schemes as the relations of 

magnitudes in mathematics, and on this basis organizational problems can be solved 

by methods which are analogous to the methods of mathematics.” [24, p. 209] 

 

The structuring relations of Bogdanov’s complexes were processes that could be generalized, 

and rendered as mathematical objects. Using this approach, the dynamics of organizing—

structuring—powers of systems could be captured generally. These relations could be captured 

for any system, with differences being captured by the ‘experience’ or ‘instrument’ doing the 

organizing.  “All these unifying schemes are means of organizing experience; its instruments or 

‘forms.’ The instrument of organization certainly depends on who organizes or develops the 
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instrument and uses it, and on what is being organized; that is, on the material of experience” 

[23, p. 30]. The idea that systems are collections of interacting objects, balancing an internal 

potential against an external potential, will sound familiar to those in MSE. Materials systems are 

modeled in this manner generically at many different length scales. What the ‘Organization 

Science’ of Bogdanov imparts upon an epistemology built for materials systems, characterized as 

a cascade of interconnected systems themselves, is the idea that a vital characteristic of those 

systems is the exchange of ‘selective capabilities,’ not only between the object and its 

environment, but between the various processes that comprise each individual level.  

 

A tektological approach to materials systems would be one where the general forms of processes 

at the interfaces of the components of materials systems are captured mathematically, and 

integrated with the collective empirical knowledge of those components and their behaviors. 

Through this analysis, the structural sensitivities and stability of a system or component could be 

studied and organized. Even with these additions, questions remain of how to categorize these 

processes in terms of time, how they compare to the mechanistic ideas of atomic theories, and 

what a process-as-object sense of systems looks like. The nature of time is duration; processes 

endure; what does it mean for the processes of materials systems to persist in the manner in 

which they do? 

 

2.3.3: Bergson 

One enduring figure in philosophy was the influential French philosopher Henri Bergson, who 

was active around the turn of the 19th century, and into the first half of the 20th century. Through 

his works Time and Free Will (1889), Matter and Memory (1896), and Creative Evolution 

(1907), Bergson built an enthusiastic following centered around his interpretations of creativity, 

memory, and conceptions of time and duration of experience. His work was influential across 

disciplines, ranging from a famous 1922 debate about the theory of relativity with Einstein, to 

winning the Nobel Prize for Literature in 1928 [25]. 

 

Bergson’s philosophy was one of the first to regard the properties imbued upon objects as a 

relation between embedded concepts of the mind and the perception of the sensory inputs gained 

by interaction with the object. Properties of objects were contingent, relying upon “modes of 
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remembering [that] are further tempered through the degree of attention given in the perception 

of things, affecting not only the description of the object, but the features of the object itself” [26, 

p. 33]. The objects being perceived are themselves collections of points in space, so-called 

“quantitative multiplicities.” Bergson’s version of multiplicities are static externalities whose 

rearrangements produce macro- changes in the collection. This concept of the object, though, 

belies the true nature of experience to Bergson, who says that: 

 

“If these parts themselves suddenly dared to change, we would in turn divide them 

up into fragments. In this way, we will descend all the way down to the molecules 

that make up those fragments, to the atoms that constitute the molecules, to the 

generative corpuscles of the atoms, to the ‘imponderable’ at the center of which the 

corpuscle was formed by some simple swirling vortex [tourbillonnement]. In short, 

we will push the division or the analysis as far as is necessary. And we will not stop 

until we have reached something immutable” [27, p. 14]. 

 

What is absent in this model, according to Bergson, is that this atomistic model produces too 

isolated and static a view of the world, and of life. The missing element is how these perception-

images interact with time, a relation that defined Bergson’s “qualitative multiplicity,” which 

consists of a “temporal heterogeneity” [25] that organizes perception-states into a system, which 

gains emergent properties—“richer content” [28, p. 122]—as it assembles.  

 

These multiplicities are the content of the world which are perceived, and they are always a 

mixture (hence the heterogeneity) of space-time perception-relations, or events of a particular 

duration which a person may perceive. In any given setting, there are numerous events of 

varying durations bombarding our senses, creating our view of reality. Bergson would say that 

these mixtures should be analyzed, and that the “pure” objects of one’s perception should be 

studied, but that a mistake often made is that the objects of analysis are what he calls their 

“tendencies,” or the relations between the events and their durations, rather than the elements 

making up the collections of events [29, p. 256]. The collections of relations that make up 

perception are open systems, dynamically evolving and not closed off to being affected by other 

systems. 
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Bergson speaks about his concepts of multiplicity and duration, durée, with regard to human 

perceptive capabilities, but goes on to surmise that the same approach to other systems would be 

valid, saying, “Thus, nothing prevents us from attributing a durée—and thereby a form of 

existence analogous to our own—to the systems that science isolates, so long as those systems 

are reintegrated into the Whole” [27, p. 17]. The reintegration of systems back into the “Whole” 

is another process of interactions, between systems external to us, between us and those systems, 

and between the interactions between systems and us, creating Bergson’s sense of the world 

“within the entanglement of the real and the individuality of the body [which] are reabsorbed 

back into the universal interaction that is surely reality itself” [27, p. 17]. 

 

Through the construction of these ideas, Bergson thus concludes that the burgeoning separation 

of reality which the physics of his day was engaged in was in danger of losing a part of the sense 

of reality, if these notions were not used to feed the dynamics of whole systems. This conclusion 

led him to surmise that “all division of matter into independent bodies with absolutely 

determined outlines is an artificial division” [30, p. 259]. This deduction does not mean that 

Bergson was an idealist, which is to say he did not ascribe to the philosophy that reality exists 

only in the mind. The change in perception, the aggregation of durée, is descriptive of change in 

those systems and, “the passage from one to another is also an absolutely real phenomenon” 

[30, p. 258]. It is in the relation and reintegration between the individuated objects and the 

whole, through their interrelated and dynamically evolving durée that true images of reality are 

perceived. 

 

Though organic systems, especially anthropological, were of primary interest to Bergson, his 

relational interpretation of systems provides conceptual clarity useful in our interpretations of 

inorganic systems as well. Within many physics and engineering practices, the division of nature 

into subordinate systems is a primary mode of analysis. What a Bergsonian interpretation of 

MSE systems adds to our ontology is the idea that, for all our studies of the individual 

components and levels of a materials system, the most important operation is the reintegration of 

these mereological perceptions into a model of the whole system. This reintegration requires a 

careful translation of the results of deterministic state changes of aggregations of ‘closed’ objects 



25 

 

into the dynamic, ‘living,’ whole of the materials system. The relative kinetics of any two 

systems of these types is an interaction of durée of both systems, and an integration of both—

rigorous mapping of the behaviors of the component systems to the whole system—is the best 

way to capture a consensus picture of the nearest reality-perception of the material object, a 

method that iterates upon itself constantly as new information of the system becomes available. 

In order to best utilize this idea, it is important to study the processes of individuation, and 

relation between those individuated objects, that produce the properties of interest to this 

relational framework. Study of things that stand out against the background—objects that take on 

properties so cacophonous that they break through the background noise of the æther—are key to 

understanding both mereological relations throughout systems, as well as how and why things 

individuate.  

 

2.3.4: Simondon 

Gilbert Simondon was another in a long line of practically indistinguishable French philosophers 

active in the mid-20th century who worked within the philosophy of technology. He is also 

known for integrating early ideas of information into his theories, as well as his theory of 

individuation. Many of these topics, and especially those relevant here, are detailed in 

Individuation in Light of Notions of Form and Information (1964) and The Genesis of the 

Individual (1964). These works present a systems ontology that centers upon the means by which 

objects and systems come into being, and one based on ideas of metastability and information 

exchange.  

 

One of Simondon’s most well known concepts was that of individuation, a process of organizing 

by which systems come into being in the present moment. Simondon calls it “...the singular 

manner in which the internal resonance of this matter about to take this form is established”  

[31, p. 32]. Furthermore, per Simondon, this process is not one by which matter gains form, or 

by which form is instantiated in matter, but rather the relation between the two—the “operation” 

[31, p. 32]—is the object. In order to exemplify this, Simondon turns to the example of a brick.  

 

In the hylomorphic sense, a brick is the combination of the matter of construction, the “clay,” 

and the form of a brick, generally a rectangular prism shape imparted onto the material by a mold 
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of some sort, and each has their own haecceity or ‘thisness.’ The brick has ‘brickness,’ according 

to Simondon, not from some innate quality of the hylomorphic components, but rather only in 

the “...operation through which the clay, at a given moment in an energetic system that consisted 

of the smallest details of the mold as well as the smallest pilings of this humid earth, has taken 

form under a certain pressure, distributed in a certain way, diffused in a certain way, and 

actualized in a certain way” [31, p. 32]. This process, the molding of a brick, is the brick; 

systems are in a constant state of transformation, in one way or another, and each relation, or 

operation, which a system undergoes is in some manner actualizing that system. It is a process 

which involves the actualization of the relation between the internal and the external, where the 

system “realizes an energetic exchange between the form and the matter up to the point that the 

ensemble ends in a state of equilibrium” [31, p. 32].  

 

Simondon’s operation of individuation drives towards an equilibrium of actualization, which 

would sound like a familiar interpretation to any reader of thermodynamics. He is quick, though, 

to differentiate between a true equilibrium, or a null-energy state, and what systems actually 

undergo in what he terms their “becoming,” as they evolve.  

 

“Individuation has not been able to be adequately thought and described because 

only a single form of equilibrium was known, namely stable equilibrium; what 

was unknown was precisely metastable equilibrium; being was implicitly 

supposed in a state of stable equilibrium; however, stable equilibrium excludes 

becoming because it corresponds with the lowest level of potential energy 

possible…” [32, p. 301-2] 

 

His defining of metastability required the same kinds of variables as does thermodynamics, 

namely potential energies and entropy, but he believed that individuation, and its drive towards 

various metastable states, was inexhaustible. As an example, Simondon points toward 

crystallization, where a “supersaturated solution… is capable of manifesting as wave or 

corpuscle, matter or energy, because every operation and every relation within an operation is 

an individuation that splits and phase-shifts pre-individual being, all while correlating the 

extreme values and orders of magnitude, which are initially without mediation” [32, p. 302-3]. 
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As crystals solidify, they are in a constant state of becoming. A crystal to Simondon is this 

operation of organizing and reorganizing in response to newly available metastable states as the 

results of the crystallization process become the antecedent to a new becoming [33, p. 10]. 

 

With a process of dynamic actualization as described above, how are different processes of 

individuation related to one another, since there are always multiple processes occurring as a 

system? Simondon says that they are communicating, in the form of information, and that “the 

transmission of this information to the entire metastable environment is what [he] calls 

transduction, a process that is per se interminable” [34, p. 481]. Processes communicate, they 

inform one another in asymmetric ways, and change the becoming of parts and wholes in a 

discordant eruption of life. This collection of information represents an “ontology as a ‘general 

theory of operations,’ of the exchanges and modifications of being, of relation, whose 

importance lies in the fact that this action unites the means and principle discovering self-

justification through the transductive practice at its interior” [33, p. 18]. Through these 

processes—and relations between these processes—objects and systems, unities and their 

constituents, become the world around us, and information exchange is a way into our process of 

perceiving this interplay. 

 

These concepts add even more tools to a materials ontology, and a process for further expanding 

our idea of structure and structuring. Many of Simondon’s ideas reverberate with a tinge of 

familiarity, crystals and bricks, equilibrium and metastability, overlapping with the vocabulary of 

open materials systems. As with the organizational and multiplicities of durations, what 

Simondon proposes is again an idea of process as the object. In this sense, our ideas of materials 

ought to include (and to some degree do already) open metastabilities, and individuations as 

definitional for our structures. An atom, a molecule, a grain; these are not static entities kept in a 

vault, but rather vital entities that change, adapt, and reach plateaus of metastability as they relate 

within their own systems of influence. 

 

Furthermore, each component of the structure of a system is in constant communication, both 

with its surroundings and with the wholeness of the object it partially comprises. This manner of 

communication implies that, in order to understand the processes of structure, we must be versed 
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in the transductive manner in which structures communicate. It follows that a key quantity of 

structuring is information. Relation is communication, and communication infers that 

information-processes are an active part of the structure of systems. In a Simondonian sense, 

“...philosophy is the authorizing of thinking all objective structural reality as a complex of 

relations; in short, the being of becoming” [33, p. 18]. Communication is an abstract concept, a 

process with a nearly limitless application in the real spacetime that the world inhabits. The 

question becomes, how is it that from this primordial stew of signals and noise, physicality—our 

reality—takes hold? 

 

2.3.5: Whitehead and Russell 

In order better characterize processes, it is necessary to explore the related works of Alfred North 

Whitehead and Bertrand Russell, both English philosophers and mathematicians. Whitehead was 

likely best known as one of the primary architects of what is known as process philosophy [35], 

which indicated that—in a now common theme to this chapter—matter and the objects they 

make up are not independent, deterministic entities, but rather interdependent processes that 

organize the components of matter. Russell was a student of Whitehead’s who, in his career, 

wrote extensively about mathematics, philosophy, history, and society, even winning the Nobel 

prize for literature in 1950. 

 

Together, they wrote one of the seminal works on formal logic in the Principia Mathematica 

(1910). They also both wrote relevant philosophical works about the nature of systems and 

matter. Russell put forth his main theory in a work entitled The Analysis of Matter which 

concerned relations and their structuring potential. Whitehead composed Process and Reality 

(1929), which put forth a rigorous philosophy of science and mathematics that was concerned 

primarily with the processes of relation. 

 

Whitehead wished to explore concepts of systems that would exist prior to their systemization, 

and found instead the ursprung of relation, which he determined to be the ‘assemblage’ [36]. 

While the systemization of things was fruitful for specialization—for drilling down to 

increasingly finer grained detail within a subject—assemblage looks for the primary relational 

capacities of things, tying the whole of the world together. Starting with assemblage, as 
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Whitehead saw it, informed systemization and, without it, rendered the results insensible. As an 

example, he conjured an image of steel, and described it saying, “There are simplicities 

connected with the motion of a bar of steel which are obscured if we refuse to abstract from the 

individual molecules…” [37, p. 16].  

 

This sense of entities, which Whitehead takes to be processes between the whole (bar of steel) 

and its components (molecules), prompts one to ask not how these entities are in the world, but 

rather how they become. Becoming, then, is a process wherein parts become the whole of which 

they are a part, and the system becomes part of its environment. If we perceive it, the object then 

becomes part of our conception of the object. This phenomenon of perception is possible because 

“being is located neither in the object itself nor in the subject that perceives it. This leaves 

becoming as primary” [38, p. 63].  

 

This conclusion prompts a further redefining of structure towards process, and towards a general 

theory by which we cognitively see the shape of how the universe shapes itself. Russell similarly 

wrote that: 

 

“I say that I am acquainted with an object when I have a direct cognitive relation 

to that object, i.e. when I am directly aware of the object itself. When I speak of a 

cognitive relation here, I do not mean the sort of relation which constitutes 

judgment, but the sort which constitutes presentation” [39, p. 108] 

 

This object-relation as presentation is the same sort of mental becoming as described by 

Whitehead. The topic resurfaces in The Analysis of Matter as his differentiator between 

analytical and empirical knowledge, with “any degree necessarily dependent on perception” 

being termed as ‘empirical’ [40, p. 167-8]. 

 

All of these relations are preceded by Whitehead’s concept of prehensions, which describes how 

objects and systems interact with their environment, and how that affects their becoming. 

Whitehead called prehension “the general way in which the occasion of experience can include, 

as part of its own essence, any other entity” [41, p. 177]. The prehensions of an object are a part 
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of the structure of the object, and describe the potential inherent within objects to relate to other 

objects and systems, which is how “materiality and physicality come to be” [38, p. 63]. The 

manifold of relations which Whitehead proposes creates a framework by which the potential of a 

system can be understood in terms of the various perceived processes in response to some 

stimuli. Systems prehend their becomings, they contain within them the potential processes by 

which they can react and become something different, or new. These processes include our 

perceptions and interpretations of some system-object’s becoming; prehensions existing within 

ourselves.  

 

These concepts provide the tools by which one may delve further into the relational capacity of 

systems. Whitehead’s prehensions, and Russell’s perceptions, give us the vocabulary to 

differentiate between potential energies—at least qualitatively—as the potential to react to 

particular sets of relations. This idea corresponds nicely to the idea of material properties, a 

distillation of various reactions that materials systems have to different sets of environmental 

relations. Whitehead lends a fuller sense of process through the concept of prehension, one that 

can inform the materials ontology in its descriptions of processes—both in the philosophical and 

material sense. We have examined—very cursorily—how philosophies of systems, and systems-

as-process construct a vital and vibrant ontology of reality. Yet, if only to avoid around the ire of 

Bergsonians, we should now take these concepts and assemble them into the whole of the 

account. 

 

2.3.7: Deleuze 

Gilles Deleuze was a French philosopher, and one of the foremost modern interpreters of the 

recent history of philosophy. His philosophical works were wide-ranging, and often revolved 

around other philosophers whose work Deleuze found to have been overlooked, or 

underappreciated. He wrote intentionally about Bergson and Simondon, and often played with 

ideas that can be traced back to Whitehead [42]. Through these interpretations, Deleuze 

constructed his own process ontology that built upon these influences, including varieties of 

many concepts such as assemblage, immanence, and becoming.  
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Deleuze’s interpretations consolidated much of the process thinking of the 20th century, and 

applied it far afield from whence it originated. Much of Deleuze’s oeuvre [including works with 

Felix Guattari] is often called ‘assemblage theory,’ and that is one of the concepts that he returns 

to often. The word ‘assemblage’ derives, in fact, from the English translation of the French word 

‘agencement,’ which may also be translated as ‘arrangement’ [43, p. 18]. These assemblages are, 

as might be expected, more like the processes that result from a rearranging of some objects or 

systems, harkening back to Bergson’s multiplicities.  

 

Assemblages are processes of things arranging, which Deleuze and Guattari termed a two-step 

process of becoming content and expressing that content. Deleuze also painted a vitalist picture 

of the world, wherein assemblages territorialize and deterritorialize, types of becoming as a 

relation between assemblages. These becomings differ slightly between Deleuze and his 

predecessors, with, for instance, Simondon “heralding that singularity inaugurates the taking of 

form (the process of ‘in-formation’) within a potential field, while Deleuze sees in it what 

structures a potential field (and hence the process of differentiation)” [34, p. 486]. For Deleuze, 

the structuring that is inherent in becoming, along with Bergson’s durée, serves as the basis for 

his differential ontology [44]. Structuring through the combined processes of ‘differentiation’ 

and ‘differenciation’—the former a part of Deleuze’s ‘virtual’ and reminiscent of ‘prehension,’ 

and the latter the process of actualizing from the ‘virtual;’ the content and the expression of that 

content—leads Deleuze to a vibrant process ontology that is widely applicable [45, p. 78]. Of 

particular interest is that Deleuze saw this vitalist framework as not only applicable to the mind, 

social systems, or organic life, but more than anyone else in the period, applicable to the vitality 

of inorganic systems. 

 

In his work A Thousand Plateaus with Guattari, they write about metals in the context of 

Simondon’s brick, clay, and mold example, saying the vitality is found in metallurgy as it 

“raise[s] to consciousness something that is only hidden or buried in the other matters and 

operations” [46, p. 410]. It is not in exactly the same way that Simondon saw it, as metal qua 

metal in the act of becoming, but rather they see in metals and metallurgy a new form ascending 

on the operational boundaries, or “thresholds,” of the process of becoming. This interpretation is 

clarified as they write, “the operations [in metallurgy] are always astride the thresholds, so that 
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an energetic materiality overspills the matter, and a qualitative deformation or transformation 

overspills the form” [46, p. 410]. 

 

Even though, for centuries, philosophers had been using metals and metallurgy as exemplars of 

the deadest, most inorganic systems that exist, in the meta-flow described above, Deleuze and 

Guattari see vitality. They write that, “Matter and form have never seemed more rigid than in 

metallurgy; yet the succession of forms tends to be replaced by the form of a continuous 

development, and the variability of matters tends to be replaced by the matter of a continuous 

variation” [46, p. 410]. The fact that metals (along with other materials) are ‘processed’ by their 

environments, either by design or ambiently, grants them the same sense of becoming afforded to 

organic matters. They confirm this “life” as a “material vitalism” which “doubtless exists 

everywhere but is ordinarily hidden or covered, rendered unrecognizable, dissociated by the 

hylomorphic model.  Metallurgy is the consciousness or thought of the matter-flow, and metal 

the correlate of this consciousness” [46, p. 410]. Metals are, of course, not the same as organic 

materials, but in the exploration of their becomings Deleuze and Guattari find a qualitative 

structuring potential that shares similarities.  

 

2.3.8: Contributions to a Materials Ontology 

This all-too-short survey is not intended as comprehensive, and clearly there are many ‘lines of 

flight,’ (connections) that could be drawn from these systems theories to an ontology based 

around the materials paradigm. These philosophies also revolve around various conceptions of 

structure which differ from that of MSE, allowing for a melding of all notions to form a new 

materials ontology, further evolving our own idea of structure. Rather than collections of closed 

off objects, what this survey constructs is a picture of an organization of processes. These 

processes form physical objects, parts of those objects, and the environments that shape and form 

these objects. As scientists and engineers, we endeavor to understand how and why systems of 

physical objects behave in particular ways, and how we might predict those behaviors. These 

mechanisms constitute our models, which are representations of multiplicities of these 

organizations, various durations of interaction with the objects themselves, and representations 

of the objects through various means of characterization.  
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The objects-as-process are relations, individuated through their relation with their surroundings, 

process-clay in relation to process-mold. These systems are, by virtue of their potential energies, 

always in flux, clawing towards metastability. They become, and the various becomings relate to 

one another through information; the language that one system speaks to another within and 

without our perceptions. We sift through these becomings to prehend recognizable structuring 

potentials, and through these we hope to recognize various patterns of becoming. These 

processes, though derived from the organic and the social, feel equally as relevant to the world of 

inorganics—of metals, ceramics, polymers, and the like—and we have seen that the structuring 

potential of them can be couched in the same terminology, the same framework. 

 

These objects are abstractions, and may not yet feel wholly applicable to the seemingly concrete 

systems that are the everyday experience of MSE practitioners. The idea of multivalent structure 

that they convey is one that has to be analyzed in several ways, and one that lends itself to a 

meta-analysis of the structures of the component processes. In MSE, materials, components of 

materials, properties, and behaviors are grouped in a variety of ways, so a framework which 

takes into account a multivalent structure, and does not throw out the vast knowledge of material 

practice, will need involve every concept of structure that has been used to this point.  

 

We are left to conclude that the definitional structure of a set of materials processes, the 

measured empirical structure of materials experiments, the informational structure of materials 

data sets, and the mathematical structure of materials models must all be included in our theory 

of physical structure. In order to build this framework, we first look to each sense of structure, 

and the background needed to elucidate their concepts. Additionally, we look for any existing 

frameworks that may capture versions of the structuring similar to the conceptual structuring that 

has just been described, which leads us to the closest existing parallel, Relational Quantum 

Mechanics as described by Carlo Rovelli.  
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Nature is a theatre for the interrelations of activities.  

All things change, the activities and their interrelations. 

—Alfred North Whitehead, “Nature and Thought” 

 

2.4: Relational Quantum Mechanics  

Materials, as generally constituted, are not perceived as quantum systems. In the models used to 

study our original sense of physical structure, the components of materials systems are rather 

deterministic, and capable of being reconstructed through mostly Newtonian physics. This 

section does not represent an attempt to recast the macroscopic behaviors exhibited by materials 

systems in a quantum mechanical light, even though all systems are in fact quantum systems [3, 

p. 1658]. Rather, in the previous section we outlined a new sense of structure which can 

hopefully be applied to materials systems, and thought to look for any degree of analogous 

treatment in modern scientific applications. This treatment is the interpretation of quantum 

mechanics published by Carlo Rovelli in his ground-breaking paper Relational Quantum 

Mechanics (1996), and expounded upon in several of Rovelli’s books including Helgoland 

(2021).  

 

Rovelli opens his interpretation by proposing that the notion of the “absolute” or “observer-

independent” states of systems are incompatible with the results of quantum research, due to the 

fact that two observers of one system can produce different accounts of the same event [3, p. 

1637]. If this result is the case, then every result of a quantum mechanical experiment is relative 

to the observer. Therefore, as a system is measured, a consensus conceptual idea of the system is 

constructed, and these sets of measurements become “a theory about the states of systems and 

values of physical quantities relative to other systems.” That every measurement of a system is 

relative to another system (or systems), leads to the conclusion that “in quantum mechanics all 

physical variables are relational” [3, p. 1648-9]. 

 

These conclusions already mirror some of those which were elucidated in the previous section. 

Measurements are always relative to the system performing the measurement (here the 

‘observer’), and the properties that are produced through sets of repeated measurements are 

averages of the set of relative measurements performed. Averaging these values does not 
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produce some observer-independent concept of the system being measured, but rather gives the 

sense that the only independent factor within measurement systems is the form of the relation 

between the observer and the observed systems. One key to building a physics around this shift 

to a relational interpretation is to be able to in some way measure the relational capacity of 

systems, and for this Rovelli suggests information.  

 

The form of information that Rovelli suggests is classic Shannon information, which he 

describes in this context as “...a measure of the number of states in which a system can be—or in 

which several systems whose states are physically constrained (correlated) can be” [3, p. 1641]. 

This basic, correlational sense of information does not take into account differences between 

observers or system types, so it is not exhaustive in its descriptive powers. Rather, as Rovelli 

notes, it is a necessary condition of relation for any other, more descriptive form of information. 

If two systems are correlated (and they all are), then there must exist some measure of the effect 

that this correlation has measured from the starting point of one correlative body, or the other.  

 

Materials models are often created in an attempt to predict the behavior of some aspect of a 

materials system, and this predictive bent is also a part of Rovelli’s treatment of information. 

While the information that one system has about another may vary, depending on the context of 

a measurement, there is a subset of that information which is “useful for predicting future 

answers of possible future questions” [3, p. 1656] which is called relevant information. Relevant 

information connects the measured, internal, informational qualities of a system, and relates 

them to how they may potentially affect some other system, in some other measurement. This 

type of information is important in a materials context, because it is the first connection towards 

building meaningful (here, important to human use) interpretations of materials systems 

behaviors. Relative relevant information: 

 

“...is not the whole chain between physics and the full notion of meaning in the 

mental world, but it is the first link in this chain—the difficult one. It is the first 

step from the physical world, where there is nothing that corresponds to the 

notion of meaning, toward the world of the mind, whose grammar is based on 

meanings: signals that have meaning.” [20, p. 175] 
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This baseline of relation, and the types of information used to interpret it, are important to 

physics, and fields that deal with physics, because “Physics is concerned with relations between 

physical systems. In particular, it is concerned with the description that physical systems give 

about physical systems” [3, p. 1655]. Materials are physical systems, they contain physical 

systems, they interact with physical systems, and our teleological design of them consists of 

predicting how they will interact with particular physical systems. Much like Rovelli’s 

interpretation of quantum mechanics, we are left to conclude that our own interpretation of the 

various ‘mechanics’ of materials should center around relations of the physical systems of 

materials. Materials systems are measured in different ways from smaller scale quantum systems, 

though, so the relational qualities of measurements must also be discussed.  

 

 

The instrument presents an epistemic synthesis, seamlessly  

joining representation and action to render information.  

This synthesis does and must take place in a material medium.  

—Davis Baird, “Thing Knowledge” 

 

2.5: Measurement 

Measurement within an MSE context can mean an enormous number of different things. 

Characterization techniques measuring properties in the field can range from acts as simple as 

swinging a hammer at a sample (Charpy impact testing), or probing atomic scale phenomena 

with electron beams (electron microscopy). In practicality, this diversity of approaches means 

that any theory of measurement within MSE would need to concentrate on the form that 

measurement takes, and the forms of data produced by the acts of measurement, rather than 

particular methods being employed, in order to study the relational capacities inherent in 

measuring materials systems. 

 

In fact, across the various techniques used to measure, there are common relational qualities that 

are instantiated within the data sets produced by these measurement techniques. The type and 
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form of data that a measurement produces are the important qualities for both ensuring that 

empirical data is contextualized properly within a set, and for translating that data for any 

possible analytical synthesis. In order to illustrate those qualities, measurement should be 

presented in the most general terms possible, which leads to three related concepts of 

measurement, all of which are relevant to our coalescing sense of structure. These are [47]: 

 

 Mathematical measurement 

 Informational measurement  

 Measurement within models 

 

Mathematical measurement is defined as “the mapping of qualitative empirical relations to 

relations among numbers (or other mathematical entities)” [47]. This approach takes the data 

produced by a measurement technique and assigns to it some sort of mathematical structure. This 

is a common practice, and perhaps the most widespread, as most physical experiments result in 

some form of mapping onto sets of mathematical relations—especially those of sets of numbers, 

e.g., ℝ, ℤ, or ℕ. Additionally, this is the primary process of imbuing empirical models with an 

initial form of mathematical structure, something that will become important later in the thesis.  

 

As might be expected, informational measurement is defined as “the gathering and 

interpretation of information about a system” [47]. Feeding forward from the previous section, 

we think of information measurements as exactly what was discussed, determining how much 

the measurement system (or observer system) knows about the system being measured. This 

process involves looking at the number of correlated states between the apparatus and the object 

being measured, and can set the boundaries for the mathematical measurements by qualifying 

how much information it is possible to transmit via measurement for a particular technique.  

 

Finally, measurement within models takes the two prior forms, and uses them to create analytical 

models—combinations of empirical models that can then be used predictively on the basis of the 

combined phenomena they describe. Measurement within models is also defined as “the 

coherent assignment of values to parameters in a theoretical and/or statistical model of a 

process” [47]. This process is how, traditionally, various laws of physics come to be. Related 
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experiments produce related empirical data sets, and these are assigned to variables in a model of 

some multivariate phenomenon. If measurement is the relation between components of a system 

mapped onto sets of numbers, then within these sorts of models this third sense is the 

measurement between a relation of those relations.  

 

The combination of these three senses of measurement are adequate to the construction of 

materials models, and help to imbue the models that are a result of measurement with useful 

properties. For instance, S. S. Stevens assigned different types of measurements into different 

classifications in a classic 1946 paper entitled On the Theory of Scales of Measurement. In this 

paper, Stevens classifies measurements into one of four different scales [48, p. 678]: 

 

1. Nominal – a “determination of equality” 

2. Ordinal – a “determination of greater or less” 

3. Interval – a “determination of equality of intervals or differences” 

4. Ratio – a “determination of equality of ratios” 

 

To each of these he assigned a ‘group structure,’ in order to classify types of measured data 

according to their inherent relational characteristics, and their most basic mathematical structure, 

respectively. This process allowed for direct comparison and contrast between the types of 

numbers and variables being produced by various forms of measurement. It is an example of the 

types of properties that the outlined senses of measurement can help imbue on sets of data, as 

well as helping to establish “rules… under which numerals are assigned” [48, p. 680]. 

 

The above example concerns primarily the mathematical structuring of measurement, so what of 

the other two types? Information and approaches to modeling both structure measurements in 

different ways to the inculcation of mathematical structure on data sets. The first sets rules and 

variables for what type of information measure can be seen once two systems are in relation. 

Beyond just the Shannon sense of information, other types arise to describe the relation of 

systems in different forms. Modeling also has unique approaches, ones that often change 

depending on the field, experiment, or context of the system being modeled. Both are explored in 

further detail in the following sections. 
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“...the elements useful for thinking the world are manifestations of physical systems to 

each other, not absolute properties belonging to each system.”  

—Carlo Rovelli, “Helgoland” 

2.6: Information Theory 

The technical concept of information was first proposed by Claude E. Shannon in A 

Mathematical Theory of Communication [49]. Since then, concepts of information have 

expanded to encompass a variety of different ways to measure signal, communication channels, 

variance, and the relational capacity of systems in a variety of different fields. Information has 

come to be synonymous with the concept of entropy as well, although it is not quite analogous 

with thermodynamic entropy. In many instances, the variety of entropy used becomes a measure 

of the information quantity that one system has about itself—as in the Shannon entropy of a 

system which is the probability of finding the system in a particular state—or about another 

system, or state of the original system [50]. 

 

This first sense of information, now called Shannon entropy, quantifies the uncertainty of a 

random variable. The equation given by Shannon is: 

 

𝐻(𝑥) = −∑𝑝(𝑥) 𝑙𝑜𝑔2 𝑝(𝑥)

𝑥∈𝑋

(4) 

 

where H(x) is the entropy measured in bits for a base 2 logarithm, and p(x) is the probability of a 

particular variable, x, being selected [50, p. 13]. This measure corresponds to the information 

content, I(x), of a distribution of variables by: 

 

𝐻(𝑥) = 𝔼[𝐼(𝑥)] (5) 

 

where 𝔼 is the expectation value. These two equations serve as the basis—the minimal form of 

measurable information—for random variables and probability distributions. These expressions 

were initially formulated as a way of measuring the signal from a source to a destination as it is 
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transmitted along a signal chain and encounters noise. The famous diagram showing this chain is 

shown below in Figure 4. 

 

 

Figure 4: A signal chain which transmits signal (information) from the Source to the Destination, recreated from 

[49]. 

 

This diagram can also be interpreted as one side of a relation of signal transmitted, then received, 

between two systems. As discussed in previous sections, information is the “language” that 

systems use to communicate with one another, and each system can serve as both a ‘source’ and 

a ‘destination.’  

 

Information as a measure of the communication between systems can be interpreted in different 

ways. In the Shannon sense, information measures the ‘entanglement’ of two systems, and how 

much change one system may affect, or ‘know,’ about the other system. In the context of 

materials modeling, a type of information of interest is often in the contrast and comparison of 

experimental data to the results predicted by some empirical or analytical model. One of the best 

measures to directly analyze sets of modeled data, or data concerning state changes, is a quantity 

known as the relative entropy, or the Kullback-Leibler divergence. The relative entropy of two 

probability distributions is given by: 

     

𝐾(𝑃‖𝑄) = −∑𝑃(𝑥) log
𝑃(𝑥)

𝑄(𝑥)
(6) 
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where K(P∥ Q) is the relative entropy measured in bits for base 2 or nats for base e logarithms. 

P(x) and Q(x) are the discrete probability distributions based on sets produced by fluctuations of 

the independent variable in question, and that of the reference state, respectively [50]. The 

relative entropy is a statistical divergence, an asymmetric ‘distance’ between probability 

distributions that is always positive, and only zero if the distributions are completely equivalent 

to one another [51].  

 

Related to both the Shannon entropy and relative entropy is the concept of mutual information. 

Given two random variables, X and Y, the mutual information, I(X; Y), measures how much 

knowledge of one of the variables informs about the second, and is given by Equation 4 [50]: 

 

𝐼(𝑋; 𝑌) = ∑  

𝑥∈𝑋

∑𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦∈𝑌

(7) 

 

where p(x, y) is the distribution of both variables and p(x)p(y) is the distribution of the product of 

the variables. The mutual information is also equivalent to the difference between the Shannon 

entropy and the conditional entropy for two variables with: 

 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (8) 

 

where H(X|Y) is the conditional entropy of X given Y. The mutual information of a variable with 

itself is equivalent to the entropy of that variable, which is why Shannon entropy is also called 

self-information [50].  

 

With these three concepts of information, materials systems can be compared in terms of their 

relatedness, and relational potential, in the context of a measurement of structure, structural 

change, or structuring potential. Several of these types of information will also allow for a 

quantification of the relative relevant information discussed in section 2.5, which is the 

information between two systems that can be used to predict the effect one system has on another 

system. Every type of information presented here can be used for the creation of engineering 

judgment—the addition of informational structure from dedomena to data to information to 
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judgment that contextualizes the use of materials in the application decision-making process, 

finding data that is distinctively distinct [52]. 

 

Finally, these various types of information provide a basis for establishing criteria of 

informational equivalence. Depending on the context of some experiment, model, or theory these 

measures of information can be judged across a comparative interface to see if there are 

compatible quantities, objects, and structures on the basis of their information and entropy form 

or content. Information is the key relational quantity when looking at the interaction and 

structure building across models or theories. The forms of those models and theories become 

important to the transmission of information, and before looking at the general structures of 

models and theories, we look first at the specifics of materials modeling.  

 

 

 

So it is with all successful models: they unashamedly distort  

the inessentials in order to capture the features that really matter.  

—M.F. Ashby, “Physical Modeling of Materials Problems” 

 

2.7: Modeling within MSE 

Modeling in MSE is typically centered around one of two broad goals: recording how natural 

and engineered materials are structured at all relevant scales, or measuring how these materials 

react to some energetic impetus in terms of some property of interest. Much existing research in 

the field covers one or both of these goals, for particular materials systems.  In order to create the 

sum picture of any given materials system, various models from ab initio electronic structure 

calculations to molecular dynamics of atomic structures to finite element analysis of mesoscale 

structures are stitched together as a method towards creating a multiscale, continuum model of a 

material, which could serve as the ultimate predictive tool for material behavior, and a key 

element in the process of designing new materials [15]. 

 

Each of these modeling techniques (and others) uses a different set of physics or chemistry to 

predict how certain objects, e.g., atoms, molecules, will behave in some contextual energetic 
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environment. The techniques of materials modeling will often use these different rules to 

represent the same object, at some interface of length or time scale. As stated in previous 

sections, material structure is commonly understood as the set of objects, at a particular scale, 

which may be manipulated to cause some change in material properties, but it may also be 

framed as the set of potential interactions of which a set of ‘objects’ is capable; for instance, the 

types of bonding made available by particular mixtures and quantities of atoms.   

 

Materials models all revolve around the idea of structure, and often we wish to know in what 

ways the systems composed of these structures are able to contextualize the input of particular 

forms of energy—a process of structuring. Yet, for all of the models in use, and all of the 

empirical data collected to-date, there still exists a knowledge gap at the interfaces of different 

scales of phenomena. Various theories attempt to fill these gaps and, as these theories about 

material mechanisms and behavior are proposed, a variety of modeling techniques are used to 

determine the ‘structural’ or ‘behavioral’ basis of these phenomena. Additionally, techniques are 

extended to serve as predictors for potential behavior of materials in various environments. 

 

The predictive capabilities of models also depend on the type of model being used. There are 

several approaches to modeling within MSE, beginning with empirical and physical, or 

theoretical, modeling [4], [53].  Empirical modeling consists of taking data resulting from any 

experiment and fitting some mathematical equation to it in order to get a sense of some specific 

material behavior, but is not predictive for those phenomena. Physical models are constructed 

from physical laws, and on the basis of their analytical power can be predictive of the behavior 

of various materials systems [4, p. 102].  

 

As phenomena are better understood, and more causal elements within mechanisms are 

discovered, the physical models that encapsulate them have to change in order to enhance their 

predictive capabilities. This enhancement occurs through the iterative process of mathematical 

structuring, or adding the smallest set of new variables and relations to better capture the 

phenomena. This process is captured below in Figure 5: 
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Figure 5: The process of constructing and iterating upon physical models, adapted from [4]. 

 

This flowchart shows various points within the process of constructing a physical model where 

various bits of structure may be added, tested, and then fully integrated. Structure can arise from 

direct experiment (Box 3.1), from analogous experiments (Box 3.2), from dimensional analysis 
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(Box 6), or from various calibration techniques (Box 8.2). These structures allow models to be 

checked, internally, and for two models to be compared and contrasted with one another. The 

structures of materials models become increasingly important as they are put in to use, not only 

because of their application as predictive of material behavior, but also because structures of 

various forms are key to testing and iterating upon models that bridge length scale effects in 

materials systems. Figure 6 below shows all of the scales currently deemed relevant in MSE: 

 

 

Figure 6: The length / time scales relevant to material phenomena, and the physics that describe them, adapted from [14]. 

 

Within materials systems, at any given moment, there are changes of various mechanisms 

occurring at each of these scales simultaneously. In order to capture each sense described above, 

a variety of models, and model types, are required including empirical and physical modeling. 

While those two forms of modeling are the primary basis of our understanding of the physical 

structure and behavior, the advent of computers have introduced new forms of modeling: 

primarily computational and ‘big data’ (e.g., machine learning) modeling [53]. 
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Each successive form of modeling, from empirical to physical to computational to ‘big data,’ 

incorporates the previous in their construction. The assumptions and structures that underlie each 

of these modeling types then feed forward into the assumptions and structures of the subsequent 

types. As is clear, iterations of models used within MSE integrate an enormous number of 

approaches, variables, and physics, and keeping the interfaces between these rigorously defined 

requires ideas about how theories and models interact and inform one another. 

 

 

 

He looked across the sea and knew how alone he was now. But he could see the prisms in the 

deep dark water and the line stretching ahead and the strange undulation of the calm. 

—Ernest Hemingway, “The Old Man and the Sea” 

 

2.8: Theories and Models 

Theories are ways of looking at the world, they are the collective, cognitive understanding of 

human experience, both internal and external. As we seek to understand the reality that we 

inhabit, we create theories about what things are, why they behave in particular ways, and how 

they are connected in the web of existence. Within these theories, patterns ebb and flow, coming 

in and out of focus. In order to illuminate these patterns, models are created which adhere to 

particular theories and map various phenomena in order to better understand them and, 

occasionally, predict them. 

 

Materials models sit embedded in various material, physical, and chemical theories. In 

communicating structure across an interface of scale or phenomena, materials systems are often 

pragmatically stitched together. Yet, in studying the methods of these syntheses, it is also 

important to take into account how theories and models fit together and inform one another 

generally. Models are adherent to a particular theory, and theories can contain multiple models. 

It is, therefore, important to map out the ways in which theories inform the models of various 

aspects of that theory, and the ways in which models inform the structure of the theories of 

which they are a part. 
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As theories are primary to models, we first want to know what a theory is, how it is that we 

connect to theories, and how we use theories. In MSE, we use theory as a method of 

organization; for different material classes, for mechanisms of material behavior, or for 

collections of like properties. Theories guide our material design, and our design-of-use for the 

materials systems to be engineered; they are teleological blueprints. Theory is defined as “the 

analysis of a set of facts in their relation to one another” [54]. This definition fits with the idea 

of structure that has been outlined here so far. Theory is, then, a process of abstraction from 

some related set of things; it is information drawn from the data of the senses. The components 

of a theory share some relation, rules of interpretation, and ontological commitments that inform 

the manner in which that theory is used [55]. The cohesiveness of a theory is dependent on how 

the components of that theory, the models that represent the commitments of that theory, fit 

together. They are an assemblage, and the strength of a theory depends on where the boundaries 

of the theory are drawn. 

 

Models are clearly integral components of a theory, acting as representations of the theory, or of 

components of the theory. These components are, naturally, relations and models are “the 

representation of relationships between some formally defined quantities or qualities” [56, p. 7]. 

Models describing qualitative relationships give a flavor of the ways in which systems behave, 

establishing a basic causal calculus that builds up the conceptual structure of the theories to 

which the models belong. Models describing quantitative relationships assign to the qualitative 

relations a mathematical formalism that allows for novel approaches of representation and, 

eventually, prediction. Both senses of a model can be constitutive of a theory, and a basis for 

comparison and contrast between theories of the same, or similar, phenomena. 

 

Given how models constitute theory, they may be considered the structure of a theory [57]. 

Models relate to one another within the same theory, or may share structural similarities across 

theories. They inform the shape of theories, through iteration, and the shaping of the ontological 

commitments of the theory. Models serve as the invariants across transformations, echoing Max 

Born who said that complimentary theories should take the form of "...a set of invariants, 

characteristic of the entity" [58, p. 146]. Materials systems are qualitatively structured by various 

theories, and the models of these theories serve as the skeleton onto which the science of 
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materials is grafted. Therefore, like other theories, once the structures of materials theories are 

invoked, it follows that the invocation “will bring in its wake a criterion of equivalence; theories 

are equivalent if they agree on that structure” [57, p. 3].  

 

Thus, this discussion arrives at the conceptual crux of structure. Structure, across the various 

senses that have been discussed, is the sets of relations between the objects of a model or a 

theory that remain invariant across some change, or some comparison. Materials models contain 

so many, and such a variety, of structures that accounting for all of them makes a unified theory 

of materials difficult to parse. What is required are methods of abstraction for materials models 

in order to find structuring components, and a method of sorting and categorizing the 

components that are sussed out. Therefore, the approach needed for an analysis of structure is 

contained within an abstract mathematics capable of probing any structure that might arise in 

materials modeling, which is offered by category theory. 

 

 

 

The first of these papers is a more striking case; it introduced the very abstract 

idea of a “category”—a subject then called ‘general abstract nonsense’! 

—Saunders Mac Lane, “The PNAS Way Back Then” 

 

2.9: Category Theory 

Category Theory is a mathematical field concerned with “structures and of systems of structures” 

[59]. As such, it centralizes the relations between collections of objects—and between the 

objects themselves—in the study of systems and how structures are preserved across different 

pathways of change in those systems. If structures can be thought of as models of context for 

objects and collections of objects, then the desire is for category theory to be used as a “universal 

modeling language” [60]. In addition to modeling structures, category theory also provides a 

connection to higher order structuring operations, and to algebras useful for comparison of even 

disparately structured systems. Using these conceptual tools, pre-existing in mathematics and 

accessible through category theory, an enormous variety of structures could be described within 

the same framework and compared on an axiomatic basis, centered around a conceptual object of 
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category. To do so, the formal components of a category should be found or defined in any 

theory which we wish to connect to this network of transdisciplinary knowledge. 

 

Categories are formally defined as mathematical objects, with a category, 𝒞, consisting of several 

collections [61, p. 21]: 

 

 

Definition 1: A Category, 𝒞, is a mathematical object containing 

 a set of objects of 𝒞 

 a set of mappings between the objects of 𝒞, called morphisms 

 a map from each object of 𝒞 to itself, called an identity 

 a set of morphisms that compose the other morphisms of 𝒞, called composite morphisms 

Each composition must also have two properties: 

 composition must be associative, where given morphisms f, g, and h, then  

f ∘ (g ∘ h) = (f ∘ g) ∘ h 

 composition must follow identity rules, where if f is a map from A to B, or f: A→B, then 

1B ∘ f = f and f ∘ 1A = f 

 

There are two other concepts central to category theory that deepen the connective tissue that 

categories offer. The first is that of functors, which is a morphism, or operation, between two 

categories. The second is that of natural transformations, which is a morphism between two 

functors. All of the morphisms—those in the base category, as well functors and natural 

transformations—are ‘structure preserving,’ which in this context means they are required to 

translate the mathematical structure of the objects that they map. These three nested concepts 

allow for descriptions of complex structures, and an enormous number of different mathematical 

objects, an indication of the vast utility of these concepts. 

 

Categories are moldable, and through processes of categorification any data renderable in set-

theoretic terms can be converted into a category-theoretic version, which adds mathematical 

structure to the data. Each of the resulting objects should also share properties with their set-

theoretic counterparts, rules they need to follow called coherence laws [62], that preserve the 
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properties of the original sets, in the mathematical context. Once categorified, the adjusted 

models can be used to create cross-functionality, or to embed structure inherent in any sub-

processes into a given model.  

 

There are, potentially, many existing mathematical structures that can be grafted in various forms 

onto materials models. The first step is to find existing sets within materials models, determining 

how these sets are related to one another, determining what mathematical properties they may 

already possess, and determining which variables make up the domain and codomain for any 

identified set-theoretic relation. Ontology logs, or ologs [63], are also useful shorthand for 

representing the set- or categorical structures of models and their variables visually, an example 

of which is shown below in Figure 7: 

 

Figure 7: An example of an olog showing a mapping from a pair of integers to singleton sets of integers, preserving 

the structure of the set of all integers, ℤ. From [63]. 

 

Ologs are especially useful as knowledge representation tools because of the implicit 

mathematical structure embedded within them. If an olog can be created for a system, then the 

assumption is that each box is an object in a category, each arrow a morphism, and that the 

arrangement of the boxes and arrows follow the rules established in Definition 1. This feature of 

ologs is very useful in organizing the mathematical structures that are part of any system being 

represented. Ologs have been previously used in MSE research [64], [65], though the 

construction of the explicit categories based on the ologs drawn was not performed.  
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The tools of categorification and ologs both offer ways to analyze the structure of models, and 

also to determine the degree to which the structures that both tools illuminate are the same. The 

former, especially “refines our concept of ‘sameness’ by allowing us to distinguish between 

isomorphism and equality. In a set, two elements are either the same or different. In a category, 

two objects can be ‘the same in a way’ while still being different” [62, p. 7]. Isomorphism refers 

to a map that has a bijective inverse, such that if f: A→B and g: B→A, then f is isomorphic if g ∘ 

f = 1A and f ∘ g = 1B. Equality, in this sense, is where categories have a specific isomorphism out 

of the set of possible isomorphisms that can exist.  

 

This property of categories is incredibly useful, because it offers a way to say that things are the 

same in one way, different in another, and gives the tools to differentiate. Materials by definition 

are the same kinds of things. Yet, clearly, they are different in an enormous variety of ways; 

metals are not plastics, iron is not copper, a single crystal is not a polycrystalline grain structure. 

Accounting for these differences while searching for similarities is the task set for MSE across a 

variety of contexts, and category theory offers the most diverse toolset to accomplish this task. 

Categories encapsulate a sense of structure that can inform models of materials, decipher 

embedded mathematical structures, find structure-preserving maps, and determine sets of 

invariants. It follows then that the use of categories, and the tools of category theory, is a process 

of finding equivalences between objects, systems, behaviors, and theories. 

 

 

 

Whence things have their origin, 

Thence also their destruction happens, 

As is the order of things; 

—Anaximander, “Fragment” 

2.10: Criteria of Equivalence 

Equivalence seems like a straightforward idea; if something is equal to something else, it is 

equivalent to it. Yet, that does not capture the full picture of what and how things—objects, 

systems, ideas, theories—may be the same, or similar. There are various senses of equivalence, 

and there are relations between senses of equivalence that may inform how two objects may 
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share some degree of equivalence. As these objects are structured, their forms are drawn in 

comparison—in relation to—other systems and objects. A juxtaposition of equivalences in this 

comparison, either between objects or in states of the same object, illuminates these structures. 

Criteria of equivalence therefore become the key to recognizing novel forms of structure overall. 

 

In building theories, and models of those theories, criteria of equivalence can serve as a blueprint 

for how each ought to be constructed. Theory being a set of like ideas or concepts, they gain 

conceptual heft as more senses of structure and equivalence are applied. Here we propose that 

there are at least five relevant senses of equivalence that can help to build a framework of 

structuring to serve as a new materials ontology. Theories of materials are designed to capture 

the required physical and behavioral aspects of a system in a way such that the system may be 

modeled, and predictions about the behavior of the system may be produced by that model. 

Iterations of materials theories aim to improve the accuracy and precision of the predictive 

capabilities of the models of a particular theory. The various forms of equivalence that exist 

within physical modeling help to build criteria of theoretical equivalence, and provide a rigorous 

framework to compare and contrast different theories to one another. 

 

As the physical theories, and their representative models, are iterated upon each becomes more 

structured, and the criteria of equivalence serve as structuring frameworks. Many materials 

theories may be defined in terms of one of these types of equivalence, or some combination of 

them, to varying degrees. Through careful definitions of these sets, the relational structure of 

models at every step of materials system-building can be put into place in order to ensure that the 

behavior of variables and models is consistent in any context. For the physical structure of 

materials, complete equivalence of two material objects, or systems, requires that the objects 

should be equivalent in all five of the forms listed in section 1.2. These individual equivalence 

forms are generically defined as: 

 

1. Definitional Equivalence 

Physical theories begin centered around groups of like, physical objects. We define sets 

of objects as equivalent on the basis of their definitional equivalence; we use the same set 
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of descriptors to define the objects, relations between them, and similar properties they 

may share. This is a first criterion for definitional equivalence: 

 

{𝐷} = {∀𝑑 | 𝑑 ∈ 𝐷𝑇} (9) 

 

where {D} is the set of definitional equivalence criteria, DT is the set of all descriptors of 

objects in theory T, and d is an individual descriptor. This set of descriptors is also an 

object that serves as the basis for a physical theory.  

 

Across models, for some object x, some object y is definitionally equivalent to x to the 

extent that some set of descriptors of x composed of {nouns, verbs, adjectives, etc.} 

contains a subset that is also a set of descriptors of y: 

 

{𝐷𝑥}
 
⇔𝐷 {𝐷𝑦} ↔ ∃{𝑑𝑦} ∈ {𝐷𝑦}, {𝑑𝑦} ⊂ {𝐷𝑥} (10) 

 

2. Empirical Equivalence 

A form of equivalence between two sets of experimental data which, at a minimum, share 

a data type. The data types also include the form of measurement taken [48]. It may 

include observational equivalence, if the form of empirical data comes in the form of a 

set of observations other than numerical data. Empirical equivalence, on the basis of 

shared techniques and theories, with a condition of definitional equivalence, is also 

assumed. For models of the same theory, empirical equivalence occurs when the models 

of the theory, M(T), produce data that share a data type.  

 

For models of different theories, a condition for determining their empirical equivalence 

is that there exists a structured translation between the models. If {e} is any set of 

experimental data in the set of empirical results for a theory, {ET1}, then for there to be 

empirical equivalence between theories T1 and T2, there must exist an injective map f 

from {ET1} to {ET2} [57]. 

 

𝑓: {𝐸𝑇1} → {𝐸𝑇2} (11) 
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3. Informational Equivalence 

There could exist a variety of senses of informational equivalence. One is the equivalence 

of entropy, the amount of information measured by Shannon entropy that a model or data 

set may contain. There are many existing physical quantities that are related to the 

amount of informational entropy of the system, and it can inform interpretations of both 

local parameters—for example, local order parameters such as extracopularity [66]—and 

defined properties of individual states of systems [67]. 

 

Another proposed form is the equivalence of relative entropy, which allows for a 

comparison of multiple states, {ui}, of a system {U}, or of the form of a state change of 

two different systems, on the basis of its relative entropy, K, (the Kullback-Leibler 

divergence) measured against some reference state such as equilibrium, absolute zero, 

STP, etc. In order to determine informational equivalence, the proposed criteria are that 

the information measure of two states are equivalent.  

 

|𝑢1(𝑥)| = |𝑢2(𝑦)|
 
⇒𝐾(𝑥) = 𝐾(𝑦) (12) 

 

This proposal does not necessitate that the states, uij, are exactly the same, but rather they 

have the same entropy relative to their respective reference states. 

 

Using these forms of equivalence in tandem, a framework of comparison of materials 

systems, and the models of which these systems are comprised, can be constructed. This 

framework can serve as a basis of comparison and contrast for judging the equivalence, 

effectiveness, and predictive capabilities of models and scientific languages. 

Furthermore, building informational criteria can, in the vein of other treatments of 

empirical equivalence, build even stronger connections between the mathematical 

structure and empirical content of theories [68]. 
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4. Categorical Equivalence 

On its face, categorical equivalence is simply the criterion that the categories used to 

describe some set of data share some structure. If data within some model or set can be 

categorified, then some measure of categorical equivalence could be established. 

Categorical equivalence can be established between two categories if they are 

intertranslatable [57], up to an isomorphism.  

 

This definition means, that for any two categories, A and B with functors F and G, share 

some categorical equivalence at an upper (isomorphism) and a lower (translation) bound, 

rendered as: 

 

upper bound: ∃𝐹, 𝐺;    𝐹: 𝐴 → 𝐵  𝑎𝑛𝑑  𝐺: 𝐵 → 𝐴 | 𝐹 ◦ 𝐺 = 1𝐵  𝑎𝑛𝑑  𝐺 ◦ 𝐹 = 1𝐴 

 lower bound: ∃𝐹 𝑜𝑟 𝐺;    𝐹: 𝐴 → 𝐵  𝑎𝑛𝑑  𝐺: 𝐵 → 𝐴 

 

In between the isomorphism and the existence of functors are a variety of different 

degrees of equivalence depending on the amount of structure that is preserved. All of the 

gradients of equivalence can be used as the basis for judging what structures of materials 

models and systems are invariant, the core of the idea of structure. 

 

5. Theoretical Equivalence 

Theories are the most general objects through which science and engineering are 

performed. Each of the preceding senses of equivalence are potentially constitutive of 

theoretical equivalence. This assertion follows from the levels of structure that each other 

form of equivalence projects onto the theory of which they are a part, with a theory 

becoming stronger, or weaker, as it becomes more or less dense with structures, 

respectively. General theoretical equivalence is present, similar to the other senses, if the 

definitions, experiments, models, and categories of that theory are similar to those of 

another theory. This sort of structure preservation between two theories (T) and models of 

those theories (M(T)) is shown in Figure 8: 

 



56 

 

 

Figure 8: Theoretical equivalence shown on the basis of the structural preservations between models of those 

theories, adapted from Dewar 2022 [55]. 

 

The forms of equivalence criteria that have been outlined are definitional (
 
⇔𝐷), empirical (

 
⇔𝐸), 

informational (
 
⇔𝐼), categorical (

 
⇔𝐶), and theoretical (

 
⇔𝑇). These kinds of equivalence criteria 

feed upwards and inform at every level the structure of the theory of which they are part. Figure 

9 shows the nesting relation of the proposed equivalence criteria: 

 

 

Figure 9: Nested equivalence criteria. 

 

The criteria of equivalence introduced in this section are general, and capable of comparing and 

contrasting an enormous variety of structures. The structures can be presented in any of the five 

forms, or may be any system invariant that serves as the bases for these criteria. Through this 
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framework, through these criteria, and with integration into the existing paradigm of materials, a 

new ontology of materials can be established.  

 

 

 

History is process, knowledge is process. 

—Carlo Rovelli, “Helgoland” 

2.11: A New Materials Ontology 

What is structure? Structure is sets of relations between “objects” (themselves sets of relations 

between other objects), including invariants, symmetries, and arrangements. From the outset, 

materials systems have been a composite of theory, experiment, data; all forms of structuring. 

Everything that informs how materials systems are instantiated in the world and how they behave 

revolves around structure. Previously, the idea has been that it is purely physical structure—

objects like atoms, molecules, grains, or bars of a material—that is determinate of every property 

and behavior of a materials system. What is becoming clear is two-fold: 

 

1. Physical objects can be thought of as a process of relations of systems being actualized. 

2. This conception of objects requires new and multi-faceted ideas of structure in order to 

fully capture every sense of structure, and structuring, that presents itself within materials 

phenomena. 

 

These conclusions shift interpretations of materials theories and models, but it remains that 

structure is also the center of the new materials ontology. Everything within materials research 

involves not only the common physical structure, but also definitional structure, informational 

structure, mathematical structure, and theoretical structure. Every form of structure is 

constitutive of material structure, with every different concept building towards an enriched 

materials structure.  

 

Various philosophies of structure, of process, of relations lend conceptual heft to the approaches 

of modeling within MSE. These approaches result in comparisons of relational structuring; 

Process becoming comparisons of comparisons of relations between structures. Time introduces 
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mechanism in the material sense, reframing an aspect of process as a Bergsonian durée, a 

duration between two states. Each system of process encapsulated by the philosophies reviewed 

in section 2.3 reorients the picture of systems as relationally, rather than object, oriented. 

 

Perceptions of individual physical objects offer little information about the ‘useful’ potentials of 

an object (at least, in an engineering sense). What can be known of how a piece of iron will 

behave by looking at it, or by touching it with a bare hand? It is only through the iron object-

system’s interactions with some other system—say a hammer, or a heating element—that the 

perception of the iron system is further informed. That is to say, the concept of iron is not a 

direct sensory input of the iron system itself, but rather my concept of iron being a direct sensory 

input of a relation between the iron system and some third system.  

 

This interpretation of how systems are constructed is akin to relational quantum mechanics in 

that it informs our interpretation of measurement, and of how the role of the observer changes in 

a relational context. Every measurable sense of materials that exists comes from the actualization 

of some property in response to the act of being measured. Quantifying the actualized, relational 

capacities of systems, and their structuring potential, involves characterizing the information of 

those systems. The information that arises from the relation of two systems is directly correlated 

to the amount of change that one system may affect in another, or a measure of change within a 

system that has already occurred.  

 

Measures of information and informational relations become the basis by which various model 

types within MSE can be enriched. Through this enrichment material theories, and the models 

that comprise them, gain structure and can be analyzed in the abstract. The new materials 

ontology is an encapsulation of every way in which our conceptions of materials may be 

structured, and this structure becomes clear most broadly by illustrating the various equivalence 

criteria that can draw out the structures of each sense. Using all of the tools that have been 

described, a framework of structural equivalence, from the definitional to the empirical to the 

informational to the categorical to the theoretical, can be built.  
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Every criterion adds a novel type of structure to the idea of what a material is, and the process of 

establishing these criteria allows for a direct comparison of even the most disparate material 

systems. Every materials system is structured, so a method of creating the criteria of equivalence 

between two systems is the best way to find the rules of structuring, the true idea of universal 

materiality. As Bogdanov wrote: 

 

“Practice and theory would benefit little if the entire matter came to the 

philosophical position that “everything is organization.” Methods are necessary 

and important for practice and theory. In this regard, the inference is clear: “all 

methods are in essence organizational.” The problem, therefore, is to understand 

and study every method as organizational” [23, p. 6]. 

 

This sense of ‘organizational’ methods are exactly what is proposed herein. We understand the 

rules of organization as the essence of structure, and we search through various means to extract 

these rules. Using the tools embedded already within MSE, levels of abstraction, the tools of 

information and category theory, and a relational-process view of systems, a new paradigm of 

materials is crafted and we see how it is that this paradigm may be applied to different materials 

systems, experiments, behaviors, and applications.  

 

Above all, a new materials ontology shows us that we are not isolated from materials any more 

than we are isolated from any other system. The only anthropological transcendence comes from 

our senses as nodes of relation that can recognize our own relational capacities. We are 

integrated into the world and the sensations relating to, and becoming, us are “natural 

phenomena in the world: the form in which the world presents itself to the world” [20, p. 126]. 

Though it is not often explored within the context of materials, the human process of conceptual 

becoming through relation to materials systems is central to our existence. As Morris Cohen, a 

luminary in the field of MSE phrased it, “Nature, in the form of the human mind, then starts to 

examine itself; to describe itself; to try to understand itself" [69, p. 516]. 
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Chapter 3: Methods 

Methods 

 

...equivalence is a matter of positing the same structure,  

and structure is that which is invariant across equivalence. 

—Neil Dewar, “Structure and Equivalence” 

 

The meta-framework which results from the analysis presented in the previous chapter is 

designed to determine the structures of both models and theories of materials. The framework 

performs this task by establishing rules for determining equivalence between structures of 

various aspects of materials systems. The rules for determining equivalence provide a backdrop 

against which the invariants across some relational interface can be resolved. If some object, a 

theory, model, or state, meets these criteria for each form of equivalence, there is a basis for 

translating results from object to object knowing that key invariances will be maintained. 

Furthermore, we propose that this set of invariants is material structure, on the basis that they are 

key components which are measurable within the range of model efficacy, and across modeling 

and environmental interfaces. 

 

As such, the method proposed herein for determining the structure of materials at various levels 

and interfaces involves five sets of equivalence criteria, and the structural equivalence 

framework that connects those criteria to one another. Instead of analyzing the data produced by 

materials models, simulations, or theories directly, this approach is to look at how the current 

analyses of materials systems are structured and analyze that structure. As presented in section 

2.10, this analysis requires five different senses of equivalence. These forms of equivalence are 

tied together into a framework of equivalence, against which systems may be tested. Within this 

framework, invariances may be found and described for any objects of analysis, and thereby 

material structure may be defined. Any model, any system, within a set of materials objects can 

influence the way in which this framework can be constituted, so the abstracted rules by which 

structure is defined are vitally important. 
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Equivalence relations and classes are foundational within mathematics. The most basic 

equivalence relations are binary relations in some set, where {e}∈ E is the set of equivalence 

relations for a set {a}∈ A. In order for a binary relation to be an equivalence relation within some 

set, it must be reflexive, symmetric, and transitive in that set. 

 

Definition 2: Let E be an equivalence relation within R, where: 

i. for all a ∈ A, aEa indicating reflexivity. 

ii. for all a, b ∈ A, aEb implies bEa indicating symmetry. 

iii. for all a, b, c ∈ A, aEb and bEc imply aEc indicating transitivity.  

and (i), (ii), and (iii) are all true. 

 

This basic sense of equivalence gives properties and structures to even the simplest of sets, and 

more structure can be built on the basis of this relation. If there exist within a set multiple 

equivalence relations, those that share properties are known as equivalence classes.  Equivalence 

classes are sets of equivalence relations, and define the types of equivalence that sets of objects 

may have. Across mathematics there are equivalence relations and classes of many types that 

account for the varying degrees of equivalence that mathematical objects may possess [70].  

 

The forms of equivalence built upon this type of relation are the backbone of the comparative 

technique that we propose. Every system, of physical objects, theories, models, etc., is 

interacting with, or defined in relation to, some other system. There is no system capable of 

manifesting properties, or of being measured, that exists in isolation. The relational nature of 

systems, therefore, make criteria of equivalence an incredibly suitable tool for divining structure. 

If no system is isolated, then the structure correlating to each proposed form of equivalence may 

be found in relief to some system in comparison. Therefore, the layers of juxtaposition proposed 

by this set of equivalences is—in our view—the most comprehensive method of proposing, 

identifying, and cataloging the structures present within any materials theory. 

 

To this end, we wish to propose various interpretations of the five forms of equivalence so that 

they may be used in a materials modeling context. This framework is designed to be loose and 
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abstract enough so that it allows connection with any model, of any material, at any scale. 

Portions of the framework borrow from the vocabulary and language of first-order logic, which 

is redefined to the particulars of materials theories as needed. Material structure, as has been 

discussed, is not simply the physical mass and bonding, but includes the meta-structural 

information of the models used to conceptualize material scale. The first equivalence of the 

simplest relational sort is that of definitional equivalence. 

 

3.1: Definitional Equivalence 

A degree of definitional equivalence generally means that given two theories and their 

constituent models, we may at least partially be able to define them in the terms of the other. To 

begin we will borrow a concept from logic and model theory, that of a signature which can be 

defined as a selected list of the non-logical symbols and algebraic operations from a vocabulary 

describing an object. The use of this terminology is intended to offer a more formalized 

treatment of material definitions, rather than to render them fully axiomatic. If this object is 

structured, then the signature is the union of constant, functional, and relational symbols and 

descriptors for that structure [71]. Using a signature is an efficient means of collecting all the 

definitional pieces of a theory into one place, and similar methods have been adopted elsewhere 

in materials research, even if not explicitly by name [72].  

 

In materials modeling, our definitions are centered around the material type, dictated by the 

atomic or molecular structure of the material, classes of those materials, material properties and 

mechanisms of behavior. Sometimes these models consist of only one of these categories, or they 

may be coupled with other types of models incorporating aspects into either or both. For each we 

can follow section 2.10 and assign these materials definitional criteria as theories, and then 

establish sets of definitional descriptors for each, building a general definitional signature, Σdef, 

for model sets. 

 

Definition 3 (olog Figure B.1): Let Σdef  be the signature of definitions for a materials 

model. We define a set M, the elements of which are types of Σdef. We then define three 

sets: 
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 Rel(Σdef) - the set of all relational definitions for the vocabulary of a model, with 

descriptors the set {dRel ∈ MRel}, and maps <unit>: Rel(Σdef) → M x M for 

defining unit relations across the definition set;  

 Func(Σdef) - the set of functional definitions for the vocabulary of a model, 

divided by a relation domc, which divides the set into elements of various 

potential domains and codomains for pairs in M, <domc>: Func(Σdef) → M x M, 

and with descriptors the set {dFunc ∈ MFunc} 

 Const(Σdef) - the set of constant definitions for the vocabulary of a model 

 

Using this definition, we define the sets of descriptors for which there is a basis for establishing a 

theory. In qualitative terms, any set of descriptors that are determined to share some basis of 

similarity may be sufficient for the establishment of a shared theoretical vocabulary, which may 

then be used in the determination of definitional equivalence.  

 

Then for any two signatures representing different materials theories, Σdef(T1) and Σdef(T2), there 

exists a definitional equivalence if there is a relation mapping at least some of the elements of 

one of the theories to the other, up to isomorphism. As with the generic equivalence relation, 

these sets should also have the properties of reflexivity, symmetry, and transitivity. 

 

In other terms, given our two signatures of a materials theory Σdef(T1) and Σdef(T2), if a set X with 

elements [x1, … , xn], where X ⊆ Σdef(T2) is to be definable in terms of Σdef(T1), then there must 

exist some formula 𝜑 such that: 

 

Definition 4: There exists a definitional equivalence between theories T1 and T2 

∃ 𝛴𝑑𝑒𝑓(𝑇1)
 
⇔𝐷 𝛴𝑑𝑒𝑓(𝑇2) when for 

{𝑋} ⊆ 𝛴𝑑𝑒𝑓(𝑇2)   𝑎𝑛𝑑   𝑥 ∈ 𝑋, there is a function, 𝜑, 

∃𝜑 | 𝛴𝑑𝑒𝑓(𝑇1)  ⊨  𝜑[𝑥1, … , 𝑥𝑛] 𝑤ℎ𝑒𝑛 𝜑〈𝑥1, … , 𝑥𝑛〉 ∈ 𝛴𝑑𝑒𝑓(𝑇1)  

 

meaning that the formula 𝜑 defines the terms of Σdef(T2) in Σdef(T1) [57]. There would necessarily 

also be a formula 𝜑 -1 mapping the terms in reverse, from Σdef(T1) to Σdef(T2).  
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Each form of equivalence can be measured for a degree of equivalence, calculated as the 

probability of there existing a map between an element, or elements, of the domain and 

codomain of the equivalence relation. The degree of definitional equivalence is then calculated 

as: 

°
⇔𝐷 =

𝑝( |𝑥𝑖 × 𝜑[𝑥𝑖]| )

|[𝑥𝑖]|
(13) 

 

showing that as the density of maps increases from the definitional set Σdef(T1) to Σdef(T2), the 

degree of definitional equivalence between the two also increases.  

 

This first criteria of equivalence exists mainly as a basis for the comparison and contrast of 

theories and models of them, provided a shared framework and vocabulary upon which other 

structures may rest. Some sense of definitional equivalence is a necessary component for the 

determination of empirical equivalence, primarily as a necessary prerequisite for the construction 

of comparable experiments. 

 

3.2: Empirical Equivalence 

The second form of equivalence in our conceptualization of structure is that of empirical 

equivalence. Empirical equivalence is, in general, a term used to describe when two theories start 

with different primary vocabularies, but are able to produce moderately equivalent experimental 

results or predictions. A classic example for this is Newtonian and Langrangian mechanics [73]. 

Here we take any result of experiment, hence any measurement, to be a basis for a comparison 

between the empirical contents of a theory. That is to say, the results of the experiment may be 

theoretical in nature—the measurement of yield strength, or of electric fields are contrived rather 

than directly empirical—but we assume them to be part of the empirical basis of materials 

theories on the basis of the dispensability thesis, like that proposed in [74], and do not 

differentiate the ontological determinative powers between direct observables and theoretical 

variables derived from experiment.  

 

In a materials sense, our criteria of empirical equivalence will involve the juxtaposing of 

structured data sets resulting from various experiments either of different or the same materials 
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theory, and determining the degree to which one data resulting from one theory is reproducible 

(and to what degree) in the other theory. This approach is supported by the scaffolding of 

definitional equivalence, a requirement for the establishment of empirical equivalence, as well as 

necessary unit assignment relations, from the powerset of all units notated as 𝒫{u} [75].  

 

Therefore, for any two sets of empirical measurements pertaining to theories T1 and T2, rendered 

as E1{T1} and E2{T2}, there is empirical equivalence when: 

 

Definition 5: There exists an empirical equivalence between models E1 and E2  

 ∃ 𝐸1(𝑇1)
 
⇔𝐸 𝐸2(𝑇2)   if   ∃𝑅: {𝑒𝑟} ↔ 2{𝑢} 

and (𝑒1 ∈ 𝐸1)
𝑅
→ (𝑒2 ∈ 𝐸2),  (𝑒2 ∈ 𝐸2)

𝑅
→ (𝑒1 ∈ 𝐸1) up to isomorphism. 

 

This definition allows for the maps to combine operations which translate between experiment 

types, {er}, and a relation which maps the appropriate unit(s) onto the values. The overall set of 

units {u}, includes any conceivable base or derived unit, and the multirelation is a combination 

carrying both the numeric relation and unit conversion relation, as pictured in Figure 10, with 

𝑒𝑟𝑢𝑐 ∈ 𝑅. 

 

 

Figure 10: An olog showing the expanded and collapsed versions of the multirelation of unit-preserving empirical 

equivalence, where {E1} and {E2} are different sets of empirical data, {u} is the universal set of units with unit 

assigning functions u1 and u2, er is an empirical relation between the data sets, and uc is a unit conversion relation. 

 

As with the other forms of equivalence, there exists here a degree of probability that is 

determinate of the degree of equivalence between two sets of experimental values, measuring 
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how much the ‘bits of evidence’ contained in both sets agree [76, p. 120]. If a multirelation 

exists, the degree of empirical equivalence is the probability that a value in the domain of the 

relation will map into the codomain. If that probability is 0, no empirical equivalence exists, and 

if that probability is 1, then it is a function, and an isomorphism.  

 

°
⇔𝐸 =

𝛴𝑝(𝑓: 𝑒1 → 𝑒2  )

|{𝑒1}|
(14) 

 

Empirical equivalence, as constructed, is also associative, transitive, and symmetric. That is, for 

any elements of E1, E2, and E3, which are, to any degree, empirically equivalent: 

 

1. E1 → (E2 → E3) = (E1 → E2) → E3  

2. if E1 → E2 and E2 → E3, then E1 → E3 

3. if ∃f: E1 → E2, then ∃h: E2 → E1 

 

Empirical equivalence within a materials context entails the use of historical data, meaning that 

experiments deemed to measure equivalent properties at any point in time may be used a basis 

for determining the empirical equivalence of a similar system (e.g., the same material, or same 

class of material) within the bounds of the empirical model at hand. This assumption allows for 

the comparison of systems of material structures that may not have the same actualized 

properties, but may be considered empirically compatible in order for their equivalence to be 

ascertained [77, p. 265]. Depending on the problem being investigated, our form of empirical 

equivalence may be calculated for material structures (the physical elements and properties), 

variables, models, and theories; in whatever form the difference-making distinctions within the 

experimental framework may be found [77, p. 268].  

 

3.3: Informational Equivalence 

There could exist a variety of senses of informational equivalence, each based on the various 

measures of information that a system may have. The most basic is the equivalence of 

information entropy, or the amount of information measured by Shannon entropy that a model or 

data set may contain. As information entropy measures the amount of signal which is transmitted 
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through some communication relation between two systems rendered as probability distributions, 

the equivalence of information can be used in various ways to determine the degree of affect that 

one system has in relation to another. There are many existing physical quantities that are related 

to the amount of informational entropy of the system, and it can inform interpretations of both 

local parameters and defined properties of individual states of systems [67]. 

 

First, for any version of information equivalence, empirical equivalence is a necessary 

prerequisite, meaning the distributions analyzed must either share empirical priors, or there must 

be an empirical translation between the two theories being analyzed. In its simplest form, the 

information equivalence measured via Shannon entropy would show that for two related objects 

that are rendered as probability distributions, how much dispositional power each has to affect 

change in the other; put in the context of related systems based on empirical data sets, it is the 

probability that the average element of the domain set is in relation to an average element of the 

codomain set. Recalling section 2.6, this entropy H(x) is given by equation (4). 

 

This event can be as simple as a coin flip, or as complex as the measurement of some relation 

between material objects at the microscale. The equivalence criteria of this type of information is 

similar to the other forms in that empirical equivalence is a necessary precondition, and if a map 

between the data sets exists, then sets of information measures between those sets may be 

directly compared and contrasted on the basis of the probabilities of ‘event’ occurrence. If it is 

assumed that these sets are of discrete probability distributions, the criteria would then be given 

as: 

 

Definition 6: For any two sets of information measures H1 and H2, if  

{𝐸1, 𝐻1} ∈ 𝑇1  and  {𝐸2, 𝐻2} ∈ 𝑇2 then 

∃𝐻1
 
⇔𝐼 𝐻2  if  𝐸1

 
⇔𝐸 𝐸2 and |𝐻1| = |𝐻2| 

 

This type of informational equivalence does not obtain degrees, but is rather true, or false; either 

two discrete distributions have the same Shannon entropy, or they do not. This property renders 

this type of informational equivalence in this form of minimal value to analysis of materials 
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problems, as it pertains more to the properties of distributions which empirical methods may 

produce, rather than analysis of those distributions. 

 

In order to obtain more relevant structure within materials science, we look instead to the 

equivalence of relative entropy, which allows for a comparison of multiple states, {si}, of a 

system {S}, or of the form of a state change of two different systems, on the basis of its relative 

entropy, K, (the Kullback-Leibler divergence, equation (6) in section 2.6) measured against some 

reference state such as equilibrium, absolute zero, STP, etc. The relative entropy for a set of 

empirical data of a given theory is shown by equation (15) as:  

 

𝐾(𝐸𝑖‖𝐸𝑖0) = −𝛴𝐸𝑖(𝑥) log
𝐸𝑖(𝑥)

𝐸𝑖0(𝑥)
 (15) 

 

where, again, K(Ei∥ Ei0) is the relative entropy measured in bits for base 2, or nats for base e 

logarithms. Ei(x) and Ei0(x) are the discrete probability distributions produced via analysis of an 

empirical data set at various points as the environmental variables are changed, and that of the 

chosen reference state, respectively. An olog of this process can be seen in Figure B.2. 

 

Then, two systems undergoing the same change in environmental variables—e.g., two samples 

raised to the same temperature—can be contrasted in terms of the relative entropy shift produced 

by that change in variables. With a sufficient number of steps, a relation may be formed between 

the dynamic shift in the divergence of the domain distribution versus the measure of divergence 

of the codomain for a particular shift. 

 

In order to determine this informational equivalence, there must then exist a map between the 

information sets defined by the relative entropy of the two empirical data sets, for the bounded 

range of appropriate environment values. 

 

Definition 7: For some data set {𝑒𝑖}, where 𝑒𝑖 ∈ 𝐸𝑖, and probability distribution 

𝑃(𝑒𝑖) =
𝛴(𝑒𝑖+∆𝑖 − 𝑒𝑖)

𝛴(𝑒𝑛 − 𝑒0)
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with bounds [0, n] where (upper: 𝑒𝑛 ≥ 𝑒𝑖) and (lower: 𝑒0 ≤ 𝑒𝑖) then 

𝐾(𝐸𝑖) = −𝛴𝑃(𝑒𝑖) log
𝑃(𝑒𝑖)

𝑃(𝑒0)
 

then, for E1 and E2, there exists an information equivalence 

∃𝐾(𝐸1)
 
⇔𝐼 𝐾(𝐸2) if ∃𝑓: [ 𝐾(𝐸1)⋁𝐾(𝐸2)] → [𝐾(𝐸1) × 𝐾(𝐸2)] up to isomorphism. 

 

This proposal does not necessitate that the states, sij, are exactly the same, but rather 

compares the entropy produced by the same progression of environmental variables relative to 

their respective reference states. The definition includes the upper and lower bounds determined 

by the state variables of the system by capping the probability distributions at [0, n].  

 

Informational equivalence, at least of the two varieties presented here, are associative and 

transitive, but not necessarily (¬◻) symmetric. That is, for various sets of information data 

K(Ei): 

 

1. K(E1) → (K(E2) → K(E3)) = (K(E1) → K(E2)) → K(E3) 

2. if K(E1) → K(E2) and K(E2) → K(E3), then K(E1) → K(E3) 

3. K(E1) → K(E2) ¬◻ K(E2) → K(E1) 

 

As previously stated, the form and properties of informational equivalence might change based 

on the form of information content being analyzed.  

 

3.4: Categorical Equivalence 

The forms of equivalence defined so far have dealt with comparing structures concerned with the 

relation of objects and the ways in which they are measured. A theory defines the objects of that 

theory, a kind of sameness relation, and then in scientific practices those objects are measured 

creating empirical data sets, and compared to one another in a relational capacity, producing 

information about the systems being measured. Across many systems within a given theory, 

there is room for additional, mathematical structure to be used to illuminate more general ways 

in which systems behave. Theories across different materials systems can adhere to behaviors 

defined by various similarities in the behaviors of their models. This structure, a comparison of 
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the mathematical structure of the models used within MSE, is best analyzed using Categories, as 

covered in section 2.9. 

 

Materials models describe various aspects of materials, and are generally bound in their range of 

efficacy; that is to say, some model of material behavior or structure might be valid at low 

temperatures, while another model is needed to describe the structure or its behavior at higher 

temperatures. Category theory provides a general, abstracted approach to classifying 

mathematical structures across a wide variety of objects, and states of those objects. This quality 

makes it an exceptional tool for tying together the varied forms of structure already outlined, and 

for serving as a final tier by which the criteria of theoretical equivalence may be enriched. 

 

Categories of materials models may be based on any relevant similarity among a set of models. 

Categorical equivalence, then, becomes a method of determining the mathematical structure that 

sets of models may share. As with the other forms of equivalence outlined in this section, the 

previously described forms we take as necessary for the construction of the criteria of categorical 

equivalence. Building from the theory up, the mathematical structure of a theory is informed by 

the definitions of the objects of that theory, the results of experimental analysis of those objects, 

and the relational capacity of those sets of objects as interpreted through the informational 

structure of those sets. 

 

Categorical equivalence is a common topic within the literature of philosophy of science, and 

thereby many criteria of categorical equivalence have been proposed. One such criterion 

proposed by JO Weatherall [78] holds that the categories made up of the models of a theory are 

equivalent if the “functors realizing that equivalence preserve empirical content” [79, p. 427]. 

Put another way, if the models of a theory are taken as the objects of a category, wherein the 

morphisms of that category are maps which preserve some sense of the structure of the models, 

then two categories of models are equivalent if both the mathematical and empirical structure of 

the categories are translatable up to isomorphism [79].  

 

Coming from an abstract mathematics approach, there is no set prescription for what the 

empirical content, or its structure, may be. Yet, in many instances from materials models the 
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content of experiments of a given theory are explicit, and the mathematical structure of the 

empirical data sets are rather loose, but bounded by the efficacy ranges of the models set upon 

those data sets. This bounded relationality informs how we model the physical arrangements, and 

behaviors of materials systems, both characteristics that produce information in the various 

forms of informational entropy. What these pre-existing approaches to materials modeling mean 

is that within the context of building a relational interpretation of materials structure, we may 

require that the criteria used to determine equivalence for categories of materials models are 

necessarily definitionally, empirically, and informationally equivalent. 

 

While informational equivalence is a new formal requirement in the context of the literature of 

theoretical equivalence, it fits well within the framework, given that data sets and relations 

between data sets produce various measures of information which dictate how and how well the 

relations between these objects may be understood. Indeed, if we take it to be true that the 

objects of our interest at each step of criteria construction are simply nodes of relation, then we 

might say that “the arrows carry all the information” [79, p. 437]. If that is the case, the effect of 

variation of information on the mathematical structure of the models must surely follow. 

 

Taking all of this into account, we propose that categories of materials models are constituted as 

follows: 

Definition 8: A category of materials models, 𝓒Mat, is composed of: 

 A collection of objects, 𝓞Mod, which are materials models of a given theory; 

 A collection of morphisms, Ccon, which are structure-preserving arrows 

(conversions) between the models;  

 For every morphism f in Ccon, a relevant domain set (source of morphism) 

{s(f)} and codomain set (target of morphism) {t(f)} of allowed transitions for 

the given models; 

 A composition function for the morphisms of Ccon, where, given morphisms f 

and g for a given domain and codomain, g ○ f is their composite; and 

 For every object m ∈ 𝓞Mod, an identity function idm.  
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The elements of this category satisfy two axioms, those of 1) associativity, and 2) 

identity, stating that: 

1. For models m1, m2, m3, and m4, and morphisms f, g, and h, if f: m1 → m2,  

g: m2 → m3, and h: m3 → m4, then f ○ (g ○ h) = (f ○ g) ○ h. 

2. For every object m, there is a function idm: m → m called the identity function, 

where if a morphism f: m1 → m2 exists then it follows that idm1 ○ f = f = f ○ 

idm2. 

 

The category 𝓒Mat can contain models of similar physical objects, particular materials, or types of 

properties / behaviors which arise in the normal conduct of MSE practitioners. Using this form of 

the category, we may then propose criteria for determining the equivalence of these categories. 

We take the previously outline definitional, empirical, and informational equivalence criteria as 

necessary prerequisites for categorical equivalence, and propose that: 

 

Definition 9 (olog Figure B.3): Given two categories of materials models, 𝓒Mat-1 

and 𝓒Mat-2, 

and 𝑚𝑜𝑑𝑀𝑎𝑡−1 ∈ 𝒞𝑀𝑎𝑡−1 and 𝑚𝑜𝑑𝑀𝑎𝑡−2 ∈ 𝒞𝑀𝑎𝑡−2 

there exists a categorical equivalence 

∃𝒞𝑀𝑎𝑡−1
 
⇔𝐶 𝒞𝑀𝑎𝑡−2 if  

∃𝑓𝑀𝑎𝑡: 𝑚𝑜𝑑𝑀𝑎𝑡−1𝑎 → 𝑚𝑜𝑑𝑀𝑎𝑡−1𝑏 and 

∃𝑔𝑀𝑎𝑡: 𝑚𝑜𝑑𝑀𝑎𝑡−2𝑎 → 𝑚𝑜𝑑𝑀𝑎𝑡−2𝑏 

such that 𝐹
 
⇔𝐷,𝐸,𝐼 𝐺 up to isomorphism 

 

This approach allows for the internal structure of the models as proposed to be preserved, via the 

excess structural requirements of the other forms of equivalence. This construction is also 

malleable enough that, as is the case with nearly every scientific theory, as new data and 

iterations upon existing models is input into the framework, the categories composed of them 

may be easily adapted to these changes without the necessity of completely replacing the 

proposed equivalence criteria. While those outlined above may be weak categories in a 

completed, mathematical sense, (weak being indicative of the category being more general, not 



73 

 

lacking in some manner) they are sufficient to capture the variety of knowledge produced by the 

wide range of approaches to solving materials problems.  

 

3.5: Theoretical Equivalence 

The whole of the framework being constructed in this section is in the service of determining 

when, how, and to what extent, any proposed theory of materials may be equivalent. As stated, a 

framework of equivalence criteria is an effective method of structure determination because, as 

no ‘real’ object may gain properties or effect change in isolation, the structure of an object is 

only discernible in juxtaposition with another. Equivalence criteria illustrate how various senses 

of objects gain structure at every step of the construction of theories regarding those structures.  

 

Theories exist prior to, and at each stage of this process. Therefore, theoretical equivalence is not 

measured in the same manner as the other forms of equivalence presented thus far, but is, rather, 

an assemblage of the other forms of structure, which is measured via the equivalence framework 

presented. A pair of theories may gain relatively weak equivalence on the sole basis of some 

definitional transition, whereas theories which produce all four forms of equivalence are 

relatively strongly equivalent to one another. None of the non-theoretical forms of equivalence 

are strictly necessary to declaring equivalence between two theories, but the structure added from 

adherence to each criteria strengthens the sense in which two theories may be equivalent. Table 1 

illustrates this point for definitional (
 
⇔𝐷), empirical (

 
⇔𝐸), informational (

 
⇔𝐼), categorical 

(
 
⇔𝐶), and theoretical equivalence (

 
⇔𝑇): 
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Table 1: A table, read L to R across each row, showing whether each defined form of equivalence is necessary (𝓃) 

for another form of equivalence, or if it is merely informative ( ) to that form.  

 
 
⇔𝐷 

 
⇔𝐸  

 
⇔𝐼  

 
⇔𝐶  

 
⇔𝑇 

 
⇔𝐷 — 𝓃 𝓃 𝓃 

 
⇔𝐸  — 𝓃 𝓃 

 
⇔𝐼  — 𝓃 

 
⇔𝐶  — 

 
⇔𝑇 𝓃 𝓃 𝓃 𝓃 — 

 

Theoretical equivalence is necessary for every other form, because each step in the structuring of 

a theory and its models necessitates a theory upon which to build. As each subsequent form of 

equivalence is expanded upon, the previous form becomes a necessary criterion of the next, 

while the new form is—through iteration—able to inform any changes in the criteria of the 

nested forms of equivalence. The ebb and flow of communication through the various forms of 

structuring shown here allow for the richest and most thorough analysis of models of materials 

theories. 

 

In using four different forms of equivalence criteria, a “bestiary” of approaches to strengthening 

theoretical equivalence is formed and, in the process, the best approach to the new conception of 

material structure outlined in the background [79]. The sum of all equivalence criteria allows for 

comparison, contrast, and validation of materials theories at a variety of important levels, all of 

which build a framework capable of adaptation to a wide range of contexts within materials 

science, at whatever relative strength a theory, old or new, may possess. Theories, via their 

models, may also be analyzed for degrees of equivalence, illustrating where overlap between 

theories may occur, and adding to a burgeoning network of vetted materials knowledge.  
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The combination of all of these criteria of equivalences is, itself, a set of criteria; the structural 

equivalence framework. The ontology of MSE that has been outlined in this thesis offers new 

insight into how the senses of structure present throughout the practice and modeling of materials 

science are able to be synthesized, and the criteria of a holistic structural equivalence follows 

closely. Using this method allows for many aspects of materials to be analyzed in a way that 

permits faster, more direct comparison in future analyses as more aspects of more systems are 

expressed in terms of the central framework. 

 

This approach is intended for use from any starting point within materials science. MSE is the 

study of structures and, through the construction of a means to test the equivalence of structures 

across multiple senses of materials modeling, this method of comparison via a framework of 

forms of equivalence is a rich tool for this study. In the next section, we explore the various use 

cases of such a framework in a materials context, looking at structuring processes of scales, 

states, models, and variables in a number of examples. 
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Chapter 4: Results and Discussion 

Results and Discussion 

 

You've never been out of college! You don't know what it's like out there! 

 I've WORKED in the private sector. They expect results. 

—Dr. Raymond Stantz, “Ghostbusters” 

 

Equivalence criteria elucidate structure by providing the rules for determining when and how the 

relational quantities between objects in a system change as a system undergoes some evolution. 

Looking at the invariants of materials models through these evolutions invokes exactly the 

holistic sense of material structure that fits the variety of approaches with which an MSE 

practitioner explores material systems. Every entry point to the science of materials deals with 

some form of structure, be it a measurable variable, a mechanism, a state change of a system, or 

of some multiscalar phenomenon. For each approach, identifying and classifying structure and 

then adding to knowledge of particular materials systems, or classes of materials, is paramount. 

 

In order to use this method on pre-existing bodies of research, or theories, two or more systems 

must first be chosen, isolating some object of overlap between them—for instance where some 

objects of two theories share qualitative definitional equivalence—and determining the extent of 

structural equivalence between the systems. The object for this method can be any thing of which 

there are defined properties within a materials theory. As the descriptions of materials systems 

within MSE consist of numerous overlapping theories, a framework of determining structural 

equivalence as defined here is wide-reaching and effective. At every point of a materials system, 

from the element(s) which comprise the atomistic structure, to the models of plasticity predicting 

the evolution of defect structures, to the macroscale behavior of material objects leading to the 

damage and / or failure of components, materials systems inhabit different physics, scales of 

energy, and interpretations of data and models.  In order to illustrate the efficacy of the proposed 

program, four different problems within materials science are analyzed using the structural 

equivalence framework, and the results of each application are discussed. 
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4.1: Multiscale Models 

The full picture of any material is not captured by phenomena of a single length scale. Rather, a 

key component of materials is that interlinking, multiscale phenomena are integral to the 

understanding of macroscale material behavior. Linking the physical models at different length 

and time scales of a materials system is, therefore, paramount to improving the predictability of 

holistic materials models, which implies that models relating those tested within certain scales 

must be constructed. The interfaces at the bounds of scales are known as ‘bridging’ models, and 

are essential to creating linked, multiscale models [15]. The objects being bridged are different 

theories adhering to a specific scale of length. They are not only descriptions of different 

portions of the same system, but constitutive interfaces, wherein one theory fully describes the 

objects which make up the basic units of the other. Atomic theory begets molecular theory which 

begets microstructural theories, so on and so on. These theories have massive conceptual 

overlap, and are causally affective in relation to one another. This relationship means that, as is 

commonly assumed in practice, the terminal objects of each congruent theory are equivalent at 

the boundaries of their theories.  

 

Because the separations of a material object into scales are subjective, any scale of length or time 

can be compared to another on the basis of their structure, and therefore their structural 

equivalences. Figure 11 below shows a version of Figure 6 illustrating the two scales of the 

materials hierarchy discussed in this section:  
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Figure 11: The various scales and mechanics of materials science [14]. The arrow represents the connection 

between the two scales being discussed in this section. 

 

As the figure illustrates, it may be theorized that the models at each scale are connected in some 

manner, and therefore capable of being analyzed using the structural framework proposed 

herein. A particularly rich vein of analysis occurs between atomistic models, represented 

generally by molecular dynamics (MD), and microscale mechanics, which can be modeled using 

various finite element (FE) models. Many existing bridging models have been created expressly 

to provide this specific connection [80], in order to solve materials problems as diverse as 

nanostructure mechanics, polymer-composite interfaces [81], crack propagation [82], [83] and 

damage mechanics in ceramics [84].  

 

The MD method involves applying classical Newtonian forces to collections of individual atoms, 

and then using the resulting motion of the atoms to calculate various properties of the MD 

system [14]. When the atoms get close enough to interact in the simulation, the interaction force 

between the particles of an MD simulation is typically modeled through some selected pair 

potential, such as the Lennard-Jones potential, the Mie potential, of the embedded-atom model 

potential [14]. Measurement of the resultant arrangement of the particles at the desired time step, 
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𝛿t, can then be used to analyze various formations within a simulated system—defects such as 

dislocations and grain boundaries—as well as properties of that system.  

 

Larger scale phenomena often deal with continuous segments of materials, and are often 

analyzed using various FE techniques. FE analyses are numerical methods which involve 

breaking down some continuum into a finite number of smaller elements (usually of some known 

geometric shape), and then analyzing equilibrium criteria at the boundaries of each element 

relative to the nodes of adjacent elements, as the system is iterated through some process. The 

criteria for analysis can be across a variety of domains, including stiffness, heat conduction, fluid 

flow, and electrostatics [85]. 

 

These two simulation techniques are often used to represent various aspects of materials, and can 

be thought of as models pertaining to materials theories. Therefore, both models may be 

analyzed via means of ascertaining the structural equivalence, and the analysis would be 

applicable to any example of the two methods being bridged. In order to illustrate this point, the 

structural elements of both methods are drawn out in the subsequent sections. This approach 

demonstrates how models, or other objects, should be analyzed in a structural equivalence 

framework to look for the necessary elements that a valid translation between the two ought to 

possess. In order to determine the equivalence forms of both MD and FE methods, we begin by 

looking at the basic framework of both models. 

 

4.1.1: Structuring Elements of Molecular Dynamics Models 

The basic building blocks of MD are particles, or atoms, represented by a mass (mi), a position 

(ri), and a velocity (vi). A simulation using MD will often involve a set volume (V) which is 

populated by a set number (N) of atoms. If a particular substance is being modeled, say a metal, 

then each atom within the volume will be set to occupy a lattice site within the given metal’s 

crystal structure, and a mass assigned to each. Analyzing the system as it changes in time using 

Newton’s equations of motion gives the basic form for the motion of an atom as: 

 

𝑑2𝒓𝑖
𝑑𝑡2

=
1

𝑚𝑖
𝑭𝒊 =

1

𝑚𝑖
∑𝒇𝒊𝒋(𝑟𝑖𝑗)

𝑗≠𝑖

(16) 
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where Fi is the force on an atom, fij is the force of the i-th atom on j-th atom, and rij is the 

distance between the two. This model is the basic form of what is calculated for every time step 

of a run [12]. 

 

For an MD simulation of a given time step 𝛿t [s], the basic equations for the change in velocity 

and position for an atom is given by (17) and (18) respectively: 

 

𝒗𝒊(𝑡 + 𝛿𝑡) = 𝒗𝒊(𝑡) + 𝒂𝒊(𝑡)𝛿𝑡 (17) 

𝒓𝒊(𝑡 + 𝛿𝑡) = 𝒓𝒊(𝑡) + 𝒗𝒊(𝑡)𝛿𝑡 +
1

2
𝒂𝒊(𝑡)𝛿𝑡

2 (18) 

 

where ai is the acceleration of the atom, assumed along with the force to be constant from time t 

to time (t + 𝛿t) [14]. 

 

In addition to positions and mass, simulations will often use an interaction potential specifically 

conceived for the class of materials being simulated. This section is primarily focused on the 

general form of the molecular dynamics method, so we will use the classic Lennard-Jones 

potential to look at the structure of the model, but any potential model could be used in a future 

analysis. The Lennard-Jones potential (φLJ, [eV]) between two interacting atoms ai and aj, is 

generally rendered as: 

 

𝜑(𝑟𝑖𝑗) = 4𝜖 [(
𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

] (19) 

 

where rij [Å] is the distance between ai and aj, 𝜖 [eV] is the absolute value of the minimum of the 

potential, and 𝜎 [Å] is the distance at with the potential is zero. Often, this potential and resultant 

force equation will be normalized by 𝜖 and 𝜎 in order to simplify the calculation, and a standard 

cut-off value surrounding any atom is rc = 2.5𝜎 [14]. 

 

Once these parameters are set, the MD simulation will apply a force of some variety to the 

constructed model and solve Newton’s equations of motion for each atom within the volume for 
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each time step 𝛿t. After each time step, the new positions and velocities for each atom, ai, can 

then be used to calculate other properties [14]. 

 

Due to inaccuracies that arise in the numerical integration of Newton’s equations after large 

numbers of time steps, various algorithms are used as correctives, including the Verlet algorithm 

[14]. Using this algorithm on a generic molecular dynamics model gives an updated estimate of 

velocity for each atom as a function of both the forward ri (t + 𝛿t) and backward ri (t - 𝛿t) 

position change, with: 

 

𝒗𝒊(𝑡) =
𝒓𝒊(𝑡 + 𝛿𝑡) − 𝒓𝒊(𝑡 − 𝛿𝑡)

2𝛿𝑡
(20) 

 

Using this velocity, various thermodynamic properties of the system may be calculated including 

the potential energy U (21), the kinetic energy K (22), the Hamiltonian 𝓗 (23) representing the 

total internal energy of the system, the instantaneous temperature Θ(t) (24), and the average 

temperature 〈𝑇〉 (25) and pressure 〈𝑃〉 (26). 

 

𝑈(𝑟𝑁) =
1

2
∑ ∑𝜑𝑖𝑗(𝑟𝑖𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

(21) 

𝐾 =
1

2
∑𝑚𝑖𝑣𝑖

2

𝑖

(22) 

ℋ(𝑝𝑁 , 𝑟𝑁) = 𝐾(𝑝𝑁) + 𝑈(𝑟𝑁) (23) 

𝛩(𝑡) =
2𝐾(𝑡)

3𝑁𝑘𝑏
(24) 

〈𝑇〉 =
〈𝐾〉

3𝑁𝑘𝑏
(25) 

〈𝑃〉 =
𝑁

𝑉
𝑘𝑏〈𝑇〉 −

1

3𝑉
〈∑𝑟𝑖 ∙ ∇𝑖𝑈

𝑁

𝑖=1

〉 (26) 
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A general MD system is often presented as a microcanonical ensemble (NVE), and so it will also 

have a boundary condition wherein energy is conserved, and—for those with periodic boundary 

conditions—momentum is conserved [14]. Given these building blocks, we may now ask what 

the structures used to create an equivalence criterion for MD might look like.  

 

In order to define a definitional structure of MD, a signature 𝛴def(MD) is chosen to represent the 

vocabulary of the method. MD typically operates in a three-dimensional Cartesian space, so 

much of the vocabulary of this method will be adaptations of physical parameters within that 

framework. While, again, we do not strictly adhere to the axiomatization rules of first-order 

logic, we take inspiration from work used to apply them to relativistic frameworks in [86], [87], 

[88].  

 

As a reminder, the signature of a model consists of the relational Rel(𝛴def(MD)), functional 

Func(𝛴def(MD)), and constant Const(𝛴def(MD)) definitions for the vocabulary of a model. For MD, 

we define these sets for some set of arbitrary (in this context) variables {x, y, z ∈ X} as follows: 

 

 Rel(𝛴def(MD)) has as elements: 

 Bodies, B(x), of which atoms, At(x), are a subset, both unary relations. 

 Quantities, Q(x) a unary relation 

 <, a binary ordering relation 

 Ca(x, y), a binary Cartesian relation 

 Func(𝛴def(MD)) has as elements: 

 + / ⚬, binary function symbols for operations 

 T(x, y), a binary time function 

 M(x), a unary mass function 

 Const(𝛴def(MD)) has as elements: 

 Ord, the origin of the simulated volume with d number of coordinates 

 𝛿t, a time step 

 

Using this signature 𝛴def(MD), as the basic definitional structure of the model, all of the other 

objects of MD can be constructed within definitional models Sdef(MD), defined as: 
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〈𝑆; 𝐵, 𝐴𝑡, 𝑄, +,◦,<, 𝐶𝑎, 𝑇,𝑀〉 (27) 

 

The atoms of a simulation, At(x) ⊂ B(x), define the primary bodies of the simulation. The space 

in which those relations are defined is a quantity Qd, where d is the dimension of our space, and 

elements such as p ∈ Qd may also be defined as d-tuples where 𝑝 = 〈𝑝1, 𝑝2, … , 𝑝𝑑〉. For MD, d=3 

and the coordinate system is defined as a volume in only positive regions, Q3+(Or3). Given a 

linearly ordered field, the field operations for this space are the set {0, 1, -, /, √}, and a vector-

space can be constructed using Qn (for any n-tuples of quantities) and, for any p, q ∈ Qn and 𝜆 ∈ 

Q (where 𝜆 is a scalar), the set {p+q, -p, 𝜆p} ∈ Qn  [86]. 

 

This vector-space can then be used to construct the velocity vector definitions for the Cartesian 

simulation space, for the atoms of the simulation At(x). For each At(x), there is a relation Ca(pi, 

Or3) that defines where a spatial component of an element x ∈ Q3, px, is relative to the constant 

representing the origin. This property of the signature allows for the length of the vector to be 

defined for any set of {pi, qi} ∈ Q3 as: 

|𝑝𝑖𝑞𝑖| ∶= √∑(𝑞𝑖
2 − 𝑝𝑖

2)

𝑛

𝑖=1

(28) 

 

and the direction of the vector to be defined by the ordering relation, <, relating any two of the 

time function for p and q where T(p, 𝛿t) < T(q, 𝛿t).   

 

The velocity of an element At(x) is also defined by quantities p and q, where for those quantities 

relative to element x, the velocity vx, is defined as: 

 

𝒗𝒙 ∶=
|𝐶𝑎(𝑞𝑥, 𝑂𝑟

3) − 𝐶𝑎(𝑝𝑥, 𝑂𝑟
3)|

|𝑇(𝑞𝑥, 𝛿𝑡) − 𝑇(𝑝𝑥, 𝛿𝑡)|
(29) 

 

The position and velocity of any atom within an MD simulation are the bedrock definitional 

variables through which any of the thermodynamic variables, and other properties, may be 

derived. The definitional structure, as captured in the signature 𝛴def(MD) should then contain all of 
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the necessary components for that derivation, although further work should be done to express 

the full breadth of the theory in the same near-first-order logic used here.  

 

With definitions in hand, the next set of criteria is based around the empirical structure of the 

MD theory. As illustrated in section 3.2, the empirical structure is constructed by obtaining a set 

of empirical data, unitized through a multirelation on the empirical relations of a model and the 

powerset of units, standard and derived. The empirical relations of MD models are not directly 

experimental in this context—though it is not uncommon for empirical models of pair potentials 

to be used [89] within an MD simulation—but rather we assume the results produced by a 

simulation as representational of the empirical data sets of the model. 

 

Then, it follows that the raw empirical results of an MD simulation are, as has been shown, sets 

of time-evolved position (ri) and velocity (vi) measurements, eMD = {ri, vi}. These results 

themselves are structured by the models used in their calculation, mainly in equations (18) and 

(20) describing the evolution of the position and velocity of an atom within an MD simulation. 

The time-step relations are the first maps included in the set of empirical relations, {EmMD}. The 

thermodynamic relations, along with those which derive other properties from eMD, are also 

included within {EmMD}, so that any structuring process of the basis of the initial empirical data 

sets can also be used for building empirical equivalence criteria for these parameters. 

 

Another relation within the empirical set, which is key to the creation of equivalence criteria, is 

that of assigning units. As stated in section 3.2, these relations relu are taken to be multirelations 

where any given empirical relation emi carries with it the units from the powerset of units both 

measured and derived from the set of base SI units [90], shown in Definition 5. In an MD 

simulation, the basic relations are time-step calculations of position and velocity evolutions, so 

we could take the isolated unit relation relu(emMD(i)) as:  

 

𝑟𝑖(𝑢)(𝑒𝑚𝑀𝐷(𝑖)): [𝐿] → [𝐿] (30) 

𝑣𝑖(𝑢)(𝑒𝑚𝑀𝐷(𝑖)): [𝐿𝑇
−1] → [𝐿𝑇−1] (31) 
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where L and T are some unit of length and time, respectively. The structure of the empirical data 

set of an MD experiment is then, simply, the relations which hold for a particular model being 

simulated, in terms of the evolution of the state (r) and vector (v) spaces of the system, along 

with the requirement for carrying units. 

 

The elements of the empirical structures of an MD experiment may then serve as the basis for an 

informational structuring. Recall from section 3.3 that information derived from sets of empirical 

data carry the structure for ascertaining the interaction capabilities, and structuring potential, of a 

system. The criteria informed by Shannon entropy structures any potential data channel between 

two interacting systems, carrying forward the boundedness of the “source” set of random 

variables, while the criteria informed by relational entropy structures any potential state space 

evolution of a system with data related to different states of that system. 

 

The information of each reviewed information model is a probability measure, meaning that the 

sets of MD data measuring the probability of some outcome of interaction will be a set of 

probabilities, bound to specific sets of values on the basis of the validity bounds of the empirical 

models used to produce the probability distributions analyzed. For a simple MD model, this 

approach could measure the information produced by some finite number of time steps by way 

of the average velocity v of the atoms within the system, and no other bounds, as: 

 

𝐻(𝒗) = −𝛴𝑝(𝒗) 𝑙𝑜𝑔2(𝒗) (32) 

 

This information criterion could, on the other hand, account for some restriction on the 

simulation, such as ‘the system being modeled must be in the solid state,’ necessitating a 

potential restriction of the MD model to ensure that the temperature of the simulation always 

falls within (0 K to TM) for the system being modeled. This approach would ensure that the only 

valid information content related to the measured system corresponds to the random velocities 

able to be produced within the given temperature range for the system. All this to say that the 

structure of the information criteria is wholly dependent on the ‘design of experiment’ that 

produces the data sets being analyzed. 
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This characteristic is also true for the relative entropy within a system. When using the relative 

entropy as a measure for the potential state evolutions of a system, it is also paramount to check 

the ‘experimental’ boundary conditions {Bi} that produced the data correlating to the related 

states. If, in a particular MD simulation, the evolution of defect structures as a function of 

temperature is being measured, then perhaps the max. / min. temperature and the max. / min. 

dislocation density (𝜌) might serve as the bounds for the data set to be analyzed. Then, the set of 

relative entropy values for this experiment from some temperature range (T0, Ti) might be 

modeled as: 

𝐾(𝜌(𝑇𝑖)‖𝜌(𝑇0)) = −𝛴𝜌(𝑇𝑖) log
𝜌(𝑇𝑖)

𝜌(𝑇0)
(33) 

 

with as many temperature increments in that range as desired, and the random dislocation density 

measured at each. The experimental data upon which the probability distributions are based, 

structure the sets of information-bearing probabilities.  

 

All of the forms of structure heretofore then further inform the mathematical structure of the 

models of a given theory. Having elucidated the forms of the models produced within an MD 

approach, we can now create a category of MD models, 𝒞MD. Following section 3.4, we define 

𝒞MD as the collection of models (objects) of MD, meaning {{𝛴def(MD)}, {EMD}, {IMD}}, and the 

morphisms Ccon(MD) between elements of those sets—the relations established in the preceding 

text. The set of models are then further structured with composition and identity requirements, 

and the basic categorical structure of the theory of MD is thus set. 

 

While further specifications based on the particular parameters of an MD simulation could be 

set, we take the elements described as the basic structure of the theory. These elements are 

summarized in Table 2 below: 
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Table 2: A summary of the structuring elements to be used as equivalence criteria, derived for the theory of 

Molecular Dynamics (MD). 

 

 

This table provides all the structure necessary for the construction of translations from MD to 

another theory, and thereby the criteria for determination of the equivalence of another theory to 

MD. 

 

4.1.2: Structuring Elements of Finite Element Models 

The basic building blocks of FE methods are elements of some geometric variety, discretized 

from some object with a continuous surface or volume. The object of analysis could be almost 

any variety of object, across variations in geometry, material type, or use. The method is 

commonly used to solve so-called “field problems,” or problems where the values of some 

dependent variables are known at the boundary of an element, and must be solved for in the 

remainder of the physical domain of the element [91].  

 

Finite element approaches solve—for every element—a problem where some type of externally 

applied forces, fi, are transmitted through a matrix, Kij, of relational variables dependent on the 

Form of Criterion Objects Relations Boundaries

Definitional Σdef(MD); Sdef(MD)

Rel(Σdef(MD)); 

Func(Σdef(MD)); 

Const(Σdef(MD))

N/A

Empirical {eMD} ϵ EMD EmMD: {emMD(i)} ↔ 2{U} State variable 
boundaries; Units

Informational H(eMD(i)); K(eMD(i) || eMD(0))
H(eMD)[B1 to B2] 

K(eMD)[B1 to B2]

Empirical model 
boundaries

Categorical 𝒞MD Ccon(MD)
Empirical model 

boundaries

Theory of Molecular Dynamics (MD)



88 

 

type of problem, to solve for some general manner of displacement, uj, at the nodes of the 

elements, as shown below: 

𝑲𝒊𝒋 ∙ 𝒖𝒋 = 𝒇𝒊 (34) 

 

Note, the displacement uj is not related to the length displacement of deformation, though that is 

a problem common to FE analysis, but here is meant only as a general displacement relative to 

the field of interest. This calculation can also be done in reverse, where the displacement is 

known and the goal is to solve for the applied external forces, or stiffness matrix [92]. 

 

At the boundaries between elements, the equations describing the field of a particular variable 

must be equal, so at the heart of FE is a process of solving partial differential equations (PDEs) 

for these boundaries. This process is accomplished by creating equations that pair various 

‘shape,’ or ‘interpolation’ functions, {Ni}, with an approximated function representing the field 

variables being modeled, ũ(x, y) [92]. As FE is also a numerical solution to a set of analytical 

equations, ũ(x, y) is an approximation because the exact solutions to the PDEs are not easily 

solved.  

 

Interpolation functions are generally polynomial functions of some degree, intended to relate the 

unknown quantities within the body of the element to the known quantities of the associated 

nodes of that element [93]. These functions are similarly bound depending on which node is 

being analyzed, where for some index j, Nj approaches unity at node j and approaches 0 at the 

other nodes of the same element [92], and two common types of functions used for this 

application are Lagrange and linear polynomials [93]. 

 

When the set of displacements {u} are unknown, the form of the solution is a functional 𝜒(u), 

given by equation (35) as:  

 

𝜒(𝑢) = ∫𝑓

 

𝑣

({𝑢},
𝜕{𝑢}

𝜕𝒓
,…)𝑑𝑣 + ∫𝑔({𝑢},

𝜕{𝑢}

𝜕𝒓
, …)𝑑𝑠

 

𝑠

(35) 
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where v and s, are the volume and surface of an element, f and g are functions of them, 

respectively, and r are coordinatized position vectors [93]. As previously stated, FE problems are 

solved by assumptions of boundary conditions, one of which is the minimization of 𝜒(u), also 

known as the “principle of minimum potential energy” [85, p. 113], where: 

 

𝜕𝜒(𝑢)

𝜕{𝑢}
=

{
 
 

 
 
𝜕𝜒

𝜕𝑢1
𝜕𝜒

𝜕𝑢2
⋮ }
 
 

 
 

= 0 (36) 

 

Solving this equation illustrates the equilibrium state of the system based on the field being 

studied, and the type, number, and distribution of the elements chosen [93]. 

 

The sets of displacements are, again, often known at the nodes (n) and unknown in the 

continuum (c) of the element itself, so {u} can be broken down into two subsets, {u}c and {u}n. 

Equation (34) above, with a matrix of various shape functions (Ni), can then be reformulated as 

(37), with conditions (38) and (39): 

 

{𝑢}𝑐 = [𝑁]{𝑢}𝑛 (37) 

 

𝜒(𝑢) = 𝛴𝜒𝑒(𝑢) (38) 

 

𝜕𝜒(𝑢)

𝜕{𝑢}
= 𝛴

𝜕𝜒𝑒(𝑢)

𝜕{𝑢}𝑒
= 0 (39)   

 

where the superscript e represents a single element of the analysis [93]. 

 

Once the set of element equations has been derived for the set of elements to be analyzed, they 

are all assembled in order to create the subsequent set of field equations for the problem. This 

analysis can be performed for a variety of scientific and engineering contexts, a survey of which 

is provided below in Table 3.  
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Table 3: A short survey of areas in which FE analysis can be performed, characterized by their representative fields 

and field variables, adapted from [93]. 

 

 

Each element is situated within the wider coordinate system of the object that has been 

discretized, so equations at nodes, boundaries, and within the body of an element may be 

constructed. For the entire structure of the object, the sets of equations have the general form: 

 

[𝐾]{𝒒} = {𝑹} (40) 

 

where [K] is known as the global “stiffness” matrix, and is a function of the interpolation 

functions, {q} represents the vectors of the unknown quantities at the nodes, and {R} is the set of 

vectors representing known parameters resulting from the applied field, a function of a given 

field’s dispersion to the nodes of an element [93]. The global stiffness matrix [K] is the sum of 

the individual stiffness matrices of the elements, or: 

 

[𝐾] =∑[𝐾𝑒]

𝑁

1

(41) 

 

where N is the total number of elements in a given analysis. Solving this global set of equations 

for {q} is often accomplished through various algorithms used for solving systems of linear 

equations [93]. Once these equations have been solved, any further derived quantity that is 

related to, or a function of the elements of {q}, can also be found on the basis of these results; for 

example, the strain {𝜺} or stress {𝝈} values resulting from some dimensional displacement (as 

shown in Table 3). Once all the equations of the discretized elements of an object have been 
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solved, the analysis is complete and the results of it may be interpreted and used for various 

purposes [93]. 

 

The structural analysis of a theory of FE proceeds in much the same manner as that of MD. As 

with the definitional structure of MD, we choose a signature to represent the definitions of the 

theory in order to build out a definitional equivalence criterion for FE. The objects of FE, 

especially those that might be of use in an engineering context, are often three dimensional and 

made of various materials. An FE simulation, therefore, will also utilize three dimensional 

Cartesian space. The basic material quantities of FE are variable, because its analysis can—as 

has been shown—account for various physical properties of an object. FE, as foundationally 

constituted, is also static; an object and its elements could be cycled through a kinematic event 

and snapshots of steps within the event taken, but that capacity is not directly embedded within 

the method.  

 

Setting out the definitional structure, for some set of arbitrary variables {x, y, z ∈ X}, the 

signature of an FE simulation, 𝛴def(FE), is as follows: 

 

 Rel(𝛴def(FE)) has as elements: 

 Bodies, B(x), of which elements, El(x), are a subset, both unary relations. 

 Quantities, Q(x) a unary relation 

 <, a binary ordering relation 

 G(x), a scaled unary geometry relation 

 Ca(x, y), a binary cartesian relation 

 Func(𝛴def(FE)) has as elements: 

 + / ⚬, binary function symbols for operations 

 D(x, y, z), an n-ary discretization function 

 N(x, y), a binary interpolation function 

 Am(x, y), a binary counting function 

 Const(𝛴def(FE)) has as elements: 

 Ord, the origin of the simulated volume with d number of coordinates 

 {G}, a set of known geometries 
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Echoing the analysis for MD, using this signature 𝛴def(FE), as the basic definitional structure of 

the model, all of the other objects of FE can be constructed within the set of definitional models 

Sdef(FE), defined as: 

 

〈𝑆; 𝐵, 𝐸𝑙, 𝑄, 𝐺, +,◦,<, 𝐶𝑎, 𝐷, 𝑁, 𝐴𝑚〉 (42) 

 

The primary definitional objects of FE are elements, which are a subset of bodies, El(x) ⊂ B(x). 

The elements of an FE simulation are discretized in a particular space, and we construct the 

definitions in the same manner as an MD simulation, as they both occur in three-dimensional 

Cartesian space. The objects of space are, therefore, also a quantity Qd with elements p ∈ Qd, the 

coordinate system is defined as a volume in only positive regions, Q3+(Or3), and with the field 

operations for this space—the set {0, 1, -, /, √}—a vector-space can be constructed using Qn 

where for any p, q ∈ Qn and 𝜆 ∈ Q (where 𝜆 is a scalar), the set {p+q, -p, 𝜆p} ∈ Qn  [86]. 

 

Defining the object as an initial body, B(x0), elements may be defined through the discretization 

function with: 

 

𝐸𝑙(𝑥𝑖) ∶= 𝐷(𝐵(𝑥0), 𝐶𝑎(𝑝𝑖, 𝑂𝑟
3), 𝐺(𝑝𝑖)) (43) 

 

Here, the element is defined as being discretized relative to the original body, mapped with 

respect to the origin in a three-dimensional space, and given a set geometry. Through this 

operation the nodes and boundaries, along with the surface and volume, of each element may be 

defined.  

 

Next, with the nodes and boundaries defined, the interpolation functions are defined at any point 

within the volume of the defined element. Any potential geometric object defined within or 

across some element, El(xi), must be definable in terms of a quantity relative to any other part of 

the element. This interpolation function is defined as: 

 

𝑁𝑖𝑗 ∶= 𝐸𝑙(𝑥𝑖) − 𝐸𝑙(𝑥𝑗) (44) 
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where Nij interpolations the element space from some ith to some jth portion of the element.  

 

These interpolation functions provide a pathway between points within the field of interest in the 

element, but as defined do not carry values for the fields of interest with them. As noted in the 

name of the theory, the discretization of a continuous body provides finite elements and a 

numerical method of analysis, which is ideal for this treatment as we can define a function which 

counts values rather than integrating them. This counting function can be defined as: 

 

𝐴𝑚(𝑥𝑖𝑗) ∶= 𝑁𝑖𝑗 (𝑄(𝑥𝑖) − 𝑄(𝑥𝑗)) (45) 

 

which is defined to ‘count’ the amount of some quantity Q at some variable (here a coordinate) 

relative to another variable, scaled by the interpolation function connecting the two variables. 

 

These three definitions define the foundational definitional structure of the theory of FE analysis. 

Using these definitions, every other part of an FE simulation can be derived and used for various 

applications of the FE method. It is assumed once more that the as-captured signature 𝛴def(FE) 

contains all of the necessary components for those and other derivations, but for use in outlining 

the set of definitional equivalence criteria, these definitions are, again, deemed sufficient.  

 

With the definitional structure of FE theory in place, the empirical data sets of the FE method 

must be constructed. The data sets of FE include the geometric data on the body being 

discretized, as well as that of the chosen element geometry. The set also includes any field which 

may be applied to the elements of a simulation, along with the field variables resulting from that 

application. Each applied field will have a different multirelation on the set of elements, to 

account for the difference in units assigned to various points in the element.  

 

The set of empirical relations of FE, {emFE ∈ EmFE}, will include those discretizing the volume 

and surface of the object, as well as spatial relations between points within the coordinate space 

of the element. Additionally, the set includes all of the interpolation functions selected for a 

given analysis, and the relations applying a field onto the discretized geometry. The units in each 
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multifunction will rely on the field being used. For example, an analysis of stress states on a 

body under external loading could have a multirelation of: 

 

𝑒𝑚𝐹𝐸(𝑖): {𝑢𝑖} ↔ {[𝐿]} (46) 

 

where some empirical relation, for some element point i, carries with it both a set of 

displacements and some length units, [L]. 

 

The empirical structure of FE is, therefore, the set of empirical relations used to discretize the 

coordinate space of the object, apply a field of interest, and linearize the set of relations formed 

by the first two steps. These relations must be bound by the same conditions presented in 

equations (38) and (39) above, and must carry the appropriate set of units through any 

translation. Any boundary condition of the specific field selected for an FE simulation must also 

be instituted, e.g., the melting temperature, TM, for a material being subjected to thermal forces.  

 

The informational structure of FE is similar in construction to that of MD, namely an analysis of 

the types of information describing the state of the FE system. First, a relation structuring the 

probabilities of achieving some state of the fields being analyzed across element geometry using 

HFE(xi). Then, another relation structuring the relation between established states of a system, 

KFE(xi || x0), that analyzes the probability of some state xi coming into existence from a starting 

state of x0. These information relations are also bound by whatever conditions bind the empirical 

data sets, in whatever realm of physics is being studied in a given FE simulation. 

 

Naturally, these all feed in to the mathematical structure indicated by the category of FE models, 

𝒞FE. The category has, as objects, the set of all FE models defined as {{𝛴def(FE)}, {EFE}, {IFE}}. 

The category has, rather predictably, as morphisms, the set of conversion relations Ccon(FE), 

which consists of those described in each section above. 𝒞FE is structured with both a 

composition function, and an identity function, and its models obey their respective boundary 

conditions. There are, of course, many variations on an FE simulation that could be instituted, 

but the above is a quick description of the basic structures of the theory. As with the theory of 

MD, the Table 4 below summarizes these structures for a theory of FE: 
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Table 4: A summary of the structuring elements to be used as equivalence criteria, derived for the theory of Finite 

Element (FE) analysis. 

 

 

4.1.3: Translations 

Table 2 and Table 4 summarize, abstractly, the structures that have been proposed for models of 

the theories of MD and FE, respectively. Each criterion of equivalence proposed for both 

theories is proposed in shape, nimble enough to capture the variety in models of both theories, 

and strengthening the equitability of each theory as criteria are added. If one were to set out to 

prove the sense in which a model of MD was equivalent to a model of FE—a not uncommon 

proposition within MSE—then this work proposes that the equivalence of the models ought to be 

validated on the basis of the forms of equivalence proposed above. 

 

There are numerous methods that have been proposed for bridging these two specific theories 

[80] - [83], [94]. This work does not set out to find, or create, a perfect bridging model for 

multiscale materials methods, but rather to provide a framework through which bridging models 

could be analyzed and validated. As any particular bridging method is applied to a model linking 

MD theory with FE theory, it ought to translate from one to the other while maintaining as much 

of the structure of the theory of the domain of the translation, up to isomorphism.  

 

Form of Criterion Objects Relations Boundaries

Definitional Σdef(FE); Sdef(FE)

Rel(Σdef(FE)); 

Func(Σdef(FE)); 

Const(Σdef(FE))

N/A

Empirical {eFE} ϵ EFE EmFE: {emFE(i)} ↔ 2{U} State variable 
boundaries; Units

Informational H(eFE(i)); K(eEF(i) || eFE(0))
H(eFE)[B1 to B2]    

K(eFE)[B1 to B2]

Empirical model 
boundaries

Categorical 𝒞FE Ccon(FE)
Empirical model 

boundaries

Theory of Finite Element (FE) Methods
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Figure 12 illustrates this concept via an olog between a representation of MD and one of FE. 

Table 5 below the figure postulates the form of the translations that would be necessary to 

establish how, and to what degree, some bridging model would establish equivalence between 

the theories. 

 

 

Figure 12: An olog of the translations between MD and FE, and between FE and MD on the basis of their respective 

equivalence structures. 

 

Table 5: A summary of the abstract translations necessary to validate equivalence between MD and FE models. 

 

Form of Criterion MD → FE FE → MD Boundaries

Definitional Σdef(MD)  → Σdef(FE) Σdef(FE)  → Σdef(MD) N/A

Empirical EMD → EFE EFE → EMD
State variable 

boundaries; Units

Informational
H(eMD) → H(eFE); 

K(eMD) → K(eFE)

H(eFE) → H(eMD); 

K(eFE) → K(eMD)

Empirical model 
boundaries

Categorical F: 𝒞MD → 𝒞FE G: 𝒞FE → 𝒞MD
Empirical model 

boundaries

Translations Between MD and FE Theories
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The translations pictured above are the form, and function, of a method of validating equivalence 

between two theories. In the abstract, any two material theories—any theories—are able to be 

compared and contrasted in this manner. The specifics of a particular model of a theory may 

change, the boundary conditions might change, etc., but the approach of structural juxtaposition 

based on illustration of various forms of structure outlined in the preceding section, will remain 

consistent.  

 

Now that the most abstract portions of this method of analysis have been demonstrated, other 

flavors of the application of this framework may also be illustrated. The next section will provide 

detail on informational structure and equivalences. Specifically, what sort of structures are found 

in an informational analysis of state change measured by a particular method of characterization 

of a material, using the X-ray diffraction method.  

 

4.2: State Change Models 

Even the most straight-forward techniques of characterization within MSE involve the 

interaction of phenomena at two length scales, often a micro- or mesoscale being tied to 

macroscale phenomena. As the body of materials knowledge grows, the effects of various 

physical components within materials systems on their behavior becomes more complex, 

occasionally necessitating the re-evaluation of models concerning related materials phenomena. 

Much like the problem of bridging within multiscale modeling, the calibration of models 

intended to faithfully recreate empirical results across scales can be difficult and time 

consuming. The question presented by this intersection of research offers an opportunity for an 

analysis of the ways in which the structure of models interacts with the empirical data produced 

by characterization, which is best analyzed through characterization of information. 

 

With sets of relations between components of systems, and between systems interacting, 

information is a natural language for materials systems and materials models are full of 

informational relationships. As has been shown, an analysis involving various forms of 

information content deriving from the probabilistic nature of many empirical relations adds 

necessary structure to theories. The stochastic nature of measured variables, juxtaposed to the 
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deterministic nature of the equations designed to describe the phenomena, provides ample room 

to investigate signal and noise across various empirical / analytical boundaries. Exactly how 

quantities of information can be used in analysis of materials systems is a question with, likely, 

many useful answers, one of which is the determination of when states of a system are 

informationally equivalent, and what that tells us about pertinent structural forms in materials 

models. This type of analysis is best performed by calculating and assessing values of relative 

entropy for different states of a material system.  

 

Structural modeling, and studying the behavior of those physical structures, is at the heart of 

MSE. One of the classic characterization methods used to determine various aspects of physical 

structure in materials is X-ray Diffraction (XRD). XRD has been used to study an enormous 

swath of materials, and can measure the degree of crystallinity of a sample, the lattice parameter 

of crystals, and the phases present within the sample, among other things. By bombarding the 

sample being measured with x-rays of a known wavelength, at specific angles of incidence, these 

measurements can be calculated based on the resultant intensities of x-rays diffracted by the 

material. Diffraction is described by well-known empirical relations, including Bragg's Law and 

the Laue equations. XRD also produces patterns with well-known analytical methods, 

representative of the structure of the material [95]. 

 

One common method of representing XRD data is by plottingthe intensity of the diffracted 

beam, I [a.u.], versus the diffraction angle 2θ [°]. Various structures will have different possible 

sets of reflection planes, based on satisfying Bragg’s Law, that can help to identify specific 

materials via the intensity peaks being measured at specific diffraction angles [13]. These peaks, 

given a completely static environment, would be straight lines indicating the precise angle where 

diffraction may occur, but in practice there are a number of deviatory factors including grain 

size, strain, temperature, and instrumental effects which lead to the broadening of the peaks in 

measured XRD patterns. Other factors such as absorption, texture, polarization, and temperature 

can affect the intensity and location of the peaks of a diffraction pattern [95]. 

 

Using the equivalence criteria framework, the variety of results obtained via XRD 

characterization can be analyzed for elements of the forms of structure outlined herein. 
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Specifically, we wish to look at the variations produced in XRD patterns in copper metal samples 

to show the information content in the form of the relative entropy shift produced by varying 

independent variables which cause peak shifting, namely changes in temperature [T] and percent 

reduction [%red], due to cold-working—deformation of a metal at low (~ < 0.4TM) temperatures. 

The data produced by this method must first be turned into probability distributions of the 

resultant intensity data, then the shift in the discrete probability distributions produced by the 

peak shifting experiments may be quantified. This analysis is applicable to any set of data, of any 

characterization technique, with some random variable able to be rendered in probability 

distributions. 

 

The relative entropy, as shown in equation (15), is in this context a quantification of the variance 

of an empirical model, or the increase in the number of informational states available, relative to 

some reference state of that model. An increase in the relative entropy correlates to a larger 

number of accessible configurations of information at some value of an independent variable of 

the model. Using this analysis, we can design criteria for the determination of the equivalence of 

states of a system, measured via XRD, on the basis of their information content. 

 

For a single characterization technique, the analysis of states via information assumes both 

definitional and empirical equivalence on the basis that a technique and its resultant data share 

both a set of definitions and empirical relations, those assigned to a theory of XRD. Therefore, in 

order to quantify the type of information that is needed for this analysis, we begin by defining 

our set of measured variables. XRD patterns, as stated, are typically illustrated on an 2D 

Cartesian plot, with diffraction angle [2θ] on the x-axis and intensity [I] on the y-axis. Measured 

peaks of intensity will occur at specific angles where the incident X-ray beam diffracts, giving a 

characteristic pattern.  

 

The set of data used to calculate the probability distribution of an experiment includes the 

intensity, I, and angle 2θ, which we define as {X}, with every element x ∈ {X} equal to some 

combination of [I, 2θ].  Given these sets, we then select a bin size in order to convert the 

experimental data into probability distributions. Here, a half degree of 2θ was chosen because it 

is roughly a quarter the size of the base of the largest peak analyzed, deemed sufficient to capture 
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different sections of each peak. Then every element x from {X} was mapped into a bin, n, of 2θ 

from 0° to 180° degrees.  

 

Once the measured data is binned, the probability that some element of intensity, x, might be 

found in each n-2θ bin is calculated where: 

 

𝑝(𝑥) =
𝛴𝑥𝑛(2𝜃 = 𝑖, 𝑖 + 0.5)

𝛴𝑥𝑛(2𝜃 = 0, 180)
(47) 

 

An example calculation using the above equation may be found in Appendix A.1.  

 

The probabilities are calculated for every half degree 2θ from 1° to 120° [2θ] for temperature 

variable patterns. The sum of all 𝛴p(x) for the collected data should be equal to 1, which it is for 

each set analyzed herein. Calculating a probability p(x) for every 2θ bin n produces a probability 

distribution, P(x), for any diffraction pattern. In order to perform the relative entropy analysis, 

one of the diffraction patterns, and its resultant distribution must be chosen as a reference. Here, 

we choose a reference state of copper at 0 K, based on a lattice parameter calculated by Giri and 

Mitra [96], which was then used to produce a representative powder diffraction pattern for 

copper using the Match! Powder Diffraction software [97]. The probability distribution produced 

by this powder diffraction data set is set as our model distribution, Q(x). Figure 13 displays the 

calculated reference pattern for copper at 0K. 

 

Figure 13: The 0 K XRD pattern for Cu, which serves as Q(x), or the reference pattern, for the temperature 

evolution analysis. Pattern produced using Match! [96] 
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Similarly, the diffraction patterns for copper at temperatures of 303K, 403K, 503K, 603K, 703K, 

and 803K were produced with lattice parameter data from [98] and the Match! Powder 

diffraction software [97]. In all cases it was assumed that the lattice parameter for copper used to 

calculate all higher temperature diffraction patterns expanded isotropically, and that a = b = c. 

The evolution of temperature produces a noticeable shift in the peaks, as shown below for the 

Cu(200) peaks in Figure 14. 

 

 

Figure 14: The shifts of the (200) XRD peaks to lower values of 2𝜃 for Cu due to increasing temperature, which correspond to a 

shift in the intensity probability distributions, P(x). 

 

The peaks produced in Figure 14 should theoretically be straight lines as the calculations 

involved differ only by a change in the lattice parameter, a [Å]. The minute peak broadening of 

approximately 0.08° [2θ] (as measured by full-width of the peak at half of the maximum 

intensity) that each calculated peak exhibits is due to the datasets which form the standard in 

Match!, and the instrumental broadening of those referenced experiments, which is much lower 

than the typical broadening seen due to instrumentation [95]. The software allows, and 

encourages, the creation of XRD pattern standards for known materials as a comparative baseline 

and, if none are uploaded prior to an analysis, defaults to records of the Crystallography Open 

Database (COD) [99]. The records contained in the COD are open source data, uploaded and 

published by authors and institutions for use in research, the results of which are then used in the 
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calculation of the XRD patterns produced by Match! The broadening apparent in Figure 14 is 

then likely due to the instrumentation used in the studies which produced the pure copper 

reference patterns for the COD. While the data produced in this method may be inappropriate for 

use in other experiments due to these factors, it is still in a form which is acceptable for use 

within this framework as an evaluation of the method of informational analysis because the 

method measures only deviation from the reference, and this section is intended only as proof 

that this form of measurement is feasible. If this were an analysis of straight line intensities with 

broadened peaks, the trend of the relative entropy would remain unchanged, though the values of 

entropy produced would be higher as the distribution of the intensity data would change more, in 

contrast to to the analysis above. 

 

Diffraction patterns representing copper undergoing a series of cold working steps were mapped 

into Microsoft Excel from [100, p. 4] and used to produce intensity vs. 2θ data sets using the 

WebPlotDigitizer [101]. Figure 15 contains these patterns plotted next to one another, where the 

effect of processing the material can be seen via the contrast in the position and shape of the 

peaks. In contrast to the calculated temperature patterns, these patterns display more variance 

and peak broadening, with the shift especially prominent for the Cu(220) peak, a result of 

changes in crystallographic texture, and microstrain from the increase in the dislocation density 

due to cold-rolling [95]. 
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Figure 15: Normalized XRD intensities of cold-rolled Cu sheet, shown with the %reduction of the original 

thickness, indicative of rightward peak shifting and broadening that can occur due to cold-work reduction, adapted 

from [100]. 
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With the data in this format, the probability distributions of the sets of intensity data can now be 

calculated. As the probability distribution of each pattern is calculated, the relative entropy of 

any two distributions can be obtained. In this instance, we are interested in the ‘distance’ of an 

experimental distribution from a reference distribution that represents the current ‘ideal’ of some 

combination of material and characterization technique—here the pattern of the polycrystalline 

copper calculated at 0 K for the temperature evolution, and the undeformed copper sheet pattern 

for the cold-working reduction. A slightly different version of equation (6) using the natural 

logarithm was also calculated, based on the assumption that the natural log renders the results as 

a more direct proportional difference [102]: 

 

𝐾(𝑥) = −𝑃(𝑥) ln
𝑃(𝑥)

𝑄(𝑥)
(48) 

 

Once the distributions have been entered into this formula, the content of the XRD patterns—the 

distribution of intensity measurements across the span of incident angles—can be analyzed. The 

shifts and changes in the shape of the XRD peaks represent the relationship between physical 

states of the system, which are being measured by the relative entropy. Higher temperatures 

produced the highest values of relative entropy compared to the reference state for temperature 

evolution, and a reduction of 62.5% produced the most relative entropy for the cold-worked set. 

The relative entropy shifts due to increasing temperature are summarized below in Table 6. 

 

Table 6: The relative entropy produced for the copper XRD patterns as the temperature is increased. For both K(x) 

[bit] and K(x) [nat], there is a positive correlation with temperature. 

Temp. [K] K(x) [bit] K(x) [nat] 

0 0 0 

303 0.384 0.885 

403 0.594 1.367 

503 0.713 1.641 

603 0.795 1.832 

703 1.214 2.795 

803 1.877 4.322 
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Similarly, Table 7 shows the change in the relative entropy due to cold-working T1 copper sheet 

[100]. The analysis method, and form of the results, should be replicable for any XRD pattern in 

copper, and in other crystalline materials systems. In fact, assuming that any given 

characterization technique has a set of material standards which may be utilized to formulate a 

desired reference state, this type of analysis should be equally valid across a range of techniques. 

The choice of reference data is subjective, depending on the analytical design-of-experiment, or 

available data. 

 

Table 7: The relative entropy produced for copper XRD patterns after cold-working. The amount of information 

gained spikes at the lowest reduction % of the set, then steadily decreases. 

% Reduction K(x) [bit] K(x) [nat] 

62.5 1.477 3.401 

75.0 1.035 2.384 

87.5 0.831 1.913 

 

The meta-analysis of a system through relative entropy, based on the distribution of experimental 

data, measures how much additional information is necessary to describe a state of a system 

relative to a reference state. The amount of information the state of a system contains relative to 

a reference state is indicative both of a change in the contribution potential of conceptual parts of 

physical material structure (atoms, grains, defects, and the like), as well as the effect of 

environmental variables on those parts and their arrangements. In this analysis, the physical 

structure of the reference state of copper is comparatively idealized. As each of these variables is 

altered, the XRD data reflects the change in the structure, and in the symmetries inherent to the 

reference state, an interruption in the relatively ideal nature of the crystalline lattice which 

necessitates a larger number of variables be determined to fully describe the system. The relative 

entropy is a measure of the change of that data, for a specific characterization technique, in the 

context of the variables of that state.  

 

This sense of information is where a rigorous idea of informational equivalence within materials 

models can begin to form. These measurements show how the overall information of the system 
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increases against a reference, as Figure 16 illustrates the increase in the relative entropy as the 

temperature increases for copper.  

 

 

Figure 16: The increase in relative entropy as temperature increases for copper, as measured via XRD. 

 

The amount of relative entropy K(x) increases at each step of temperature increase. The 

diffraction patterns analyzed for this figure show only the effect of temperature on the lattice 

parameter, making the results of this analysis—in effect—the isolated dispositional power of 

temperature on the lattice parameter, as mediated through the probability distributions of XRD. 

We previously noted that, if two systems (or two states of a system) are empirically equivalent, 

which we take as a necessary condition to the determination of informational equivalence, then 

determining the informational equivalence becomes a matter of determining the relevant 

informational criteria. Quantifying the isolated temperature effect on the expansion of the lattice 

parameter is one method of highlighting where the criteria for information equivalence might 

arise. 

 

The shift due to multiple steps of cold-working, against its own undeformed reference state, 

exhibits a different pattern. Figure 17 shows the relative entropy shift for the cold-working of T1 

copper sheet, reduced from a thickness of 8 mm to 3 mm, 2 mm, and 1 mm, respectively [100]. 
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Figure 17: The relative entropy increase in copper as the % reduction due to cold-working, as measured by XRD. 

 

Here, the relative entropy increases dramatically upon the first rolling step, then decreases 

gradually with further steps. The shape of the shift in the relative entropy presented here reflects 

the sizable shift of the (200) peak to larger values of 2θ that can be seen in Figure 15. The 

authors of that study suggest that these shifts in the XRD pattern are due to texture effects in the 

rolling deformation of the sheet [100]. The apparent inflection in the relative entropy shift also 

seemingly corresponds to the plateauing of the dislocation density increase during cold-working 

due to saturation [103]. Regardless, the divergence data shows that the initial rolling steps have a 

greater effect on the shape and distribution of intensity data than subsequent steps.  

 

Both of these experiments involve a copper system, both having the effect of their processing 

steps measured by XRD. This overlap in material and experimental technique indicate that the 

‘problem’ involving a comparison of these two sets of data can already claim both definitional 

and empirical equivalence. With those equivalences assumed, it is now possible to see in what 

sense, if any, the state change evolution of the heating of a copper sample is informationally 

equivalent to the state change evolution of a copper sample due to cold-working. The first step of 

this analysis is to see how the empirical relations central to each processing model overlap; are 
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they able to occur under the same set of circumstances? Figure 18 illustrates the meaning of this 

step: 

 

 

Figure 18: Representative empirical bounds for two experiments involving applied stress (𝜎a) normalized by the 

yield stress (𝜎y), and the temperature (T) normalized by the melting temperature (TM). The overlap of the two are the 

boundary conditions for shared information states of the two experiments. 

 

In the hypothetical system shown, two experiments are valid in different ranges of normalized 

stress (𝜎a / 𝜎y) and normalized temperature (T/TM). Whatever the relationship in general between 

these two variables, the hypothetical empirical relation—and therefore the measures of 

information—are valid only in the overlapping range of state variables.  

 

The first set of experiments in this section describe the evolution of the lattice parameter of 

copper (in silico) as a result of the steady increase in the temperature of the system. The lattice 

parameter is a property of the crystalline solid state of copper, and is a valid measure of the 

system in all states where copper is in the state of a crystalline solid. If it is assumed that the 
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sample is pure, the crystal structure of copper will stay the same throughout its solid temperature 

range so the only bound on that experimental model is the melting temperature, giving an 

effective empirical boundary of T from [0, 1358] K.  

 

Turning to the cold-work experiment, the definition of cold-work for metals holds that it is 

deformation performed under the recrystallization temperature of the material. For copper, this 

temperature is given as a range with an upper bound of around 500 K, though this number may 

vary based on other parameters [13]. This definition, plus the availability of data only from room 

temperature experiments gives cold-work an effective empirical boundary of T from [0, 500] K. 

Cold-work also introduces defects into a metallic system, nucleating new dislocations as the 

deformation adds energy to the system. The dislocation density of a system has been empirically 

measured in relation to temperature, so rough ranges of empirical overlap in terms of [T, 𝜌] can 

be drawn for these two experiments [104]. As the temperature is raised, the dislocation density, 

𝜌, will decrease in a copper system, where in a non-cold-worked specimen the range would be 

roughly [120 x 108, 8.5 x 108] cm-2 for a temperature range of [298, 973] K [104]. In a cold-

worked sample, the dislocation density increases as the amount of deformation is increased, and 

the range for that process would vary roughly from [108, 1012] cm-2 for a reduction range of  

[0%, 70%] [103]. Given these ranges, we can construct a chart, Figure 19, illustrating the 

empirical overlap for the shown ranges of (T/TM) and (𝜌/𝜌max), where we 𝜌max to be the measured 

saturation dislocation density of roughly 1012 cm-2 [103].  
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Figure 19: The empirical overlap of both XRD experiments on the basis of temperature (T) and dislocation density 

(𝜌). 

 

The upper bound of (𝜌/𝜌max) for the temperature experiment is roughly equivalent to 10% 

reduction [103], and the upper bound of (T/TM) for the cold-work experiment corresponds to a 

recrystallization temperature of 500 K [13]. Looking back at the equivalence criteria in section 

3.3, a region of state variable overlap has been established, providing a validated region wherein 

some measure of informational equivalence may be found for the XRD probability distributions 

related to these variables.  

 

 At the most basic level, within the ranges of empirical overlap for the selected state variables  

[T, 𝜌], and given the translatability of the empirical sets, we hold that that any state that has 

equivalent relative entropy to another has the same structuring potential, and is therefore 

informationally equivalent. The accumulated empirical data in this region is, unfortunately, 

rather sparse. Without running further experiments within the desired ranges, the analysis is 

forced to center on rudimentary methods of line-fitting within the regions of validity. 
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Looking at Figure 16 and Figure 17, it can be seen that while the ranges of temperature and 

percent reduction for the relative entropy shift are present on each graph, there are no values for 

either. Within these regions the values can be calculated based on trendlines fit to the existing 

data, if only to give a rough idea of where overlap might occur. Fitting both K(x) [nat] data sets 

with a 2nd order polynomial allows for two equations to estimate where the relative entropy 

produced by each experiment might overlap. Solving for the relative entropy measure in the 

regions where there is overlap, an estimate of ~0.11375 [nat] is produced, signaling a tacit 

informational equivalence of these two models, based on the proposed criteria, albeit a value 

corresponding more or less to the lower bounds of the systems.  

 

Clearly, this analysis could benefit from a richer supply of experimental data, or the opportunity 

to run specific XRD tests in order to compile larger and more tailored data sets. If this approach 

was to be used in order to conduct an analysis of unknown systems, or mechanisms, relative to 

known systems, the data would also need to be of higher quality than those calculated for Figure 

14 as well. In building an analytical technique with this method, care will need to be given that 

the data used meets the rigor of the standards for whatever characterization technique is being 

used to conduct the informational analysis, in order to minimize the sources of error. What the 

current level of analysis does indicate is that, given a set of experiments, the relation between 

two models on the basis of the information required to describe the evolution of states is present 

and quantifiable. Relative entropy is a form of relative information, it is representative of a 

physical correlation between two states of a system, and the number of possible pathways 

between those states constrained by the empirical bounds of the model [105].  

 

If a network of state change models for a material system can be synthesized, then the relative 

entropy produced is a useful parameter for measuring the relative potential of a system given a 

specific mechanism of change, or in particular environments. As informational equivalence 

matures as a concept, a variety of interactions within a material system may be better understood 

in terms of their affect, here meaning the measure of the ability of some object (say a material 

subsystem) to create change in another with which it is interacting. Mechanisms are often 

differentiated in this manner, and so we turn to look at comparable mechanisms of creep as our 

next subject of interest. 
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4.3: Mechanistic Models 

An enormous variety of materials phenomena are captured in models, and stitched into various 

theories of materials. The set of the phenomena includes not only multiscale hierarchies, or the 

evolution of experimental behavior, but also the various modes of change that a material may 

undergo, what are known as mechanisms.  Take, for example, a phenomenon called creep. Creep 

is defined as the high temperature (>0.4 TM) plastic deformation of a material over time, while 

under constant loading [13]. There are numerous analytical models which describe creep at 

various loading and thermal conditions, each separated by specific pathways by which the creep 

is believed to occur. Often, the models describing the creep mechanisms are shown in terms of 

their strain rate �̇�, or the rate at which the permanent deformation occurs within a given 

environment.  

 

The mechanisms of creep do not occur independently of one another. For a given material, in 

some environment, a single mechanism may contribute more than another to the total strain rate 

of the system, but that does not prevent the other mechanisms from occurring simultaneously. If 

these mechanisms work in concert, and are all understood to contribute to the overall strain rate 

of the system, then these mechanisms should have equivalent structures in the context of that 

variable. The partial additivity of the strain rates produced by different mechanisms of creep are 

exemplified best by Equation 3.2 of [72], showing that the overall strain rate of a polycrystalline 

system is a combination of the strain rates of individual competing mechanisms. Specifically, 

because we assume that the mechanisms already share definitional (all mechanisms of creep), 

and empirical equivalence (data all translatable given their shared rate equations), then the search 

is narrowed to overlapping informational and categorical equivalences. 

 

A manner of presenting these particular mechanisms are charts known as ‘deformation-

mechanism maps,’ where the dominant mechanism (greater than 50% of the total strain rate) for 

a given environment of stress and temperature is mapped [72]. Figure 20 shows a deformation-

mechanism map for copper with a grain size of 100 μm and axes of normalized shear stress      

[𝜎s / 𝜇] (where 𝜇 is the shear modulus), and normalized temperature [T/TM]: 
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Figure 20: The deformation-mechanism map for pure copper at a 100 μm grain size, recreated from [72]. 

 

As can be seen, there are three different mechanisms of creep over this range of normalized 

temperature and stress. The mechanisms from right to left are: 1) diffusional flow, 2) power-law 

creep, and 3) power-law breakdown. Each of these mechanisms has a range of [𝜎s, T] values for 

which it is the dominant mechanism, and the bold lines indicate boundaries where the 

mechanistic contribution to the strain rate is numerically equivalent for adjacent mechanisms. 

Given this framing, the structures of the informational and categorical equivalence criteria for 

these creep models can be illustrated but, first, the specific definitions, variables and empirical 

models corresponding to each mechanism are listed below. 

 

One of the mechanisms is ‘diffusional flow’ creep, which is where grains (collections of atoms in 

an ordered crystal, all with the same crystallographic orientation) are deformed due to the 

diffusion of vacancies (point interruptions in an ordered lattice structure) through the volume of 

the grains, or along the grain boundaries (the interface between grains of different 

crystallographic orientations). There are, in fact, slight variations on the equations of diffusional 
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flow creep depending on whether the diffusion is occurring along the grain boundaries (Coble 

creep), or through the lattice of the material (Nabarro-Herring creep). Figure 21 below illustrates 

the basics of creep: how a sample is tested, the three stages of creep, and a microscopic depiction 

of the diffusional flow mechanisms [72]. 

 

 

Figure 21: (A) a representation of a creep test, with a sample deforming slowly at elevated temperatures and a 

constant, low applied force. (B) a typical creep curve with the three stages of creep labeled, (C) a representation of 

the physical mechanism of diffusional flow creep. (C) recreated from [72]. 

 

Assuming that both lattice and boundary diffusion contribute, the combined strain rate equation 

for both Coble and Nabarro-Herring mechanisms is given by: 

 

�̇�𝐷𝐹 =
42𝜎𝛺

𝑘𝑇𝑑2
∙ (𝐷𝑣 +

𝜋𝛿𝐷𝑏
𝑑

) (49) 

 

where 42 is a constant related to the periodic shape of grain boundaries [106], σ is the applied 

stress, Ω is the atomic volume of the material, k is Boltzmann’s constant, T is temperature, d is 

average grain size, Dv is the volumetric diffusivity, δ is the average grain boundary width, and Db 

is the grain boundary diffusivity [72]. As seen in Figure 20, both flavors of diffusional flow are 
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dominant at low levels of applied stress (roughly 10-4 to 10-6 [𝜎s / 𝜇]) and high temperatures 

(roughly 0.6 to 1.0 [T/TM]).  

 

Another mechanism is ‘power-law’ creep, where the plasticity of the material is governed by the 

movement of dislocations (a plane of missing atoms within the crystal lattice). Dislocations 

moving through a lattice have two different methods of movement, glide and climb. The former 

is where a dislocation moves along the direction of the slip plane, “gliding” along the lowest 

energy pathway available to it through the lattice. The latter is where a dislocation “climbs” in 

the lattice normal to its slip plane via the aid of the diffusion of nearby vacancies. Both 

mechanisms can occur within this regime of creep, often in tandem, with lattice diffusion favored 

at high temperatures and low stresses, and core diffusion favored at low temperatures and high 

stresses [72]. Figure 22 illustrates this mechanism pictorially:  

 

Figure 22: The central concept of power-law creep, where at high temperatures dislocation climb is a major 

contributor to plasticity, recreated from [72]. 

The strain rate contributions of power-law creep are empirically modeled following equation 

(50): 

 

�̇�𝑃𝐿 =
𝐴2𝐷𝑒𝑓𝑓𝜇𝑏

𝑘𝑇
∙ (
𝜎𝑠
𝜇
)
𝑛

(50) 
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where A2 is a dimensionless fitting constant, Deff is the effective diffusion coefficient, b is the 

Burger’s vector, 𝜇 is the shear modulus, and n is the power-law exponent, which is given as n = 

4.8 for Cu. For low temperature creep, the exponent becomes (n+2) [72].  

 

At values of [𝜎s / 𝜇] above ~10-3, the power-law behavior of equation (50) no longer fits the 

experimental data, so another model must be used. This model is known as ‘power-law 

breakdown,’ and is a mechanism of creep similar to power-law, but in a regime of higher applied 

stresses the mechanism is increasingly governed (in the sense of contribution to the overall strain 

rate) by dislocation glide [72], as shown in Figure 23: 

 

Figure 23: As the applied stresses are increased, the dislocations in a crystal increasingly move by ‘climb,’ aided by 

more diffusion of vacancies through the system. Recreated from [72]. 

 

The model for how power-law breakdown contributes to the strain rate is slightly different from 

equation (51) above, and at stresses, 𝜎s, below a certain threshold will reduce to that power law 

equation. Above that level, the strain rate is given as: 

�̇�𝑃𝐿𝐵 = 𝐴′2
𝐷𝑒𝑓𝑓𝜇𝑏

𝑘𝑇
∙ [𝑠𝑖𝑛ℎ (𝛼′

𝜎𝑠
𝜇
)]
𝑛

(51) 

 

where A’2 is the adjusted fitting constant, and 𝛼’ is an adjusted unity constant, both fit to 

empirical data of creep above the power-law breakdown boundary.  
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These three mechanisms describe the majority of the pathways available to a pure copper metal 

of 100 𝜇m grain size to creep at the microstructural level. All the physical mechanisms—the 

migration of dislocations and vacancies, along with grain boundary sliding—are all occurring 

concomitantly, but each dominates the contribution to the overall strain rate in specific 

environmental ([𝜎, T]) circumstances. Equation (51) for the power-law breakdown regime is a 

more general version of the power-law model, and reduces to the power-law equation (50) at low 

enough levels of stress [72]. Therefore, because power-law breakdown creep occurs by the same 

set of defect mechanisms, but is outside the boundaries of the simpler model, the two rates can 

be consolidated and presented together, which we will show as “power-law general” (PLG). 

 

The combined strain rate �̇�𝑐𝑜𝑚𝑏 is a sum of all the contributions, so would be given in this case 

by: 

�̇�𝑐𝑜𝑚𝑏 = �̇�𝐷𝐹 + �̇�𝑃𝐿𝐺 (52) 

 

Within the complete set of the constituent models, there are three independent variables  

(σs, T, and d) which are compressed into bound sets, meaning there are fixed ranges of values, 

beyond which the particular model breaks down, as the power-law equation does above ~10-3  

[𝜎s / 𝜇]. It is assumed for the purposes of this study that all other variables in the equations above 

are constants. While the bounds of each model will feed forward as part of the equivalence 

analysis, they do not change the manner in which the criteria are determined. Starting with the 

information equivalence, the sets of strain rates determined by each set of [σ, T, and d] is a  

3-tuple of the form: 

 

[�̇�𝑐𝑜𝑚𝑏    �̇�𝐷𝐹     �̇�𝑃𝐿𝐺] (53) 

 

These models, as currently constituted whenever an analysis like this one is performed, represent 

the reference state of each creep mechanism. When calculated, they fully define the strain rate 

behavior for each mechanism across the environments of creep. During creep experiments like 

those run to produce the models above, the sets of instantaneously measured strain rate data, 
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which can vary from the models, can be treated as a stochastic variable and therefore amenable 

to a probability analysis. 

 

It is assumed that, given the differences in environment necessary to isolate each mechanism, 

that experiments are designed to test one mechanism or the other, and not multiple 

simultaneously. Accounting for potential variations in experimental design and testing apparatus, 

the probability of a particular strain rate [s-1] being measured for these mechanisms can be given 

as p(𝛾PLG) and p(𝛾DF) respectively. Given a set of data, each of these is the probability of 

selecting a particular value for the strain rate among the set of measured rates. The combined 

strain rate above combines the probability of the two rates, probabilities that are taken to be 

independent as they reflect different experiments and different data sets. The probability of the 

combined strain rate data set can then be given as: 

 

𝑝(�̇�𝑐𝑜𝑚𝑏) = 𝑝(�̇�𝐷𝐹) ∙ 𝑝(�̇�𝑃𝐿𝐺) (54) 

 

Through the summative quality of the strain rates produced by various mechanisms of creep, 

there is an empirical relation between the quantities of the random variable of the experiment and 

so we may compare the informational equivalence of each individual mechanism on that basis. 

The distributions would be informationally equivalent with respect to the average amount of 

information of the experiment (the Shannon entropy H(x)) if: 

 

𝐻(�̇�𝐷𝐹) = − ∑ 𝑝(𝛾) log 𝑝(𝛾) = − ∑ 𝑝(𝜀) log 𝑝(𝜀)

𝜀 ∈ �̇�𝑃𝐿𝐺𝛾 ∈ �̇�𝐷𝐹

= 𝐻(�̇�𝑃𝐿𝐺) (55) 

 

These amounts would measure how much uncertainty exists in the sets of probabilities for each 

measured strain rate for each mechanism, and their evaluation illustrates the stochasticity of one 

measurement relative to the other.  

 

The probability distributions produced by measurement of each mechanism may then, also, be 

compared to the predicted results given by each constitutive equation, via the relative entropy. A 

relative entropy measure of 0 would indicate that the model is perfectly predictive, with any 
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other value indicating a shift away from that model. This is a common use for this measure and 

different forms of relative entropy minimization are used in a number of fields [107], [108]. 

Here, that measure would be given as: 

 

𝐾(�̇�) = −𝛴𝑝(�̇�𝑖) log
𝑝(�̇�𝑖)

𝑝(�̇�𝑚)
(56) 

 

This equation states that the relative entropy for any mechanism of creep on the basis of its strain 

rate is the sum of the probability of measuring a particular strain rate via experiment (�̇�𝑖), 

relative to the value predicted by some model of creep, (�̇�𝑚). The form of this equation is also 

the same for the overall strain rate. 

 

Returning to the equivalence criteria, we hold that an equivalent shift in the probability 

distribution of two mechanisms is saying that both systems require the same amount of excess 

(relative to the model) information in order to describe them. Formally, this means that the 

models of each mechanism are held to be informationally equivalent in this sense if they produce 

the same amount of relative entropy, or: 

 

𝐾(�̇�𝑖)
 
⇔𝐼 𝐾(�̇�𝑗)     𝑖𝑓𝑓     𝐾(�̇�𝑖 ‖ �̇�𝑚) = 𝐾(�̇�𝑗 ‖ �̇�𝑚) (57) 

 

In order to determine the categorical equivalence of the mechanisms of creep, we must first 

determine how a category of creep would be constructed. For creep as a mode of failure, we can 

contextualize any model of plasticity that fits within the creep regime as a constitutive 

mechanism of creep. The models of these mechanisms, as we have seen, are related to one 

another in a variety of senses, but specifically in their contributions to the overall strain rate of 

the system during a creep test. In this context, we take the morphisms between the sets of objects 

for each model to be these additive contributions to the total strain rate. Each mechanism is taken 

to have an identity function, and the morphisms follow the composition rule, producing a 

rudimentary category of creep models, 𝒞creep, illustrated in a Lawvere diagram.  
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Figure 24: A Lawvere diagram of the proposed category of creep models, where 𝛾Other represents all other 

mechanisms of creep which may contribute to the overall strain rate. 

 

The elements of each model of creep, assumed here to be subcategories of creep, are functions of 

the state variables of any experiment run to test a given mechanism. Across the two dominant 

models for copper, general power-law creep and diffusional flow creep, there are three variables 

which are thought to govern their behavior: applied stress [𝜎], temperature [T], and average grain 

size [d]. Given sets of variables {σ, T, d} with elements in the domain set of a model, it is clear 

that the remaining variables, which we will call f and assume they are correctly formatted, can 

operate as a morphism mapping these sets to the codomain set {γ}, where: 

 

𝑓: {𝜎, 𝑇, 𝑑} → {�̇�} (58) 

 

As each of the domain sets is bound—for each material there will be min / max values of σ, T, 

and d—then this mapping shows the entire space of potentiality for any given model with 

regards to its creep behavior. Each model follows roughly the same selection process, illustrated 

by the olog in Figure 25 for diffusional flow creep of copper below: 
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Figure 25: An proposed olog created to illustrate the conceptual flow building to a particular mechanism of creep, 

here diffusional flow creep of copper. Values derived from [72]. 

Each of the mechanisms of creep is relatable within the same conceptual framework, and they 

each include elements and morphisms within their individual subcategories that produce a strain 

rate. This result indicates that, for their differences, there is a mathematical structure in the 

categories of general power-law creep and diffusional flow creep that is equivalent. The 

equivalence adds another morphism to the category of creep, a comparative relation wherein the 

structure of the model for each constitutive equation of a mechanism is equivalent to that of a 

different mechanism.  
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∀�̇�𝑖𝑗 ∈ 𝒞𝑐𝑟𝑒𝑒𝑝, ∃𝐹(�̇�): �̇�𝑖 → �̇�𝑗 (59) 

 

meaning for any mechanism of creep, 𝛾ij, within the category of creep there is a functor between 

the subcategories, F, that relates the mathematical structure of i to j on the basis of whether or 

not a value for strain rate is recoverable from that subcategory. If F exists, there must also be a 

functor G such that: 

 

∀�̇�𝑗𝑖 ∈ 𝒞𝑐𝑟𝑒𝑒𝑝, ∃𝐺(�̇�): �̇�𝑗 → �̇�𝑖 (60) 

 

because if one model shares that sense of mathematical structure with another, it follows that the 

inverse relation would also be true. On this basis, we can declare that the mechanisms of creep 

are categorically equivalent. The analysis of equivalences presented here are based on specific 

empirical models, derived from specific experimental data sets, meaning that calculating data 

from them to do a numerical version of this analysis would be invalid. In order to complete a 

quantitative equivalence analysis, new tests measuring strain rates for some system should be 

performed and then compared to these models.  

 

4.4: Variable Models 

Mechanisms of creep, like the ones illustrated in Figure 21, Figure 22 and Figure 23, have been 

shown to be equivalent in several ways. The models of these mechanisms are built around the 

reaction of a materials system to the sets of independent variables that drive the specific 

pathways of the evolution of the state of that system. Clearly, in addition to the other structures 

pertinent to modeling changes within systems, the structures inherent to each variable also 

structures the model of which it is a part. If a particular variable is being used across different 

models, are the instances of that variable structurally equivalent to one another across the 

models? 

 

In order to work towards an answer, some overlap of variables between two of the models of 

creep mechanisms should be considered. Creep is prevalent within polycrystalline metals, 

structures where atoms at the nano- to micrometer length scales are arranged in an ordered, 

repeating pattern. There are several patterns which occur frequently in polycrystalline metals, 
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including crystal structures such as fcc, or face-centered cubic, bcc, or body-centered cubic, and 

hcp, or hexagonal close-packed. These crystal structures, and specifically the unit cell, are a 

convenient shorthand for a specific atomic stacking pattern, and all of the symmetry operations 

that go along with a given crystal type. 

 

Inherent to all crystalline structures are interruptions of the repeating lattice patterns, termed 

defects. There are a variety of defects, but the three most important for describing metallic 

structures and their behavior are vacancies, dislocations, and grain boundaries, corresponding to 

point, line, and planar defects, respectively. Grain boundaries are numerous within 

polycrystalline metals, and physically arise from the fact that—as a metal is cooled from a liquid 

to a solid state—it will generally nucleate crystal lattices (grains) from many independent points, 

each with a different orientation relative to one another.  

 

The behavior of polycrystalline metals are heavily influenced by their defect structures. 

Collections of vacancies, dislocations, and grain boundaries exercise a significantly 

disproportionate amount of influence on material properties from strength to electrical 

conductivity. Defects also affect how material change occurs at the microstructural scale, 

especially for the mechanisms of creep. In many nominally pure metals, at low levels of constant 

stress and high temperatures, the dominant mechanism is diffusional flow creep, which is 

illustrated in section 4.3 in Figure 21. This mechanism is caused by a potential energy gradient 

within the grain boundaries, which promotes the diffusion of vacancies through their volume 

and/or along the grain boundaries, as the grains slide and elongate in the direction of loading 

[72]. 

 

The rate of deformation caused by this mechanism is captured by the combined Coble/Nabarro-

Herring equation (49), where the average grain size is represented as d [72]. The combination of 

the two equations somewhat obscures the fact that the two mechanisms of diffusional flow have 

different relations to the average grain size of the material. Separated, the Coble relation (61) and 

Nabarro-Herring relation (62) can be shown as: 

 

�̇�𝑁𝐻 = 𝐴
𝜎𝛺

𝑘𝑇
∙
𝐷𝑣
𝑑2

(61) 
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�̇�𝐶𝑜𝑏𝑙𝑒 = 42
𝜎𝛺

𝑘𝑇
∙
𝜋𝛿𝐷𝑏
𝑑3

(62) 

 

where the only addition from the combined equation is A in (61) which is a geometric fitting 

constant for the Nabarro-Herring relation [72].  

 

As these formulas indicate, the contribution of the average grain size to the strain rate produced 

is different depending on if the vacancies within the lattice are diffusing along the grain 

boundaries (Coble creep), or through the volume of the lattice (Nabarro-Herring creep), where 

the former scales as d-2, and the latter as d-3 [72]. The form of the grain size scaling factors is 

directly related to the geometric considerations of each mechanism. Diffusion along a grain 

boundary is a form of travel across a plane created by two adjacent grains (often modeled as 

cells), so the geometry that the vacancy traverses is best described by an area, described by d2. 

Diffusion through a volume, as one might guess, is a journey for a vacancy in a three-

dimensional space, described by d3. The geometry of diffusion, and therefore the geometry of a 

grain, is an important consideration for the structuring of these processes. 

 

Grains are geometric spaces. By definition, they maintain certain geometric properties even as 

grains change shape. These properties can be drawn out of any treatment of a grain structure by 

stereometric grain size calculation methods, like those presented in ASTM Standard E 112 [109]. 

This methodology, dependent on a meticulous random sampling of measurement sections with 

points, lines and planes, produces the following invariants for three-dimensional grains: 
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where (when drawing the intercept lines used in the measurement methodology) S is the total 

area of an isolated volume, V; λ is an intersecting line of average length L, N is the average 

number of intercepts the line makes, A is the average area of an intersecting plane, l is the 

average total length of a plane’s intercepts with the surfaces, and n is the average number of 

points where the λ lines intersect a plane [5]. These relations hold as long as all of the random 

sections selected for the analysis are averaged over a sufficient number of geometric objects 

applied to the grain structure. These relations geometrically structure the approach to the 

measure of average grain size, and it turns out that L/N is the measure of average three-

dimensional grain diameter encapsulated in the variable d [5]. 

 

This measurement provides the last pieces in the puzzle for assembling a structural equivalence 

for the average grain size variable. Looking again to the framework of equivalences, it may be 

assumed that all grains within pure metals are definitionally equivalent. Grains across the class 

of all metals and alloys are measured using similar methods, including the method described 

above using stereometric methods to calculate the average grain size, and are mapped to the set 

of length units. Any measurement that meets those criteria for measuring the average grain size 

is empirically equivalent to another.  

 

The information structure of grains would depend on the context of the interaction between a 

‘grain-object’ described by a distribution of grain size measurements, and the ‘object-system’ 

with which the grain is interacting. In the context of a grain structure, the Shannon entropy could 

be used to indicate how close the average grain size measurement is to an expected mean, 

indicating the uniformity of the average grain size. In the context of creep, the relative entropy 

could be employed to try and correlate how much a shift away from some reference (d at STP, 

say) in grain size affects the shift away from a reference strain rate produced. As with the other 
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analyses in this work, the informational structure is always dependent on the type of relation 

between objects being studied. 

 

Most pertinent to this discussion, though, is the relation of the grain and its mathematical 

structure to the mathematical structure of the creep mechanisms. In order to discuss that relation, 

the categorical structure of grains must first be constructed. The invariant relations described 

above in equations (63) - (67) provide a hook into categorizing grain structures (or, general 

structures involving grains). Given a set of objects, {gs}, a category of grain structures can now 

be constructed. This category, 𝒞gs, could be defined as: 

 

Definition 10. A discrete category of grain structures, 𝒞gs, consists of…  

 a collection of three-dimensional volumes corresponding to the measurement of a 

collection of geometric objects (grains) at some mesoscale of a material system, 

called grain structures, {gs}, as well as a set of variable geometric objects of 0, 1, 

2, and 3 dimensions, {x}, {𝜆}, {A}, {V}, the combined set of which will be called 

{go}. 

 a collection of morphisms, including a set {f} mapping the geometric objects to 

the grain structures where fi: {xi, 𝜆i, Ai, Vi} → {gsi}, a set {i} mapping the 

geometric quantities to one another, and a set{h} mapping grain structures to one 

another. 

 an identity morphism for any object in 𝒞gs, e.g., idgs: gsi → gsi 

o a composition function for any elements of 𝒞gs, where, for morphisms sa 

and sb, there exists a morphism sc, called the composite, where if sa: [gs]1 

→ [gs]2 and sb: [gs]2 → [gs]3, then sc: [gs]1 → [gs]2 and sc = sb ⚬ sa.  

 

Given this definition, grain structures, the invariant relations, and the average grain size can be 

constructed using the maps from the collection of geometric objects to a particular grain 

structure.  

 

Due to the notion that grains as physical objects are a casual element within materials models, 

the structure of a grain structure as a variable should carry with it every sense of equivalence that 
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allows grain structures to have the same dispositional, causal power across models. The same 

average grain size corresponding to a map gi: [𝜆i]n → [gsi], has the capacity for diffusion of 

vacancies via both established pathways. This proposition means that the categorical equivalence 

of a grain across these two models is a function of whether or not the specific geometry 

conducive to the specific mechanism is a map within the set of maps of 𝒞gs. Put more formally: 

 

There exists a categorical equivalence, 𝑑𝐶𝑜𝑏𝑙𝑒
 
⇔𝐶 𝑑𝑁𝐻   

iff  [𝑗 ∈ 𝐻𝑜𝑚𝑆𝑒𝑡(𝑓, ℎ)] such that 

𝑗𝐶𝑜𝑏𝑙𝑒: [𝑓(𝑉), ℎ(𝑔𝑠𝑖)] → [𝑔𝑠𝑗], and 

𝑗𝑁𝐻: [𝑓(𝐴), ℎ(𝑔𝑠𝑖)] → [𝑔𝑠𝑗], and 

for 𝑖1: 𝑓(𝑉) → 𝑓(𝐴) 𝑎𝑛𝑑 𝑖2: 𝑓(𝐴) → 𝑓(𝑉),   𝑖2◦ 𝑖1 = 𝑖1 ◦ 𝑖2 

 

For the same measured grain structure, [gsi], the two measures of average grain size are 

equivalent if, and only if, there exists a mapping of a volume (cell) mapped on the structure and 

an area (grain boundary) mapped on the structure that are able to create an equivalent, 

subsequent grain structure. This definition shows that, as long as the geometric invariants of 

equations (63) - (67) hold, and a grain structure can project both a volume and an area 

corresponding to diffusion pathways forward, then the characteristic grains represented in both 

models by the average grain size are mathematically equivalent to one another, and are therefore 

categorically equivalent. This category is specific to a particular pure metal, able to undergo 

particular mechanisms of creep, so is not universal. Rather, with enough categories of this form, 

there is opportunity for similar mathematical structures to be found across material classes and 

mechanisms. 
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Chapter 5: Conclusions and Future Work 

Conclusions 

Science needs a soul which would show respect  

and love for its subjects of study and would stress harmony  

and communication with the rest of the universe. 

—Rita Arditti, “Science and Liberation” 

 

MSE has always been interdisciplinary in spirit. The drive to consider materials as a consolidated 

field of study finds roots in the interdisciplinary work between metallurgists, physicists, and 

chemists working on the Manhattan Project [110], a drive that speaks to the search for some 

general concept of what it is that all materials have in common. The first versions of the 

materials paradigm gave equal measure to the four components of process, structure, properties, 

and performance. Yet, as decades worth of empirical research and analysis show, structure is the 

sole cornerstone of a science of materials; everything else within MSE is set in reference to 

structure.  

 

That is it. Structure is the answer to what unites all sciences of all materials. Structure governs 

behavior, structure selects for applications, changes in structure determine every material 

property, and structure is the foundation of every aspect of a material that delights, awes, or adds 

comfort to the lives of the people that use them. Cyril Stanley Smith wrote that structure was a 

“universal metaphor” [5, p. 389], that within any system, of any medium, the mind seeks the 

pattern of interactions between things. If structure is a universal metaphor, then the human mind 

is effectively Joe Brody in The Big Sleep, shaking two patterns together for a month, trying to get 

them to mate. 

 

Hard-boiled metaphors aside, it is clear that the key to creating, designing, and contextualizing 

materials is to be able to structure our concepts of them. Structure is the process of relating, and 

our richest picture of what materials are comes into focus when every manner of relating to 

material objects is taken into account. The thrust of pre-MSE materials research, and science in 
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general, in the 20th century was one of isolation and reduction. Enormous advances came about 

due to work isolating components of physical systems and probing at them to see how they 

responded, but the work of recontextualizing this science into the greater fabric of life remains 

incomplete [111, p. 210]. 

 

In some small way, new techniques for relational and holistic analysis of systems is what we 

hope to have contributed to in this thesis. Human beings do not interact with materials systems, 

or with any system, solely on the basis of experiment and quantification. There is a far richer 

landscape of interactions, one in which each of us is our own small node. Recognizing patterns, 

human beings define things; we see, hear, and feel them with varying intensities; we strive to 

predict how and why the systems outside of ourselves behave in the manner in which they do; 

and, of course, we do test and probe them, measuring their capacities in numerous ways. No 

single, isolated measure of a material system is complete.  

 

Furthermore, this analysis of systems in general is amenable to, at a minimum, the philosophical 

concepts outlined in section 2.3. The SEF is designed to capture the various senses of structuring 

which, historically, the process philosophies of the 20th century honed in upon. Various senses of 

mereological relationality; processes of individuation and organization; the duration of 

relationality between systems; assemblages and boundary drawing; flows of information and 

perception; each of these is realized by one of more parts of the SEF. If this framework is 

amenable to these theoretical concepts—some of the most important systems ideas of recent 

history—then there is no reason to think that it would not be amenable to analysis and treatment 

by contemporary philosophers of science and systems, such as structural realists, or pluralists. 

Further iteration of the SEF with contemporary philosophical ideas of relationality and systems 

can serve to make the framework more robust and, thus, strengthen the ontology of materials.  

 

The process of building theories of materials, their models, and their various relational capacities 

expressed through the proposed structural equivalence framework also follows the roadmap of 

MSE model building, shown in Figure 5. The structural equivalence framework is an attempt to 

capture every entry point to the analysis of materials systems, and combine them into an abstract 

model of what it is to be a material. The rest of the thesis builds upon the definitions presented 
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for these entry points, and adds detail through analysis of materials models. The path to the 

fullest concept of materials, through iteration of the proposed framework of structuring 

relationality, and—through a scaffolding of multiple forms of structure—is what we have 

attempted to construct. 

 

5.1: Summary of Results 

In this thesis, it was posited that an expansion of the concept of structure could add new tools to 

the modeling, design, and discovery of materials. A wide-ranging literature review was 

performed in order to illustrate what the current state of the field is, and to explore what various 

other disciplines offer in terms of structure and structuring concepts. Using these concepts, the 

materials paradigm and the concept of material structure was redefined in a manner allowing it to 

encompass more aspects of material structure than ever before. This framework of structural 

equivalence, consisting of five different forms of structure used in MSE, was then evaluated in 

different material contexts in order to test the efficacy of its framing and validation applications.  

 

In answer to the research questions, this thesis presented the following answers: 

 

 The epistemological approach to models within MSE was determined to be centred 

around the materials paradigm, the set of PSPP relations that govern material behavior. 

Furthermore, the process of building models within MSE was illustrated by Figure 5, 

then expanded upon in the text. The centrality of structure, mainly physical structure, was 

determined to be the guiding principle of the current approach. Systems according to 

other theories were covered in detail in section 2.3. 

 Equivalence criteria of five different types were proposed to fully capture the swatch of 

ideas that are represented by ‘structure’ in materials modeling. Each of these five 

equivalence types were explored in detail, and specific criteria for each in the context of 

materials were proposed. These included definitional, empirical, informational, 

categorical, and theoretical equivalence. These types of equivalence were then used to 

analyse a selection of materials problems in chapter 4.  

 Through the construction of an enriched materials ontology, the structural equivalence 

framework, and exploration of different types of materials problems, it was shown that 
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new types of structure could be successfully added to the epistemological approaches of 

MSE. By taking abstract structure into account, fuller accounts of materials concepts—

and therefore a fuller network of representative models—can be built into the existing 

knowledge base of MSE. 

 This treatment also illustrated the accessibility of materials research for the general study 

of systems, across disciplines. By molding such abstract approaches into a framework 

that can be applied to materials systems, new avenues of research and analysis into 

mereological and general systems have been opened.  

 

The specific conclusions of the chapters of this thesis were as follows. In Chapter 2, the materials 

paradigm was presented and discussed as it is currently constituted. Physical structure being a 

central component of the paradigm, a brief glance at current conceptions of physical structures 

was presented at multiple length scales of interest to the field. The current iteration of structure 

in-hand, a survey of various philosophical approaches to systems theories was presented. 

Through this survey, a through line of systems thinking related to objects, relations, and 

perception was drawn through the portions of the works of Bogdanov, Bergson, Simondon, 

Whitehead, Russell, and Deleuze. The survey was intended to look for grounded philosophical 

ideas to enhance the concept of structure within MSE, so the selections presented build upon the 

idea of what systems are, how they are constructed, and how we relate to them. This conceptual 

approach is the first treatment of systems theories with a philosophical bent that has been applied 

to materials science and engineering, and is novel in both its approach and in its potential utility 

to both fields as a nucleation point for future research. 

 

Using this survey of systems philosophies, a new ontological framework for materials was 

proposed, one centered on the relations and relational capabilities of interacting systems. This 

ontology casts the concept of structure not as groups of physical objects—cannonballs stacked 

on increasingly, infinitesimally smaller battlements—but rather as a network of relational 

processes. Structure in all its forms is a duration of perception—as interaction, as measure, as 

experiment—where objects experience ‘becoming’ solely in relation to other objects, and this 

becoming permeates every scale, every facet of reality. This interpretation of structure opens 
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new ways for material systems to be studied, and is another contribution to potential 

philosophical treatment of materials, either by MSE practitioners or others. 

 

Taking this new conception of structure, the remainder of Chapter 2 introduces the theoretical 

tools necessary for realizing the proposed ontological framework for materials. First, a brief 

survey of the relational interpretation of quantum mechanics (RQM) of Carlo Rovelli was 

presented as an example of other scientific fields where a similarly relational interpretation of 

physical systems has already been taking hold, but in a much less applied fashion. Looking for 

the keys to its success, it was surmised that processes of measurement, and the information 

relations between systems, were two key components of building relational structure. A quick 

overview of measurement theory and information theory set the background for what kinds of 

tools could be used from each, and how they might relate to theories of material structure. 

 

These tools, being applied to materials systems, would be used to construct and iterate upon 

models of those systems, leading to a brief overview of the general approaches to modeling in 

MSE. The length and time scales of import were briefly discussed, as well as how different 

levels of structures are treated with different methods, methods which ideally are to be connected 

at the interfaces. The MSE approach to modeling is similar to the approaches of other scientific 

modeling, so the general topic of how models relate to theories was discussed and used as a 

springboard to present the proposed mathematical solution to model building, category theory. 

 

After a general introduction to category theory, the concept of equivalence was presented as a 

potential solution to ferreting out forms of structure within modeling. Though the idea of using 

equivalence criteria as a method of finding structure within relations and processing comes from 

a treatment of categories—looking for mathematical structure—it was then shown that 

equivalence criteria appear in all manner of forms. The utility of equivalence criteria as a 

framework building concept was discussed and, in order to capture the fullest sense of materials 

structure, five forms of equivalence criteria were proposed. The last section summarized the 

equivalence framework and its embodiment of the new materials ontology, and the new 

conception of structure.  
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Chapter 3 presented the proposed framework of equivalence criteria for materials models, 

encompassing five forms of equivalence that include definitional, empirical, informational, 

categorical, and theoretical structures. The components of each sense of structure were defined, 

and formal equivalence criteria were proposed. Fitting within a framework which is being called 

‘Structural Equivalence,’ it was shown how each of the five forms of equivalence fit together and 

inform one another. The utility and potential applications of this framework were briefly 

discussed before examples in the following chapter.  

 

The framework of structural equivalences is the main contribution of this work. The framework 

incorporates every sense of structuring that arose from the literature review, and provides a 

nuanced, flexible tool for analyzing the structures of models. The meta-analysis that this 

equivalence determination method provides can inform the derivation, construction, or iteration 

of models within MSE and, most likely, in other fields as well. Presented thusly, the method is a 

tool for exploring the structure of theories in general, as well as a method of validation for 

existing models. The framework captures the essentials of structure in various senses, but is also 

robust enough to itself be iterated upon as new concepts of structure arise, or new criteria of 

equivalences proposed. The idea of informational equivalence, specifically, is a novel approach 

to data analysis within MSE, building on treatments of the concept within computer science 

[112], [113]. 

 

Chapter 4 took this structural equivalence framework and applied it to four different scenarios 

within MSE. First, the framework was applied to two theories of modeling—molecular dynamics 

and finite element methods—that are often presented together in terms of how one might bridge 

multiscale problems within the field. A brief background on the approaches and mathematics of 

each theory led to an analysis of the structures of both theories. If two theories are to be linked, it 

is important that the link between the two be arranged in such a way that the structure of both 

theories is either intact, or translated across the bridge formed by that link. This section 

illustrated that, if a bridge between MD and FE is to be constructed, the form of the structures of 

each would need to feed through. The basic shape of the structural equivalence criteria for both 

MD and FE were derived and presented formally, including the potential structure of any 

translation between the two. The purpose of this analysis was to show how the framework is 
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used for problematizing questions within MSE, and to provide a meta-model for structural 

comparisons with existing bridging models for multiscale problems that use MD and FE theories. 

 

In section 4.2, the framework was then applied to characterization methods within MSE, 

specifically looking at two different materials processes for the same material system (copper) in 

terms of their effects on X-ray diffraction measurements. Assuming definitional and empirical 

equivalence, the informational and categorical structures of the models based on published XRD 

data were sussed out and illustrated. For both data sets, a computational set looking at 

temperature effects and an empirical set looking at cold-working effects, an information analysis 

was performed calculating the divergence of the probability distribution of XRD data from that 

of a chosen reference distribution.  

 

This analysis showed the informational effect of processing, and proposed a method for 

measurement of information structuring potentials on the basis of experimental data. The two 

sets were confirmed via calculation of the relative entropy to have at least a trivial information 

equivalence, and the work needed to further confirm that equivalence was outlined. This 

example illustrated how various notions of state change within materials models could be treated, 

and specifically how the informational equivalence criteria could be used to analyze the data 

produced by specific characterization methods as long as the results could be rendered as 

probabilities. Methods of finding information equivalence and proposing various informational 

equivalence criteria should, then, be valid for any characterization or computational technique. 

While this text presents only two forms of information as criteria, it is acknowledged that any 

measure of information could serve as the basis for constructing new criteria, all dependent upon 

the context of use. 

 

Section 4.3, showed a method of using the structural equivalence criteria to compare multiple 

mechanisms of a single failure mode, creep. This analysis looked at the dominant mechanisms of 

creep for a single material, again copper, and compared the models on the basis of the structure 

that would be produced by an informational data analysis, and at the categorical structure that 

follows from the mathematical form of each strain rate equation describing the particular 

mechanism. Concerning the former, only the shape of the analysis was presented as the only data 
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in hand at the time of this thesis were the data used to construct the models, and therefore 

inappropriate for measuring relative entropy as the model data is used as a reference in that 

method. If a full information analysis was to be performed, new measurements of strain rates 

across the gamut of applied stress and temperature fields would need to be taken, and that data 

(taking the measured strain rate as the stochastic variable) then turned into probability 

distributions to measure against the model. As stated in the text, this form of model iteration is 

used with some frequency in other contexts, known as relative entropy minimization [106]. 

 

The categorical structure of the models of two mechanisms of creep, a general power law 

mechanism and a general diffusional flow mechanism, were both analyzed and shown to be 

equivalent. This equivalence was determined on the basis of their shared relation to a strain rate 

variable, one that was additive across all mechanisms of creep. Because both models could be 

structured to produce the same form of a variable, and that each of the forms of that variable 

produced by the individual models could then be added together, it was shown that both 

mechanisms show at least a tacit mathematical structure on that basis. This is a new form of 

analysis and validation for materials models—one based on the mathematical structure itself—

and it points towards a novel method of enriching the physical and analytical models of MSE. 

Integration of existing mathematical structures into the models of MSE on the basis of combined 

categorical features could add many analytical tools to the modeling of materials. 

 

Finally, section 4.4 presented a more detailed analysis of an overlapping variable of the two 

diffusional flow creep models that were analyzed, specifically the average grain size of a 

polycrystalline metal. The use of average grain size as a variable was discussed in terms of the 

physical geometry of each of the mechanisms, and the proportional relationship between them 

was explored. In order to compare geometric properties, a method of the determination of grain 

size on the basis of geometric relations was reviewed, and the pertinent details for a categorical 

analysis extracted. A brief discussion of the form of information analysis that could be done was 

outlined, followed by a definition of a category of grain structures. 

 

This category was defined in order to capture the mathematical structure that variables of grain 

size—and specifically the measure of average grain size used in the two dissected models—all 
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share in common. The category illustrated an example of how to construct structural (in the sense 

of the framework presented in this thesis) requirements of variables across models, a novel 

method of analysis for MSE contexts. The two instances of average grain size were then 

determined to be mathematically equivalent on the basis of their categorical structure. 

 

This thesis proposes a new ontology of materials, outlines what specific elements that ontology 

adds to the concept of material structure, then proposes a framework for validating structures 

across materials theories on the basis of that new ontology. The framework of equivalences that 

is presented here is a first attempt to combine multiple senses of structure in a method of material 

model analysis. The method provides new connective pathways between MSE and multiple other 

disciplines, including philosophy, physics, logic, computer science, and mathematics, that can be 

explored within the context of structure and structuring processes. The method also creates novel 

ways to analyze materials systems, approaches that take structural aspects of each of those 

disciplines into account.  

 

5.2: Limitations 

The meta-analytical techniques proposed by this thesis are potentially abstract in nature. A 

limitation to their uses within MSE might be that it is difficult to construct a research question 

for specific systems, or specific contexts, where the various forms of structure within the 

equivalence framework are easily identified. Formal definitions, or data in the form of 

probabilities, or some mathematical structures for a materials model may be difficult to 

conceptualize, or obtain, potentially stripping this method of some of its potency. Access to data 

sets, in particular, remains a challenge for using this type of analysis on existing or historical 

materials models. The methods proposed herein are also agnostic to the quality of models and 

data with which they are used. If the models are inaccurate, or the data is corrupted in some 

manner, the techniques of determining structural equivalences will not inherently flag poor 

results, or correct for them. Outliers resulting from bad models will only become apparent in 

relation to analysis of larger data sets, or known models.  

 

Finally, the framework presented here can require potentially time-consuming preparation, 

meaning that its application to engineering problems which require quick answers and 
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turnaround might not be practical. If, however, analysis of a system using the structural 

equivalence framework has already been prepared for the context of some test, then the results of 

that test and the analysis of those results should be readily amenable to the method presented 

here.  

 

5.3: Future Work 

The nature of this project lends itself well to the speculation on future applications of the 

proposed framework. Due to the framework being constructed from theories spanning multiple 

disciplines, it follows that there are various approaches from many different starting points on 

analyzing the results of this thesis, both initializing from MSE and from other fields. 

 

 

5.3.1: Future Work in MSE 

Within MSE most future projects would most likely be application of the framework to materials 

problems, and iteration upon the equivalence criteria and the framework itself. Specifically: 

 A database of historical models like those analyzed in sections 4.3 and 4.4 could be 

constructed. The database would be an incredibly useful tool for the study of the 

evolution of models within MSE, and a repository of the various approaches and 

assumptions that have classically been used. The entries would allow modellers to search 

for specific structural contributions when studying the evolution of particular models of 

materials phenomena over time. 

 Further definitions of information could be used to create new informational equivalence 

criteria for different types of data. There are many formulations of information, and each 

measures a different aspect of data sets. An expansion of the criteria used for analyzing 

information in materials contexts could create new analytical tools for use within 

materials modeling.  

 Using specific information models to create metrics, rather than measuring divergence, 

could open the door to creating mathematical manifolds of the various senses of materials 

space. If manifolds representing materials space could be formulated, a vast array of 

mathematical tools become available for use in analyzing materials, branching the field 

even further out into abstract topological studies.  
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 In addition to manifolds, the analysis of materials systems might benefit from the 

application of other mathematical structures, e.g., rings, loops, groups, etc. Category 

theory is a natural door into the application of those structures as categories are already 

used for the comparison of structure across abstract mathematical objects. If materials 

models are categorized, then new mathematical structures can be tested for their efficacy 

within materials research. 

 More work to validate the proposed studies in Chapter 4 could be done, specifically: 

using the proposed form of a bridging model from section 4.1 to study the structures of 

existing bridging models; a full test suite of XRD patterns to map the information across 

the full range of temperatures and cold-working conditions, rather than the limited 

amount obtained here; and a full test suite for strain rates produced by various creep 

mechanisms, in order to compare the models used historically to new creep data on a 

structural equivalence basis.  

 Integration of renormalization techniques into the methodology of the SEF could provide 

another powerful tool to analyze scale bridging techniques specifically. Therefore, an 

analysis of renormalization and renormalization group methods should be undertaken 

using the SEF to determine the structural processes of both, and the promising potential 

of using both as the basis for criteria of equivalences. 

 The methods embedded within the SEF can serve as a springboard for the refinement of 

existing theories, or construction of new theories, within the field. 

 

5.3.2: Future Work in Other Fields 

Materials are the bridge between quantum physics and human beings. The scales of interest for 

materials are the connective tissue between what is commonly considered to be the fundament of 

nature and ourselves, making materials essentially the medium of communication between us 

and whatever it is that comprises us and everything surrounding us. The study of material 

structure is a study of that connective tissue, and a means for relating to it. That sentiment 

encapsulates the opinion that materials and the models arising from MSE ought to be studied 

more often by those outside of our field. Specifically: 
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 A first-order logic treatment of materials models could standardize and simplify the types 

of relations standard to the field, but could also provide logicians with new frameworks 

to access well-studied phenomena in a systematic method. 

 Materials provide a variety of entry points for the study of aggregates, and therefore also 

for the study of the behavior of aggregated mathematical structures assigned to small 

scale phenomena. The mathematics of quantum theories mediated through the collective 

experience of MSE could help to build a more holistic modeling language.  

 The study of communication of materials systems, either by measurement, by convention, 

or through modeling, could add new approaches and measures to the field of information 

theory. Materials communicate in an enormous variety of ways, and an informational 

analysis of materials systems could enrich the understanding of noise and signal in the 

communication pathways of aggregates. 

 Structural and realist philosophers might also find connection points from this work, as 

the philosophical priors outlined in section 2.3 touch on many well established topics. 

Specifically, a metaphysical study of material relations could add experiential heft to the 

topic and make concepts within systems philosophies more accessible to every day 

experience.  
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Appendices 

Appendix A: Sample Calculations 

 

 

Figure A.1: The shift in the XRD pattern shown from 0 K(black) to 803 K (red). Produced using Match! [92]. 

 

Table A.1: Intensity data for the XRD pattern of Cu at 0 K between 43° and 43.5° 2θ 

Angle [2θ] Intensity [a.u.] 

43.00 0.24502 

43.01 0.25545 

43.02 0.26657 

43.03 0.27843 

43.04 0.29112 

43.05 0.30470 

⋮ ⋮ 
43.50 57.28875 
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𝑝(𝑥) =
𝛴𝑥𝑛(2𝜃 = 𝑖, 𝑖 + 0.5)

𝛴𝑥𝑛(2𝜃 = 0, 180)
                                                                                                                  (47) 

 

𝑝(𝑥)0 𝐾 =
𝛴(0.24502, 0.25545,… ,57.28875)

1557.48921
= 0.397395                                                                         

 

 

 
Table A.2: Intensity data for the XRD pattern of Cu at 803 K between 43° and 43.5° 2θ 

Angle [2θ] Intensity [a.u.] 

43.00 4.65621 

43.01 3.90223 

43.02 3.31532 

43.03 2.84984 

43.04 2.47477 

43.05 2.16837 

⋮ ⋮ 
43.50 0.13995 

 

𝑝(𝑥)803 𝐾 =
𝛴(4.65621, 3.90223,… ,0.13995)

1557.48921
= 0.028399                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 



151 

 

Appendix B: Selected Ologs  

 

 

Figure B.1: Ologs illustrating Definition 3. 

 

 

Figure B.2: An olog illustrating the creation of probability distributions for some random variables, {e}, and how 

the relative entropy of those distributions is found. 
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Figure B.3: Olog illustrating Definition 9. 

 

 

 


