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Abstract

Dynamic tumour-tracked radiotherapy is a promising method for delivering

conformal doses to tumours that exhibit a large degree of motion as a result

of patient respiration. However, there exists an inevitable latency between

the acquisition of an image of a moving tumour and the adaptation of the

therapeutic beam to match its observed position and contour. This must

be addressed by predicting respiration-induced tumour motion so that the

requisite mechanical adjustments can be initiated sufficiently in advance. For

MR-based tracking, this latency is relatively long compared to other imaging

techniques. Accurate motion prediction therefore requires a more sophisticated

approach than those used for short-latency hardware.

A novel application of long short-term memory recurrent neural networks

for respiration-induced tumour motion is presented in this thesis. It consists of

three main components: (1) acceleration of training using super-convergence

regularization with intelligent early stopping; (2) mitigation of overfitting and

instability through homogeneous network ensembles; and (3) improvement

of the reaction to changing respiratory patterns during treatment through a

novel adaptation method called intermittent retraining. Compared to previous

studies, this approach reduces the amount of time required for network training

by several orders of magnitude while simultaneously improving the accuracy

and consistency of predictions. This work represents a step toward bringing

linac-MR based dynamic tumour-tracked radiotherapy into clinical relevance

by making it both more practical and more precise.
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Chapter 1

Introduction

1.1 Thesis Organization

Generally, this thesis describes a novel strategy for predicting respiration-

induced tumour motion during external beam radiation therapy (EBRT) using

recurrent neural networks (RNNs). In Chapter 1, the role of tumour motion

prediction in dynamic tumour-tracked radiotherapy (DTTRT) is explained,

and the need for non-linear prediction when performing DTTRT on a hybrid

linear accelerator (linac) and magnetic resonance (MR) imaging system is iden-

tified. In Chapter 2, the basic theory behind artificial neural networks (ANNs)

and RNNs is described, with a specific focus on modifications to the standard

ANN approach that are required when training data are limited. The funda-

mental concepts of magnetic resonance imaging (MRI) are then introduced,

with a special focus on the determinants of MRI acquisition speed. Chapter 3

contains a manuscript that presents the specific details of the novel approach

to RNN training that has been developed, and quantifies the effects of this

approach on training time and predictive accuracy. A version of this chapter

has been submitted to Medical Physics for publication and, as of this writing,

is undergoing peer-review. Finally, Chapter 4 revisits the most salient points

of this thesis and suggests potential future avenues of research related to this

project.
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1.2 Cancer Incidence and Treatment Strate-

gies

Cancer is currently the leading cause of death in Canada, and it is estimated

that more than 40% of Canadians will be diagnosed with cancer during their

lifetimes [1]. Lung cancer is currently the most prevalent form, estimated to

represent 13% of new cancer diagnoses and 25% of cancer-related deaths in

Canada in 2022 [1].

Treatment strategies for cancer vary considerably depending on the pri-

mary disease site, the genetics of the cancer cells, the stage of the disease

at diagnosis and the preferences and age of the patient. Treatments may

be primary, adjuvant or palliative, depending on whether they are intended

to be curative, mitigate the risk of recurrence, or alleviate symptoms of dis-

ease and prolong survival, respectively. Common therapeutic approaches in-

clude surgery, pharmacotherapy (cytotoxic chemotherapy, hormone therapy,

targeted therapy), radiation therapy (EBRT, brachytherapy, radioisotope ther-

apy), and immunotherapy. In most cases, a patient’s full treatment course will

involve a combination of these strategies.

1.3 External Beam Radiation Therapy

EBRT is the most widely-used radiation therapy modality [2]. It is estimated

that about half of all cancer patients receive EBRT throughout their treatment,

and that about a quarter will require more than one course [3]. EBRT broadly

refers to a variety of treatments in which ionizing radiation is delivered to the

cancer cells in the form of a beam generated outside of the patient’s body.

Most commonly, the radiation takes the form of megavoltage (MV) X-rays

or electrons produced by a medical linac, but kilovoltage (kV) photons from

an X-ray tube (orthovoltage radiation therapy), gamma rays emitted by an

2



external radioactive source (as in cobalt-60 devices) or charged particles that

have been energized in a cyclotron (as in proton or carbon ion therapy) are

also possible. This thesis exclusively considers MV photon EBRT delivered

via linac, more specifically, a hybrid linac-MR.

1.4 Conformality, Volumes, and Margins in

EBRT

A long-standing goal in the field of radiation therapy is to maximize the con-

formality of the treatment, which means escalating the ionizing radiation dose

to tissues that either contain visible cancer or are likely to host subclinical dis-

ease while simultaneously reducing the dose to surrounding healthy tissues. It

is a generally accepted notion that any improvements to conformality will both

increase the probability of local tumour control[4]–[6] and reduce the proba-

bility of adverse effects[7], [8], though the clinical evidence supporting each

iteration of improved conformality inevitably lags behind its implementation

due to the need for long-term follow-up in cancer studies.

There are many potential uncertainties in prescribing, planning and de-

livering EBRT that limit the achievable treatment conformality. These must

be well-understood and properly accounted for – attempting to deliver an un-

realistically conformal treatment can result in underdosing a portion of the

tumour, increasing the likelihood of disease progression or recurrence. To ad-

dress these uncertainties, a standardized approach to prescribing and reporting

doses in EBRT has been developed by the International Commission on Ra-

diological Units and Measurements (ICRU). It is laid out in ICRU Report 50

[9], updated to address advances in EBRT in its supplement, ICRU Report 62

[10], and updated again to account for the high dose gradients associated with

intensity-modulated radiation therapy (IMRT) in ICRU Report 83 [11].

These reports recommend identifying four volumes of interest prior to treat-

3



ment, as indicated in Figure 1.1. The gross tumour volume (GTV) encom-

passes the observable extent of the cancerous tissue. To account for the likely

invasion of subclinical disease in the tissues around the bulk tumour, this vol-

ume is expanded at the discretion of the radiation oncologist to generate the

clinical target volume (CTV). It is to the CTV that the prescribed dose is

intended to be delivered, and outside of it that the dose should be minimized.

However, this task is complicated by the fact that the CTV is not static in

terms of its size, shape nor position relative to radiation isocenter. Motion of

the CTV can take many forms – it can be either interfractional (taking place

between subsequent treatment fractions) or intrafractional (taking place dur-

ing a single treatment fraction), and it can be either internal (the CTV moving

with respect to the patient frame) or external (the patient frame moving with

respect to radiation isocenter).

In order to address internal motion, ICRU Report 62 recommends the

addition of an internal margin (IM) that encompasses the anticipated internal

range of the CTV during treatment. Together, the CTV and IM yield a new

volume called the internal target volume (ITV). This ITV is then further

expanded by a setup margin (SM) to account for potential uncertainties in

aligning the patient frame to radiation isocenter. Together, the CTV, IM

and SM finally yield the planning target volume (PTV). By delivering the

prescribed radiation dose to a properly representative PTV, it can be ensured

that the CTV will receive complete dose coverage.

In practice, achieving the best therapeutic ratio (the tradeoff between tu-

mour control probability and normal tissue complication probability) means

that the margins should be made as small as possible, so that the volume

of healthy tissue receiving the prescribed radiation dose (PTV - CTV) is

minimized. Doing so without compromising the probability of a successful

treatment requires a thorough understanding of the potential sources of target
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Figure 1.1: Treatment volumes and scenarios as defined by ICRU Report
62[10]. Reproduced with permission from SAGE Publishing, see Appendix A.
The major treatment volumes (the GTV, CTV, ITV and PTV) are identified.
Three cases for margin addition are illustrated: (A) linear addition, which
provides the best dose coverage of the CTV but results in the highest normal
tissue dose, (B) a stastistically rigorous addition, which is possible when the
sources of motion are well-characterized, and (C) smaller margins than war-
ranted by the motion in order to spare normal tissues.

motion.

From a statistical standpoint, sources of motion can be characterized by

their mean magnitude Σ and their standard deviation σ. In the parlance

of statistics, these values represent the systematic and random errors of the
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tumour position, respectively. If all sources of motion were identified and

characterized prior to treatment, a simple method to assign margins would be

to simply sum all of the potential errors together linearly. However, this would

often result in very large margins, reducing the conformality of the treatment

and potentially intersecting nearby organs at risk. A statistical approach has

been outlined by Stroom[12] who determined the margin MS required to deliver

a minimum of 95% of the prescription dose to an average of 99% of the CTV:

MS = 2Σ + 0.7σ (1.1)

Van Herk[13] followed up shortly thereafter with a formula that yields a

slightly larger margin MV H , such that 90% of patients will receive a minimum

dose of 95% the prescription dose to their CTV:

MV H = 2.5Σ + 0.7σ (1.2)

However, these more rigorously determined margins may still be too large in

the case of high-amplitude intrafractional motion or close proximity to organs

at risk. In Figure 1.1, the ICRU 62 report illustrates three potential scenarios

for margin addition, depending on constraints regarding healthy tissue dose

limits. In scenario A, dose outside of the CTV is of relatively little concern, so

the IM and SM are added linearly to the CTV to produce the PTV, ensuring

full dose coverage. In scenario B, the uncertainties that underpin the IM and

SM are well understood and a minimization of dose outside the CTV is desired,

so they are added together in a more rigorous statistical manner. In scenario

C, in order to reduce the dose to nearby organs at risk and minimize the risk

of intolerable complications, smaller margins must be used and the CTV will

not get full dose coverage. This will result in a lower probability of tumour

control. In the event that the GTV cannot safely be covered by the prescribed
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dose, the treatment becomes palliative.

1.5 Interfractional Motion

1.5.1 External Interfractional Motion

The major contributor to external interfractional motion is variability in pa-

tient setup. In the absence of image guidance, which will be discussed in

Section 1.6, the patient is conventionally positioned by aligning external skin

markers to room lasers that are meant to indicate radiation isocenter. This car-

ries with it uncertainties associated with the coincidence of laser and radiation

isocenter, the potential for marker motion relative to internal anatomy, and

variability in setup on different days and between different radiation therapists.

Patient immobilization devices can help ensure a more consistent setup[14].

1.5.2 Internal Interfractional Motion

One source of internal interfractional motion can be the result of day-to-day

differences in bowel or bladder filling. If not controlled, this can cause the CTV

to move up to several cm [15], depending on the proximity of the tumour site

to the bladder and digestive tract. Consistent patient preparation prior to

simulation and treatment can help to mitigate this variation[16].

Additionally, throughout a course of EBRT there can be considerable

changes in patient anatomy (e.g., weight loss or gain) and the volume and

shape of the tumour (e.g, swelling, progression or reduction). These types

of internal motion are more complicated to address, often requiring replan-

ning of the treatment rather than simple adjustment of the patient. This is

a motivation for adaptive radiotherapy[17], which is beyond the scope of this

thesis.

7



1.6 Image-Guided EBRT for Interfractional Mo-

tion

An improvement on the laser-based setup approach is to directly image the

patient at the beginning of a treatment fraction, allowing for setup to be based

on rigid anatomical features that are more proximal to the tumour (or, in some

cases, the tumour itself). This process is known as image-guided radiotherapy

(IGRT)[18]. With IGRT, the required SM is much smaller since it only needs

to reflect variability in aligning the pre-treatment images to simulation images

(as well any potential disagreement between imaging and radiation isocenter).

It can be performed with a range of imaging modalities, each having their own

strengths and weaknesses.

Most modern linacs are equipped with a flat panel detector called an elec-

tronic portal imaging device (EPID) that can be positioned along the path of

the therapeutic beam, as well as a kV imaging system located orthogonal to

the therapeutic beam. Both can be used to rapidly acquire two-dimensional

(2D) setup verification images at the beginning of (or throughout) treatment.

kV imaging provides better contrast-to-noise ratios (CNRs) because attenua-

tion differences are larger between different tissues in the kV spectrum. This

results in better image quality at lower patient doses. MV imaging, however,

does come with the added benefits of guaranteed coincidence between imag-

ing and radiation isocenter and the suppression of image artefacts caused by

scattering from high atomic number materials such as hip prostheses.

The quality of setup matching that can be achieved from planar imaging

is limited, since information about the patient’s three-dimensional (3D) po-

sitioning is inevitably lost when their anatomy is represented in 2D. In MV-

and kV-based cone-beam computed tomography (CBCT), multiple 2D projec-

tions are acquired as the linac rotates, yielding a volumetric representation of
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the patient when they are backprojected. The improved setup matching pro-

vided by CBCT comes at the cost of increased patient dose relative to planar

imaging, as well as increased acquisition time. As a result, CBCT imaging

is only viable at the beginning of treatment fractions, which is adequate for

addressing interfractional motion.

There are some non-ionizing imaging modalities for IGRT for which patient

dose is not a concern. Ultrasound (US) imaging uses high-frequency acoustic

waves to detect variation in acoustic impedance within the patient. It can

often provide adequate soft tissue contrast to visualize tumours directly, and

when paired with methods to localize the US probe within the treatment room,

has been used to detect both internal and external interfractional motion [19].

However, there is a considerable amount of inter-operator variability for man-

ually obtained US images[20], and therefore variability in setup when using US

guidance[21]. Some robotic US probes are currently under development, both

to reduce operator dependence and to allow for images to be acquired from

outside of the treatment vault, which would enable US-based intrafractional

motion compensation as well [22].

Finally, MRI (see Section 2.2 for technical details) is another non-ionizing

imaging modality that offers excellent soft-tissue contrast and spatial resolu-

tion, often allowing for the direct visualization of tumours. Early MR-IGRT

used an MR-on-rails system to translate patients between MR and linac isocen-

ters after validating the setup and adapting for interfractional tumour mo-

tion[23]–[25]. Recently, three hybrid linac-MR devices have been developed

and clinically deployed and are being used for interfractional motion man-

agement [26]–[28]. A specific example of a hybrid Linac-MR (the Alberta

Linac-MR[26], [29], the first of its kind) will be discussed in more detail in

Section 1.9.
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1.7 Intrafractional Motion

1.7.1 External Intrafractional Motion

Even if a perfect alignment between the target and the therapeutic beam

is initially achieved, it is unlikely to be maintained throughout treatment.

Externally, this is mostly due to the fact that the patient may change their

body posture or shift relative to the patient support system, resulting in a

displacement from radiation isocenter.

Additionally, any required rotation of the patient support system during

setup or treatment might itself result in unintended translations of the patient,

and any rotation of the linac itself may shift the position of radiation isocenter

relative to imaging isocenter. In modern linacs which are capable of tight

tolerances on isocentricity, these potential errors are generally small and can

be minimized further with a robust quality assurance program.

1.7.2 Internal Intrafractional Motion

Typically, the predominant source of intrafractional motion is internal and

the result of involuntary physiological processes, such as peristalsis, respira-

tion and circulation. The relative contributions of these different processes to

intrafractional motion depends on the location of the tumour, but the lungs,

chest wall, esophagus, liver, pancreas, breast, prostate and kidneys are all

known to move during respiration[30].

This respiration-induced tumour motion is complex. Its magnitude, fre-

quency and regularity can vary widely from patient to patient, from day to day,

and even from respiratory cycle to respiratory cycle. Lung tumour motion can

be especially complicated (see Figure 1.2), often exhibiting hysteresis (different

trajectories between inhalation and exhalation) as well as high-amplitude mo-

tion in all three cardinal directions (superior/inferior (S/I), anterior/posterior
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(A/P) and left/right (L/R)). Abdominal tumours usually follow more linear

paths, most often in the S/I direction, but their motion amplitude can be large

as well.

Figure 1.2: A 3D rendering demonstrating the complicated trajectory of a
right upper lobe lung tumour, taken from the Suh et al. database detailed in
Chapter 3. Three distinct trajectories are visible over its entire motion history,
and this particular tumour shows a high degree of hysteresis, often switching
between the upper and middle paths from inhale to exhale.

Respiratory tumour motion has been studied intensively, owing simulta-

neously to the prevalence of abdominothoracic tumours, the large proportion

of those tumours that have indications for EBRT and the common and often

severe consequences of excessive dose to nearby healthy tissue. The lung is

particularly sensitive to ionizing radiation, and it is estimated that radiation-

induced pneumonitis and lung fibrosis will occur in up to 20% of esophageal

and lung cancer patients receiving EBRT[31]. These lung injuries can result
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in chronic dyspnea and severely reduced quality of life following treatment.

1.8 Accounting for Intrafractional Motion in

EBRT

1.8.1 Traditional Methods

Common clinical approaches to managing respiration-induced intrafractional

tumour motion center around either restricting the position of the tumour

while the therapeutic beam is active, or activating and deactivating the ther-

apeutic beam based on the detected respiratory phase.

In deep inspiration breath-hold (DIBH)[32], patients are asked to main-

tain a full inhale state during computed tomography (CT) simulation as well

as treatment. While in this state, the position of the tumour will be much

more constrained compared to free-breathing, resulting in a smaller requisite

IM. Additionally, the tumour often moves away from critical structures such

as the heart at maximum inhale. Active breathing control (ABC)[33] is a

similar approach, except that the patient is forced to maintain a specific res-

piratory phase by an external valve rather than doing so voluntarily. In the

same vein, forced shallow breathing (FSB)[34] techniques restrict respiratory

range through external compression of the abdomen, limiting the motion of

the diaphragm and therefore the tumour.

Gated EBRT approaches[35] are based on four-dimensional CT simulation

wherein multiple volumetric CT images are obtained, each corresponding to

a different respiratory phase. Treatment is restricted to a range of respira-

tory phases during which the tumour is relatively stable, though some motion

(called residual motion) will still occur within this window. Respiratory phase

can be measured externally by placing a bellows around the patient’s chest to

measure thoracic circumference or by placing markers on the patient’s skin to
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measure external abdominal or thoracic motion, and the detected respiratory

phase can be used to automatically trigger beam on/off signals.

All of these approaches are limited by the facts that respiratory phase and

tumour position do not have a one-to-one correspondence[36] and that any

established correlation is likely to decay over time (e.g., between simulation

and treatment). Further, patients are not always able to perform DIBH repro-

ducibly, nor can they always tolerate ABC or FSB[30]. For gated techniques,

there needs to be a compromise between the tolerable extent of residual mo-

tion and the length of treatments, since treating over too small a respiratory

phase range results in a low duty cycle (the ratio of “beam on” time to total

treatment time).

1.8.2 Dynamic Tumour-Tracked EBRT

DTTRT techniques involve continual intrafractional measurement of the tu-

mour’s position, followed by adaptation of the the therapeutic beam to com-

pensate for any observed motion. Ideally, such an approach would entirely

obviate the need for both the IM and the setup component of the SM, since

the therapeutic beam is being directly aligned to the tumour (though the

potential disagreement between imaging and radiation isocentres would still

exist). In practice, however, there are several newly introduced uncertainties

that must be accounted for, including errors in tumour localization and ac-

curately calculating and performing the required motion of the beam-steering

hardware.

Additionally, there is an inevitable latency between determining the lo-

cation of the tumour and the completion of the compensatory mechanical

motion. This is known as the system delay, and if it is not accounted for, it

will result in spatial lag of the beam behind the tumour along its direction of

motion. As a result, devices that perform DTTRT require some method of
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predicting tumour motion associated with respiration, which will be discussed

further in Chapter 2. Still, dynamic tumour-tracking has the potential to im-

prove EBRT conformality for highly mobile tumours, and therefore potentially

improve outcomes in abdominothoracic cancers.

There have been multiple approaches to the physical adaptation of the

therapeutic beam during DTTRT, including using dynamic multi-leaf colli-

mators (DMLCs) [37]–[41], compact gimbals-mounted[42] or robotic[43] linacs,

and dynamic patient support systems [44]. Similarly, various tumour sensing

approaches have been studied, including fluoroscopic imaging of implanted ra-

diopaque fiducial markers on the periphery of the tumour [45], building and

updating a correlation model between external respiratory markers and planar

X-rays of internal radiopaque fiducials [46], and detecting implanted radiofre-

quency (RF) emitting markers [47]. There are several disadvantages to these

marker-based approaches: fiducials are known to migrate relative to the tu-

mour, cannot provide a full description of the shape of the GTV, and require an

invasive procedure to implant. For thoracic tumours, fiducial marker insertion

also carries a pronounced risk of pneumothorax[48].

1.9 Dynamic Tumour Tracking using Hybrid

Linac-MRs

With the advent of clinical linac-MR systems, there has been considerable

interest in the feasibility of markerless MR-based tumour tracking concurrent

with irradiation. This presents several unique challenges: charged particles

responsible for depositing dose can be deflected by the MRI’s main magnetic

field (B0), potentially resulting in increased skin dose and dosimetric hot spots;

RF noise from the linac and DMLCs can interfere with the MR acquisition

process; MV radiation can induce current in metals producing additional RF

noise; and MR images often exhibit spatial distortion (especially near regions

14



of with highly variable magnetic susceptibility, such as the lungs), making

consistent tumour localization difficult.

Additionally, MR imaging has inherently longer acquisition times than

most alternative tumour tracking methods (for example, fluoroscopy is typ-

ically performed around 30 Hz, while 2D real-time MR is usually in the 4-8

Hz range). This has two major implications: (1) a coarser sampling of the

patient’s respiratory cycles, which may obfuscate some of the more subtle fea-

tures of the tumour motion; and (2) a longer system delay. Additionally, MR

images can take much longer to reconstruct after acquisition, even further

extending the system delay.

The Alberta Linac-MR[26] is currently being commissioned for MR-IGRT

at the Cross Cancer Institute. It has a rotating biplanar configuration, which

allows for a reduction in charged particle deflection since the beam can be con-

sistently oriented along B0. It additionally results in a far less claustrophobic

environment for the patient than a traditional cylindrical bore MR, and allows

for a greater degree of couch motion which enables isocentric treatments and

avoids the need for adaptive planning for every patient. It also has relatively

low B0 strength (0.5T) compared to other linac-MRs that produces less geo-

metric distortion, better CNR for some tumour types[49], further minimizes

charged particle deflection and can be generated with a high-temperature su-

perconducting magnet, allowing for the device to be installed in a traditional

linac vault.

1.10 Non-invasive Intrafractional Tumour-Tracked

Radiotherapy

Non-invasive intrafractional tumour-tracked radiotherapy (nifteRT)[50] is a

novel DTTRT approach that is being developed on the Alberta Linac-MR.

The proposed nifteRT workflow is illustrated in Figure 1.3.
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Figure 1.3: An illustration of the nifteRT workflow. Reproduced in adapted
form with permission from J. Yun.

Briefly, MR imaging of the tumour is acquired at a frame rate of 4 Hz or

greater. After reconstruction, the image is automatically contoured using a

trained ANN and the centroid position of the tumour is calculated. A future

centroid position is then predicted based on the tumour’s recent motion his-

tory, and the current contour and anticipated future centroid are then sent to

the DMLCs which immediately begin driving toward the target position.

The system delay for this entire process has been estimated at between 275

ms and 340 ms for typical lung tumour treatments [51]. This delay consists of

(1) the effective acquisition time (one-half the total acquisition time for MR

pulse sequences that cross the origin of k-space halfway through acquisition,

see Section 2.2.2 for an explanation), (2) processing and reconstruction of

the image, (3) autocontouring of the tumour and centroid determination, (4)

motion prediction, (5) DMLC motion and (6) communication between devices.

The effective image acquisition time is the dominant factor in determining

system delay (for 4 Hz imaging, one-half of 250 ms yields 125 ms), followed by

reconstruction and DMLC motion (both typically on the order of several tens
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of ms, though the contribution of the DMLC motion depends on the maximum

velocity of the tumour). Neural network-based autocontouring takes about 20

ms when optimized[52], as does the motion prediction algorithm outlined in

Chapter 3.

1.11 Tumour Motion Prediction

The idea of predicting respiration-induced tumour motion has been around

since at least 2002, initially intended to improve gated EBRT based on real-

time imaging of fiducial markers [53]. It has since evolved considerably as

increased computing power has made more sophisticated prediction methods

viable. Initially, static linear and sinusoidal models, simple neural networks

and Kalman filters were explored[53]–[55], resulting in modest improvements

to tracking. Even at this early juncture, it was recognized that the selected

approach to tumour motion prediction should depend on the system delay.

That is, several methods (such as the normalized least mean squares approach

used by the CyberKnife and Vero systems) perform well when the system

delay is kept below 200 ms and the motion is well-approximated as linear,

but their capabilities drastically fall off thereafter. Most of the subsequent

literature therefore focused on the more difficult problem of non-linear motion

prediction at long system delays.

Adaptive approaches, in which the predictor’s internal parameters are re-

calculated as new motion data become available, were shown to result in con-

siderably better performance than their static counterparts [56], [57]. Model-

free autoregressive approaches soon followed [58], [59], which performed better

when patients exhibited irregular respiratory patterns [60].

Around 2008, there was a rapid development in the application of deep

neural networks as a result of major machine learning competitions [61]. Over

the next few years, these developments filtered into tumour motion prediction
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research [62]–[66] resulting in more accurate predictions, but also increased

computational expense.

Around the same time, more complex Kalman models [67], [68] were de-

veloped that could better address irregular breathing patterns, and support

[69], [70] and relevance vector machines [71] provided performance comparable

to the neural networks of the time but with considerably less computational

expense. RNNs were later shown to outperform traditional feed-forward neu-

ral networks [50], [72], [73], since they are capable of responding to temporal

patterns in sequential data (see Section 2.1.6 for more details).

Currently, there is no consensus on the optimal approach to tumour motion

prediction for DTTRT, and it is difficult to draw comparisons between the

different approaches presented in the literature. There are several reasons for

this: (1) there is no standardized tumour motion dataset that is common to all

publications; (2) researchers tend to focus on one clinical application of their

approach, so they typically test a narrow range of acquisition times and system

delays; (3) there is no standardized way to report predictive accuracy, and (4)

each prediction method typically has an expansive set of free parameters, so a

wide range of results are possible even under the “same” approach.

When studies comparing predictive accuracy across multiple categories of

predictor are performed, they generally conclude that any method that is used

for long system delays should at least be non-linear and adaptive. Further,

with an eye toward an eventual clinical use, it should also be relatively quick

and computationally inexpensive to implement. In this thesis, I develop an

approach to neural network-based motion prediction that satisfies all of these

criteria.
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1.12 Research Motivation

Previously, the results of a study applying long short-term memory (LSTM, see

Section 2.1.6) RNNs for 3D tumour motion prediction at an acquisition time

of 280 ms and a prediction horizon of 280 ms were published[50]. A generic

RNN structure (two hidden layers with 256 neurons each, see Section 2.1.2 for

an explanation of these terms) was used for all patients, and a considerable

amount of time (up to several hours) was required to train the networks. Based

on these results, I was initially posed three questions to answer:

� Is there any benefit to customizing the architecture of the networks on

a patient- or fraction-specific basis?

� What is the effect of varying acquisition rates and system delays on

predictive accuracy?

� Can the training process be accelerated by using graphics processing

units (GPUs), which are intended for handling the large tensor calcula-

tions required for neural network training?

Over time, these questions evolved as I experimented with new network

architectures and training processes, and I eventually landed on a consider-

ably different approach to motion prediction than anything that had been

previously published. However, the underlying goals of improving the accu-

racy, reliability and speed of neural network-based tumour motion prediction

remained, and the work presented in Chapter 3 represents a realization of all

three.
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Chapter 2

Theory

2.1 Artificial Neural Networks

In Chapter 1, the need for a non-linear method for tumour motion prediction

when using hardware with long system delays (> 200 ms, which includes the

Alberta Linac-MR) was identified. ANNs are computational models that can

be “trained” to perform arbitrary non-linear tasks. They are inspired by the

neural networks of biological organisms both in terms of their architectural

layout and the functioning of their component neurons, though there exist

some important distinctions.

2.1.1 The Neuron

In biological systems, neurons are cells found in the central and peripheral

nervous systems that are responsible for generating, carrying and processing

electrical signals associated with movement, sensation and cognition. Their

basic function is to sum the incoming electrical and chemical signals from

other cells in the form of electrical potentials and, if a pre-determined threshold

potential is reached, to generate and pass along an electrical impulse called an

action potential (see Figures 2.1(a) and (b)). As a simple mathematical model,

if Va is the magnitude of the action potential, VT is the threshold potential of

a neuron, the output of the ith upstream cell is given by Vi and the connection
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strengths that determine how much of each incoming signal make it to the

neuron is wi, then the output of the neuron Vo is given by:

Vo = VaΘ

(∑
i

wiVi − VT

)
(2.1)

where Θ is the Heaviside function:

Θ(x) =

{
0, x < 0
1, x ≥ 0

(2.2)

Figure 2.1: (a) and (b): A simplified schematic of a biological neuron and its
input/output relationship, respectively. (c) and (d): A schematic of an artifi-
cial neuron and its input/output relationship (assuming a sigmoid activation
function), respectively. Interestingly, the biological neuron is the digital one
while the artificial neuron is analog.

Despite this relatively simple functioning at the level of the individual

neuron, biological organisms are capable of extremely complex and adaptable
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behaviour. This is because of the sheer number of neurons and connections in

the brain (estimated to be 1010 and 1015 for humans, respectively[74]) as well

as the ability to forge new connections (neural plasticity[75]) and tune their

strength (synaptic plasticity[76], equivalent to adjusting wi in Equation 2.1)

as a response to repeated activation.

An artificial neuron is similar in that it receives inputs either externally or

from other artificial neurons, performs some mathematical function on those

inputs, and then generates an output (see Figure 2.1(c)). However, the math-

ematics of an artificial neuron can be made more sophisticated than the all-or-

nothing activation of a biological neuron (Figure 2.1(d)). This allows for the

representation of complex functions using fewer neurons, and also facilitates

the training of ANNs through gradient descent (see Section 2.1.3).

If the inputs to an artificial neuron are denoted xi, the strengths of the

connections between the inputs and the artificial neuron are wi, and the output

of the neuron is y, then

y = ϕ (Σ (wixi)) (2.3)

Here, Σ is called the artificial neuron’s summation function, though it does

not necessarily represent a simple summation of the weighted inputs wixi. For

example, in max pooling stages in convolutional neural networks, it instead

selects only the maximum weighted input value. However, for simplicity and

because a truly summative summation function will be used in all the networks

presented in this thesis, henceforth it will be assumed that the summation

function represents a direct summation of the weighted inputs.

ϕ is called the neuron’s activation function, and it can be selected from

a range of linear and non-linear functions depending on the neuron’s specific

purpose within the ANN. As is the case with biological neurons, an artificial

neuron on its own is not capable of performing sophisticated tasks – this ability
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emerges only when multiple neurons are connected together.

2.1.2 Networks of Neurons

Biological neural networks are extremely complex, with circuitous paths be-

tween neurons, two-way communication channels and neuronal self-connections.

In order to make ANNs easier to define and implement, their artificial neurons

are typically organized into discrete layers. Moreover, these layers are gener-

ally fully connected – that is, each neuron receives inputs from every neuron in

the previous layer, and sends a copy of its output to every neuron in the sub-

sequent layer. Finally, for simplicity, every neuron in a given layer generally

has identical summation and activation functions.

Figure 2.2 depicts two fully-connected neuron layers, the first containing m

neurons and the second containing n neurons. All the outputs of the neurons

in the first layer can be represented as an m-vector X⃗, and all the weights

connecting the ith neuron in the first layer to the jth neuron in the second

layer (wij) can together be represented as an m× n matrix W:

X⃗ =


x1

x2
...
xm

 , W =

w11 . . . w1n
...

. . .
...

wm1 . . . wmn

 (2.4)

An n-vector containing the weighted and summed inputs for each neuron

in the second layer is then given by the weight matrix applied to the outputs

of the first layer. It is convenient to call this vector Z⃗, with Z⃗ = WT X⃗ where

T is the matrix transposition operator, or


z1
z2
...
zn

 =

w11 . . . w1n
...

. . .
...

wm1 . . . wmn


T

x1

x2
...
xm

 (2.5)

The activation function ϕ for the second layer then acts on this vector to
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give the output of the second layer Y⃗ , which is itself also an n-vector. All

together, Y⃗ = ϕ(Z⃗) = ϕ(WT X⃗), or


y1
y2
...
yn

 = ϕ



z1
z2
...
zn


 = ϕ


w11 . . . w1n

...
. . .

...
wm1 . . . wmn


T

x1

x2
...
xm


 (2.6)

Figure 2.2: An example of two fully-connected layers in an ANN.

Generally, ANNs consist of three main components, as indicated in Fig-

ure 2.3: (1) an input layer, (2) any number of computing layers (also known

as hidden layers), and (3) an output layer. Typically, the computing layers

also contain what are called bias neurons attached to them. These are neurons

that do not take in any input and always output +1, which is then fed through

weighted connections to the subsequent layer. In effect, these bias nodes apply

an adjustable shift to the zero point of the activation functions of the down-
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stream neurons. This is important, since most activation functions have the

property ϕ(0) = 0, but the non-linear process intended to be emulated may

not. Many authors choose to explicitly differentiate bias nodes from the rest

of the computing neurons in their notation, but in reality they can simply be

treated like any other artificial neuron mathematically.

Figure 2.3: The general structure of an ANN, with an input layer, any number
of hidden layers, and an output layer. In this illustration, the input layer has
a width of 3, the first hidden layer a width of 4 with a bias neuron, the last
hidden layer a width of 3 with a bias neuron, and the output layer a width of
1. The ellipsis represents the potential for many more hidden layers that are
not shown.

A very simple ANN is depicted in Figure 2.4. It has an input layer con-

sisting of two neurons, a hidden layer consisting of two neurons with no bias,

and an output layer consisting of one neuron. In order to better differentiate

between the layers, the inputs to the network will be denoted Y⃗ 1, the four
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weights connecting the input neurons to the hidden layer neurons comprise

the weight matrix W1, the weighted inputs to the hidden layer neurons are

Z⃗1, the activation function of the hidden layer is ϕ2, the two outputs of the

hidden layer are contained in Y⃗ 2, the weight matrix connecting the hidden

layer to the output layer is W2, the weighted inputs to the output layer are

Z⃗2, the activation function of the output layer is ϕ3, and the final output of

the network is a single value, Y 3. Mathematically,

Y 3 = ϕ3(Z⃗2) = ϕ3((W2)T Y⃗ 2) = ϕ3((W2)Tϕ2(Z⃗1)) = ϕ3((W2)Tϕ2((W1)T Y⃗ 1))

(2.7)

Figure 2.4: A simple ANN used to demonstrate their basic function and train-
ing.

Generally, the output of an N -layered ANN is given by:

Y N = ϕN

(
(WN−1)TϕN−1

(
(WN−2)T ... ϕ2((W1)T Y⃗ 1)

))
(2.8)
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There are two brief asides that should be mentioned here: First, if all of

the activation functions in the simple ANN are linear (i.e. ϕi(z) = kiz with ki

being a constant coefficient), then it can be shown that

Y 3 = k3k2

(
(W2)T

(
(W1)T Y⃗ 1

))
=
(
k3k2(W2)T (W1)T

)
Y⃗ 1 (2.9)

If the multiplication of the matrices is evaluated first, and the weight that

connects the ith neuron in layer k to the jth neuron in layer k + 1 is denoted

wk
ij:

(W2)T (W1)T =
[
w2

11 w2
21

] [w1
11 w1

21

w1
12 w1

22

]
=
[
w2

11w
1
11 + w2

21w
1
12 w2

11w
1
21 + w2

21w
1
22

] (2.10)

However, w2
11w

1
11 + w2

21w
1
12 and w2

11w
1
21 + w2

21w
1
22 are just complicated ways

of representing any arbitrary pair of numbers A and B. If the lth input is y1l ,

then the equation describing the entire network is now:

Y 3 =
[
A B

] [y11
y12

]
= Ay11 + By12 (2.11)

That is, this ANN is just an unnecessarily complicated linear function. This

argument can be extended to an N -layered network with all linear activation

functions and any number of outputs and inputs:

Y N =

(
N∏
i=2

ki

)(
N−1∏
i=1

(Wi)T

)
Y⃗ 1 (2.12)

If at least one ϕi is non-linear, however, the network represents a non-

linear transformation between inputs and outputs, which is what is required

for motion prediction at long system delays.

Second, if the input data are multi-dimensional (for example, the 3D spa-

tial tumour coordinates considered in the manuscript in Chapter 3), extra
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dimensions can be added to the weight matrices so that all of the input di-

mensions independently contribute to the output. This is equivalent to having

multiple parallel networks all joined at the output nodes (see Figure 2.5).

Multi-dimensional outputs are also possible. However, in the case of the mo-

tion prediction application outlined in Chapter 3, the output is a single 3D

coordinate, which can be represented as an output layer with three neurons.

In this way, previous motion from all three input dimensions (S/I, A/P, L/R)

are used to predict the motion in each output dimension.

Figure 2.5: A parallel network diagram showing how three-dimensional inputs,
in this case motion data in the three cardinal patient directions, can each be
used to predict the future motion in any given direction. For illustrative
purposes, simple networks with two input nodes and two hidden layers each
of width three are shown, while much more complex network structures will
be used in Chapter 3.

In this section, a method has been simply outlined for constructing an ANN
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(and, therefore, a non-linear transformation) of arbitrary complexity. How well

an ANN possibly can approximate a given non-linear process is governed by

the number of hidden layers (also called the depth of the network), the number

of neurons in each hidden layer (the layer’s width), and the chosen activation

function for each layer. That is, these parameters define its capacity. How

well it actually does approximate that process is determined by the values in

the weight matrices connecting the layers. That is, these weight matrices are

where the task-specific “knowledge” is stored.

This has parallels to biological neural networks – a human can be born

with the capacity to eventually read, walk and talk, but it takes time, practice

and repeated exposure to fine-tune the neuronal connections that will allow

them to do those things well. In the next section we will introduce how ANNs

are taught to emulate non-linear processes through iterative optimization of

their internal weights.

2.1.3 Supervised Learning, Backpropagation and Gra-
dient Descent

Supervised learning is the conventional method for teaching an ANN to per-

form a desired task, and it requires two things: (1) examples of that task being

done correctly (called the training set), consisting of paired inputs and their

corresponding ground-truth outputs; and (2) a metric that compares the out-

put of the network to the ground-truth to quantify the network’s performance.

This metric is called the cost function, C. The basic goal of supervised learn-

ing is to find a set of network weights that minimize C by iteratively repeating

two steps, forward propagation and backpropagation.

Forward propagation simply entails feeding an input from the training set

into the network, and calculating the output using Equation 2.8. Importantly,

during the forward propagation process the results of intermediate calculations
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should be stored for future reference. Once a network output Y N is calculated,

its cost function C can be computed using the true value Ŷ from the training

data.

During backpropagation, the gradient of C with respect to each weight in

the ANN is computed. Using the simple network illustrated in Figure 2.4 and

mathematically described in Equation 2.7 as an example, the cost function

gradient with respect to the total weight matrix W2 can be calculated via the

chain rule, as follows:

∂C

∂W2 =
∂C

∂Y 3

∂Y 3

∂Z⃗2

∂Z⃗2

∂W2 (2.13)

Since Y 3 = ϕ3(Z⃗2), then

∂Y 3

∂Z⃗2
=

∂

∂Z⃗2
ϕ3
(
Z⃗2
)

(2.14)

where

Z⃗2 = (W2)T Y⃗ 2 (2.15)

Now, since W2 is actually just a vector in this instance, the definition of

the gradient vector is required:

∂f(x⃗)

∂x⃗
=


∂f
∂x1
∂f
∂x2
...
∂f
∂xN

 (2.16)

Since

Z⃗2 =
[
w2

1 w2
2

] [y21
y22

]
= w2

1y
2
1 + w2

2y
2
2 (2.17)

then
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∂Z⃗2

∂W2 =

[
∂Z⃗2

∂w2
1

∂Z⃗2

∂w2
2

]
=

[
y21
y22

]
(2.18)

This leaves a useful expression for the partial derivative of the cost function

with respect to the matrix of weights connecting the hidden layer to the output

layer:

∂C

∂W2 =
∂C

∂Y 3

(
∂

∂Z⃗2
ϕ3
(
Z⃗2
))

Y⃗ 2 (2.19)

Most cost functions are selected such that they have the property

∂C

∂Y N
= f(C) (2.20)

so the first term is trivial to compute from value of C that was found and

stored during forward propagation.

A broad variety of activation functions are available for both the hidden

and output layers, with some common choices illustrated in Figure 2.6. For

the output layer, the activation function should be selected such that its lim-

its match those of the desired output. For example, a neural network that

classifies images might output a “confidence level” in the range of 0% – 100%

that a certain object appears in the image. In this case, the output should be

constrained since a negative or > 100% confidence would be meaningless, so

an output activation function resembling the sigmoid or tanh functions is often

used (with appropriate scaling). For the example of tumour motion predic-

tion, there are no well-defined constraints on the tumour’s position, so a linear

output function would be appropriate. For hidden layer activation functions,

the rationale behind choosing a particular activation function is less clear, and

often comes down to trial and error.

Regardless, activations functions are typically selected such that they either

have trivial gradients (as is the case with ReLU, where the gradient itself is
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Figure 2.6: An illustration of common activation functions used for hidden
and output layers in ANNs, including the sigmoid, hyperbolic tangent (tanh),
linear, rectified linear unit (ReLU) and leaky ReLU (LReLU) functions.

just the Heaviside function), or have the property:

∂

∂z
ϕ(z) = f(ϕ(z)) (2.21)

such as the tanh activation function, for which

∂

∂z
tanh(z) = 1 − tanh2(z) (2.22)

In the latter case, ϕ3(Z⃗2) is just Y 3, and along with Y⃗ 2 it was computed

and stored during the forward propagation step, so it does not need to be re-

calculated. Finding the partial derivative of C with respect to W2 is therefore

computationally inexpensive, given appropriate forms for C and ϕ.

This approach can be extended for W1, the weight matrix connecting the

input to the hidden layer:
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∂C

∂W1 =
∂C

∂Y 3

∂Y 3

∂Z⃗2

∂Z⃗2

∂Y⃗ 2

∂Y⃗ 2

∂Z⃗1

∂Z⃗1

∂W1 (2.23)

The first two terms have already been determined while calculating the

cost function gradient with respect to W2. From Equation 2.15,

∂Z⃗2

∂Y⃗ 2
= (W2)T (2.24)

Similar to Equation 2.14,

∂Y⃗ 2

∂Z⃗1
=

∂

∂Z⃗1
ϕ2(Z⃗1) (2.25)

which again can be quickly solved using the values calculated in the forward

propagation step. Finally, since W1 is a matrix this time, in order to calculate

∂Z⃗1/∂W1 the definition of the Jacobian matrix is required. If ν⃗ is a column

m-vector such that:

ν⃗ =


ν1
ν2
...
νm

 (2.26)

then

∂ν⃗(X)

∂X
=


∂ν1
∂x11

. . . ∂ν1
∂x1n

...
. . .

...
∂νm
∂xm1

. . . ∂νm
∂xmn

 (2.27)

Since

Z⃗1 =

[
w1

11 w1
21

w1
12 w1

22

] [
y11
y12

]
=

[
w1

11y
1
1 + w1

21y
1
2

w1
12y

1
1 + w1

22y
1
2

]
(2.28)

then

∂Z⃗1

∂W1 =

[
y11 0
0 y12

]
(2.29)
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More generally, for an N -layered network, the gradient of the cost function

with respect to the ith weight matrix Wi is

∂C

∂Wi =
∂C

∂Y N

∂Y N

∂Z⃗(N−1)

∂Z⃗(N−1)

∂Y⃗ (N−1)
. . .

∂Y⃗ (i+1)

∂Z⃗i

∂Z⃗i

∂Wi (2.30)

Each of these terms can be obtained relatively quickly by plugging inter-

mediate results from the forward propagation step into the equations:

∂C

∂Y N
= f(C) (2.31)

∂Y⃗ k

∂Z⃗(k−1)
=

∂

∂Z⃗(k−1)
ϕk(Z⃗(k−1)) = f

(
ϕk(Z⃗(k−1))

)
(2.32)

∂Z⃗k

∂Y⃗ k
= (W k)T (2.33)

∂Z⃗i

∂Wi = Y⃗ iIm (2.34)

where Im is an m×m identity matrix.

However, this gradient only stems from a single input/output pair. During

training, the mean cost function evaluated over the entirety of the training set,

C̄, should be considered when updating weights. If there are µ input/output

pairs in the training set, then:

C̄ =
1

µ

µ∑
i=1

Ci (2.35)

If each individual weight is then updated according to the equation:

wk
i,j := wk

i,j − α
∂C̄

∂wk
i,j

(2.36)

then the entire ANN should simultaneously step in a direction that will reduce

C̄ during the next forward propagation (even though it might not be in the
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right direction to reduce C for each individual input/output pair in the training

set).

Here, α is called the learning rate of the training process, and it acts as a

scaling factor for the step size in weight space. It can either be a fixed value,

scheduled in advance or dynamically updated based on the measured cost

function by an optimizer algorithm. However, as will be shown in Chapter 3,

it is often much more consequential than just determining the rate of training.

A single cycle of forward propagation, storage of intermediate results, back-

propagation of error using those intermediate results and corrective weight ad-

justments based on the full training set is collectively called a training epoch.

At the beginning of training, the weights in the network are usually randomly

initialized. Training epochs are then repeated until C̄ approaches a stable

minimum value. For particularly large training sets, it might be advantageous

in terms of training time to update the internal weights more often than once

per epoch. This is called mini-batch gradient descent, and an extreme exam-

ple of this approach, where a weight update is performed after every single

training example, is called stochastic gradient descent. In the application con-

sidered in this thesis, fraction-specific motion prediction, there are typically

only ∼ 102 motion examples in the training set, so batch training of this form

is not required.

A chosen cost function should have several properties to help facilitate the

ANN training process. First, it should ideally be convex, so that the gradient

always points toward a single global minimum. It should also be positive

definite, so that the cost functions of two different training examples cannot

cancel each other out. Finally, it should be differentiable, so that ∂C̄/∂Y N is

always defined. It is not absolutely necessary for ∂C/∂Y N to be representable

as some function of C, but it speeds up the backpropagation step if this is the

case.
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Figure 2.7(a) shows a simplified illustration how the training process typi-

cally proceeds. A cost function C̄ taken over the entire training set is plotted

as a function of a single network weight. In case A, the learning rate α is quite

small, and the training process takes a large number of epochs to reach the

vicinity of the minimum C̄. As α is increased in case B, the rate at which the

network approaches the minimum C̄ is increased. However, if it is too large

then the weights will oscillate about their optimal values during convergence

and slow down training, as seen in case C. For a larger α still in case D, C̄

can grow between epochs resulting in weight divergence. Figure 2.7(b) shows

an alternative illustration of this concept, plotting C̄ as a function of training

epoch for a range of α values corresponding to cases A through D.

Figure 2.7: (a): A simplified illustration of how the cost function may vary
with a single network weight, and how training may proceed (or fail) depending
on the learning rate used for gradient descent. Cases A through D illustrate
increasingly larger learning rates, starting from an inefficiently small learning
rate (A), an appropriate one (B), one that results in oscillation about the global
minimum (C) and one that leads to divergence (D). (b) Another representation
of (a), showing cost function as a function of training epoch for the various
learning rates.

In reality, training is much more complicated than this simple illustra-

tion can express. ANNs can have thousands, millions or even hundreds of

billions[77] of trainable parameters that are often interdependent. Therefore,
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the gradient descent process is not guaranteed to reduce C̄ after each epoch,

and the C̄ that the ANN eventually converges to is not necessarily its global

minimum value. That is, it can get trapped in one of any number of local

minima that arise due to interactions between network weights. As a result,

the solution that the training process yields (and therefore the performance

of the ANN) in part depends on the random values assigned to the weights at

the outset of training. The degree to which this instability manifests depends

on a number of factors that will be discussed in Section 2.1.5.

It is also important to keep in mind that this process of supervised learning

only results in an optimal set of ANN weights for the training data set, and

that these weights are not guaranteed to be optimal when the ANN is applied

to new data. There are many factors that affect how well trained ANNs

generalize, which will also be discussed in more detail in Section 2.1.5.

2.1.4 Neural Network Hyperparameters and Hyperpa-
rameter Optimization

With an algorithm in place for training ANNs, the next step is to choose their

structure and function in a way that yields optimal performance. ANNs are

defined by their hyperparameters, which can be roughly divided into three

categories: (1) those that determine the structural characteristics of the neu-

ral network (e.g., the number of hidden computing layers and the width of

each layer) , (2) those that determine the functional or mathematical char-

acteristics of the neural network (e.g., the activation functions at each layer),

and (3) those that govern the supervised learning process (e.g., learning rate,

optimizer, and the number of training epochs).

These ANN hyperparameters can be represented as a tuple of variables,

some continuous (such as learning rate), some discrete (such as the number of

hidden layers) and some categorical (such as the chosen activation function).
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Hyperparameter optimization (HPO) is the process of finding the optimal

values for each variable, in terms of minimizing a mean cost function C̄.

There are several methods that can be employed when performing HPO.

The simplest is a grid search algorithm, in which a set of reasonable bounds are

determined for each hyperparameter and C̄ is exhaustively calculated for every

possible combination therein. Plotting C̄ as a function of each hyperparame-

ter averaged over the rest of hyperparameter space allows for the importance

of each hyperparameter to be assigned. An important hyperparameter will

have an observable relationship to C̄ over its range, while an unimportant

one will have a negligible effect on C̄ (see Figure 2.8(a)). The optimal set

of hyperparameters can be assigned as the combination that resulted in the

smallest observed C̄, or it may be interpolated from the plots of important

hyperparameters versus C̄ (and then usually tested for confirmation).

How the reasonable bounds for each hyperparameter are assigned and how

densely to sample within these reasonable bounds is an important detail. It is

entirely possible to leave the optimal hyperparameters outside of the range of

the search, or to sample so coarsely that the minimum of the loss topography

in hyperparameter space is missed. This must be balanced against the fact

that casting a wider net with a finer mesh results in drastically increased

computational expense, given the dimensionality of the HPO problem.

Another relatively straightforward HPO option is the random search algo-

rithm[78], which is similar to the grid search except that hyperparameters are

allowed to vary randomly rather than aligning to predefined grid points (see

Figure 2.8(b)). This effectively allows for a finer sampling of hyperparameter

space for the most important hyperparameters, but with the drawbacks of (1)

more difficult disentangling of the effects of multiple important hyperparame-

ters, and (2) the potential for a large portion of hyperparameter space to go

randomly unsearched.
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Figure 2.8: (a) Grid-search HPO. Hyperparameters (here, only two for illus-
tration purposes) are varied regularly between reasonable bounds. The cost
function (blue) will vary smoothly and appreciably with an important hyper-
parameter, while it will not appear to vary or will vary randomly with an
unimportant one. (b) Random search HPO, which results in a more dense
sampling of the cost function in hyperparameter space. Because this is an
idealized illustration, the increased noise in the cost function plot that will be
the result of less averaging is not shown.

Some of the more sophisticated HPO techniques are inspired by natural

processes such as swarm dynamics and evolution. In particle swarm optimiza-

tion[79], multiple “particles” are randomly initialized both in terms of their

position and velocity in hyperparameter space, and their subsequent trajec-

tories are determined by their own observations of the local C̄ terrain as well

as those of the swarm. In the covariance matrix adaptation evolution strat-

egy[80], “organisms” with a random initial distribution of hyperparameters

are allowed to mathematically reproduce based on their “evolutionary fitness”

(their calculated C̄), with random variations introduced to allow for the pop-

ulation to drift toward a more optimal solution. These strategies have an

advantage in that they do not require a predetermined range to be assigned

to each hyperparameter (although practically, the initialization of the parti-

cles or organisms in hyperparameter space should still be governed by prior
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knowledge), but neither has a straightforward method for handling categorical

variables.

Generally, HPO is a computationally demanding and lengthy process. De-

pending on the range of hyperparameter space being searched, it could easily

require the evaluation of hundreds of thousands of different hyperparameter

configurations. Worse yet, since initial weights cannot be made consistent

across differently structured ANNs, in applications with a strong initial weight

dependence multiple networks must be trained at each hyperparameter grid

point to disentangle the effects of changing hyperparameters from the ran-

domizing effect of the initial weights. A judgement must therefore be made

balancing the anticipated benefits of HPO in terms of accuracy versus the time

and effort it requires to perform.

For the specific case of respiration-induced tumour motion prediction, there

are three choices for HPO:

� Determine a universal set of optimal hyperparameters for the task at

hand, then use those hyperparameters for every patient and fraction

thereafter

� Use a patient’s past motion data to determine a patient-specific set of

optimal hyperparameters

� Perform HPO prior to each treatment fraction using motion data mea-

sured that day

The first option, universal HPO, has the distinct advantage of only requir-

ing one computationally expensive HPO to ever be performed. However, it is

also likely to be the worst in terms of predictor accuracy, since it is unlikely

that the same hyperparameter configuration will be optimal for every patient

and fraction. The second, patient-specific HPO, only requires one optimiza-

tion to be performed per patient. However, since it is unlikely that a full HPO
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could be performed while the patient remains on the treatment couch, it would

probably require each patient to be present for a purely observational mock

treatment fraction. The final option, fraction-specific HPO, would fully ac-

count for how the day-to-day variability of the patient’s respiratory patterns

might affect the optimal ANN hyperparameters, but is the most computation-

ally expensive and the most clinically impractical.

2.1.5 Overfitting and Other Challenges Inherent to “Small
Data”

It might at first glance be reasonable to wonder why HPO is required at all. It

is obvious that too simple of a network will struggle to carry out complex tasks

regardless of the quality of its training, much like asking a fruit fly to prepare

one’s taxes will probably end in an audit no matter how much experience it

claims to have. But can a network be too capacious? If not, the ANN could

be made as large as the memory of the computing hardware allows, and the

number of training epochs could be maximized based on the time available for

training. However, it will be shown in this section that while this might be a

valid strategy for obtaining the best possible training accuracy, it is in no way

guaranteed to result in acceptable real-world performance.

The main reason for this is the finite nature of the training set – it con-

tains only a limited number of examples of the kind of patterns we wish the

ANN to emulate. Moreover, since the training data are taken from real-world

measurements, they often contain random noise that complicates the task of

learning the underlying patterns. There are two methods the ANN can use to

minimize C̄ over the training set: (1) learning the general characteristics of the

process that produced the training data; (2) “memorizing” the exact training

examples, including their associated noise. The latter process is known as

overfitting [81], and it is a common pitfall in machine learning that results in
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poor generalization to new data and extremely unstable behaviour.

In many ways, ANN overfitting is analogous to the more familiar polyno-

mial overfitting shown in Figure 2.9. There, while the higher-order polynomial

fit yields better performance at the discrete points that the fit was generated

from, away from these points it strays from the underlying trend and occa-

sionally explodes. The degree to which polynomial overfitting can be expected

to occur is determined by the ratio of the number of points used for the fit to

the degree of the polynomial function. A high ratio results in a much better

general fit to the underlying trend, even though a low one may yield a lower

fitting error.

Figure 2.9: An illustrated example of polynomial overfitting, which in many
ways is analogous to using overly complex ANNs on small training sets.

In the same way, the ratio of the number of free parameters in an ANN

to the number of available training examples is critical. If it is too small, the

network will learn spurious patterns that improve its training cost function but

diminish its performance outside of the training set. As a general convention

in machine learning, there should be at least ten times more examples in the

42



training set than there are trainable parameters in the ANN[82]. For a fully-

connected ANN with Nin inputs, NHL hidden layers with the ith hidden layer

having width wi, and Nout outputs, the number of free parameters Nfp is given

by:

Nfp = Ninw1 + w1w2 + . . . + wNHL−1wNHL
+ wNHL

Nout (2.37)

If biases are included for the hidden layers, this becomes

Nfp = Ninw1 + (w1 + 1)w2 + . . .+ (wNHL−1 + 1)wNHL
+ (wNHL

+ 1)Nout (2.38)

An ANN with an input width of 10, two hidden layers of width 256 with

biases, and an output width of 3 would have 10× 256 + 257× 256 + 257 ∗ 3 =

69380 trainable parameters. As ANNs go, this example is not particularly

large, but already it requires at least 7 × 105 training examples to satisfy this

convention. For many applications, including the one considered in this thesis,

this size of training set is unattainable and alternative methods must be used

to mitigate overfitting.

Collectively, these methods are known as regularization. Conventional

methods for regularization include dropout networks, L1 regularization (also

called lasso regression) and L2 regularization (also called ridge regression). In

dropout networks (see Figure 2.10), a fraction of the neurons are randomly

removed during training for one epoch at a time, forcing the network to bet-

ter distribute learning tasks and preventing individual neurons from either

(1) assuming responsibility for individual training examples; or (2) correcting

the mistakes of other neurons[83]. More aggressive regularization can be per-

formed by increasing the fraction of the neurons in each layer that are dropped

out during each epoch.
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Figure 2.10: A dropout network with a dropout fraction of 0.4, meaning 2/5
neurons in each layer are randomly disconnected each training epoch. Discon-
nected neurons are shown in red.

In L1 regularization, an additional term is added to the overall cost function

that penalizes the network for having too many non-zero weights:

C̄L1 = C̄ + λ
∑
i,j

|wi,j| (2.39)

Essentially, this term forces the network to find simpler representations of

the training data even at the expense of training accuracy. The degree to

which this occurs is controlled by the parameter λ.

In L2 regularization, a penalty term corresponding to the sum of squares

of the internal weights is added:

C̄L2 = C̄ + λ
∑
i,j

(wi,j)
2 (2.40)
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As with dropout networks, this prevents any individual weight from grow-

ing too large during training, encouraging distribution of the learning through-

out the network. Similar to L1 regularization the magnitude of regularization

is controlled by a free parameter λ.

Earlier, an idealized illustration of the training process was introduced

(Figure 2.7(a)), in which the average cost function C̄ over the training set

was smooth and convex with respect to any individual weight in the ANN. As

mentioned, in practice this is usually not the case and the cost function land-

scape is more complicated. This is especially true when the ratio of training

examples to free network parameters is small, since this introduces an element

of chance as to whether specific combinations of weights fit well or poorly to

the sparse training data. With larger training sets, this effect would tend to

average out. This means that the cost function landscape may contain multi-

ple local minima that can halt gradient descent, causing inconsistent training

performance that depends on the random initialization of the weights (see Fig-

ure 2.11). Worse yet, these local minima likely correspond to poorer general

performance than the network weight space that surrounds them.

A properly regularized network returns a sense of smoothness to the cost

function landscape, since many of the overfit weight configurations that result

in these local cost function minima and maxima are rendered inaccessible by

the restrictions imposed by the regularization approach (e.g., small weights,

sparse/distributed representations). As a result, there is less dependence of the

solution on the random initial weight configuration (see Figure 2.12). Unfor-

tunately, this typically comes at the cost of much slower training convergence.

In Chapter 3, I explore the use of a novel form of regularization called

“super-convergence”[84] for tumour motion prediction. This regularization

method entails drastically increasing the initial learning rate of the training

process and cutting off training after fewer epochs have been performed. In
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Figure 2.11: (a): An illustration of a more realistic cost function plot, showing
the origin of initial weight dependency. Each network finds a different solution
based on its random starting weights and learn rate. Some solutions are more
overfit than others. (b) Another view of this process, showing how the cost
function evolves over the training epochs. The network indicated with blue
crosses achieves the best training loss, but overfitting may prevent it from
being the best general solution.

Figure 2.12: (a) An illustration of how regularization through dropout, L1
or L2 may affect the cost function terrain. Networks initialized identically
to those in Figure 2.11 now converge to similar solutions corresponding to a
single global minimum. Overfit solutions (deep minima on the solid line) are
no longer accessible by the networks because of the constraints imposed by
the regularization process. (b) Another view of this effect, showing how the
cost function evolves over the training epochs.

contrast to conventional regularization, this actually accelerates the training

process, which has many downstream benefits in terms of the practicality of

46



ANN-based tumour motion prediction.

The specific mechanism through which super-convergence regularizes the

problem is still not well-described. To my understanding, however, the ag-

gressive learning rate allows the network to evade or even escape local minima

in the unregularized cost function landscape, and cutting off training early

prevents it from settling into a local minimum as its step size decreases (see

Figure 2.13). The net result is unprecedentedly fast convergence and a reduced

(but non-zero) likelihood of overfitting.

Figure 2.13: (a): An illustration of my interpretation of super-convergence
regularization, again showing the same randomly initialized networks from
the previous two figures. Aggressive training coupled with early halting of the
training process helps to prevent overfitting (settling into a local minimum on
the solid line). (b): Another view of this process illustrating the cost function
as a function of training epoch, demonstrating the reduced training times
compared to other regularization methods, but also the lingering dependence
on random initial weights.

2.1.6 Recurrent Neural Networks

So far, the discussion in this chapter has assumed what is known as a feed-

forward ANN. That is, the connections in the networks only exist between

adjacent layers and always point in the direction of the output layer. Another

way of looking at this is that each individual neuron takes in all of the outputs
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of the previous layer simultaneously, then sends its output to all of the neurons

in the subsequent layer simultaneously, with no formal sense of order. This

has been done largely for the sake of simplicity.

However, for some problems such as language processing and time series

forecasting, the order of the inputs can be as important as their values. RNNs

were developed specifically to handle sequential data. For these networks,

inputs are considered one at a time, and self-connections allow for each input

to modify one or more internal states (called hidden states) of the neuron

before it processes the next data point. The hidden state can be modified

to store contextual information that might be helpful toward understanding

subsequent data points. Figures 2.14(a) and (b) illustrate the general concept

of an RNN, showing a neuron in both its folded and unfolded forms.

Figure 2.14: (a): A folded view of a recurrent neural network. (b): The same
network, but unfolded to show its temporal structure.

Mathematically, if the N sequential inputs are written as [x1, x2, . . . , xN−1, xN ],

the neuron will have N + 1 hidden states [h0, h1, . . . , hN−1, hN ]. These states

are connected through a weight matrix U to an output activation function

ϕo to generate N outputs [y1, y2, . . . , yN−1, yN ]. The hidden state has its own

internal activation function ϕh that acts on the previous hidden state with

a weight matrix W and the input from the current time step with a weight
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matrix V. Together,

hi = ϕh(Vxi + Whi−1), yi = ϕo(Uhi) (2.41)

Since both X⃗ and Y⃗ are N -vectors representing inputs and outputs at

discrete time points, this is known as a sequence-to-sequence transformation.

However, as is the case in this thesis, what may be desired is a transformation

from a sequence to a single future value. In this case, only the last output

yN can be considered when training the network – the previous outputs need

not be calculated, even during training. For completeness, however, for the

remainder of this section I will continue to assume the more general sequence-

to-sequence transformation.

Initially, h0 is randomly assigned, as are the weight matrices U, V and W.

These values are then all trained through cycles of forward- and backpropaga-

tion, with the aim of minimizing the average of the cost functions Ci, which are

then averaged over all time points. However, because each hidden state hi is

influenced by the previous hidden states and inputs, this backpropagation not

only needs to take place through the layers of the network, but also through

time. For simplicity, assuming that N = 2:

y1 = ϕo(Uh1) = ϕo(Uϕh(Vx1 + Wh0))

y2 = ϕo(Uh2) = ϕo(Uϕh(Vx2 + Wh1)) =

ϕo(Uϕh(Vx2 + W(ϕh(Vx1 + Wh0)))

(2.42)

During backpropagation, the partial derivative of each cost function with

respect to U, V, W and h0 needs to be calculated. For C1 generated by y1:

∂C1

∂U
=

∂C1

∂y1

∂y1
∂U

(2.43)

where, as before, these terms are made easy to calculate by selecting an ap-

propriate C and ϕo. For V, W and h0,
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∂C1

∂V
=

∂C1

∂y1

∂y1
∂h1

∂h1

∂V
∂C1

∂W
=

∂C1

∂y1

∂y1
∂h1

∂h1

∂W
∂C1

∂h0

=
∂C1

∂y1

∂y1
∂h1

∂h1

∂h0

(2.44)

Again, the second term in each expression is related to the gradient of the

output activation function ϕo and the third is related to the gradient of the

hidden activation function ϕh at points that were evaluated in the forward

propagation step.

For i = 2, things get a little more complicated:

∂C2

∂U
=

∂C2

∂y2

∂y2
∂U

(2.45)

is similar to the case of i = 1, but

∂C2

∂V
=

∂C2

∂y2

∂y2
∂h2

∂h2

∂h1

∂h1

∂V
∂C2

∂W
=

∂C2

∂y2

∂y2
∂h2

∂h2

∂h1

∂h1

∂W
∂C2

∂h0

=
∂C2

∂y2

∂y2
∂h2

∂h2

∂h1

∂h1

∂h0

(2.46)

contains the product of gradients of ϕh evaluated at two different points.

More generally, for the nth output of an RNN with an arbitrarily large input

size N > n,

∂Cn

∂U
=

∂Cn

∂yn

∂yn
∂U

∂Cn

∂V
=

∂Cn

∂yn

∂yn
∂hn

(
n∏

j=2

∂hj

∂hj−1

)
∂h1

∂V

∂Cn

∂W
=

∂C2

∂y2

∂y2
∂h2

(
n∏

j=2

∂hj

∂hj−1

)
∂h1

∂W

∂Cn

∂h0

=
∂C2

∂y2

∂y2
∂h2

(
n∏

j=2

∂hj

∂hj−1

)
∂h1

∂h0

(2.47)
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These repeated multiplications of hidden state partial derivatives (each of

which is itself composed of the product of a weight matrix and the derivative of

the hidden state activation function) can be problematic. If each term is small

(usually the fault of initializing to a flat region of the activation function),

the gradient could prevent any meaningful updates from being applied to the

weights and initial hidden state, and if each term is large (usually the fault of

inappropriately large weights working their way into the weight matrix) the

gradient could rapidly grow and the training process could become unstable

or even divergent. These are called the vanishing and exploding gradient

problems, respectively. They are well-known for deep feed-forward ANNs,

and because of the stacking of products that occurs in RNNs with long input

sequences, they reappear here. These problems can be avoided by simply

truncating the product of the gradients, but this can preclude the learning of

longer-term dependencies.

LSTM-RNNs[85] were introduced to address this shortcoming of traditional

RNNs. Their neurons have a much more complicated internal structure (see

Figure 2.15) – in addition to the hidden state, LSTM-RNNs have an additional

state called the cell state, [c0, c1, . . . , cN−1, cN ]. Four internal gates exist within

each neuron, which can act on either the cell state or the hidden state:

� The forget gate, which determines how much of each component of the

cell state to keep based on the new inputs and the previous hidden state

� The input gate, which parses new inputs and determines how much of

them to incorporate into the new cell state

� The input modulation gate, which converts the instructions of the input

gate into a form that leads to faster convergence

� The output gate, which queries the inputs and cell state to determine
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the next hidden state

Figure 2.15: An illustration of a LSTM-RNN neuron and its internal gates.
W is a multi-dimensional matrix that contains Wf , Wi, Wo and Wc.

Each of these internal gates has their own associated weight matrix. If fi,

ii, and oi are the values of the forget, input, and output gates at time point i,

hi and ci are the hidden and cell states at that time point, and Wf , Wi, Wc

and Wo are the weight matrices for the forget, input, input modulation and

output steps respectively, then the mathematical operation of the LSTM-RNN

cell is given by:
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fi = σ(Wf [xi, hi−1])

ii = σ(Wi[xi, hi−1])

oi = σ(Wo[xi, hi−1])

ci = fi ∗ ci−1 + ii ∗ tanh(Wc[xi, hi−1])

hi = oi ∗ tanh(ci)

yi = ϕo(Uhi)

(2.48)

Here, σ is the sigmoid function, tanh is the hyperbolic tangent function,

and U and ϕo are the weight matrix and activation functions that connect

the hidden state to the output, as before. The internal sigmoid and tanh

activation functions are typically left unchanged, while the output activation

function ϕo can be varied. Essentially, this form of connection allows the

network to “store” inputs in the cell state, where they can more directly affect

the later functioning of the neuron without the risks associated with being

located behind multiple gradients.

LSTM-RNNs require considerably more calculations to be performed dur-

ing both forward and backpropagation compared to a feed-forward network

with a similar architecture, but their ability to “comprehend” the temporal

relationships between their inputs yields improvements in performance that

are usually deemed well worth their computational cost[86].

2.1.7 Network Adaptation

Recursion in neural networks helps them to identify and act on short-term

patterns in sequential data. However, these RNNs will only remain accurate as

long as those patterns remain relevant. As mentioned in Chapter 1, respiratory

motion patterns can change considerably, even on intrafractional time scales.

Maintaining accuracy in tumour motion prediction therefore requires a method

for updating an RNN’s training throughout a treatment to keep pace with
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changes in respiratory patterns. This process is called network adaptation.

In MR-based intrafractional tumour tracking, new tumour positions are

being acquired at a minimum rate of 4 frames per second. Since it takes

considerably more time than this to train an RNN, there are two options for

adaptation strategies:

� Perform an abbreviated (< 250 ms) training cycle, updating network

weights before the next prediction is due

� Perform a full training cycle, using an old network to make predictions

until the new one is ready

Typically under the first approach, one cycle of forward- and backprop-

agation is performed using only the most recent data point as the training

“set” in order to limit the amount of time required for adaptation. In some

cases, the learning rate for the adaptation is fixed, while in others an optimizer

continually manages the learning rate during adaptation, passing it between

steps. The latter approach effectively allows the optimizer to adjust the ag-

gressiveness of adaptation based on how quickly the respiratory patterns are

changing.

This strategy is called online learning, and while it has been generally

successful in the past it has a few limitations. First, the initial training set

might be reinforced over hundreds, thousands or even hundreds of thousands

of epochs while new data are only learned once. This could result in the net-

work retaining too much memory of respiratory patterns that have lost their

relevance. Second, there may be difficulty in predicting an appropriate fixed

learning rate for adaptation. If an optimizer is being used, then the learning

rate inherited from initial training might be inappropriate for adaptation, and

it may therefore take the optimizer some time to adapt to its new task. Finally,
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transient changes in respiratory patterns (a cough, for example) may desta-

bilize the network, since their large associated errors could result in drastic

changes to the network weights.

The second strategy avoids these pitfalls of online learning, since every data

point is learned equivalently, and any transient changes in respiratory patterns

can be buffered by the rest of the training set. However, under this approach,

the fastest that a network can adapt to changes in respiratory patterns is

equal to the amount of time required for a full training cycle. Historically

for respiration-induced tumour motion prediction, this has been somewhere in

the range of tens of minutes to several hours, which is far too long to ade-

quately capture intrafractional variation in respiratory patterns. In Chapter

3, I introduce a method for reducing network training times down to a few

seconds, making this second approach feasible. I compare it to conventional

online learning, and show that it results in better adaptation when presented

with shifting respiratory patterns.

2.2 Magnetic Resonance Imaging

For DTTRT, MRI offers the distinct advantages of (1) unparalleled soft tissue

contrast, (2) markerless visualization of both the tumour position and shape,

and (3) no additional patient dose due to imaging. However, it is a relatively

slow imaging technique compared to external surrogate tracking or fluoroscopy.

As mentioned previously, this is why MRI-based dynamic tumour-tracked ra-

diotherapy requires a non-linear prediction method, while hardware like the

CyberKnife or VERO systems can make use of simple linear predictors.

In this section, I will briefly introduce the basics of MRI, starting with the

fundamental physics and a description of spatial encoding for image formation.

An exhaustive introduction to the theory and practical application of MRI is

beyond the scope of this thesis. Rather, I will be focusing on the basic factors
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that determine MRI acquisition speed (and therefore the system delay for

dynamic tumour-tracked radiotherapy using MR tracking).

2.2.1 Fundamental Physics

The constituent particles of atomic nuclei, protons and neutrons, are both

ground-state baryons, meaning they have a spin (a quantized intrinsic angular

momentum) of ½. A nucleus itself can therefore have either an integer or half-

integer spin depending on how many protons and neutrons it contains – if

both counts are even, the nucleus will have a spin of zero, if one is odd and

the other even it will have half-integral spin, and if both are odd it will have

integral spin.

The human body primarily consists of water, about 50%-60% by mass. A

water molecule is composed of one oxygen atom and two hydrogen atoms. The

most abundant isotope of oxygen, 16O, has 8 protons and 8 neutrons and is

therefore spin-0, but the most abundant isotope of hydrogen, 1H, consists of a

single proton and therefore has a half-integer nuclear spin. Specifically, in the

ground state its spin quantum number S can be either +½ or −½.

Any particle with a non-zero spin will interact with an external magnetic

field. The strength of this coupling depends on its nuclear magnetic moment

µ⃗, which is proportional to its intrinsic spin angular momentum S⃗:

µ⃗ = γS⃗ (2.49)

Here, the proportionality constant γ is called the gyromagnetic ratio of

the particle. 1H has a relatively large gyromagnetic ratio compared to other

common nuclei at 42.58 Hz/G.

When a uniform, static external magnetic field B0 is present, the spin states

of the 1H nucleus will split into two energy levels based on their alignment with

B0 (called the Zeeman effect). These levels will be separated by an energy
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2µB0 with the spin state that is aligned with the external magnetic field at a

lower energy than the anti-aligned spin state (assuming a positive γ, which is

typically the case and is true for 1H). A transition between these states would

require the absorption or emission of a photon with frequency ω0, such that:

∆E = 2µB0 = h̄ω0 (2.50)

which means that

ω0 =
2µB0

h̄
(2.51)

If µ⃗ and B⃗0 are not exactly aligned (or anti-aligned), the external field also

creates a torque τ⃗ given by

τ⃗ = µ⃗× B⃗0 (2.52)

Since

τ⃗ =
dS⃗

dt
=

1

γ

dµ⃗

dt
(2.53)

then

dµ⃗

dt
= γµ⃗× B⃗0 (2.54)

This equation describes oscillatory behaviour with a frequency γB0 (called

the Larmor frequency), namely a precession of µ⃗ about B⃗0. A quantum me-

chanical treatment of this phenomenon, which is beyond the scope of this the-

sis, demonstrates that this Larmor frequency is identical to ω0 from Equation

2.51:

ω0 = γB0 (2.55)
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At thermal equilibrium, the relative populations of the different spin ori-

entations can be obtained through Maxwell-Boltzmann statistics:

p+
p−

= exp

(
− ∆E

kBT

)
(2.56)

where p+ and p− represent the probabilities of finding a nucleus in the higher

energy or lower energy state, respectively, ∆E > 0 is the difference between

the high and low energy states, kB is the Boltzmann constant and T is the

temperature of the system. ∆E is generally quite small relative to kBT , so

there will usually only be a small imbalance between the populations of aligned

and anti-aligned states.

Consider a volume that contains only one type of nucleus with a non-zero

nuclear magnetic moment. In the absence of an external magnetic field, the

nuclear magnetic moments will be randomly oriented, and so they will tend

to cancel each other out. The magnetic moment of the volume as a whole will

be zero (Figure 2.16(a)). In the presence of an external magnetic field, the

spins will precess around the external field lines, with a slight preference for an

aligned state rather than an anti-aligned one. This will create a net magnetic

moment M0 for the whole volume that is proportional to the number of spins

contained within that volume (Figure 2.16(b)).

If a pulsed, single-frequency magnetic field B⃗1(t) tuned to the Larmor

frequency and perpendicular to B⃗0 is now applied to the volume, M0 will ex-

perience a torque that will tip it away from B⃗0, causing the net magnetization

to precess about B⃗0 at the Larmor frequency, just as the individual nuclear

magnetic moments did earlier (see Figure 2.17(a)). This constructive preces-

sion, called nuclear magnetic resonance, results in a time-varying magnetic

flux that can be detected with an appropriately oriented induction coil tuned

to the Larmor frequency. The amplitude of the current induced in the coil

will be proportional to the magnitude of M0, which itself is proportional to
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Figure 2.16: (a): Nuclear spins are randomly oriented in the absence of an
external magnetic field, resulting in zero net magnetization. (b): Application
of a uniform external magnetic field, such as the main field of an MRI, results
in a slight favouring of one spin state, generating a net magnetization. It also
causes incoherent precession of the spins.

the number of nuclei in the volume being measured. A B⃗1(t) of sufficient mag-

nitude and duration will tip M0 until it is completely perpendicular to B⃗0,

maximizing the intensity of the signal that is emitted (Figure 2.17(b)).

Nuclear magnetic resonance allows for the concentration of specific nuclei

within a sample to be characterized, and because the Larmor frequency of a

nucleus is affected by its chemical environment (with frequency shifts on the

order of a few parts per million), chemical analysis of a substance with an

active nucleus is also possible. However, in order to generate an image of an

object, a method for coupling the Larmor frequency to the spatial location of

the nucleus is required.

2.2.2 Spatial Encoding and Image Formation

When the B⃗1(t) pulse is applied, it will be absorbed by any nucleus having

a Larmor frequency that matches the frequency of the pulse. If the only

magnetic field present is the static, uniform B⃗0, that will include all of the
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Figure 2.17: (a): The excitation pulse causes the net magnetization of the
volume to simultaneously precess and tip away from the z direction, resulting
in a path like that shown in blue. (b) The motion of the magnetization is
much simpler in a reference frame co-rotating at the Larmor frequency. The
tipping or nutation angle α is determined by the strength and duration of the
pulse.

nuclei of interest in the sample, regardless of their position. If G⃗(x⃗) is a

spatially-varying field that is parallel to B⃗0, then the Larmor frequency within

the sample will itself become spatially dependent:

ω(x⃗) = γ|B⃗0 + G⃗(x⃗)| (2.57)

G⃗(x⃗) is called a gradient field, because its typical form is a constant spatial

gradient across the sample in one dimension (see Figure 2.18). If B⃗0 is taken

to be in the z-direction, as is customary, and G⃗x is a field oriented parallel to

B0 with a gradient along the x-direction such that

G⃗x = Gxxẑ (2.58)

then Equation 2.57 becomes

ω(x) = γB0 + γGxx = ω0 + γGxx (2.59)
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Figure 2.18: (a): A gradient field that varies along the x-direction and is
oriented in the z-direction, parallel to B0. (b): This gradient creates an x-
dependence of the Larmor frequency, allowing for the selective excitation of a
single slice of nuclei in a sample. The slice width is related to the bandwidth
of the excitation pulse.

Next, if the single-frequency B⃗1(t) pulse is replaced with one with a band-

width ∆ω centred at ωc, any nuclei with a Larmor frequency between ωc−∆ω/2

and ωc + ∆ω/2 will be excited by this pulse. This corresponds to a slab of the

volume along the x-direction with thickness ∆x and center xc such that

xc =
ωc − ω0

γGx

(2.60)

and

∆x =
∆ω

γGx

(2.61)

This process is known as slice-selection, and it allows for a spatially local-

ized excitation of nuclear spins, limiting the volume that will eventually emit

signal to a slice with a finite thickness ∆x.

A similar concept can be applied when reading out the signal from the

excited slice. Applying a gradient G⃗y = Gyyẑ that varies along the y-direction
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during readout, the net magnetization along the y-direction will precess with

different frequencies depending on the position of the nuclei in space. The

readout coil signal can then be then sampled at finite time points, and a

discrete Fourier transform can be used to extract discrete frequency bins from

the measured temporal signal. Since Gy ties the precession frequency of a

nucleus to its position in space, this frequency signal equates to a spatial

mapping of the nuclei in the sample along the y-direction. This process is

known as frequency encoding, and is shown in Figure 2.19.

Figure 2.19: A gradient field varying in the y-direction, tying the Larmor
frequency to the y-coordinate of the nuclei. The rotations shown in the left
panel illustrate the varying angular frequency relative to the Larmor frequency
at a field strength of B0.

Finally, if a third gradient field G⃗z = Gzzẑ that varies in the z-direction is

briefly applied prior to the readout for a time ∆t, then the nuclei experiencing

that field will briefly precess with a different frequency than a nucleus expe-

riencing no gradient. They will then acquire a spatially-varying phase ∆ϕ(z)

with:

∆ϕ(z) = ∆ω(z)∆t = γGzz∆t (2.62)
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By varying the strength of the applied field Gz and keeping its duration

∆t constant, several readouts with different phase shift magnitudes can be

acquired. This essentially causes the points experiencing a different Gz to

oscillate at different frequencies across measurements, since the phase shifts

they accumulate grow at different rates. Again, after a Fourier transform of

this phase signal into discrete frequency bins, it can then be mapped into

a spatial variation of signal in real space. This process is known as phase

encoding, and it is illustrated in Figure 2.20.

Figure 2.20: An illustration of phase encoding, wherein applying gradient fields
of different strengths (inset, bottom of left panel) in the z-direction result in
oscillatory behaviour with a spatially-varying frequency.

Figure 2.21 shows a possible sequence of magnetic field pulses that could

be used to create a 2D image. It involves first applying an excitation pulse

B1 with a slice-select gradient Gx active to define a slice of interest in the x-

direction, then applying a brief phase-encoding gradient Gz to the sample to

select the point in phase space that is to be measured, then acquiring the signal

from the sample with a frequency-encoding gradient Gy active. This process

would then repeated for all of the points that are intended to be sampled in

phase space, and then for each slice that is intended to be imaged in real space.
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Figure 2.21: A basic MRI pulse sequence, consisting of an excitation pulse
concurrent with a slice-select gradient, followed by a phase-encoding gradient,
followed by a frequency-encoding gradient during readout. The repetition
rate of the sequence, TR, depends on how fast the initial net magnetization
can recover.

Within each slice, it is convenient to imagine this sequence of events as

traversing a discrete trajectory through two-dimensional k-space (see Figure

2.22). In this space, a frequency-encoding gradient will cause a translation

along the x-axis, and a phase-encode gradient will result in motion along the

y-axis. The number of grid points in the frequency-encoded direction will be

determined by the number of temporal samples taken of the continuous RF

signal during readout, and the number of grid points in the phase-encoded di-

rection will depend on the number of different phase-encode gradient strengths

used to obtain the image. The extent of k-space in both dimensions depends

on the maximum strength of the applied gradients. From the properties of the

Fourier transform, this “field of view” in k-space inversely correlates to the

pixel spacing in real space, while the k-point spacing inversely correlates to
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the field of view in real space.

The low spatial frequency (i.e., contrast) information is stored near the

origin of k-space, while the periphery contains information about the high

spatial frequency structures (i.e., the finer detail). This means that the gross

position of the tumour in the image will primarily depend on where it was

located when the central region of k-space was sampled. The acquisition-

related component of the system delay is given by the amount of time that

elapses between the most recent localization of the tumour and the beginning

of image reconstruction. For a symmetric k-space trajectory, the tumour is

localized in the middle of the acquisition and reconstruction begins at the end,

so the resulting delay should be approximately half of the total acquisition

time. For a 4 Hz acquisition rate, this would imply an acquisition-related

system delay component of 125 ms.

Figure 2.22: An illustration of the path taken through k-space for the pulse
sequence shown in Figure 2.21.

There exists a limit to how closely these excitation pulses can be spaced

together, since the component of the net magnetization parallel to B⃗0 needs

to adequately recover between excitations. For the pulse sequence shown in

Figure 2.21, if TR is the length of time between consecutive pulses that will
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allow for sufficient recovery of the equilibrium magnetization, and Np is the

number of sampling points in phase space, then the total time required to

obtain a 2D slice is tacq,2D = TRNp. If a volumetric image is composed of a

stack of Nslice slices, then the acquisition time for a 3D image will be given by

tacq,3D = TRNpNslice.

TR is typically on the order of hundreds to thousands of ms, and Np is also

typically > 100 to obtain images with an appropriate field of view and spatial

resolution. A single slice under this approach would therefore take tens to

hundreds of seconds to acquire, which is far too slow to capture respiratory

motion in real-time.

2.2.3 Image Acceleration Techniques

One solution to this problem is called echo-planar imaging (EPI), wherein

multiple lines of k-space are acquired per excitation pulse. A simple illustration

of a pulse sequence that would allow this is shown in Figure 2.23. This equates

to taking a “zig-zag” path through k-space, either after a single excitation pulse

(single-shot EPI) or over the course of several (but < Np) excitations (multi-

shot EPI). A similar technique is known as turbo spin echo (TSE) imaging,

with the difference between EPI and TSE being related to their mechanisms

for rewinding the dephasing of spins due to B0 inhomogeneities (EPI is a

gradient-recalled echo sequence, while TSE is a spin-echo sequence).

Steady-state free precession (SSFP)[87] techniques involve repeated exci-

tations with opposing flip angles (i.e., α and −α), eventually establishing a

near-constant magnitude of signal-generating transverse magnetization. In

balanced SSFP (bSSFP, see Figure 2.24), the net gradient in each direction

is zero when integrated over a full TR, allowing for rephasing of the nuclei

between excitations. As a result, phase-encode lines in k-space can be rapidly

filled, typically at a rate of a few ms per TR with a relatively high signal-to-
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Figure 2.23: A simple illustration of a single-shot EPI pulse sequence, and the
resulting path through k-space.

noise ratio for a SSFP approach[88]. However, one of the major drawbacks

of this method is the appearance of “banding” artefacts related to inhomo-

geneities in the B0 field, which can obfuscate important anatomy[88].

Figure 2.24: A simple illustration of a bSSFP pulse sequence, and the result-
ing path through k-space. Note that all of the net gradients are zero when
evaluated over a single TR.

There are also several acceleration techniques that involve undersampling of

k-space (see Figure 2.25). In partial Fourier reconstruction, a number of phase-

encode rows away from the origin are left intentionally blank, and are either

padded with zeroes or estimated based on assumptions about the symmetry

of the image in k-space. In parallel imaging, multiple receive coils take images
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over a coherently undersampled k-space, and the known spatial sensitivities of

the coils are used to disambiguate the resulting aliasing. Compressed sensing

is a technique that involves the undersampling of k-space in an incoherent

manner, which overlays the image with diffuse noise resulting from incoherent

aliasing. This noise can then be mitigated through a number of denoising

strategies.

Figure 2.25: k-space undersampling strategies. (a): Partial Fourier recon-
struction, wherein a continuous portion of k-space is left unmeasured and the
missing points are either zero-padded or filled based on assumed symmetry.
(b) Coherent k-space undersampling for parallel imaging. (c) Incoherent un-
dersampling for compressed sensing.

2D real-time MRI combines a combination of fast pulse sequences and k-

space undersampling to acquire 2D images over physiologically relevant time

scales. For respiratory tracking specifically, a maximum tolerable system delay

of 500 ms has been suggested[30]. Considering the other contributors to the

system delay in linac-MR based tracking, this would require an MRI acquisi-

tion rate of 4 Hz or greater. Several linac-MR platforms have already exceeded

this rate, and even faster acquisitions may still be attainable. For example, a

combination of SSFP MRI and radial undersampling with parallel imaging has

been shown to yield temporal resolutions as low as 20 ms[89] for 2D real-time

MRI.

However, fast acquisition times are only one part of the equation. Many
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imaging techniques based on k-space undersampling make use of computa-

tionally expensive iterative reconstruction algorithms. As a result, the gains

made in acquisition time may be lost again (potentially several times over)

during on-line reconstruction. For example, the 20 ms acquisition mentioned

previously required 2.5 s of reconstruction per frame[89].

Pseudo 3D real-time MR tracking takes advantage of the fact that the

slice select gradient can readily be applied at arbitrary angles, allowing for

the alternation of imaging between orthogonal planes during 2D imaging to

facilitate 3D tracking at a reduced framerate. True 3D real-time MR tracking

is yet to be achieved. That said, an interesting approach called MR signature

matching has recently been suggested, in which slow to acquire volumetric

images are correlated to quickly obtainable motion signatures during an offline

training phase, so that only the MR signatures need to be collected during

treatment to estimate the image that would result[90].

For now, however, even for single-plane 2D imaging, the system delays

resulting from linac-MR acquisition and reconstruction times result in a system

delay that requires non-linear motion prediction. The next chapter describes

in detail my contributions to improving the accuracy of these predictions and

accelerating the speed at which they can be obtained.
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Chapter 3

Accurate, On-Demand Neural
Network Ensembles for Tumor
Motion Prediction

A version of this Chapter has been submitted to the journal Medical Physics,

and is presently undergoing the peer-review process. Its current working ti-

tle is “Accurate, On-Demand Neural Network Ensembles for Tumor Motion

Prediction” by Neil W. Johnson, Keith Wachowicz, Satyapal Rathee, B. Gino

Fallone and Jihyun Yun. It appears here in a modified form, both to match

the formatting of this thesis and to reflect revisions suggested by the examining

committee.

Abstract

Purpose: To develop accurate, fraction-specific neural network-based tumor

motion prediction for intra-fractional tumor tracking on hybrid linac-MR sys-

tems.

Methods: LSTM-RNNs are trained to predict the 3D position of abdominotho-

racic tumors based on their recent motion history. The effects of super-

convergence regularization and ensemble methods on predictive accuracy and

network training time are explored. Optimal hyperparameters for the LSTM-
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RNNs are determined through a grid search of hyperparameter space. Inspired

by extremely short training times, a novel strategy for network adaptation

known as intermittent retraining (IR) is introduced and compared to online

learning. Predictive accuracy is evaluated over 158 abdominothoracic tumor

treatment fractions, each modified to simulate the range of image acquisition

rates and system delays typical for hybrid linac-MR devices.

Results: Through implementing super-convergence regularization and select-

ing the computationally inexpensive optimized hyperparameters determined in

this study, LSTM-RNN training times are reduced to 5 s per network on aver-

age. Ensembles of LSTM-RNNs improve prediction accuracy over individual

networks at no cost to training time, provided adequate computing resources

are available to perform training in parallel. IR adaptation outperforms online

learning when super-convergence is implemented. A mean root mean square

error of 0.35 mm – 0.79 mm (SD 0.26 mm – 0.49 mm) is achieved for prediction

times ranging from 120 ms – 520 ms.

Conclusions: Predictive accuracy is improved relative to a comparable prior

study that does not incorporate super-convergence regularization or ensem-

ble methods and uses online learning, while training times are decreased by

several orders of magnitude. To our knowledge, this marks the first time

that accurate, on-demand, fraction-specific neural network-based tumor mo-

tion prediction has been made feasible.

3.1 Introduction

In DTTRT, there exists an inevitable latency between the imaging of a target

and the adaptation of the therapeutic beam to its newly observed position.
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This system delay consists of the sum of the time required to acquire and pro-

cess each image, extract the shape and position of the tumor, then determine

and perform the appropriate compensatory motion of the linear accelerator

[42], [43], DMLCs[37]–[41], or patient support system[44]. Its magnitude de-

pends on the imaging modality being employed as well as the relative maximum

velocities of the tumor and the beam-steering hardware.

NifteRT is a novel implementation of DTTRT specific to hybrid linac-MR

systems equipped with DMLCs[50], [51]. Under this approach, the excellent

soft-tissue contrast provided by MR imaging allows for automatic image seg-

mentation to rapidly extract the tumor position without the need for implanted

markers, and the concurrently applied therapeutic beam can then be adapted

on-the-fly to account for any detected motion. On the Alberta Linac-MR at

the Cross Cancer Institute[26], [29], the system delay for performing nifteRT

is anticipated to fall between 275 and 340 ms for a typical lung tumor[51],

though system delays ranging from 120 ms to 520 ms have also been previ-

ously explored [66].

Since abdominothoracic tumors exhibit continual, often large-amplitude

motion as a result of respiration[30], neglecting the system delay when treating

them with nifteRT would result in a commensurate spatial lag of the therapeu-

tic beam along their direction of motion. Precision treatment of these tumors

therefore requires a method for accurately predicting respiration-induced tu-

mor motion one system delay in the future, so that the compensatory hardware

motion can be initiated at the appropriate time.

A variety of methods have been investigated for tumor motion predic-

tion, including linear[54], [91], [92], sinusoidal [55] and polynomial regression

[92], wavelet decomposition [92], [93], Kalman filters [53], [54], [67], [70], [94],

[95], support/relevance vector machines [69]–[71], [96]–[98] and neural net-

works (NNs) [56], [63], [66], [72], [99]–[101]. Direct comparison of these ap-
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proaches is complicated, since the results obtained in any individual study

are inextricably tied to (1) the quality and motion characteristics the tumor

motion dataset that was used; (2) the magnitude of the system delay being

examined; and (3) the specific metric chosen for reporting accuracy. That said,

a few studies have simultaneously evaluated multiple prediction techniques on

a single motion dataset with consistent endpoints [91]–[93], [102]. Broadly

speaking, these comparisons have favoured non-linear, adaptive methods to

account for the non-linear and continuously evolving nature of free-breathing

respiration. Specifically, adaptive NNs have consistently rated amongst the

strongest performers, especially for system delays greater than 200 ms and pa-

tients with irregular respiratory patterns [102]. Of these NN-based approaches,

LSTM-RNNs[50], [99], [103] lend themselves particularly well to time series

prediction applications since they process their inputs serially, using memory

gates to comprehend their temporal relationships.

There are several challenges inherent to applying NNs to tumor motion

prediction: (1) the training process is typically time-consuming, which can be

impractical clinically and may lead to performance degradation as the patient’s

respiratory patterns naturally evolve prior to treatment; (2) the accuracy is

known to be heavily dependent on the chosen NN hyperparameters[64], which

can be computationally expensive to optimize; (3) there is a relative paucity

of training data available compared to traditional NN applications (especially

for fraction-specific NNs), which can lead to network overfitting; (4) NNs are

known to exhibit a strong dependence on their initial weights, especially when

the number of training examples is limited[104].

There exist many common regularization methods that can be employed

to mitigate both overfitting and instability, including dropout networks and

lasso and ridge (also called L1 and L2) regularization. However, these regular-

ization methods can substantially slow the training process. Recently, it has
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been shown that a training strategy called super-convergence (a combination

of aggressive learning rates and a simultaneous reduction in the number of

training epochs performed) not only reduces training time, but also can act as

a regularization method in and of itself, especially when limited training data

are available[84]. It has also been shown that taking the consensus predic-

tion of an ensemble of independently trained networks helps to mitigate both

instability and errors arising from overfitting[104], [105].

This study introduces a novel approach that combines super-convergence

regularization (using intelligent early stopping) with LSTM-RNN ensembles.

We then describe a process for optimizing the hyperparameters of the networks

that make up these ensembles, both on a fraction-specific and global basis.

We introduce IR adaptation and compare the resulting predictive accuracy to

that of a conventional adaptation strategy called online learning. Finally, an

optimized version of our approach is evaluated across a range of acquisition

rates and system delays expected to be relevant to nifteRT.

3.2 Materials and Methods

3.2.1 Abdominothoracic Tumor Motion Dataset

As in previous work from this research group [50], [66], the present study

uses the tumor motion dataset of Suh et al.[106] 3D tumor trajectories from

46 patients with 50 tumors (33 lung, 17 retroperitoneal) over the course of

158 total treatment fractions were measured with the CyberKnife Synchrony

Respiratory Tracking System (Accuray Incorporated, Sunnyvale, CA). This

system forms and intermittently updates a correlation model between external

surrogates and internal fiducials to estimate the tumor centroid position at the

time points of the external surrogate signal. Tumor coordinates were reported

at 40 ms intervals throughout all treatment fractions, which themselves ranged

74



Figure 3.1: (Left panel) A sample 3D lung tumor trajectory (patient 14, frac-
tion 51 in Table 3.2) with dataset divisions indicated. (Right panel) An ex-
ample of an input/target pair with a system delay of 1.5× the acquisition
time.

from 8 to 106 minutes in total length.

To simulate nifteRT treatment on a hybrid linac-MR system where the

acquisition time (tacq) is anticipated to fall between 120 ms and 280 ms [107],

[108], the Synchrony data are resampled from every third to every seventh data

point in order to generate multiple tumor trajectories representing tacq values

that span the range of interest in 40 ms steps (i.e., every third data point would

give a simulated tacq of 3 × 40 ms = 120 ms, while every seventh would give

a simulated tacq of 7 × 40 ms = 280 ms). To facilitate analysis, fractions are

cropped to contain only the first 8 minutes of motion data, corresponding to

the shortest measured fraction from the Suh et al. data. A sample 3D tumor

trajectory is shown in the left panel of Figure 3.1, while Table 3.2 contains the

tumor site and motion characteristics for all treatment fractions considered

in this study. Generally, the dataset has an average mean motion amplitude

of 4.96 mm (SD 3.1 mm, range 0.33 mm – 14.52 mm) and an average mean

respiratory period of 3.88 s (SD 0.87 s, range 1.86 s – 7.06 s).
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3.2.2 Mathematical Formulation

If the ith 3D coordinate vector of the tumor centroid is denoted as x⃗ (ti), a

function f is desired that takes in its previously observed Nseq coordinates

and predicts the tumor centroid position one system delay (tsys) in the future,

x⃗pred (ti + tsys). That is,

f (x⃗ (ti −Nseqtacq) , . . . , x⃗ (ti)) = x⃗pred (ti + tsys) (3.1)

Each tumor trajectory is therefore used to produce two sets of values: serial

input sequences of length Nseq positions [x⃗ (ti −Nseqtacq) , . . . , x⃗ (ti)], and cor-

responding target coordinates one system delay after each input sequence ends,

x⃗true (ti + tsys). If tsys is not an integer multiple of tacq, linear interpolation is

used to assign a value to x⃗true (ti + tsys). For the analyses in Sections 3.3.1.1

to 3.3.2.1, it is assumed that tacq = 280 ms and tsys = 320 ms, conservative

estimates of the capabilities of the Alberta linac-MR. A sample input/target

pair are shown in the right panel of Figure 3.1.

3.2.3 Cost Function Selection

A method is required to evaluate the agreement between x⃗pred (ti + tsys) and

x⃗true (ti + tsys), both as a cost function C to be minimized during NN training

and as a metric for evaluating predictive accuracy. Root mean squared error

(RMSE) is chosen for this study as it preferentially penalizes large misses,

which cause a disproportionate increase in the standard deviation of the error

(leading to increased safety margins in the formulations of ICRU 62[10], Van

Herk[109] and Stroom[110]). Such large misses are also more likely to cause

the therapeutic beam to temporarily intersect with a distant organ at risk,

have a greater probability of tripping an error-catching algorithm designed to

stop treatment if the predictive accuracy becomes unacceptable, and can be
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indicative of overfitting.

In our formulation, the RMSE is mathematically defined as:

C =
1

j1/2

√∑
j

(x⃗pred,j (ti + tsys) − x⃗true,j (ti + tsys))
2 (3.2)

where j iterates over all the input/target pairs in the motion trace being

examined.

In terms of reporting predictive accuracy, it is useful to define an amplitude-

normalized cost function C̃ to allow for a fairer comparison of performance

between datasets with different motion characteristics. We first calculate the

mean amplitude of respiratory motion for each 480 s treatment fraction (Ā),

and define the amplitude-normalized cost function C̃ for that fraction as:

C̃ =
1

Āj1/2

√∑
j

(x⃗pred,j (ti + tsys) − x⃗true,j (ti + tsys))
2 (3.3)

3.2.4 Motion Dataset Division

In this study, each treatment fraction is divided into four components: (1) a

training set of length ttrain over which the cost function Ctrain is minimized

through error backpropagation; (2) a validation set of length tval over which the

cost function Cval is continually evaluated during training in order to facilitate

early stopping; (3) a break period of length tbreak to simulate the time required

for NN training and (4) a simulated treatment session of length ttreat over

which the predictive accuracy Ctreat (or C̃treat) is calculated. Example dataset

divisions with tbreak = 30 s are depicted in the left panel of Figure 3.1. In all

experiments in this study, ttreat is taken as the final 300 s of motion in the 480

s trajectory, ttrain and tval are each 60 s in length, and tbreak is varied between 5

s to 30 s, representing a range of achievable training times using the presented

approach. For online learning, tbreak is taken to be 0 s for the adaptation
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process, since performing a single training epoch is nearly instantaneous.

To reduce computational expense, a sample of the total dataset consisting

of the first treatment fraction for each of the first 10 patients is used for the

optimization experiments in Section 3.3.1, while the complete patient dataset

(including the optimization portion) is used for the subsequent experiments

in Section 3.3.2. The optimization dataset has similar characteristics to the

complete dataset in terms of the ratio of lung to retroperitoneal tumor sites

(7:3 in optimization vs. 33:17 in complete), average motion amplitude (4.7

mm vs. 5.0 mm) and average respiration period (3.7 s vs. 3.9 s).

3.2.5 Neural Networks

The NNs used in this study have the following architecture, also illustrated in

Figure 3.2: the first layer contains Nseq input neurons, each representing one

previously measured 3D tumor position. These inputs feed sequentially into

a stack of NHL fully connected LSTM-RNN hidden computing layers, each

having an identical activation function ϕ and identical width wHL (with the

addition of a single bias node). Where one LSTM-RNN layer feeds into an-

other, the first layer passes a sequence of Nseq outputs to the next rather than

a singular output, and the two are fully connected. The final computing layer

is then densely connected to an output layer consisting of a single neuron rep-

resenting the predicted 3D tumor coordinates. Since the output is unbounded

and continuous, this neuron is equipped with a linear activation function.

LSTM-RNN training is accomplished through supervised learning, with

the gradient of Ctrain with respect to network weights being calculated through

backpropagation and optimized through gradient descent. We use the Adam

algorithm[111] to manage the learning rate (LR) during training to ensure

rapid convergence, with the aggressiveness of the learning process governed

by the initial value of the LR, αi. This optimizer has been shown to improve
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Figure 3.2: The architecture of the LSTM-RNNs used in this study, and the
definition of each of the three architectural hyperparameters.

upon the standard gradient descent process for noisy cost functions resulting

from sparse training data owing to its considerations of the first and second

moments of the gradient.

3.2.6 Hyperparameter Optimization

Extracting the best possible performance out of a NN requires simultaneously

optimizing a tuple of hyperparameters that determine the architectural and

functional characteristics of the network and govern its training. In this study,

a grid search optimization strategy is implemented, wherein each hyperparam-

eter is assigned a range of possible values, and C̃treat is exhaustively evaluated

for each fraction in the optimization set over the entirety of hyperparameter

space.
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Four potential values of Nseq are evaluated per fraction: one half the mea-

sured average respiratory period, one full average respiratory period, two av-

erage respiratory periods, and a constant time length of 3.6 s (approximately

the average respiratory period across the full motion dataset, following a previ-

ous publication[9]). NHL is limited to between 1 and 3, after having observed

during initial experiments that both the accuracy and training time of the

networks degrade with increased network depth. For a similar reason, wHL

is chosen as either 10, 20 or 50 neurons, having observed a decrease in per-

formance and simultaneous increase in training time at larger widths. The

activation function ϕ is chosen from the sigmoidal and tanh activation func-

tions commonly used for LSTM-RNNs, as well as the ReLU and leaky ReLU

(LReLU) activation functions, which are less computationally expensive and

therefore usually result in faster training. Since super-convergence regular-

ization is being implemented, the only hyperparameters related to training

are the initial learning rate αi and the number of training epochs performed.

Candidate values for αi are determined in Section 3.3.1.1 using the process

outlined in Section 3.2.7, after which it can be optimized together with the

rest of the hyperparameters. The number of training epochs performed is

determined on a per-network basis by the parameters that govern the early-

stopping process. These are described in Section 3.2.8, while Section 3.3.1.2

details their optimization.

3.2.7 Initial Learning Rate Determination

A process is required to identify values of αi that are sufficiently aggressive

to reap the benefits of super-convergence, but not so aggressive as to result

in divergence. Previously, a method was introduced to determine appropriate

upper and lower LR bounds for training NNs with cyclic LRs that has since

been incorporated into a TensorFlow callback called LRFinder[112]. In the

80



present study, we adapt this process to determine a range of candidate values

for αi. Briefly, training of the network is performed with a LR that exponen-

tially increases over several orders of magnitude. Generally, a plot of Ctrain vs.

LR (see Figure 3.3) will exhibit a plateau region (where the LR is low enough

that a single training epoch causes negligible improvement to Ctrain), followed

by a decline (as the network parameters begin converging toward their optimal

values), followed by a steep inflection (where the LR is too large, resulting in

divergence). By selecting αi on the decline and prior to the inflection point,

the effects of super-convergence can be maximized while avoiding divergence.

There is likely to be some variation in this optimal value of αi between dif-

ferent network hyperparameter configurations, different motion fractions and

different random initializations of network weights. Therefore, for each combi-

nation of NHL, wHL, ϕ and Nseq in the hyperparameter grid and each fraction

in the optimization set, LRFinder is used to generate 25 LR curves for net-

works initialized with different weights, for a total of 3.6×103 (3 values each for

NHL and wHL, 4 each for ϕ and Nseq, 25 random initial weight configurations

per fraction and 10 fractions). Any dependence of αi on other hyperparame-

ters can then be determined from these curves, and candidate values can be

identified for hyperparameter optimization.

3.2.8 Early Stopping

Two mechanisms are used to enforce early stopping. First, Cval is evaluated

after every training epoch and when it fails to improve for a set number of

epochs (the patience of the early-stopping process), training is halted and the

network is restored to the state that resulted in the minimum observed Cval.

Here, it is assumed that a network with a minimized Cval should also have a

minimized Ctreat, since both depend on the network’s ability to generalize to

motion data outside the training set. Using too small a patience may stop the
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Figure 3.3: Percentile LR curves for ‘fast’ and ‘slow’ activation functions, each
derived from 1.8×103 runs of the LRFinder algorithm (10 runs at each point in
hyperparameter space). Selected αi hyperparameter grid points are indicated
with vertical lines.
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training process before Cval is minimized, while using too large a patience may

result in extended training times with limited or no improvement in Ctreat, as

well as an increased likelihood of reaching overfit solutions. Second, training

is automatically halted after reaching a pre-determined maximum number of

epochs emax, even if Cval is still improving. This helps to prevent slowly

converging networks from greatly extending the required training time. An

optimal value for emax would adequately allow the best-performing networks

to reach their minimum Cval.

For every grid point in hyperparameter space and every fraction in the

optimization set, 10 randomly initialized networks are trained for 300 epochs,

which is about 10 times the number of epochs required for the fastest net-

works to converge in initial experiments. The minimum Cval achieved and

the average number of epochs at which training ends are then simulated for

different halting conditions (patience ranging from 5 to 100 epochs in 5 epoch

increments and emax ranging from 50 to 300 epochs in 50 epoch increments)

so that the trade-off between predictive accuracy and training speed can be

better understood.

3.2.9 Ensemble Construction

From Section 3.3.1.3 onward, network ensembles are generated by indepen-

dently training Nens networks, each starting from a different random initial

weight configuration. Simply taking the mean of these Nens individual net-

work predictions is not likely to be beneficial, since there is still a chance that

one or more networks may have either diverged or overfit during training, both

of which could result in extreme predictions that would dominate the mean.

Trimmed means, in which the most extreme predictions are rejected before

the mean of the ensemble is calculated, have been suggested to work around

this problem[105], but simply taking the median prediction (in each cardinal
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dimension) of the Nens networks should yield similar results. This approach

should also be more robust than a trimmed mean against multiple networks

making extreme errors in the same direction, especially for smaller ensembles.

An illustration of the construction and application of ensembles in this study

is provided in Figure 3.4.

3.2.10 Online Learning and Intermittent Retraining

Online learning, a common approach to network adaptation[113], involves per-

forming a single backpropagation-based network weight update based on the

error generated by each new acquired/predicted target pair as soon as it be-

comes available. The state of the optimizer is carried over from the initial

training and between subsequent adaptations. This poses two issues: (1) when

super-convergence regularization is employed, the LR may be left at an inap-

propriately large value at the end of initial training, leading to overcorrection

during adaptation; (2) this approach may emphasize learning the initial train-

ing set over the newest, most relevant motion data, since the initial training

set is reinforced over multiple training epochs.

In this study, the short training times that we achieve through super-

convergence regularization allow us to propose a novel adaptation strategy

called IR in which networks (or, in this case, ensembles) are fully retrained at

intervals of tbreak throughout the treatment, using the most recent motion data

for training and validation (see Figure 3.5). In practice, the minimum tbreak

is dictated by the slowest network to converge in each ensemble, assuming

training is done in parallel. Each time one training session ends, the newly-

prepared ensemble is substituted in as the predictor for treatment, and another

training session can begin in the background. The first ensemble is always

randomly initialized at the outset of training, while subsequent networks can

either be initialized randomly or continue training from the most recently

84



Figure 3.4: (a) Nens randomly initialized networks are trained independently
to create an ensemble of unique predictors. (b) The median output of the
ensemble (in each of the three cardinal directions) is taken as the ensemble
prediction for each input sequence in the treatment fraction.
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Figure 3.5: An illustration of the intermittent retraining process. During en-
semble training, new data are collected that are more relevant to future motion
than the training/validation data that inform the ensemble. Once treatment
begins, a new ensemble is trained in the background on a training/validation
set including these new data. The length of the training interval is the same
as tbreak. Here, only the S/I tumor motion is shown for illustrative purposes.

obtained solution. The latter approach may improve performance throughout

treatment as the NN solution will be based on an ever-expanding training set,

with an emphasis on the most recent and therefore relevant motion data.

3.2.11 Software and Hardware

The code for this project is written in Python 3.7[114], using the Keras API

to interact with the TensorFlow 2.1.0 machine learning backend[115]. Learn-

ing rate optimization is performed using the LRFinder callback[112], while

early stopping is implemented using the built-in EarlyStopping callback avail-

able with TensorFlow 2.1.0. So that the results in this study may be repli-

cated, the pseudo-random number generator seed used for initializing network

weights is always iterated sequentially from 0 (for example, in Section 3.3.1.3

where 50 networks are used to make network ensembles, the 50 seeds used are

[0, 1, . . . , 49]). Training is performed on an Intel Core i9-7900X CPU with a

base speed of 3.30 GHz. Inter- and intra-operation parallelism are both set to

1, so each training instance is restricted to a single virtual processor.
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3.3 Results

3.3.1 Optimization Subset Experiments

3.3.1.1 Learning Rate Determination

In initial experiments, a LR of 10−5 was found to be well into the plateau

region of the learning curve for all tested fractions and hyperparameter com-

binations, and a LR of 101 was observed to result in near universal divergence.

These values were therefore selected as the respective minimum and maximum

LR bounds. Since we are only interested in the transition point between the

decline and divergence spike and not the absolute value of the training accu-

racy, each curve in Figure 3.3 is normalized such that the mean of the first

18 points in LR space (from 10−5 to 10−4) is 1 and the minimum Ctrain over

LR space is 0. These curves are generally observed to be equivalent across

all fractions in the optimization set and across most hyperparameters, with

the exception of the activation function. On average, the tanh and sigmoid

activation functions result in LR curves with much longer sloped regions and

later divergence spikes than ReLU and LReLU (see Figure 3.3), most likely

as a result of their smaller gradients (for example, the maximum gradient of

the sigmoid function is 0.25 compared to 1.0 for ReLU). Interestingly, these

‘slower’ activation functions also exhibit generally less spread in loss, which

may indicate more uniform convergence and less dependence on initial weights.

This characteristic is usually desirable when training individual networks, but

a lower degree of network diversity may be disadvantageous for ensemble-based

approaches since their predictions are less likely to be uncorrelated, limiting

the statistical benefit of pooling multiple predictions.

In Figures 3.3(a) and 3.3(b), percentile plots of LR curves are shown for

the ‘fast’ and ‘slow’ activation functions, respectively. Each plot is based on

the results of 1.8 × 103 total LR curves (since both only contain results from
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two of four activation functions). For each ‘speed’ of activation function, two

key values of αi are identified: (1) the LR at which all networks appear to

begin converging (i.e., the 99th percentile line leaves the plateau), and (2)

the LR at which 10% of the networks have started diverging (i.e., the 90th

percentile line begins inflecting upward). The αi grid points are then spread

evenly over this range. For the ‘fast’ activation functions, this corresponds to

[1 × 10−3, 3 × 10−3, 1 × 10−2, 3 × 10−2], and for the ‘slow’ activation functions

they are [1 × 10−3, 1 × 10−2, 1 × 10−1, 1 × 100], as indicated in Figures 3.3(a)

and 3.3(b) with dashed lines.

3.3.1.2 Early Stopping Parameters

We do not desire to optimize the patience and emax early stopping parameters

to yield the minimum Cval across all hyperparameter space, since this could be

disproportionately influenced by networks that converge too slowly to benefit

from super-convergence. Instead, it is better to optimize the patience and emax

settings only for the hyperparameter configurations that yield the smallest

minimum Cval. For the ten best performing hyperparameter settings in terms

of Cval, it is found that a patience of 20 epochs and an emax of 100 results in very

fast convergence (training halts at the 70th epoch on average, corresponding

to about 5 s training time on our hardware) with an increase of only 8% to

the mean minimum Cval observed compared to training every network for the

full 300 epochs (which would take about four times longer, on average). We

therefore use these halting conditions for subsequent experiments.

3.3.1.3 Optimal Network Hyperparameters

For hyperparameter optimization, ensembles of Nens = 50 networks are trained

for each grid point in hyperparameter space and the amplitude-normalized

cost function C̃treat is calculated from their median output. The training step
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of this process is computationally expensive, requiring 2.88 × 104 networks

(50 networks and 576 hyperparameter grid points) per fraction to be trained.

Adaptation strategies are not implemented during hyperparameter optimiza-

tion, so the evaluation of C̃treat is restricted to the first 30 seconds of motion

during the treatment fraction in order to optimize immediate performance

rather than longer-term stability.

It can be anticipated from the analysis in Section 3.3.1.1 that there will

be an interdependence between αi and ϕ, so the effect of varying αi is treated

separately for the ‘fast’ and ‘slow’ activation functions (see Figure 3.6(a)).

Interestingly, αi = 1×10−2 yields the best accuracy for both types of activation

function (though αi = 3 × 10−3 is a close second for the ‘fast’ ones, but is less

preferable because it results in longer training times). To facilitate analysis,

only this best-performing αi is considered during the optimization of the rest

of the hyperparameters.

It is clear from Figure 3.6(b) that NHL = 1 is strongly preferred, and that

networks with the sigmoid activation function perform worse on average than

the alternatives considered in this study. Mean performances are similar across

all tested values of wHL and Nseq, though there is an indication that wHL =

10 may be less preferential in some circumstances given its more prominent

tail in the direction of larger error.

Analyzing the best performing hyperparameter configuration on a fraction-

specific basis over the optimization set (see Table 3.3), NHL = 1, wHL = 50 and

Nseq = 1 respiratory cycle appear slightly more often than the alternatives, but

almost every other value for each hyperparameter appears at least once in the

list (with the exception of Nseq = 3.6 s). Additionally, there does not appear

to be a discernible relationship between tumour site, motion amplitude nor

respiratory rate and any of the individual hyperparameters. However, when

averaged over all fractions in the optimization set (Table 3.4), 7 of the 10 best-
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Figure 3.6: (a) Mean C̃treat when varying αi for ‘fast’ and ‘slow’ activation

functions. (b) Mean C̃treat when varying the rest of the free hyperparameters,
with αi fixed at its optimal values for each family of activation functions.
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performing global hyperparameter configurations have ϕ = LReLU (the rest

are ReLU), 8 of 10 have NHL = 1, all have wHL = 20 or 50, and 6 of 10 have

Nseq = 3.6 s. Taking a global optimal hyperparameter configuration of ϕ =

LReLU, NHL = 1, wHL = 20, αi = 1 × 10−2 and Nseq = 3.6 s is determined

to result in only a 10% average decrease in accuracy relative to optimizing

hyperparameters on a fraction-specific basis, does not require measuring the

average respiratory rate prior to treatment (as using Nseq = one half, one or

two respiratory periods would), and comes with a 2.5× acceleration to train-

ing relative to the average over all hyperparameter configurations (4.5 s versus

12.0 s). This is an important result, as it indicates that global LSTM-RNN

hyperparameters perform comparably to patient-specific ones under our ap-

proach, obviating the need for the computationally expensive hyperparameter

optimization step in the future.

3.3.1.4 Effect of Ensemble Size

Assuming the individual networks composing the ensemble are independent,

increasing Nens will simultaneously improve the predictive accuracy and re-

duce its variance as a result of better statistics. Practically, increasing Nens

demands either a larger number of processors dedicated to training, or possi-

bly extending training times to allow for one processor to serially train several

networks.

In order to understand the effect of ensemble size on network performance,

100 networks are trained on the optimization patient set using the global

optimal hyperparameters. Ensembles varying in size from Nens = 1 to Nens =

75 are then randomly selected from the pool of networks 100 times, so that

the mean and variance of the resulting C̃treat values can be determined at each

ensemble size.

Another common approach to mitigating initial weight dependencies is to
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Figure 3.7: Effect of varying Nens on mean and range of C̃treat based on ran-
domly selecting trained networks from a pool of 100, using 100 different con-
figurations per ensemble size. Also shown are the mean and range of C̃treat if
only the network with the best Cval in each ensemble is used for prediction.

train multiple networks, then only use the network that yielded the minimum

Cval for motion prediction[66]. This approach results in a negligible reduction

in required computational resources compared to an ensemble consisting of the

same number of networks, since the training step is by far the most computa-

tionally expensive. For each ensemble generated in Figure 3.7, the accuracy of

the individual network that had the best performance over the validation set

is also recorded for comparison.

On average, ensembles yield about 5% better C̃treat than selecting the net-

work with the best Cval, given the same number of random initializations.

The range of C̃treat observed is also considerably smaller, implying more re-

liable accuracy. By about Nens = 25, the performance of the ensembles has

largely saturated and the range of C̃treat falls below 10% of its mean. Increasing

Nens to 50 and 75 reduces this range to 5% and 2.5% mean C̃treat, respectively.
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This result indicates that the largest possible Nens given the hardware available

should always be used to obtain more robust results, but to limit computa-

tional expense in this study Nens is set to 25 for the experiments in Section

3.3.2.

3.3.2 Full Motion Dataset Experiments

3.3.2.1 Adaptation Strategies

Using the optimal global hyperparameter configuration determined in Section

3.3.1.3, ten different adaptation strategies are evaluated over the entire motion

dataset: no adaptation (as a control), online learning, and IR at 5 s, 10 s, 20

s or 30 s retrain intervals with network weights initialized either from scratch

or from the previous solution prior to retraining. The results of this exper-

iment are shown in Figure 3.8(a). On average, online learning results in an

11% improvement to C̃treat over a non-adaptive approach. In all cases IR per-

forms better, yielding between 16% and 25% improvement over a non-adaptive

approach depending on the retraining interval. Initializing each network us-

ing the most recent available solution reduces the achievable C̃treat by about

5% compared to randomly initializing the networks from scratch each time,

with the additional benefit of a further improvement to average training times

during adaptation (1.6 s per network versus 5.2 s).

In Figure 3.8(b), C̃treat is displayed as a function of elapsed treatment time

for four of the tested adaptation strategies (only IR at 10 s retrain intervals

is displayed). As can be expected, not using any adaptation strategy results

in a considerable loss in predictive accuracy over the course of the treatment

(nearly 40% over 300 s). Online learning yields a worse mean C̃treat over the

first 90 s of treatment than no adaptation strategy, which as mentioned earlier

is likely due to too large a LR being carried over into adaptation from the

initial training run. By the end of the 300 s treatment, online learning and IR
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from scratch perform equally well. IR from the previous solution consistently

results in the best C̃treat at all time points, with its performance appearing to

improve over the course of the 300 s treatment. This may be a real effect from

the networks accruing more training data as the treatment progresses, but it

could also be an artefact of inconsistencies in the average motion regularity.

Regardless, these results indicate that, if feasible based on training times, IR

from the previous solution should always be implemented as an adaptation

strategy instead of online learning, at least when super-convergence is being

employed.

3.3.2.2 Effect of Acquisition Time and System Delay

Table 3.5 reports the mean C̃treat taken over the complete motion dataset when

varying tacq and tsys over their range of anticipated values, using 25-member en-

sembles with globally optimal hyperparameters and IR with a conservative 30

s retrain interval. tacq = 200 ms yields the lowest mean C̃treat when evaluated

across the full range of tsys, but overall there is little observable dependence on

tacq except for slight (< 5%) increases at 120 ms and 280 ms. A slightly larger

mean C̃treat at a lower tacq seems at first glance counterintuitive, but it is most

likely because Nseq increases with sampling rate, making it easier for the net-

work to find spurious connections between inputs and outputs during training.

Conversely, at higher tacq values, the number of examples in the training set

decreases, which can lead to an increased propensity for overfitting. In Table

3.1, the mean C̃treat across the complete motion dataset and the full range of

tacq is reported as a function of tsys. As expected, the predictive accuracy falls

off with increased system delay, roughly doubling when tsys is tripled over the

range of interest. Efforts should therefore be focused on increasing MR frame

rates not because the more frequent imaging itself leads to better predictions,

but because it will reduce the portion of tsys stemming from acquisition time.
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Figure 3.8: (a) Mean C̃treat for several adaptation strategies: no adaptation (as
a control), traditional online learning, and the adaptation strategy proposed
in this study at various retraining intervals, with the adapted networks either
starting from a random initialization (from scratch) or from their previous
solution. (b) A plot of predictive accuracy as a function of treatment time,
showing the decay in accuracy with no adaptation strategy present, the effects
of the problematic inherited learning rate for online learning adaptation, and
the superior performance of IR when the previous solution is used for network
initialization. The IR retraining interval in this case is 10 s.
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tsys (ms) 120 160 200 240 280 320 360 400 440 480 520

Ctreat (mm) 0.35 0.38 0.45 0.49 0.55 0.58 0.63 0.67 0.71 0.76 0.79

Std. Dev. Ctreat (mm) 0.26 0.25 0.29 0.31 0.35 0.36 0.38 0.41 0.43 0.46 0.49

C̃treat 0.09 0.09 0.11 0.12 0.13 0.14 0.15 0.15 0.16 0.17 0.18

Std. Dev. C̃treat 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08

Table 3.1: Mean and standard deviation of Ctreat and C̃treat across all treatment
fractions and all values of tacq as a function of tsys.

3.4 Discussion

Compared to previous work using the same motion dataset and LSTM-RNN

networks[50], we report 30% reductions in both mean Ctreat and the standard

deviation of Ctreat through our implementation of super-convergence regular-

ization, ensemble methods, hyperparameter optimization and IR adaptation.

Importantly in terms of the practicality of NN-based prediction, we also re-

port an associated acceleration of the training process of several orders of

magnitude, from a few hours per network[50] to about 5 s (and < 2 s for

adaptation). We find comparable performance between global hyperparam-

eters and fraction-specific ones, obviating the need for the computationally

expensive hyperparameter optimization step.

To our knowledge, this makes accurate on-demand, fraction-specific NN-

based respiratory motion prediction feasible for the first time, which will be

highly beneficial to DTTRT devices like linac-MRs that have inherently long

system delays.

3.5 Conclusion

The accuracy that we report assumes continual recording of 3D tumor coor-

dinates throughout treatment. However, most linac-MRs are not currently

able to acquire 3D cine-MR at the rates presented in this work. Our approach

could be easily adapted to 2D motion for beam’s eye view imaging since motion
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in each dimension is treated independently. However, doing so may require

acquiring a new training and validation set every time the treatment angle

is changed, since the 2D motion from one plane could not be used to fully

inform the 2D motion in another. That said, several authors are working on

accelerated imaging techniques for linac-MRs[116], so 4 fps 3D cine-MR could

be on the near horizon.

One open question regarding tumor motion prediction is how to assign

appropriate treatment margins prior to treatment, given that the predictive

accuracy itself can be difficult to predict[117]. We observe a large standard

deviation of C̃treat relative to its mean, which implies that setting margins

based on tumor motion amplitude alone is not satisfactory, probably because

it fails to account for the patient’s respiratory regularity. It might, however,

be more feasible to associate validation error during a training session to the

performance in the subsequent treatment segment. This would allow for the

automatic setting of margins as the amplitude and regularity of a patient’s

respiration changes, and also for the halting of treatment if the safety margins

grow too large.
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Supplemental Data

The following Tables were included as supplemental data for the submitted

manuscript.

tacq = 280 ms
tsys = 320 ms

Patient Fraction
Tumor
Location

Mean
Amplitude (mm)

Mean
Period (s)

Ctrain (mm) C̃train

1 1 Lung Hilum Right 6.95 2.63 1.10 0.159
1 2 Lung Hilum Right 7.01 2.72 0.71 0.102
1 3 Lung Hilum Right 6.75 2.93 0.80 0.119
2 4 Pancreas 7.74 3.99 0.59 0.076
2 5 Pancreas 5.04 3.48 0.40 0.080
2 6 Pancreas 6.76 3.37 0.37 0.054
3 7 Lung RML 3.11 2.99 0.46 0.148
3 8 Lung RML 3.38 3.07 0.86 0.266
3 9 Lung RML 2.67 2.94 0.38 0.146
3 10 Lung RML 4.11 2.62 0.51 0.124
4 11 Pancreas 2.83 3.92 0.32 0.113
4 12 Pancreas 6.49 7.06 0.43 0.067
4 13 Pancreas 2.43 4.02 0.25 0.107
4 14 Pancreas 4.53 5.29 0.33 0.073
4 15 Pancreas 5.30 4.22 0.35 0.066
4 16 Pancreas 3.18 4.08 0.26 0.081
5 17 Lung LUL 4.82 4.14 0.36 0.075
5 18 Lung LUL 3.01 3.95 0.37 0.128
5 19 Lung LUL 2.52 3.84 0.42 0.171
5 20 Lung RLL 8.61 3.83 0.67 0.078
5 21 Lung RLL 9.39 3.55 0.78 0.084
5 22 Lung RLL 8.22 3.24 1.27 0.155
5 23 Lung Bronchus Right 4.12 4.26 0.34 0.082
6 24 Lung LUL 6.72 3.49 0.70 0.105
6 25 Lung LUL 6.67 3.57 0.73 0.109
7 26 Retroperitoneum 2.29 4.34 0.33 0.147
7 27 Retroperitoneum 1.22 4.68 0.12 0.096
7 28 Retroperitoneum 1.19 4.41 0.18 0.151
7 29 Retroperitoneum 1.63 3.97 0.14 0.086
7 30 Retroperitoneum 3.50 4.46 0.41 0.119
8 31 Lung LUL 2.69 4.10 0.36 0.137
8 32 Lung LUL 1.63 4.58 0.33 0.212
8 33 Lung LUL 1.60 3.91 0.27 0.172
9 34 Lung RUL 4.28 4.08 0.46 0.108
9 35 Lung RUL 4.57 4.38 0.55 0.121
9 36 Lung RUL 3.67 4.46 0.80 0.220
10 37 Lung LUL 3.95 3.01 0.49 0.126
10 38 Lung LUL 3.91 2.91 0.83 0.225
10 39 Lung LUL 7.71 3.13 1.07 0.140
11 40 Lung RML 4.86 5.13 0.59 0.121
11 41 Lung RML 9.42 4.84 0.57 0.061
11 42 Lung RML 7.88 4.56 0.54 0.069
12 43 Lung RML 2.18 4.48 0.38 0.177
12 44 Lung RML 2.95 5.03 0.32 0.111
12 45 Lung RML 1.96 4.91 0.30 0.156
13 46 Lung RML 3.51 3.24 0.61 0.180
13 47 Lung RML 3.79 3.29 0.30 0.078
13 48 Lung RML 4.90 3.48 0.39 0.079
14 49 Lung RUL 3.25 3.18 0.33 0.101
14 50 Lung RUL 3.26 3.82 0.30 0.094
14 51 Lung RUL 3.39 3.47 0.27 0.079
14 52 Lung RUL 4.04 3.61 0.50 0.126
14 53 Lung RUL 2.75 3.48 0.25 0.093
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15 54 Lung RLL 13.51 4.11 1.28 0.095
15 55 Lung RLL 9.83 3.26 0.97 0.099
15 56 Lung RLL 14.52 3.59 1.24 0.085
16 57 Internal mammary nodes 2.16 3.76 0.33 0.154
16 58 Internal mammary nodes 1.65 3.72 0.30 0.186
16 59 Internal mammary nodes 1.42 3.60 0.27 0.192
16 60 Internal mammary nodes 1.03 3.93 0.12 0.120
16 61 Internal mammary nodes 1.76 3.79 0.26 0.149
17 62 Pancreas 8.22 4.70 0.77 0.094
17 63 Pancreas 10.28 4.69 0.87 0.085
17 64 Pancreas 7.98 4.18 0.92 0.116
18 65 Pancreas 5.98 4.51 0.72 0.121
19 66 Retroperitoneum 1.52 5.29 0.21 0.139
19 67 Retroperitoneum 0.60 5.18 0.05 0.086
19 68 Retroperitoneum 0.40 4.54 0.04 0.108
20 69 Lung RLL 11.92 2.68 1.46 0.122
20 70 Lung RLL 11.29 2.74 1.51 0.134
20 71 Lung RLL 9.73 2.65 1.28 0.132
21 72 Lung LUL 0.76 3.49 0.22 0.309
21 73 Lung LUL 0.89 3.88 0.21 0.245
21 74 Lung LUL 0.88 3.90 0.15 0.176
22 75 Lung LUL 8.35 4.17 1.38 0.166
22 76 Lung LUL 7.27 3.29 1.45 0.200
22 77 Lung LUL 10.60 3.50 1.91 0.182
23 78 Lung Hilum Left 5.20 4.13 0.45 0.087
23 79 Lung Hilum Left 4.25 5.29 0.42 0.100
23 80 Lung Hilum Left 5.08 5.23 0.53 0.108
24 81 Chest wall 1.57 3.30 0.27 0.174
24 82 Chest wall 1.19 3.39 0.12 0.101
24 83 Chest wall 1.83 2.97 0.36 0.198
24 84 Chest wall 1.65 3.09 0.17 0.101
24 85 Chest wall 1.62 3.24 0.21 0.128
25 86 Lung LUL 3.03 3.77 0.85 0.293
25 87 Lung LUL 3.24 3.50 0.72 0.234
25 88 Lung LUL 5.74 4.60 1.31 0.234
26 89 Pancreas 3.46 4.47 0.50 0.146
26 90 Pancreas 5.47 3.90 0.46 0.085
26 91 Pancreas 6.54 4.40 0.46 0.070
27 92 Lung RLL 7.51 4.05 0.59 0.079
27 93 Lung RLL 9.27 3.94 0.81 0.088
27 94 Lung RLL 10.51 3.98 0.74 0.070
28 95 Lung LUL 5.54 4.55 0.51 0.092
28 96 Lung LUL 4.57 4.45 0.82 0.185
28 97 Lung LUL 6.20 3.72 0.55 0.089
29 98 Lung Hilum 8.03 4.98 0.82 0.104
29 99 Lung LAP 7.99 4.92 0.47 0.059
29 100 Lung Hilum 13.24 5.19 0.58 0.044
29 101 Lung Hilum 7.38 5.56 0.74 0.101
29 102 Lung Hilum 7.84 5.68 0.50 0.064
30 103 Lung Hilum Right 2.39 3.61 0.23 0.096
30 104 Lung Hilum Right 2.59 3.77 0.31 0.122
30 105 Lung Hilum Right 3.06 3.91 0.25 0.083
30 106 Lung Hilum Right 2.41 5.00 0.41 0.170
30 107 Lung Hilum Right 2.98 3.83 0.33 0.113
31 108 Lung Apex Left 0.75 4.11 0.16 0.228
31 109 Lung Apex Left 0.33 3.79 0.12 0.357
31 110 Lung Apex Left 0.49 3.61 0.10 0.201
32 111 Lung RLL 3.79 2.09 1.13 0.301
32 112 Lung RLL 2.23 2.01 0.60 0.277
32 113 Lung RLL 3.07 1.86 0.89 0.295
33 114 Lung LLL 9.49 3.79 1.18 0.125
33 115 Lung LLL 5.38 3.85 1.09 0.207
33 116 Lung LLL 7.16 3.88 1.30 0.182
33 117 Lung LLL 8.69 4.34 1.28 0.151
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33 118 Lung LLL 7.53 4.38 1.21 0.195
34 119 Lung LUL 2.55 3.89 0.20 0.077
34 120 Lung LUL 4.40 3.61 0.54 0.123
34 121 Lung LUL 2.77 3.63 0.31 0.114
35 122 Lung RUL 2.92 3.75 0.24 0.084
35 123 Lung RUL 2.39 4.14 0.36 0.154
35 124 Lung RUL 3.70 3.28 0.36 0.098
36 125 Liver 5.95 2.63 0.60 0.101
36 126 Retroperitoneum 2.25 3.98 0.34 0.152
36 127 Liver 6.27 3.57 0.77 0.123
36 128 Retroperitoneum 1.57 2.50 0.57 0.369
36 129 Liver 6.22 3.06 0.69 0.111
37 130 Lung LUL 2.05 2.93 0.64 0.339
37 131 Lung LUL 4.21 2.86 0.38 0.090
37 132 Lung LUL 6.41 3.28 0.56 0.088
38 133 Chest wall 1.11 2.82 0.37 0.346
39 134 Pancreas 5.43 3.23 0.69 0.128
39 135 Pancreas 4.34 2.59 0.92 0.213
40 136 Lung LUL 5.40 3.27 1.13 0.212
40 137 Lung LUL 1.13 4.65 0.40 0.362
40 138 Lung LUL 2.50 4.77 0.65 0.270
41 139 Pancreas 2.84 3.65 0.41 0.147
41 140 Pancreas 2.62 3.56 0.39 0.151
41 141 Pancreas 4.08 3.69 0.48 0.119
42 142 Lung RUL 3.94 2.01 1.36 0.365
42 143 Lung RUL 5.44 2.72 1.58 0.295
42 144 Lung RUL 2.93 2.57 0.92 0.323
43 145 Lung LLL 6.32 3.30 0.46 0.074
43 146 Lung LLL 10.37 4.23 0.99 0.097
43 147 Lung LLL 4.66 3.43 0.86 0.187
43 148 Lung LLL 5.70 3.17 0.55 0.096
43 149 Lung LLL 9.24 3.72 1.11 0.121
44 150 Liver 11.60 4.74 0.98 0.085
44 151 Liver 9.63 4.96 0.82 0.085
44 152 Liver 9.35 5.14 0.53 0.056
45 153 Pancreas 9.70 3.63 0.88 0.091
45 154 Pancreas 10.32 3.88 0.74 0.072
45 155 Pancreas 7.23 3.25 0.66 0.091
46 156 Pancreas 5.83 6.15 0.60 0.103
46 157 Pancreas 4.86 6.34 0.73 0.152
46 158 Pancreas 6.99 6.60 0.53 0.076

Average: 4.96 3.88 0.60 0.141

Table 3.2: Tumor and tumor motion characteristics for the fractions used in
this study, and the results of prediction with 25-member LSTM-RNN ensem-
bles at tacq = 280 ms, tsys = 320 ms, and a 30 s intermittent retraining interval.
Bolded fractions are included in the optimization subset.
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Fraction Tumor Site Ā (mm)
Mean

Period (s)
ϕ NHL wHL αi Nseq

C̃treat,
Fraction
-Specific

C̃treat,
Global

1 Lung Hilum Right 6.95 2.63 LReLU 1 10 0.01 2 resp 0.20 0.20
4 Pancreas 7.74 3.99 sigmoid 1 50 0.1 1/2 resp 0.09 0.13
7 Lung RML 3.11 2.99 sigmoid 3 20 0.1 2 resp 0.12 0.14
11 Pancreas 2.83 3.92 LReLU 2 50 0.01 1/2 resp 0.18 0.21
17 Lung LUL 4.82 4.14 LReLU 2 20 0.01 1 resp 0.08 0.08
24 Lung LUL 6.72 3.49 ReLU 1 50 0.01 1 resp 0.12 0.14
26 Retroperitoneum 2.29 4.34 sigmoid 3 50 0.1 2 resp 0.15 0.16
31 Lung LUL 2.69 4.10 LReLU 2 20 0.01 1/2 resp 0.16 0.17
34 Lung RUL 4.28 4.08 tanh 1 50 0.01 1 resp 0.10 0.11
37 Lung LUL 3.95 3.01 sigmoid 3 20 0.01 2 resp 0.13 0.14

Average: 0.13 0.14

Table 3.3: The optimal hyperparameter configurations for each fraction in the
optimization set, and their amplitude-normalized predictive accuracy com-
pared to that of the global optimal hyperparameter configuration.

ϕ NHL wHL αi Nseq Mean C̃treat

LReLU 1 50 0.01 3.6 s 0.14
LReLU 1 20 0.01 1 resp 0.14
LReLU 1 50 0.01 1 resp 0.14
LReLU 1 20 0.01 3.6 s 0.15
ReLU 1 50 0.01 3.6 s 0.15
ReLU 1 20 0.01 3.6 s 0.15
ReLU 1 50 0.01 1/2 resp 0.15

LReLU 2 20 0.01 3.6 s 0.15
LReLU 1 50 0.01 1/2 resp 0.15
LReLU 2 50 0.01 3.6 s 0.15

Table 3.4: The 10 best-performing global hyperparameter settings, and their
mean amplitude-normalized accuracy over the optimization set.

tsys (ms)

120 160 200 240 280 320 360 400 440 480 520 Average C̃treat

120 0.100 0.100 0.110 0.120 0.128 0.138 0.148 0.157 0.165 0.174 0.182 0.138

160 0.089 0.095 0.105 0.115 0.125 0.136 0.144 0.153 0.162 0.171 0.178 0.134

tacq (ms) 200 0.085 0.093 0.106 0.116 0.125 0.135 0.145 0.154 0.162 0.169 0.177 0.133

240 0.082 0.089 0.105 0.118 0.127 0.135 0.144 0.153 0.163 0.172 0.179 0.133

280 0.078 0.085 0.117 0.120 0.147 0.141 0.147 0.154 0.162 0.171 0.180 0.137

Table 3.5: C̃treat as a function of varying tacq and tsys for 25-member LSTM-

RNN ensembles and IR at 30 s intervals. The average C̃treat taken across all
tsys (final column) shows little variation with tacq.
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Chapter 4

Conclusion

Dynamic tumour-tracked radiotherapy offers a means for greatly improving

the conformality of EBRT treatments of highly-mobile tumours, potentially

improving outcomes for a range of solid tumour types. Linac-MR based treat-

ments are especially promising, owing to the unparalleled soft tissue contrast

of MR (allowing for direct, markerless visualization of the tumour) and the

lack of imaging dose concerns. However, inherently long system delays in

MR-based tumour tracking have been challenging to address.

In Chapter 1 of this document, the basic ideas behind EBRT were outlined,

with an emphasis on the concept of treatment conformality. Specific attention

was paid to methods for compensating for intrafractional motion, both conven-

tional and cutting-edge. Of particular interest was dynamic tumour-tracked

EBRT performed on hybrid linac-MR systems, also known as nifteRT. The

role of tumour motion prediction in nifteRT was described, and the strengths

and limitations of previous work on this topic was discussed.

Chapter 2 described theoretical concepts that are important to understand-

ing the work presented in this thesis. First, a thorough description of the con-

struction, training and optimization of artificial neural networks was presented.

Challenges associated with small training datasets (like those encountered in

fraction-specific motion prediction) were identified, and methods for mitigat-
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ing their effects were introduced. Next, the specific kind of neural networks

used in this thesis, long short-term memory recurrent neural networks, were

presented. There was then a brief discussion on network adaptation strategies,

before moving on to the theory of MRI. The focus of this section was to intro-

duce the main determinants of MR acquisition time, a major contributor to

system delay in linac-MR based tumour tracking. Some strategies for reducing

acquisition time were then discussed.

Chapter 3 contained the main scientific contribution of this thesis, a novel

method for training neural networks for respiration-induced tumour motion

prediction. Three major novelties were introduced: (1) super-convergence

regularization paired with intelligent early stopping to get training times down

to < 5 seconds per network on non-specialized hardware; (2) homogeneous

network ensembles to improve the accuracy and stability of the predictions at

no cost to training time; and (3) a novel adaptation approach that improved

the rapidity and depth of the networks’ response to intrafractional changes in

respiratory patterns.

The initial questions that this research was intended to answer were out-

lined at the end of Section 1.12. With respect to the question of an an optimal

HPO strategy, it was found that patient- and fraction-specific HPO would yield

minimal improvements to predictive accuracy compared to using a universal

set of network hyperparameters, especially when the computational expense

of HPO is considered. The universally optimized hyperparameters identified

in Chapter 3 not only provide good predictive accuracy, but also extremely

short training times that yield significant benefits in terms of adaptation to

changing patient respiratory patterns.

It was found in Chapter 3 that predictive accuracy is largely independent

of acquisition rate in the range of 120 – 280 ms. Unsurprisingly, the magnitude

of the system delay was found to strongly affect predictive accuracy, increasing
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from 9% to 18% of the mean tumour amplitude when system delay ranges from

120 ms to 520 ms. There is therefore significant motivation to decrease MR

acquisition times not because it would allow for a finer temporal sampling of

the tumour motion, but because it would result in shorter acquisition-related

system delays.

Interestingly, the compact universally optimal network architecture deter-

mined in Chapter 3 removed some of the motivation for experimenting with

GPU acceleration. GPUs are useful tools for training deeper, more complex

networks since they more efficiently handle large volumes of computations that

can be performed in parallel. However, it takes time to transfer data to and

from the GPU, and in the case of these compact networks the time lost to

data transfer was significantly larger than the time saved by performing the

relatively few required computations in a more efficient manner.

Chapter 3 envisioned a potential clinical application of the approach de-

veloped in this thesis. First, a patient’s respiration would be observed for two

minutes to establish training and validation sets. There would then be a few

seconds of delay while the ensemble of networks were trained on these data,

after which treatment would commence. During treatment, a new ensemble

of networks would be training in the background using the data that were

acquired during the initial training session. This process of training, substi-

tution of a new predictor and initialization of a new training session in the

background would continue for as long as the treatment lasts, resulting in a

100% duty cycle and predictors that are always based off of the most recent

(and therefore most relevant) motion data.

There are several directions in which I think this research project could

proceed. First, it should be tested in real-time on real hardware, such as the

Alberta Linac-MR. Initial experiments could focus only on tracking accuracy

for a phantom programmed to mimic real respiratory motion traces, but later
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experiments should also analyze the dosimetric accuracy of a treatment deliv-

ered with real-time tracking. The problem of how to detect tracking failures

and trigger appropriate halting mechanisms also needs to be explored. Finally,

a method for predicting tracking accuracy during treatment for dynamic ad-

justment of the treatment margins could be investigated. It is reasonable to

suppose that the validation cost function measured during a training session

might correlate to the predictive accuracy of that network thereafter, in which

case margins could be enlarged or reduced in anticipation of future perfor-

mance. This may prove to be impractical compared to setting static margins,

but it may be worth exploring.
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[113] B. Pérez-Sánchez, O. Fontenla-Romero, and B. Guijarro-Berdiñas, “A
review of adaptive online learning for artificial neural networks,” Artif.
Intell. Rev., vol. 49, pp. 281–299, 2018. doi: 10.1007/s10462-016-9526-
2. 84

[114] G. Van Rossum and F. Drake Jr., Python reference manual. Amster-
dam: Centrum voor Wiskunde en Informatica, 1995. 86

[115] M. Abadi, A. Agarwal, P. Barham, et al., “TensorFlow: Large-scale
machine learning on heterogeneous distributed systems,” 2016. doi:
10.48550/arXiv.1603.04467. 86

[116] M. Wright, B. Dietz, E. Yip, et al., “Time domain principal component
analysis for rapid, real-time 2D MRI reconstruction from undersampled
data,” Med. Phys., vol. 48, pp. 6724–6739, 2021. doi: 10 .1002/mp.
15238. 97

[117] F. Ernst, A. Schlaefer, and A. Schweikard, “Predicting the outcome
of respiratory motion prediction,” Med. Phys., vol. 38, pp. 5569–5581,
2011. doi: 10.1118/1.3633907. 97

116

https://doi.org/10.1016/s0167-8140(02)00140-8
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1007/s10462-016-9526-2
https://doi.org/10.1007/s10462-016-9526-2
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.1002/mp.15238
https://doi.org/10.1002/mp.15238
https://doi.org/10.1118/1.3633907


Appendix A

Copyright Transfer Information

Figure 1.1

This figure originally appeared as Figure 2.6 in ICRU 62[10].

Author: T. Landberg, J. Chavaudra, J. Dobbs, et al.

Publication: Journal of the ICRU

Publisher: SAGE Publications

Date: 11/01/1999

© 1999, SAGE Publications

This use of the figure falls under SAGE Publications “Gratis Reuse” policy:

Gratis Reuse:

“Permission is granted at no cost for use of content in a Master’s Thesis and/or

Doctoral Dissertation, subject to the following limitations: You may use a

single excerpt or up to 3 figures or tables.”

117


	Introduction
	Thesis Organization
	Cancer Incidence and Treatment Strategies
	External Beam Radiation Therapy
	Conformality, Volumes, and Margins in EBRT
	Interfractional Motion
	External Interfractional Motion
	Internal Interfractional Motion

	Image-Guided EBRT for Interfractional Motion
	Intrafractional Motion
	External Intrafractional Motion
	Internal Intrafractional Motion

	Accounting for Intrafractional Motion in EBRT
	Traditional Methods
	Dynamic Tumour-Tracked EBRT

	Dynamic Tumour Tracking using Hybrid Linac-MRs
	Non-invasive Intrafractional Tumour-Tracked Radiotherapy
	Tumour Motion Prediction
	Research Motivation

	Theory
	Artificial Neural Networks
	The Neuron
	Networks of Neurons
	Supervised Learning, Backpropagation and Gradient Descent
	Neural Network Hyperparameters and Hyperparameter Optimization
	Overfitting and Other Challenges Inherent to ``Small Data''
	Recurrent Neural Networks
	Network Adaptation

	Magnetic Resonance Imaging
	Fundamental Physics
	Spatial Encoding and Image Formation
	Image Acceleration Techniques


	Accurate, On-Demand Neural Network Ensembles for Tumor Motion Prediction
	Introduction
	Materials and Methods
	Abdominothoracic Tumor Motion Dataset
	Mathematical Formulation
	Cost Function Selection
	Motion Dataset Division
	Neural Networks
	Hyperparameter Optimization
	Initial Learning Rate Determination
	Early Stopping
	Ensemble Construction
	Online Learning and Intermittent Retraining
	Software and Hardware

	Results
	Optimization Subset Experiments
	Full Motion Dataset Experiments

	Discussion
	Conclusion

	Conclusion
	References
	Appendix Copyright Transfer Information

