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ABSTRACT 

 

This study focuses on two issues of open channel flow modeling. First the 

convergence behavior of preconditioned Krylov subspace methods: Generalized 

Minimal Residual (GMRES) and Bi-Conjugate Gradient Stabilized (BiCGSTAB) 

is investigated for the open channel flow model River2D with Jacobi, Symmetric 

Gauss-Seidel (SGS) and Incomplete Lower Upper (ILU) factorizations with 

different levels of fill as preconditioners. A novel technique is developed where a 

matrix obtained from a lower time step than the simulation time step is used to 

compute the ILU factors. This technique increases the robustness and efficiency 

of the ILU preconditioners significantly. Applying this technique to ILU, the 

performance of preconditioned GMRES and BiCGSTAB are compared. In most 

cases ILU with no fill is found to be the most efficient preconditioner. A test to 

investigate the effect of mesh refinement on the convergence of the new ILU 

preconditioned solvers also shows promising results. 

The second issue concerns with a coupled depth averaged (DA) and 

Reynolds averaged Navier-Stokes (RANS) model developed for open channel 

flow with or without the assumption of hydrostatic pressure. Initially the water 

surface and DA velocity are estimated by a DA model neglecting non-uniform 

velocity and non-hydrostatic pressure. Then in the RANS model, the horizontal 

momentum and the continuity equations are solved for the horizontal and vertical 

velocity respectively with the water surface as a fixed zero pressure boundary. For 



 

 

the non-hydrostatic RANS model the pressure Poisson equation is solved for the 

non-hydrostatic pressure. A correction term is introduced in the RANS horizontal 

momentum equations for mass balance. Once the RANS model results are 

available, DA model results can be updated iteratively by incorporating the effects 

of non-uniform velocity and non-hydrostatic pressure. First the model is 

developed for two dimensional plane flow and verified against the experimental 

results of flow development, flow over a symmetric hump and a dune with good 

results and excellent computational efficiency. Then the model is extended and 

tested for three dimensional flow with promising results. 
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Chapter 1  
 

INTRODUCTION 

__________________________________________________________________ 

 

Throughout history, human civilization has evolved around rivers. People 

use river water in different ways such as navigation, water withdrawal for 

domestic, commercial and industrial purposes, dumping of pollutant and 

hydropower generation. Man-made development activities often change the river 

flow, morphology and water quality seriously affecting the biological habitat and 

in some cases destroying some species completely. An optimum balance among 

these development activities, cost and environmental concerns requires a thorough 

understanding of the hydrodynamics related to contaminant transport, design of 

hydraulic structures, sediment transport and channel geomorphology.  

In the early ages, development activities were based on the knowledge on 

hydraulics acquired through visual observation and mostly trial and error basis. In 

the last few centuries people started to understand the hydraulics in a more 

scientific way by developing mathematical expressions and performing flow 

measurements. Until the last century mathematical equation were difficult to solve 

except for very simplified cases. Flow measurements provided the basic 

knowledge to develop some empirical relationships useful for engineers.  
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In the last century, the advancement in flow measurement was very rapid 

with the invention of new measuring instruments and computers. Because rivers 

are very large measurements are generally limited to ‘physical models’ which are 

much reduced in scale. The difficulty in representing a river in a physical model is 

the scale difference in the horizontal and vertical directions in a river. Moreover 

measurements are costly and time consuming. However measurements are always 

needed for verifying the results obtained from the solutions of the mathematical 

equations.  

The invention of computer and subsequent increase in power enabled the 

solution of the partial differential equations describing the flow by numerical 

methods where the partial differential equations are transformed into discrete 

equations for different points. Due to the scale issues in a natural river one, two 

and three dimensional equations were developed and numerical models were 

classified accordingly. One and two dimensional models are also known as ‘depth 

averaged’ models as they provide only an average velocity over a depth. Three 

dimensional models provide variation of the flow variables in the vertical 

direction in addition to the horizontal directions and are used where vertical 

variation is important such as flow over a dune, flow in a curved channel and flow 

around a boulder.  

Numerical modeling is preferred due to its flexibility in simulating 

different scenarios and time and cost effectiveness over experiments. One and two 

dimensional models that are developed for modeling free surface open channel 
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flows have been studied extensively. Three dimensional modeling techniques are 

primarily developed for flows with almost same scale in all directions. 

Application of 3D models in open channel flow requires additional free surface 

modeling.  

This study will investigate the behavior of iterative solvers which are 

usually needed to solve the large matrix that arises from the implicit modeling of 

the 2D depth averaged equations and develop a model by coupling the depth 

averaged and three dimensional equations with different modeling options for 

open channel flow.  

In chapter 2, the governing equations for 3D flow known as the Reynolds 

averaged Navier-Stokes (RANS) equations and the equations for depth averaged 

flow also known as the St Venant equations are derived and the modeling 

techniques of the equations are described including the iterative solvers. Then the 

present state of open channel flow modeling is discussed. The knowledge gap in 

this area is identified and overview of this study is presented. 

In chapter 3, different potential iterative solvers are presented and tested 

for the 2D depth averaged model River2D. A new technique to improve the 

solvers is also tested and the performance of different solvers is compared. The 

effect of mesh density on performance of the solvers is presented.  

In chapter 4, the coupled model is developed and tested for two 

dimensional plane flow. The 2D RANS equations and the 1D depth averaged 
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equations are presented and the relations between the sets of equations are 

discussed. The modeling techniques for the coupled model are presented. The 

model is validated by simulating flow development in a rectangular channel, flow 

over a symmetric hump and flow over a dune.  

In chapter 5, the coupled model is extended for 3D flow and validated by 

simulating the flow in curved open channel and the flow around a hemisphere. 

Also the model is applied in a natural river to test its computational efficiency.  

In Chapter 6, conclusions of this study and recommendations for future 

work are presented.  
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Chapter 2  
 

OPEN CHANNEL FLOW MODELING 

_________________________________________________________________  

2.1  INTRODUCTION  

The flow in open channels is three dimensional (3D). However the models 

developed and used for open channel flow can broadly be classified as depth 

averaged or 3D models. The 3D models are based on the solution of the Reynolds 

averaged Navier-Stokes (RANS) equations while the depth averaged models solve 

the classical St. Venant equations. Another class of model exists that can be 

classified as the quasi-3D models. They are generally improved versions of the 

depth averaged models. In this chapter the model equations and modeling 

techniques are presented. Then the present state of open channel flow modeling is 

discussed and the rationale and objectives of the present study are pointed out. 

 

2.2 THREE DIMENSIONAL FLOW EQUATIONS 

The state of a fluid flow is described by the macroscopic properties such 

as velocity, pressure, density and temperature (Versteeg and Malalasekera, 2007). 

For isothermal condition the temperature is regarded as constant. Then the 

governing equations of three dimensional isothermal flow of any fluid consist of 

the continuity and three momentum equations also known as the Navier-Stokes 

equations. However the numerical modeling of turbulent flow by these equations 
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is restricted by the smallest turbulence scales. For modeling turbulent flow, these 

equations are time averaged to derive a new set of equations known as the 

Reynolds averaged Navier-Stokes (RANS) equations. These equations require 

modeling of turbulent stresses produced by the time averaging process. Generally 

fluid density is considered constant in the open channel flow modeling and special 

techniques are required for pressure modeling. Free surface computation also 

requires some special attention.  

 

2.2.1  The 3D continuity equation 

Figure 2.1 shows a fluid element with fluid inflow and outflow through 

different faces in the Cartesian coordinate system. The law of mass conservation 

states that the rate of increase of mass in the fluid element is equal to the net rate 

of flow of mass into the fluid element. Based on the law the 3D instantaneous 

continuity equation for incompressible flow can be written as   
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2.2.2  The 3D momentum equations 

The 3D momentum equations are derived by applying the Newton’s 

second law of motion in three directions. This law states that the rate of increase 

of momentum of a fluid particle in any direction is equal to the sum of forces on 
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the fluid particle in that direction. Figure 2.2 shows a fluid element in the 

Cartesian coordinate system with all the stress components in the x direction. The 

momentum equations in the x, y and z directions are   
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where x, y and z = coordinate directions; t = time; U, V and W =  

instantaneous velocity components at any point in the x, y and z directions; P = 

the pressure; 
v  = normal stress,

v = shear stress, g =acceleration due to gravity, 

 = density of water. Superscript v indicates that the stresses are due to fluid 

viscosity. 

The above momentum equations are in the non-conservative form. For 

different applications and derivation of the Reynolds averaged equations, the 

conservative form can be useful. They can be written in the conservative form 

using the continuity after some algebraic manipulation. Also in these equations 

viscous stresses can be related to the velocity gradient and kinematic viscosity by 
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the Newton’s Law of viscosity. After replacing the viscous stress terms by the 

Newton’s Law of viscosity the momentum equations in the conservative form can 

be written as 
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where  = kinematic viscosity of fluid. These equations are called the 

Navier-Stokes equations. If the fluid viscosity is neglected, these equations are 

called the Euler equations. 

 

2.2.3  Derivation of the Reynolds averaged Navier-Stokes (RANS) 

equations 

Most of flows of engineering importance, especially open channel flows, 

are turbulent. It is practically impossible to describe such a chaotic flow by the 

instantaneous continuity and the Navier-Stokes equations. Although turbulent 

flow exhibits very random nature, Osborne Reynolds suggested that the 

instantaneous flow variables can be split into a time averaged and a fluctuating 
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component. For example U can be split into a time averaged u  and a fluctuating 

'u  components  

'uuU   

u is defined as  






Tt

t

Udt
T

u
0

0

1
 

 

where 0t = an arbitrary value of t and T =the time interval of time 

averaging which contains all time scales of turbulence. The time averaged 

component is also known as primary part of the turbulent flow.  

Using similar splitting for V, W and P, substituting them into equations 

[2.1] and [2.8] to [2.10], and applying the time averaging rules, the following 

equations can be obtained.  
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Equations [2.12] to [2.11] are known as the Reynolds averaged Navier-

Stokes (RANS) equations. Together with the continuity equation [2.8] they 

describe the primary part of the turbulent flow.  

The averaging process yields six new unknowns 
2'u ,

2'v ,
2'w , 

'' vu , 
'' wu

and 
'' wv . Therefore we have four equations but ten unknowns. This problem is 

known as the ‘closure problem’. 

The new terms in the RANS equations basically are the products of the 

fluctuating velocities and represent the effect of the turbulence on the primary 

flow. They are called Reynolds stresses as the turbulent fluctuations introduce 

additional stresses into the fluid flow.  Of the Reynolds stresses, three are normal 

stresses 

2'ux  
2'vy    and 

2'wz    
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and three are shear stresses 

''vuyxxy   , 
''wvzyyz   and ''wuxzzx    

 

In engineering flows the viscous stresses are most often neglected as they 

are very small as compared to the Reynolds stresses. The Reynolds equations in 

the non-conservative form can be written after neglecting the viscous stress terms 

as  
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2.2.4  Boundary conditions 

To describe open channel flow using the RANS equations, water surface 

and bed boundary conditions are required. Referring to Figure 2.3 the water 

surface kinematic and dynamic boundary conditions are  

Kinematic: 
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Dynamic:  

 
,0 hhhp   [2.16] 

 

where subscript h indicates the quantities at the water surface.   

At the bed a ‘no slip’ condition exist i.e. 

 
0 bb vu  [2.17] 

 

However these conditions are difficult to implement numerically due to 

the sharp velocity gradient near the channel bed and a slip velocity is allowed at a 

virtual bed located at the top of the very thin high velocity gradient layer (Steffler 

and Jin, 1993). Therefore a bed kinematic condition is applied. 
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Bed dynamic conditions at bzz   :  

Bed stresses ( bx , by ) are tangential to the bed (Vreugdenhill, 1994):  
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The bed stress is an unknown and usually is expressed as a function of 

other variables. Generally the bed stress is computed by the ‘law of the wall’ by 

expressing it as a function of the near bed velocity. The universal logarithmic law 

of the wall can be written as: 

 
r

s

p
A

k

z
U  ln

1


 [2.21] 

 

 
AkA sr   )ln(

1


 [2.22] 

 

  where 
U = dimensionless velocity =  

*U

ub ; bu =resultant near bed velocity 

parallel to the bed; *U  = Shear velocity = 


 b ; b =bed stress; 

sk  = 

dimensionless roughness height =  


*Uk s ; sk =bed roughness height;  A=5.5;  

rA follows equation [2.22] over a smooth bed, however it deviates from 

the equation and decreases gradually as 

sk  increases. For a completely rough bed 

rA is equal to 8.5. For modeling purposes the normal distance pz  should be such 

that 


*Uz
z

p
  is within the range from 30 to 100 where the logarithmic law of 

the wall is valid (Nezu and Nakagawa 1993). 
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2.3  DEPTH AVERAGED FLOW EQUATIONS 

Open channel flows are often described by the depth averaged equations 

known as the Saint Venant equations. De Saint-Venant (1771) derived the 

equations for one dimensional flow (Chaudhry, 1993). For two dimensional flow, 

the set of equations consists of a continuity and two horizontal depth averaged 

momentum equations and is usually derived by the application of conservations 

laws to a vertical column of fluid using total flux across each vertical face 

(Daubert and Graffe, 1967, Van Rijn, 1990, Ashraf et al., 1995). The important 

assumptions made in this derivation are that vertical distributions of u and v 

velocity are uniform and vertical acceleration is negligible thus the pressure 

distribution is hydrostatic. However the complete depth averaged equations can be 

derived without these assumptions by integrating the Reynolds equations over the 

flow depth (Weiyan 1992, Steffler and Jin 1993, Vreugdenhill, 1994). Then these 

assumptions can be applied to reduce the complete depth averaged equations to 

the Saint Venant equations.  

 

2.3.1  Derivation of the DA equations from the RANS equations 

In deriving the depth averaged equations, vertical profiles of u, v and w are 

split into depth averaged (u , v , w ) and perturbation (
pu ,

pv ,
pw ) components 

while the vertical profile of p is split into hydrosatic (
hsp ) and non-hydrostatic (
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pp ) components. The stress terms (  and ) are also divided into depth 

averaged (
d  and d ) and perturbation components ( p  and p ) 

;puuu   

;pvvv   

;pwww   

;phs ppp   

)( zHgphs   ; 

pd    

pd   . 

 

 H= water surface elevation;   

 

After substituting the above decomposition into the continuity equation 

[2.8], integration from the bed to the water surface and application of the Leibnitz 

Rule gives 
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and similar for v and w. 

Substituting the surface and bed kinematic equations yields the well-

known depth averaged continuity or the mass conservation equation in two 

dimensions; 
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Following the same procedure for the Reynolds momentum equations in 

the conservative form together with the surface and bed kinematic and dynamic 

conditions gives the depth averaged momentum equations in x, y and z directions. 
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[2.26] 

 

where overbar denotes depth averaged quantity. 
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The above depth averaged equations can provide water depth and three 

depth averaged velocities as accurately as a 3D RANS model if the perturbation 

terms are modeled perfectly.   

 

2.3.2  Deduction of the St Venant Equations 

Neglecting the primed terms, vertical acceleration and stress terms in 

equation [2.26] the hydrostatic pressure condition can be deduced. Neglecting the 

perturbation terms, equations [2.24] and [2.25] can be reduced to the classical St. 

Venant equations. 

Continuity equation 
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St Venant-x momentum equation 
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St Venant- y momentum equation 
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In all the equations presented so far the effect of wind stress and Coriolis 

forces are considered negligible which is generally valid for modeling flows in 

small domains such as rivers and streams. They may become important for large 

lakes and estuaries (Bertin, 1987). 

The depth averaged equations are essentially hyperbolic in nature since the 

horizontal turbulent stress gradients are relatively small. For subcritical flow, one 

characteristic enters the domain through each of upstream and downstream 

boundaries therefore one boundary condition is needed in each of the boundaries. 

For supercritical flow two characteristics enter the domain through the upstream 

boundary requiring two boundary conditions.  

 

2.4  MODELING OF THE RANS EQUATIONS 

The RANS equations do not have any closed form solution except for very 

simplified cases; therefore numerical modeling techniques have been developed 

and implemented. Generally the three momentum equations provide three velocity 

components in their respective directions and we are left only with the continuity 

equation and the pressure. However it is interesting to note that there is no 

pressure term in the continuity equation. Therefore some special techniques have 

been developed for modeling the pressure. The discretization of the convective 

terms (terms with the first order derivative of the velocity components) in the 
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momentum equations requires particular attention regarding the direction of the 

flow. Additional models are required for turbulence modeling.  

 

2.4.1  Discretization of the convective terms 

The RANS momentum equations are generally convection dominated as 

the relative strength of diffusion from turbulent stresses is less than the convective 

terms.  In any convection dominated flow, the property of fluid at any location is 

influenced by the fluid at the upstream location where the fluid is coming from. 

The discretization of the convective terms in the RANS momentum equations by 

a second order accurate center difference method usually leads to model 

instability as it does not consider the direction of flow. An upwind discretization 

is used where the influence of the direction of flow is considered. The simplest 

upwind method is the backward or forward difference methods depending on 

whether the fluid flow is in the positive or negative direction. This method is first 

order accurate and is known as the first order upwind method. A Taylor series 

expansion for this method shows that the leading truncated term contains a second 

derivative which is diffusive in nature. Therefore first order upwind methods may 

be very diffusive and diffusion increases with an increase in mesh size. This 

numerical diffusion may smear out sharp changes in the solution and provides 

stability of the numerical solution similar to physical viscosity.  

The hybrid differencing method (Spadling, 1972) is a blend of first order 

upwind and centered differencing schemes. Depending on the Peclet number 
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which is a measure of relative strength of convection and diffusion, this method 

switches between the schemes. The power law (Patankar, 1980) is another hybrid 

method where a polynomial is used instead of the centered difference. However 

they are first order accurate based on the Taylor series expansion (Versteeg and 

Malalasekera, 2007).  

Higher order discretization methods have been developed to minimize the 

numerical diffusion caused by the first order methods by involving more 

neighboring points and taking a wider influence. One of the widely used higher 

order upwind methods is the QUICK (Quadratic upstream interpolation for 

convective kinetics) scheme of Leonard (1979). This method uses 3 neighboring 

nodes, two from upstream and one from downstream in discretizing a convective 

term. In a regular grid this method gives third order accuracy. The higher order 

upwind methods can generally be considered as a first order method plus 

additional convection information which reduces the numerical diffusion caused 

by the first order method. However higher order discretization methods may 

produce oscillation especially near steep gradient of the flow variable. Therefore 

TVD (total variation diminishing) schemes (Harten, 1983) have been formulated 

to achieve oscillation free higher order accuracy which is attained by using limiter 

functions to limit the range of additional information added to the first order 

method for higher order accuracy. Different limiter functions have been 

developed such as Van Leer (Van Leer, 1974), Van Albada (Van Albada et al., 

1982), Min-Mod (Roe, 1985) SUPERBEE (Roe, 1985), QUICK (Leonard, 1988) 
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and UMIST (Lien and Leschziner, 1993). These limiters provide second order 

accuracy. 

  

2.4.2  Turbulence modeling 

While information on the primary flow is needed for engineering 

applications, the effects of the turbulence on the primary flow are considered 

through the modeling of the Reynolds stress terms. Significant research has been 

devoted to develop turbulence models in order to calculate the Reynolds stresses 

and many models are now available (Rodi, 1984). The turbulence models 

currently used can be classified as the zero equation, one equation, two equations 

and very complicated seven equations Reynolds Stress models.  

Of the turbulence models the zero to two equation models are generally 

used and are developed based on the Boussinesq hypothesis that relates the 

Reynolds stresses to the primary velocity gradients. Using an analogy to 

Newton’s law of viscosity, Boussinesq proposed that the Reynolds stresses are 

proportional to the mean rates of deformation. 

In a general form this can be expressed as 
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where i, j represents the coordinate directions,   = Kronecker delta. k is 

the turbulent kinetic energy per unit mass. 



23 

 

Using this hypothesis the turbulent or eddy viscosity parameter t  or the 

kinematic eddy viscosity 



 t

t   is calculated.  

Zero equation models can be classified into following three categories 

(Vreugdenhil, 1994). 

a) Constant eddy viscosity model:  

In this model, the eddy viscosity is constant along the depth and 

sometimes related to the bed shear stress. 

 

 
huct *0  [2.31] 

 

where *u

 

= shear velocity. 0c

 

= a constant. Therefore by this model, the 

eddy viscosity may vary in the horizontal directions.  

 

b) Specified vertical profile of eddy viscosity model 

In this model, the eddy viscosity is related to the bed stress and varies over 

the depth according to any specified vertical distribution. 
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This model gives a linear profile near the bed and a constant value above. 

Another model is (Shimizu et al, 1990): 
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Mixing length model 

Prandtl (1925) suggested the first model to describe the distribution of 

eddy viscosity. In this model eddy viscosity is assumed to be proportional to the 

product of a velocity scale and a mixing length ( ml ) (Rodi, 1984). Considering 

only one velocity gradient in the z direction 












z

u
 and one turbulent stress ( xz ) in 

shear flow, the velocity scale is taken as the product of the mean velocity gradient 

times the mixing length. Therefore the eddy viscosity can be related as 
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Different forms of ml  are available mainly based on experimental results 

of different types of flows. For open channel flow, following mixing length 

equations are available.  
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(Rajaratnam, 1987) 
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          (Rodi, 1984) 

 

Mixing length models are easy to implement and do not require additional 

computational efforts as no additional transport equation needs to be solved. The 

main disadvantage is that they only consider local flow conditions and ignore any 

transport of turbulence and therefore incapable of accurately modeling flows with 

separation or recirculation.  

 

In a one equation model such as the Prandl-Kolmogorov model (Rodi, 

1984), t is computed as 

 
LkCt

'

   [2.38] 
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where  = the turbulent kinetic energy per unit mass, L = a length scale 

which may or may not be the same as lm, 
'C  = an empirical coefficient. k  is 

obtained by solving the transport equation for turbulent kinetic energy.  

In the two equation k  model of Launder and Spadling (1974), t is 

computed as 

 


 

2k
Ct   [2.39] 

 

where C
 
= an empirical coefficient and   = energy dissipation rate. Two 

transport equations are solved to obtain k and  . 

 

2.4.3  Modeling pressure 

In incompressible flow, the fluid density remains constant. This has led to 

the development of many techniques for the computation of pressure. These 

techniques can be divided into two categories: the artificial compressibility and 

the pressure correction methods.  

  

Artificial compressibility method 

In this method an artificial compressibility term similar to the time 

derivative of density is included into the continuity equation (Chorin, 1967) 
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where a is a parameter which can be interpreted as an artificial speed of 

sound and 2ap  . For the steady state flow calculation the time derivative 

vanishes when steady state is achieved.  The convergence of the flow calculation 

depends on the choice of a. Kwak et al. (1986) suggested the value of a to be 

between 0.1 and 10. 

 

Pressure correction methods 

In the pressure correction methods different forms of the Pressure Poisson 

equation are solved. The differential pressure Poisson equation can be derived 

from the RANS momentum and the continuity equations. The momentum 

equations 2.12- 2.14 are differentiated with respect to their respective coordinate 

direction, added up together and the continuity equation is applied.  The pressure 

Poisson equation for 3D flow can be written as 
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In computational fluid dynamics, a discrete Poisson equation is derived 

from the discrete momentum and continuity equations with some assumptions. 

One of the widely used methods based on this technique is the Semi-Implicit 

Method for Pressure-Linked Equations (SIMPLE) method of Patankar and 

Spalding (1972). In the SIMPLE method pressure and velocity components are 

split into guessed and correction parts. First a guessed velocity field is obtained 

from the discrete momentum equations using a guessed pressure field. Then the 

discrete Poisson equation is then solved for the pressure correction. Finally the 

pressure is updated by adding the guessed and the correction values and the 

velocities are updated. This technique tends to overcorrect the pressure field 

requiring an under-relaxation in the pressure update for stability. This procedure 

is repeated after setting the updated flow field as guessed until the convergence is 

obtained.  

An important aspect of the pressure correction methods is that the 

discretization of the continuity equation and the pressure terms in the momentum 

equations by a centered difference scheme usually leads to a ‘checker board’ type 

flow field in a regular collocated grid where all the variables are computed at the 

same location. This problem is alleviated by the use of a staggered grid in the 

control volume formulation where the velocities are computed at the nodes 

whereas the pressure is computed at the cell faces. To avoid the checker board 

pressure field in the collocated grid, Rhie and Chow (1983) modified the 

discretization of the velocities in the continuity equation by adding a higher order 
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term in the velocity interpolation. Majumder (1988) improved this technique to 

avoid the dependence of the final solution on the under-relaxation parameter. 

Modifications of the SIMPLE method lead to the development of different 

algorithms such as SIMPLER (SIMPLE-Revised) (Patankar, 1980), SIMPLEC 

(SIMPLE-Consistent) (van Doormal and Raithby, 1984) and PISO (Pressure 

Implicit with Splitting of Operators) (Issa, 1986).   

 

2.4.4  Free surface computation techniques 

One of the most important aspects of open channel flow computation by 

the RANS equations is the free surface modeling. The set of the RANS equations 

does not contain any model equation to locate the free surface. Different 

techniques have been developed to model the free surface.  

 

Rigid Lid approximation 

The simplest method is to ignore the free surface variation in the steady 

flow calculation and use a ‘rigid lid’ approximation of the free surface. In this 

technique the water surface is approximated from measurements or set at a slope 

equal to the average bed slope. The zero pressure boundary condition no longer 

holds and pressure is computed at the surface which generally reflects the error in 

the water surface approximation.  
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Pressure and Bernoulli equations 

The pressure at the water surface computed using the rigid lid 

approximation can be used to update the water surface by applying the Bernoulli 

equation for energy balance in potential flow. The Bernoulli equation can be 

written as  

 
BVgHp r  

2

1
 [2.42] 

 

where 
rV is resultant velocity at the water surface, B is a constant. 

This equation is applied along the water surface based on one fixed point 

usually at a downstream location (Olsen, 2009). 

 

Kinematic free surface equation 

In this technique free surface kinematic condition (equation [2.15]) is used 

to update the water surface elevations. RANS equations are solved to obtain the 

velocity components (u,v,w) and this equation is used to update the water level. 

CCHE3D model uses this technique for water surface computation (Jia et al. 

2005). 

 

Depth averaged continuity equation 

In this technique the depth averaged continuity equation is used to 

compute the water surface. Depth averaged velocities are obtained by depth 

averaging the vertical profiles of the corresponding velocity obtained from the 
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RANS solution. Vreugdenhil (1994) mentioned that this technique is more robust 

that the kinematic free surface equations. 

 

Depth averaged Poisson equation 

Depth averaged Poisson equations can be derived by differentiating the 

depth averaged x and y momentum equations in the non-conservative form by 

their respective coordinate directions. Wu et al. (2000) used this technique to 

model the flow in a curved open channel. However, they mentioned that this 

technique may not be suitable for situations with steep water surface slopes.  

 

Volume of fluid method (VOF) 

The volume of fluid (VOF) of Hirt and Nicols (1981) is the most robust 

free surface computation technique. In this technique the volume fraction of a 

liquid (say water) is computed at each cell. The cell having a volume fraction of 

one is considered to be full while a value of zero indicates the cell to be empty. 

The cells having a volume fraction less than one but greater that zero contains the 

free surface. Once the cells containing the free surface are identified, the location 

and slope of the water surface at each cell are then computed.   

 

2.4.5  Hydrostatic RANS model 

The 3D model for open channel flow can also be applied with a 

hydrostatic pressure assumption. In this case the horizontal momentum equations 
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are solved for horizontal velocities with the continuity equation for the vertical 

velocity. Rigid lid assumption cannot be applied and the water surface elevation 

must be updated. 

 

2.5  MODELING OF THE DA EQUATIONS 

2.5.1  Discretization techniques 

The modeling techniques are primarily developed for the St. Venant 

equations. These equations are predominantly hyperbolic and have similar 

mathematical properties to the compressible Navier-Stokes or the Euler equations. 

The numerical techniques developed for the compressible flow equations have 

successfully been extended for the depth averaged equations. Lax Wendroff (Lax 

and Wendroff 1960) and MacCormack (MacCormack 1969) schemes are two 

classical finite difference methods, give second order accuracy in space and time 

(Chung 2002). The MacCormack is a two-step predictor-corrector scheme and 

easy to program. However these centered difference methods may require 

artificial viscosity to dampen the high frequency oscillations (Jameson et al. 1981, 

Chaudhry 1993). Since information can propagate both directions in the Saint 

Venant equations, upwind methods are based on the characteristic directions. 

Generally the flux is split into positive and negative components based on the 

eigenvalues that represent the characteristics of the hyperbolic St Venant 

equations. In the first order accurate method, backward and forward differencing 

are used for the terms associated with the negative and positive eigenvalues 
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respectively. For higher order accuracy second order upwind methods based on 

the TVD concept have also been used (Garcia-Navarro et al. 1992, Louked and 

Hanich 1998, Wang et al. 2000).  

The finite element method provides flexibility to represent the irregular 

geometry in modeling natural rivers. Upwind biased finite element methods are 

known as the Petrov Galerkin finite element methods. Hicks (1990) developed the 

characteristic dissipative Galerkin (CDG) finite element method for one 

dimensional open channel flow equations. She compared the CDG method with 

different finite element and finite difference methods extensively for a wide range 

of test problems and found the CDG method to be the best method both in terms 

of accuracy and stability. Ghanem (1995) extended the CDG method for two 

dimensional depth averaged flow. Subsequently a river modeling software 

‘River2D’ (Steffler and Blackburn 2002) has been developed and is currently 

being used by the practitioners.   

 

2.5.2  Modeling depth averaged turbulent stresses 

The bed shear stresses are approximated according to 
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where C* is the dimensionless Chezy Coefficient and is related to the 

effective roughness height ks, through 
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y are the depth averaged turbulent stresses and are 

modeled with an isotropic depth averaged eddy viscosity (
d

t ) as  
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The eddy viscosity (
d

t ) is modeled by any of the following equations 
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 (Steffler and Balckburn 2002) 

The default values of the parameters are 
1 =0, 

2 =0.5 and 3 =0.1. These 

values can be adjusted by calibration.  
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2.6  LINEAR SOLVERS  

The temporal discretization of the governing differential equations can be 

classified into two catagories: explicit and implicit methods. In general, explicit 

methods are easy to implement and require low memory storage. The time step 

size of an explicit method is restricted by the Courant-Fredrichs-Lewy (CFL) 

stability condition which often limits the steady state convergence speed of the 

method. To accelerate the convergence of an explicit method, techniques such as 

local time stepping and implicit residual smoothing with multigrid acceleration 

have been proposed (Lackey and Sotiropoulos 2005, Jameson 1985). However, 

for large scale problems the rate of convergence of an explicit method may 

deteriorate dramatically and become an inefficient solution technique. Moreover 

for an unstructured grid, multigrid acceleration technique with explicit methods 

may become very difficult to implement.  

On the other hand, implicit methods allow large time steps for rapid 

convergence to the steady state solution. The implicit discretization of the 

governing equations results in nonlinear systems of equations which are linearized 

by the Newton-Raphson method giving a system of linear equations.  

In general, there are two types of solver for the solution of the linear 

system: direct and iterative methods. The resulting linear systems of equations can 

be solved directly if the number of nodes is relatively small. However, for a very 

large number of nodes and large bandwidth of the resulting matrix, a direct 
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solution becomes unfeasible due to the precipitous growth in computation and 

storage ().  

The most widely used methods to solve linear systems are the iterative 

methods. Iterative methods are further classified into basic and Krylov subspace 

methods.  Basic iterative methods include Jacobi, Symmetric Gauss-Seidel (SGS) 

and Incomplete Lower Upper (ILU) factorizations.  The convergence of the basic 

iterative solvers can sometimes be greatly enhanced by the multigrid method 

especially for elliptic and diffusion dominated problems (Trottenberg et al. 2001).  

Among different Krylov subspace methods, the Generalized Minimal Residual 

(GMRES) and some variants of Bi-Conjugate Gradient (BCG) methods are very 

popular iterative solvers for general unsymmetric linear systems arising from a 

wide variety of applications (Feng et al. 1997). However an efficient 

preconditioner is needed to improve the convergence of these Krylov iterative 

methods. The most commonly used preconditioners are the Jacobi, SGS and ILU 

factorizations.  

Significant effort has been made to develop efficient iterative solution 

methods for the computational fluid dynamic (CFD) problems. Venkatakrishnan 

and Mavriplis (1992) developed a Newton-GMRES implicit solver for computing 

compressible flow around a multi-element airfoil in an unstructured grid. They 

investigated the Jacobi, SGS and ILU factorization with no fill (ILU(0)) as 

preconditioners. ILU(0) and SGS with over-relaxation have also been studied as 

iterative solvers. ILU(0) preconditioned GMRES showed the best performance. 
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Similar study was performed by Rogers (1995) in a structured mesh where ILU(0) 

preconditioned GMRES outperformed all other methods by at least a factor of 

two. A variant of GMRES is known as the matrix free GMRES where the matrix 

vector multiplication is computed by a first order forward difference. For a 

structured mesh, Pueo and Zingg (1998) presented a preconditioned matrix free 

GMRES algorithm for the computation of steady two dimensional aerodynamic 

flow. They investigated the ILU preconditioners with different levels of fill ILU(l) 

where l is the level of fill. After a thorough parametric study they found ILU (2) 

to be the best preconditioner. Using a similar approach, Nichols and Zingg (2005) 

found ILU(1) to be the best preconditioner for 3D flow. Manzano et al. (2003) 

used different levels of fill ranging from 1 to 3 in the ILU preconditioners 

depending on the test cases to develop an efficient matrix-free GMRES solver for 

3D unstructured mesh. Nejat and Ollivier-Gooch (2008b) used ILU(1) 

preconditioner in the start-up phase with a ILU(4) preconditioner in the Newton 

phase of a GMRES solver for a fourth order accurate discretization of the inviscid 

compressible flow equations.  

GMRES has widely been used for its smooth convergence, but it may be 

expensive in memory usage and computational work even with its restarted 

version. The Bi-Conjugate Gradient (BCG) method (Fletcher 1974) is another 

Krylov subspace method for unsymmetrical matrices, uses a different approach 

than GMRES and requires less memory than GMRES. Sonneveld (1989) 

proposed the Conjugate Gradient-Squared (CGS) method to improve the 
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convergence of BCG, but it has been found to be less stable than GMRES and the  

convergence was found to be very irregular (Shen and Wu 1995).  van der Vorst 

(1992) proposed a stabilized version of the CGS algorithm, known as the Bi-

Conjugate Gradient Stabilized (BiCGSTAB) to obtain smooth convergence. Lin 

et al. (1995) tested different variants of the BCG methods with an ILU 

preconditioner and recommended BiCGSTAB to be the best solver.  

Although ILU preconditioners have successfully been used for improving 

the convergence of the Krylov subspace methods, they have some limitations. In 

the case of non-symmetric non-diagonally dominant matrices the incomplete 

factors may be more poorly conditioned than the original matrix and make the 

solver unstable (Chow and Saad 1997). One straightforward way to address these 

poorly conditioned factors is to add a diagonal perturbation to the original matrix 

to increase its diagonal dominance and perform incomplete factorization on this 

matrix (Manteuffel, 1980, Van der Vorst, 1981, Saad 1994). A major difficulty in 

this approach is to find the value of perturbation. Another way to increase the 

diagonal dominance is to reduce the off-diagonal dominance of the matrix (Pueyo 

and Zinng 1998). In aerodynamic computations, it is very common to use a lower 

order Jacobian obtained from a first order spatial discretization as preconditioner 

for higher order spatial discretizations to increase the stability of the ILU 

factorizations.  
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2.7  CURRENT STATUS OF OCF MODLEING 

2.7.1  Depth averaged modeling  

At the present time depth averaged (DA) models are widely used for river 

flow modeling instead of 3D CFD models. The classical St. Venant equations 

used for one and two dimensional depth averaged flow simulation in open 

channels are derived assuming uniform velocity, hydrostatic pressure and small 

channel slope (Chaudhry 1993). These equations cannot provide any vertical 

detail of the flow field and usually do not include effects which may be important 

for the study of rapidly varied flows where the velocity distribution is highly non-

uniform and the pressure is significantly non-hydrostatic. Therefore they are only 

valid for flows with length scales much greater than the flow depth (Steffler and 

Jin 1993).  

Most of the scientific effort in shallow water equations focused on 

resolving the flow discontinuities and achieving higher order accuracy of the 

simulation. But it is also important to achieve these solutions with computational 

efficiency and robustness. Very few literatures on the implicit iterative solvers for 

the solution of the shallow water equations exist. Of them, Barragy et al. (1993) 

applied Bi-Conjugate Gradient and Bi-Conjugate Gradient Squared methods with 

ILU preconditioner in tidal simulation. Their results indicate that with sufficient 

fill, the iterative methods are competitive with the direct frontal solver as they 

used a relatively small number of nodes. Fang and Sheu (1999) compared the 

relative performance of the GMRES method of Saad and Schultz (1986) and the 
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Bi-CGSTAB of van der Vorst (1992) without any preconditioning in simulating 

the bore wave propagation by the Taylor-Galerkin finite element method. The 

GMRES solver showed a much better convergence rate than the Bi-CGSTAB 

solver.  

 

2.7.2  Quasi 3D modeling 

Generally uniform velocity and hydrostatic pressure assumptions are valid 

in shallow water flow where the horizontal extent is very large as compared to the 

depth. In a natural river the flow it may exibit local 3D flow pattern where the 

velocity may be non-uniform and/or pressure may be non-hydrostatic due to bed 

and bank curvature. These flowq pattern may affect the depth  averaged flow 

distributions. A number of studies have been performed to improve the depth 

averaged equations by including the effect of the vertical distribution of velocity 

and non-hydrostatic pressure. The Boussinesq equations are the improvements of 

the St. Venant equations by including the non-hydrostatic pressure and vertical 

velocity distributions, but only applicable for flows with wavelength to depth ratio 

greater than about ten (Steffler and Jin, 1993). These equations do not provide 

vertical distribution of longitudinal velocities better than the St. Venant equations. 

Dressler (1978) attempted to incorporate the bed curvature using curvilinear 

coordinates in the Euler equations assuming the water surface curvature is the 

same as the bed curvature. Hager and Hutter (1984) improved the model assuming 

a linear variation of flow angle and curvature between the bed and surface. 
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However all these potential flow assumptions do not include the turbulence and 

rotationality present in open channel flow.  

Steffler and Jin (1993) proposed vertically averaged and moment 

equations (VAM) to take into account more vertical details in the depth averaged 

equations. The VAM equations were derived by integrating the RANS equations 

over the flow depth with a linear approximation for the longitudinal velocity 

distribution and a quadratic approximation for the vertical velocity and pressure 

distributions. Jin and Steffler (1993) used depth averaged and moment equations 

in a curved bend where the hydrostatic pressure distribution was assumed and the 

horizontal velocity was approximated by a power law distribution of mean 

velocity with a linear variation of perturbation (deviation from mean). Jin and Li 

(1996) applied the model of Jin and Steffler (1993) assuming a linear variation of 

the pressure perturbation (deviation from hydrostatic pressure). Khan (1995) 

applied the 1-D VAM equations in simulating the flow over curve beds and 

modeling overfalls. Ghamry (1999) extended the VAM equations in two 

dimensions with several assumed distributions. VAM equations can often give 

very good water surface profile and mean velocity, reasonable vertical velocity 

and pressure distribution and relatively poor distribution of horizontal velocity 

which is probably the most useful output from a 3D river modeling. Moreover 

VAM models may be prone to numerical instability in modeling complex flows 

such as the flow over a dune (Elgamal 2002). However none of the improved DA 

models have ever been successful in modeling a natural channel.     
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Multilayer models have been used by different researchers to compute the 

water surface and the velocity profiles (Lai and Yen 1993, Li and Yu 1996). The 

flow depth is divided in a number of stream wise layers and the depth averaged 

equations are solved within each layer assuming a hydrostatic pressure 

distribution. However, as the flow quantities are assumed uniform within a layer, 

the large number of layers required for accurate results may increase computation 

time. Xia and Jin (2006) used the moment equations with the layer averaged 

equations in each layer to improve the multilayer model by using a lesser number 

of flow layers.  They assumed linear profiles of the flow variables within a layer.  

 

2.7.3  3D modeling 

To obtain detail and accurate velocity, pressure and bed stress distribution, 

3D Computational fluid dynamic (CFD) models based on the Reynolds averaged 

Navier-Stokes (RANS) equations have been developed for open channel flow 

computation. CFD models based on the Reynolds averaged Navier-Stokes 

(RANS) equations with the free surface variation have also been developed for 

2D plane open channel flow computation. John (1991) developed a free surface 

flow model where the pressure was decomposed into a hydrostatic and a 

hydrodynamic component that was computed from an integrated vertical 

momentum equation. Stansby and Zhou (1998) used the depth averaged 

continuity equation for water surface computation while a pressure correction 

technique was used for the non-hydrostatic pressure computation and mass 
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balance. Namin et al. (1999) used the kinematic free surface equation to compute 

the free surface variation in their implicit non-hydrostatic model for 2D plane 

flow.  

Many studies have been performed to apply 3D models in simulating the 

flow in physical models with or without the free surface variations; however 

studies of natural rivers with complex geometries are limited. Sinha et al (1998) 

simulated the flow in a 4 km fairly straight stretch of the Columbia River 

downstream of the Wanapum Dam with complex bed topography. The flow 

domain was discretized using 0.33 million nodes with a mesh aspect ratio of as 

high as 20. The k-ε turbulence model was used for turbulence closure. The water 

surface boundary was treated as a fixed lid using measured data. To increase the 

computational efficiency, they used fully vectorizable algorithms to invert the 

implicit operators. Due to the large cell aspect ratio, they were unable to reduce 

the residual by more than three orders of magnitude and also they had to accept a 

mass imbalance of 3% through each stream wise cross section, yet their 

simulation required 150 IBM-380 CPU hours for converged solution. 

Dargahi (2004) used the FLUENT model with 1 million unstructured 

elements to simulate the flow in a 6 km reach of the Klarälven river including a 

bifurcation. He attempted to use the volume of fluid (VOF) method of Hirt and 

Nichols (1981) but was unable to model the free surface variation; instead he 

modeled the water surface boundary as a rigid lid. However the simulation 
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required 6 weeks of computation to obtain a steady state flow condition in a 

double processor PC.  

 Lu and Wang (2009) used a 3D model to simulate the flow in a 16 km 

reach of the Yangtze river with 163(longitudinal)X81 (transversal)X15 (vertical) 

computational nodes. The free surface was computed by the 2D Poisson equation 

derived from the depth averaged equations. Jia et al. (2009) used CCHE3D to 

model the flow field affected by weirs in the 4.6 km stretch of the Victoria 

bendway with the flow depth varying from 15 to 35 m. They used over 0.4 million 

computational nodes with 322, 123 and 11 nodes in the longitudinal, transversal 

and vertical directions. The free surface was modeled using the free surface 

kinematic equation. The last three studies did not mention anything about the 

computational time.  

The difficulties in using a general CFD model in a natural river arise 

mainly from the horizontal of the river extent as compared to the depth. Normally, 

the spatial resolution in all directions is governed by a requirement to have 10-20 

nodes in the vertical dimension (approximately 10 cm spacing) whereas the 

horizontal dimensions may extend for several kilometers. Therefore it is very 

common to use a course mesh with a high mesh aspect ratio to discretize the 

domain, yet the use of a fully coupled implicit solver where all the flow variables 

are solved simultaneously may not be possible as a large matrix has to be solved. 

Sequential implicit solvers are generally used that also require the iterative matrix 
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solvers for the inversion of the implicit operators. These approach requires 

relatively large number of time steps as compared to a fully coupled model.  

Another difficulty in 3D river modeling is the free surface modeling. Two 

options are available, dynamic free surface computation and rigid lid assumptions. 

For the first option, the VOF method is robust but may require high computational 

effort. Other methods are not very accurate or efficient and also require re-

meshing of the domain each time the water surface is updated. This leads to 

increased computational effort even with a hydrostatic pressure assumption. Rigid 

lid assumptions from measured water surface have been used but may require 

many measurements to properly define the computational domain and are only 

applicable for the discharge for which the measurements are made. Non-

hydrostatic pressure must be computed throughout the domain for mass balance 

by a pressure-velocity coupling technique even if it is not significant. Since the 

pressure equations are elliptic, information travels in all direction that may require 

a long time in a natural river. A large mesh aspect ratio may induce numerical 

stiffness and may deteriorate the convergence of the solution (Sinha et al 1998, 

Buelow et al 1994). Therefore it may be difficult to use an adequately refined 

descretization, a sophisticated turbulence model (e.g. shear stress transport), a 

higher order upwind method and allow the free surface variation due to 

computational time limitations in a natural channel.  



46 

 

2.8  PRESENT STUDY 

The present study focuses on two issues of open channel flow modeling. 

One is the behavior of the linear matrix solvers in modeling the St. Venant 

equations by the implicit methods. The linearization of the St Venant equations 

produces an unsymmetric matrix. Therefore in this study, the behavior of different 

matrix solvers for unsymmetric matrices available in the literature will be tested 

for implicit modeling of the St Venant equations. Potential and limitations of 

these methods will be identified and possibility of improving the methods will be 

investigated. Generally the Krylov subspace methods with different 

preconditioners have been found to be very efficient for implicit modeling of the 

hyperbolic equations such as the Euler equations. Since the St Venant equations 

are predominantly hyperbolic, these methods will be tested in this study.  

The other area in open channel flow that lacks comprehensive study is the 

3 dimensional modeling. The problems in 3D modeling of natural rivers can be 

identified as the dynamic free surface computation, the mass balance by a 

pressure-velocity coupling for a large mesh aspect ratio and the performance of 

the iterative solver due to the large computational domain.  

 In this study a new concept is presented for modeling open channel flow 

which attempts to overcome the problems. The distribution of water depth and 

DA velocity in a natural channel is generally governed by the upstream, 

downstream and bed boundary conditions and partially depends on the non-

uniform velocity (NUV) and the non-hydrostatic pressure (NHP). On the other 
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hand the vertical profiles of velocity and NHP mainly depend on the bed profile 

and roughness and local flow field. Therefore it might be useful to separate the 

DA variables from the 3D distributions and compute them by any DA model. 

Then keeping the DA outputs fixed, the 3D variation of velocity and NHP can be 

computed from the RANS model. Because 3D variations mainly depends on local 

DA flow field and bed variations which will be kept unchanged, and are not 

affected by the far upstream and downstream flow conditions, solution of the 

RANS model is expected to be faster. 

The proposed model will consist of two parts, a depth averaged model and 

a Reynolds averaged Navier-Stokes (RANS) model. First a depth averaged model 

will be solved to the steady state to obtain the water surface elevation and depth 

averaged velocity neglecting the effects of NUV and NHP. Then for the 

hydrostatic RANS (RANS-H) model, the RANS horizontal momentum equations 

will be solved to obtain horizontal velocity profiles together with the RANS 

continuity equation for vertical velocity profiles using the computed water surface 

as a fixed upper boundary. Mass balance obtained in the DA computation will be 

retained by adding correction terms in the horizontal momentum equations. This 

will also enable modeling the horizontal velocity by only solving the horizontal 

momentum equations and neglecting the vertical velocity. In the non-hydrostatic 

model (RANS-NH), the pressure Poisson equation derived from the RANS 

equations will be solved for NHP assuming a zero pressure at the water surface 

with the z momentum equation for the bed pressure. The zero pressure condition 
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at the surface would have much stronger influence on the pressure field than the 

upstream and downstream boundaries as the depth of flow is significantly less 

than the horizontal dimensions. Consequently solution for pressure should be 

faster. Also any model with a fixed boundary condition tends to converge faster 

than a gradient type boundary that is commonly used for pressure solution. Again 

the mass balance will be retained by a correction term similar to the RANS-H 

model. As the 3D flow field depends on local flow conditions, the RANS 

horizontal momentum equations will be discretized explicitly in the horizontal 

direction with an implicit coupling in the vertical direction. Once the NUV and 

NHP are obtained from the RANS model, their effects will be included in the DA 

model to update the DA velocity and water depth. Then the 3D flow variations 

can again be computed from the RANS model based on the updated DA flow 

field. The model will first be developed and tested for 2D plane flow. Then it will 

be extended for 3D flow.  

2.9 SPECIFIC OBJECTIVES OF THIS STUDY: 

  The specific objectives of this study are: 

1. To develop an efficient and robust implicit iterative solver for 

modeling the St. Venant equations. 

2. To develop a coupled depth averaged-RANS model for plane open 

channel flow. 

3. To extend the coupled model for 3D flow.  
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Figure 2.1 Mass flow through a fluid element 

 

 

 

 

 

 

 

 

 

 

 

x 

z 

y 



50 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Stress components of a fluid element in the x direction 
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Figure 2.3 Definition sketch of 3D open channel flow 
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Chapter 3  
 

ITERATIVE SOLVER FOR THE FINITE ELEMENT 

MODELING OF OPENCHANNEL FLOW 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

3.1  INTRODUCTION 

The finite element (FE) method is attractive for simulating flow of water in 

a natural river with complex geometry due to its ability to represent the domain 

correctly using an unstructured mesh. Ghanem (1995) applied the characteristic 

dissipative Galerkin (CDG) FE method developed by Hicks and Steffler (1992) in 

modeling the St. Venant equations in two dimensions using triangular elements. 

Subsequently a river modeling software River 2D (Steffler and Blackburn 2002) 

has been developed. River2D has the ability to model the wetting-drying process. 

In the wet areas St. Venant equations which are essentially hyperbolic in nature 

are solved while in the dry areas parabolic Dupit equations are solved. Depending 

on the water level proportion of domain can be roughly equally divided.  

In this study the convergence of the Krylov methods for the River2D model 

is investigated. The most important aspect of implementing any Krylov method is 

the preconditioning of the system. The main objective of this work is to test and 

develop preconditioned GMRES and BiCGSTAB solvers for the computation of 
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steady state solutions by the River 2D model. The preconditioners used are 

Jacobi, Gauss-Seidel and Incomplete lower-upper factorization (ILU) with 

different levels of fill. Also a new technique to improve the convergence and 

robustness of the ILU preconditioners is developed.  

 

3.2  GOVERNING EQUATIONS OF RIVER2D MODEL 

River2D solves the St. Venant equations (equations [2.27] to [2.29]) 

together with the Dupit equation: 
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 [3.1] 

 

In the River2D model, equations [2.27] and [3.1] are added together and 

solved in conjunction with equations [2.28] and [2.29] for the wet elements. For 

the dry elements equation [2.28]  and [2.29]  are replaced by  

 
0 huqx  [3.2] 

 

 
0 hvqy  [3.3] 

 

In the above equations qx, qx =discharge per unit width in the x and y 

directions, S=aquifer storativity, T= aquifer transmissivity.  
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The governing equations are discretized and then linearized by the 

Newton-Raphson method and can be expressed as  

 
RuA   [3.4] 

where A = Jacobian Matrix =
Q

R

t
M








1
 , Δu= change in h, qx and qy, Δt= 

time step, M = mass matrix, R= residual vector of the nonlinear system. For the 

steady state solution the mass matrix is lumped to obtain an identity matrix. 

Therefore Δt only contributes to the main diagonal of the Jacobian matrix.  

In the FE modeling by the CDG method and linear interpolation function 

the resulting Jacobian matrix has a graph identical to the graph of the supporting 

unstructured mesh. Therefore this modeling technique provides higher order 

accuracy with the minimum possible storage for the Jacobian matrix. The 

Jacobian matrix can be computed analytically or numerically. In this study, the 

Jacobian matrix is computed numerically.  

Equation [3.4] is a large linear system of equations which must be solved 

repeatedly at each time step to obtain an update for the vectors of unknown. When 

the time step is small, the Jacobian matrix is block diagonally dominant and the 

linear system can be solved with fewer iterations. As the time step increases the 

matrix tends to become off diagonally dominant and the linear system generally 

becomes difficult to solve requiring more iterations if the solver does not stall.  
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3.3  KRYLOV SUBSPACE METHODS 

The Krylov subspace methods are considered to be the most effective 

iterative techniques for solving the large linear systems. Let 0x  be an initial 

approximation of the linear system AΔu=R. In this method an approximate 

solution mx
 
of the linear system is obtained from an affine subspace xo+Km such 

that  

mm LAxR   

where Km is the Krylov subspace of dimension m defined as  

 0

1

0

2

000 .....,,.........,,),( rArAArrspanrAK m

m

 , with 0AxRro   

Lm is another subspace of dimension m.  

Different choices for Lm, give rise to different iterative methods (Saad, 

1996).  

In this study two Krylov subspace methods for unsymmetric matrix 

namely, GMRES and BiCGSTAB are used since they are found to be the best 

methods in other studies.  

 In the GMRES method, the Krylov subspace Km is defined as 

 1

1

1

2

111 .....,,.........,,),( vAvAAvvspanvAK m

m

 , where 001 / rrv  2, 

and the subspace Lm is taken as mAK . 
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GMRES uses the Arnoldi algorithm to form an orthonormal basis of 

),( 1vAKm  by the modified Gram-Schimdt orthogonalization. The storage 

requirement of GMRES increases linearly and the CPU expense increases 

quadratically with the increase of the basis vectors in the Krylov subspace. To 

remedy this problem, GMRES is terminated when the dimension of the Krylov 

subspace is equal to m and then restarted using the latest solution as the initial 

guess. This is known as the restated version of GMRES and denoted as GMRES 

(m). Usually a value of 10 to 20 is used for m. 

 

In the BCG methods, the subspace Km  is defined as before but  Lm is taken 

as  

 11

1

2

111 )(.....,,.........)(,,),( wAwAwAwspanwAL mTTTT

m

  

1w  can be any vector provided 
1v  and 

1w  are not orthogonal but often 

chosen to be equal to 
1v . The Lanczos bi-orthogonal algorithm is used to form a 

pair of bi-orthogonal bases for the two subspaces. The BCG algorithms are more 

economical than the GMRES algorithm in terms of memory usage. Among the 

BCG methods BiCGSTAB has more regular convergence behavior.  
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3.4  PRECONDITIONING 

The convergence of the Krylov subspace methods is highly dependent on 

the condition number of the linear system. These methods work the best when the 

eigenvalues are clustered. The easiest way to improve their efficiency and 

robustness is to use preconditioning. This attempts to cluster the eigenvalues at a 

single value (Nejat and Ollivier-Gooch 2008a). Two types of preconditioning are 

usually used; left and right preconditioning. With the right preconditioning the 

system AΔu=R becomes  

 

 
RCAC 1

 [3.5] 

  

where C is a preconditioning matrix and approximation to A which is 

much easier to solve than A. The idea is that the preconditioner transforms the 

original matrix as close as possible to the identity matrix. Finding an optimum 

preconditioner is not straight forward but something of an art. In this study Jacobi, 

Symmetric Gauss-Seidel (SGS) and Incomplete Lower Upper (ILU) facorization 

are used as preconditioners.  

 

In the Jacobi preconditioning, C is taken as the diagonal of A.  

In the SGS, C=LU 
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where L= (Di+E)Di
-1 

and U=Di+F; 

Here E=strict lower part of A, F=strict upper part of A and Di=Diagonal of 

A. 

In the ILU factorization, matrix A is approximated as by a matrix C such 

that 

A=C+B= LU+B 

where L = lower triangular matrix, U = upper triangular matrix and B = 

error matrix. The factors in L and U are computed by a Gaussian elimination 

process of matrix A.  

The accuracy of the factorization may depend on the number of nonzero 

entries retained in the factorization as compared to the original matrix. There are 

two commonly used approaches for forming the factorizations: ILU with level of 

fill-in (ILU(l)) and the threshold strategies. Of them, ILU(l) is the fastest to 

compute the factors and more widely used (Chapman et al, 2000). Therefore 

ILU(l) is used for this study. In ILU(l), the graph of the LU factorization is first 

determined and then the Gaussian elimination is performed to allow the nonzero 

entries based on the graph. The initial level of fill of an element aij of matrix A is 

defined by  

 

otherwise

aif
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During the Gaussian elimination, each time this element is modified by the 

element akj , the level of fill is updated as 

 1min ,  kjikijij levlevlevlev  

During this process, any element whose level of fill becomes greater than l 

is set to zero. 

In ILU(0), no new entries are allowed and the factorization has the same 

pattern of nonzero entries as the original matrix.  Since the wetting-drying process 

of the River2D model changes the nonzero structure of the original matrix, the 

nonzero structure of the wet elements is used for the dry elements. This allows the 

formation of the structure of ILU(l) at the beginning of simulation and the same 

structure can be used for the Gaussian elimination to compute the factors. 

Otherwise the formation of the structure of the level of fill may be very expensive 

each time the structure of the original matrix is changed with the wetting drying 

process. 

Generally larger levels of fill in the ILU factorization may not be efficient 

when the CPU time to form the preconditioner is included (Pueyo and Zinng, 

1998), therefore the fill level is restricted upto 2 in this study. 

The increase in time step reduces the diagonal dominance of the Jacobian 

matrix. The preconditioner obtained from an off diagonal matrix may make the 

preconditioned system relatively difficult to solve. Therefore a new 

preconditioner obtained from a Jacobian matrix of lower time step will be tested. 
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This lower time step for each element will be obtained from a global Courant 

number (Cr). The effect of different Courant numbers will be tested to investigate 

its behavior and to find an optimum Courant number, if any.  

  The ordering of unknowns is an important factor in the convergence of the 

preconditioned iterative solvers (Dutto 1993). An efficient ordering is needed to 

reduce the bandwidth of a matrix and consequently the number of fill in the ILU 

factorization. The reverse Cuthill-McKee (RCM) method (Cuthill and McKee 

1969) is well known for its bandwidth reduction algorithm and has widely been 

used by researchers (Pueyo and Zingg 1997, Nejat and Ollivier-Gooch 2008a). 

Therefore RCM method is used for the ordering of unknowns of this study.  

 

3.5 RESULTS  

To test the convergence performance of the preconditioned GMRES and 

BiCGSTAB methods, a portion of the South Platte River is chosen. This river has 

a very complex geometry. The depth, velocity and mesh size vary over a wide 

range. It contains many dry elements. The inflow discharge is 2.83 m
3
/s. The 

mesh contains 9918 nodes and 18910 elements. To test the convergence behavior 

of the iterative methods, the flow is simulated upto 100 s. Then the Jacobian 

matrices corresponding to different time steps are obtained. The river with water 

depth at 100 s after the simulation started is shown in Figure 3.1.  
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To get an estimate of the Courant numbers corresponding to the time 

steps, the histogram of the number of elements against eLcU /)( 
 
is plotted in 

Figure 3.2. Here c = average celerity ( ghc  ) of the three nodes of an element, 

ee AL 2  and Ae=area of the element. 

LcU /)(   can be considered as the Courant number corresponding to a 

time step of 1 s and is denoted as Cr
1
. In the river, almost 5300 elements (28% of 

total elements) have Cr
1
 less than 0.1 indicating the dry and very shallow areas. 

Almost 9000 elements (50% of total elements) have Cr
1
 in between 0.5 to 1.5 

with a median value of 1.0.  

 The convergence of the preconditioned solvers is investigated by the 

number of iterations required to reduce the L2 norm of initial residual (obtained by 

setting Δu=0) by two orders of magnitude for different time steps. Previous 

studies have shown that although approximately solving the linear system may 

increase the number of nonlinear outer iterations to achieve a steady state 

solution, it reduces the overall computational time significantly (Najat and 

Ollivier-Gooch 2008b). For Jacobi preconditioner a maximum of 1000 iterations 

for both GMRES and BiCGSTAB is allowed while this number is 500 for the ILU 

preconditioners.  

Results are presented by the number of iterations required by the Jacobi, 

ILU (0), ILU(1), and ILU(2) preconditioned GMRES and BiCGSTAB methods 

for the specified residual reduction in Table 3.1 and Table 3.2. ‘NC’ in the table 
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indicates that the solver did not converge within the maximum allowable 

iterations. The results of SGS are not included as this preconditioner cannot 

reduce the residual for any time step shown in the tables and thus found to be 

completely ineffective.  

 

3.5.1 Results of GMRES 

Table 3.1 shows the results of preconditioned GMRES for different time 

steps. For the Jacobi-GMRES solver, the rate of increase in the number of 

iteration with the increase of time step is almost linear. For ILU(0), the number of 

iterations when Δt=5 and 10 s are 6 and 9 respectively. Although the time step is 

doubled, the number of iterations has increased to 1.5 times which might be 

desirable. However the number of iterations increases to 79 when Δt=50 s and the 

solver stalls completely when  Δt= 75 and 100 s. This shows a weakness of the 

ILU(0) preconditioner for larger time steps. The ILU(1) preconditioner shows 

similar behavior with increasing time steps. For the ILU(2) preconditioner an 

improvement in the convergence behavior upto Δt=50 s is observed. However this 

solver is also completely unable to converge when Δt= 75 and 100 s.   

 

3.5.2  Results of BiCGSTAB 

Table 3.2 shows the convergence behavior of the BiCGSTAB method with 

the preconditioners. Jacobi preconditioner shows a convergence behavior similar 

to Jacobi-GMRES. The ILU(0) preconditioner shows a better performance than 
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ILU(0)-GMRES. An increase from Δt=10 to 50 s increases the number of 

iterations from 5 to 32 and the solver is still convergent when Δt=75 and 100 s. 

However it requires 142 iterations when Δt=100 s.  ILU(1) shows an inferior 

performance than ILU(0) with increasing time steps as an increase in time step 

from 10 to 50 s requires 10 times iterations and the solver does not converge when 

Δt=75 and 100 s. The ILU(2) preconditioner shows an almost linear increase in 

number of iterations upto Δt=50 s. It only takes 15 iterations when Δt=50 s as 

compared to 32 iterations of ILU(0), yet it cannot converge when Δt=75 and 100 

s. 

 

3.6  LOWER COURANT NUMBER ILU PRECONDITIONER 

(LCIP) 

The results reveal that although the ILU preconditioners might be very 

effective for both GMRES and BiCGSTAB, they have the limitation of being very 

ill conditioned such that the solver becomes stalled for larger time steps. 

Increasing the amount of fill may improve the solver performance but it may not 

necessarily increase the robustness of the solver. The increase in time step makes 

the matrix off diagonally dominant. The ILU preconditioners obtained from such 

a matrix make the preconditioned system ill conditioned. As mentioned earlier 

that in the CFD computations with higher order spatial discretizations, a Jacobian 

matrix obtained from a first order spatial discretization is used for computing the 
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ILU preconditioners . Therefore this technique requires the computation of an 

additional matrix.  

However this concept cannot be applied in the CDG FE modeling, since 

the spatial discretization uses the lowest possible graph of the mesh structure. To 

increase the diagonal dominance of the preconditioner a new concept is 

introduced where a preconditioner is obtained from a matrix Am of lower time step 

than the original matrix. As mentioned before the time derivative of the governing 

equations contributes only to the diagonal of the Jacobian matrix A, therefore to 

compute the matrix Am for the preconditioner C, it is only needed to replace the 

contributions of the simulation time step in matrix A by a lower time step. The 

local time step (Δte) of any element is computed from the Courant number as 

1Cr

Cr
te   

Since a time step of any element greater than the simulation time step may 

decrease the efficiency of the preconditioner obtained from Am, the maximum 

value of the time step Δte is limited to the simulation time step. This new Jacobian 

matrix Am is tested for the Jacobi and the ILU preconditioners. No improvement  

is achieved for Jacobi although significant improvement is obtained for the ILU 

preconditioners. This preconditioner is named as the Lower Courant number ILU 

Preconditioner (LCIP). This new preconditioner is tested for three simulation time 

steps of 10, 50 and 100 s. 
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3.6.1 LCIP for GMRES 

The results of LCIP for GMRES are shown in Figure 3.3. When Δt=10 s, 

Courant numbers of 10 and greater give the optimum result for all ILU 

preconditioners. Because the maximum time step is limited to the simulation time 

step, the higher Courant numbers essentially give a local time step equal to 10 s 

for most of the elements. For Courant numbers less than 10, the convergence 

deteriorates. 

When Δt=50 s, ILU(0)-GMRES converges in 100 iterations for Cr=50. 

The number of iterations increases for Cr=35, then it decreases with decreasing 

Courant numbers till Cr=10, below which the number of iteration increases. An 

optimum range of Cr= 10 to 15 is obtained with the minimum number of 

iterations of 34 at Cr=10. For the same time step, ILU(1) and ILU(2) 

preconditioned GMRES requires 50 and 31 iterations respectively for Cr=50. The 

number of iterations decreases with decreasing Courant number with an optimum 

range of Cr=10 to 15 for ILU(1) and 15 to 20 for ILU(2). The minimum number 

of iterations are 24 for ILU(1) at Cr=15, and 16 for ILU(2) at both Cr=15 and 20.  

When Δt=100 s, GMRES does not converge for any ILU preconditioner at 

Cr=50. At Cr=35 makes the solver convergent but requires approximately 200 

iterations. A decrease in Cr decreases the number of iterations and minimum 

number of iterations are 63, 43 and 27 obtained at Cr= 10, 15 and 20 for ILU(0), 

ILU(1) and ILU(2) respectively. Further decrease in Cr increases the number of 

iterations and these numbers are greater than 100 for Cr=2.  
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3.6.2  LCIP for BiCGSTAB 

Figure 3.4 shows the results of BiCGSTAB. Results similar to GMRES are 

obtained. A distinct range of Cr is observed for each of the ILU preconditioners. 

The optimum Courant numbers are 10, 15 and 20 for ILU(0), ILU(1) and ILU(2) 

respectively. 

The above results show that the use of LCIP can significantly improve the 

convergence of GMRES and BiCGSTAB for larger time steps. General optimum 

values of Cr’s have been obtained. These values are 10, 15 and 20 for the ILU(0), 

ILU(1) and ILU(2) respectively, although a difference of ±5 does not affect the 

results for  ILU(1) and ILU(2) with some small affect for ILU(0).  

 

3.7  COMPARISON BETWEEN LCIP AND ORIGINAL 

PRECONDITIONERS 

GMRES 

Table 3 shows the comparison of results of the LCIP and the original ILU 

preconditioner for GMRES. For ILU(0), LCIP starts to improve the results from 

Δt=25 s and significant improvements are observed when Δt=35 s and above. 

When Δt=50 s, an improvement by a factor of more than 2 is obtained. For Δt=75 

and 100 s, LCIP has stabilized the solver and an increase from Δt=50 to 100 s 

increases the number of iteration to a factor less than two.  
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For ILU(1) and ILU(2), the new technique improves the results by a factor 

of approximately 2 and 1.5 respectively. Similar to ILU(0), these preconditioners 

stabilizes the solver when Δt=75 and 100 s with an improvement in the 

convergence. 

 

BiCGSTAB 

Table 4 shows the comparison of results of the LCIP and the original ILU 

preconditioners for BiCGSTAB. For ILU(0), the effect of LCIP is observed from 

Δt=18 s. LCIP shows significant improvement in convergence for higher time 

steps.  

  

3.8 COMPARISON AMONG DIFFERENT SOLVERS 

In comparing different solvers, central processing unit (CPU) time for a 

given level of convergence is probably the best quantity. Figure 3.5 shows the 

CPU time in seconds required to reduce the L2 norm of initial linear residual by 

two orders of magnitude by the preconditioned solvers. The CPU time also 

includes the time required to construct the ILU factors. From here on, ILU 

preconditioners are the lower Courant number ILU preconditioners using the 

optimum Cr.  
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For GMRES, ILU(0) shows better performance than ILU(1) and ILU(2) 

untill  Δt=50 s  when all preconditioners require the same CPU time. When Δt=5 s 

ILU(0) is better by a factor of 2 than ILU(2). When Δt is greater than 50, ILU(0) 

and ILU(1) show the same performance and ILU(2) is the best. The relatively 

poor performance of ILU(2) for the smaller time steps is due to the overhead of its 

construction time. Jac-GMRES requires almost the same CPU time as the ILU (2) 

preconditioner when Δt=5 s, however the difference increases with increasing 

time step and the ILU preconditioners are better than Jacobi by a factor of 

approximately 5 when Δt=100 s.  

For BiCGSTAB, ILU(0) consistently shows better performance than other 

preconditioners for all time steps. ILU(0) is better than ILU(2) by a factor of 2 

when Δt=5 s and 1.2 when Δt=100 s. Jac-BiCGSTAB requires the same CPU time 

as the ILU(1) preconditioner when Δt=5 s, however again the difference increases 

with increasing the time step and the ILU preconditioners far better than Jacobi by 

a factor of approximately 6 when Δt=100 s.  

When comparing GMRES and BiCGSTAB preconditioned by ILU(0) in 

Figure 3.6, BiCGSTAB is better than GMRES by a factor of 1.25 when Δt=5 s, 

but this factor increases to 1.39 when Δt=100 s. The computational time of 

preconditioned GMRES increases almost linearly with the increase in time step. 

However this increase is less regular for BiCGSTAB.  
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3.9  EFFECT OF MESH REFINEMENT ON CONVERGENCE 

To investigate the effects of the mesh refinement on the computational work 

of the newly preconditioned Krylov solvers, two more refined meshes are 

generated. Mesh2 (M2) and Mesh3 (M3) are generated by adding one additional 

node in each element in the original mesh (M1) and mesh M2 respectively.  M2 

and M3 contain 32169 and 101174 nodes respectively which are 3.25 and 10.2 

times the number of nodes of M1. Similar to the original mesh, the flow is 

simulated untill 100 s then the Jacobian matrix and the residual vector are 

obtained for two time steps, 10 and 50 seconds. The ILU(0), ILU(1) and ILU(2) 

preconditioned GMRES and BiCGSTAB solvers are used for this test. The 

numbers of iteration required by the solvers to reduce the original linear residual 

by two orders of magnitude for all meshes are shown in Table 3.5. Since the 

computational cost of each iteration is proportional to the number of nodes, the 

equivalent numbers of iteration of mesh 1 are presented. From the table, a 

relationship of the following form is established 


 nw NC ; 

 where Cw = computational work, Nn = number of nodes and β = exponent.  

The values of β have been computed based on mesh 1 and are presented in 

Table 3.6. β varies between 1.27 to 1.42 and 1.21 to 1.53 for GMRES and 

BiCGSTAB respectively with the ILU preconditioners. The average is 1.37 
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approximately for both the subspace methods. The variation in β is found to be 

higher for BiCGSTAB than GMRES.  

 

3.10  CONCLUSION 

In this chapter the convergence of the GMRES and BiCGSTAB iterative 

methods preconditioned by Jacobi, Symmetric Gauss-Seidel (SGS) and ILU with 

levels of fill varying from zero to two is presented for the finite element open 

channel flow model River2D. A new technique is developed to improve the 

convergence of the ILU preconditioned solvers. Thereafter a comparison among 

different solvers is performed. This shows that in most cases the ILU(0) 

preconditioner is better than the other preconditioners. Finally a mesh refinement 

analysis for the ILU preconditioned GMRES and BiCGSTAB is performed. The 

computational work is found to be approximately proportional to Nn
β
, where Nn is 

the number of nodes and average values of β are 1.37.  
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Figure 3.1 Contour of water depth in the natural channel 

 

  

Figure 3.2 Histogram of number of elements 
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Figure 3.3 Effect of LCIP for GMRES with time steps (circle: 10 s, square: 50 s 

and diamond: 100 s) 
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Figure 3.4 Effect of LCIP for BiCGSTAB with time steps (circle: 10 s, square: 50 

s and diamond: 100 s) 
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Figure 3.5 Comparison of computational work of preconditioned solvers. (circle: 

Jacobi, square: ILU(0), diamond: ILU(1), x: ILU(2)) 

 

 

 

 

 

 

0

5

10

15

C
P

U
 t

im
e 

(s
)

0 40 80 120
0

5

10

15

Time step (s)

C
P

U
 t

im
e 

(s
)

GMRES 

BiCGSTAB 



75 

 

 

 

 

Figure 3.6 Comparison of computational work of GMRES (circle) and 

BiCGSTAB (diamond) preconditioned by ILU(0) 
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Table 3.1 Convergence behavior of GMRES with different preconditioners. 

 

Time 

step (s) 
Jacobi ILU(0) ILU(1) ILU(2) 

5 34 6 4 3 

10 68 9 6 5 

18 119 14 9 7 

25 164 20 14 10 

35 227 38 31 15 

50 309 79 46 22 

75 429 S S S 

100 588 S S S 
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Table 3.2 Convergence behavior of BiCGSTAB with different preconditioners. 

 

Time 

step (s) 
Jacobi ILU(0) ILU(1) ILU(2) 

5 24 3 2 2 

10 64 5 3 3 

18 118 11 5 5 

25 160 15 10 6 

35 265 29 12 9 

50 306 32 29 15 

75 549 105 S S 

100 726 142 S S 
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Table 3.3 Comparison of convergence of LCIP and original preconditioner for 

GMRES. 

 

Time step 

(s) 

GMRES 

ILU(0

) 

ILU(1

) 

ILU(2

) 
5 6 (6) 4 (4) 3 (3) 

10 9 (9) 6 (6) 5 (5) 

18 14 

(14) 

10 (9) 8 (7) 

25 19 

(20) 

14 

(14) 

10 

(10) 
35 25 

(38) 

19 

(31) 

13 

(15) 
50 34 

(79) 

24 

(46) 

16 

(22) 
75 47 (S) 34 (S) 20 (S) 

100 63 (S) 43 (S) 27 (S) 
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Table 3.4 Comparison of convergence of LCIP and original preconditioner for 

BiCGSTAB.  

 

Time step 

(s) 

BICGSTAB 

ILU(0

) 

ILU(1

) 

ILU(2

) 
5 3 (3) 2 (2) 2 (2) 

10 5 (5) 3 (3) 3 (3) 

18 8 (11) 6 (5) 5 (5) 

25 11 

(15) 

8 (10) 7 (6) 

35 14(29) 11 

(12) 

8 (9) 

50 21 

(32) 

14 

(29) 

9 (15) 

75 30 

(105) 

20 (S) 15 (S) 

100 32 

(142) 

23 (S) 18 (S) 
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Table 3.5 Equivalent number of iterations required for different meshes 

  ILU(0) ILU(1) ILU(2) 

  Δt=10s Δt=50s Δt=10s Δt=50s Δt=10s Δt=50s 

GMRES 

M1 9 34 6 24 5 16 

M2 49  186 33 108 23 85 

M3 225 930 143 572 102 378 

BiCGSTAB 

M1 5 21 4 14 3 9 

M2 29 91 20 59 16 46 

M3 137 714 92 419 56 225 

 

 

 

Table 3.6 Values of exponent β for mesh sensitivity analysis 

  ILU(0) ILU(1) ILU(2) 

  Δt=10s Δt=50s Δt=10s Δt=50s Δt=10s Δt=50s 

GMRES M1 to 2 1.44 1.44 1.43 1.27 1.29 1.42 

M1 to 3 1.39 1.42 1.36 1.36 1.29 1.36 

BiCGSTAB M1 to 2 1.49 1.24 1.34 1.21 1.42 1.38 

M1 to 3 1.43 1.53 1.35 1.46 1.26 1.39 
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Chapter 4  
 

COUPLED DA-RANS MODEL FOR 2D PLANE FLOW 

 

__________________________________________________________________ 

 

4.1 INTRODUCTION 

The coupled DA-RANS model proposed in chapter 2 is aimed for 

modeling flow in rivers. However it is important to understand their behavior in 

simple yet representative flow problems. Therefore the objective of this chapter is 

to develop, test and verify the proposed model for two dimensional plane flow i.e. 

flow varies only in the longitudinal and vertical directions with no variation in the 

transverse direction. The governing depth averaged and the RANS equations and 

the relationship between the two sets of equations are presented in Section 4.2. 

Also the rationale for using a correction term for mass balance is explained. In 

section 4.3 the RANS equations in the generalized boundary-fitted coordinate are 

presented and a description of the numerical techniques is provided. Subsequently 

the details of the modeling technique of the correction term and the overall 

solution procedure are outlined. Next the results of the numerical model are 

presented and compared with the experimental results along with an analysis of 
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the behavior of the correction term. Finally the computational efficiency of the 

proposed model is presented.  

 

4.2  MATHEMATICAL MODEL  

Figure 4.1 shows the two-dimensional vertical plane flow where the flow 

variables vary only in the x and z directions. The continuity and the RANS x and z 

momentum equations in the conservative form can be written as 
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Boundary conditions at the water surface 

Kinematic: 
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 [4.4] 
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Dynamic:  

 
0 hhhp   [4.5] 

 

subscript h indicates the quantities at the water surface.   

Boundary conditions at the bed 

Kinematic: 

 

x

z
uw b

bb

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  [4.6] 

 

Dynamic:  
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b
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  [4.7] 

 

The bed stress is computed by the ‘law of the wall’ as described in chapter 

2. 

The pressure Poisson equation derived from equation [4.1] to [4.3] can be written 

as  
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     The solution of the Poisson equation requires boundary conditions at all 

the boundaries. For this study, zero non-hydrostatic pressure will be provided at 

all the boundaries except at the bottom where the pressure will be computed from 

the z momentum equation.  
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The depth averaged equations for one dimension can be written as 
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Depth averaged (DA) x momentum equation 
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 [4.10] 

For the hydrostatic model of this study, first equations [4.9] and [4.10] will 

be solved neglecting the primed terms to obtain h and u . Then the water surface 

will be used as a fixed upper boundary in solving equation [4.2] neglecting the 

non-hydrostatic pressure together with equation [4.1] to obtain the velocity 

profiles. When the non-uniform velocity is neglected in equation [4.10], it creates 

a difference with equation [4.2]. Another difference between these two equations 

stems from the modeling of the stress terms. In equation [4.2] the bed stress is 

computed using near bed velocity and the normal stress is computed using point 

velocity. On the other hand in the DA model, all the stresses are computed using 

the DA velocity. Due to these differences the water surface and velocity obtained 

from such a depth averaged model contain some error. When this water surface is 

used as a fixed upper boundary to solve the RANS equations to the steady state, 

the horizontal discharge computed from the simulated horizontal velocity profiles 

may not conserve the mass balance. Therefore a modification in the x momentum 

RANS equation is needed, such that the profile of u obtained gives a mean equal 
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to the DA velocity from the DA computations. Once the velocity profiles and 

stresses are obtained from the RANS hydrostatic model (RANS-H), they can be 

used in equation [4.10] to recompute the water surface that can again be used for 

the RANS model. 

For the non-hydrostatic model of this study, first the water surface 

elevation and the depth averaged velocity will be computed from the depth 

averaged model neglecting the primed terms. Then the water surface will be used 

as a fixed upper boundary in solving the RANS x momentum and the continuity 

equation together with a pressure Poisson equation for the non-hydrostatic 

pressure assuming a zero pressure at the surface. The pressure at the nodes near 

the bottom will be computed from the z momentum equation. A correction term 

will also be added to the x momentum equation for the mass balance. Similarly for 

the RANS non-hydrostatic (RANS-NH) model, additionally non-hydrostatic 

pressure will be used in equation [4.10] with the feedback between the depth 

averaged and the RANS-NH models.   

Based on the above discussion a mathematical relationship between the 

correction term and the primed terms in equation [4.10] can be established. Let 

the effect of the primed terms be lumped in a term hX, where X is the correction. 

When the primed terms are neglected, equation [4.10] can be written as  
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Therefore, 
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for the hydrostatic model and 
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for the non-hydrostatic model 

 

The equivalent x momentum RANS equation can then be written as  
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Therefore the pressure Poisson equation is modified as 
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A modeling technique will be developed to compute the correction term 

such that the mean of the computed velocity profile in any vertical becomes equal 
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to the depth averaged velocity in that vertical. The Reynolds normal stresses in 

the RANS equations will be neglected as they are relatively small as compared to 

the shear stress due to the small horizontal velocity gradient and vertical velocity 

in open channel flow. The depth averaged normal stress will also be neglected for 

the similar reason as the Reynolds normal stresses. 

 

4.3  NUMERICAL MODEL 

For the depth averaged computation, equations [4.9] and [4.10] will be 

solved. All of the normal stresses are neglected for this study. Depth averaged 

modeling is accomplished by the McCormack scheme (Discretization by the 

McCormack scheme is provided in appendix B). For a subcritical upstream 

boundary, a known discharge is specified. For a subcritical downstream boundary, 

a known water depth is used. For a supercritical upstream boundary both water 

level and discharge are specified while no boundary condition is needed for a 

supercritical downstream boundary. The bed stress is computed from 
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For the RANS model, the RANS x momentum and the pressure Poisson 

equations for incompressible fluid including the correction term (X) in the non-

conservative form in the non-orthogonal boundary-fitted coordinate system are 
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solved neglecting the normal stress. In transforming the equations from Cartesian 

(x,z) to generalized boundary-fitted coordinate (ξ,ζ),  direction coincides with 

the vertical direction while ξ follows the bed and water surface (Figure 4.2).  

These equations after transforming from Cartesian to non-orthogonal boundary-

fitted coordinate by the partial transformation approach i.e leaving the velocity 

components in Cartesian coordinate can be expressed as,  

The x momentum equation, 
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The pressure Poisson equation, 
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The z momentum equation,  
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where cU  and cW  = contravariant velocity components ( zxc wuU    

and zxc wuW   ), xzx  ,,  and 
z = components of the transformation 

matrix. (The equations for the components are provided in appendix A) 

The RANS x momentum equation in the boundary-fitted coordinate 

system is modeled and discretized by a finite difference method. The convective 

terms are discretized a first order upwind method while the pressure gradient 

terms are approximated by a centered difference method. The gradient terms in 

the ξ direction are discretized explicitly with an implicit coupling in the ζ 

direction. This allows us to solve each vertical independently using the values of 

the neighboring verticals from the previous time step and avoids the solution of a 

large matrix, rather a tridiagonal matrix of size m is solved for each vertical, 

where m is the number of nodes in the vertical. The shear stress is computed by 

the eddy viscosity hypothesis. The eddy viscosity is computed by the mixing 

length model (equation [2.34]) where equation [2.36] is used for the mixing 

length. At the upstream boundary, vertical profile of u is specified and at the 

downstream boundary u is extrapolated from the interior nodes. Logarithmic 

velocity profiles based on the depth averaged velocities are specified as the initial 

condition at each vertical.  

The RANS continuity equation is solved for the vertical velocity using 

known horizontal velocity by a control volume approach. The faces of the control 

volumes are located at the center of two adjacent nodes. The horizontal mass flux 

through a cell face is computed by a centered difference from u of two adjacent 
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nodes. Since the faces of the control volumes on two sides are vertical, vertical 

mass flux through these faces is zero and the flux through other two the faces is 

calculated by setting total mass flux through the bed equal to zero. At the 

upstream boundary vertical velocity is set to zero while at the downstream 

boundary w velocity profile is extrapolated from the interior nodes.  

The pressure Poisson equation in the boundary-fitted coordinate is 

modeled and discretized by a finite difference method. At the upstream, 

downstream and water surface boundaries non-hydrostatic pressure is set to zero. 

For the bottom boundary nodes the z momentum is solved in the boundary-fitted 

coordinate also by a finite difference method. The pressure gradient term is 

discretized by a forward difference while all other terms are discretized by a 

centered difference.  

 

4.4  MODELING THE CORRECTION TERM 

In order to model the correction term, an approximate equation has been 

developed as follows.  

Let us consider equation [4.17]. Considering the numerical scheme for the 

RANS model, this equation can be written as  
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      With a guessed value of the correction term Xgs, equation [4.17] can be written 

as  
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    where superscripts n and n+1 refer to the solution at the current and next 

time level, the subscript gs refers to the values computed using Xgs and t is the 

discrete time step.   

Subtracting equation [4.21] from equation [4.20], assuming that in the 

vertical direction the respective velocity and shear stress gradients in both 

equations are the same and integrating the remaining terms over the flow depth 

give the following relationship 
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where the notation < > indicates that the velocity profiles are averaged 

over the depth. Since the purpose of the correction term is to adjust the velocity 

profile such that it gives a mean equal to the DA velocity computed from the DA 

model, therefore uun  1

.
 

Due to the approximations made in this derivation more than one iteration 

may be required to obtain the appropriate value of the correction term. Therefore 

the above expression can be written as 
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where subscript k refers to the iteration level for the correction term. The 

iteration procedure is described in the next section.  

 

4.5  SOLUTION PROCEDURE  

Steady DA model: 

For the depth averaged model, a time marching procedure is used to obtain 

the steady state solution. Since the McCormack scheme is explicit, time step 

should satisfy the Courant-Friedrichs-Lewy (CFL) criteria i.e. 

  1



 ghu

x

t
Ncfl  
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The steady state solution is achieved when the L2 norms of the residuals of 

the depth averaged continuity and momentum equations are reduced to 10
-4

.  

 

Steady RANS model: 

In the RANS model, at first the x momentum equation is solved by a time 

marching procedure. For each vertical a local time step is computed from a fixed 

Courant number (Cr), 

)max( ci

i
U

Cr
t   

where i refers to a particular vertical, ciU = contravariant velocities at all 

nodes of the vertical i. For stability Cr must be less than or equal to 1.  

At the beginning of the simulation, first the set of the discretized x 

momentum equations for each vertical is solved for one time step after setting the 

values of X equal to zero.  During this simulation if the mean of the computed u 

velocity profile is not within a specified tolerance of their corresponding depth 

averaged velocities, equation [4.23] is used to compute X and the velocity profiles 

are recomputed. This procedure is repeated until the mean of the computed 

velocity profiles are within a specified tolerance ( k ) of their depth averaged 

velocities. The tolerance is set as  
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  is the relative change in u velocity in previous two successive time steps 

and computed as 





2

2)(

u

u
  

Once the x momentum equation for all the verticals are solved for one time 

step, the RANS continuity equation is solved for the vertical velocity distributions 

by a control volume approach. For any vertical column of control volumes, 

computation starts from the bottom control volume and the vertical mass flux at 

the top face is computed explicitly setting the total flux to zero at the bed. This 

allows us to compute the vertical flux at the top face of the next control volume 

explicitly as the flux through all other faces are now known and continues up to 

the water surface. The nodal value of vertical velocity is computed from the linear 

interpolation of vertical velocity at two adjacent faces. As the mean of the 

computed u velocity profile conserves the continuity of the mean flow and the no 

flow condition is specified at the bottom, the computed vertical velocity at the 

water surface would satisfy the water surface kinematic condition automatically.  

For the non-hydrostatic RANS model, then the pressure Poisson and the z 

momentum equations are also solved for the non-hydrostatic pressure (NHP). For 

the Poisson equation a vertical line implicit approach is used. After solving the 
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Poisson equation for one vertical, the z momentum equation is solved for the NHP 

at the bottom node of that vertical. In the vertical line implicit method the NHP at 

any vertical is expressed implicitly while latest available values of pressure are 

used for the neighboring nodes. First a sweep starts from upstream to downstream 

followed by a downstream to upstream sweep and the sweeps continues until 

either the ratio of current residual to the residual at the beginning of the line 

implicit approach of the Poisson equation is less than a certain tolerance or the 

total number of sweeps reaches a certain value. An under-relaxation may be 

needed for the computed pressure for stability.  

The procedure is then advanced to the new time level using the newly 

computed values of u, w, 
'p  and X and the above procedure is repeated. This 

solution procedure continues until the solution converges to the steady state. The 

convergence to the final steady state solution of the RANS model is achieved 

when the L2 norm of residuals of the x momentum equation (L2 (u)) becomes less 

than 10
-4

. 

 

Coupling between the DA and the RANS models: 

The solution of both depth averaged and RANS to the steady state is 

named as N iteration. When one N is completed the perturbation terms are 

computed and feed back to the depth averaged equation to recompute the water 

level and depth averaged velocity. Then the RANS model is again solved using 
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the newly computed water level and depth averaged velocity. The whole solution 

procedure stops when the relative average change ( N ) in water depth in two 

successive N iteration is less than 0.001. N is computed as 





2

2

h

h
N


  

where h is the difference in the water depths in two successive N 

iterations.  

The whole solution procedure described above can be summarized as 

follows: 

Step1: Solve DA model to the steady state neglecting the perturbation 

terms. 

Step2: Solve RANS model to the steady state by solving: 

a) the RANS x momentum equation for one time step including the 

modeling of the correction term 

b) the RANS continuity equation 

c) the Poisson equation (for RANS-NH model) 

Repeat (a-c) until the steady state solution is achieved 

Repeat step 1 (now including the perturbation terms) and 2 until 

converged. 

The flow diagram of the solution procedure is given in Figure 4.3.  
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4.6 MODEL VERIFICATION 

4.6.1 Case 1: Flow development in a rectangular channel 

Ranga Raju et al. (2000) performed several experiments to investigate the 

flow development in a rectangular open channel with both smooth and rough 

beds. A glass-walled flume 15 m long, 0.75 m wide and 0.5 m deep was used. Of 

the experiments, run 8 and run 15 were conducted with smooth and rough beds 

respectively and are used for the model verification. For the depth averaged 

computation the inflow discharge is specified at the inflow boundary. For the 

downstream boundary, water depths of 0.078 m and 0.082 m are specified at the 

outlet for the smooth and rough beds respectively. For the RANS model, uniform 

velocity profile is specified at the upstream boundary. The bed roughnesses of 

0.0003 m and 0.005 m are used for the smooth and rough beds respectively. In 

this case a hydrostatic pressure distribution is assumed. A horizontal spacing of 

0.05 m with 15 nodes in the vertical direction is used giving a total of 4515 nodes. 

In the vertical direction the node spacing is smaller near the bed and increases 

towards the water surface.  Three other meshes with a horizontal spacing of 0.05 

m with 20 nodes in the z direction, 0.02 m in the horizontal and 15 and 20 nodes 

in the z directions have also been tested to ensure that the mesh used gives mesh 

independent solution by comparing the u velocity profiles at different locations.  

First the behavior of the correction term and the effects of the perturbation 

terms on water level and correction term are analyzed. Figure 4.4 shows the 

correction term (X) along with the water level for the rough bed. The value of X is 
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high near the upstream boundary of the flow and gradually reduces as the flow 

moves downstream and then becomes relatively small after 2.0 m from the 

upstream boundary. This happens because a uniform velocity profile is used as the 

upstream boundary condition for the RANS model. For this flow development 

velocity profiles gradually change shapes from uniform to logarithmic profiles. 

Therefore the bed stress computed by the RANS model is higher than the bed 

stress computed by the DA model in the initial portion of the channel. The 

gradient of the dispersion term is also important in this region as the shape of the 

flow profiles change. When the water surface is corrected for the dispersion term 

and the bed stress separately in the DA model, the value of X near the entrance is 

reduced by approximately 40% and 60% respectively.  The value of X is reduced 

to almost zero when both dispersion and bed stress are used together to correct the 

water surface. A comparison of the water levels for N=1 and 2 indicates that the 

relative change is 0.8% and both dispersion and bed stress increases the water 

level. Further correction by the new results from the RANS model does not 

change the water level by more than the tolerance  

 Figure 4.5a shows the vertical distribution of u velocity for the rough bed 

for N=1 and 2 which are compared with the experimental results. At x=1 m the 

whole profile changes its shape from uniform and further downstream it tend to 

become almost logarithmic. The model is also able to predict the profiles at all 

sections reasonably well. However the velocity profile at x=1 m is slightly under 
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predicted at the upper part and over predicted at the lower part of the profile. The 

relative differences between the simulated profiles for N=1 and 2 are negligible.  

Figure 4.5b shows the vertical distribution of u velocity for the smooth bed 

for N=1 and 2. For this case the flow development is relatively slow.  The model 

can predict the velocity profiles at all the three sections very well. At x=1 m the 

velocity profile changes from uniform only upto 0.2 m from bed above which the 

flow is almost uniform and the model is able to predict this changes quite well. 

After this section the velocity profiles gradually changes towards logarithmic 

profile. The relative differences between the simulated profiles for N=1 and 2 are 

also negligible.  

 

4.6.2 Case 2: Flow over a symmetric hump 

The experimental data of Sivakumaran et at. (1983) over a symmetric 

hump consists of water level and bed pressure. The experiment was conducted in 

a horizontal flume 9.15 m long, 0.3m wide and 0.65m high. The shape of the 

symmetric profile was created according to a normal distribution with a height of 

0.2 m at the center (Figure 4.6b). The length of the hump was 1.2 m. This case is 

an example of transcritical flow where the non-hydrostatic pressure is very 

significant. Therefore the RANS non-hydrostatic model is used to simulate the 

flow variables. For the depth averaged computations, inflow boundary is specified 

with a constant discharge of 0.11 m
3
/s/m. Since the downstream flow is 

supercritical no boundary condition is required. For the RANS model, a 
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logarithmic velocity profile is specified at the upstream boundary. A horizontal 

spacing of 0.02 m and 15 nodes in the vertical direction with smaller spacing near 

the bed is used for the simulation. For a mesh independence test, velocity profiles 

at different locations are compared for different mesh density. Further reduction 

in spacing both in the vertical and horizontal direction does not change the results.   

Figure 4.6a and 4.6b show the correction term and the water level. The 

value of X is relatively high as compared to the first case. In this case non-

hydrostatic pressure is significant and its effect on the correction term is the 

largest. When the water level is corrected by the dispersion, bed stress and non-

hydrostatic pressure the correction term is reduced by one order of magnitude in 

two corrections (N=3). This figure also shows that when the water level is 

corrected, the agreement between the experimental and numerical results is very 

good.  

The computed pressure for N=3 is compared with the experimental results 

in Figure 4.6c. The RANS model can predict the non-hydrostatic pressure quite 

well such that the total pressure around the hump crest and further downstream 

agrees well with the experimental data. In the upstream where non-hydrostatic 

pressure is not significant, total pressure shows a similar agreement as the water 

level.  
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4.6.3 Case 3: Flow over a dune 

Van Mierlo and de Ruiter (1988) carried out a series of experiments for 

the flow field in a trench. The experimental flume had a width of 1.5 m with a 

slope of 0.00094 m/m. Dunes of 0.08 m high and 1.6 m long were placed in the 

flume to create the trench. The lee side slope was 0.5 m/m which was followed by 

a horizontal bed of 0.1 m. Then the luff side bed starts and consists of three slopes 

of 0.031, 0.087 and 0.031 m/m with 0.25, 0.75 and 0.26 m in length followed by a 

horizontal bed of 0.08m (Figure 4.7). The bed was paved with material 

(d50=0.0016m) that had effective roughness of 0.0025 m. The results of 

experiment T5 are used for model verification. For the numerical simulation bed 

profile of three continuous dunes with a 1 m horizontal bed in upstream and 

downstream is created. The inflow discharge of 0.11m
2
/s and the downstream 

depth of 0.21 m were used as upstream and downstream boundary conditions 

respectively. This is probably one of the most complicated cases where 

recirculation of the flow occurs. For the RANS non-hydrostatic model, as 

obtained from a mesh independence analysis a horizontal spacing of 0.02 m with 

30 nodes in the vertical direction is used with smaller spacing near the bed. 

Similar to other cases velocity profiles at different locations is used to perform the 

mesh independence test. For the x momentum equation logarithmic velocity 

profile is specified at the upstream boundary. The horizontal velocity profiles in 

the middle dune are presented here. In this case non-hydrostatic pressure is 

considered. 
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Figure 4.7b shows the correction term for the flow over the dune. The 

value of the correction term is quite large near the start of the leeslope and the 

change is quite sharp. Afterwards along the slope the value decreases. Again near 

the start of the horizontal bed, a large change is observed. Thereafter the values 

are relatively small and small wavy shapes are observed at locations where 

change in slope occurs. When the water surface is corrected by the perturbation 

terms the relative change in water depth is 0.4% (Figure 4.7c). The values of the 

correction term does not change significantly except in some portion of the 

leeslope where the change in slope does not occur and the value of the dispersion 

term seem to be relatively high.  Further correction does not change the water 

depth by more than the tolerance.  

To test the effect of difference in the numerical discretization between the 

DA and the RANS models, water level in the RANS model is discretized by a 

forward difference instead of the centered difference and the correction term is 

plotted in Figure 4.7b. It shows that this correction term is almost twice the value 

of the correction term of the original model at the start of the lee slope. Therefore 

it appears that the correction term does not only account for the mathematical 

difference but also accounts for the numerical difference between two models. 

Figure 4.8 shows the comparison of the experimental and simulated u 

velocity profiles for N=1 and 2. Visually there is no difference between these two 

sets of results. Just downstream of the sill crest (x=0.06 m), the simulated profile 

is in reasonably good agreement with the experimental result including the reverse 
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flow. At x= 0.13 m the model result is also reasonable. But further downstream 

the strength of the recirculation is underpredicted by the present model. However 

as the flow moves through the luffside slope the difference between the 

experimental and numerical results tend to decrease and the model can predict the 

velocity profiles accurately at x=1.12 and 1.58 m.  

To test the effect of the non-hydrostatic pressure on the flow over the 

dune, the simulated near bed velocity of both the RANS-H and RANS-NH models 

are compared in Figure 4.9. The RANS-NH model can predict a longer 

recirculation zone than the RANS-H model due to the adverse pressure gradient in 

this zone. However in the luff slope where non-hydrostatic pressure is 

insignificant both models produce the same results.  

In general the RANS models are fairly good at predicting the velocity 

profiles in the flow development and the pressure for the flow over the symmetric 

hump. The feedback between the DA and the RANS model improved the results 

for the flow over the hump noticeably. However the compared velocity profiles 

did not change for the other cases. The model showed a good performance in 

predicting the velocity profiles in the converging section of the dune, but it could 

not reproduce the recirculation zone very well. In the recirculation zone the flow 

is more complex and a better turbulence model may be needed to accurately 

predict the length of the recirculation.  
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4.7 COMPARISON OF COMPUTATIONAL EFFORTS 

To get an estimate of the computational efficiency of the current RANS 

models, a comparison between the DA and the RANS models in terms of CPU 

time required to obtain the steady state solutions is made. All the computer 

programs of the DA and the RANS models are written in Matlab® and run in a 

PC with a 2.8 GHz processor.  

 

Case 1 

Modeling the flow development in a rectangular channel in the smooth 

and the rough beds by the hydrostatic RANS model requires approximately 14  

and 12  s (168 and 118 time steps) respectively which are the less than the time 

required by the depth averaged model (75 s, 4500 time steps) in N=1. The time 

required by the RANS-H in N=2 is 8 s and the DA model requires same 

computational time as in N=1.  

Case 2 

For modeling the flow over a symmetric hump RANS-NH model requires 

75 s (440 time steps) and DA model requires 135 s (5500 time steps) in  N=1. In 

each of N=2 and 3 RANS-NH require approximately 55 s (340 time steps) and 

DA requires approximately 130 s.  
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Case 3 

For the flow over the dunes, RANS-NH requires 100 s (580 time steps) 

and DA requires 150 s (6500 time steps) in N=1. RANS-NH and DA requires 80 

s(470 time steps) and 120 s (5200 time steps) respectively in N=2. The RANS-H 

model requires almost the same number of time steps but requires 75% of the 

computational time as the RANS-NH model due to the absence of the Poisson 

equation.  

The number of time steps required by the RANS model is approximately 

0.5 to 2 times the number of verticals with an explicit discretization in the 

longitudinal direction. On the other hand this factor is 10 to 20 for the solution of 

the depth averaged model by the explicit McCormack scheme. Although the 

tolerance for the steady RANS solution is set to 10
-4

, a tolerance of 10
-2

 can be 

used instead as the residuals are never increasing (monotonically decreasing) with 

the time steps as opposed to the depth averaged model where the residuals show a 

periodic pattern. This would allow achieving the steady state RANS solution 

almost at half the computational time reported above. For the test cases verified 

here, any typical 3D free surface model with a sequential implicit iterative solver 

might show similar convergence behavior as the DA models requiring time steps 

10 to 20 times the number of nodes in the longitudinal direction (Ye and 

McCorquodale, 1998). The new RANS models have also been tested with a very 

large aspect ratio without compromising the convergence behavior. This could be 

achieved because the continuity of the mean flow is maintained at each vertical at 
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each time step by the correction term instead of a pressure velocity coupling 

technique. 

 

4.8 CONCLUSIONS 

A coupled depth averaged-RANS model with or without the hydrostatic 

pressure assumption is presented for 2D plane flow. A correction term was added 

to the x momentum equation such that the mean of the horizontal velocity profiles 

becomes equal to the depth averaged velocity. The performance in modeling 2D 

plane flow in experimental channels showed good promise. The computational 

efficiency of the models is also satisfactory as the effort for the RANS solution is 

of the same order as the DA solutions.  
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Figure 4.1 Definition sketch 

 

 

 

 

 

 

 

 

 

Figure 4.2 Schematic diagram of coordinate transformation in the x and z 

dimensions 
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Figure 4.3 Flow diagram of the coupled DA-RANS model 
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Figure 4.4 Correction term (X) and Water level (H) for the flow development over 

rough bed.   (––) N=1, correction by (– –) dispersion, (--) bed stress, (– - –) 

dispersion and bed stress in N=2 
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Figure 4.5 Velocity profiles in the flow development in a rectangular channel (●) 

Experimental, (––) N=1 and (–– ––) N=2 for numerical. (a) Rough bed (b) Smooth 

bed. 
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Figure 4.6  (a) Correction term and (b) water level for the flow over a symmetric 

hump.  (●) Experimental, (––) N=1, (– –) N=2, (--) N=3 and (––) bed. (c) Bed 

pressure. Total pressure (●) Experimental, (––) N=1, (--) N=3. (– –), Hydrostatic 

pressure (numerical) for N=3. 
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Figure 4.7 (a) Dune bed (b) Correction term and (c) water level for the flow over 

dunes (––) N=1, (– –) N=2, (--) 


H
discretized by Forward difference in the 

RANS model (N=1). 
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Figure 4.8 u velocity profiles for the flow over a dune (●) Experimental, (–) 

Numerical, N=2 
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Figure 4.9 Comparison of simulated near bed velocity by (--) RANS-NH and (––) 

RANS-H models 
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Chapter 5  
 

COUPLED DA-RANS MODEL FOR 3D FLOW 

__________________________________________________________________ 

5.1 INTRODUCTION 

In chapter 4, the coupled DA-RANS model was developed and tested for 

2D plane flow. In this chapter the model is extended for 3D flow. The model is 

validated by simulating the flow in curved open channels and the flow around a 

hemisphere. Also the computational efficiency of the model is assessed by 

simulating the flow in a natural river.  

 

5.2 MATHEMATICAL MODEL 

The 3D RANS equations and the 2D depth averaged equations with their 

boundary conditions are presented in chapter 2.  

Using the analogy from the 2D plane flow and one dimensional DA flow 

equations the correction terms (X and Y) for the RANS x and y momentum 

equations in 3D flow can be written as  
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However as found from the results of 2D plane flow, the correction terms 

also represent the numerical differences between the RANS and the DA models.  

The equivalent RANS x and y momentum equations can then be written as  
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Therefore the pressure Poisson equation is modified as 
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5.3 NUMERICAL SCHEME 

For the depth averaged computation, equations [2.23], [2.24] and [2.25]  

are solved. All of the normal stresses are neglected for this study. Depth averaged 

modeling is accomplished by the McCormack scheme in the generalized 

boundary-fitted coordinate system. The DA continuity,  x and y momentum 

equations can be expressed in the conservative form after transforming them from 

Cartesian to non-orthogonal boundary-fitted coordinate by the partial 

transformation approach, that is (x,y)→(ξ,η) (Figure 5.1) but leaving the velocity 

components in Cartesian coordinate,  
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where cU , cV = contravariant depth averaged velocity components (

yxc vuU    and yxc vuU   ), J = Jacobian of the geometric 

transformation.  

The DA equations are solved by the McCormack scheme in a finite 

volume formulation. As the second order accurate McCormack scheme may 

produce oscillations (Chaudhry, 1990), it may be necessary to eliminate the 

oscillations by adding explicit damping term. The artificial viscosity is modeled 
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by following the procedure of Martinelli and Jameson (1988) used by Lackey and 

Sotiropoulos (2005) for open channel flow modeling.  The discretization by the 

McCormack scheme with the artificial viscosity is provided in appendix B.  

For a subcritical upstream boundary, a known discharge is specified and 

the water level is extrapolated from interior nodes. For a subcritical downstream 

boundary, a known water depth is used and discharge is extrapolated from interior 

points. For a supercritical upstream boundary both water level and discharge are 

specified while no boundary condition is needed for a supercritical downstream 

boundary and both water level and discharge are extrapolated from interior points. 

For the side walls free-slip boundary conditions are used. They are implemented 

by setting the contravariant velocity component cU wall equal to cU  at the first 

interior point while the condition of no flux perpendicular to the solid wall is 

applied by setting the contravariant velocity component cV wall to zero. Water 

levels at the side walls are extrapolated from interior nodes.  

The RANS continuity, x and y momentum equations for incompressible 

fluid including two correction terms (X and Y) can be expressed in the non-

conservative form after transforming them from Cartesian to the non-orthogonal 

boundary-fitted coordinate system by the partial transformation approach, that is 

(x,y,z)→(ξ,η,ζ) (Figure 5.2) but leaving the velocity components in Cartesian 

coordinate, 
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The pressure Poisson equation  
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The RANS z momentum equation  
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where u, v, and w = Cartesian velocity components in the x, y and z 

directions respectively, Uc, Vc and Wc= contravariant velocity components (

zyxc wuuU    zyxc wvuV   , zyxc wvuW   ),  

yxzyxzyx  ,,,,,,,  and 
z = components of transformation matrix. The 

direction coincides with the vertical direction while  and   follows the bed and 

water surface profile and so zz  , =0. Also


H
,


X
 and 0







Y
. 

The convective terms are discretized by a first order upwind method. The 

pressure gradient terms are approximated by a centered difference method. The 

gradient terms in the ξ and η directions are discretized explicitly with an implicit 

coupling in the ζ direction which allows solving each vertical independently using 

the values of the neighboring verticals from the previous time step and avoids the 

solution of a large matrix. The shear stresses are computed by a zero equation 

turbulence model. 

   For the RANS x and y momentum equations vertical profiles of u and v are 

specified as the upstream boundary condition. For the side walls free-slip 

boundary conditions are used. They are implemented by setting the contravariant 
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velocity component Uc,wall equal to Uc at the first interior point while the condition 

of no flux perpendicular to the solid wall is applied by setting the contravariant 

velocity component Vc,wall to zero. The law of the wall is used as the bottom 

boundary condition and a zero shear stress is specified at the water surface. 

Logarithmic velocity profiles based on the depth averaged velocities are specified 

as the initial condition at each vertical.  

 

5.4 MODELING THE CORRECTION TERM 

Following the procedure described for 2D plane flow, the iterative 

formulae to model the correction terms can be written as  
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5.5 SOLUTION PROCEDURE  

For the depth averaged model, a time marching procedure is used to obtain 

the steady state solution. Local time stepping is used by maintaining a constant 

Courant number for every node. Then the time step is computed as  



124 

 

 

 ,,max 2222
yxcyxc

ij

cVcU

Cr
t

 
  

 

where, i,j refers to a particular node. Since the McCormack scheme is 

explicit, time step should satisfy the Courant-Friedrichs-Lewy (CFL) criteria i.e 

1Cr  

The steady state solution is achieved when the L2 norms of the residuals of 

the depth averaged continuity and momentum equations are reduced to 10
-4

.  

In the RANS model, a time marching procedure is also used to obtain the 

steady state solution. For each vertical a local time step is computed from a fixed 

Courant number (Cr), 

 

),max( ,, jiji

i
VU

Cr
t                                          

 

where i,j refers to a particular vertical. 

The solution procedure is the same as the 2D plane flow except the RANS 

y momentum equation is also solved for v velocity together with the x momentum 
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equation and the correction term Y is modeled so that the mean of the modeled v 

velocity profile is equal to v .   

 

5.6 MODEL VALIDATION  

5.6.1 Modeling flow in curved open channels  

Among different types of flow in open channels the flow in meandering 

channels have drawn special attention from hydraulic engineers and researchers as  

it is practically harder to find a natural river with a straight reach longer than 10 

channel width (Leopold and Wolman 1960) and the meandering channels exhibit 

special flow characteristics. The flow characteristics are the superelevation, flow 

acceleration in the inner bank and deceleration in the outer bank at the entrance of 

the bend, secondary flow and the redistribution of the longitudinal velocity. The 

first characteristic is mainly due to the centrifugal force acting on the fluid and the 

second one is a result of the first one. The secondary flow is due to the 

superelevation and non-uniform distribution of longitudinal velocity which in turn 

causes the flow redistribution.  

The two dimensional (2D) depth averaged (DA) models based on the 

classical St Venant equations can only predict the first two characteristics. But 

they are unable to predict the other characteristics due to the uniform velocity 

assumption in its derivation. To model the secondary current and the flow 

redistribution many models ranging from the analytical, improved DA (quasi-3D), 

to full 3D models have been developed by different researchers. 
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Boussinesq developed a mathematical formulation of the laminar flow in a 

mildly curved channel to describe the secondary motion in a bend (Demuren and 

Rodi, 1986). Different varieties of perturbation techniques have been developed to 

analyze the flow in curved open channels (Rozovskii 1957, Yen 1965, Engelund, 

1974). Johannesson and Parker (1987) developed an analytical model for 

calculating the lateral distribution of the depth averaged primary velocity by using 

the moment method and a linear perturbation technique. DeVriend (1976, 1981) 

and Kalkwijk and DeVriend (1980) modified the depth averaged equations by 

including local functions for the velocity deviations and developed mathematical 

models in the curvilinear coordinate system. They showed that it is important to 

include the convective influence of the secondary flow on the main flow. Jin and 

Steffler (1992) developed a finite element model which consists of the DA 

continuity equation, the momentum equations and two moment of the momentum 

equations.  The vertically averaged and the moment (VAM) equations developed 

by Steffler and Jin (1992) were used by Ghamry and Steffler (2005) to simulate 

the flow in curved open channels and with different assumed distribution shapes 

for velocity and pressure (Ghamry and Steffler 2002). 

Many computational fluid dynamic (CFD) models based on the RANS 

equations have been developed to simulate the flow in curved open channels and 

are generally capable of predicting the flow characteristics. Demuren and Rodi 

(1986) simulated the flow in a rectangular channel while Morvan et al. (2002) 

used a compound channel assuming the water surface to be a rigid lid. Ye and 
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McCorquodale (1998) used the DA continuity equation to update the water 

surface. Wu et al. (2000) used the 2D Poisson equation derived from the 2D DA 

equations while Meselhe and Sotipoulos (2000) used the free surface kinematic 

condition for modeling the water level variations. Nguyen et al. (2007) developed 

a three dimensional model in a finite element formulation with a segregated 

solver. A Lagrangian approach was used for modeling the free surface. 

The depth averaged models based on the St Venant equations are 

incapable to produce the secondary flow and redistribution of longitudinal 

velocity. The dispersion terms (
''uu ,

'' vu ,
'' vv ) due to the non-uniform velocity in 

the complete depth averaged equations are responsible for the flow redistribution.  

In this study, the coupled DA-RANS model is validated to simulate the flow in 

curved open channels. Ghamry and Steffler (2005) showed that the vertical 

velocity and non-hydrostatic pressure may only be important very close to the 

side walls, therefore the vertical velocity and non-hydrostatic pressure are 

neglected here. The eddy viscosity is computed by the specified vertical profile of 

eddy viscosity model (Equation [2.33]).  The experimental results of Rozovskii 

(1957) and Steffler (1984) are used for model verification.  

 

Rozovskii’s experiment 

The experimental data of Rozovskii (1957) have widely been used to 

validate the capability of different numerical models to simulate the flow field and 
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predict the secondary flows in a bend that exhibits strongly three dimensional 

characteristics. Rozovskii performed his experiments in a 180° curved rectangular 

flume with a very strong degree of curvature (Rc/2b=1, Rc= radius of the centre of 

the bend, b= half channel width) The secondary velocities produced in his 

experiments were very strong due to the sharp curvature of the channel. The 

results of run 1 are used to test the numerical predictions of the present model.  

Rozovskii’s channel consisted of a 6m long straight approach and a 3m 

long straight exit with a 180° bend (Figure 5.3). The width of the channel was 0.8 

m, and the radius of the channel centerline was 0.8 m for the circular reach. The 

channel bed was horizontal and smooth with a Chezy coefficient of 60 m
1/2

/s. The 

inflow discharge was 0.0123 m
3
/s with the flow depth at the entrance equal to 

0.06 m. This gives a mean velocity at the entrance equal to 0.256 m/s. For the DA 

model inputs, a steady inflow discharge of 0.0123 m
3
/s and a constant depth equal 

to 0.057m are used at the upstream and downstream boundaries respectively. 

Based on the measured Chezy coefficient the corresponding roughness height is 

estimated to be 0.0003 m.  

To test the mesh independency of the numerical results, 3 meshes with 140 

(longitudinal) X 17 (transverse), 140X25 and 180X33 are tested for the DA 

model. For the streamwise direction a denser spacing is used in the bend region 

with a coarser spacing in the straight reaches. For the transverse direction an equal 

spacing is used. The discharge per unit width at different sections
 
of the bend is 

compared for the meshes. The results at 90
0
 of the bend are plotted in Figure 5.4 
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which shows that the results of the second and third girds in the region YR/b= -

0.75 to 0.75 are close. These results show similarity with those of Lackey and 

Sotiropoulos (2005) who verified their depth averaged model with a centered 

difference scheme and artificial viscosity by simulating this experimental data. 

They tested 3 meshes with 125 (longitudinal) X 21 (transverse), 253X41 and 

505X81 nodes and compared the variation of the longitudinal velocity in the 

transverse direction at different sections. It showed that results due to the mesh 

refinement vary only near the side walls especially in the inner bank. This 

difference increases towards the downstream sections.  

For the RANS model, mesh 2 and 3 are tested with 15 and 20 nodes in the 

vertical direction and the longitudinal velocity at different locations are compared. 

A typical comparison is shown in Figure 5.5. Generally 15 nodes in the vertical 

are sufficient for the RANS model. Therefore a mesh of 140X25X15 is used for 

simulating this experimental data.  

The coupled model converged after 5 iterations (N=5). Figure 5.6 shows 

the depth averaged velocity at different sections for N=1 and N=5. The solution of 

the DA model at N=1 is actually the solution of the classical St Venant equations 

which ignores the effect of the dispersion terms. As compared in the figure, the 

feedback of the dispersion terms into the DA model can simulate the flow shifting 

from the inner towards the outer bank. So the results at N=5 generally give a 

better agreement with the experiment. As the flow moves towards the end of the 

bend the amount of flow shifting increases. 
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The computed longitudinal velocity (uL) profiles at N=5 are shown in 

Figure 5.7 and compared with the experimental results. Generally all the profiles 

show good agreement with the experimental results. At section 6 which is located 

at 100
 
degree of the bend, the profiles at the center (YR/b=0), outer side (YR/b=0.5, 

0.75) and inner side (YR/b=-0.5, -0.75) of the bend matches very well with the 

experimental results. However the model overpredicts the near bed velocity and 

underpredicts the near surface velocity near the inner bank at YR/b=-0.75. At 

section 8 (144 degree) the model predicts the center (YR/b=0) and the outer 

(YR/b=0.5, 0.75) profiles very well. In the inner side the model cannot predict the 

velocity dip at the surface. Just downstream of the exit (Section 10), the model 

results show similar agreement with the experiment as section 8.   

The simulated transverse velocity (uT) profiles are compared with the 

experimental results and shown in Figure 5.8. At section 6 the simulated profiles 

agree well with the experimental results in the center (YR/b=0.0) and outer side 

(YR/b=0.5, 0.75). At the inner side (YR/b=-0.5) the model underpredicts the near 

bed velocity and at YR/b=-0.75 the model underpredicts the strength of the 

secondary flow. At section 8 the model can reproduce the experimental results 

quite well expect it underpredicts the near bed velocity at YR/b=-0.5. At section 

10, the model consistently underpredicts the near bed velocity. However the 

results near the surface are reasonably good.  
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Steffler’s experiment 

Steffler (1984) conducted experiments in a 270° bend with a moderate 

curvature (Rc/2b=3.4) at the Hydraulics laboratory of the University of Alberta, 

Edmonton. The flume was 1.07 m in width, 0.21 m in depth with a 13.4 m long 

straight inlet and 2.4 m long outlet sections (Figure 5.9). The radius of the 

centerline was 3.66 m. The bed slope was constant at a value of 0.00083 with a 

dimensionless Chezy coefficient equal to 16 giving a roughness height of 0.0013 

m.  

Four meshes of 180X15, 180X21, 180X29 and 240X29 are tested for the 

DA model and then mesh 2 and 4 are tested with 15 and 20 nodes in the vertical 

direction. Finally the mesh of 180X21X15 is selected for the DA-RANS model. 

This gives a total of 3780 and 56700 computational nodes for the DA and the 

RANS models respectively. For the DA model at the upstream boundary a steady 

inflow discharge of 0.0224 m
3
/s is used. For the downstream boundary a constant 

depth equal to 0.061 m is used. Based on the measured Chezy coefficient the 

corresponding roughness height is estimated to be 0.0013 m.  

The coupled model converged after 6 iterations (N=6). Figure 5.10 shows 

the depth averaged velocity at different sections for N=1 and N=6. At the entrance 

(Section 1) the St Venant equations (N=1) can simulate the flow acceleration near 

the inner bank correctly and the dispersion terms have no effect at this location 

(N=6). As the flow moves along the bend, the results at N=1 tend to deviate from 

the experimental results and the deviation increases with the distance from the 
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entrance. When the effects of the dispersion terms are introduced into the DA 

model, model results improve significantly. At section 2 the numerical and 

experimental DA velocity are in very good agreement at N=6. At section 3 the DA 

velocity is overpredicted near the inner bank. At section 4 the DA velocity is 

slightly overpredicted at the inner bank and slightly underpredicted at the outer 

bank. However the feedback of the dispersion terms can improve the DA results 

significantly.  

The computed longitudinal velocity (uL) profiles at N=6 are shown in 

Figure 5.11. All the profiles show good agreement with the experimental results. 

The model generally overpredicts the velocity and cannot reproduce the velocity 

dip near the surface in the inner bank. The model can predict the velocity profiles 

reasonably well near the center and the outer bank.  

The simulated transverse velocity (uT) profiles are compared with the 

experimental results and shown in Figure 5.12. At the entrance (Section 1), flow 

shifts from the outer toward the inner bank due to the acceleration at the inner 

bank and deceleration at the outer bank and the model can predict the 

unidirectional radially inward motion. At sections 2, 3 and 4 the predicted 

velocity profiles show the secondary motion from the inner towards the outer 

bank near the water surface with a relatively weaker counterflow near the bed.  

The model results also show good agreement with the experiment, however it 

underpredicts the near bed secondary motion at the centre (YR/b=0) and middle of 

the outer bank (YR/b=0.4) and overpredicts the near surface velocity at (YR/b=0.8). 
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Comparison of computational effort 

To get an estimate of the computational efficiency of the DA-RANS 

model in simulating the flow in curved open channels, a comparison between the 

DA model and the RANS model in terms of CPU time required to obtain the 

steady state solutions is made. All the computer programs of the DA and RANS 

models are written in Matlab® with a 2.8 GHz processor. 

 

Figure 5.13 shows the CPU time and number of time steps required for 

simulating the flow in Rozovoskii’s bend which converged in 5 iterations (N=5). 

At N=1, the DA and the RANS models require 1000 s (7200 time steps) and 265 s 

(213 time steps) respectively. For the next four iterations, the DA model requires 

950 s while the RANS model requires 800 s approximately. Figure 5.14 shows the 

comparison of computational efforts for simulating the flow in Steffler’s bend 

which converged in 6 iterations. At N=1, the DA and the RANS models require 

920 s (6500 time steps) and 190 s (135 time steps) respectively. For the next five 

iterations, the DA and the RANS models require 850 and 560 s respectively. 

 

5.6.2 Modeling flow around a hemisphere 

Shamloo (1996) conducted a series of experiments to investigate the flow 

around hemispheres with different flow and geometry at the Hydraulics 

Laboratory of the University of Alberta.  The experimental flume was 1.22 m in 
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width, 0.2 m in height. The bed was made of smooth aluminum and side walls 

were made of Plexiglas. Experiment AS1 was conducted under a moderate 

relative depth to the height of the hemisphere of 1.85 and is used here for model 

verification. In this experiment, the diameter of the hemisphere was 0.130 m with 

an inflow discharge of 0.054 m
3
/s and average water depth of 0.12m. The bed 

slope was 0.00147.  

In the current RANS model, a non-orthogonal boundary-fitted coordinate 

system is used. It is generally recommended to limit the departure from 

orthogonality to less than 45 degree (Thompson et al. 1985). Therefore the 

geometry of the hemisphere is modified by extending the slope at 45
0
 to the bed 

(Figure 5.15). The commercial CFD model CFX 12.0 which uses a fully coupled 

solver, is also used to simulate the flow around the modified geometry in order to 

compare with the current model results.    

For the DA-RANS model, a domain of 4mX0.8m with the modified 

hemisphere at the center is discretized with a mesh of 165X65X15. The horizontal 

node spacing near the hemisphere is 0.01m. For the DA model, at the upstream 

boundary an inflow discharge of 0.054 m
3
/s is provided. At the downstream 

boundary a water depth of 0.12 m is provided. For the RANS model, logarithmic 

velocity profiles corresponding to the DA velocity are provided at the upstream 

boundary. The feedback of the perturbation terms was not possible as it makes the 

DA model unstable.  
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For the model in CFX, only the half of the domain symmetric about the 

centerline along the x axis is modeled. The domain of 4mX0.4 m is discretized 

with 225,086 nodes and 1,233,315 elements. The horizontal node spacing near the 

hemisphere is 0.01m while in the vertical it is 0.005 m. A high resolution 

discretization technique and the standard k  turbulence model are used with a 

smooth bed. The water surface is approximated with a rigid lid. At the upstream 

boundary logarithmic velocity profiles are used as the boundary conditions.  

The simulated longitudinal velocity profiles of both models are compared 

in Figure 5.16. Experimental results at x/D=-0.77, 0, 0.25 and 0.4 are also 

compared. At x/D=-0.77 which is located just at the toe of the modified geometry, 

the profiles from both models are in good agreement. However they do not match 

with the experimental results near the bed as this location is upstream of the toe in 

the original geometry. At x/D=0.0, CFX results show better agreement than the 

DA-RANS model, although both models overpredict the results. At x/D=0.25 both 

model can predict the shape of the profile and however they overpredict it. At 

x/D=0.4, both models underpredict the near bed velocity and overpredict the 

upper profile. In general both models produce similar results.  

 

Comparison of computational efforts 

 The DA model  requires a CPU time of 30 minutes (3200 time steps) and 

the RANS model requires 20 minutes (350 time steps) to obtain the steady state 
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solution. On the other hand, the CFX model requires 120 minutes (120 time 

steps).  

 

5.6.3 Flow modeling in the North Saskatchewan river 

Dow (2003) studied the mixing characteristics in a 2 km stretch of the 

North Saskatchewan River near the Goldbar waste water treatment plant 

(GBWWTP) in Edmonton (Figure 5.17). She used the River2D model to simulate 

the steady two dimensional distribution of depth averaged velocity and water 

depth. The upstream boundary was located at about 0.5 km upstream of the 

GBWWTP outfall and the downstream boundary was located at about 1.5 km 

downstream of the outfall. The inflow discharge was 148.8 m
3
/s and the flow 

through the outfall was 3.34 m
3
/s. The domain was discretized by 63,424 nodes 

and 126,076 triangular elements. The results from the River2D model of Dow 

(2003) are used to run both the RANS-H and RANS-NH models. The purpose of 

this simulation is to get an estimate of the computational efficiency of the RANS 

model.  

For the RANS models a reduced domain is used. Because it is difficult to 

discretize the region near the bridge piers by the boundary-fitted coordinate 

system, the reduced domain spans from the upstream boundary upto the upstream 

of the bridge. The length of this reduced domain is about 1.3 km. For locating the 

side wall boundaries cumulative discharge is used and the boundaries are located 

along cumulative discharge of 2 and 147 m
3
/s. Since the side wall boundaries are 
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located along constant cumulative discharge, the depth averaged flow 

perpendicular to the walls is zero. The domain is first discretized with 783 and 65 

nodes in the longitudinal and transverse directions respectively. The node spacing 

is 2 m approximately. The bed elevations, bed roughness, water level and the 

discharge intensity per unit width in the x and y directions are extracted at the 

node locations using the post processor of River2D. Then the domain was 

discretized by 15 nodes in the vertical direction. Thus the total number of node for 

the RANS model is 763,425. Because the sidewall boundaries are located inside 

the river water, the no flow boundary condition perpendicular to the wall is not 

applied for the RANS model. Rather the contravariant velocity perpendicular to 

the wall is set equal to the velocity at the first interior node and the computed 

velocity profiles are adjusted to get the mean of the computed velocity profile 

equal to the DA velocity. The RANS-H and RANS-NH models require 

approximately 1 and 1.5 hour of CPU time respectively to obtain the steady state 

solution.  

 

5.7 CONCLUSION 

The coupled DA-RANS model is verified by modeling the flow in curved 

open channels and flow around a hemisphere. In the curved open channel flow, 

the model showed very good performance when compared with the experimental 

results. For modeling the flow around the hemisphere, the model results are also 
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compared with the results from CFX. The computational efficiency of the RANS 

model is also verified by simulating the flow in the North Saskatchewan river 

which showed satisfactory results.  
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Figure 5.1 Schematic diagram of coordinate transformation in the x and y 

dimensions 
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Figure 5.2 Schematic diagram of coordinate transformation in the x, y and z 

dimensions 
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Figure 5.3  Layout of Rozovskii’s experiment 
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Figure 5.4 Comparison of discharge per unit width (m3/s/m) for three different meshes in 

Rozovoskii’s experiment. (––) 140X17, (–– ––) 140X25 and (---) 180X33. 

 

 

 

 

 

 

 

Figure 5.5 Comparison of longitudinal velocity profile at the center of 900 of 

Rozovoskii’s bend for the meshes (––) 140X25X15 and (---) 180X33X20. . 

-1 -0.5 0 0.5 1
0

0.01

0.02

0.03

Y/b 

q x
 (m

3 /s
/m

) 



143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Comparison of depth averaged velocity at different sections of 

Rozovoskii’s experiment. (Circle-Experimental, Solid: N=1, Dashed: N=5) 
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Figure 5.7 Comparison of longitudinal velocity at different sections (S) in 

Rozovoskii’s experiment. (Circle: Experimental, Solid: Numerical N=5) 
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Figure 5.8 Comparison of transeverse velocity at different sections in 

Rozovoskii’s experiment. (Circle: Experimental, Solid: Numerical N=5). 
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Figure 5.9 Layout of Steffler’s experiment 

 

 

 

  

R
c

180
0

4
2

b =0.535 m

Flowb =0.535 m

3

0
0

13.4  m
Section 1

2.4 m
=3.66 m

Y

270
0

90
0

YR 



147 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Comparison depth averaged velocity of Steffler’s experiment. (Circle-

Experimental, Solid: N=1, Dashed: N=6) 
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Figure 5.11 Comparision of longitudinal velocity at different sections of Steffler’s 

experiment. (Circle: Experimental, Solid: Numerical N=6,) 
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Figure 5.12 Comparison of transverse velocity at different sections of Steffler’s 

experiment. (Circle: Experimental, Solid: Numerical N=6). 
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Figure 5.13 Comparison of computational work for Rozovoskii’s experiment. 

(White: DA model, Grey: RANS Model) 
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Figure 5.14 Comparison of computational work for Steffler’s experiment (White:- 

DA model, Grey: RANS Model). 
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Figure 5.15 Layout of Shamloo’s experirment. (a) 3D contour of bed. (b) cross 

section, Solid: Modified, Dashed: Original geometry. 
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Figure 5.16 Comparison of velocity profiles in Shamloo’s experiement.( Circle:  

experimental, dotted: DA-RANS, dash-CFX) 
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Figure 5.17  Bed contour of the study site of the North Saskatchewan river 
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Chapter 6  
 

SUMMARY AND CONCLUSIONS 

 

__________________________________________________________________ 

This study can be divided into two parts: developing iterative matrix 

solvers for a depth averaged river model and developing an open channel flow 

model by a combination of a depth averaged (DA) model and a Reynolds 

averaged Navier-Stokes (RANS) model.  

 

Iterative solvers 

The implicit modeling of the governing depth averaged equations for open 

channel flow modeling requires numerous solution iterative solutions of a large 

linear system. However no previous study has been performed on iterative solvers 

for the steady open channel flow computation. Therefore this study investigates 

the behavior of iterative linear solvers for the depth averaged model ‘River2D’.  

This is an implicit model which solves the St. Venant equations discretized by the 

Characteristic Dissipative Galerkin finite element method. The matrix of the 

linear system is unsymmetric, therefore the techniques developed for solving an 

unsymmetric matrix are used. The most widely used methods for an unsymmetric 
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matrix are the Generalized Minimal Residual (GMRES) and the Bi-Conjugate 

Gradient Stabilized (BiCGSTAB) methods known as the Krylov subspace 

methods. For efficiency of these methods various preconditioners such as Jacobi, 

Symmetric Gauss-Seidel (SGS) and Incomplete Lower Upper (ILU) factorizations 

are used to improve the efficiency. After performing numerical experiments, it is 

found that although the ILU preconditioners are generally far better than the other 

preconditioners, they become unstable for larger time steps.  

To improve the ILU preconditioned solvers, a novel technique is 

introduced where the preconditioners are obtained from the Jacobian matrix of 

lower time step based on Courant numbers and named as Lower Courant number 

ILU preconditioner (LCIP). It is found that the LCIP can substantially increase the 

efficiency and robustness of both GMRES and BiCGSTAB when large time steps 

are used to simulate the flow. The optimum values of the lower Courant numbers 

are obtained for the ILU preconditioners. The range is from 5 to 20. For test cases 

a choice of 15 gives near optimal performance for all ILU preconditioners. Using 

the optimum Courant numbers, the performance of the ILU preconditioned 

GMRES and BiCGSTAB solvers are compared, where in most cases ILU(0) 

preconditioner is found to be better than the other preconditioners except for 

larger time steps in GMRES where ILU(2) shows a better performance. When 

comparing the GMRES and BiCGSTAB methods with the ILU(0) preconditioner, 

BiCGSTAB is found to be better than GMRES.  A mesh refinement analysis for 

ILU (0), ILU(1) and ILU(2) preconditioned GMRES and BiCGSTAB is 
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performed and the computational work is found to be approximately proportional 

to Nn
β
, where Nn is the number of nodes and average value of β is 1.37. 

 

DA-RANS model 

A steady flow model is developed and tested by a combination of the 

depth averaged (DA) and the Reynolds averaged Navier-Stokes (RANS) 

equations. This model avoids the dynamic free surface computation and uses an 

explicit-implicit solver. This model also applies new techniques for mass balance 

and non-hydrostatic pressure computation. The model consists of two parts, a DA 

model and a RANS model with different modeling options. First a depth averaged 

model is solved to the steady state to obtain the water surface elevation and depth 

averaged velocity neglecting the non-uniform velocity (NUV) and non-

hydrostatic pressure (NHP). Then for the hydrostatic RANS (RANS-H) model, 

the RANS horizontal momentum equations are solved to obtain horizontal 

velocity profiles together with the continuity equation for vertical velocity profiles 

using the computed water surface as a fixed upper boundary. The mass balance is 

retained by adding correction terms in the horizontal momentum equations such 

that the mean of the RANS horizontal velocity is equal to the DA velocity. This 

also enables modeling the horizontal velocity by only solving the RANS 

horizontal momentum equations and neglecting the vertical velocity. In the non-

hydrostatic model (RANS-NH), the pressure Poisson equation derived from the 

RANS equations is solved for the non-hydrostatic pressure assuming a zero 
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pressure at the water surface and using the vertical momentum equation for the 

bottom node.  

The model is first developed for two dimensional plane flow. The DA 

model is solved by the explicit McCormack scheme. The RANS momentum and 

the Poisson equations are discretized and solved in a non-orthogonal boundary-

fitted coordinate system by the finite difference method with a zero equation 

turbulence model. For the Poisson equation a vertical line implicit approach is 

used. A technique is developed to model the correction term. A time marching 

procedure was used where first the RANS horizontal momentum equation is 

solved for one time step followed by the vertical velocity and NHP computation. 

This procedure continues until the steady state RANS solution is achieved. Once 

the RANS model results are obtained the effects of NUV, bed stress and/or NHP 

can be introduced in the DA model and the water surface and DA velocity can be 

recomputed. Then the RANS modeling can be performed using the newly 

obtained DA results.  

The model is verified by simulating and comparing with the experimental 

results of flow development in a rectangular channel, flow over a symmetric 

hump and flow over a dune. The effect of the feedback on model performance and 

the relation between the DA and RANS models through the correction term are 

investigated. The correction term generally reflects the mathematical and 

numerical differences between the two models. The model can predict the 

horizontal velocity profiles and the non-hydrostatic pressure very well except the 
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flow recirculation in the flow over a dune. A comparison of the computational 

time of the DA and the RANS models are also performed which shows that the 

RANS model is as fast as the DA model.  

The model is then extended for three dimensional (3D) flow using 

numerical techniques similar to the 2D plane flow. The 2D DA model requires 

artificial viscosity for stability. The model was first verified by simulating the 

flow in two curved open channels for which experimental data are available. For 

this case the NHP and vertical velocity are neglected. In the feedback process 

between the DA and RANS model, only the dispersion term that is the effect of 

the NUV is used. The flow shifting from the inner towards the outer bank is well 

simulated. Next the non-hydrostatic model is verified by simulating the flow over 

a modified hemisphere and comparing the results with the experiment and the 

results from a commercial CFD model (CFX). But in this case the feedback 

process cannot be performed as the DA model becomes unstable. Finally the 

computational efficiency of the RANS model is examined by simulating the flow 

in a 1.3 km reach of the North Saskatchewan river where the hydrostatic and the 

non-hydrostatic RANS models require 1.0 and 1.5 hours for convergence with 

over 700,000 computational nodes. All the computer programs for the DA-RANS 

model are written in Matlab® and run in a personal computer with a 2.8 GHz 

processor . 

Several important contributions are achieved in this research: 
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a)  A novel and robust technique is developed for the iterative solution of 

linear system by incomplete lower upper (ILU) preconditioned Krylov 

subspace methods. This technique can be adopted in any numerical 

model that uses a pseudo transient term to converge to steady state.  

b) The computational work by the Krylov methods preconditioned by the 

new technique is proportional to the number of nodes with an exponent 

of 1.37. 

c) The coupled DA-RANS model provides a wide range of modeling 

options. The user can make the decision based on the DA results, 

whether a RANS solution is required. If a RANS model is needed, it 

can be hydrostatic with or without considering the vertical velocity, or 

non-hydrostatic. Once the first RANS solution is obtained, the user can 

decide if there is merit in performing the feedback iteration and if so, 

the user can select the important factors such as the dispersion, NHP or 

stress. Conceivably, the software could be written to provide these 

refined solutions for only selected portions of the modelled domain.  

d)  Finally the excellent computation efficiency of the RANS model will 

enable the modeling of large domains with a refined mesh.    

 

 

 



161 

 

Also several issues have not been addressed in this research but can be 

done in future: 

a) For the study on the linear solver, only the finite element model with 

the steady state solution is tested. Other techniques such as the finite 

volume methods with higher order discretizations can be investigated. 

Also the case of unsteady flow can be tested.  

b) In the coupled model development, McCormack scheme is used for the 

DA model which is generally prone to oscillation and stability and 

requires artificial viscosity. On the other hand, the RANS model is 

discretized by a finite difference method. Moreover, only a first order 

upwind method is used in the RANS model. Other techniques 

especially the finite element technique can be used as it provides 

flexibility to model the complex natural geometry. As such the 3D 

model can be developed using the framework of the River2D model. 

c) The coupled model is developed for steady flow computation. The 

model can be adapted for unsteady flow calculations where the 

coupling between the DA and the RANS model will take place at each 

time step. 

d) Only zero equation turbulence models are used in the RANS model. 

One or two equation models can also be tested especially for the 

simulation of the flow over the dunes.  

 



162 

 

 

REFERENCES 

 

__________________________________________________________________ 

Barragy, E., Carey, G.F. (1993). Application of conjugate gradient methods to 

tidal simulation.  Advances in Water Resources, 16, 163-171. 

Bertin, J.J. (1987) Engineering fluid mechanics. 2
nd

 edition, Prentice Hall, 

Englewood Cliffs, NJ. 

Buelow, P.E.O., Venkateswaran, S., Merkle,C.L. (1994). Effect of grid aspect 

ratio on convergence. AIAA J., 32 (12), 2401-2409. 

Chapman, A., Saad, Y. and Wigton, L. (2000). High-order preconditioners for 

CFD problems. Int. J. Numer. Meth. Fluids., 33, 767-788. 

Chaudhry, M.H. (1993). Open channel flow. Prentice-Hall, Englewood Cliffs, 

N.J.  

Chorin, A.J. (1967). A numerical method for solving incompressible viscous flow 

problems. J. Comput. Phys., 2, 12-26. 

Chow, E., Saad, Y. (1997). Experimental study of ILU preconditioners for 

indefinite matrices.  J. Comp. Appl. Math., 86, 387-414. 

Chung, T.J. (2002). Computational fluid dynamics. Cambridge University Press, 

Cambridge, UK.  



163 

 

Cuthill, E.H., McKee, J.M. (1969). “Reducing the bandwidth of Sparse 

Symmetric Matrices. Proc. of the 24th National Conference of the Association 

for Computing Machinery, Brondon Press, 157-172. 

Dargahi, B. (2004). Three-dimensional flow modeling and sediment transport in 

the river Klaralven. Earth Surf. Process. Landforms, 29, 821-852.  

Daubert, A., Graffe, O. (1967). Quelques aspects des ecoulements Presque 

horizontaux s deux dimensions en plan et non permanents application aux 

estuaries. La Houille Blanche, 8, 847-860. 

Demuren, A.O., Rodi, W. (1986). Calculation of flow and pollutant dispersion in 

meandering channels. J. Fluid Mech. 172, 63-92. 

De Saint-Venant, B. (1871). Theorie du movement non permanent des eausx, avec 

application aux crues de rivieras et a l’introduction des merces dans leur lit. 

Comptes Rendus de l’Academic des Science, 73: 147-154, 237-240. 

DeVriend, H.J. (1976). A mathematical model of steady flow in curved shallow 

channels. Report No. 76-1, Dept. of Civ. Eng., Delft University of 

Technology. 

DeVriend, H.J. (1976). Steady flow in shallow channel bends- Part I. Report No. 

81-3, Dept. of Civ. Eng., Delft University of Technology. 

Dow, K. (2003). Intermediate field mixing of wastewater effluent in the North 

Saskatchewan river at Edmonton Alberta. M.Sc. thesis, University of Alberta, 

Canada. 



164 

 

Dressler, R.F., (1978). New nonlinear shallow-flow equations with curvature. J. 

Hydraul. Res., 16(3) 205-220. 

Dutto, L.C. (1993). The effect of reordering on the preconditioned GMRES 

algorithm for solving the compressible Navier-Stokes equations. Int. J. 

Numer. Meth. Eng., 36, 457-497.  

Elgamal, M.H. (2002). Applications of moment approach to bedforms. Ph.D. 

thesis. University of Alberta, Canada. 

Engelund, F. (1974). Flow and bed topography in channel bends. J. Hydraul. 

Eng., 100 (11), 1631-1648. 

Fang, C.C., Sheu, T.W.H. (2001). Two element by element iterative solutions for 

shallow water equations. SIAM J. Sci. Comput., 22 (6), 2075-2092.   

Feng, Y., Peric, D., Owen D., (1998) A Multigrid enhanced GMRES algorithm 

for elasto-plastic problems. Int. J. Numer. Meth. Engng., 42, 1441-1462.  

Fisher, H.B.  (1979). Mixing in inland and coastal waters. Academy press.  

Fletcher, R. (1975). Conjugate gradient methods for indefinite systems. In G.A. 

Watson editor, Proc. of the Dundee Biennial Conference on Numerical 

Analysis, Springer Verlag, NewYork.  

Fletcher, C.A.J. (2006). Computational techniques for fluid dynamics- Volume II. 

Springer-Verlag.  



165 

 

Garcia-Navarro, P., Alcrudo, F., Saviron, J.M. (1992). 1-D open channel flow 

simulation using TVD-McCormack scheme. J. Hydraul. Eng., 118(10), 1359-

1372. 

Ghamry, H. (1999). Two dimensional vertically averaged and moment equations 

for shallow free surface flow. PhD thesis, Department of Civil Engineering, 

University of Alberta.  

Gramry, H., Steffler, P.M., (2002). Effect of applying different distribution shapes 

for velocities and pressure on simulation of curved open channels. J. Hydraul. 

Eng., 2(11), 969-982.  

Gramry, H., Steffler, P.M., (2005). Two-dimensional depth-averaged modeling of 

flow in curved open channels. J. Hydraul. Res., 43(1), 44-55.   

Ghanem, A. (1995). Two-dimensional finite element modeling of flow in aquatic 

habitats. Ph.D. thesis, Department of Civil Engineering, University of 

Alberta.  

Ghanem, A., Steffler, P., Hicks, F., Katopodis, C. (1995). Two-dimensional finite 

element modeling of flow in aquatic habitats. Water Resources Engineering 

Report 95-S1. University of Alberta.  

Hager, W.H., Hutter, K. (1984). Approximate treatment of plane channel flow. 

Acta Mechanica, 51, 31-48. 

Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. J. 

Comput. Phys. 49, 357-393. 



166 

 

Hicks, F.E. (1990). Finite element modeling of open channel flow. Ph.D. thesis. 

Department of Civil Engineering, University of Alberta. 

Hicks, F. E., Steffler, P. M. (1992) Characteristic dissipative Galerkin scheme for 

open-channel flow. J. of Hydraul. Eng., 118 (2), 337-352. 

Hirt, C.W., Nichols, A. (1981). Volume of fluid (VOF) methods for the dynamics 

of free boundaries. J. Comput. Phys., 39, 201-225. 

Issa, R.I. (1986). Solution of the implicitly discretized fluid flow equations by 

operator-splitting. J. Comput. Phys., 62, 40-65.  

Jameson, A., Schimdt, W., Turkel, E. (1981). Numerical solutions of the Euler 

equations by finite volume methods using Runge-Kutta time stepping 

schemes. Proc. AIAA 14
th

 Fluid and Plasma Dynamics Conf., AIAA paper-81-

1259, Palo Alto, Calif.  

Jameson, A. (1985). Multigrid algorithms for compressible flow calculations. 

MAE Report, 1743, Princeton Univ., Princeton, N.J. 

Jia, Y., Steve, S., Xu, Y., Huang, S., Wang, S.S.Y. (2005). Three-dimensional 

numerical simulation and analysis of flows around a submerged weir in a 

channel bendway. J. Hydraul. Eng., 131 (8), 682-693.  

Jia, Y., Scott, S., Xu, Y. and Wang, S.S.Y. (2009) Numerical study of flow 

affected by bendway weirs in Victoria bendway, the Mississippi river. J. 

Hydraul. Eng., 135 (11), 902-916.  



167 

 

Jin, Y.-C., Steffler, P.M. (1993). Predicting flow in curved open channel by depth 

averaged method. J. Hydraul. Eng., 119(1), 109-124. 

Jin, Y.-C., Li, B. (1996). The use of a one-dimensional depth averaged moment of 

momentum equation for the non-hydrostatic pressure condition. Can. J. Civ. 

Eng., 23(10), 150-156. 

Johannesson, H., Parker, G. (1989). Velocity redistribution in meandering rivers. 

J. Hydraul. Eng., 115(8), 1019-1039. 

Kalkwijk, J.P.TH., DeVriend, H.J. (1980). Computation of the flow in shallow 

river bends. J. Hydraul.Res.18(4), 327-341. 

Khan, A.A. (1995). Modeling rapidly varied open channel flows. PhD thesis, 

Department of Civil Engineering, University of Alberta, Edmonton. 

Kwak, D., Chang, J., Shanks, S.P., Chakravarthy, S.R. (1986). A three 

dimensional incompressible Navier-Stokes solver using primitive variables. 

AIAA J., 24, 390-396. 

Lackey, T.C. and Sotiropoulos, F. (2005), Role of artificial dissipation scaling and 

multigrid acceleration in numerical solutions of the depth-averaged free-

surface flow equations. J. Hydraul. Eng., 131 (6), 476-487. 

Lai, C.J., Yen, C.W. (1993). Turbulent free surface flow simulation using a 

multilayer model. Int. J. Numer. Meth. Fluids, 16(11), 1007-1025. 

Launder, B.E., Spadling, D.B. (1974). The numerical computation of turbulent 

flows. Comput. Meth. Appl. Mech. Eng., 3, 269-289.  



168 

 

Lax, P.D., Wendroff, B. (1960). Systems of conservation laws. Comm. Pure Appl. 

Math., 15, 363. 

Leonard, B.P. (1979). A stable and accurate convective modeling procedure based 

on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Eng., 19, 59-

98. 

Leonard, B.P. (1988). Simple high-accuracy resolution program for convective 

modeling of discontinuities. Int. J. Numer. Meth. Fluids  

Li, C.W., Yu, T.S. (1996). Numerical investigation of turbulent shallow 

recirculating flow by a quasi-three-dimensional κ-ε model. Int. J. Numer. 

Meth. Fluids, 23(5), 485-501. 

Lien, F.S., Leschziner, M.A. (1994). Upstream monotonic interpolation for scalar 

transport with application to complex turbulent flows. Int. J. Numer. Meth. 

Fluids, 19 (6), 527-548. 

Lin, H., Yang, D.Y., Chieng, C., (1995). Variants of bi-conjugate gradient method 

for compressible Navier-Stokes solver. AIAA J., 33(7), 1177-1184. 

Louaked, M., Hanich, L. (1998). TVD schemes for shallow water equations. J. 

Hydraul. Res., 36(3), 363-378. 

MacCormack, R.W. (1969). The effect of viscosity in hypervelocity impact 

catering. AIAA Paper, 66-354.   



169 

 

Majumder, S. (1988). Role of underrelaxation in momentum interpolation for 

calculation of flow with non-staggered grids. Numer. Heat Trans. 13, 125-

132.   

Manteuffel, T.A. (1980). An incomplete factorization technique for positive 

definite linear systems. Math. Comp., 34, 473-497. 

Manzano, L., Lassaline, J., Wong, P. and Zingg, D. (2003). A Newton-Krylov 

algorithm for the Euler equations using unstructured grids. 41th AIAA 

Aerospace Sciences Meeting and Exhibit. AIAA paper, 2003-0274. 

Meselhe, E. A., Sotiropoulos, F. 2000. Three-dimensional numerical model for 

open-channels with free-surface variations. J.Hydraul.Res., 38, 115–121. 

Morvan, H., Pender, G., Wright, N.G., Ervine, D.A. (2002). Three-dimensional 

hydrodynamics of meandering compound channel. J. Hydraul. Eng., 128 (7), 

674-682. 

Nejat, A., Ollivier-Gooch, C. (2008a). Effect of discretization order on 

preconditioning and convergence of a high-order unstructured Newton-

GMRES solver for the Euler equations. J. Comput. Phys., 227, 2366-2386. 

Nejat, A., Ollivier-Gooch, C. (2008b). A high-order accurate unstructured finite 

volume Newton-Krylov algorithm for inviscid compressible flow. J. Comput. 

Phys., 227, 2582-2609. 

Nezu, I., Nakagawa, H. (1993). Turbulence in open-channel flows. IAHR 

monograph. 



170 

 

Nguen, V.TH., Nestmann, F., Scheuerlein, H. (2008). Three-dimensional 

computation of turbulent flow in meandering channels and rivers. J. Hydraul. 

Res., 45(5), 595-609.  

Nichols, J., Zingg, D.W. (2005). A three-dimensional multi-block Newton-Krylov 

flow solver for the Euler equations. Proceedings of the Seventeenth AIAA 

Computational Fluid Dynamic Conference, American Institute of Aeronautics 

and Astronautics.  

Olsen, N.R. (2009). A three-dimensional numerical model for simulation of 

sediment movements in water intakes with multiblock option- User’s manual. 

Patankar, S.V. (1980). Numerical heat transfer and fluid flow. Hemisphere 

Publishing Corporation,New York, NY.  

Prandtl, L. (1925). Uber die ausgebildete turbulenz. ZAMM, 5, 136.  

Pueyo, A. and Zingg, D. (1998). Efficient Newton-Krylov solver for aerodynamic 

computations. AIAA J., 36 (11), 1991-1997. 

Rajaratnam, N. (1987). Engineering fluid mechanics. Department of Civil 

Engineering, University of Alberta, Edmonton.  

Ranga Raju, K.G., Asawa, G.L., Mishra, H.K. (2000) Flow-establishment length 

in rectangular channels and ducts. J. Hydraul. Eng., 126(7), 533-539. 

Rhie, C.M., Chow, W.L. (1983). Numerical study of the turbulent flow past an 

airfoil with trailing edge separation. AIAA J., 21 (11), 1525-1532.  



171 

 

Rodi, W. (1984). Turbulence models and their application in hydraulics- a state of 

the art paper. IAHR, Delft, the Netherlands.  

Roe, P.L. (1985). Some contributions to the modeling of discontinuous flows. 

Lectures in Applied Mechanics, 22, Springer-Verlag, Berlin, 163-193.  

Rogers, S.E. (1995). Comparison of implicit schemes for the incompressible 

Navier-Stokes equations. AIAA J., 33 (11), 2066-2072. 

Rozovskii, I. L. 1961. Flow of water in bends of open channels. Acad. Sci. 

Ukrainian SSR., Translated from Russian, Israel Program for Science 

Translation, 1–233. 

Saad, Y., Schultz, M. (1986). GMRES: A Generalized Minimal Residual 

Algorithm for Solving Nonsymmetric Linear System. SIAM J. Sci. Stat. 

Comput., 7 (3), 856-869.   

Saad, Y. (1994).  Preconditioned Krylov subspace methods for CFD applications. 

In: W.G Habashi (Ed.), Proceedings of International Workshop on Solution 

Techniques for Large-Scale CFD Problems, Montréal, Québec, 179-195. 

Saad, Y. (1994). ILUT: A dual threshold incomplete ILU factorization. Numer. 

Linear Algebra Appl., 1, 387-402. 

Saad, Y. (1996). Iterative methods for sparse linear systems. PWS publishing: 

New York.  

Schlichting, H. (1979). Bounday Layer Theory. Mcgraw-Hill, New York. 



172 

 

Shamloo, H., (1996). Hydraulics of simple habitat structures in open channels. 

PhD thesis. University of Alberta, Edmonton, Canada.  

Sheen, S.C., Wu, J.L. (1998). Preconditioning techniques for the BiCGSTAB 

algorithm used in convection-diffusion problems. Numer. Heat Transfer, Part 

B, 34, 241-256. 

Shimizu, Y., Yamaguchi, H., Itakura, T. (1990). Three-dimensional computation 

of flow and bed deformation.  J. Hydraul. Eng., 116(9) 1090–1108. 

Sinha, S. K., Sotiropoulos, F., Odgaard, J. (1998). Three-dimensional numerical 

model for flow through natural rivers. J. Hydraul. Eng., 124 (1), 13-24. 

Sivakumaran, N.S., Tingsanchali, T. ans Hosking, R.J. (1983) Steady shallow 

flow over curved beds. J. Fluid Mech. Vol. 128, pp 469-487.  

Sonneveld, P. (1989). CGS, a fast Lanczos-type solver for nonsymmetric linear 

systems. SIAM J. Sci. Stat. Comput., 10, 36-52. 

Spadling, D.B. (1972). A novel finite difference formulation for differential 

expressions involving both first and second derivatives. Int. J Numer. Meth. 

Eng., 4, 55-559.  

Steffler (1984). Turbulent flow in a curved rectangular channel. PhD thesis, 

University of Alberta, Edmonton, Canada. 

Steffler, P.M., Jin, Y. (1993). Depth-averaged and moment equations for 

moderately shallow free surface flow. J. Hydraul. Res., 31(1), 5-17. 



173 

 

Steffler, P., Blackburn, J. (2002). River2D: Two-dimensional depth-averaged 

model of river hydrodynamics and fish habitat- Introduction to depth 

averaged modeling and user's manual. University of Alberta, Canada. 

Thompson, J.F., Warsi, Z.U.A., Martin, C.W. (1985). Numerical grid generation, 

foundations and applications. North-Holland, Amsterdam.  

Trottenberg, U., Oosterlee, C.W., Schüller, A. (2001). Multigrid. Academic Press. 

London, UK.  

van Albada, G.D., van Leer, B. Roberts, W.W. (1982). A comparative study of 

computational methods in cosmic gas dynamics. Astron. Astrophys., 108, 76-

84.  

Van der Vorst, H.A. (1981). Iterative solution methods for certain sparse linear 

systems with a non-symmetric matrix arising from PDE-problems. J. of 

Comput. Phys., 44, 1-19. 

Van der Vorst, H.A. (1992). A fast and smoothly converging variant of Bi-CG for 

the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13 

(2), 631-644. 

van Doormal, J.P., Raithby, G.D. (1984). Enhancements of the SIMPLE method 

for predicting incompressible flows. Numer. Heat Transfer, 7, 147-163.  

van Leer, B. (1974). Towards the ultimate conservative differencing II. 

Monotinicity and conservation combined in a second-order scheme. J. 

Comput. Phys., 14, 361-370.  



174 

 

van Mierlo, M.C.L.M., de Ruiter, J.C.C. (1988). Rivers: Turbulence 

measurements above artificial dunes. Report Q-798, delft Hydraulics 

Laboratory, Delft, the Netherlands.  

van Rijn, L.C. (1990) Principles of fluid flow and surface waves in rivers, 

estuaries, seas, and oceans. Aqua publications, Amsterdam, the Netherlands.  

Venkatakrishnan, V., Mavriplis, D. (1993). Implicit solvers for unstructured 

meshes. J. of Comput. Phys., 105, 83-91. 

Versteeg, H.K., Malalasekera, W. (2007). An introduction to computational fluid 

dynamics. 2
nd

 Edition, Pearson Education Limited, Essex, England. 

Vreugdenhill, C.B. (1994). Numerical methods for shallow-water flow. Kluwer 

Academic Publishers, Dordrecht, the Netherlands.  

Wang, J.S., Ni, H.G., He, Y.S. (2000). Finite-difference TVD scheme for 

computation of dam-break problems. J. Hydraul. Eng., 126(4), 253-262. 

Weiyan, T. (1992). Shallow water hydrodynamics. Elsevier Oceanography Series 

55, Elsevier, Ansterdam. 

White, F.M. (1986). Fluid mechanics. 2
nd

 Edition, McGraw-Hill Book Company, 

New York, NY. 

Wilson, C. A. M. E., Boxall, J. B., Guymer, I., Olsen, N. R. B. (2003). Validation 

of a three-dimensional  numerical code in the simulation of pseudo-natural 

meandering flows. J. of Hydraul. Eng., 129 (10), 758-768.  



175 

 

Wu, W., Rodi, W., Wenka, T. (2000). 3D numerical modeling of flow and 

sediment transport in open channels. J. Hydraul. Eng., 126 (1), 4-15.  

Ye, J., McCorquadale, J.A. (1998) Simulation of curved open channel flows by 

3D hydrodynamic model. J. Hydraul. Eng., 124 (7), 687-697.  

Yen, B.B. (1965). Characteristics of subcritical flow in a meandering channel. 

Inst. Of Hydr. Res., University of Iowa. 

Xia, C., Jin, Y.-C. (2006). Multilayer averaged and moment equations for one-

dimensional open-channel flows. J. Hydraul. Eng., 132 (8), 839-849.  

 

 

 

 

 

  



176 

 

 

APPENDIX A 

 

BOUNDARY-FITTED COORDINATE TRANSFORMATION 

 

__________________________________________________________________ 

 

In this thesis, the RANS equations for 2D plane flow and 3D flow, and the 

2D DA equations are transformed from the physical Cartesian (x, y, z) to the 

generalized boundary-fitted coordinate system (ξ, η, ζ). ξ follows the bed and the 

water surface in the longitudinal direction while  η follows them in the transverse 

direction. ζ is in the vertical direction and parallel to the z axis (Figure 5.2). The 

new coordinates are generally non-orthogonal i.e. the angle between the new 

coordinates may deviate from 90
0
.    

Based on the functional relationships, ξ = ξ(x,y,z), η = η (x,y,z) and ζ = ζ 

(x,y,z), any partial derivative can be transformed into the derivatives 

corresponding to the boundary-fitted coordinate system (ξ, η, ζ).  

For example the first derivative of the velocity component u with respect 

to x can be written as 
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Similarly the first derivative of the three velocity components (u,v,w) with 

respect to x, y and z can be written in the matrix form as: 
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where the Jacobian matrix of transformation is defined as 
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Usually it is not possible to evaluate the elements of the Jacobian matrix 

directly as no explicit analytical relationship of the transformed coordinates with 

the Cartesian coordinates is available (Fletcher, 2006). Therefore the inverse 

Jacobian matrix is used which is defined as  
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The elements of the inverse Jacobian matrix J
-1

 can be evaluated 

numerically. Then the elements of the Jacobian matrix can be calculated as  

1

1
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J

JofcofactorofTranspose
J  

where 1J = determinant of the inverse Jacobian. 

The elements of the Jacobian are expressed as 
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Since the coordinate ζ is parallel to the z direction,  

0 zz   
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The elements of the inverse Jacobian matrix are evaluated by the finite 

difference method. For the interior nodes a center differencing is used while for 

the boundary nodes either a forward or a backward differencing is used.  

For 2D plane flow where the flow varies only in the x and z directions, 

coordinate transformation is performed by the ξ and ζ coordinates. Therefore 

1y , 0  zx  

So, 0 zyx   

For 2D depth averaged flow where the flow varies only in the x and y 

directions, coordinate transformation is performed by the ξ and η coordinates. 

Therefore 

1z , 0  yx  

So, 0 zyx   
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APPENDIX B 

 

MACCORMACK SCHEME 

 

__________________________________________________________________ 

The DA equations in the generalized coordinate system can be written in 

the flux-vector format as: 
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In a semi discrete form equation (B-1) can be written as  

0,
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where indices i and j represent the location of any node.  
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MacCormack scheme is a two-step predictor corrector scheme. 

Predictor: 

n

ji

n

jiji tJRQQ ,,

*

, 

 

where n indicates the values in previous time step. 
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In the predictor step the convective flux vectors at the cell interface are 

evaluated as

 


jijiji DEE ,2/1,1,2/1   and  

jijiji DFF ,2/1,1,2/1   and so on. 

 


jiD ,2/1 =artificial dissipation flux for numerical diffusion and explained 

later.  

 The derivatives of the source term H are evaluated by a forward 

difference. 

 

Corrector: 

*

,,

**

, ji

n

jiji tJRQQ 

 

In the corrector step the convective flux vectors at the cell interface are 

evaluated as

 


jijiji DEE ,2/1,,2/1   and  

jijiji DFF ,2/1,,2/1   and so on. 

 The derivatives of the source term H are evaluated by a forward 

difference.  

           The new values of the variables are calculated as the average of the values 

obtained in the predictor and corrector steps: 
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Artificial dissipation flux modeling:  
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       where ghc  . 
)2( =coefficient of second order artificial dissipation 

(Lackey and Sotiropoulos, 2005). In this thesis its value is taken as a constant.  
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