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Management assessment of mountain pine beetle infestation
in Cypress Hills, SK1

Mélodie Kunegel-Lion, Rory L. McIntosh, and Mark A. Lewis

Abstract: Insect epidemics such as the mountain pine beetle (MPB) outbreak have a major impact on forest dynamics. In Cypress
Hills, Canada, the Forest Service Branch of the Saskatchewan Ministry of Environment aims to control as many new infested
trees as possible by conducting ground-based surveys around trees infested in previous years. Given the risk posed by MPB, there
is a need to evaluate how well such a control strategy performs. Therefore, the goal of this study is to assess the current detection
strategy compared with competing strategies (random search and search based on model predictions via machine learning),
while taking management costs into account. Our model predictions via machine learning used a generalized boosted classifi-
cation tree to predict locations of new infestations from ecological and environmental variables. We then ran virtual experi-
ments to determine control efficiency under the three detection strategies. The classification tree predicts new infested locations
with great accuracy (AUC = 0.93). Using model predictions for survey locations gives the highest control efficiency for larger
survey areas. Overall, the current detection strategy performs well but control could be more efficient and cost-effective by
increasing the survey area, as well as adding locations given by model predictions.
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Résumé : Les épidémies d’insecte, tel que le dendroctone du pin ponderosa (DPP), ont un impact majeur sur la dynamique
forestière. À Cypress Hills, au Canada, la Direction générale du service forestier du ministère de l’Environnement de la Saskatchewan
a pour objectif de maîtriser l’infestation d’autant de nouveaux arbres que possible en effectuant des relevés sur le terrain autour
des arbres infestés lors d’années antérieures. Étant donné le risque que pose le DPP, il est nécessaire d’évaluer dans quelle mesure
cette stratégie de lutte est performante. Par conséquent, l’objectif de cette étude consistait à évaluer la stratégie actuelle de
détection comparativement aux stratégies concurrentes (recherche aléatoire et recherche fondée sur les prédictions d’un
modèle via l’apprentissage machine, tout en tenant compte des coûts de gestion. Notre modèle de prédiction via l’apprentissage
machine utilise un arbre de classification généralisée et amplifiée pour prédire la localisation des nouvelle infestations à partir
des variables écologiques et environnementales. Nous avons ensuite réalisé des expériences virtuelles pour déterminer
l’efficacité de la lutte avec trois stratégies de détection. L’arbre de classification prédit la localisation des nouvelles infestations
avec une grande précision (surface sous la courbe = 0,93). L’utilisation des prédictions du modèle pour localiser les relevés
procure la lutte la plus efficace pour les plus grandes zones de relevés. Dans l’ensemble, la stratégie de détection actuelle
performe bien mais la lutte pourrait être plus efficace et rentable en augmentant la zone de relevés et en ajoutant les endroits
identifiés par les prédictions du modèle. [Traduit par la Rédaction]

Mots-clés : pression des scolytes, efficacité de la lutte, détection, épidémies d’insecte, coût de gestion.

Introduction
The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins,

1902) epidemic has caused extensive mortality in North American
pine forests, which is in conflict with human objectives in many
places. At a large scale, the epidemic is linked to climate change,
as well as population dynamics that shift intermittently be-
tween endemic and epidemic states (Carroll et al. 2004; Shore
et al. 2006; Raffa et al. 2008; Preisler et al. 2012). MPB’s spread is
unaffected by most environmental barriers such as low moun-
tain ranges and fragmented forests thanks to its ability to dis-
perse long distances (de la Giroday et al. 2012; Bentz et al. 2016).
To better control MPB populations, we need to determine

areas at risk and assess the efficiency of current detection strat-
egies.

The MPB is a bark beetle that infests and kills various species of
pines. In North America, lodgepole pine (Pinus contorta var. latifolia
Engelm. ex S. Watson) is the primary MPB host, although MPB is a
threat to almost all pine species (Safranyik and Carroll 2006).
During an epidemic, MPB individuals coordinate their attacks,
using aggregation pheromones, to form a “mass attack” and over-
whelm the defences of large, healthy trees (Bordon 1982). There-
fore, an epidemic population of MPB presents a threat to healthy
pine stands.

The MPB is primarily univoltine, meaning that each new gener-
ation is produced over a year (Mitton and Ferrenberg 2012, 2014;
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Bentz and Powell 2014). In the summer, the beetles disperse and
reproduce, and the females lay eggs in galleries that they excavate
under the bark. Individuals usually overwinter as larvae. In the
spring, they resume their development and finally emerge as
adults later in the summer (Safranyik and Carroll 2006). Trees are
seriously injured by the gallery excavation process and the devel-
opment of MPB larvae and their associated blue stain fungi, and
generally, the trees die and turn red by the end of the MPB life-
cycle. During the following years, attacked trees become grey. As
a result, the red-top trees, which were infested during the summer
of the previous year, are easily spotted during aerial surveys of
stands, becoming good proxy for the status of the previous year’s
MPB infestation.

At a landscape level, two types of dispersal strategies have been
observed for MPB (Safranyik and Carroll 2006; Robertson et al.
2007): long-distance dispersal, passive downwind flight over the
canopy, and short-distance dispersal, active flight a few meters
above ground. Researchers estimate the short-distance dispersal
range to be within a stand (Safranyik and Carroll 2006) at the
order of 20–50 m, although some beetles can go as far as 100 m
(Robertson et al. 2007). By way of contrast, long-distance dispersal
range is tens to hundreds of kilometres (Safranyik and Carroll
2006; Jackson et al. 2008). Although short-distance dispersal is
much more common than long-distance dispersal (Safranyik et al.
1989; Chen and Walton 2011), the MPB’s epidemic behaviour asso-
ciated with outbreaks arising from long-distance dispersal can
pose a threat to entire regions of pine forests.

In Canada, since 2006, a local MPB epidemic has emerged in the
Cypress Hills area, located in the southwest of Saskatchewan and
southeast of Alberta. The Cypress Hills interprovincial park com-
prises the West Block, divided between Alberta (219 km2) and
Saskatchewan (126 km2), and the Center Block, in Saskatchewan
(58 km2). For the purpose of this paper, our study focuses on the
Saskatchewan portion of the park. Therefore, the use of “the
park” and “Cypress Hills” in the text refers to the Saskatchewan
portion. The local MPB population is endemic to the park and
probably came from southern populations in Montana, USA
(R.L. McIntosh, personal communication). It could have been
partly sustained by beetle flights from the south and west. Indeed,
during spring and summer, during MPB dispersal, the dominant
wind comes from the southwest.

Studying and controlling MPB in the Cypress Hills area is essen-
tial for two reasons. First, as an interprovincial park and national
heritage, Cypress Hills has significant natural, economic, and cul-
tural values. Second, even though this park is somewhat isolated
compared with lodgepole and jack pine ranges (Little 1971;
Cullingham et al. 2012), the presence of a MPB epidemic, in asso-
ciation with the long-distance dispersal ability of the insect and
the wind direction, makes the Cypress Hills area a possible
stepping-stone facilitating the infestation of the remainder of
Saskatchewan and regions further east. Therefore, there is an
urgent need for analysis of management and for infestation pre-
diction in Cypress Hills.

Aware of the need for management, the Forest Service Branch
of the Saskatchewan Ministry of Environment has implemented a
“zero-tolerance” policy designed to catch and control as many
short-distance infestations as possible. This requires intensive sur-
veillance to implement early detection and rapid aggressive re-
sponse actions. The policy operates according to the following
procedure. In early fall, after MPB have colonized new trees, an
aerial survey of the park extent is conducted to collect geo-
referenced data on potential red-top trees, which are dead or dy-
ing trees infested by MPB the previous year. These are later
ground-truthed for MPB attacks. Then, 50 m radius circular survey
plots are drawn around each of the red-top trees confirmed to
have been killed by MPB. The survey plots are searched for green
infested trees, which are trees recently infested by MPB during the
summer. These are later controlled in late fall or winter, which

usually consists of felling and burning massively infested trees,
ensuring that beetles are killed. The survey plot can be spatially
extended if green infestations are spotted close to the plot’s limits
(Saskatchewan Ministry of Environment 2016). In addition to
these measures, areas presenting high densities of red-top trees
are entirely surveyed and controlled. No detected infestations are
left untreated. Such intensive control is expensive. Therefore,
there is a need to determine how well this strategy is working.

Given this management strategy and the MPB context in Canada,
our study aims to answer the question: are there ways to improve
detection strategies without increasing management costs? If
managers completely removed infested trees coming from MPB
short-distance dispersal inside the park, the remaining source of
infestation would be long-distance dispersal events from outside
the park, which are often considered spatially random when ob-
served at a small scale (Long et al. 2012; Powell et al. 2018). There-
fore, we hypothesize that a random search would be as efficient as
a local search around red-top trees. Moreover, we hypothesize
that if other factors than distance to previous infestations influ-
ence the location of new infestations, then a search based on
predictions from such factors would be more efficient than a local
search around red-top trees. However, the management survey
might not be big enough to include all infestations from short-
distance dispersal events. Therefore, we make the third hypothe-
sis that as the search area increases, the detection efficiency will
increase too.

Materials and methods

MPB predictions
To predict MPB infestation a year ahead in Cypress Hills, we

used the generalized boosted classification model, which is a
machine-learning algorithm. Boosted classification trees generate
results with an excellent fit for a binary response by successively
fitting a tree to the previous tree’s residuals to significantly reduce
the final error variance (StatSoft 2013).

Data
The covariates and response variable values were distributed

discretely in space and time. We applied a grid of 18 317 cells of
size 100 m × 100 m to the Cypress Hills park extent. For each cell,
for each year, the observation consisted of a set of environmental
and ecological covariates plus the response variable. The response
variable was the presence or absence of MPB derived from the
presence or absence of green infested trees in each cell of the grid
based on data from the Forest Service ground survey. From the
Forest Service surveys, we got the locations of green infestations
controlled by managers, and we deduced which trees had been
green infested in the previous year using the red-top trees.

We used 14 covariates related to topography, weather, vegeta-
tion, and beetle pressure (Table 1). The weather variables were as
follows: the highest maximum daily temperature over the year,
the overwinter survival probability of the larvae (Régnière and
Bentz 2007), and the average daily relative humidity in spring.
Indeed, MPB dispersal is reduced with high temperatures
(Safranyik and Carroll 2006). The minimum temperatures in fall
and winter impact MPB survival if the vulnerable stages, i.e., de-
veloping in the fall and at the end of the winter, are exposed to
extreme temperatures (Cole 1981; Safranyik and Carroll 2006;
Régnière and Bentz 2007). Drought in the spring reduces the abil-
ity of pines to defend themselves and increases the success rate of
MPB attacks (Safranyik 1978; Creeden et al. 2014; Sidder et al.
2016). Additionally, over the course of a year, MPB individuals
need at least 833 degree-days above 5.5 °C to complete their
growth (Safranyik et al. 1975, 2010; Carroll et al. 2006). In the park,
over the time period studied, the minimum number of degree-
days above 5.5 °C was 923, which is above the threshold; therefore,
degree-days was not included in our model. Furthermore, high
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numbers of degree-days are not an issue as MPB rarely present
multi-voltinism (Bentz and Powell 2014). We included the MPB
presence at the same location and in the neighbourhood the year
before to take into account the spatiotemporal autocorrelation of
the data (Fig. 1). The beetle pressure from outside the park was
represented by the distance to the park’s southern border (illus-
trated on Fig. 2), which was close to external infestations not
managed by the Forest Service and potential sources of MPB. The
other variables included in the model were as follows: pine cover,
latitude, longitude, year, elevation, slope, and northerness and
easterness derived from the aspect.

Topography data came from the Canadian Digital Elevation
Map downloaded from the Geogratis website (http://geogratis.
cgdi.gc.ca/). We generated weather variables with the BioSIM soft-
ware (Régnière et al. 2014) at the location of each grid cell cen-
troid. BioSIM uses data from surrounding weather stations and
interpolates the weather variable values at each location of inter-
est using a digital elevation map. The vegetation data came from
Beaudoin et al. (2014). The authors computed these data from a
2001 MODIS imagery, and the vegetation parameters were as-
sumed to be constant over our time period.

We used data from the years 2007 to 2015. Randomly, we chose
75% of these data, years combined, i.e., 149 278 observations, to
train the model. The remaining 25% of the data, 49 502 observa-
tions, were used to validate the model.

Generalized boosted model
We trained the generalized boosted classification model using

the gbm function of the R package gbm (Ridgeway 2015) on the 14
covariates in the training set. The process analyzed the perfor-
mance of 50 000 classification trees and performed a 10-fold cross-
validation to find the best classifier. The algorithm implemented
in the gbm function consisted of reducing a loss function between
the observed and the predicted response values using Friedman’s
Gradient Boosting Machine (Ridgeway 2015). The loss function was
represented by a Bernoulli error distribution, which is adapted to a
binary response. The gbm function output provides the probabil-
ity of MPB presence at each location. We tested the accuracy of the
model’s prediction using the area under the receiver operating
characteristic curve (AUC; Metz 1978; Bradley 1997), the false pos-
itive and false negative rates, and the misclassification rate, which
is the percentage of misclassified instances by the model. A re-
ceiver operating characteristic (ROC) curve (Metz 1978) depicts, for
a range of probability thresholds, the true positive rate (or 1 —
false negative rate, also referred to as sensitivity) against the false
positive rate (also referred to as 1 — specificity). We used Youden’s
method (Youden 1950) to determine the probabilities threshold

that selects the farthest point from the diagonal on the ROC curve.
A high AUC (0 ≤ AUC ≤ 1) represents a good performance of a
binary classifier in terms of correspondence between observed
and predicted values.

Assessing management

Data
To assess the detection strategies, we needed the exact locations

of red-top trees for a focus year and the following year. In 2011–
2013, the data from the Forest Service included an exhaustive
survey of the locations of red-top trees and the number of green
infestations controlled around each red-top tree. The other years
included infested areas in which red-top trees’ locations were not
specified. For this reason, we only used data from 2011 and 2012 for
this analysis. Furthermore, the years 2011 and 2012 happened to

Table 1. Description and range of the covariates used in the generalized boosted classification model.

Name Description Range Unit

PineCover Coverage of Pinus albicaulis (whitebark pine), Pinus banksiana (jack pine), and Pinus contorta
(includes subspecies lodgepole pine and shore pine)

0–76.1 %

TMax The highest maximum daily temperature from September of the previous year to August 27.3–36.7 °C
OWS The overwinter survival probabilities of larvae (Régnière and Bentz 2007) using a 5 year lookback 0.23–0.50 —
RH Average daily relative humidity in spring 56.9–73.8 %
BP0 Presence of previous year mountain pine beetle infestation in the focus cell 0/1 —
BPn Previous year mountain pine beetle pressure in the neighbouring cells: BPn = � BP0 in adjacent

cells of radius 1 + 0.5 × � BP0 in adjacent cells of radius 2 + 0.25 × � BP0 in adjacent cells of
radius 3 (Fig. 1)

0–9.25 —

DistSouth Distance from the grid cell centroid to the southern infested border of the park 5–36 660 m
Latitude Latitude of the grid cell centroid 49.55–49.61 dec. °
Longitude Longitude of the grid cell centroid −110.01–−109.43 dec. °
Year Year of the survey 2007–2015 —
Elevation Elevation at the grid cell centroid 1055–1386 m
Slope Slope at the grid cell centroid 0–20.31 °
Northerness Tendency of the slope to face north +1–−1 —
Easterness Tendency of the slope to face east +1–−1 —

Fig. 1. Representation of the adjacent cells taken into account in
the covariates (cf. Table 1). Striped blue, focus cell; dark grey,
4 adjacent cells (radius 1); light grey, next 8 adjacent cells (radius 2);
medium grey, next 16 adjacent cells (radius 3). [Colour online.]
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have a similar number of red-top trees or survey plots: 292 for 2011
and 284 for 2012, which made the two years comparable.

For controlled green infestations, we used the location of the
circular plot centres (±50 m compared with the real locations of
green infestations). For uncontrolled green infestations outside of
survey plots, we used the location of red-top trees the year after.
The total number of green infestations was 644 for 2011 and 936
for 2012.

Simulated detection strategies
To calculate the efficiency of the detection strategies, we simu-

lated virtual experiments. For each year, we counted the number
of green infestations in increasing virtual survey areas for three
different strategies: (1) local search in circular plots of varying
radius around red-top trees (similar to the current Forest Service
strategy), (2) search in circular plots of varying radius randomly
located in space, and (3) search in a varying number of 100 m ×
100 m square plots placed at locations predicted by the boosted
classification tree. In the predictions strategy, we used 100 m ×
100 m square plots and not circular plots to match as much as
possible the predicted locations from the classification tree. For
the local and random searches, we used circular plots of increas-
ing radius: from 50 to 100 m by increment of 5, from 110 to 150 m
by increment of 10, 200 m, and 300 m.

To be able to compare similar survey areas among detection
strategies, we needed to be able to fix the number of search loca-
tions, and therefore the search area, from the classification tree
output. We could simply select a certain number of locations with
the highest probabilities. However, if the number of selected lo-
cations is small like it is the case here, some locations with rela-
tively high probabilities might not be chosen whereas locations
with slightly higher probabilities due to random noise will be
chosen. To bypass this issue, we introduced some noise by ran-
domly sampling the locations using the model probabilities to the
power of 3 as weight. We investigated the impact of variation in
this exponent value in Appendix A. For the random and predic-
tion strategies, we performed 500 simulations for each year.

Control efficiency
We calculated control efficiency for each year for each survey

area with the following equation:

(1) Control efficiency

�
no. of green infestations controlled

total no. of green infestations in the park

From the area controlled (i.e., the sum of every survey plot area),
we obtained the net survey area by removing the overlapping
areas. For each year,

(2) Net survey area

� �no. of plots × �r2 � overlaps for local and �or� random

no. of square plots × 1002 for predictions

We then determined the relationship between net survey area
and control efficiency. This was achieved by fitting a non-linear
function, using the nls function of the R package stats, to control
efficiency versus net survey area in the two cases: local search
around red-top trees, local control efficiency = flocal (net survey
area), and model predictions strategy, prediction control efficiency =
fprediction (net survey area). For the random search case, we fitted a
linear function using the lm function of the R package stats: ran-
dom control efficiency = frandom (net survey area).

Management cost
To determine cost-effective recommendations for managers, we

also examined the relationship between net survey area and man-
agement cost. The management cost variable included the cost of
aerial survey, the cost of control, and the cost of surveying all
non-overlapping 50 m-radius circular plots. It was available for
the years 2010–2015. Within each year, the cost per unit (control
cost per tree and survey cost per plot) did not vary depending on
the location. However, because the cost per unit varied among
years due to economic fluctuations, we took the median cost per
unit over the years 2010–2015 and multiplied it for each year by
the number of units in each category (number of controlled trees
and circular plots per year). Thus, for each year,

(3) Management cost � median aerial survey cost
� median control cost per tree × no. of trees controlled

� median circular plot survey’s cost × no. of plots

The number of units in each category was available for the years
2006–2015. Therefore, we determined management cost values
for 2006–2015. As a result, although total cost did vary year to
year, the cost per plot and per tree did not vary. We fitted a linear
regression line to the relationship between management cost
and total area surveyed with circular plots (management cost =
g(total area surveyed with circular plots) where g(.) is a straight
line function) using the lm function of the R package stats. The
total area surveyed with circular plots does not contain overlaps
(Saskatchewan Ministry of Environment 2016), so this is equal to
the net survey area with radius = 50 (eq. 2). To get to the next step,
we assumed that the management cost increases proportionally
with the plot area. Thus, the cost of the total area from several
survey plots is equal to the cost of the area of a single much larger
survey plot. Hence, management cost = g(total area surveyed with

Fig. 2. Cypress Hills park boundaries in Saskatchewan (grey). The dotted red line represents the park border close to outside infestations in
the south. The dashed blue line represents the park border with Alberta. [Colour online.]
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circular plots) became management cost = g(net survey area). We
then defined the “management cost per controlled tree”, which is
the management cost divided by the control efficiency for one
year. Note that this cost per controlled tree is scaled by the total
number of infestations in the park for each year. We explored
the relationship between management cost per controlled tree
and net survey area using the two regression equations: control
efficiency = f(net survey area) and management cost = g(net survey
area):

(4) Management cost per controlled tree

�
management cost
control efficiency

�
g(net survey area)
f(net survey area)

The net survey area value corresponding to the minimum man-
agement cost per controlled tree would be the optimal area to
survey.

However, one could also assign a cost � to a missed green infes-
tation, as it would leads to several green infestations in the fol-
lowing year. The cost of a missed green infestation � times the
number of missed green infestations is the avoided cost, as it is
the amount that would be saved in the future if these trees were
actually controlled instead of being missed. In other words, � is
the marginal cost added to the following year cost if one green
infestation is left and produces new infestations. Therefore, the
total cost was defined as

(5) Total cost � management cost � avoided cost
� management cost � � × no. of missed infestations

Thus, the total cost per controlled tree is the management cost
plus the avoided cost divided by the control efficiency. Again, note
that this cost per controlled tree is scaled by the total number of
green infestations for each year. We then compared the optimal
survey area for the management cost and for the total cost de-
pending on the strategy used. We also investigated the depen-
dence of the optimal survey area on � in Appendix B.

Results

MPB predictions
The generalized boosted classification model has a good predic-

tive ability (Fig. 3): the AUC value is 0.927. The probability thresh-
old chosen from Youden’s index is 0.003, which means that it is
optimal in terms of misclassified instances to consider any prob-
ability value above this threshold as an infestation. Using this
threshold, we calculated the confusion matrix (Table 2). The false
negative and false positive rates calculated from it are, respec-
tively, 0.187 and 0.118, which means that 18.7% of the infested
locations are wrongly classified as non-infested and 11.8% of the
non-infested locations are wrongly classified as infested. Addition-
ally, the misclassification rate was 0.119, which means that 11.9%
of the model results were misclassified compared with the obser-
vations.

We calculated the variables’ impact on the classification tree
output (i.e., relative importance). The MPB presence in the same
location the year before is the most important variable (relative
importance = 0.60), followed by the MPB pressure from neigh-
bouring cells (0.26), the distance to the southern infested border
of the park (0.10), and the overwinter survival (0.02). The remain-
ing variables have each a relative importance below 0.01.

Assessing management
When increasing the radius of the circular plots or the number

of square plots, and thus the area surveyed, the control efficiency
increases and saturates for the local and predictions strategies
(Fig. 4). The control efficiency of the search around random loca-
tions increases linearly with the net survey area. The local and

predictions strategies are more efficient than the random search.
For example, the local search reaches between 55.9% and 71.2%
control efficiency at a 50 m radius (current strategy), and the
predictions strategy reaches between 54.3% and 63.3% control ef-
ficiency, whereas it reaches only 0.01% control efficiency for the
random search at the same survey area. For survey areas larger
than those in the current strategy (�2 200 000 m2), the predic-
tions control efficiency is higher than the local control efficiency
(Fig. 4). For example, for a survey area corresponding to 70 m
radius for the local search (�3 900 000 m2), the control efficiency
is 60.6%–73.7% for the local search and 81.9%–84.4% for the predic-
tions strategy.

The management cost increases linearly with the net survey
area (Fig. 5). We numerically obtain the net survey area values
corresponding to the minimum management cost per controlled
tree over the extent of net survey area values studied for the local
and predictions strategies for 2011 and 2012, and they range from
2 178 332 to 2 225 780 m2 (Fig. 6a). We obtain the matching radius
of 50 m using eq. 2 for the local search. However, it is highly
probable that the cost of missing a green infestation � is non-
negligible. As the management cost increases with the survey area
and the avoided cost decreases, the total cost shows a minimum
value larger than zero (Fig. 7 for � = 1000). Therefore, the mini-
mum total cost per controlled tree with � = 1000 gives survey area
values ranging from 3 010 378 to 5 062 968 m2 and corresponding
to the radius of 60–65 m using eq. 2 for the local search (Fig. 6b).

Fig. 3. Observations (a) versus predictions (b) of the mountain pine
beetle infestation in Cypress Hills, Saskatchewan, for 2011. On
(a), a dark red colour represents cells with infested trees, whereas a
bright green colour represents cells without infested trees. For
(b), the risk of infestation per cell ranges from bright green (low
risk) to dark red (high risk). [Colour online.]

infested trees
non−infested trees

a)

high risk of infestation
low risk of infestation

b)

Table 2. Confusion matrix showing the
results of the model classification on
the validation dataset (n = 49 502) using the
threshold 0.003 chosen using Youden’s
index.

Observed

Predicted Absence Presence

Absence 43 059 129
Presence 5 752 562

158 Can. J. For. Res. Vol. 49, 2019

Published by NRC Research Press



Discussion
MPB infestations can be well predicted in space using a gener-

alized boosted classification tree and variables related to the loca-
tion of previous year infestations. A detailed analysis of the
impact of survey areas on the control efficiency shows that com-

bining an increase in survey area with a change in detection strat-
egy leads to more cost-effective control.

MPB predictions
Generally, generalized boosted classification approaches often

give better predictive accuracies than generalized linear approaches
(Marmion et al. 2009; Youssef et al. 2016). Here, the percentage of
correctly classified cells, 1 – misclassification rate, is 84.9%. In
comparison, Aukema et al. (2008) reported a predictive accuracy
of 78% for a one-year ahead forecast using a spatiotemporal au-
tologistic regression model on similar variables. At large scales
(respectively 12 km × 12 km and 1 km × 1 km grid cell size in
Aukema et al. (2008) and Preisler et al. (2012)), beetle pressure has
a great impact on new infestations, so it is not surprising to find
indications that this is also the case in our results at a smaller
scale.

Although classification tree approaches can be used for predic-
tion, they cannot be used to determine the actual impact of cova-
riates on the response. Indeed, a classification approach such as
decision trees or boosted classification trees often provide a rela-
tive importance index for each covariate, but this relative impor-
tance is an index of performance that depends highly on tree
structures. A classification method does not test the impact of
a covariate on the response like a traditional statistical method
would but rather attempts to explain the response by a sequence
of binary choices among covariate values. However, it makes
sense that environmental variables have less impact on the MPB
presence than beetle pressure given that a small-size study area is
usually relatively homogeneous.

Fig. 4. Management control efficiency (i.e., the number of infested trees controlled in the park divided by the total number of infested trees)
in relation to the net survey area (i.e., the total area controlled without overlaps). Solid lines and circles represent the local search around
red-top trees for each 2011 and 2012. Dashed lines and crosses represent the search at locations chosen from predictions for each 2011 and
2012. Dotted lines and pluses represent the search around random locations for 2011 and 2012 combined. Each year, the random and prediction
strategies data are each the mean of 500 random simulations. The lines represent the fitted values for the local and prediction strategy using a
non-linear least square model: control efficiencylocal = 1 – exp(–a × net survey areab) and control efficiencypredictions = 1 – exp(–c × net survey aread),
where a2011 = 0.004, b2011 = 0.358, a2012 = 0.018, and b2012 = 0.287 (P values < 0.001 for the null hypotheses a = 0 and b = 1, df = 17) for the local
search, c2011 = 2.25−6, d2011 = 0.884, c2012 = 3.65−5, and d2012 = 0.709 (P values = 0.309 and 0.164 respectively for the null hypotheses c2011 and
c2012 = 0, and P values < 0.001 for the null hypotheses d2011 and d2012 = 1, df = 17) for the predictions strategies. For the random search, we used
a linear regression: control efficiencyrandom = e × net survey area, if net survey area ≤ park area or 1 if net survey area > park area, where
e = 5.31−9 (P value < 0.001 for the null hypothesis e = 0, R2 = 0.999, df = 37). The striped bars represent the percentage of park area covered by
the survey.

Fig. 5. Cost of aerial survey and control and circular survey plots in
relation to the total area surveyed using circular survey plots from
2006 to 2015. The line represents the fitted values using a linear
regression: management cost = k + l × net survey area, where
k = 54 540.00 and l = 0.057 (P values < 0.001 for the null hypotheses
k = 0 and l = 0, R2 = 0.961, df = 8).
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Machine learning algorithms are widely used to detect and pre-
dict species locations (Marmion et al. 2009), but few quantitatively
compare the result with non-modelling or expert-knowledge
methods like we did in this study (e.g., Boissard et al. 2008).

Assessing management
The management assessment results show that the current de-

tection strategy (searching in a 50 m radius plot around previous
infestations) is efficient but that using a larger survey area and
a different strategy would improve efficiency. Robertson et al.
(2007) found that 20–50 m is the most common dispersal range
but that MPB can go farther. These few individuals that go farther,
and therefore are not removed during control, might be sufficient
to sustain the population in the stand. MPB is subject to a strong
Allee effect (Logan et al. 1998; Goodsman et al. 2016): at low beetle
densities, a certain number of individuals is needed for a success-
ful mass attack. Below this threshold, the attack is unsuccessful
and the beetles either do not survive or fall back into the endemic
population phase. The transition between endemic and epidemic
population phases highly depends on both intrinsic and extrinsic

factors that are subjected to a lot of uncertainty, making the
transition forecast problematic (Cooke and Carroll 2017).

Because of the existence of this threshold, local densities of
beetles are important to infestation success. For that reason,
Strohm et al. (2016) found that increasing search radius is more
important than increasing search effectiveness, which is the per-
centage of infestations found within a survey area. Indeed, search
effectiveness does not need to be flawless to decrease the beetle
number below the Allee threshold. However, if the search radius
is too small, enough beetles can disperse from neighbouring loca-
tions and successfully infest trees. For a search effectiveness of
approximatively 80%, Strohm et al. (2016) show that MPB popula-
tion size would decrease only if the search radius increases de-
spite increases in search effectiveness. In Cypress Hills, for 2011
and 2012, we estimated the search effectiveness at 89%. This sup-
ports our recommendation to increase the survey area. Overall,
Strohm et al. (2016) show that the search plot size of the Alberta
management strategy (similar to Saskatchewan’s strategy) was
not large enough to reach the desired goal of reducing MPB pop-
ulation by 80% (Alberta Sustainable Resource Development 2007),
and the present study shows results consistent with this conclu-
sion.

Local search around red-top trees, associated with short-
distance dispersal, is a more efficient method than the random
search, associated with random events from long-distance disper-
sal. This suggests that, despite intensive management, short-
distance dispersal is still the main MPB dispersal strategy in
Cypress Hills. However, a mechanistic model such as the ones
developed in Heavilin and Powell (2008), Rodrigues et al. (2015),
and Goodsman et al. (2016) or the method described in Chen and
Walton (2011) adapted for this area could likely give more insights
on the subject by, in particular, quantifying the importance of
both dispersal strategies.

An alternative to the local search around red-top trees is to
survey locations with high predicted infestation probabilities. For
a survey area larger than the one corresponding to the current
strategy, it becomes more efficient to use the predictions strategy
rather than the local strategy. This could be explained by the
spatial scale of our model predictions. One 100 m × 100 m grid cell
area and one 50 m radius circular plot area have the same order of
magnitude. For a similar number of plots, the previous infestation
at the same location decides for one-half of the model predictions
results according to the relative importance, whereas a red-top
tree is always at the center of a circular plot. As the survey area
increases, more of the red-top trees are included in the predic-
tions survey in addition to other susceptible locations, whereas
the number of red-top trees included in the local survey does not
change. Therefore, although fewer and fewer green infestations
are present in the local survey as the distance from the red-top
tree increases, the predictions survey focuses on additional high
risk locations chosen according to other variables, mainly the
distance to the southern infested border, increasing the chance of
finding more green infestations. One could combine both strate-
gies: surveying first around red-top trees and then adding extra
survey plots in predicted areas that were not already surveyed
until the allotted budget is reached.

Introducing a management cost allows for more informed de-
cisions upon which to choose survey area size and detection strat-
egy. Indeed, there is a minimum cost per controlled tree that
corresponds to an optimal survey area larger than zero. This op-
timal survey area varies with the cost of missing a green infesta-
tion, which can be calculated, for example, by the cost of a circular
survey plot plus the cost of removing a certain number of new
green infestations due to this red-top tree.

Limitations
A potential limitation of this work is the assumption that the

cost associated with several 50 mradius plots is equivalent to the

Fig. 6. Management cost per controlled tree (a; from management
cost per controlled treelocal = (k + l × net survey area)/[1 – exp(–a × net
survey areab)] and management cost per controlled treepred = (k + l ×
net survey area)/[1 – exp(–c × net survey aread)]) and total cost per
controlled tree (b; from eq. 5 using � = 1000) in relation to the net
survey area. Solid lines represent the local search around red-top
trees for each 2011 and 2012. Dashed lines represent the search at
locations chosen from model predictions for each 2011 and 2012.
Black circles correspond to the minimum cost for the local search,
whereas white circles correspond to the minimum cost for the
model predictions strategy.
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cost of one much larger plot of the same total area and that this
relationship is linear, even for areas as large as 20% of the park
surface. One could also assume that the relationship’s slope
would decrease, as survey locations are closer in space and man-
agers spend less money and time travelling between locations.
These savings seem negligible; nonetheless, it would decrease the
slope of the relationship between cost per controlled tree and
survey area at larger survey areas. However, it would probably
have little impact on the location of the minimum cost and thus
the optimal survey area size.

Another limitation is that we only undertook the analysis for
years with a number of red-top trees approximately equal to 300,
as only data for these years were available. The survey area values
are directly linked to the number of survey plots and, thus, the
number of red-top trees for each year. Therefore, the survey area
values are not directly applicable to years with a different number
of red-top trees, although the curve patterns would be similar. The
results also vary with the ratio total number of green infestations
to number of red-top trees. This ratio was larger in 2012 than in
2011. However, we scaled most of the results by the total number
of green infestation to allow a fair comparison of both years.

Furthermore, the selection of only two consecutive years of data
makes the analysis potentially susceptible to bias due, for exam-
ple, to particular weather conditions or to the specific details of
implementation of management work for these two years. To
minimize the latter, however, a detailed survey protocol is imple-
mented.

Conclusion
The control efficiency in Cypress Hills could be slightly in-

creased for a smaller cost, which includes the future savings made
by controlling an infested tree now rather than controlling sev-
eral infested trees the following year. This would be done by en-
gaging more management resources such as an increased survey
area in combination with using a search strategy that exploits
criteria other than the location of red-top trees.
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Appendices

Appendix A: Varying the probability exponent
To vary the amount of noise that we introduced in the random

sampling of locations from the model probabilities, we raised

Fig. A1. Control efficiency in relation to the classification tree
probabilities exponent. Increasing the classification tree
probabilities exponent gives more weight to locations with high
predicted risks of infestation. Solid lines represent the local search
around red-top trees for 2011. Dashed lines represent the search at
locations chosen from model predictions for 2011. Dotted lines
represent the search around random locations for 2011. Thin lines
correspond to a survey area equivalent to the current Forest Service
strategy (50 m radius circular plot; 2 200 000 m2). Thick lines
correspond to a survey area of 6 000 000 m2, which correspond to
the circular plot radius 90 m for the local search. The data for 2012,
not presented here, display similar patterns.
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the model probabilities to an exponent ranging from 0 to 5.
We then sampled the locations without replacement using the
new probabilities as weight. The exponent 0 gives the same
weight to all locations and, therefore, would give results equiv-
alent to the random strategy. In opposition, a high exponent
value increases the differences between low and high probabil-
ities and eventually leads to a deterministic situation where
the same locations with the highest probabilities are always
chosen.

When we fixed the net survey area and varied the exponent,
the predictions control efficiency varies from values similar
to the random search at exponent 0 to values similar to the
local search at high exponent (Fig. A1). When the fixed survey
area is equivalent to the one used in the current strategy
(2 200 000 m2), we can see that the local control efficiency
is always higher than the predictions control efficiency no
matter the exponent value. However, for a net survey area of
5 000 000 m2, the prediction control efficiency is larger than
the local control efficiency for an exponent value from about
1–1.5 to 5.

Appendix B: Varying the cost of a missed green
infestation

We varied the cost of a missed green infestation � from 0 to 2000
and investigated its impact on the optimal survey area and the
minimum cost per controlled tree depending on the detection
strategy.

The optimal net survey area increases with � for both the local
and predictions strategies, although the optimal area is consis-
tently larger using the predictions strategy (Fig. B1a). However, the
minimum total cost per controlled tree associated with the opti-
mal survey area is lower for the predictions strategy than the local
strategy for � ≥ 500 (Fig. B1b).

This means that the more expensive a green infestation, i.e.,
the more new infestations produced by one infested tree, the
better in term of costs it is to increase the management effort
now rather than controlling the additional new infestations in
the future.

Fig. B1. Optimal net survey area (a) and minimum total cost per
controlled tree (b) in relation to the cost of missing a green
infestation �. Solid lines represent the values for the local search,
whereas dashed lines represent the values for the model predictions
strategy for each 2011 and 2012.
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