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Chapter 1 

Introduction

1.1 Background

Seismic migration is the most effective geophysical method for imaging the com­

plex structure of the Earth. Today the goal of the migration extends from imag­

ing subsurface structures to recovering elastic properties (Beydoun and Mendes,

1989). As rock physical parameters are not related linearly to the seismic reflec­

tion data (Lumley and Beydoun, 1997), the inversion for elastic constants should 

be performed in two steps:

1. Pre-stack depth migration/inversion (PSDM), where the seismic data are 

transformed to common image gathers (CIGs) by migration or inversion. 

This step requires a migration algorithm for complex media that preserves 

amplitudes.

2. Amplitude versus angle (AVA) or amplitude variation with offset (AVO) 

analysis by using approximations to the Zoeppritz equations (Aki and Richards, 

1980; Shuey, 1985; Fatti et al., 1994), the CIGs are transformed to perturba­

tions of the elastic parameters (Beretta et al., 2002; Li et al., 2003).

Both AVA analysis and PSDM technologies have made great progress in the 

last two decades. However, pre-stack migration and AVA/AVO analysis tech­

nologies are developed by people with different goals in mind, and, consequently,

1
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1 .1 . B A C K G R O U N D

AVO-based analysis of rock properties are rarely incorporated into sophisticated 

migration procedures (Xu, 2003). The pre-stack migration has great advantages 

at the time of imaging complex geological structures over other seismic process­

ing schemes. Therefore, integrating AVO and imaging together should lead to a 

new class of algorithms capable of imaging the Earth's interior and retrieving the 

physical properties (Downton and Lines, 2003).

1.1.1 True amplitude migration

As one part of the inversion, true amplitude migration plays a very important 

role in our algorithm. This is because it is "capable of undoing distortions of 

wave propagation between the sources and the receivers and thus producing 

angle dependent reflection coefficients at analysis points in a lossless, isotropic, 

elastic earth" (Gray, 1997). Migration has been implemented since the 1920's as 

a graphical method, but imaging was the primary goal of the migration at that 

time, AVO/AVA preserved CIGs was not considered during the first 60 years 

of the migration developments. Fortunately, many geophysicists have been in­

vestigating amplitude preserving migration since 1980. Today, several migration 

methods are available. Gray (1997) separated them into three categories:

1. The Delft migration/inversion approach developed by Berkhout (1985) and 

his colleagues (de Bruin et al., 1990; de Bruin, 1992; Berkhout and Wapenaar, 

1993) at Delft University of Technology. Their method is based on an algo­

rithm that extrapolates wave fields up and down to the reflection point.

2. The CWP migration/ inversion approach developed by Bleistein and his 

colleagues (1987; 2001; 2002a; 2002b) at the Center for Wave Phenomena 

at the Colorado School of Mines. Such method is based on the theory which 

expresses the scattering wave field as an integral of angle dependent reflec­

tivity.

3. The least squares migration/ inversion approach started by Tarantola (1984)

2
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1.1 . B A C K G R O U N D

and developed by others internationally (LeBras and Clayton, 1988; Bey­

doun and Mendes, 1989; Lumley and Beydoun, 1997; Xu et al., 2001; Kuehl 

and Sacchi, 2003). This method minimizes a misfit for all the data of entire 

survey.

Although there are some other methods, all of them can be categorized into 

one or a combination of the aforementioned methods. Further, even the three 

methods differ in the derivation, implementation, and applicability, there are 

some fundamental similarities among them. For example, all methods are based 

on wave propagation theory and ignore the losses caused by the conversion of 

energy from one elastic model to another, anisotropy, attenuation, and fine layer­

ing.

The method described in this thesis is mainly based on the work developed 

by Bleistein (1987; 2001; 2002a; 2002b) and Xu et al. (2001) on Kirchhoff migra­

tion / inversion. In particular, we implement our algorithm as a regularized least 

squares migration problem where we estimate elastic parameter perturbations 

directly from the pre-stack data volume. In one word, our method is the Kirch­

hoff least squares migration/ inversion approach.

1.1.2 Why a Kirchhoff migration/inversion approach?

Precise imaging the Earth interior and determination of material properties are 

a chief goal for exploration practitioners. Many migration methods have been 

developed. However, most migration methods are based on two basic wave so­

lutions. One class of methods is based on the direct solution of the wave equa­

tion, such as numerical finite difference. Another class of methods is based on 

the asymptotic linear solution of the wave equation, such as the Kirchhoff imag­

ing method. Comparing to the black box operator— numerical finite difference 

method, Kirchhoff approximation method allows us to do a theoretical analysis 

of the inversion problem. Furthermore, Kirchhoff migration is more efficient and

3
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1.1 . B A C K G R O U N D

flexible than wave equation migration. Therefore, I mainly concentrate on the 

Kirchhoff + ray tracing asymptotic imaging method.

The fundamental work of asymptotic imaging was done by Beylkin (1985;

1990). Bleistein (1987; 2001) extended his work to work with reflection data. Bur- 

ridge et al. (1998) developed the theory for heterogeneous, anisotropic elastic 

medium. In order to overcome artifacts appearing in pre-stack common image 

gathers (CIGs) generated by common offset (or common shot) depth migration 

for complex media, Xu, et al. (2001), based on the previous work by de Hoop 

et al. (1994), proved that computing CIGs in refracting/reflecting angle domain 

satisfies the imaging condition1 in most cases. Bleistein et al. (2002b) proposed a 

method for common angle migration/inversion. His work forms the foundation 

of our algorithm.

Asymptotic inverse to the generalized Radon transform (GRT) (Beylkin, 1985; 

Bleistein, 1987) is also called migration (Youzwishen, 2001) or direct inversion, 

which directly recovers an image of the Earth. There is another kind of inverse 

method called discrete inversion, which minimizes the difference between ob­

served data and synthetic data. Jin et al. (1992) combined the two methods to 

form what is called the migration/inversion scheme. Such method can find the 

best solution when complete information is unavailable. Thus, it partially cor­

rects the problem caused by the limited recording aperture, which is a common 

problem among most imaging methods.

Since the unit of size for seismic data is GB (109 bytes), solutions that involve 

the inversion of operators that after discretization lead to large matrices are not 

feasible. One way to avoid this problem is by using the Conjugate Gradients (CG) 

methods. Another chief advantage of CG for solving large system of equations 

is that the explicit matrix forms are not needed. Thus, we use Kirchhoff least 

squares migration/inversion approach.

1 Imaging condition means that all the locally coherent events in the data are focused at a single 
position after migration/inversion.

4
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1.1 . B A C K G R O U N D

CREWES Reflectivity Explorer
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Figure 1.1: Amplitude (reflectivity) versus angle (AVA), the red line represents 
the A&R approximation, and the black line refers to exact result.

1.1.3 AVO/AVA

Reflection of plane waves at a plane boundary constitutes the framework for our 

analysis. It builds a bridge between the rock physical properties at a reflection 

point and the amplitudes of scattered waves. Zoeppritz (1919) was among the 

first to investigate and discover a set of analytic relationships for reflecting waves 

at interfaces. Those equations, named Zoeppritz equations, are the foundation of 

modern AVO/AVA analysis. Since the Zoeppritz equations are very complex, 

the inverse problems for estimating rock properties from angle dependent reflec­

tivity are mainly based on approximate analytic expression for reflection coeffi-

5
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1.1 . B A C K G R O U N D

cients (Aki and Richards, 1980; Shuey, 1985; Fatti et al., 1994). Figure 1.1 shows 

the comparison of the true AVA and the one obtained from A&R approximation. 

A free software application of CREWES reflectivity explorer (from University of 

Calgary) was used to obtain the result.

There are two important applications for reflection coefficients studies. First 

is direct inversion for rock properties (Beydoun and Mendes, 1989; Lumley and 

Beydoun, 1997; Downton and Lines, 2002; Downton and Lines, 2003; Feng and 

Sacchi, 2004b). Such method inverts the perturbation of elastic parameters (i.e., 

density, P-wave, and S-wave velocities) from CIGs using linearized approxima­

tion to Zoeppritz equations. As the variation of P-wave amplitude coefficients 

with reflection angle is influenced by density, P-wave, and S-wave velocities on 

both sides of a reflecting boundary, and the reflection angles of P-wave are eas­

ily calculated. Usually, P-wave amplitude coefficients are used for the elastic 

parameters inversion. The second is the analysis of amplitude variations with 

offset (AVO) or amplitude versus angle (AVA). AVO/AVA anomalies, which in­

dicate areas of changes in rock physical properties, can thus be used as oil/gas 

indicator for seismic exploration (Li et al., 2003; Kuehl and Sacchi, 2003). The 

most famous example is "bright spots" which resulted in the discovery of many 

oil/gas fields.

In this thesis, I propose an algorithm which directly inverts elastic parameter 

perturbations from the pre-stack data, then, CIGs are generated by mapping the 

rock parameter vector to the common image gather panel using a linearized ap­

proximation to Zoeppritz equations. This is an important difference with respect 

to earlier strategies proposed by Kuehl and Sacchi (2003) where lateral smooth­

ness was directly imposed on the common image gather rather than on the vector 

of rock parameters. Figure 1.2 shows a overview of for our lab work flow. The 

forward operators are derived using the Kirchhoff approximation to linearize the 

wave equation. The least squares inverse theory is applied to obtain a better 

solution, and then the result is visualized to decide if the inverted results are

6
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1.2 . T H E S IS  M O T IV A T IO N

Seism ic  probe 
[Data]

Physics of wave 
propagation

Statist ical and 
transform m ethods  
for noise reduction

inverse theory

□I
'.■•.-••Sir' |,n. '
in fo rm a tio n
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tr -U
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P e f r o

physical j  
^parametes§/

JT
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c o n s is ten t  ?

^Tl, Yes 

Next s tep

Figure 1.2: Work flow of our lab for rock properties inversion.

reasonable.

1.2 Thesis motivation

Nowadays, the main role of migration extends from imaging subsurface structure 

to providing detailed information about subsurface rock properties. However, 

the rock properties inversion is often done in two steps. The processors trans­

form the seismic data to the image of the reservoir. Then, reservoir geologists 

interpret the image in terms of structure, stratigraphy, and rock properties. There 

is relative less work being done to directly relate the pre-stack seismic data to the 

rock properties (Lumley and Beydoun, 1997). A reasonable goal, therefore, is to 

combine those two steps together by incorporating AVO/AVA-based analysis of 

rock properties into sophisticated migration procedures. Such inversion for rock 

properties is not new. Some geophysicists have worked on this problem (Taran- 

tola, 1986; Beydoun and Mendes, 1989; Lumley and Beydoun, 1997; Downton 

and Lines, 2003).

7
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1.3 . S C O P E  O F  T H E  T H E S IS

1.3 Scope of the thesis

In this thesis, I proposed a method for AVA migration/inversion. The rock phys­

ical properties are inverted directly from pre-stack seismic data by applying the 

conjugate gradient (CG) method on a ray-based Kirchhoff migration/ inversion 

scheme in the angle domain. l2 and h norms are used as regularization terms to 

improve the smoothness along horizontal plane, as well as the vertical resolution. 

The implementation of this method shows a successful delineation of subsurface 

structures and an accurate recovering of local changes in rock physical properties 

for 2D synthetic and real seismic data.

This thesis proceeds as follows. In Chapter 1, I discuss the background of 

AVO/AVA migration/inversion. In Chapter 2 ,1 review the theory of linearizing 

the scattering problem with Kirchhoff approximation. On the basis of the theory, 

I define the forward operator and the adjoint operator which are used by the CG 

inversion. Another important theory, on which the AVO/AVA analysis is based, 

is summarized in Chapter 3. The forward operator and the adjoint operator are 

presented as well. Since the first operator's output is the second operator's in­

put, those two operators are integrated together to form a new forward and ad­

joint operator couple. As mentioned before, the inverse procedure is done in the 

framework of the least squares technique. To improve robustness of the algo­

rithm, a weighted regularization term is applied. All the details about the least 

squares inversion are described in Chapter 4. Since the efficiency of the Green's 

function's calculation significantly affects the cost of the true amplitude migra­

tion, the proposed algorithm for the Green's function computation is presented 

in Chapter 5. In Chapter 6, the least squares AVA migration for rock properties 

inversion is applied to synthetic and real data. In Chapter 7, the conclusions of 

the thesis are discussed. Further research for improvements is also discussed.

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 2 

Kirchhoff modeling/ad joint 
operators for angle dependent 
reflectivity

2.1 Introduction

In exploration seismology, wave fields are intentionally created to image the in­

terior of the earth. The artificial seismic waves are generated and their reflections 

from impedance difference within the earth are recorded. In order to invert those 

recorded data precisely for subsurface structure and elastic physical parameters, 

the inversion algorithm, which attempts to undo the wave propagation effects, 

must obey the wave propagation theory (or wave equation).

Due to the difference of deriving the solution of the wave equation, Wave 

propagation process in complex media is described by two main types (Her- 

tweck, 2000).

1. finite difference, based on direct solution of wave equation (Alford et al., 

1974; Lines et al., 1999).

2. approximate high frequency asymptotic methods (e.g., Born or Kirchhoff 

method), based on the Green's theorem (Beydoun and Mendes, 1989; Du- 

quet et al., 2000).

9
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2 .1 . I N T R O D U C T I O N

Since Kirchhoff methods are conceptually simple, versatile, and more efficient 

(Gray et a l, 2001), our research focuses on the second method, such as ray-based 

Kirchhoff theory. Like any inverse problem, the linearized forward or modeling 

theory is the first step.

Seismic forward modeling describes the forward process, which generates 

synthetic data from a known earth model (Gray et al., 2001). In seismic explo­

ration, all math-physical operators are idealized by ignoring some features of the 

true nature of the phenomena. More or less, the idealization will bring errors into 

the result. Without a doubt, a problematic forward operator will lead to a wrong 

inverse operator. However, if the main physical characters are honored, the in­

verted results are still successfully used for geophysical exploration (Kuehl, 2002; 

Bleistein et al., 2001; Gray, 1997).

Using a high-frequency approximation,1 the Kirchhoff forward operator rep­

resents the forward problem with a Kirchhoff integral. This linear scattering 

integral can be directly inverted using generalized Radon theory and pseudo­

differential operator/Fourier integral operator theory (Bleistein, 1987). However, 

the main disadvantage of the direct inversion is that the result does not fit the 

data.

In order to overcome this shortcoming, a discrete inversion method is pre­

sented in my study. This method approaches the true earth image iteratively do­

ing forward and adjoint processing. Such technique is called migration/inversion 

scheme (Duquet et al., 2000; Youzwishen, 2001).

In general, the common image gathers (CIGs) are obtained after migration (or 

inversion). In complex media, CIGs can be computed using algorithms designed 

to obtain angle dependent reflectivity (Xu et al., 2001).

1 High-frequency refers to the frequency content of the waves "high" in relative sense. It means 
that the length of target in the medium is many times larger than the length of wavelet of the 
seismic wave (or the velocity of the medium should vary very slowly). Although our inverse 
theory is based on high-frequency approximation, the method would not totally fail if the high- 
frequency condition does not exactly satisfied (Bleistein et al., 2001). Therefore, such asymptotic 
methods can also be used for complex structure.
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2 .2 . T H E  B A S IC  W A V E  E Q U A T IO N

In this chapter, basic formulas of the wave propagation theory are presented. 

Then, I review the theory of the linearizing scattering problem with the Kirch­

hoff integral which leads to Bleistein's general approach to common angle mi­

gration/inversion method (Bleistein and Gray, 2002b). On the basis of the migra­

tion/inversion theory, I define a forward operator and an adjoint operator that 

are implemented numerically in Fortran subroutines.

The method described in this chapter is based on the equation that was de­

duced by Bleistein et al (2002b). The subroutines, representing the forward and 

the adjoint operators, were originally developed by Dr. Sacchi and improved by 

the author.

2.2 The basic wave equation

Algorithms derived from the wave equation play an important role in the seismic 

industry. The wave equation describes the medium properties as a function of the 

physical parameters. Here I review the basic wave equation with the Lagrangian 

description2.

2.2.1 The elastic wave equation

Consider an elastic body. The linearized equation of motion (generalized New­

ton's Second Law) is described as

Tij,j ~~ P'U'istt fii (2.2.1)

where i , j  =  1,2,3 stand for x, y, z respectively; r  represents the stress tensor; /

represents the source function; p is the density of the solid; m refers to the particle

displacement vector.

In addition, rq and Uj can also be described by linearized stress-strain relation

2Lagrangian description emphasizes the study of a particle that is specified by its original 
position at some reference time (Aki and Richards, 1980).

11

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.2 . T H E  B A S IC  W A V E  E Q U A T IO N

(generalized Hooke's Law)

—  C-ijkl&kl ( 2 . 2 . 2 )

where represents the stiffness tensor; eki represents the strain tensor; Sy refers 

to the source strain tensor.

In the isotropic case we can reduce the number of independent stiffness coef­

ficients in equation (2.2.2) to two by

Cijkl ^ i j ^ k l  " b  “ 1"

with A and jx being known as the Lame constants.

Substituting the strain-displacement relations =  ~(uij+Ujti) to stress-strain 

relation equation (2.2.2), then substituting result to equation of motion (2.2.1), 

finally, we obtain stress-displacement relation

(Cijkl’U'k.l) P^i,tt ~ f i  • (2.2.3)

In case of homogeneity, above equation can be simplified to

(A + 2 p) V(V.u) + f i V x u - p — = : - f ,  (2.2.4)

where
r  d  -  d  7 d  

v  ~ ' d i  +  1 d i  +  k T z '

Now defining the Lame potential </> and %jj as

a  =  V^ + V x ^ ,  (2.2.5)

we obtain the wave equation for a homogeneous, isotropic solid

( 2 ' 2 ' 6 )

for a compressional wave, where cp =  J A+ î, ancj

=  <2 2 - 7 >

for a shear wave, where cs =  . h~.

12
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2.2.2 The acoustic wave equation

When seismic waves propagate through a fluid medium (such as water or oil) in 

which fi =  0, the elastic wave equation (2.2.4) reduces to

V(AV.u) =  -/■  (2.2.8)

Instead of using the displacement vector u(x, t), it is more common to use the 

pressure p

p(x, t) — — AV.u(x, t). (2.2.9)

First dividing both sides of equation (2.2.8) with p, then taking divergence of both 

sides, next, substituting equation (2.2.9) to the result, finally, one obtains

1 1 d^v
v V p ) - ^  = - ! ' (2'2'10)

where /  =  V .(^/). If the medium with constant density p , above equation can be 

simplified as

v2

where c = is the acoustic wave velocity.

2.3 Linearizing the scattering problem

As a well-established theory, the linear inverse theory makes geophysical inverse 

problems tractable (Claerbout, 1992). So the scattering wave fields are usually 

simplified linearly to the perturbation of the physical parameters by ignoring 

nonlinear parts3 based on high frequency assumption.

3Generally, the linear events correspond to the primary reflections which are caused by pertur­
bation of underground and the nonlinear events correspond to the multiple reflections of those 
subsurfaces. Therefore, linear inverse theory is valid for de-multiple data.
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2.3.1 Solution of the wave equation

Assuming an infinite space with two layers, a point source s is generated in the 

upper layer, then in the upper layer, the wave field satisfies

V 2 u(x, s, u j )  + 2 - cu(x, s, u )  — - S ( x -  s). (2.3.1)
c (x )

where c(x) is the wave speed, x is the arbitrary position, to is the angular fre­

quency, u ( x ,  s, uj)  is the total wave field which is composed from the incident 

wave field u i ( x ,  s ,to) generated by the point source and the scattered wavefield 

u s ( x ,  s, lu) generated by the interface between two layers, then the equation (2.3.1) 

can be written as

u 2 u 2
V2«s(x, s,u;) + - j 7-tUs(x,s,u>) = - [V 2uj(x, s,w) +  -^--« i/(x , s, w)] -  5(x -  s),

C ( X j  C f X j

(2.3.2)

and the incident wave field u/(x, s,u>) satisfies the Green's function rmder the 

high frequency assumption

u>2V2it/(x, s, to) +  —T-,—rUj(x, s, lo) =  —5(x -  s). (2.3.3)
cz(xj

Substituting this equation to equation (2.3.2), one obtains

U!2
^ U s i x ,  s, oj)  + - j — u s ( x ,  s, w) =  0. (2.3.4)

<r(x)

In order to solve above equation, the Green's theorem, "which allows us to repre­

sent a wavefield on either of a surface of infinite extent in terms of the wavefield

and its normal derivative on the surface" (Bleistein et al., 2001) , is used. We

define another Green's function G { r, x, uj)

V2G(r, x, to) + x, u) =  - d ( r - x ) ,  (2.3.5)
e y x j

with r being the receiver position, and x arbitrary point in the upper layer. Apply 

the Green's theorem to equation (2.3.4) and (2.3.5) in the upper layer. After some 

manipulations we obtain

us {r,s,ui) = <p G(x, r,cu)Vus(x,s,uj) -  us (x, s ,uj)VG(x , r,w) dS, (2.3.6)

14
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Figure 2.1: A special choice of closed surface S  (S +  S0) for the derivation of the 
Kirchhoff integrals, s, r are source, receiver respectively.

where S  is the surface enclosing entire upper layer volume

S  = S  +  So,

where S  and SQ are the surfaces of the plane and the half sphere showed in Fig­

ure 2 .1 .

In the physical experiment, energy of any impulse signal will become zero at 

an infinite boundary, the above equation becomes

, \ f  r / ^ d u s ( x ,  s . u )  , ,G(x, r,£u)i >
u s ( v , s , u )  =  - J  G(x,r , iv)  —  us (x,s,w ) ^ —— dS, (2.3.7)

n represents normal direction unit (see Figure 2.1). Because the normal direction 

is pointed outward from the domain of integration in the Green's theorem, here 

I define n upward pointing normal to the interface S, so I add minus sign in 

front of the integral. As it is written, this expression is a non-linear equation, the 

scattered wavefield is a function of itself. Therefore the Kirchhoff approximation 

is used to linearize scattered wavefield expression.

2.3.2 Kirchhoff approximation

The Kirchhoff approximation is a method which uses the Kirchhoff integral to ap­

proximate solution of scattered wave from an infinite interface. This approxima­

tion assumes the relationship between the leading-order incident and upward-
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R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



2 .3 . L IN E A R IZ IN G  T H E  S C A T T E R IN G  P R O B L E M

scattered wave as

us  = R( 6 )uj, = on 5, (2.3.8)

where R ( 6 ) is the angle dependent reflectivity; 9 is the specular angle of reflec­

tion. Now, I substitute equation (2.3.8) to equation (2.3.7) and after some manip­

ulations, the linearized scattering problem is written as

d G(x , s , lj)G(t , x ,u>)
us (r,s,u>)= /  R(x,d)-±---------   l dS. (2.3.9)

Is 9n

For an arbitrary background velocity field, the Green's functions can be expressed 

as

G (x,y>W) =  e* ^ > A (x ,y ) ,  

where r(x, y) is the traveltime and defined by the Eikonal equation

TTT — (V r(x ,y ) ) 2 = 0, (2.3.10)<r(x)

and A(x,  y) is amplitude (geometrical spreading factor) which obeys the trans­

port equation

2Vr(x, y).VA(x, y) + A(x, y)V 2r(x , y) =  0. (2.3.11)

Then, the scattering problem can be expressed as

us (r,s,uj) — itu J  r (x ,9)A(t ,x , s). n .V r(r,x ,s) . e ^ ^ ’̂ d S (2.3.12)

where

A(  r, x, s) = A(r,x)A(x, s) 

r( r ,x ,s )  =  r(r ,x ) + r(x ,s),

-> y7  ( \ m i  m , 2 c o s 0n .V r ( r ,x ,s ) = - |V r( r ,x ,s ) | = -  —  v  ,
c(x)

where V is the unit vector of the travel time gradients, or the migration dip direc­

tion (Bleistein and Gray, 2002b). We finally obtain the linear scattering problem
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2 .4 . A S Y M P T O T I C  I N V E R S I O N

equation4

,UJT\ (2.3.13)

where S(u)  is the signature defined by

for 3D

S ( uj) =  \oj\ W ( u ) for 2D

V W \ \ ^ 7 ^ ; eSiws9riiuj)/iw(u}) for2.5D

where W(u)  represents wavelet, as and ar are the parameters, which describe 

out-of-plane behavior with the units of Length2 /Time, defined by

with p being slowness vector.

2.4 Asymptotic inversion

In geophysical exploration, inversion is more complex than other processing, i.e. 

imaging an earth model from the data. Generally, inversion with perfect data 

will give a perfect result (Claerbout, 1992). Unfortunately seismic data are in­

complete and inaccurate, which make inversion a difficult task. Even more, a 

general expression of this inversion does not exist. Therefore, approximated ex­

pressions are derived with the generalized Radon theory and pseudo-differential 

operator/Fourier integral operator theory (Beylkin, 1985; Bleistein, 1987). Since 

common angle migration can obtain an improved, artifact free image, Bleistein 

and Gray (2002b) proposed an algorithm for common-opening-angle migration 

(or inversion),

4KMAH index K ,  which account for phase shifts in the Green's functions due to caustics in 
their ray fields (for details see (Bleistein and Gray, 2002b)), is ignored in this equation for calcula­
tion efficiency in our algorithm.

dx
(2.3.14)
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S2

Figure 2.2: Coordinates for AVA Kirchhoff migration/inversion. All variables are 
referenced to the output point x. In the neighborhood of x, the dip V, the unit 
vector in the direction of the ray from the source s to the output point x and the 
unit vector in the direction of the ray from the output point x to the receiver r are 
in the same plane. Those two unit vectors spin around V as 4> varies.

1

87T3
2  cos#
c(x)

6(9' -  9)5(4>' -  <f>)

5(^ r ^ e - ^ s) 
A(r, x, s)

d (a i ,a 2 ,9',(j>')

_ dv dv 
dot\ da 2

dwdsids2 dridr2, (2.4.1)
d(s i , s 2 , r 1 ,r2)

where i?(x, 9, <fi) is recovered angle dependent reflectivity, s, r are sources and re­

ceivers defined by surface coordinates (si, s2, r l t r2), 6  refers to the reflection an­

gle (Figure 2.2), 4> refers to the azimuth, a 1; a 2 refer to any parameter that defines 

rays.

Unfortunately, the reconstructed data, which use the forward operator on in­

verted model, do not fit the data. Therefore, an iterative constraint method is 

used to obtain a solution that honors the data.
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2.5 Modeling operators of linear scattering problem

Unlike direct inversion (i.e., asymptotic inversion), the discrete inversion tech­

nique approximates the inverse by minimizing the difference between the ob­

served data and the synthetic data calculated from the predicted earth model. 

Thus, the process computing synthetic data from model space to data space, and 

its inverse process, in some sense, back projecting from data space to model space 

are needed. These processes are called forward and backward/adjoint (or migra­

tion) modeling respectively (Claerbout, 1992; Gray et al., 2001).

2.5.1 Forw ard  modeling

Forward modeling, also called modeling, can be realized by using equation (2.3.13) 

with a known earth model:

us(r, s,(u) =  S(ui) f  R(x ,9)A( r,x , s)  ̂C°S^ (u)dsx, (2.5.1)
J v  c ( x )

where R(x,  9) is the model, W(u>) represents the source wavelet in frequency do­

main, and V  is the volume of the model one would like to recover.

The last equation can be expressed as a linear Kirchhoff operator, denoted 

1C, which has two distinct parts: an integral operator C, and a source wavelet 

operator C (or convolution operator in time domain)

d( r,s,w) =  K R (x :9)

=  C£R(x,  6 ). (2.5.2)

In this equation, R(x,  9) is the angle dependent reflectivity, and d(r,s,Lo) repre­

sents the data. The integral operator is expressed as

(£R)(r,s,w) -  [ R{x,9)A(r ,x ,s )  e ^ r'x’s)d3x. (2.5.3)
J c(xj

The operator C is given by

(C r)H  = S{u)W{u)r(u ), (2.5.4)
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where r(oj) is a dummy variable to which the operator is applied, and S(u>) is 

defined in equation (2.3.13) without the wavelet term.

2.5.2 Adjoint modeling

Adjoint modeling, also called migration, is an approximated reverse process for 

removing the forward modeling effects. In the mathematical sense, adjoint means 

the complex conjugate of the matrix transpose (Claerbout, 1992). Thus, the ad­

joint operator can be derived from forward operator using this definition

h(x, 9) = {CC)Td( t , s ,uj)

— CTCTd(r, s,ca), (2.5.5)

where R(x,  9) is recovered angle dependent reflectivity, and d ( r, s. o j )  are the data,

T  means transpose.

The above equation shows that the adjoint operator has two parts correspond­

ing to the forward operator: first undoing the multiply with the conjugate-transpose 

multiply, and then reversing the summation over the traveltime isochron. To be 

exact, they can be written as

d'(r,s,uj) = (CTd)(r,s,uj)

= S(uj)d(r, s, uj)W*(oj),

(2.5.6)

R(x,  0) — (CTd')(x,0)

=  f  A(r,x, s)e~'iWT(r,x,s') —C.°S  ̂ d'(r,s,oj)drdsdu.
J c (x )

Where <f(r,s,o;) is a solution obtained by the adjoint, and W*(to) denotes the 

conjugate of the wavelet, A(r, x, s)e~iu’Rr’x's'> the conjugate Green's function.

The adjoint operator in equation (2.5.6) images the structure of the subsurface 

correctly (Bleistein et al., 2001; Vanelle, 2002) as the inverse operator in equation 

(2.4.1) does. Both of them use the same phase shift factor e_lWT(r,x,s). But the
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adjoint operator does not recover full information about the reflectivity as the in­

verse operator does. To avoid instabilities during inversion, which is common in 

ill-posed inverse problems, the adjoint operator replaces inversion by multiplica­

tion. Therefore, the result is a blurred version of the original image (Youzwishen, 

2001). In figure 2.3 we portray the result of using the adjoint and inverse opera­

tors to image a 1-D earth structure. As showed in the figure, the inverse process 

retrieves a more accurate description of the subsurface than the adjoint operator.

2.5.3 Implementation of modeling operators

Since seismic data sets are large and complicated, forward and adjoint modeling 

can not be expressed simply by matrix operations. Therefore, the subroutines are 

used to perform these two processes. In order to check that the two subroutines 

are true adjoints of each other, the dot-product test is used (Claerbout, 1992), 

which notes

yT(Ax) =  (ATy f x ,  (2.5.7)

where x, y are any random vectors or matrices, A and Ar  represent forward and 

adjoint processing subroutines respectively.

The pseudo-code for the subroutine is given below. The subroutine named 

Kirforjidj is for an acoustic earth model. The data are represented in time do­

main.

# Subroutine for Kirchhoff forward/adjoint modeling operators 

i f  adjoint operator, then

fast Fourier transform data and multiply signature: dtemv = * S(u)

conjugate-transpose multiply wavelet with data: dtemp =  CTdtemP 

endif

fo r  itrace — all receivers fo r  each source

for  x =  all (x, y, z) positions o f  earth model
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Figure 2.3: (A) The original reflectivity R. (B) Synthetic common shot gather 
created by the forward operator d =  CCR. (C) The smeared reflectivity recovered 
by the adjoint operator R — CTCTd. (D) The approximated reflectivity retrieved 
by the iterative inverse technique with forward/adjoint operators.
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fo r  9 =  all reflection angles less than maximum aperture 

read Green's functions table (amplitude, time) from file 

i f  forward operator, then

create data from angle dependent reflectivity: 

dtemP{itrace, t ime) =  £R{x,  6 ) 

elsei f adjoint operator, then

create angle dependent reflectivity from data: 

i?(x, 9) — C7dtemp(itrace, time) 

endif  

endfor 

endfor 

endfor

i f  forward operator, then

multiply wavelet with data: dUmp =  Cdtemp

multiply signature and inverse fast Fourier transform data:

d =  real {ifft[dternp * -S'(w)]} 

endif

2.6 Summary

In this chapter, the basic wave equation for scattering problem is derived based 

on generalized Newton's and Hooke's laws. This non-linear scattering problem 

is linearized by taking advantage of the Kirchhoff approximation. The linearized 

solution of the wave equation can be used to further recover the earth image.

Based on the linearized integral, an asymptotic inverse solution is found with 

the generalized Radon theory (Bleistein and Gray, 2002b).
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Chapter 3

Forward/adjoint operators for rock 
property inversion

3.1 Introduction

Reflection and transmission of seismic waves have been studied significantly 

for retrieving rock properties from angle dependent reflectivity. The earliest re­

searches about this topic were done in nineteenth century (Green, 1839; Knott, 

1899). Zoeppritz (1919) deduced a set of equations to compute the amplitudes 

of reflected and transmitted waves, and successfully being used in tomographic 

inversion for calculating reflection and transmission coefficients (Wang, 1999). 

However, the inversion problem, which estimates elastic parameters from an­

gle dependent reflectivity using Zoeppritz equations, still is a difficult problem. 

Fortunately, after many laborious exercises, Koefoed (1955) predicted that there 

would be an invertible relationship between angle dependent coefficient and 

medium parameters. Koefoed's prediction was realized by many later geophysi­

cists (Bortfeld, 1961; Aki and Richards, 1980; Shuey, 1985; Fatti et al., 1994; Wang, 

1999). Although those approximations differ in accuracy, medium, and wavefield 

parameterizations. All of them are based on the same assumption (Riiger, 2002).

1. The media on both sides of the reflecting boundary have similar elastic 

properties, and the relative changes in the P- and S-wave velocities and
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densities across the interface are small.

2. The incidence angle is sufficiently smaller than the critical angle. At the 

critical angle, the amplitudes change abruptly and phase changes make any 

parameter extraction difficult.

Among all approximations, the classic representation was derived by Aki and 

Richards's (A&R). Their approximation to Zoeppritz equation is always used or 

further simplified by others. Therefore, I focus on A&R approximation as for­

ward processing to estimate rock properties.

Although A&R approximations are derived for plane waves, they can be used 

for spherical waves. The reasons are: for far source spherical wave, the wavefront 

can be approximated locally by plane surface. For near source spherical wave, 

the wave can be decomposed into a sum of plane waves, and approximation 

operators can be applied to each plane wave.

In this chapter, I present A&R approximations for P-wave reflection coeffi­

cients. Base on this equation, then the forward and adjoint operators are defined. 

Obviously, I only show the summary of the most important approximated equa­

tion to my thesis. Details about the Zoeppritz equations and its approximation 

can be found in Aki and Richards (1980).

3.2 A&R approximation to the Zoeppritz equations

Reflection and transmission will occur when waves propagate in a discontinu­

ous medium. The elementary formulas for reflection/ transmission coefficients 

can be derived by using kinematic and dynamic boundary conditions. The kine­

matic boundary condition assumes that displacements are continuous through 

the boundary, the dynamic boundary condition is the continuity of traction across 

the interface. Based on these two boundary conditions, the exact formulae for P- 

P wave1 reflection coefficients can be expressed in terms of the ray parameter p 

!P-P wave refers to the wave style that both incident wave and reflected wave are P-wave.
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(Aki and Richards, 1980)

-  c 2 * d z ) F  -  ( a  +  d ^ - c- ^ ) H p 2
p n  _  V V p l _____________ V p 2 __>____________ \ ______________ V p l  V s 2  > c

D

Where P ,  and P  represent incident, and reflected P-wave respectively, and

a =  p 2{ l - 2 v 22p 2) -  p 1( l ~ 2 v 21p 2), 

b =  p 2{ l  -  2 v 2s2p 2) +  2 p i v 2slp 2, 

c =  p x ( l  -  2 v 2slp 2) + 2 p 2v 2s2p 2, 

d  =  2{p2v 2s 2 -  p i v 2s l ),

„  , COS 7i COS 7o
F = b— ^  + c — ,

Vsl Vs2
C0s i2 cos ji H = a — d------------- ,

y >2 ]
^  det M

with pi, vpi, and vsi being upper layer's density, P-wave velocity, and S-wave 

velocity respectively, p2, vp2, and vs2  being lower layer's density, P-wave veloc­

ity, and S-wave velocity respectively (Figure 3.1), i\ , i 2 referring to P-wave inci­

dent/reflected and transmitted angle respectively, and j \ ,  j 2 representing S-wave 

reflected, transmitted angle respectively, ray parameter p denoting as

sinii sinfi 
P = -------- =  — ,Vpl v3i

and the coefficient matrices M  defining as

(  ~vplp -c o s  j i  vp2p cos j 2 \

M = COS Z\ —VgiP COSZ2 —vs2p
Zpivhpcosix plv3 i ( l ~ 2 v2slp2) 2 p2 v22p c o s i2 p2 vs2(l -  2 v22p2)

\  -P ivpi( l  -  2 v2slp2) 2 piv2slpcosj i  p2vp2{l -  2 v 22p2) - 2 p2 v 22pcos j 2 J
One can see that above expressions are very complex. Rock properties (i.e. p, 

vp, and vs) inversion seems to be a 'mission impossible'. Fortunately, under the
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R eflected  S R eflected  PIncident P

p1 Vp1 Vs1

p 2  V p 2  V s 2

T ransm itted  P

T ransm itted  S

Figure 3.1: Coordinates for analysis of reflected wave set up by a plane P-wave 
incident on an interface between two solids.

assumption on page 24, Aki and Richards (1980) approximated above equations 

as

!/■, Avl  • 2 -nA P . sec2 i A v p 4v2s . 2 .A v s- ( 1 - 4 — sm i)—  + —  p-  — sin i  , 3.2.2)
2  vi p 2  vv v“ v.vj p 2  vp

are:

A v s ~  V s 2 - V a l ,

Vs — (vs 2 +  Vsi)/2,

A vp — Vp2 Vpl;

vp

A p = P2 “  Pi,

P = (p2 + Pi)/2,

i = (h + *2) / 2 -

Since this approximation is derived from the assumption of small percentage 

changing in elastic properties, the difference between incident angle i\ and trans­

mitted angle i2 will be small. Therefore, the reflection angle 9 can be approxi­

mated as the angle i showed above.
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3.3 Modeling operators for A & R  approximation

As mention in section 2.5 on page 19, the discrete inversion needs the forward

and adjoint modeling operators. However, the angle dependent reflectivity is 

still nonlinear to and in the equation (3.2.2). This is because that the

unknown ^  is a nonconstant coefficient, but function of rock physical parame­

ters. One simplification assumes that the ratio of vs to vv is constant2 (Wiggins et 

a l , 1983)

— = 1 / 2 . (3.3.1)
vP

Substituting equation (3.3) to equation (3.2.2), one obtains

1, Ap sec2 9 Av„ . , „A«.R(x  0 =  _ (i -  sin2 9)—  + — ------- -  -  sin2 9— (3.3.2)
2  p 2  vp vs

where x is any point on the interface, and 9 refers to the reflection angle.

3.3.1 Forward modeling

The linear approximated equation can be used to calculate the angle dependent 

reflectivity for a known elastic interface. The equation (3.3.2) can be expressed as 

a linear operator Z

R(x,  9) =  Z f ( x )  (3.3.3)

where /(x ) represents elastic parameters matrix or vector composed of 

and R(x,  9) is the synthetic angle dependent reflectivity. The linear approxi­

mated operator denotes

, 1 m A p sec2 6  . 9 „Au.
{Zf )  x) -  -  1 -  sm2 B)-Z- + —  H -  sin2 9— (3.3.4)

2  p 2  vp vs

As working with discrete geophysical data, the linear operator (equation 3.3.4) 

can be thought of as matrices, and the parameters as vectors or matrices. The

2Other experimental approximations can be used depending on local rock physical condition 
for real data.
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discrete forward problem3 is expressed as

/  R(01) \ /  \ (1 sin26 )̂ sec' 01 — sin2 61 \
R(02)

—
|(1  sin2 6 2 ) ^ — sin2 02

V ) \  t;(1 — sin2 6 n) ^ — sin2 6n J

(3.3.5)

3.3.2 Adjoint modeling

As defined in section 2.5.2 on page 20, the adjoint operator can be obtained by 

taking the transpose of the forward matrix. Thus, the adjoint modeling operator

is

/(x ) =  Z t R(x , (3.3.6)

where /(x ) is the result obtained by applying the adjoint operator to the model.

As mentioned above, when working with discrete expression of the model 

and data, the adjoint operators are implemented as matrices. Equation (3.3.6) can 

be expressed as

/  \
e 

Aiip

y

|(1  -  sin2 9 i )  1(1 — sin2 02 )
s e c  d \

2
— sin 9 i

s e c 2 02 
2 '

-  sin 02

|(1  -  sin2 0n )
s e c 2 Bn 

2 ^

/  R{01) ^
R( 0 2 )

— sm
V

(3.3.7)

3.4 Implementation of modeling operators

A&R approximation operators can be completed by matrices operation. In order 

to combine with the Kirchhoff modeling processing, the subroutines operators 

are defined to perform A&R approximation processing.

The pseudo-code for the subroutine is given below. The subroutine named 

A&Rjorjzdj  is for an earth model.

3To be simple, this expression is only for one reflection point in space.
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# Subroutine for A&R forward/adjoint modeling operators 

fo r  x =  all (x , y, z) positions o f  earth model

for 9 — all reflection angles less than maximum aperture 

i f  forward operator, then

create angle dependent reflectivity from elastic model:

R(x ,0)  = Z f ( x )  

elsei f adjoint operator, then

create model from angle dependent reflectivity:

/(x ) =  Z TR(x,9)  

endi f  

endfor 

endfor

3.5 Integrating AVA inversion with Kirchhoff migra­
tion

In the Chapter 2 ,1 reviewed the linear scattering problem

d = CCR(x, 9). (3.5.1)

Note that the angle dependent reflectivity R(x,  9) is related to the vector of phys­

ical parameters /(x ) via a Zoeppritz forward operator

R(x,0)  = Z f ( x )  (3.5.2)

Therefore, combining equation 3.5.1 and equation 3.5.2, the seismic data can now 

be expressed by

d = CCZf (x) .  (3.5.3)
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3 .6 . S U M M A R Y

and its adjoint operator can be written as

/(x ) =  Z TCTCTd. (3.5.4)

Our inverse algorithm is based on the equation 3.5.3 and equation 3.5.44 By 

means of the CG, we can easily obtain the perturbation of rock properties /(x). 

The common image gather R(x,  6 ) is generated by substituting the inverted rock 

physical parameters back to the A&R approximation to the Zoeppritz equation.

3.6 Summary

In this chapter, the A&R approximation of P-wave's reflectivity is presented for 

Zoeppritz equations . Using kinematic and dynamic boundary conditions, the 

approximation leads a way to retrieval rock properties from CIGs in angle do­

main efficiently. In order to linearize A&R approximation to elastic parameters 

and the assumption ^  =  1/2 is used, which was derived by Wiggins 

et al. (1983).

To simplify the problem, the forward processing operators of A&R approxi­

mation are derived for plane wave. Since a relative large radius of a spherical 

wave can be approximated locally by a plane surface. Moreover, spherical wave 

can be decomposed into a sum of plane wave, and the operators can be applied 

to each plane wave individually. Therefore, the operators can still be used for 

spherical waves.

The forward and adjoint operators are derived from the linearized A&R ap­

proximation. In keeping with the previous algorithm, the discrete operators are 

performed with subroutines. This enables combination of two parallel operators, 

Kirchhoff and A&R approximation operators, together to invert rock properties 

directly from pre-stack seismic data.

4Actually, the three variables of f (x )  are correlated (Downton and Lines, 2001). The algo­
rithm presented here does not included a model covariance matrix. Including correlation among 
parameters is a non-trivial problem since these parameters are unknown.
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Chapter 4 

Inversion of angle gathers and rock 
properties

4.1 Introduction

Seismic inversion is the processing which determines the characteristics of the 

interior of the earth based on observations from a surface. It is the reverse calcu­

lation of the forward problem. Generally, perfect data1 will give perfect inverted 

result (Claerbout, 1992). But seismic data are incomplete and inaccurate. In order 

to avoid dividing by zero, many geophysicists replace inversion with migration 

(or adjoint processing). However, the migrated result can not recover amplitude 

information, which is important for AVA/AVO analysis. Moreover, the adjoint 

operators treat missing data as assuming they are zero-valued data, which fur­

ther limit the resolution. Fortunately, since adjoint processing is the first step of 

inversion (Tarantola, 1984; Claerbout, 1992). The inversion can be approached by 

using forward and adjoint operators iteratively. Such numerical method is called 

discrete inversion.

Discrete inversion technique finds the solution by minimizing the cost func­

tion (Tarantola, 1987; Jin et a l, 1992; Thierry et a l, 1999), which is composed by 

two parts: one is I2 norm misfit —  difference between the observed data and the

Perfect data are noise free data, and contain enough information to evaluate all of the rock 
physical properties within every cell of a tomographic grid.
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4 .2 . D IS C R E T E  I N V E R S I O N  T H E O R Y

predicted data from the earth model; another is the regularization terms which 

force the solution toward the desired characteristics. Usually, the regularization 

terms are defined in terms of h  and l2 norms.

In this chapter, I present the basic idea and formulas of discrete inversion 

theory. Then, the forward and adjoint operators for rock properties inversion are 

defined and finally, an inversion methodology is proposed.

4.2 Discrete inversion theory

Geophysical data are discretely recorded with regular or irregular time/space 

samples. Thus, the data can be expressed as matrices or vectors. Moreover, 

the word "inversion" originally come from "matrix inversion" (Claerbout, 1992). 

Therefore, the linear operator can be thought of as matrices.

4.2.1 Seismic discrete inversion problem

Retrieving approximated rock properties from a pre-stack data set can be re­

garded as linear inverse problem

d =  Gm + n, (4.2.1)

where d refers to the pre-stack data defined as a vector of (ch, d2). . . ,  djv)T, N  

is the number of observation data, m refers to the model defined as a vector of 

(mi,m2, . . . ,  m,M)T, M  is the number of unknowns of the model, n represents 

additive noise that we assume Gaussian, and G represents the matrix operator 

defined as
^ G n G \ 2 G \ m  \

g 21 G 2 2 G 2m

^  G jv i GjV2 ■ ■ G n m  /

Since there is no way to collect reflected data from each small tomographic 

grid within the earth. Usually, the number of data N  is smaller than the number
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of unknowns M.  Therefore, the inverse problem (equation 4.2.1) will have more 

than one solution. In order to resolve such an ill-posed problem, a constrained 

least squares approach is used.

The least squares approach finds the solution by minimizing error or distance 

between synthetic and original data. The distance is equivalent to following ob­

jective or cost function

J (  m) =  eTe = (d — Gm)T(d — Gm) =  jjd — Gmjl^. (4.2.2)

To obtain the minimum of the cost function, the derivative of the function (equa­

tion 4.2.2) with respect to the model parameters is set to zero

d j (m) d(d -  Gm)r (d -  Gm) _ n /A 0  ^
dm  a m

after some manipulations, one obtains

m =  (Gr G)~1G Td, (4.2.4)

where m are the recovered model parameters. GTd denotes adjoint (or the gra­

dient of the cost function). GTG is the Hessian.

In geophysical inverse problem, the Hessian is a huge matrix2. We will face 

a daunting computation for the inversion of the Hessian if we use this equation 

to invert the model parameters3. This is why we will directly operate on the 

minimization of the cost function using the method of conjugate gradients (CG). 

In other words we will avoid forming the inverse of G TG4. A good review of 

the CG method and application to geophysical inverse problems can be found in 

Scales (1987).

2For example, a 2D pre-stack seismic data, the number of elements of Hessian is (Ns x Nr x 
N t)2, it would be more than trillions, where N sr N r, N t represent num ber of source, receiver, and 
time sample respectively

3The computation of inverting a N  x N  matrix is N s, but CG only K  x N 2 with K  being 
number of iteration, and N  K.

4This is a task only feasible for small ID problems
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It is important to distinguish migration and inversion. As mentioned above, 

migration is the gradient at first iteration of a local optimization (Tarantola, 1984). 

To be clear

m =  (GTG )-1Gr d

= GM inversion,

(4.2.5)

m = GTd migration.

Obviously, if GTG = I, where I is used to indicate the identity operator, the

inversion is precisely estimated by the migration. In seismic application, unfor­

tunately, this situation seldom occurs.

Applied to perfect data, inversion will give perfect result. This is why that 

inversion is more appealing academically than migration. However, it is also 

important for us to know the limitation of the inverse operator G*

m = G fd

-  (GTG )-1GTd

= (GTG)~1Gr Gm (4.2.6)

= G fGm.

Clearly, if G^G = (GTG )"1GTG =  I .  The inverted image equals to the true 

image of the subsurface. In general, noise and the inherent problem of operator 

mismatch precludes us of attempting to find an exact inverse to the operator G. 

We simply consider the solution where G fG «  I ,  in other words, the inverted 

image m should offer some improvements with respect to the migrated result m, 

and a good approximation to the true image m. Figure 2.3 shows a good example 

for the above statement.
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4.2.2 Constraints

As m en tio n ed  above, the geophysical problems (equation 4.2.1) are ill-posed. 

Thus, the matrix GTG in equation (4.2.4) is in general unstable or not invertible. 

In order to retrieve a stable, unique solution from noisy and incomplete data, 

constraints are applied to force a desired solution. Hence, a new cost function is 

formed by a data misfit term and a constraint term

J ( m )  = | |d  -  G m ||\ +  n\\R{m)\\\. (4.2.7)

Where regularization term R (m) is expressed as an I norm (i.e., h or l2 norm), and 

q denotes the trade-off parameter, which defines the priority given to satisfying 

the constraint versus the data misfit term.

The trade-off parameter affects the solution greatly. If the trade-off parameter 

is set to zero, the solution will totally fit the data. Inversely, when the trade-off 

parameter approaches infinity, all efforts will be put toward minimizing the reg­

ularization term and the solution will not fit the data. Thus, to retrieve a realistic 

solution, the optional trade-off parameter must be a compromise to satisfy both 

terms. The details for determining trade-off parameters, please see Youzwishen 

(2001).

The desirable solution can be obtained by minimizing the cost function (equa­

tion 4.2.7)

= 2 G r G m  -  2GTd +  2 /iQ ^ Q mm  = 0, (4.2.8)
d m

after some manipulations, one obtains

m =  (Gt G + pQmQm)~xGTd. (4.2.9)

where Q m is derived from the regularization term ||i? (m ) ||;

O r O 1 d ||.R (m )[|j 
2 d m

The same as the equation (4.2.4), the equation (4.2.9) need to calculate the 

Hessian Gr G. To make calculation efficiently, the CG algorithm is used for such 

constrained least squares inversion.
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Usually, there are two kinds of constraints, quadratic constraints expressed in 

l2 norm and non-quadratic constraints expressed, for instance, with an l\ norm. 

Quadratic constraints result in a linear inverse problem. This is because the ma­

trix Qm in equation (4.2.9) is not the function of the model m. Non-quadratic 

constraints result in a nonlinear inverse problem. However, many geophysicists 

proposed algorithms which solve the l\ norm non-quadratic constraints problem 

in a linear, iterative manner (Scale and Smith, 1994; Sacchi, 1997; Youzwishen, 

2001).

Quadratic constraints

Since most structures of the earth vary continuously along horizontal direction, 

the common quadratic constraint is to enforce a continuous solution (Youzwishen, 

2001; Duquet et al., 2000). The simplest one of such continuous solution is a flat 

solution that has little change between adjacent parameters.

The flat solution can be obtained by minimizing the first derivative of the 

model norm.

Obviously, the derivative in above equation can be estimated by convolution with 

the filter (1 , — 1 )/Ax. Thus, The equation (4.2.10) can be rewritten as weighting 

matrices Di which act on the vector of model parameters m

Applying the flat regularization term to the cost function, the solution can be 

obtained by replacing the weighting matrix of equation (4.2.9) with the derivative 

matrix Dj

/  1 - 1  0
0  1 - 1

0  \  /  m  i ^
0  m 2

0 . . .  0 1 —1 To m -1
\  0 . . .  0 0 1 /  \  m M

m  =  (Gt G +  yuDfD1)_1GTd. (4.2.11)
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Where the transpose matrix D f is defined as

/  1 0  0  ... 0  \
- 1  1 0  ... 0

0  . . .  - 1  1 0  

o ... o - i  i y

The smooth convolution matrices (Di and D f) showed above are only for one 

dimensional problem. In two (2D) or three (3D) dimensional problems, the matrix 

of parameters will be rewritten in lexicographic order. The derivative matrices 

for such cases will be determined by model parameters which are adjacent in the 

vector m. For example, a model parameters panel of a 2D problem can be written 

as

with nx, n z being number of samples along the horizontal and the vertical di­

rection respectively. The smooth convolution matrices applied for the horizontal 

and the vertical directions are

( mn \
m n

( mn m 12 . . .  m lTlx \
m21 m 22 . . .  m 2nx

mi nx 
m 2 1 

m 2 2

y m nz 1 m rlz2 ■ ■ ■ n inzrlx J

\  m nznx /

(  Di!
D X2 0

0

V J
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an d
(  D

D z =

zl
D*2 0

D j3
0

D znx J
respectively, where

/  1 -1  
1 - 1

D x i  — D j .2

1 - 1  

1

total number is nx

f  nx — 1 numbers of zero 

1

0 1

( 1

Oznj, —

al number is 2x n , 

\
1 0

total number is nx

\
0

• - 1 /

Non-quadratic constraints

The m o st co m m o n  n o n -q u ad ra tic  reg u la riza tio n  te rm  is th e  h  n o rm . U nlike 

sm o o th in g  te rm s, sp a rsen ess  w ill p re se rv e  ed g es a n d  d isco n tin u itie s  a lo n g  faults, 

and increase vertical resolution (Sacchi et al., 2003). When sparseness is enforced 

on a model parameter, the resulting solution will be spiky. In the same vein, as 

sparseness is enforced on the first derivative of a model parameter, the resulting 

solution will be blocky.
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Since this thesis focuses on AVA and variation of rock properties inversion, I 

mainly discuss the spiky regularization term. It is defined as

M
Jl(m) = £ rrij (4.2.12)

i= 1

Substituting equation (4.2.12) into equation (4.2.7), and minimizing this cost func­

tion, after some manipulations, one obtains

2Gr Gm — 2GTd + g,sign( m) = 0.

where sign(rrii) =  Subsequently,

m = [Gt G +  —sign(m )m  1] 1GTd.

(4.2.13)

(4.2.14)

Obviously, this equation is nonlinear. Because the solution is the function of itself, 

in order to solve it with CG, let's rewrite the spiky regularization term

M
R{in) =  J 2

rrii

rriii= i vT
!lQmm|l2

where Qm is the diagonal matrix defined in terms of the vector m

(4.2.15)

(

Q r

\

\ m i \

0

(4.2.16)

V

To avoid divided by zero, we often replace the unknowns in equation (4.2.16) by

”7f= f ^  / l—-T  • < 4 -2 ' 1 7 )v lmil v lmi l + e
where e is a small positive number.

By defining a new spiky constraint operator as equation (4.2.16) and equation

(4.2.17), the h  norm function (equation 4.2.12) is rewritten as an l2 norm function

40

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



4 .3 . C O N S T R A I N E D  L E A S T -S Q U A R E S  M I G R A T I O N /I N V E R S I O N

(equation 4.2.15). Thus, the weakly nonlinear problem (equation 4.2.13) can be 

solved by using the iteratively re-weighted least squares technique in a linear, 

iterative manner (Scale and Smith, 1994).

4.3 Constrained least-squares migration/inversion

As mentioned above, in order to avoid forming matrix GTG, the cost function 

itself is used to find a solution. Therefore, numerical optimization techniques are 

used for minimizing the cost function iteratively. We minimize the following cost 

function:

J ( m )  =  ||d -  Gmllj +  A||f?sm(m ) | |2  +  n\\Rsp(m)\\l. (4.3.1)

where R sm represents smoothness constraint described in subsection 4.2.2, R sp 

denotes sparseness constraint described in subsection 4.2.2. A, and /i are tradeoff 

parameters.

In the cost function showed above, the smoothness constraint and the sparse­

ness constraint seem to be in conflict in some sense. As smoothness constraint en­

forces smoothness and penalizes discontinuities and rapid parameters changes. 

At the same time, the sparseness constraint enforces the discontinuities. How­

ever, giving the proper weights (tradeoff parameters) for those two operators, 

the promised result will be smoothed or discontinued at the area where it should 

be. Therefore, such cost function is suitable for retrieving earth's properties. Usu­

ally in the earth, along the horizontal direction, faults cut off the continuity of the 

background. Along the vertical direction, rock properties are continuous in the 

layers, and discontinuous between the layers.

Iterative gradient minimization by conjugate gradients (CG) is one of the best 

methods for geophysical inverse problems. There are two advantages of using 

CG minimization for seismic inversion. First, CG minimization approaches the 

desired solution by repeating forward / adjoint-type processes. Thus, it avoids
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inverting the product GTG directly. This is very important for seismic inverse 

problems. In fact, seismic forward and adjoint operators are coded as functions 

rather than matrices. Second, CG minimization is an efficient way for the seis­

mic inversion because it is ^  times faster than traditional Gaussian elimination 

methods, where N  is the dimension of the inverted matrix and K  is the number 

of iterations, and N  K.

4.3.1 Conjugate gradients implementation

The pseudo-code for the subroutine of CG is given below. The subroutine named 

CGsiperator. Details about the CG algorithm can be found in Claerbout (1992), 

Strang (1986), and especially Scale (1987).

# Subroutine for CG algorithm

# initialization

r =  d # d represents the data

m  =  m 0 # m  refers  to the model

# calculating gradient 

p =  GTr

s =  p 

q = Gp
# begin iteration

fo r  iter = 1 , max ̂ iteration
l Ta  = s s

a  — s f -q q
m =  m +  a  * p # update model

r = r — a  * q # update residual

s = GTr

r ai
p =  s +  (3 * p
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q =  Gp

end

4.3.2 Forward/adjoint operator for inversion

As shown in section 4.3.1, the CG algorithm includes only one matrix opera­

tor G, but the cost function on page 41 contains more than one matrix operator. 

Moveover, the forward operator G is composed by Kirchhoff and A&R forward 

operators. For this reason, an integrated matrix (or argumented matrix) operator 

must be formed. In other words, the reformed cost function with regularization 

term (equation 4.3.1) should look like the standard cost function (equation 4.2.2). 

Since the sparseness regularization term can be rewritten in the form of quasi h  

norm (equation 4.2.15), the cost function can be expressed in quadratic form by 

substituting the flat constraint operator D x and the spiky constraint operator Qm 

described in the section 4.2.2 into equation (4.3.1)

where d^ is a new data vector which is composed by padding zeros5 to the end 

of the data vector d

J ( m) =  ||d -  G m | |2  + A ||D im | | 2 + p ||Q mm || 2
2 - (4.3.2)

The above equation is equivalent to

J ( m) = ||dA -  G^m|| 2
2 ) (4.3.3)

(4.3.4)

and G^ is the argumented operator

(4.3.5)

5Numbers of zero are determined by the number of parameters of D i and Q m.
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with the matrix operator G being denoted as

G =  CLZ, (4.3.6)

where CL forms the Kirchhoff forward operator which is described in section

2.5.1 on page 19, and Z represents A&R forward operator which is described in

section 3.3.1 on page 28.

Substituting equation (4.3.4) and (4.3.5) to equation (4.3.3), and comparing 

to standard cost function. Finally, one obtains forward operator for such con­

strained least squares inverse problem

CLZ \
VXD 1 m, (4.3.7)
V^Qm /

and its adjoint operator

m = ( ZTL TCT VXDJ ^ Q m  ) (  o )  ' (4-3-8)

4.4 Implementation of the inversion algorithm

The desired solution of the inverse problem can be retrieved by the CG algorithm. 

The computation steps are listed below (Sacchi, 1997).

1. Initialize the model parameters for rock properties f (x ) .  Most commonly, 

the default model is set to zero for each parameter if there is not enough 

information to begin elsewhere.

2. Input Green's function table and macro velocity model. Green's functions 

are calculated by the target oriented ray tracing method.

3. Select maximum iteration and the tradeoff parameters and emax.

4. Call the CG subroutine. The CG subroutine also calls the Kirchhoff for­

w ard / adjoint and A&R forward/adjoint subroutines.
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5. During the CG iteration processing, output the result if d j^ 'f ^ k - i ^ / 2  ^  emax, 

where J k is the cost function evaluated at iteration k.

6 . Plot the image and the misfit to determine if the tradeoff parameter need 

adjustment.

4.5 Summary

In this chapter, I review the discrete inverse theory. An inversion method based 

on the CG algorithm is proposed. This inverse technique uses the forward and 

adjoint operators couple to retrieve the approximated solution iteratively. The 

advantages of such iterative inverse technique are as follows.

1. The algorithm can be easily coded and efficiently executed.

2. The scheme avoids computed the product Gr G which can not be formed 

for multidimensional geophysical inverse problems.

3. The algorithm does not require large amount of computer memory. The 

forward and adjoint operators are coded as functions rather than matrices.

Since faults cut off the continuity of the background in the horizontal plane, 

and rock properties are continuous in the layers but discontinuous between the 

layers along the vertical direction, the quadratic smoothing constraint is used in 

the horizontal plane and a non-quadratic sparse constraint is applied to improve 

the vertical resolution. This technique has been developed by our group in recent 

years (Feng and Sacchi, 2004a).
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Chapter 5

Target oriented ray tracing for 
Green's function

5.1 Introduction

Due to its flexibility and efficiency, ray based Kirchhoff migration/inversion is 

more popular than other methods in exploration geophysics. Imaging goals fo­

cus now on recovering elastic properties. True amplitude migration for com­

plex media, which is based on a weighted diffraction stack, becomes more and 

more important. However, the Green's functions (or weighting functions) are 

computationally expensive. Therefore, an efficient strategy for calculating the 

Green's functions1, as well as high accuracy, will significantly reduce the cost of 

the amplitude-preserving migration.

The Green's functions are composed of two parts: travel times and ampli­

tudes. Generally, the travel time and amplitude can be obtained by ray tracing 

methods, which mainly consists in solving the two ray equations — eikonal and 

transport equations. Based on high frequency approximation, usually the seismic 

ray tracing is used to calculate the rays, travel times, wavefronts (the kinematic 

aspects of wave propagation, computed by eikonal equation) and amplitudes 

(dynamic part of the wave propagation, computed by the transport equation).

xIf the source function is an impulse, the solution of the Helmholtz equation is called Green's 
function, or impulse response.
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SnSI S 2

T arget area

Figure 5.1: Target oriented ray tracing.

There are lots of ray tracing methods for calculating the Green's function. The 

classical paper, which is written by Cerveny et al. (1977), forms the foundation 

of dynamic ray tracing. However, these algorithms are quite expensive. Vanelle 

(2002) proposed an algorithm based on hyperbolic traveltimes expansion. Be­

cause the method uses only kinematic ray tracing, the computational efficiency is 

increased.

In this Chapter, I propose a target oriented ray tracing for computing the 

Green's function based on the kinematic ray tracing. Therefore, the algorithm 

is efficient. Furthermore, our method takes into account all relevant arrivals from 

all directions by shooting dense up-going rays from the image points. As the an­

gles of the rays are needed for the approximation. I also present the algorithm for 

computing angle based on the eikonal equation.

5.2 Target oriented ray tracing

Target oriented ray tracing is used to compute the Green's function for the Kirch­

hoff migration/inversion algorithm (Figure 5.1). The rays are shot from the im­

age points up to the surface. To avoid migration/ inversion operator aliasing, the
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i-n , . .  i-1 i i+ 1 . . .  i+n
1-11

i-1

i+n-

Figure 5.2: Sketch of a filter grid.

density of the rays are chosen depending on the complexity of the model, the 

more complex of the model is, the more dense of the rays will be used. Since the 

ray tracing is only executed in selected image domain at which the interesting 

targets locate. Therefore, it will be efficient and flexible. For example, no acquisi­

tion regularity assumption is necessary, and the algorithm can be easily applied 

on parallel computers.

5.2.1 The macro-velocity model

The ray tracing requires the input of a macro velocity model (or migration veloc­

ity model). The macro velocity, which is the low frequency background of the 

earth model, hence for synthetic data, is obtained from the earth model using a 

low pass filter. For example, a 2D filter denotes

(  u

F  = hi. (5.2.1)
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on the condition of n
y i  — 1 .0 ,

where i and n are showed in the Figure 5.2. Usually, I choose n  = 100 for the 

filter.

When dealing with real seismic data, we invert the Dix's equation (1955) to 

obtain the interval velocities c* from stacking velocities C(t).

where Ai,- is the time interval, and t =

The inversion of equation 5.2.2 only gives the vertical velocity variation at 

some CMP locations. The lateral velocity variation can be obtained by any inter­

polation method between the CMPs.

5.2.2 The Green's function

As mentioned before, the Green's function should be calculated before the Kirch­

hoff migration/inverstion. The Green's function includes amplitude and time 

information, which is crucial for the Kirchhoff operators. However, calculating 

the Green's function is troublesome, since there is no analytical expression for 

complex media. An approximation to the Green's function is created by a mod­

eling scheme that uses the first-guess wave speed profile (Bleistein et al., 2001), 

or macro/migration velocity model. Such an approximate function can be con­

structed by finite-difference method (FD) or asymptotic method (Chapter 2). The 

FD method is more accurate, but expensive. Furthermore, it can not provide the 

reflection angle information directly, which is important for our proposed AVA 

inversion algorithm. Unsurprisingly, the asymptotic method has those merits 

that FD does not have. Therefore, an asymptotic method called ray tracing is 

used to obtain the Green's function in this thesis.

i=0

(5.2.2)
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Seismic ray tracing method mainly consists of solving the two ray equations- 

eikonal and transport equations. It is an asymptotic approximation to the wave 

equation that describes the process of propagation of seismic waves in the high 

frequency regime. Ray tracing can be used to calculate the rays, travel times, 

wavefronts and amplitudes. Since the traditional dynamic ray tracing is expen­

sive, an approximation for 2D acoustic Green's function is proposed.

5.3 Travel times approximation

The eikonal equation is usually solved by "method of characteristics". More de­

tails see Bleistein, et al. (2001) or Kravtson and Orlov (1990). The ray tracing 

system (kinematic) is composed of six ordinary differential equations. Usually, 

they are written as following two vectors equation

dx 0, .
-  =  c*(x)p

(5.3.1)

d p  1 V7 f  \
d7 = ~ ^ w Vc(x)

where x ( x i , x 2, x 3) represents any position in the subsurface, c(x) is velocity, r  

refers to travel time, p is slowness vector denoted as

I -
p(x) = Vr(x) =  -y—r(* sin (f> cos 8 + j  sin (j) sin 9  +  k cos <j>) c(x)

for 0  < 0 < 2n, 0  < <fi < tt

where <fi, 8 are the angle of the ray at point x, and i, j ,  k are direction units.

For small steps (in time or space), the ray can be thought as a straight line. 

Then, after some manipulations, the equation (5.3.1) can be rewritten as

dXi ( \ ■ n
——  =  c(x)smd 

d t  x J

— • = c(x) cos 8 for 2D, (5.3.2)

c(x) . c(x) .■ cos 8 + -UU- sin (
dt dx i dx 2
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and,
dx i 
dt 

dx 2 

dt
dx 3
dt
d(f>
dt

d9
dt

=  c(x) sin (j) cos 9 

=  c(x) sin sin 0

c(x) COS (j) 

c(x)
dx 3  

c(x)

sim
c(x)
dx i

, • sin 6 — cos 9axi__________ dx 2______

sin^

for 3D. (5.3.3)

COS I +  sin 0
dx2

cos 4>

x (meters]
mrvr ?nnn mn annn Knno finnn vnnn snno «nnn mooo

Traveltime error [s]

Figure 5.3: Comparing of analytic result with ray racing. Background is travel­
time error(maximum error is less than 0.0039 seconds). The source is located at 
(5000m, 5000m).The wavefront is contoured in 0.080 seconds increments.

5.3.1 Accuracy of the travel times approximation

I have tested the accuracy of the method on two models. One is analytic gradient 

model with velocity c = a + bz to test the travel time; another is a 16 layers model 

to test the angle and travel time. Both examples show high accuracy.
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1000 2000 3000 4000 5000 6000 7000 8000 S000
x [meters]

0 f  1000 . . .2 000 3000 _4000___ 5000  ̂ 6000 7000___J 0 0 0 _

£ 2500

1500

4000

4500

16 1900 210 0 2200 2300

Velocity [m/s]

Figure 5.4: Comparing Snell Law model with ray racing. Background is layer 
velocity. The source is located at (4900m/4700m).

The gradient model has a — 1000m /s,  and b =  1.2s-1. I shoot 179 rays from 

point (5000m, 5000m) with initial angle —89 ~  89 using ray tracing and calculate 

the position of the wavefront at each A t  = 4ms, then calculate wavefront's travel 

time with analytic method. The range of the absolute error between two methods 

is less than 0.0039 seconds, see Figure 5.3.

For the 16 layers model, the analytical results (transmitted angles of the rays) 

are obtained by using Snell Law at each interface. I shoot 121 rays with angle 

-60  ~  60. Figure 5.4 is the result I compare the results of the approximated ray 

tracing with the analytical results, Figure 5.5 is the relative traveltime error using 

equation:
'Snell

error

The analytic equation, given by (Vanelle, 2002), is

arcoshl1 +
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Figure 5.5: Relative traveltime errors that are computed with the Snell law model 
at the surface.

arcosh(y) =  Iog(y + v V  ~ 1),

where Vs, Vg are the velocities at source and receiver, r  is the distance between 

source and receiver, b is the velocity gradient.

5.4 Geometrical spreading/amplitude approximation

Amplitude information is useful for migration and inversion. In order to obtain 

an approximate form of the amplitude, we begin with the amplitude in constant 

media

where R  is the distance between source and receiver (Figure 5.6A). In this figure, 

the length of arc I is

where

(5.4.1)

I = R0 (5.4.2)
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where 0 is the angle between two rays. If the 6 is small enough, the arc I «  d. 

Then, substituting it to equation (5.4.2) and equation (5.4.1). Finally, we obtain

In some sense, |  is the density of the rays. Therefore, we can use above equation 

to estimate amplitude. In 2D situation, the amplitude is

However, the above equations are only valid for the ray which is generated ver-

Figure 5.6: Amplitude in constant velocity media, initial angle is 0° (A), and any 
angle (B).

tically to the surface, in other situations, a weight is needed. In Figure 5.6B, ac­

cording to equation (5.4.3) the amplitude is But we only know the length 

of CD. Therefore, an expression, which represents A B  with CD  , is needed. As 

mentioned above, the angle 8 is small. Using simple geometric considerations we 

can obtain

(5.4.3)

(5.4.4)

D

(B)

LAO'C -  a, 0 4  «  0 0 ' ,  LOAO' «  LOO'A =  90°,
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then we can derive

AO' = CO' cos a.

Because A B  =  2AO' and CD — 2CO', after some manipulations, finally, we ob­

tain

Usually, the rays reach the surface with almost right angle, therefore, equation

(5.4.5) still can be simplified as equation (5.4.4).

5.4.1 Accuracy of the amplitude approximation

I first test the approximation for of the amplitude with a constant velocity model. 

In this case, the velocity is 3000 m /s. Source position is x  — 8000 m, z =  8000 m. 

The 2D analytic equation I used here is

where r is the distance between source and receiver. The compared results are 

shown in Figure 5.7.

I also test the approximated equation with a gradient model (v = a +  bz). In 

this case, a =  3000 m /s, b — 0.4 s-1. The source position is x  — 8000 m , z — 8000 

m. The analytic equation (Vanelle, 2002) I used here is

where v, , vg are the velocities at source and receiver, r is the distance between 

source and receiver, b is the velocity gradient. Figure 5.7, Figure 5.8 and Figure 

5.9 show the comparing result. The relative errors are negligible, even for very 

large velocity perturbation.

for 2D. (5.4.5)

2

y/&2r 4 +  4 v svgr ^
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A.pf>fll*imutcxi 
A iiaivtic

Figure 5.7: Comparing amplitude between analytic method and approximate 
method using constant velocity model. The source is located at (8000 m, 8000m). 
The amplitude contour increment is 0.1.

5.5 Summary

Since an efficient strategy for calculating the Green's functions with high accuracy 

will significantly reduce the amplitude-preserving migration cost, I propose an 

approximation to the amplitude of the Green's function for the weighted pre­

stack Kirchhoff migration based on the eikonal equation.
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D istance [m]

2 0 0 0  4 0 0 0  6 0 0 0  8 0 0 0  1 0 0 0 0  1 2 0 0 0  1 4 0 0 0  1 6 0 0 0

- 0 .0 2  - 0 .0 1 8  - 0 .0 1 6  - 0  0 1 4  - 0 .0 1 2  - 0 .0 1  - 0 .0 0 6  - 0 .0 0 6  - 0  0 0 4  - 0  0 0 2

Figure 5.8: Comparing amplitude between analytic method and approximate 
method using gradient velocity model (v — 3000 + OAz). The source is located at 
(8000 m, 8000m). The amplitude contour increment is 0.1.
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Figure 5.9: Relative amplitude error between analytic method and approximate 
method using gradient velocity model v =  a +  b.z [m/s]. The source is located at 
(8000 m, 8000 m). a =  3000 and b = 0 (A), 0.1 (B), 1 (C), 10 (D), 100 (E), and 1000 
(F ) .  The initial angle is 0° (blue), 15° (green), 30° (red), 45° (yellow), 60° (black), 
75° (magenta). Note that the relative error is small (less than 0.5%).
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Chapter 6 

Synthetic and field data examples

6.1 Introduction

In the previous chapters, the discrete inverse theory was reviewed. The proposed 

algorithm for AVA and rock properties inversion was presented as well. The 

goal now is to exhibit with examples the performance of the proposed algorithm. 

Since it is difficult to test the accuracy of a method for an unknown real earth, the 

method will be applied to a simplified earth model (synthetic data).

As part of the accuracy test, modeling (or generating) a synthetic data set is an 

important step. Generally, in order to validate an inverse method, the synthetic 

data should be both as exact and as detailed as one wants (Gray et al., 2001). 

Also, the modeling method for the synthetic data should be different from the 

one that the proposed inverse method is based on (Kuehl, 2002). On the whole, 

the forward modeling must be a different, and more accurate operator.

Since full wave equation finite difference (FD) modeling has no aperture lim­

itations, and generates all the events along with the wave equation (i.e., multi­

ples and direct waves), therefore, instead of using approximate high frequency 

asymptotic method from which the inverse operators are derived (section 2 .1 ), 

the FD method is an ideal way to obtain the synthetic data.

Because of the difficulties of modeling real earth data with the FD techniques, 

traditionally, the earth model, from which the synthetic data is generated, is sim-
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plified and idealized from the real earth. For example, a 3D elastic earth is sim­

plified as a 2D, or 2.5D (Bleistein, 1986) acoustic model, such simplification may 

exist in some definite situations. For example, as seismic data are collected along 

straight lines. The third dimension can be omitted. Thus, the data sets are two 

dimensional, and 2.5D assumption compensations the amplitude loss due to 2D 

assumption. If the P wave propagation governs in the entire volume, P waves 

propagating in elastic earth can be approximated by an acoustic wave model.

6.2 Synthetic data examples

Synthetic data tests are essential to calibrate an inverse method. This is because 

the details of the earth model is known before the inversion. Comparing the 

inverted result with the known image, the synthetic examples will illustrate ad­

vantage and pitfall of a method. Moreover, such applications can update the 

algorithm by fine-tuning the inverse code.

6.2.1 Seismic modeling for synthetic data test

I have been studying the problem of retrieving angle gathers for reflectivity in­

version, as well as the problem of recovering rock properties in the previous 

chapters. As part of my research, I now have to generate a synthetic data set. 

The latter is used to test the accuracy of the rock properties inversion and angle 

gather migration/inversion code that I have been developing as part of my thesis 

research. Due to the difficulties of modeling three dimensional elastic data with 

a FD technique, the synthetic data are generated in two dimensional isotropic 

acoustic models. Once I have set up a synthetic "Earth Model", this is the dis­

tribution of velocities and densities in a 2D grid, I use acoustic FD to synthesize 

seismic data. For this purpose, I use the acoustic FD code provided by the Seis­

mic Unix (sufdm od2 ). Such method is an approximation to the wave equation, 

but it is more accurate than the Kirchhoff integrals.
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6.2.2 Inverse algorithm for 2D acoustic synthetic data

After computing the synthetic data, the perturbation of rock properties are re­

covered by using the proposed algorithm which is composed of the Kirchhoff 

migration/inversion and A&R inversion algorithm. The Kirchhoff algorithm, in­

tegrated with A&R inversion algorithm, is capable of performing both the well 

known Kirchhoff sum for migration (this is the so called adjoint operator) and the 

forward modeling Kirchhoff operator. In other words, the algorithm can generate 

outputs from operators G (forward) and GT (adjoint).

Since the synthetic data is generated from a 2D acoustic model, the operator 

which I present in chapter 4 must be changed from a 3D elastic case to the 2D 

acoustic one. To be more precise

G[/(x)] -  KZ[f(x) \  =  CCZ[f(x)]  (6.2.1)

where 2D Kirchhoff operator K, denotes

u s { r ,  s,u>) =  |w| [  f?(x, 9)A(r, x, s) °Sf  e^ r r̂,X|S->Vh((v)d2x, (6.2.2)
J s  c(x)

with A(r, x, s)ei"'dr’x’s) being the 2D Green's function, and the 2D A&R operator 

denotes

R(x, 0) = Z[f(x)\  = h i  -  sin2 0 ) ^ P  + ^ l i ^ L .  (6.2.3)
2  p 2  vp

This equation expresses a relationship between the amplitude in the CIGs and 

the physical parameters that could be associated to rock properties. In seismic 

exploration, we cannot neglect the contribution from va. In such case, full A&R 

approximation is needed. It does not make sense of inverting rock properties 

without including vs. It is only for synthetics constructed with the acoustic wave 

equation that vs is not taken into account in the inversion.

Given the forward/ adjoint operators, the 2D inversion can be realized by us­

ing the algorithm presented on section 4.4.
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Figure 6.1: Model with structure.

Number
of

shots

Shot
spacing

[m]

First shot 
position
(x, z) [m]

Number of 
receivers 
per shot

Receiver
spacing

[m]

First 
receiver 

offset [m]

51 2 0 (2 0 0 0 , 0 ) 2 0 1 2 0 2 0 0 0

Table 6.1: Acquisition geometry for synthetic model.

6.2.3 Simple model with structures

The model has seven layers, including a horizontal layer, a fold, a pinch out and 

interfaces with topography (Figure 6.1). This acoustic model parameters are ex­

pressed as compressional velocities and densities, ranging from 3100 m /s  to 3600 

m /s, and from 1.79 g /cm 3 to 2.0 g /cm 3, respectively. In order to validate the 

high frequency assumption, the maximum relative perturbations of velocity and 

density are chosen less than 15% at the interfaces.

To generate the acoustic data using FD, I have adopted a source function with 

central frequency f c = 30 Hz. The sampling interval and grid sampling are com-
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puted to honor stability conditions1. The velocity and density model extend from 

x =  0 to x  =  6000m and z = 0 to z = 2500 m, with grid intervals A x  = 2.5 m and 

Az = 2.5m. The sampling rate of data is A t — 4ms. The details of acquisition 

geometry for the experiment are specified in Table 6.1. Given above parame­

ters, the data are generated by the acoustic FD code provided by Seismic Unix 

(sufdm od2 ). Figure 6 .2  shows one shot gather of the synthetic data. The shot 

position locates at x = 2040 m, and z =  0  m (or No. 101 trace). The reflection 

waves exhibit clearly amplitude variation versus offset (AVO)2.

The first arrivals, which are not needed for reflection data image, are muted 

from the data. Beside of the head waves, there are other noises (i.e., multiples and 

edge diffraction waves). Since those noises are weak comparing to the primary 

reflections, I leave them on the data to test the proposed algorithm under more 

difficult situations. In addition to the noise problem, the wavelet, which is used 

by the FD code of Seismic Unix, will bring some time delay3. The total delay is 

half length of the period of the wavelet—

Green's function

As mentioned before, the Green's function should be calculated before the Kirch- 

hoff migration/ inverstion on a macro velocity model. The macro velocity is ob­

tained from the earth model using a low pass filter. The smoothed macro velocity 

model is showed in Figure 6.3.

Based on the algorithm described in section 4.4, the rock properties and CIGs 

are obtained. The detail steps are

1. Calculate the Green's function table with target oriented ray tracing method 

on the migration velocity model. I shoot 121 rays at each subsurface grid

1The condition for stability is —g ,— < -^=, with constant a being the sum of the absolute 
value of the weight for the various wavefield terms in the finite-difference approximation for V2. 
Details about the stable condition, please see Lines et al. (1999).

2For example, the first event of Figure 6.2B becomes more and more clear along with the offset 
increasing.

3The time delay is caused by convolving a non-zero phase wavelet with the reflectivity series.
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Figure 6.2: One common shot gather of synthetic data before (A), and after (B) 
muting the head waves. Shot position is (2040 m ,0m ).

point in the range of -80° ~  80°, with 1° interval. The computed Green's 

function table is stored in file for next step use.

2. Initialize the model parameters ( ^ f ,  ^ £) with zero vector. The maximum 

iteration is set to 2 0 , and the tolerance is set to emax = 1 0 ~7.

3. Try different sets of tradeoff parameters. Each time, I set the A =  p which 

means giving the same weight to smoothness and sparseness. I totally try 

three sets of the tradeoff parameters, A = p = 0.1, A =  p =  0.01, and 

A = p =  0.005.

4. Input the other parameters for the algorithm, such as the data, the Green's 

function table and the migration velocity model etc., then run the CG code.

5. Visualize the result, such as stacked imaging, inverted model parameters ( ^ ,  

^ ) and check difference between the reconstructed synthetic data with
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4000t 500 O-F..

Figure 6.3: Macro velocity model obtained by using a low pass 2D filter.

original data, then choose the best one. For this simple model, I select the 

tradeoff parameters A =  /i = 0.01.

The accuracy of the method is determined by comparing the inverted result 

with the true model, such as stacked image, AVA curves and rock parameters, 

etc.

Stacked image

The goal of the stack is to lineate the subsurface structures. Therefore, stacking 

the inverted result can examine the structural imaging capabilities of the inverse 

operators. Stacking is the processing that sums the CIGs along a parameter (i.e., 

offset, angle). Since such processing can enhance the ratio of signal-to-noise and 

suppress imaging artifacts and multiples, traditionally, it is used as a standard 

step in seismic data process to improve the image quality.

The results prove that the Kirchhoff propagator is accurate to recover a good 

image of the synthetic model (Figure 6.4). However, the inverted image is not 

spiky, which means the proposed algorithm does not recover the partially lost
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Figure 6.4: Comparison the structure of the inverted image with the true model. 
(A)True image. (B)Stacked image. (C) Inverted perturbation of vp. (D) Inverted 
perturbation of p. Note that the recovered image is not spiky due to the band- 
limited wavelet.
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Figure 6.5: Inverted CIGs (A) and corresponding AVA (B) for synthetic data at x  = 
3600 m. The labels R1-R6 correspond to the six reflectors from top to bottom. All 
picked values (dot-dash lines) have been scaled with the true AVA (solid lines). 
Note that all of the AVA of the reflectors drop down to the zero at high angles 
due to the limit aperture effects.

frequency information caused by band pass wavelet.

CIGs and AVA analysis

Retrieving correct the structural information is only a prerequisite for a successful 

inversion. The more challenge part is to obtain accurate amplitude information 

from CIGs and a good estimation of rock properties. As the CIGs describe the 

amplitude variation along the reflection angle for a series of positions. Thus, 

the events on the CIGs must be flat. Furthermore, the amplitude variation of 

any position should fit the true AVA. Because the synthetic data are generated 

by using acoustic wave equation, the inverted AVA curve should fit the acoustic
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Figure 6 .6 : Inverted perturbations of velocity (A) and density (B) extracted from 
Figure 6.4C and Figure 6.4D respectively at x=2750 m. The inverted result (dash 
lines) have been scaled with the true variation (solid lines).

AVA equation. Such equation can be found in the book of Berkhout (1987).

n i  a \   p 2 (x )t> 2 ( x )  COS - p 1(x ) l7 1( x )  COS d 2 , .
A(X, U \ J  /  \  /  \  / t i  (  \ (  \ n  : (6.2.4)

p 2 ( x ) v 2 ( x )  COS 9 1 + p i { X ) V i  (x) COS 0 2

where x is any position of subsurface, pi(x), p2(x), and vi (x ) ,v2(x) represent the 

densities and velocities of the adjacent layers, respectively. The incident and 

transmitted angles denote 9i, 02 respectively.

Under high frequency assumption, the above equation is a good approxima­

tion to the equation (6.2.3). Thus, the equation (6.2.4) can be used to test the 

inverted AVA.

Figure 6.5 depicts the inverted CIGs (A) and corresponding picked AVA (B)
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Figure 6.7: Comparison of original data (A) with reconstructed data (B) and the 
error (C) between them.

at position of x = 3600 m. R1-R6 corresponds the six layers from top to bottom 

in the CIGs. Due to the limited aperture effects, the CIGs is absent at large angle. 

Apart from those limited aperture effects, the CIGs is clean and free of alias. All 

events are flat along the horizontal direction and sparse along depth. The picked 

AVAs (dot-dash lines) also prove that the CIGs are in good agreement with the 

true AVA response. All curves fit the theoretical AVAs (solid lines) very well 

except the fourth layer.

Figure 6 . 6  illustrates the inverted perturbations of the velocity (A) and density 

(B) at x = 2750 m . The true perturbations are drawn with solid lines. The smeared 

results match the true variation closely. However, the error rises when the depth 

of layers increases. This is because no energy loss due to transmission is included 

in the inverse algorithm. Therefore, the accuracy of the inversion result degrades 

for deeper horizons.

The inverted results have been scaled with the true perturbations before plot­

ting. The perturbation (or relative variation) for the velocity and the density in
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Figure 6 . 6  denotes as

Ap'  = —  for d en s ity

A v 1 — —  for velocity
v

with Ap,  and A v  being absolute variation of density and velocity of adjacent 

layers respectively, p, v being average of density and velocity of adjacent layers 

respectively.

Figure 6.7 exemplifies the error (C) between the original synthetic data (A) 

and the reconstructed data (B)4. The reconstructed data, which are generated by 

applying modeling operator to the inverted model, are consistent with the orig­

inal synthetic data. Since the inverse algorithm is based on primary wave fields 

propagation, the multiples and the edge diffraction waves were not taken into 

consideration. Therefore, the major error is caused by the energy of these two 

waves. Therefore, it is very important to de-multiple before the inversion.

Figure 6 . 8  shows the data misfit versus iteration. In this example, a total 20 

iterations were needed to reach the solution that minimized the cost function of 

our inverse problem.

6.2.4 Marmousi model

The Marmousi (Versteeg and Grau, 1991) model is a complex structure model 

with numbers of very thin layers broken by several major faults and unconfor­

mity surface, which is based on a detailed geological 2D cross section of a real 

offshore Angola basin (Figure 6.9). The Marmousi data sets consist of 240 single­

cable marine shot records which are acquired using acoustic fin ite-d ifference mod­

eling. The sampling rate of data is A t  = 4 ms. The details of acquisition geom­

etry for the experiment are specified in Table 6.2. Both velocity and density are 

various. This model was generated by the French Petroleum Institute, and was 

4The errors (Figure 6.7 (Q) are amplified to the same magnitude before plotting.
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Figure 6 .8 : Normalized data misfit.

Number
of

shots

Shot
spacing

[mj

First shot 
position 
(x, z) [m]

Number of 
receivers 
per shot

Receiver
spacing

[m]

First 
receiver 

offset [mj

Receiver
depth

[m]

240 25 (3000,8) 96 25 2 0 0 1 2

Table 6.2: Acquisition geometry for Marmousi model.

released to the industry for the purpose of testing migration and velocity estima­

tion techniques (Versteeg, 1994).

The inverse steps are the same as the simple model:

1. The Green's function table is calculate with target oriented ray tracing method 

on the migration velocity model. I shoot 242 rays at each subsurface grid 

point in the range of -60° ~  60°, with 0.5° interval. The computed Green's 

function table is stored in a binary file for next processing step.

2. Initialize the model parameters (^ e/ with zero values. The maximum 

iteration is set to 1 0 , and the tolerance is set to emax = 1 0 ~7.

3. Try different sets of tradeoff parameters. I set the A =  p which means giving
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the same weight to smoothness and sparseness. I totally try five sets of the 

tradeoff parameters, A — /x — 0.5, A =  p = 0.1, A — fj, — 0.05, A =  p =  0.01, 

and X  = j j ,  = 0.005.

4. Input the other parameters for the algorithm, such as the data, the Green's 

function table and the migration velocity model etc., then run the CG code.

5. Visualize the result, such as stacked images, inverted model parameters ( ^ ,

and check difference between the reconstructed synthetic data with 

original data, then I select the tradeoff parameters A =  n =  0.1.

Since the intricate structure of this model produces very realistic seismic data, 

the Marmousi model is an excellent test data set. However, many imaging meth­

ods cannot completely recover the target structure, while some methods can pro­

duce a nearly perfect image, but with more calculations. Thus, a compromise 

between the accuracy and efficiency should be the best way for industrial explo­

ration. As mentioned earlier, the algorithm proposed in this thesis is based on the 

high frequency approximation. On the contrary, the condition of wave propaga­

tion in the Marmousi model is far from such approximation. Nevertheless, the 

proposed scheme proves to produce a good structural image of the Marmousi 

model. Figure 6.10 depicts a good result of the inverted stack image (A) of the 

Marmousi model. The retrieved perturbations of the velocity (B) and density (C) 

are also showed together. Despite of the dim effects, the faults and oil trap can 

still be seen clearly. This proves that the inverse algorithm is accurate enough to 

recover the structure of the 2D complex model.

Now, the focus is on retrieving rock properties and AVA analysis. At this 

stage, those inverse steps are still challengeable for highly complex earth models. 

Since amplitude recovering is more vulnerable to operator accuracy than struc­

tural imaging, it is crucial to select the areas for AVA where the process will be 

successful. The criteria for such selection, as presenting in Kuehl (2002) thesis, 

are:
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1 . the depth points should be located in the upper half of the model so as to 

ensure sufficiently large angle range coverage.

2 . ... the picked reflection event, the target, ought to be generated by a single, 

local plane, interface.

Obviously, only a few of the reflections of the Marmousi model satisfy the above 

criteria. Figure 6.11 shows the CIGs and corresponding picked amplitudes. Fig­

ure 6.12 and Figure 6.13 illustrate the inverted perturbations of the velocity (A) 

and density (B) at x  =  3600 m (less complex structure zone) and x  — 6425 m 

(complex structure zone). The true perturbations are drawn with solid lines. The 

smeared results match the true variation closely above the depth 2; =  1500 m. 

Due to the multiples and transmission losses, the error increases with depth.

Figure 6.14 exemplifies the error (C) between the original synthetic data (A) 

and the reconstructed data (B) for one shot gather. The reconstructed data are 

consistent with the original synthetic data except for the deep events.
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Figure 6.9: Compressional velocity field (A) and density field (B) of Marmousi 
model.
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Figure 6.10: Inverted stack image (A), variation of velocity (B) and density (C) of 
the Marmousi model.
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Figure 6.11: Inverted CIGs (A) and corresponding AVA (B) for Marmousi data 
at x — 6400 m. The labels R1-R3 correspond to the three reflectors from top to 
bottom. All picked values (dot-dash lines) have been scaled with the true AVA 
(solid lines). Note that all of the AVA of the reflectors drop down to the zero at 
low o r/and  high angles due to the limited aperture effects.
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Figure 6.12: Inverted perturbations of velocity (A) and density (B) extracted from 
Figure 6.10B and Figure 6 .10C respectively at x = 3600 m. The inverted results 
(dash lines) have been scaled with the true variation (solid lines).
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Figure 6.13: Inverted perturbations of velocity (A) and density (B) extracted from 
Figure 6.10B and Figure 6.10C respectively at x = 6425 m. The inverted results 
(dash lines) have been scaled with the true variation (solid lines). Note that the 
transmission loss debases the inverted result for deeper layers.
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Figure 6.14: Comparison of Marmousi data (A) with reconstructed data (B) and 
the error (C) between them.
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6.3 Real data example

The algorithm now is applied to a real data. The data have been acquired in the 

Gulf of Mexico by Western Geophysical and donated to academic and industrial 

research groups for test purposes. The Gulf of Mexico data sets are collected 

along a relatively deep sea (1400 m below sea level). The start time is t =  1.5 s 

and the sampling rate of data is A t =  4 ms. The details of acquisition geometry 

are specified in Table 6.3. Only a small part of the data have been used to test our 

algorithm (first 100 shorts) (Figure 6.15). The following procedures are applied to 

the data to do the inversion:

1 . Compute Green's function tables based on the velocity model provided by 

(Figure 6.16). The velocity model is computed using Dix inversion. I shoot 

1 2 1  rays at each subsurface grid point in the range of -60° ~  60°, with 1 ° 

interval. The computed Green's function table is stored in a binary file for 

the next step.

2. Initialize the model parameters ( ^ , — ■). The maximum iteration is 

set to 1 0 , and the tolerance is set to emax =  1 0 ~7.

3. Try different sets of tradeoff parameters. I set the \  — ji which means giving 

the same weight to smoothness and sparseness. I totally try three sets of the 

tradeoff parameters, X  =  / i  —  0.1, A =  / j , =  0.01, and A — p =  0.005.

4. Input the other parameters for the algorithm, such as the data, the Green's 

function table and the migration velocity model etc., then run the CG code.

5. Visualize the result, such as stacked images inverted model parameters ( ^ ,  

^ , ^ - )  and check difference between the reconstructed synthetic data 

with original data. In this example I selected the tradeoff parameters A =  

pL =  0.005.
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Number
of

shots

Shot
spacing

[m]

Number of 
receivers 
per shot

Receiver
spacing

[m]

nearest
offset

[m]

farthest
offset
[m]

2000 -  3000 26.7 180 26.7 2 0 .6 4876

Table 6.3: Acquisition geometry for Gulf of Mexico data set.

The inverted perturbations of P-wave, S-wave velocity and density are shown 

in Figure 6.17. The signal to noise (S/N) ratio and stability of the inversion is good 

for P wave velocity and density perturbations, and medium for S wave velocity 

perturbation. The CIGs at C M P  — 1069 is shown in Figure 6.18. Unfortunately, 

there is no borehole in the area. The inverted result can not be validated by fur­

ther information.

6.4 Summary

In this chapter, the integrated method was successfully applied to invert the rock 

properties from synthetic data and real data. The proposed algorithm appears 

robust and efficient combining with target oriented ray tracing. Since CG inverse 

method performs both the forward and adjoint operators once in each iteration, 

the computational cost grows with the iteration number. Therefore, the Green's 

functions are calculated in advance and stored in computer memory to avoid 

extra calculations.
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Figure 6.15: Near offset section with the study area.
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Figure 6.16: The m acro velocity m odel for real data  obtained  by  Dix inversion.
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Figure 6.17: Inverted P-wave velocity perturbation (A), S-wave velocity pertur­
bation (B), and density perturbation (C) for real data. The original value is multi­
plied by 2 0 0 0 .
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Figure 6.18: Common image gather at C M P  = 1069 for real data.
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Chapter 7 

Conclusions

Today, the goal of migration has extended from imaging subsurface structures 

to recovering elastic properties. As the rock physical parameters are not related 

linearly to the seismic reflection data, usually, the inversion for elastic constants is 

performed by two linear sub-step: true amplitude pre-stack depth migration and, 

AVO/AVA analysis. Since pre-stack migration has great advantages at the time 

of imaging complex geological structures over other seismic processing schemes; 

integrating AVO and imaging together should lead to a new class of algorithms 

capable of imaging the Earth's interior and retrieving the physical properties.

In this thesis, I proposed a linearized inverse strategy to perform amplitude 

versus angle (AVA) imaging and rock physical properties inversion by apply­

ing the conjugate gradient method on a ray-based Kirchhoff migration/inversion 

scheme in the angle domain. The structural complexity is incorporated in the 

AVA/AVO estimation problem. Model space regularization terms are applied to 

enforce a desired solution. In our case, the first order model derivatives and the l\ 

model norm are incorporated to enhance the spatial continuity of reflectors and 

gain vertical resolution at the same time.

To make the algorithm efficient, the Green's functions are calculated using 

kinematic ray tracing. Furthermore, combining with target oriented ray tracing, 

our method takes into account all relevant arrivals from all directions by shooting 

dense up-going rays from the image points. Since the conjugate gradient algo-
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rithm calls the forward and adjoint operators once in each iteration, the Green's 

functions are calculated in advance and stored in memory. Although the high 

memory storage is required, the strategy is still efficient to avoid extra calcula­

tion for the Green's function in each iteration.

It is also important to point out that the rock physical properties are directly 

recovered from pre-stack seismic data. AVA/AVO analysis is obtained as a byprod­

uct of pre-stack migration/inversion. As the CIGs are obtained using Zoeppritz 

equation (PP wave). The inverted rock physical properties will make all events 

in CIGs flat and free of noise.

As mentioned in the above Chapters, the transmission loss is not taken into 

account. The inverted result degrades for deep reflectors targets. As exploration 

targets are usually found at greater depth, future work will concentrate on en­

hancing the image of deeper interfaces.

This research project has provided a unifying link between AVO based inter­

pretation and pre-stack imaging. The h  and k  norms are applied as regularization 

terms to enforce smoothness along the horizontal plane, and improve the vertical 

resolution as the same time. This is a new technique developed by our groups 

(Feng and Sacchi, 2004a). Since the inverted results not only depend on the data, 

but also rely on prior information, the inverted rock physical properties are more 

geologically consistent. A similar working strategy is also exploded by Downton 

and Lines (2004). Hopefully, new developments in this area will be seen in the 

near future.
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