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Abstract

In this thesis, we present a variety of approximation algorithms for Resource

Minimization for Fire Containment, Throughput Maximization, and Hierar-

chical Clustering.

Resource Minimization Fire Containment (RMFC) is a natural model for

optimal inhibition of harmful spreading phenomena on a graph. In the RMFC

problem on trees, we are given an undirected tree G, and a vertex r where

the �re starts at, called root. At each time step, �re�ghters can protect up

to B vertices of the graph while the �re spreads from burning vertices to all

their neighbors that have not been protected so far. The task is to �nd the

smallest B that allows for saving all the leaves of the tree. The problem is

hard to approximate up to any factor better than 2 even on trees unless P =

NP [DM2010]. The main contribution to the RMFC problem is an asymptotic

QPTAS for RMFC on trees. More speci�cally, let ε > 0, and I be an instance

of RMFC where the optimum number of �re�ghters to save all the leaves is

OPT (I). We present an algorithm which uses at most d(1 + ε)OPT (I)e many

�re�ghters at each time step and runs in time nO(log logn/ε). This suggests that

the existence of an asymptotic PTAS is plausible especially since the exponent

is O(log log n). Our result combines a more re�ned height reduction lemma

than the one in [SODA2019] with LP rounding and dynamic programming to

�nd the solution. We also apply our height reduction lemma to the algorithm

provided in [SODA2019] plus a more careful analysis to improve their 12-

approximation and provide a polynomial time (5 + ε)-approximation.
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In Throughput Maximization we have a collection J of n jobs, each having a

release time rj, deadline dj, and processing time pj. They have to be scheduled

non-preemptively on m identical parallel machines. The goal is to �nd a

schedule which maximizes the number of jobs scheduled entirely in their [rj, dj]

window. This problem has been studied extensively (even for the case of m =

1). Several special cases of the problem remain open. The approximability of

the problem for m = O(1) remains a major open question. We study the case

of m = O(1) and show that if there are c distinct processing times, i.e. pj's

come from a set of size c, then there is a randomized (1 − ε)-approximation

that runs in time O(nmc
7ε−6

log T ), where T is the largest deadline. Therefore,

for constant m and constant c this yields a PTAS. Our algorithm is based on

proving structural properties for a near optimum solution that allows one to

use a dynamic programming with pruning.

In Hierarchical Clustering, one is given a set of n data points along with a

notion of similarity/dis-similarity between them. More precisely for each two

items i and j we are given a weight wi,j denoting their similarity/dis-similarity.

The goal is to build a recursive (tree like) partitioning of the data points (items)

into successively smaller clusters, which is represented by a rooted tree, where

the leaves correspond to the items and each internal node corresponds to a

cluster of all the items in the leaves of its subtree. Typically, the goal is to

have the items that are relatively similar, to separate at deeper levels of the tree

(and hence stay in the same cluster as deep as possible). Dasgupta [STOC2016]

de�ned a cost function for a tree T to be Cost(T ) =
∑

i,j∈[n]

(
wi,j×|Ti,j|

)
where

Ti,j is the subtree rooted at the least common ancestor of i and j and presented

the �rst approximation algorithm for such clustering. Later Cohen-Addad et

al. [JACM2019] considered the same objective function as Dasgupta's but

for dissimilarity-based metrics: Rev(T ) =
∑

i,j∈[n]

(
wi,j × |Ti,j|

)
, where wi,j

is the weight of dissimilarity between two nodes i and j. In this version a
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good clustering should have larger Ti,j when wi,j is relatively large. It has

been shown that both random partitioning and average linkage have ratio 2/3

which has been only slightly improved to 0.667078 [Charikar et al. SODA2020].

Our �rst main result is to improve this ratio of 0.667078 for Rev(T ). We

achieve this by building upon the earlier work and use a more delicate al-

gorithm and careful analysis which can be re�ned to achieve approximation

0.71604. We also introduce a new objective function for dissimilarity-based

Hierarchical Clustering. Consider any tree T , we de�ne Hi,j as the number

of i and j's common ancestors in T . In other words, when we think of the

process of building tree as a top-down procedure, Hi,j is the step in which

i and j are separated into two clusters (they were stayed within the same

cluster for Hi,j − 1 many steps). We suggest the cost of each tree T , which

we want to minimize, to be CostH(T ) =
∑

i,j∈[n]

(
wi,j × Hi,j

)
. We present a

1.3977-approximation for this objective.

iv



Preface

I, Mirmahdi Rahgoshay, declare that this thesis titled, `Approximation Algo-

rithms for Resource Minimization for Fire Containment, Throughput Maxi-

mization, and Hierarchical Clustering' and the work presented in it are my

own and mainly from three papers listed below:

� "Asymptotic Quasi-Polynomial Time Approximation Scheme for Re-

source Minimization for Fire Containment" (Conference version is ac-

cepted at STACS 2020 [68] and journal version is submitted to Algorith-

mica)

� "Approximations for Throughput Maximization" (Conference version is

accepted at ISAAC 2020 [48] and journal version is submitted to Algo-

rithmica)

� "Hierarchical Clustering: New Bounds and Objective" (Submitted to

SODA 2022)

I con�rm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree

or any other quali

cation at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always

clearly attributed.

v



� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own

work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have

contributed myself.

vi



To:

The great savior of the world

vii



No two things have been combined better than knowledge and patience.

� Prophet Muhammad (peace be upon him).

viii



Acknowledgements

There are many people I want to thank for both supporting me through my

degree and for their help with this thesis. First and foremost, I want to thank

my supervisor, Mohammad Reza Salavatipour. You have been a great teacher,

mentor, and role-model who has pushed me to become a better student and

researcher. While I have had my fair share of failures and stumbles along the

way, you have shown me how much more I can achieve, and how much further

I can still grow as a researcher.

I would like to thank Prof. Zachary Friggstad, Prof. Dale Schuurmans,

Prof. Csaba Szepesvari, Prof. Nathan Sturtevant, Prof. Lorna Stewart and-

Pro. Ben Moseley for accepting to be in my thesis committee.

I would also like to thank my beloved wife, Maryam Mahboub. Thank you

for supporting me for everything, and especially I can't thank you enough for

encouraging me throughout this experience.

Finally I thank my God, for helping me through all the di�culties. I have

experienced Your guidance day by day. You are the one who let me �nish my

degree. I will keep on trusting You for my future. Thank you, Lord.

ix



Contents

1 Introduction 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Approximation Algorithms . . . . . . . . . . . . . . . . 3
1.1.3 Linear Programming . . . . . . . . . . . . . . . . . . . 7

1.2 Problems Considered and Main Results . . . . . . . . . . . . . 8
1.2.1 Resource Minimization for Fire Containment . . . . . . 8
1.2.2 Throughput Maximization . . . . . . . . . . . . . . . . 10
1.2.3 Hierarchical Clustering . . . . . . . . . . . . . . . . . . 12

2 The RMFC Problem 16
2.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Preliminaries and Overview of the Algorithm . . . . . . . . . . 18

2.2.1 Linear Programming Relaxation . . . . . . . . . . . . . 19
2.2.2 Height Reduction . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Overview of the Algorithm . . . . . . . . . . . . . . . . 24

2.3 Asymptotic Approximation Scheme . . . . . . . . . . . . . . . 26
2.3.1 Easy Case: Bo >

L
ε

. . . . . . . . . . . . . . . . . . . . 26

2.3.2 When Bo ≤ L
ε
. . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Polynomial (5 + ε)-Approximation for RMFC . . . . . . . . . 30

3 Throughput Maximization 36
3.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 PTAS for constant c and m . . . . . . . . . . . . . . . . . . . 39

3.3.1 Overview of the Algorithm . . . . . . . . . . . . . . . . 40
3.3.2 Structure of a Near Optimum Solution . . . . . . . . . 41
3.3.3 Finding a Near Optimum Canonical Solution . . . . . 44
3.3.4 Extension to m = O(1) Machines . . . . . . . . . . . . 53

3.4 Cutting heads and tails: Proof of Lemma 9 . . . . . . . . . . . 55
3.4.1 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . 60
3.4.2 Proof of Lemma 11 . . . . . . . . . . . . . . . . . . . . 60
3.4.3 Proof of Lemma 12 . . . . . . . . . . . . . . . . . . . . 61

4 Hierarchical Clustering 66
4.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Maximizing Rev(T ) in Dissimilarity-Based Graphs . . . . . . . 75

4.2.1 Proof of Theorem 12 . . . . . . . . . . . . . . . . . . . 79
4.2.2 Improving the ratio to 0.71604 . . . . . . . . . . . . . . 86

4.3 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Missing Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 R∗ and γ Values to have a 0.716-approximation . . . . . . . . 91

x



5 Conclusion 95
5.1 Future Directions - The RMFC Problem . . . . . . . . . . . . 95
5.2 Future Directions - Throughput Maximization . . . . . . . . . 95
5.3 Future Directions - Hierarchical Clustering . . . . . . . . . . . 98

References 100

xi



List of Tables

4.1 Values of parameters R∗, γ and ε to run Algorithm 1 and take
the best and improve the approximation ratio to 0.716 . . . . 92

xii



List of Figures

2.1 Illustration of the hypothetical full binary tree with root v and
leaves u1, . . . , u5 . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xiii



Chapter 1

Introduction

In this thesis we discuss some NP-hard optimization problems and try to

design algorithms for them. Since it is very unlikely to �nd an exact algorithm

forNP-hard problems with polynomial running time, we try to approximately

solve them by providing approximation algorithms.

The �rst problem we consider is a special problem of a wide varity of Re-

source Allocation Problems. Resource Alocation has been a fundamental area

in Computing Science over the past several decades. In Resource Minimiza-

tion Fire Containment (RMFC) Problem we are trying to contain a harmful

spreading phenomena on a graph, using limited resources to protect nodes.

The second problem we consider is a Scheduling Problem, namely Through-

put Maximization. Scheduling jobs with arrival times and deadlines is a fun-

damental problem in numerous areas of computer science and has been studied

in various �elds, including Operations Research over the past several decades.

In throughput Maximization the goal is to complete as many jobs as possible

by their deadline.

The last problem is on one of fundamental topics in Computer Science:

Clustering. Clustering has been used in a wide variety of application areas

such as machine learning, data mining, pattern recognition, image analysis,

bioinformatics, database systems, and information retrieval. A hierarchical

clustering is a recursive partitioning of a data set into clusters of successively

smaller size.
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1.1 Preliminaries

We begin by formalizing the terminology we will use throughout this thesis.

The de�nitions given here are adapted from [75], [79], and [78].

1.1.1 Graphs

A graph G is de�ned by its �nite edge set E(G) = {e1, e2, ..., em} and �nite

vertex set V (G) = {v1, v2, ..., vn}, where each edge e ∈ E(G) is an unordered

pair of vertices in V (G). To simplify notation, we may drop the parameters

of V and E when the graph is clear from context, and instead denote G as

the pair (V,E). We also consider directed graphs; in a directed graph G, each

edge e ∈ E(G) is an ordered pair of vertices. We use the same notation as for

undirected graphs.

In an undirected graph for each edge e = uv ∈ E(G), we say u and v are

adjacent and e is incident to u and v. The neighbours of a vertex v are the

vertices u such that u and v are adjacent; we denote this set as NG(v), or

simply N(v) when G is clear from context.

A subgraph of a graph G is a graph H, where H is obtained from G by

deleting some edges and/or some vertices (and their incident edges) from G.

We notate this relation as H ⊆ G, and may simply say that G contains H or

H is in G. A subgraph H ⊆ G is spanning if V (H) = V (G).

Walk in Graph

A walk in graph G is a �nite non-empty sequenceW = v0e1v1e2v2...ekvk, whose

terms are alternately vertices and edges, such that, for 1 ≤ i ≤ k, the ends of

ei are vi−1 and vi. We say that W is a walk from v0 to vk. The vertices v0 and

vk are called the origin and terminus of W , respectively, and v1, v2, . . . , vk−l its

internal vertices. The integer k is the length of W . A walk is closed if it has

positive length and its origin and terminus are the same.

Path in Graph

A walk whose origin, terminus and internal vertices are distinct is a path. We

sometimes use the term 'path' to denote a graph corresponding to a path.

Cycle in Graph
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A closed walk whose origin and internal vertices are distinct is a cycle. Just as

with paths we sometimes use the term 'cycle' to denote a graph corresponding

to a cycle. A cycle of length k is called a k − cycle.

1.1.2 Approximation Algorithms

Decision Problems and NP

A decision problem is a problem that can be answered with either �yes� or

�no�. We view decision problems as languages. A language is a subset of

binary strings over the alphabet {0, 1}. Language L corresponding to some

decision problem is the set of all strings in L that encode �yes� instances to

the problem.

A language L ∈ NP if there are polynomials p, q and a Turing machine M

(called a veri�er) such that for each string x ∈ {0, 1}∗, the following holds. If

x ∈ L, then a certi�cate string y of length at most p(|x|) must exist such that

M(x, y) accepts in at most q(|x|) steps. Otherwise, for all strings y of length at

most p(|x|), M(x, y) rejects in at most q(|x|) steps. NP is therefore the class

of all languages for which there are short and quickly veri�able yes-certi�cates.

L1 and L2 be two languages in NP. A language L1 reduces to L2 if there

is a Turing machine that, given the string x ∈ {0, 1}∗, outputs a string y such

that y ∈ L2 if and only if x ∈ L1, and does so in poly(|x|) steps. A language

L is NP-hard if for every language L0 ∈ NP, L0 reduces to L. A language L

is NP-complete if L is NP-hard and L ∈ NP.

Optimization problems

An NP-optimization problem Π consists of:

� A set of valid instances DΠ, where we can determine if some instance

I ∈ DΠ in time polynomial in |I|. We assume all instances I ∈ DΠ

can be expressed as �nite binary strings; this implies all numeric values

could be integer or rational. The size of an instance I, written |I|, is

the number of bits needed to express it.

� A set of feasible solutions SΠ(I) for each instance I ∈ DΠ, where we can

determine if S ∈ SΠ(I) in time poly(|I|). The length of each solution
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must be polynomially bounded in the length of I.

� An objectivefunction objΠ that assigns each instance-solution pair (I, s)

a non-negative value, computable in time that is polynomial in |I|.

We also specify whether Π is a aminimization problem or amaximization

problem. For a minimization/maximization problem Π and instance I ∈ DΠ,

an optimal solution is a feasible solution s ∈ Sπ(I) that minimizes/maximizes

the value of objΠ ; that is, argmins∈SΠ
objΠ(I, s) or argmaxs∈SΠ

objΠ(I, s),

respectively. We denote such a solution as OPTΠ(I), or simply OPT if the

problem and instance are clear from context. We slightly abuse this notation

by using OPT to also refer to the objective value of the optimum solution,

when the type of OPT is clear from context.

An NP optimization problem Π gives rise to a class of NP decision prob-

lems Π′, by asking if a feasible solution of at most/at least some objective value

exists (for minimization/maximization problems, respectively). A polynomial

time algorithm that solves Π can thus be used to answer the decision problem

Π′. On the other hand, proving that the decision version of a problem I ′ ∈ Π′

is hard in some sense, shows that the optimization version I ∈ Π is at least as

hard as I ′. For example if we prove that I ′ is NP-hard, then it means that I

is NP-hard too.

Approximation algorithms

Let Π be a minimization (maximization) problem, and let α : Z+ → Q+ be

a function such that α(|I|) ≥ 1 for all inputs I ∈ DΠ. An algorithm A is an

α − approximation for Π if, for all instances I, A returns a feasible solution

S ∈ SΠ(I) such that objΠ(I, S) ≤ α(|I|).OPTΠ(I)
(
objΠ(I, S) ≥ OPTΠ(I)

α(|I|)

)
and the running time is bounded by poly(|I|). The function α is called the

approximation ratio of A.

It is sometimes di�cult to obtain an algorithm that meets this de�nition

exactly. We might need to relax the running time bound, for example to

a quasi-polynomial factor, which is O(|I|logc(|I|)), where c is a constant. Or,

the algorithm makes random choices, and so the approximation ratio only

holds in expectation over all random choices. We still loosely refer to these as
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approximation algorithms, although we will state such relaxations explicitly.

An algorithm A is an approximation scheme for the minimization (max-

imization) problem Π if for the valid instance I and error parameter ε >

0, it returns a feasible solution S such that objΠ(I, S) ≤ (1 + ε).OPTΠ(I)(
objΠ(I, S) ≥ (1− ε).OPTΠ(I)

)
. We call A a polynomial time approximation

scheme PTAS if its running time is poly(|I|) for each �xed ε. We call A a

fully polynomial time approximation scheme FPTAS if its running time is

poly(|I|, 1
ε
) for each �xed ε.

Problem Π is said to be in the class PTAS or FPTAS if it admits the

respective approximation scheme. It is said to be in the class APX if it admits

some constant approximation.

Let Π and Π′ be two optimization problems. Π PTAS-reduces to Π′ if

there exists an algorithm A and function c : R+ → R+, where for each valid

instance I of Π and each �xed ε > 0,

� Algorithm A returns an instance I ′ = A(I, ε) of Π′ in time poly(|I|),

such that if I is feasible then I ′ is feasible, and

� Given any feasible solution s′ ∈ SΠ
′(I ′), there exists a feasible solu-

tion s ∈ SΠ(I) such that if objΠ
′(I ′, s′) ≤ (1 + c(ε)).OPTΠ

′(I ′), then

objΠ(I, s) ≤ (1 + ε).OPTΠ(I)

An optimization problem Π is said to be APX-hard if for every other

problem Π′ ∈ APX, Π′ PTAS-reduces to Π. If in addition Π ∈ APX, then

Π is said to be APX-complete.

Hardness of approximation

Roughly speaking, a hardness proof shows that a certain optimization prob-

lem cannot be approximated better than some threshold assuming certain

complexity assumptions. As an extreme example, it was shown in [81] that

the maximum independent set problem cannot be approximated better than

O(n1−ε) for any constant ε > 0 assuming P 6= NP, ruling out all but the

most trivial approximations. A less extreme example, implied by the PCP

theorem, is that approximating Max-3SAT better than (1 + ε) for some ε > 0

is NP-hard, ruling out a PTAS assuming P 6= NP [75]. Since this problem is
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also APX-complete, a consequence of this hardness is that for any APX-hard

optimization problem Π, Π /∈ PTAS unless P = NP.

SNP problems

In computational complexity theory, SNP (from Strict NP) is a complexity

class containing a limited subset of NP based on its logical characterization

in terms of graph-theoretical properties. It is de�ned as the class of problems

that are properties of relational structures (such as graphs) expressible by a

second-order logic formula of the following form:

∃S1 . . . ∃Sn∀v1 . . . ∀vmΦ(R1, . . . , Rk, S1, . . . , Sn, v1, . . . , vm)

Where R1, . . . , Rk are relations of the structure (such as the adjacency

relation, for a graph), S1, . . . , Sn are unknown relations (such as sets of tuples

of vertices), and Φ is a any boolean combination of the relations with only

existential second-order quanti�cation over relations and only universal �rst-

order quanti�cation over vertices. For example, SNP contains 3-Coloring (the

problem of determining whether a given graph is 3-colorable).

MAX-SNP problems

An analogous de�nition considers optimization problems, when instead of ask-

ing a formula to be satis�ed for all tuples, one wants to maximize the number

of tuples for which it is satis�ed. That is, MAX-SNP0 is de�ned as the class

of optimization problems on relational structures expressible in the following

form:

max
S1,...,Sn

|{(v1, . . . , vm) : Φ(R1, . . . , Rk, S1, . . . , Sn, v1, . . . , vm)}|

MAX-SNP is then de�ned as the class of all problems with a linear re-

duction to problems in MAX-SNP0. For example, MAX-3SAT is a problem

in MAX-SNP0: given an instance of 3-CNF -SAT (the boolean satis�ability

problem with the formula in conjunctive normal form and at most 3 literals

per clause), �nd an assignment satisfying as many clauses as possible. Then

MAX-SNP -hard problems are also de�ned just like APX-hard problems.

Unique Games Conjecture

In computational complexity theory, the unique games conjecture (often re-

ferred to as UGC) is a conjecture made by Subhash Khot in 2002 [54]. The
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conjecture postulates that the problem of determining the approximate value

of a certain type of game, known as a unique game, is NP-hard. It has broad

applications in the theory of hardness of approximation. If it is true, then for

many important problems it is not only impossible to get an exact solution

in polynomial time (as postulated by the P versus NP problem), but also

impossible to get a good polynomial-time approximation.

However, UGC is not the only assumption to help for such an inapproxima-

bility results. For example it has been shown that the Minimum Vertex Cover

problem is NP-hard to approximate to within a factor of
√

2, by assuming the

traditional assumption of P 6= NP [55], [56]

1.1.3 Linear Programming

Many problems inNP can be formulated as an integer program that describes

the problem. Let c ∈ Qn, b ∈ Qm be vectors, and A = (aij) ∈ Qm×n be

a matrix. Let u · v denote the dot-product of two vectors u and v. The

integer programming problem is to �nd a non-negative integer vector x ∈ Z+n

maximizing the value c · x, satisfying:

A · x ≤ b

Note that we can use this de�nition to de�ne minimization problems as

well (i.e. by maximizing −c · x), and allow for ≥ and = constraints.

Finding such a binary vector, or determining if such a vector even exists,

is itself an NP-hard problem in general (otherwise, we could use integer pro-

gramming to solve other NP-hard problems). Instead, suppose we relax this

problem: instead of trying to �nd a binary vector x, we try to �nd a satisfying

x ∈ Qn . This yields a linear program:

maximize c · x (LP)

subject to Ax ≤ b, (1.1)

x ≥ 0 (1.2)
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It is usually more convenient to explicitly write out the constraints and the

objective function rather than specifying A, b, c directly, as in the following

(equivalent) LP:

maximize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bj, i = 1, ...,m

xj ≥ 0, j = 1, ..., n

(1.3)

We say that we �solve� a linear program if we either determine no solution

x exists, the value c · x is unbounded, or return a solution minimizing the

objective c · x. Unlike integer programs, linear programs can be solved in time

polynomial in n, m, and the number of bits ∆ required to write the rational

entries of A, b, and c; one such approach is the interior point method (see, for

example, [53]).

Usefulness in approximations

Linear programming is a useful tool to build approximation algorithms with.

The general procedure for a minimization (maximization) problem is to write

the integer program, relax its constraints that force the variables to be non-

negative integers, by allowing the variables to take any non-negative real num-

bers, solve it, and try to round the fractional result to an integer solution in

polynomial time, without either violating constraints or increasing (decreas-

ing) the objective value signi�cantly. If we can do this while only increasing

(decreasing) the objective value by a factor of f(n), where n = |x|, then we

will have an f(n)-approximation to the original problem.

1.2 Problems Considered and Main Results

1.2.1 Resource Minimization for Fire Containment

The Fire�ghter problem and a closely related problem named Resource Mini-

mization Fire Containment (RMFC) are natural models for optimal inhibition

of harmful spreading phenomena on a graph. The �re�ghter problem was for-
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mally introduced by Hartnell [45] and later Chalermsook and Chuzhoy [19]

de�ned the RMFC problem. Since then, both problems have received a lot

of attention in several research papers, even when the underlying graph is a

spanning tree, which is one of the most-studied graph structures in this con-

text.

In both problems (when restricted to trees) we are given a graph G =

(V,E), which is a spanning tree, and a vertex r ∈ V , called root. The problem

is de�ned over discretized time steps. At time 0, a �re starts at r and spreads

step by step to neighboring vertices. During each time step 1, 2, . . . any non-

burning vertex u can be protected, preventing u from burning in any future

time step.

In the RMFC problem the task is to determine the smallest number B ∈

Z≥1 such that there is a protection strategy which protects B vertices at each

time step while saving all the leaves from catching �re. In this context, B

is referred to as the number of �re�ghters (or budget at each step). In the

�re�ghters problem, given a �xed number of �re�ghters (i.e. number of vertices

that can be protected at each time step) the goal is to �nd a strategy to

maximize the number of vertices saved from catching the �re.

Main Results

By using Linear Programming and dynamic programming techniques, we show

how to approximate RMFC with a small additive error by presenting a quasi-

polynomial time asymptotic approximation scheme (AQPTAS) for it. More

speci�cally our main result is the following theorem:

Theorem 1. For RMFC on trees and for any ε > 0 there is an algorithm that

�nds a solution using d
(
1+O(ε)

)
Be �re�ghters with running time nO(log logn/ε),

where B is the optimal number of �re�ghters.

We will also show how applying our more re�ned height reduction lemma

to the algorithm used by Adjiashvili et al. [1], plus a more careful analysis,

leads to a better constant factor. In particular, we obtain the following:
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Theorem 2. For any ε > 0, there is a polynomial time (5 + ε)-approximation

for the RMFC problem on trees.

Recall that the RMFC problem on trees does not admit better than 2-

approximation unless P = NP [57]. However, this does not rule out the

possibility of a +1 approximation or an asymptotic PTAS. Our result is an

indication that it is plausible that an asymptotic PTAS exists, especially

since the exponent is O(log log n), not O(log n) as we don't know any natural

problem that admits nO(log logn) algorithm but not polynomial time.

We start by introducing a more powerful height reduction transformation

than the one used in [1] that allows for transforming the RMFC problem

into a more compact and better structured form, by only losing a (1 + ε)

factor in terms of approximability. This transformation allows us to identify

small substructures, over which we can optimize e�ciently, and having an

optimal solution to these subproblems we can de�ne a residual LP with small

integrality gap. Then we will show how to apply dynamic programming on the

transformed instance to obtain a strategy to protect the nodes at each step

to successfully contain the �re and save all the leaves with using only O(εB)

more �re�ghters at each step. We will apply our more delicate height reduction

lemma to the previous combinatorial approach [1] to reach a better constant

factor approximation in polynomial time, which is presented in Theorem 2.

1.2.2 Throughput Maximization

Scheduling problems have been studied in various �elds, including Operations

Research and Computer Science over the past several decades. However, there

are still several fundamental problems that are not resolved. In particular,

for problems of scheduling of jobs with release times and deadlines in order to

optimize some objective functions there are several problems left open (e.g. see

[64, 70], [71]). We consider the classical problem of throughput maximization.

In this problem, we are given a set J of n jobs where each job j ∈ J has a

processing time pj, a release time rj, as well as a deadline dj. The jobs are to

be scheduled non-preemptively on a single (or more generally on m identical)
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machine(s), which can process only one job at a time. The value of a schedule,

also called its throughput, is the number of jobs that are scheduled entirely

within their release time and deadline interval. Our goal is to �nd a schedule

with maximum throughput.

Throughput maximization is a central problem in scheduling that has been

studied extensively in various settings (even special cases of it are interesting

open problems). They have numerous applications in practice [2, 39, 43, 59,

80]. The problem is known to be NP-hard (one of the list of problems in

the classic book by Garey and Johnson [40]). In fact, even special cases of

throughput maximization have attracted considerable attention. For the case

of all pj's being equal in the weighted setting (where each job has a weight and

we want to maximize the total weight of scheduled jobs), the problem can be

solved in polynomial time only when m = O(1) (running time is exponential

in m) [12, 34]. The complexity of the problem is open for general m. For

the case where all processing times are bounded by a constant the complexity

of the problem is listed as an open question [71]. It was shown in [35] that

even for m = 1 and pj ∈ {p, q} where p and q are strictly greater than 1 the

problem is NP-Complete.

Main Results

Our main result is the following. Suppose that there are c distinct processing

times.

Theorem 3. For the throughput maximization problem with m identical ma-

chines and c distinct processing times for jobs, for any ε > 0, there is a

randomized algorithm which �nds a (1 − ε)-approximate solution with high

probability runs in time nO(mc7ε−6) log T , where T is the largest deadline.

So for m = O(1) and c = O(1) we get a Polynomial Time Approximation

Scheme (PTAS). Note that even for the case of m = 1 and c = 2, the com-

plexity of the problem has been listed as an open problem in [71], however, it

has been shown in [35] that even for m = 1 and pj ∈ {p, q} where p and q are

strictly greater than 1 the problem is NP-Complete. Our algorithm for The-
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orem 3 is obtained by proving some structural properties for near optimum

solutions and by describing a randomized hierarchical decomposition which

allows us to do a dynamic programming.

An easy corollary of Theorem 3 is the following. If the largest processing

time pmax = Poly(n) then we get a quasi-polynomial time (1−ε)-approximation

using (1 + ε)-speed up of machines. This result of course was already obtained

in [50]. We should mention that the framework of [50] heavily relies on machine

speed up and it is not clear if that approach can be adapted to give an improved

approximation for the original (non-augmented) machine speeds.

1.2.3 Hierarchical Clustering

Hierarchical Clustering has been studied and used extensively as a method for

analysis of data. Suppose we are given a set of n data points (items) along

with a notion of similarity between them. The goal is to build a hierarchy of

clusters, where each level of hierarchy is a clustering of the data points that is

a re�ned clustering of the previous level, and data points that are more similar

stay together in deeper levels of hierarchy. In other words, we want to output

a recursive partitioning of the items into successively smaller clusters, which

are represented by a rooted tree, where the root corresponds to the set of all

items, the leaves correspond to the items, and each internal node corresponds

to the cluster of all the items in the leaves of its subtree. Many well-established

methods have been used for Hierarchical Clustering, including some bottom-

up agglomerative methods like single linkage, average linkage, and complete

linkage, and some top-down approaches like the minimum bisection algorithm.

In the bottom-up approaches, one starts from singleton clusters and at each

step two clusters that are more similar are merged. For instance, in the av-

erage linkage, the average of pair-wise similarity of points in two clusters is

computed and clusters which have the highest average are merged into one

and this continues until one cluster (of all points) is created. In the top-down

approaches, one starts with a single cluster (of all points) and each step a clus-

ter is broken into two (or more) smaller ones. One such example is bisecting

k-means (see [52]). Although these methods have been around for a long time,
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it was only recently that researchers tried to formalize the goal and objective

of hierarchical clustering.

Suppose the set of data points of input are represented as the vertices of a

weighted graph G = (V,E) where for any two nodes i and j, wi,j is the weight

(similarity or dissimilarity) between the two data points. Then one can think

of a hierarchical clustering as a tree T whose leaves are nodes of G and each

internal node corresponds to the subset of nodes of the leaves in that subtree

(hence root of T corresponds to V ). For any two data points i and j we use

Ti,j to denote the subtree rooted at the least common ancestor (LCA) of i

and j and wi,j represents the similarity between i, j. In the very �rst attempt

to de�ne a reasonable objective function, Dasgupta [32] suggested the cost of

each tree T , which we want to minimize, to be:

Cost(T ) =
∑
i,j∈[n]

(
wi,j × |Ti,j|

)
. (1.4)

In other words, for each two items, i and j, the cost to separate them at

a step is the product of their weight and the size of the cluster at the time

we separate them. Intuitively, this means that the clusters deeper in the tree

would contain items that are relatively more similar. Dasgupta [32] proved

that the optimal tree must be a binary tree. He then analyzed this objective

function on some canonical examples (such as complete graph) and proved

that it is NP-hard to �nd the tree with the minimum cost. Finally, he showed

that a simple top-down heuristic graph partitioning algorithm, namely using

taking the (approximately) minimum sparsest cut, would have a provably good

approximation ratio.

Cohen-Addad et al. [31] considered the same objective function but for

dissimilarity-based graphs, where wi,j is the weight of dissimilarity between

two nodes i and j. In this version a good clustering should have larger Ti,j

when wi,j is relatively large. Here the objective is to maximize the following

formula:

Rev(T ) =
∑
i,j∈[n]

(
wi,j × |Ti,j|

)
(1.5)

They showed that the random top-down partitioning algorithm is a 2/3-
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approximation and the classic average-linkage algorithm gives a factor 1/2

approximation (later [22] mentioned that the same analysis will show that it

is actually 2
3
-approximation), and provided a simple top-down local search al-

gorithm that gives a factor (2
3
−ε)-approximation. They take an axiomatic ap-

proach for de�ning `good' objective functions for both similarity and dissimilarity-

based hierarchical clustering by characterizing a set of admissible objective

functions (that includes the one introduced by Dasgupta) that have the prop-

erty that when the input admits a `natural' ground-truth hierarchical cluster-

ing, the ground-truth clustering has an optimal value. They also provided a

similar analysis showing that the algorithm of Dasgupta [32] (using sparsest

cut algorithm) has ratio of O(α); their analysis of this is di�erent (and slightly

better) than [21]. More recently Chatziafratis et al. [24] showed that it is hard

to approximate Rev(T ) within a constant of 9159/9189 = 0.996735 assuming

the Unique Games Conjecture.

Main Results

Our �rst result is to consider the revenue maximization of dissimilarity (i.e. ob-

jective (1.5)) and improve upon the algorithm of [22] which has ratio 0.667078:

Theorem 4. For hierarchical clustering on dissimilarity-based graphs, there is

an approximation algorithm to maximize objective of (1.5) with ratio 0.71604.

To prove this, we build upon the work of [22] and present an algorithm that

takes advantage of some conditions in which their algorithm fails to perform

better. We start with a simpler algorithm which achieves ratio 0.6929. Then

through a series of improvements we show how we can get to 0.71604 ratio.

Next we introduce a new objective function for hierarchical clustering and

present approximation algorithms for this new objective. The intuition for

this new objective function is that we expect the items that are more similar

to remain in the same cluster for more steps, i.e. the step in which they are

separated into di�erent clusters is one which is further away from the root

of the tree. Consider any tree T , we de�ne Hi,j as the number of common

ancestors of i and j in T . In other words, when we think of the process of
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building the tree as a top-down procedure, Hi,j is the step in which we decide

to separate i and j from each other (they were decided to be together in

Hi,j − 1 many steps). Intuitively, similar items are supposed to stay together

until deeper nodes in the tree and hence are expected to have larger Hi,j

values whereas dissimilar items are supposed to be separated higher up in the

tree. For instance, looking at a phylogenetic or genomic tree, the species that

are most dissimilar are separated higher up in the tree (i.e. have small Hi,j)

whereas similar species are separated at deep nodes of the tree and hence have

high Hi,j values. For dissimilarity-based graphs, we propose to minimize the

following objective:

CostH(T ) =
∑
i,j∈[n]

(
wi,j ×Hi,j

)
. (1.6)

The problem we are looking to solve here is to �nd a full binary tree with

the minimum CostH(.). Our second main result is the following:

Theorem 5. For hierarchical Clustering on dissimilarity-based graphs, a top-

down algorithm that chooses the approximated weighted max-cut at each step,

would be a 4αGW
4αGW−1

-approximation algorithm to minimize CostH(T ), where

αGW is the ratio of the max-cut approximation algorithm.

Considering that the best known approximation algorithm for weighted

maximum cut problem has ratio αGW = 0.8786 [41], the ratio of this algo-

rithm would be 1.3977. This also means that any top-down algorithm which

cuts at least half of the weight of the remaining edges, including the random

partitioning algorithm, would have approximation ratio 2.
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Chapter 2

The RMFC Problem

Recall that in RMFC problem (when restricted to trees) we are given a graph

G = (V,E), which is a spanning tree, and a vertex r ∈ V , called root. The

problem is de�ned over discretized time steps. At time 0, a �re starts at r and

spreads step by step to neighboring vertices. During each time step 1, 2, . . .

any non-burning vertex u can be protected, preventing u from burning in any

future time step.

The task is to determine the smallest number B ∈ Z≥1 such that there is a

protection strategy which protects B vertices at each time step while saving all

the leaves from catching �re. In this context, B is referred to as the number of

�re�ghters (or budget at each step). In the �re�ghters problem, given a �xed

number of �re�ghters (i.e. number of vertices that can be protected at each

time step) the goal is to �nd a strategy to maximize the number of vertices

saved from catching the �re.

By using Linear Programming and dynamic programming techniques, we

show how to approximate RMFC with a small additive error by presenting

a quasi-polynomial time asymptotic approximation scheme (AQPTAS) and

prove Theorem 1 which is basically saying that for RMFC on trees and for

any ε > 0 there is an algorithm that �nds a solution using d
(
1 + O(ε)

)
Be

�re�ghters with running time nO(log logn/ε), where B is the optimal number of

�re�ghters.

We will also show how applying our more re�ned height reduction lemma

to the algorithm used by Adjiashvili et al. [1], plus a more careful analysis,
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leads to a better constant factor and prove Theorem 2 which is saying For any

ε > 0, there is a polynomial time (5+ε)-approximation for the RMFC problem

on trees.

2.1 Prior Work

For RMFC on trees, King and MacGillivray [57] showed that it is NP-hard

to decide whether one �re�ghter is su�cient or not. This means that there is

no (e�cient) approximation algorithm with an approximation factor strictly

better than 2, unless P=NP. On the positive side, Chalermsook and Chuzhoy

[19] presented an O(log∗ n)-approximation1 where n is the number of vertices.

Their algorithm is based on a natural Linear Programming (LP) relaxation,

which is a straightforward adaptation of the one previously used for the Fire-

�ghter problem on trees and essentially matches the integrality gap of the

underlying LP (the integrality gap of the underlying LP is Θ(log∗ n) [19]).

Recently, Adjiashvili et al. [1] presented a 12-approximation for RMFC, which

is the �rst constant factor approximation for the problem. Their result is ob-

tained through a combination of the known LPs with several new techniques,

which allows for e�ciently enumerating subsets of super-constant size of a good

solution to obtain stronger LPs. They also present a PTAS for the �re�ghter

problem.

The Fire�ghter problem and RMFC, both restricted to trees, are known to

be computationally hard problems. More precisely, Finbow, King, MacGillivray

and Rizzi [38] showed the NP-hardness for the Fire�ghter problem on trees

even when the maximum degree is three.

Several approximation algorithms have been proposed for both of these

problems. Hartnell and Li [44] proved that a natural greedy algorithm is a 1
2
-

approximation for the Fire�ghter problem. Later, Cai, Verbin and Yang [17]

improved this result to 1 − 1
e
, using a natural LP relaxation and dependent

randomized rounding. Then Anshelevich, Chakrabarty, Hate, and Swamy [6]

1Here log∗ n denotes the minimum numberk of successive logs of base two that have to

be nested such that log log . . . log log︸ ︷︷ ︸
k times

n ≤ 1.

17



showed that the Fire�ghter problem on trees can be interpreted as a mono-

tone submodular function maximization (SFM) problem subject to a partition

matroid constraint. This observation yields another (1− 1
e
)-approximation by

using a recent (1− 1
e
)-approximation for monotone SFM subject to a matroid

constraint [18].

Chalermsook and Vaz [20] showed that, for any ε > 0, the canonical LP

used for the Fire�ghter problem on trees has an integrality gap of 1− 1
e
+ε. This

generalized a previous result by Cai, Verbin and Yang [17]. When restricted

to some tree topologies this factor 1− 1
e
was later improved (see [51]) but, for

arbitrary trees, that was the best known approximation factor for a few years.

Recently, Adjiashvili, Baggio and Zenklusen [1] have �lled the gap between

previous approximation ratios and hardness results for the Fire�ghter prob-

lem. In particular, they present approximation ratios that nearly match the

hardness results, thus showing that the Fire�ghter problem can be approxi-

mated to factors that are substantially better than the integrality gap of the

natural LP. Their results are based on several new techniques, which may be

of independent interest.

Assuming a variant of the Unique Games Conjecture (UGC), the RMFC

problem in general graphs is hard to approximate within any constant factor,

according to a recent work by Lee [58] which is based on a general method of

converting an integrality gap instance to a length-control dictatorship test for

variants of the s-t cut problem. For further results and related work we refer

the reader to [1].

2.2 Preliminaries and Overview of the Algorithm

Recall that we are given a tree G = (V,E) rooted at a vertex r, from which

we assume the �re starts. We denote by Γ ⊆ V the set of all leaves of the tree.

Given an instance I for RMFC and an integer parameter B ≥ 1, called the

budget or the number of �re�ghters, at each time step we can �protect� up to

B non-burning vertices. Such vertices are protected inde�nitely. Our goal is

to �nd the smallest B and a protection strategy such that all the leaves Γ are
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saved from catching the �re. Observe that we say a vertex u is protected, if

we directly place a �re�ghter in u, and a vertex v is saved when the �re does

not reach to u, because of protecting some u on the unique v-r path. This

smallest value of B is denoted by OPT (I).

Let L ∈ Z≥1 be the depth of the tree, i.e. the largest distance, in terms

of the number of edges, between r and any other vertex in G. After at most

L time steps, the �re spreading process will halt. For ` ∈ [L] := {1, . . . , L},

let V` ⊆ V be the set of all vertices of distance ` from r, which we call the

`-th level of the instance. We also use V≤` = ∪`k=1Vk, and we de�ne V≥`, V<`,

and V>` in the same way. Moreover, for each 1 ≤ ` < L and each u ∈ V` ,

Pu ⊆ V≤` \ {r} denotes the set of all vertices on the unique u-r path except

for the root r, and Tu ⊆ V>` denotes the subtree rooted at u, i.e. descendants

of u.

2.2.1 Linear Programming Relaxation

We use the following (standard) Linear Programming (LP) relaxation for the

problem that is used in both [19] and [1].

min B (2.1)

x(Pu) ≥ 1 ∀u ∈ Γ

x(V≤`) ≤ B · ` ∀` ∈ [L]

x ∈ RV \{r}
≥0

Here x(U) :=
∑

u∈U x(u) for any U ⊆ V \ {r}. Note that with x ∈

{0, 1}V \{r} and B ∈ Z≥0 we get an exact description of RMFC where x is

the characteristic vector of the vertices to be protected and B is the budget.

The �rst constraint enforces that for each leaf u, one vertex between u and r

will be protected, which makes sure that the �re will not reach u. The second

constraint ensures that the number of vertices protected after each time step is

at most B · ` and makes sure that we are using no more than B �re�ghters per

time step (see [19] for more details). Note that (as mentioned in [19]), there is

an optimal solution to RMFC that protects, with the �re�ghters available at
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time step `, only the vertices in V`. Hence, we can change the above relaxation

to one with the same optimal objective value by replacing the constraints

x(V≤`) ≤ B · ` by the constraints x(V`) ≤ B for all ` ∈ [L].

min B (2.2)

x(Pu) ≥ 1 ∀u ∈ Γ

x(V`) ≤ B ∀` ∈ [L]

x ∈ RV \{r}
≥0

Throughout the chapter we use a lemma of [1] which basically says that any

basic feasible solution of LP(2.2) (and also LP(2.1)) is sparse. This is proved

for the polytope of the �re�ghters problem, which has the same LP constraints

(just di�erent objective function). Consider any basic feasible solution x to

LP(2.2). One can partition supp(x) = {v ∈ V \{r} : x(v) > 0} into two parts:

x-loose vertices and x-tight vertices. A vertex v ∈ V \ {r} is x-loose or simply

loose if v ∈ supp(x) and x(Pv) < 1. All other vertices in supp(x), which are

not loose, will be x-tight or simply tight.

Lemma 1 (Lemma 3.1 in [1]). Let x be a vertex solution to LP(2.2) for RMFC,

then the number of x-loose vertices is at most L, the depth of the tree.

We will use this property crucially in the design of our algorithm. Also, as

noted in [1], we can work with a slightly more general version of the problem

in which we have di�erent numbers of budgets/�re�ghters at each time step:

say B` = m`B (for some m` ∈ Z≥0) �re�ghters for each time step ` ∈ [L] while

we are still minimizing B. Lemma 1 is valid for this generalization too.

2.2.2 Height Reduction

The technique of reducing the height of a tree at a small loss in cost (or

approximation ratio) has been used in di�erent settings and various problems

(e.g. network design problems). For RMFC, Adjiashvili et al. [1] showed how

one can reduce an instance of the problem to another instance where the

height of the tree is only O(log n) at a loss of factor 2. In a sense, the tree
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will be compressed into a tree with only O(log n) levels. Here we introduce

a more delicate version of that compression, which allows for transforming

any instance to one on a tree with O( logn
ε

) levels at a loss of 1 + ε in the

approximation. Our compression is similar to that of [1] with an initial delay

and ratio 1 + ε. One key property we achieve with compression, is that we can

later use techniques with running time exponential in the depth of the tree.

Suppose that the initial instance is a tree with L levels and each level

` has a budget B`. To compress the tree to a low height one, we will �rst

do a sequence of what is called up-pushes. Each up-push acts on two levels

`1, `2 ∈ [L] with `1 < `2 of the tree, and moves the budget B`2 of level `2 up

to `1. This means the new budget of level `1 will be B`1 +B`2 and for level `2

it will be 0.

We will show that one can do a sequence of up-pushes such that: (i) the

optimal objective value of the new instance is very close to the one of the orig-

inal instance, and (ii) only O(logL/ε) levels have non-zero budgets. Finally,

0-budget levels can easily be removed through a simple contraction operation,

thus leading to a new instance with only O(logL/ε) depth. The following the-

orem is a more powerful version of Theorem 4.1 in [1] with some improvements

such as reducing the loss to only 1 + ε (instead of 2) and some di�erences in

handling of the �rst levels.

Theorem 6. Let G = (V,E) be a rooted tree of depth L. Then for some

constants c, d > 0 (that only depend on ε) we can construct e�ciently a rooted

tree G′ = (V ′, E ′) with |V ′| ≤ |V | and depth L′ = O( logL
ε

), such that:

(i) If the RMFC problem on G has a solution with budget B ∈ Z≥0 at each

level, then the RMFC problem on G′ has a solution with non-uniform budgets

of B` = B for each level ` < c, and a budget of B` = m` · B for each level

` ≥ c, where m` =
(
d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e

)
.

(ii) Any solution to the RMFC problem on G′, where each level ` < c has

a budget of B` = B and each level ` ≥ c has a budget of B` = m` · B can be

transformed e�ciently into an RMFC solution for G with budget d(1 + 2ε)Be.

Proof. We start by describing the construction of G′ = (V ′, E ′) from G. We
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�rst change the budget assignment of the instance and then contract all 0-

budgets levels.

We set i∗ to be the smallest integer such that (1 + ε)i
∗ ≥ 2(1+ε)

ε2
and we let

c = d(1+ ε)i
∗e. The set of levels L in which the transformed instance will have

non-zero budget contains the �rst c− 1 levels of G and all the levels ` ≥ c of

G such that ` = d(1 + ε)ie for some i∗ ≤ i ≤ logL
log(1+ε)

= O(logL/ε):

L =

{
1 ≤ ` ≤ L | ` < c or ` = d(1+ε)ie for some i∗ ≤ i ≤

⌊ logL

log(1 + ε)

⌋}
For all other levels ` /∈ L we �rst do up-pushes. More precisely, the budget

of these levels ` ∈ [L] \ L will be assigned to the closest level in L that is

above ` (has smaller index than `). We then remove all 0-budget levels by

contraction. For each vertex v in a level `i = d(1 + ε)ie ≥ c we will remove all

vertices in the levels `i < ` < `i+1 = d(1 + ε)i+1e from its sub-tree and connect

all the vertices in level `i+1 of its sub-tree to v directly. This leads to a new

tree G′ with a new set of leaves. Since our goal is to save all the leaves in the

original instance, for each vertex v ∈ G′ such that v ∈ G has some leaves in

its contracted sub-tree, we will mark v as a leaf in G′ and simply delete all its

remaining subtree.

This �nishes our construction of G′ = (V ′, E ′) and it remains to show that

both (i) and (ii) hold. Note that the levels in G′ correspond to levels of G in

L: the �rst c levels of G′ are the same as the �rst c levels of G; for each ` > c,

level ` in G′ is level d(1 + ε)`−c+i
∗e of G.

Here we want to determine what will be the budget of each level of G′.

For each ` < c = d(1 + ε)i
∗e, the level ` of G′ is the same as the level ` of

G and has the same budget B` = B, because these levels are not involved in

up-pushes. For ` = c, all the budgets from level d(1 + ε)i
∗e to d(1 + ε)i

∗+1e− 1

in G are up-pushed to this level. This means that the budget for level c in G′

is Bc =
(
d(1+ ε)i

∗+1e−d(1+ ε)i
∗e
)
·B. Now for each i∗ < i ≤ b logL

log(1+ε)
c, all the

budgets from levels d(1 + ε)ie to d(1 + ε)i+1e − 1 in G are up-pushed to level

d(1 + ε)ie, which becomes level i − i∗ + c in G′; this means that the budget

for this level of G′ will be d(1 + ε)i+1e − d(1 + ε)ie. Setting ` = i− i∗ + c and

d = c− i∗, the budget of level ` in G′, is B` = (d(1+ε)`−d+1e−d(1+ε)`−de) ·B.
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To prove (ii), we use the following lemma:

Lemma 2. For any two consecutive levels ` ≥ c and `+1 in G′, the di�erence

between m` and m`+1 is relatively small. More precisely: m`(1 + 2ε) ≥ m`+1

Proof. Based on the de�nition of m` and m`+1 we have:

m` = d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e ≥ (1 + ε)(`−d+1) − (1 + ε)(`−d) − 1

⇒ m`(1 + ε) ≥ (1 + ε)(`−d+2) − (1 + ε)(`−d+1) − (1 + ε). (2.3)

On the other hand:

m`+1 = d(1 + ε)(`−d+2)e − d(1 + ε)(`−d+1)e ≤ (1 + ε)(`−d+2) − (1 + ε)(`−d+1) + 1

≤ m`(1 + ε) + 2 + ε using (2.3) (2.4)

Also by our choice of c, d and i∗ = c− d we can conclude that:

m` = d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e

≥ (1 + ε)(`−d+1) − (1 + ε)(`−d) − 1 = ε(1 + ε)(`−d) − 1

≥ ε(1 + ε)(c−d) − 1 = ε · (1 + ε)i
∗ − 1 ≥ ε

2(1 + ε)

ε2
− 1

⇒ m` ≥
2 + ε

ε
⇒ εm` ≥ 2 + ε. (2.5)

Combining (2.4) and (2.5) completes the proof.

Corollary 1. For each ` ≥ c and each budget B > 0:

m`+1 ·B ≤ m` · d(1 + 2ε)Be

Notice that in the constructed graph G′ for each level ` ≥ c, we have

B` = m` · B. Now consider the instance of the problem on graph G with

budget d(1 + 2ε)Be at each level. We will show that by doing some down-

pushes on G (i.e. move the budget of each level to some level down) we can

construct G′ again where the budget of each level ` is m` · B, and this means

that if G′ has a solution with budget m` ·B in each level, then G has a solution

with uniform budget d(1 + 2ε)Be.

Like before the set of levels L with non-zero budgets will be the same.

Instead of up-pushes, we will down-push the budget from all levels ` /∈ L to
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the closest level in L which is below ` (i.e has larger index than `). We will

also down-push budget d2εBe from each level ` < c to level ` = c.

By doing the same contraction, for each level ` < c we will have B` = B

and for each level ` > c we will have B` = m`−1 · d(1 + 2ε)Be, which is greater

than m` ·B based on the above lemma.

The only remaining level to consider is level ` = c. For this level, by doing

down-pushes, we will have budget Bc = B + d2εBe · c. Our claim is that this

is not less than mc · B, which is equal to (d(1 + ε)ce − c) · B (based on the

de�nition of mc):

Bc = B + d2εBe · c

≥ B + 2εB · c = (1 + 2εc) ·B

≥ d2εce ·B = d(1 + 2ε)c− ce ·B

≥ (d(1 + ε)ce − c) ·B = mc ·B.

This will complete the proof of the theorem, because by considering these

down-pushes, any solution to the RMFC problem on G′, where level ` ≥ c

has a budget of B` = m` · B and level ` < c has a budget of B` = B, can

be transformed e�ciently into an RMFC solution for G with budget d(1 +

2ε)Be.

In the following we assume that the depth of the tree is not more than

logn
log(1+ε)

+ 2(1+ε)
ε2

, so L = O( logn
ε

). After �nding a solution with budget B for a

tree with this height, then we could apply the compression theorem and �nd

a solution for the original tree by having dεBe more �re�ghters at each level.

2.2.3 Overview of the Algorithm

Given an instance I, our �rst step of the algorithm is to use Theorem 6 to

reduce I to an instance I′ with L = O(log n/ε) levels. Note that when we use

B to refer to core budget for instance I′ we mean each level ` has budget m` ·B

for ` ≥ c, and budget B for each level ` < c. Also, by OPT (I′) we mean the

smallest value B such that I′ has a feasible solution with core budget B as

above. By Theorem 6, if we �nd a solution with core budget B for I′ then it
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can be transformed to a solution for I with budget d(1 + 2ε)Be. So we focus

on the height reduced instance I′ from now on. We present an algorithm such

that if B ≥ OPT (I′) then it �nds a feasible solution to I′ with core budget at

most d(1 + ε)Be. Then, using binary search, we �nd the smallest value of Bo

(for B) for which the algorithm �nds a feasible solution. This would give us a

solution of budget at most d(1 + ε)OPT (I′)e, which in turn implies a solution

for I of value at most d(1 +O(ε))OPT (I)e.

So let us assume we have guessed a value OPT (I′) ≤ Bo. We consider

LP(2.2) (with �xed B = Bo) for I′ with guessed core budget Bo. Let x∗

be a basic feasible solution to this instance. Using Lemma 1 we know that

there are at most L loose vertices. As we will see, when Bo is relatively large,

i.e. Bo >
L
ε
, then we can easily �nd an integer solution using core budget at

most d(1 + ε)Boe and this yields the desired bound for the original instance.

The di�cult case is when Bo is small compared to L. The di�culty lies in

deciding which vertices are to be protected by the optimum solution in the top

h levels of the tree for some h = O(log log n); as if one has this information

then we can obtain a good approximation as in [1].

One way to do this would be to guess all the possible subsets of vertices

that could be protected by the optimal solution in the �rst h levels of the tree,

but this approach would have a running time far greater than ours. Still, we

can solve the problem on instance I′ in quasi-polynomial time using a bottom-

up dynamic programming approach. More precisely, starting with the leaves

and moving up to the root, we compute for each vertex u ∈ V the following

table. Consider a subset of the available budgets, which can be represented as

a vector q ∈ [B1]× ...× [BL]. For each such vector q and node v, we want to

know whether or not using budgets described by q for the subtree Tv (subtree

rooted at v) allows for disconnecting v from all the leaves below it, i.e. saving

all the leaves in Tv. Since L = O(log n/ε) and the size of each budget B` is at

most the number of vertices, the table size is nO(logn/ε)). Moreover, it is easy to

show that this table can be constructed bottom-up in quasi-polynomial time

using an auxiliary table and another dynamic programming, to �ll each cell of

the table.
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This approach would have the total running time of nO(logn/ε), because

of the size of the table. In order to reduce the running time to nO(log logn/ε),

we would consider each budget vector value rounded up to the nearest power

of (1 + ε2

(logn)2 ). So, instead of O(nL) = nO(logn/ε) many options for budget

vectors q, we will have O((log n/ε)3L) = nO(log logn/ε) many options and we will

show how by being more careful in our dynamic programming on these budget

vectors we can still compute the table in time nO(log logn/ε); this leads to an

approximation scheme (instead of the exact algorithm) for the instance I′.

2.3 Asymptotic Approximation Scheme

As mentioned above, �rst we use the height reduction as discussed in the

previous section to reduce the given instance I to a new one I′ with L = O( logn
ε

)

levels. We assume we have guessed a value Bo ≥ OPT (I′). Recall that, as

in the statement of Theorem 6, for some constants c, d (depending on ε) the

budget of each level ` < c is B` = Bo and for each level ` ≥ c the budget is

B` = m` ·Bo where m` =
(
d(1 + ε)(`−d+1)e − d(1 + ε)(`−d)e

)
.

We consider two cases: (I) when Bo >
L
ε
, and (II) when Bo ≤ L

ε
. For

the �rst case we show how we can �nd a solution with core budget at most

d(1 + ε)Boe by rounding the standard Linear Programming relaxation. For

the second case we show how we can use a bottom-up dynamic programming

approach to �nd a quasi-polynomial time approximation scheme.

2.3.1 Easy Case: Bo >
L
ε

In this case we consider LP(2.2) (with �xed B = Bo) for this instance. If x∗

is a feasible solution to this LP and Bo >
L
ε
then we add L ≤ dεBoe extra

budget (i.e. number of �re�ghters) to the �rst level which is enough to protect

all the loose vertices. Since by using Lemma 1 we know that there are at most

L loose vertices and we can protect them all in the �rst step using L extra

�re�ghters.

It remains to show that by using a budget of m` · Bo at every level `, for

c ≤ ` ≤ L, and Bo for ` < c, we can protect all the tight vertices and so all
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the leaves would be saved, by adding only L many extra �re�ghters to only

the �rst level.

Observe that for each tight vertex v, either x(v) < 1, then we would have a

loose vertex in Pv, or x(v) = 1. In the �rst case v is already saved by protecting

the loose vertices in the �rst step. If we only consider vertices with x(v) = 1,

we can see that the solution is integral itself for these vertices. So we have

rounded a fractional solution with Bo >
L
ε
to an integral one by using only

dεBoe more �re�ghters just in the �rst level. In this case we �nd a feasible

solution with core budget Bo + dεBoe in polynomial time.

2.3.2 When Bo ≤ L
ε

Recall that we have a budget of B` = Bo < L/ε for each level ` < c and

B` = m` ·Bo ≤ m` · Lε for each c ≤ ` ≤ L. We denote by q∗ the L-dimensional

total budget vector that has q∗[`] = B` for each 1 ≤ ` ≤ L. Also for each

L-dimensional vector q ∈ [B1]× [B2]× ...× [BL], we denote by Q(q) the set of

all vectors q′ such that q′ ≤ q. Suppose that |Q(q∗)| = m. We �rst describe

a simpler (and easier to explain) dynamic programming with running time

nO(logn/ε). Then we change it to decrease the running time and have our �nal

approximation scheme with running time nO(log logn/ε).

First Algorithm

Our dynamic program (DP) consists of two DP's: an outer (main) DP and

an inner DP. In our main DP table A we have an entry for each vertex v and

each vector q ∈ Q(q∗). This entry, denoted by A[v, q], will store whether using

budgets described by q for levels of Tv allows for disconnecting v from all leaves

below it or not.

More formally, if we assume v ∈ V`, then A[v, q] would be true if and only

if there is a strategy for Tv such that (i) all the leaves in Tv are saved, and

(ii) the budget for levels of Tv are given by vector q in indices ` + 1, . . . , L,

i.e. q[`+1] for the �rst level of Tv (direct children of v) , q[`+2] for the second

level, and so on.

We compute the entry A[., .] in a bottom up manner, computing A[v, q]

27



after we have computed the entries for children of v. To compute cell A[v, q],

we would use another auxiliary table B. Suppose v has k children u1, . . . , uk

and assume that we have already calculated A[uj, q
′] for every 1 ≤ j ≤ k and

all vectors q′ ∈ Q(q). Then we de�ne a cell in our auxiliary table B[v, q′, j]

for each 1 ≤ j ≤ k and q′ ∈ Q(q), where B[v, q′, j] is supposed to determine

if the budget vector q′ is enough for the union of subtrees rooted at u1, . . . , uj

to save all the leaves in Tu1 ∪ . . . Tuj or not, where the total budgets for union

of those subtrees are given by q′. We can compute B[v, q′, j] having computed

A[uj, q
′′] and B[v, q′ − q′′, j − 1] for all q′′ ∈ Q(q′). This means that we can

compute each cell A[v, q] using auxiliary table B and internal DPs and the

running time is O(n2 ·m3). We need to �nd A[r, q∗]. If this cell is true, then

we can save all the leaves of the tree using q∗ as the budget vector for each

level and if it is false, Bo would not be enough.

The problem is that m` could be large (mL = O(n)) and so the options

we have for the budget of each level is O(n). Recall that we can have Bo ≤ L
ε

many choices for q[`] when ` < c and m` · Lε many options when c ≤ ` ≤ L.

Using the de�nition of the m`: m` = O(ε(1 + ε)`−d), and so the total possible

di�erent budget vectors we could have is:

m =
(L
ε

)c−1

×
L∏
`=c

(
m`·

L

ε

)
=

(L
ε

)c−1

×LL−c+1×
L∏
`=c

(
(1+ε)`−d

)
= O

(
(nL)L

)
This means that the total running time will be O(nL) = nO(logn/ε) and this

is an exact algorithm to solve the RMFC problem on instance I′.

Reducing Budget Possibilities

To reduce the running time, we only consider budget vectors where each entry

of the vector is a power of (1 +
(
ε/ log n

)2
). In this case we have at most

O
(

log (m` · L)× ( logn
ε

)2
)

= O(log3 n) many options for `th entry of q for each

c ≤ ` ≤ L, and so m = O((log n)L) = nO(log logn/ε). Also, we have to show how

we can compute the entries of the table in time nO(log logn/ε) and why this would

give a (1+ ε)-approximation of the solution. For each real x, let RU(x) denote

the value obtained by rounding up x to the nearest power of (1 + (ε/ log n)2).
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The main idea is that if for each vector q we round up each entry qi to RU(qi)

and denote the new vector by RU(q) then if A[v, q] = true then A[v,RU(q)]

is also true. So we only try to �ll in entries of the table that correspond to

vectors q where each entry is a power of (1 + (ε/ log n)2). We show this can be

done in time nO(log logn/ε) and the total loss in approximation is at most 1 + ε

at the root of the tree.

From now on, we assume each vector q has entries that are powers of

(1 + (ε/ log n)2); and recall that Q(q) is the set of all such vectors q′ such

that q ≤ q′ and assume we have already calculated A[uj, q
′] for every vector

q′ ∈ Q(q) (again with all entries being powers of (1 + (ε/ log n)2)).

If we try to compute A[v, q] from A[uj, q
′]'s the same way, we need to

calculate B[v, q′, j] for each 1 ≤ j ≤ k and each time we round up the results

of addition/subtractions (such as q−q′) to the nearest power of (1+(ε/ log n)2).

Reducing Height of Inner Table

To compute cell A[v, q] then this round-up operation could happen k = O(n)

times and the approximation loss blows up. Instead, we consider a hypothetical

full binary tree with root v and leaves (at the lowest level) being u1, . . . , uk; this

tree will have height O(log k) = O(log n). Then we de�ne a cell in our auxiliary

table for each internal node of this tree. See Figure 2.1 for an illustration.

v

u4 u5u3u2u1

v

u4 u5u3u2u1

Figure 2.1: Illustration of the hypothetical full binary tree with root v and
leaves u1, . . . , u5

More formally we would de�ne a cell in our auxiliary table B[v, q′, j, j′]

for each 0 ≤ j ≤ dlog ke, 1 ≤ j′ ≤ d k
2j
e and q′ ∈ Q(q) with all entries

being powers of (1 + (ε/ log n)2), where B[v, q′, j, j′] is supposed to determine
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if the budget vector q′ is enough for the subtrees rooted at uj1 , . . . , uj2 , where

j1 = 2j · (j′ − 1) + 1 and j2 = min{2j · j′, k}, to save all the leaves in those

subtrees, where the total budgets for the union of those subtrees is given by

q′.

Similar to what we did before, we can compute B[v, q′, j, j′] having com-

puted B[v, q′′, j − 1, 2j′ − 1] and B[v,RU(q′ − q′′), j − 1, 2j′] (if it exists) for

all q′′ ∈ Q(q′). At each step we are computing a cell in table B a round-

up will be applied to make the result of vector subtraction to be a vector

with entries being powers of (1 + (ε/ log n)2). If we can �nd a q′′ such that

both B[v, q′′, j − 1, 2j′ − 1] and B[v,RU(q′ − q′′), j − 1, 2j′] are true, then

B[v, q′, j, j′] would be true too. Also we can �ll A[v, q] by checking the value

of B[v, qi, dlog ke, 1].

In the way we construct our auxiliary tables, while computing A[v, q], when

v has k children, log k many round up operations have happened (going up

the auxiliary tree with root v) to the solution we found for Tv only in this

step. This means that O(log k) ≤ O(log n) many round-ups could happen

to compute entry A[v, q] and the total number of round-ups starting from

the values of A[., .] at a leaf level to A[r, q] (for any q) would be at most

L × log n ≤ log2 n
ε

and at each round-up we increase our budget by a factor

of (1 + (ε/ log n)2). So the total approximation increase while computing the

entries for A[r, .] would be at most:(
1 +

ε2

(log n)2

) log2 n
ε = 1 +O(ε)

Observe that for every node v and subtree Tv if there is a solution with

budget vectors q then there is a solution with budget vector RU(q) as well.

Using this fact we can �nd a solution with budget vector at most (1 +O(ε))q∗

if there exists a solution with budget vector q∗. This completes the proof of

Theorem 1.

2.4 Polynomial (5+ε)-Approximation for RMFC

In this section we show how the approach introduced in [1] can be adapted

so that along with our height reduction lemma gives an algorithm with ratio
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(5 + ε) to prove Theorem 2.

We largely follow the proof of [1] only pointing out the main steps that

need slight adjustments. We assume the reader is familiar with that proof and

terminology used there.

Let x be a fractional solution to LP(2.2). We de�ne Wx as the set of leaves

that are (fractionally) cut o� from r largely on low levels, i.e. there is high

x-value on Pu on vertices far away from the root. We �rst start by recalling

Theorem 4.2 from [1] which basically says that we can round an LP solution

to an integral one by increasing the core budget B by a small constant such

that Wx can be saved.

Theorem 7 (modi�ed version of Theorem 4.2 in [1]). Let B ∈ R≥1, µ ∈ (0, 1],

and h = blog1+ε Lc. Let x ∈ LP(2.2) with value B and supp(x) ⊆ V>h, and

we de�ne W = {u ∈ Γ|x(Pu) ≥ µ}. Then one can e�ciently compute a set

R ⊆ V>h such that:

� R ∩ Pu 6= ∅ ∀u ∈ W , and

� There is an integral solution z = y1 + y2 to LP(2.2), which is a com-

bination of two integral solutions y1 and y2 with value B′ = 1
µ
B and 1

respectively such that supp(y1) ⊆ V>h and supp(y2) ⊆ V≤h.

Proof. The proof would be very similar to the proof of Theorem 4.2 in [1],

and the only di�erence is in providing the extra budget for protectecting the

loose vertices in V>h. They changed B to B + 1 at level h + 1 to provide

this required budget. It that was enough, because the budget in the reduced

instance is Bh+1 = 2h+1 · B at this level, and so by this change 2h = L many

more �re�ghters are available and they are enough to protect all the loose

vertices. But we need to change B to B + 1 on all levels 1 to h, to have L

many more �re�ghters for protecting all the loose vertices. This is because our

budget in the reduced instance is B` = B when 1 ≤ ` < c and B` = m` · B

when c ≤ ` ≤ L. So by this change, we should have c− 1 more �re�ghters in

total for the �rst c− 1 levels and
∑h

`=cm` many more �re�ghters for levels c

to h and the total would be (1 + ε)h = L, which is enough to protect all the
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loose vertices. But the di�erence in our integral solution is that all the added

budgets are from levels 1 to h (one for each level), and the remaining integral

solution, which is 1
µ
feasible, is the subset of V>h. This completes the proof of

this theorem.

Similar to [1], we consider two cases based on how B compares to logL.

When B ≥ logL, we will have a 3-approximation for the reduced instance, by

�rst solving the LP(2.2). This is similar to Theorem 4.3 in [1] and consistent

with our height reduction lemma:

Theorem 8 (modi�ed version of Theorem 4.3 in [1]). There is an e�cient

algorithm that computes a feasible solution to a compressed instance of RMFC

with budget at most 3BOPT when BOPT ≥ logL.

Proof. The proof is largely following Theorem 4.3 in [1]. Here is a short version

adapted. Assume x is a fractional LP(2.2) solution with value B. Then we

use Theorem 7 and set µ = 1/2 to obtain an integral solution z, which saves

W = {u ∈ Γ|x(Pu) ≥ µ}, by core budget 1 at each level 1 ≤ ` ≤ h and 2B

at each level h + 1 ≤ ` ≤ L. Note that we can now transfer the 1 unit of

budget from the very �rst level ` = 1 to level h+1 and change the core budget

2B to 2B + 1 on this level and remove that extra budget from the very �rst

level. This is because these extra �re�ghters from levels 1 to h are supposed to

protect the loose vertices, which are in V>h. By doing so we have an integral

solution z such that the core budget is 0 in the �rst level, 1 in levels 2 to

h, 2B + 1 at level h + 1, and 2B at level h + 2 to L. Now consider leaves

Γ \W . If we write another LP similar to LP(2.2), but speci�cally to save only

these leaves by only protecting the vertices in V≤h, this LP would be feasible.

Because all these vertices had x(Pu) ∩ V≤h ≥ 0.5, and so, 2x restricted to the

vertices in V≤h, would be a feasible solution to this LP. Hence, we can �nd the

optimal solution to this LP call it y. Based on Lemma 1, there would be at

most h = logL many loose vertices all in V≤h, and so by adding B > logL = h

many �re�ghters in the �rst level we would be able to protect all these y-loose

vertices. Then all other remaining vertices could be saved by core budget 2B.

Putting these two solutions together (for saving W and Γ \W ) we have found
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an integral solution to save all the leaves, by having core budget 3B in the

�rst level, 2B + 1 in levels 2 to h + 1, and 2B at the remaining levels. This

completes the proof of this theorem.

We say (A,D) is a clean pair compatible with OPT , if A ∪ D ⊆ V≤h,

A ⊆ OPT and D ∩ OPT = ∅, for h = log logL. We also de�ne LP (A,D)

by adding two sets of constraints to LP(2.2) to force the solution to pick all

vertices in A and not picking all vertices in D as well as the vertices in their

path to the root. Also for each fractional solution to this LP let Wx =
{
u ∈

Γ
∣∣x(Pu∩V>h) ≥ 1

1+ε

}
to be the set of leaves cut o� from the root by an x-load

of at least µ = 1
1+ε

within bottom levels (we changed 2
3
to 1/(1 + ε) from [1]).

For each u ∈ Γ \Wx, let fu ∈ V≤h be the vertex closest to the root among all

vertices in (Pu ∩ V≤h) \ D, then de�ne Fx = {fu|u ∈ Γ \Wx} \ A. It follows

that no two vertices of Fx lie on the same leaf-root path. Furthermore, every

leaf u ∈ Γ \Wx is part of the subtree Tf for precisely one f ∈ Fx. Also lets

de�ne Qx = V≤h ∩ (∪f∈FxTf ).

Now we are ready to provide our modi�cation of Lemma 4.4 in [1] when

B < logL:

Lemma 3 (modi�ed version of Lemma 4.4 in [1]). Let (A,D) be a clean pair

of vertices (A,D), which is compatible with OPT , and let x and y be optimal

solutions to LP (A,D) and LP (A, V≤h \ A) with objective function B and B̂

respectively. Then, if OPT ∩Qx = ∅, we have B̂ ≤ (2 + ε)BOPT .

Proof. The proof is similar to the proof of Lemma 4.4 in [1] and the �rst

di�erence is that we changed 2
3
to 1

1+ε
in the de�nition of Wx. First of all we

can have a fractional solution that saves Wx with picking only vertices from

V>h. This is because (1 + ε)x restricted to levels h + 1 to L would save Wx.

Now partition Γ \Wx into two groups. The leaves that OPT cut them from

the root by protecting a vertex in V≤h, denote them by W1, and W2 are the

leaves that OPT is cutting them in levels h+ 1 to L. By �nding such (A,D),

we are actually saving W1. and for W2 there is an integral solution with core

budget BOPT , which is restricted to levels h+1 to L. So the optimum solution

to LP (A, V≤h \ A) would not use more than (1 + ε)BOPT + BOPT as the core
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budget in levels h+ 1 to L. This completes the �rst part of lemma. To round

this fractional solution to an integral one which saves Wx and W2 (note that

W1 is saved already by the choice of A and D), we use the same technique as

Theorem 7.

We need to �rst �nd an integral solution restricted to levels h1 = logL to

L that saves the leaves with y(Pu ∩ V>h1) ≥ 1
2(1+ε)

by adding one core budget

to levels 1 to h1 and then write another LP restricted to levels h to h1. Then

we �nd another integral solution restricted to levels h to h1 by adding another

core budget to levels 1 to h that saves all the remaining leaves, which for sure

has y(Pu ∩ V>h ∩ V≤h1) ≥ 1
2(1+ε)

. Finally we would have an integral solution

with core budget BOPT + 2 for the �rst h levels, 2(2 + ε)BOPT + 1 for levels

h + 1 to h1 and 2(2 + ε)BOPT for levels h1 to L. This completes the proof of

this lemma.

The only remaining thing is to show how we can �nd such (A,D) pair of

vertices in polynomial time that follows in the exact same way of Lemma 4.5

in [1].

Lemma 4 (modi�ed version of Lemma 4.5 in [1]). if BOPT ≤ logL, then we

can �nd such triple (A,D, x) satisfying the conditions of Lemma 3 in polyno-

mial time.

Proof. We start with A = D = ∅ and create a polynomial size list of (A,D)

pairs and prove that if BOPT ≤ logL, then at least one of the pairs in the list

is what we are looking for. Initially our list contains only pair (∅, ∅) with label

zero. Then we set γ = h · (1 + ε)(h+1) · BOPT = O(log2 L · log logL) and for

each pair (A,D) with label γ′ < γ in the list and for each u ∈ Fx add two

pairs (A ∪ {u}, D) and (A,D ∪ {u}) to the list with label γ′ + 1 to the end of

the list.

Consider a vertex fu ∈ Fx where u ∈ Γ\Wx, since u is a leaf outsideWx we

have x(Pu∩V≤h) > 1− 1
1+ε

> ε. Thus ∀fu ∈ Fx we have x(Tfu∩V≤h) > ε which

means ε|Fx| <
∑

f∈Fx x(Tf ∩ V≤h). Because no two vertices of Fx lie on the

same leaf-root path, the sets Tfu ∩V≤h are all disjoint for di�erent fu ∈ Fx and
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hence
∑

f∈Fx x(Tf ∩V≤h) ≤ x(V≤h) ≤
∑h

`=1(1+ ε)`B < (1+ε)h+1

ε
B. Considering

the assumption B ≤ logL, then we have |Fx| < (1+ε) log2 L
ε2

.

Notice that the number of di�erent pairs in our list with label 1 is at most

2|Fx|, and label 2 at most (2|Fx|)2 and so on. So the total size of our list would

be O((2|Fx|)γ) which is polynomial considering L ≤ O(log n).

So, it remains to show that at least one pair in our list is satisfying the

conditions of Lemma 3. For any clean pair (A,D) compatible with OPT , we

de�ne a potential function Φ(A,D) ∈ Z≥0 in the following way. For each u ∈

OPT ∩V≤h, let du ∈ Z≥0 be the distance of u to the �rst vertex in A∪D∪{r}

when following the unique u-r path. We de�ne Φ(A,D) =
∑

u∈OPT∩V≤h du.

Notice that as long as we have a triple (A,D, x) on our execution path that does

not satisfy the conditions of Lemma 3, then the next triple (A′, D′, x′) on our

execution path satis�es Φ(A′, D′) < Φ(A,D). Hence, either we will encounter

a triple on our execution path satisfying the conditions of Lemma 3 while

still having a strictly positive potential, or we will encounter a triple (A,D, x)

compatible with OPT and Φ(A,D) = 0, which implies OPT ∩ V≤ h = A

and we thus correctly guessed all vertices of OPT ∩ V≤h implying that the

conditions of Lemma 3 are satis�ed for the triple (A,D, x). Since Φ(A,D) ≥ 0

for any compatible clean pair (A,D), this implies that a triple satisfying the

conditions of Lemma 3 will be encountered if the recursion depth γ is at least

Φ(∅, ∅). To evaluate Φ(∅, ∅) we have to compute the sum of the distances of

all vertices u ∈ OPT ∩ V≤h to the root. The distance of u to the root is at

most h since u ∈ V≤h. Moreover, |OPT ∩ V≤h| < (1 + ε)(h+1)BOPT due to the

budget constraints, implying that a triple ful�lling the conditions of Lemma 3

is encountered.

This means that we are able to �nd a (5+ε)-approximation for the reduced

instance of the RMFC problem to have a (5 + ε)-approximation.
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Chapter 3

Throughput Maximization

Recall that in Throughput Maximization we are given a set J of n jobs where

each job j ∈ J has a processing time pj, a release time rj, as well as a deadline

dj. The jobs are to be scheduled non-preemptively on a single (or more gen-

erally on m identical) machine(s), which can process only one job at a time.

The value of a schedule, also called its throughput, is the number of jobs that

are scheduled entirely within their release time and deadline interval.

By using Linear Programming and dynamic programming techniques, we

provide a Polynomial Time Approximation Scheme (PTAS) for m = O(1)

and c = O(1) where we assume there are c distinct processing times. This will

prove Theorem 3 which is saying For the throughput maximization problem

with m identical machines and c distinct processing times for jobs, for any

ε > 0, there is a randomized algorithm which �nds a (1 − ε)-approximate

solution with high probability runs in time nO(mc7ε−6) log T , where T is the

largest deadline.

3.1 Prior Work

It appears the �rst approximation algorithms for this problem were given by

Spieksma [72] where a simple greedy algorithm has shown to have approxima-

tion ratio 1/2. This algorithm will simply run the job with the least processing

time between all the available jobs whenever a machine completes a job. He

also showed that the integrality gap of a natural Linear Program relaxation is

2. Later on, Bar-Noy et al. [14] analyzed greedy algorithms for various set-
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tings and showed that for the case of m identical machines greedy algorithm

has ratio 1−1/(1+1/m)m. This ratio is 1/2 for m = 1 and approaches 1−1/e

as m grows.

In a subsequent work, Chuzhoy et al. [29] looked at a slightly di�erent

version, call it discrete version, where for each job j, we are explicitly given a

collection Ij of intervals (possibly of di�erent lengths) in which job j can be

scheduled. A schedule is feasible if for each job j in the schedule, j is placed

within one of the intervals of Ij. This version (vs. the version de�ned earlier,

which we call the �continuous� version) have similarities but none implies the

other. In particular, the discrete version can model the continuous version if

one de�nes each interval of size pj of [rj, dj] as an interval in Ij. However, the

number of intervals in Ij de�ned this way can be as big as dj− rj +pj which is

not necessarily polynomial in the input size. Chuzhoy et al. [29] presented a

(1− 1/e− ε)-approximation for the discrete version of the problem. Spieksma

[72] showed that the discrete version of the problem isMAX-SNP hard using

a reduction to a version of MAX-3SAT . No such approximation hardness

result has been proved for the continuous version.

Berman and DasGupta [16] provided a better than 2 approximation for

the case when all the jobs are relatively big compared to their window size. A

pseudo-polynomial time exact algorithm for this case is presented by Chuzhoy

et al. [29] with running time O(npoly(k)T 4), where k = maxj(dj − rj)/pj and

T = maxjdj.

For the weighted version of the problem, [11] showed that when we have

uniform processing time pj = p, the problem is solvable in polynomial time

for m = 1. For m = O(1) and with uniform processing time [12, 34] presented

polynomial time algorithms. For general processing time 2-approximation al-

gorithms are provided in [13, 16] and this ratio has been the best known bound

for the weighted version of the problem. More recently, Im et al. [49] presented

better approximations for throughput maximization for all values of m. For

the unweighted case, for some absolute α0 > 1 − 1/e, for any m = O(1)

and for any ε > 0 they presented an (α0 − ε)-approximation in time nO(m/ε5).

They also showed another algorithm with ratio 1 − O(
√

(logm)/m − ε) (for
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any ε > 0) on m machines. This ratio approaches 1 as m grows. Furthermore,

their 1−O(
√

(logm)/m−ε) ratio extends to the weighted case if T = Poly(n).

Bansal et al. [10] looked at various scheduling problems and presented ap-

proximation algorithms with resource augmentation (a survey of the many

resource augmentation results in scheduling is presented in [65]). An α-

approximation with β-speed augmentation means a schedule in which the

machines are β-times faster and the total pro�t is α times the pro�t of an

optimum solution on original speed machines. In particular, for throughput

maximization they presented a 24-speed 1-approximation, i.e. a schedule with

optimum throughput however the schedule needs to be run on machines that

are 24-times faster in order to meet the deadlines. This was later improved by

Im et al. [50], where they developed a dynamic programming framework for

non-preemptive scheduling problems. In particular for throughput maximiza-

tion (in weighted setting) they present a quasi-polynomial time (1− ε, 1 + ε)-

bi-criteria approximation (i.e. an algorithm that �nds a (1 − ε)-approximate

solution using (1 + ε) speed up in quasi-polynomial time). We should point

out that the PTAS we present for c distinct processing time implies (as an

easy corollary) a bi-criteria QPTAS as well, i.e. a (1−ε)-approximation using

(1 + ε)-speed up.

For the problem of machine minimization, where we have to �nd the min-

imum number of machines with which we can schedule all the jobs, the al-

gorithm provided in [66] has approximation ratio O(
√

log n/ log log n) only

when OPT = Ω(
√

log n/ log log n), and ratio O(1) when OPT = Ω(log n).

Later Chuzhoy et al. [27] presented an O(OPT )-approximation which is good

for the instances with relatively small OPT . Combining this with the earlier

works implies an O(
√

log n/ log log n)-approximation. Chuzhoy and Naor [28]

showed a hardness of Ω(log log n) for the machine minimization problem.

Another interesting generalization of the problem is when we assign a height

to each job as well and allow them to share the machine as long as the total

height of all the jobs running on a machine at the same time is no more

than 1. The �rst approximation algorithm for this generalization is provided

by [13] which has ratio 5. Chuzhoy et al. [29] improved it by providing an
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(e− 1)/(2e− 1) > 0.3873-approximation algorithm which is only working for

the unweighted and discrete version of the problem. The problem has also

been considered in the online setting [15].

3.2 Preliminaries

Recall that we have a set J of n jobs where each job j ∈ J has a processing

time pj, a release time rj as well as a deadline dj, we assume all these are

integers in the range [0, T ] (we can think of T as the largest deadline). The

jobs are to be scheduled non-preemptively on m machines which can process

only one job at a time. We point out that we do not require T to be poly-

bounded in n. For each job j ∈ J we refer to [rj, dj] as span of job j, denoted

by spanj. We use OPT to denote an optimum schedule and opt the value of

it. In the weighted case, each job j has a weight/pro�t wj which we receive

if we schedule the job within its span. The goal in throughput maximization

is to �nd a feasible schedule with maximum weight of jobs. Like most of the

previous works, we focus on the unit weight setting (so our goal is to �nd a

schedule with maximum number of jobs scheduled).

We also assume that for each p ∈ P , all the jobs with processing time p in

an optimum solution are scheduled based on earliest deadline �rst rule; which

says that at any time when there are two jobs with the same processing time

available the one with the earliest deadline would be scheduled. This is known

as Jackson rules and we critically use it in our algorithms.

3.3 PTAS for constant c and m

For ease of exposition, we present the proof for the case of m = 1 (single

machine) only and then extend it to the setting of multiple machines.

In order to prove Theorem 3 we use the following theorem as the base of

our DP, which is a special case of the results achieved by Hyatt-Denesik [47]

in his Master thesis:

Theorem 9 ([47]). Suppose we are given B intervals over the time-line where
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the machines are pre-occupied and cannot be used to run any jobs, there

are R distinct release times, D distinct deadlines, and m machines, where

R,D,B,m ∈ O(1). Then there is a PTAS for throughput maximization with

time 2ε
−1 log−4(1/ε) + Poly(n).

3.3.1 Overview of the Algorithm

At a high level, the algorithm removes a number of jobs so that there is a

structured near optimum solution. We show that the new instance has some

structural properties that is amenable to a dynamic programming. At the

lowest level of dynamic programming we have disjoint instances of the problem,

each of which has a set of jobs with only a constant size set of release times and

deadlines, with possibly a constant number of intervals of time being blocked

from being used. For this setting we use the algorithm of Theorem 9. We start

(at level zero) by breaking the interval [0, T ] into a constant q (where q will

be dependent on ε) number of (almost) equal size intervals, with a random

o�set. Let us call these intervals a0,1, a0,2, . . . , a0,q. Assume each interval has

size exactly T/q, except possibly the �rst and last (and for simplicity assume

T is a power of q). For jobs whose span is relatively large, i.e. spans at

least λ (where 1
ε
≤ λ ≤ εq) intervals, while their processing time is relatively

small (much smaller than T/q), based on the random choice of break points

for the intervals, we can assume the probability that the jobs position in the

optimum solution is intersecting two intervals is very small. Hence, ignoring

those jobs (at a small loss of optimum), we can assume that each of those

jobs are scheduled (in a near optimum solution) entirely within one interval.

For each of them we �guess� which of the λ intervals is the interval in which

they are scheduled and pass down the job to an instance de�ned on that

interval. For jobs whose span is very small (�ts entirely within one interval),

the random choice of the q intervals, implies that the probability of their span

being �cut� by these intervals is very small (and again we can ignore those that

have been cut by these break down). For medium size spans, we have to defer

the decision making for a few iterations. We then try to solve each of the q

instances, independently and recursively; i.e. we break the intervals again into
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roughly q equal size intervals and so on. If and when an instance generated

has only O(1) release times or deadlines we stop the recursion and use the

algorithm of Theorem 9 to �nd a near optimum solution. So considering the

hierarchical structure of this recursion, we have a tree with at most O(logq T )

depth and at most O(n) leaves, which is polynomial in the input size. There

are several technical details that one needs to overcome in this paradigm. One

particular technical di�culty is for some jobs we decide to re-de�ne their span

to be a smaller subset of their original span by increasing their release time

a little and decreasing their deadline a little. We call this procedure, cutting

their �head� and �tail�. This will be a key property in making our algorithm

work. We will show (Lemma 9) that under some moderate conditions, the

resulting instance still has a near optimum solution. This allows us to reduce

the number of guesses we have to make in our dynamic program table and

hence obtain Theorem 3. We should point out that the idea of changing the

span or start/�nish of a job was done in earlier works. However, using speed-up

of machines one could �catch up� in a modi�ed schedule with a near optimum

one. The di�culty in our case is we do not have machine speed up.

3.3.2 Structure of a Near Optimum Solution

Consider an optimum solution OPT. One observation we use frequently is

that such a solution is left-shifted, meaning that the start time of any job is

either its release time or the �nish time of another job. Therefore, we can

partition the jobs in schedule OPT into continuous segments of jobs being

run whose leftmost points are release times and the jobs in each segment are

being run back to back. We call the set of possible rightmost points of these

segments �slack times�.

De�nition 1. (Slack times). Let slack times Ψ be the set of points t such that

there is a release time ri and a (possibly empty) subset of jobs J ′ ⊆ J , such

that t = ri +
∑

j∈J ′ pj

So the start time and �nish time of each job in an optimum solution is a

slack time. The following (simple) lemma bounds the size of Ψ
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Lemma 5. There are at most nc+1 di�erent possible slack times, where c is

the number of distinct processing times.

Proof. We upper bound number of distinct ri +
∑

j∈J ′ pj values. First note

that there are only n di�erent ri values. Also, for each set J ′ ⊆ J , the sum∑
j∈J ′ pj can have at most nc possible values as the number of jobs in J ′ with

a speci�c processing time can be at most n and we assumed there are only c

distinct processing times.

Given error parameter ε > 0 we set q = 1/ε2, k = logq T and for simplicity

of presentation suppose T is a power of q. We de�ne a hierarchical set of

partitions on interval [0, T ]. For each 0 ≤ i ≤ k, Ii is a partition of [0, T ] into

qi+1 + 1 many intervals such that, except the �rst and the last intervals, all

have length `i = T/qi+1, and the sum of the sizes of the �rst and last interval

is equal to `i as well. We choose a universal random o�set for the start point

of the �rst interval. More precisely, we pick a random number r0 ∈ [0, T
q
]

and interval [0, T ] is partitioned into q + 1 intervals I0 = {a0,0, a0,1, ..., a0,q},

where a0,0 = [0, r0], and a0,t = [(t − 1)T
q

+ r0, t
T
q

+ r0] for 1 ≤ t ≤ q − 1 and

a0,q = [T − T
q

+ r0, T ]. Note that the length of all intervals in I0 is T
q
, except

the �rst and the last which have their length randomly chosen and the sum of

their lengths is T
q
.

Similarly each interval in I0 will be partitioned into q many intervals to

form partition I1 with each interval in I1 having length T
q2 except the �rst

interval obtained from breaking a0,0 and the last interval in I1 obtained from

breaking a0,q, which may be partitioned into less than q many, based on their

lengths. All intervals in I1 have size T
q2 except the very �rst one and the very

last one. We do this iteratively and break intervals of Ii (for each i ≥ 0) into

q equal sized intervals to obtain Ii+1 (with the exception of the very �rst and

the very last interval of Ii+1 might have lengths smaller).

We set λ = 1/ε = εq and partition the jobs into classes J0, J1, ..., Jk, Jk+1,

based on the size of their span. For each 1 ≤ i ≤ k, job j ∈ Ji if λ · `i ≤

|spanj| < λ · `i−1. Also j ∈ J0 (and j ∈ Jk+1) if λ`0 ≤ |spanj| (and |spanj| <

λ · `k). For each interval ai,t in level Ii, we denote the set of jobs whose span
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is entirely inside ai,t by J(ai,t).

Based on our de�nitions of interval levels and job classes, we can say that

for each 0 ≤ i ≤ k if j ∈ Ji, then spanj would have intersection with at

most λ+ 1 (or fully spans at most λ− 1) many consecutive intervals from Ii−1

and at least λ many consecutive intervals from Ii. Suppose j ∈ Ii and spanj
has intersection with ai,tj , ai,tj+1, ..., ai,t′j from Ii, then de�ne spanj ∩ ai,tj and

spanj ∩ ai,t′j as headj and tailj, respectively.

We consider two classes of jobs as �bad� jobs and show that there is a near

optimum solution without any bad jobs. The �rst class of bad jobs are those

that we call �span-crossing�. For each job j ∈ J , we call it "span-crossing" if

j ∈ Ji for some 2 ≤ i ≤ k + 1 (so λ · `i ≤ |spanj| < λ · `i−1), and its span has

intersection with more than one interval in Ii−2.

Lemma 6. Based on the random choice of r0 (while de�ning intervals), the

expected number of span-crossing jobs in the optimum solution is at most

λ+1
q

opt = O(εopt).

Proof. Observe that because j ∈ Ji, we have |spanj| < λ · `i−1. This means

that the spanj would have intersection with at most λ + 1 (or fully spans at

most λ−1) many consecutive intervals from Ii−1. Also because of the random

o�set while de�ning I0, and since `i−2 = q · `i−1, the probability that job j

being "span-crossing" will be at most λ+1
q
.

So, we can assume with su�ciently high probability, that there is a (1 −

O(ε))-approximate solution with no span-crossing jobs. The second group of

bad jobs are de�ned based on their processing time and their position in the

optimum solution. We then prove that by removing these type of jobs, the

pro�t of the optimum solution will be decreased by a small factor. For each job

j ∈ J , we call it "position-crossing" if `i ≤ pj < `i−1 for some 2 ≤ i ≤ k + 1,

and its position in OPT has intersection with more than one interval in Ii−2.

Lemma 7. The expected number of position-crossing jobs in OPT is at most

1
q
opt = O(ε2opt).
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Proof. Consider OPT and suppose that j ∈ J is a job with `i ≤ pj < `i−1.

Observe that j can have intersection with at most 2 intervals in Ii−2 because of

its size. Considering our random o�set to de�ne interval levels, the probability

of job j being a position-crossing (with respect to the random intervals de�ned)

would be at most 1
q
(since pj < `i−1 = `i−2

q
). Thus, the expected number of

position-crossing jobs in OPT is at most opt/q.

Hence, using Lemmas 6 and 7, with su�ciently high probability, there is a

solution of value at least (1−O(ε))opt without any span-crossing or position-

crossing jobs. We call such a solution a canonical solution.

From now on, we suppose the original instance I is changed to I′ after we

�rst de�ned the intervals randomly and removed all the span-crossing jobs.

So we focus (from now on) on �nding a near optimum feasible solution to

I′ that has no position-crossing jobs. By OPT
′ we mean such a solution of

maximum value for I′; we call that a canonical optimum solution. If we �nd a

(1− O(ε))-approximation to OPT′ (that has no position-crossing jobs), then

using the above two lemmas we have a (1− O(ε))-approximate solution to I.

So with OPT′ being an optimum solution to I′ with no position-crossing jobs

we let opt′ be its value.

3.3.3 Finding a Near Optimum Canonical Solution

As a starting point and warm-up, we consider the special case where instance I′

only consists of jobs whose processing time is relatively big compared to their

span and show how the problem could be solved. Consider the extreme case

where for each j ∈ J , pj = |spanj|. In this case the problem will be equivalent

to the problem of �nding a maximum independent set in an interval graphs

which is solvable in polynomial time [42]. The following theorem shows that if

pj ≥ |spanj |
λ

for each j ∈ J (which we call them �tight� jobs), then we can �nd

a good approximation as well. Therefore, it is the �loose� jobs (those whose

processing time pj is smaller than
|spanj |
λ

) that make the problem di�cult. (we

should point out that Chuzhoy et al. [29] also considered this special case and

presented a DP algorithm with run time O(nPoly(λ)T 4) however, their DP table
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is indexed by integer points on the time-line and the polynomial dependence

on T , which can be exponential in n, is unavoidable). The idea of the dynamic

program of the next theorem is the basis of the more general case that we will

prove later that handles �loose� and �tight� jobs together but the following

theorem is easier to understand and follow and we present it as a warm-up for

the main theorem.

Theorem 10. If for all j ∈ J in I′, pj ≥ |spanj |
λ

then there is a dynamic

programming algorithm that �nds a canonical solution for instance I′ with

total pro�t opt′ in time O(ε−1nε
−2c log T ).

Proof. Recall that k = logq T and observe that for each 0 ≤ i ≤ k−1 and each

j ∈ Ji: λ · `i ≤ |spanj| ≤ λpj, so `i ≤ pj. Now if we somehow know OPT
′ ∩ J0

and OPT′ ∩ J1 and remove the rest of jobs in J0 and J1, then the remaining

jobs (which are all in Ji≥2) have intersection with exactly one interval in I0

(recall we have no span-crossing or position-crossing jobs), hence we would

have q+ 1 many independent sub-problems (de�ned on the q+ 1 sub-intervals

partitioned in level 0) with jobs from Ji≥2.

So our �rst task is to �guess� the jobs in OPT′ ∩ (J0 ∪ J1) (as well as their

positions) and then remove the rest of the jobs in J0∪J1 from J as well as the

jobs whose span is crossing any of the intervals in I0; then recursively solve the

problem on independent sub-problems obtained for each interval in I0 together

with the jobs whose spans are entirely within such interval. In order to guess

the positions of jobs in OPT
′ ∩ (J0 ∪ J1) we use the fact that each job can

start at a slack time. Since jobs in J0 ∪ J1 have size at least `1 = T/q2, we

can have at most q2 of them in a solution. We guess a set S of size at most

q2 of such jobs and a schedule for them; there are at most |Ψ|q2
= nO(q2c)

choices for the schedule of S. Then we remove the rest of J0 and J1 from J

for the rest of our dynamic programming. The guessed schedule of S de�nes

a vector ~v of blocked spaces (those that are occupied by the jobs from S) and

for each interval a0,t, the projection of vector ~v in interval ai,t, denote it by

~vt, has dimension at most q (a0,t has length `0 = T/q and each job in S has

length at least `1 = T/q2). We pass each such vector ~v to the corresponding
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sub-problem.

Consider an interval ai,t ∈ Ii for some 0 ≤ i ≤ k and 0 ≤ t ≤ T
`i
. Recall that

the set of jobs j ∈ J whose span is completely inside ai,t is J(ai,t). Because

of the assumption of no span-crossing jobs, for each job j ∈ J \ J(ai,t), if its

span has intersection with ai,t, then it would be in Ji′ for some i′ ≤ i+ 1 (jobs

from Ji+2 are entirely within one interval of level Ii) and |spanj| would be at

least λ`i+1, and hence pj ≥ `i+1. Thus we can have at most `i/`i+1 = q such

jobs. Assume we have a guessed vector ~v of length q where each entry of the

vector denotes the start time as well as the end time of one of such jobs. This

vector describes the sections of ai,t that are blocked for running such jobs from

J \ J(ai,t). The number of guesses for such vectors ~v is at most n2q(c+1) based

on the bounds on the number of slack times. Given ~v and J(ai,t) we want to

schedule the jobs of J(ai,t) in the free (unblocked by ~v) sections of ai,t.

Now we are ready to precisely de�ne our dynamic programming table. For

each ai,t and for each q-dimensional vector ~v, we have an entry in our DP table

A. This entry, denoted by A[ai,t, ~v], will store the maximum throughput for an

schedule of jobs running during interval ai,t, using jobs in J(ai,t) by considering

the free slots de�ned by ~v. The �nal solution would be maxS{
∑

tA[a0,t, ~vt] +

|S|}, where the max is taken over all guesses S of jobs from J0 ∪ J1 and ~vt is

the blocked area of ai,t based on S.

The base case is when ai,t has only constantly many release/deadline times.

Given that we have also only constantly many processing times and ~v de�nes

at most q many sections of blocked (used by bigger jobs) areas, then using

Theorem 9 we can �nd a (1− O(ε))-approximation in time Γ, where Γ is the

running time of the PTAS for Theorem 9.

We can bound the size of the table as follows. First note that we do not

really need to continue partitioning an interval ai,t if there are at most O(1)

many distinct release times and deadlines within that interval, since this will

be a base case of our dynamic program. So the hierarchical decomposition of

intervals I0, I1, . . . , Ik will actually stop at such an interval ai,t when there are

at most O(1) release times and deadlines. Therefore, at each level Ii of the

random hierarchical decomposition, there are at most O(n) intervals in Ii that
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will be decomposed into q more intervals in Ii+1 (namely those that have at

least a constant number of release times and deadlines within them). Thus

the number of intervals at each level Ii is at most O(nq) and the number of

levels is at most k = logq T . Therefore, the total number of intervals in all

partitions is bounded by O(knq). To bound the size of the table A, each ~v

has n2q(c+1) many options, based on the fact that we have at most nc+1 many

choices of start time and end time (from the set Ψ of slacks) for each of the

q dimensions of ~v. Also as argued above, there are O(knq) many intervals ai,t

overall. So the size of table is at most kqnO(qc).

Now we describe how to �ll the entries of the table. To �ll A[ai,t, ~v] for

each 0 ≤ i ≤ k − 1 and 0 ≤ t ≤ T
`i
, suppose ai,t is divided into q many equal

size intervals ai+1,t′+1, ..., ai+1,t′+q in Ii+1. We �rst guess a subset J̃i,t of jobs

from Ji+2∩J(ai,t), to be processed during interval ai,t consistent with free slots

de�ned by ~v. This de�nes a new vector ~v′ that describes the areas blocked by

jobs guessed recently as well as those blocked by ~v. Projection of ~v′ onto the

q intervals ai+1,t′+1, ..., ai+1,t′+q de�nes q new vectors ~v′1, ..., ~v
′
q. Now we check

the sum of

A[ai+1,t′+1, ~v
′
1] + A[ai+1,t′+2, ~v

′
2] + ...+ A[ai+1,t′+q, ~v

′
q] + |J̃i,t|

We would choose the J̃i,t which maximizes the above sum. Observe that

jobs in J(ai,t)\Ji+2 have length at most `i+3 and because we have no position-

crossing jobs, each of them is inside one of intervals ai+1,t′+1, ..., ai+1,t′+q and

would be considered in sub-problems.

Note that to �ll each entry A[ai,t, ~v] the number of jobs from Ji+2 possible

to be processed in ai,t would be at most q2, because of their lengths. So the

total number of guesses would be at most nO(q2c). This means that we can �ll

the whole table in time at most kqnO(q2c), where q = 1/ε2 and k = logq T .

Considering Theorem 10, we next show how to handle �loose� jobs, i.e.

those for which pj <
|spanj |
λ

. Recall that for each 0 ≤ i ≤ k and for each j ∈ Ji,

if spanj has intersection with intervals ai,tj , ai,tj+1, ..., ai,t′j of Ii, then we denote

spanj ∩ ai,tj and spanj ∩ ai,t′j as the head and tail of (span of) j, respectively.
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Our next (technical) lemma states that if we reduce the span of each loose

job by removing its head and tail then there is still a near optimum solution

for I′. More speci�cally, for each job loose j ∈ Ji (pj ≤ |spanj |
λ

), whose span

has intersection with intervals ai,tj , ai,tj+1, ..., ai,t′j of Ii, we replace its release

time to start at the beginning of ai,tj+1 and its deadline to be end of ai,t′j−1;

so spanj will be replaced with with spanj \ (ai,tj ∪ ai,t′j). Let this new instance

be called I′′. Note that a feasible solution for instance I′′ would be still a valid

solution for I′ as well.

Lemma 8. Starting from I′, let I′′ be the instance obtained from removing the

head and tail part of spanj for each job j ∈ J with pj ≤ |spanj |
λ

. Then there is

a canonical solution for I′′ with throughput at least (1− 120εc)opt′.

Proof. We will prove the following important key lemma in Section 3.4.

Lemma 9 (Head and tail cutting). Consider any �xed processing time

p ∈ P . Start with instance I′ and remove only the head (or only the tail) part

of spanj for all jobs j ∈ J with pj = p ≤ |spanj |
λ

. Then there is a solution for

the remaining instance with pro�t at least (1− 60
λ

)opt′.

Considering Lemma 9, the proof of Lemma 8 would be easy. We just need

to apply Lemma 9 for all c many distinct processing times p ∈ P and for both

"head" and "tail". Then the total loss for removing all head and tail parts

would be 60
λ
· 2c = 120ε fraction:

opt(I′′) ≥ (1− 60× 2c

λ
)opt′ ≥ (1− 120εc)opt′.

The next theorem together with Lemmas 6, 7, and 9 will help us to complete

the proof.

Theorem 11. There is a dynamic programming algorithm that �nds an opti-

mum solution for instance I′′ in time ε−3nO(ε−6c) log T .

Before presenting the proof of this theorem we show how this can be used

to prove Theorem 3 for m = 1.
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Proof of Theorem 3. Starting from instance I we �rst reduced it to instance

I′ at a loss of 1 − O(ε). Then remove the head and tail part of the span for

all the loose jobs to obtain instance I′′. Based on Lemma 9, we only loose

a factor of (1 − O(εc)) compared to optimum of I′. Theorem 11 shows we

can actually �nd an optimum canonical solution to instance I′′. This solution

will have value at least (1 − O(εc))opt using Lemmas 6, 7, and 9. To get a

(1 − ε′)-approximation we set ε′ = ε/c in Theorem 11. The run time will be

c3ε−3nO(ε′−6c7) log T .

Now we prove Theorem 11.

Proof. The idea of the proof is similar to that of Theorem 10. However, the

presence of �loose� jobs needs to be handled too. Suppose j ∈ Ji is a loose

job, so λ`i ≤ |spanj| < λ`i−1 and pj ≤ spanj
λ

< `i−1. We break these loose

jobs into two categories. For the loose jobs that pj < `i+1, because they are

not position-crossing, their position in the �nal solution will have intersection

with at most one interval of Ii (and so we can pass them down to lower sub-

problems). But for loose jobs where `i+1 ≤ pj < `i−1 we need to guess them

(similar to the tight jobs) and we can do the guessing since their size (relative

to `i) is big. In order to handle these guesses, we add one more vector to the

DP table, and we do the guess for two consecutive levels of our decomposition

as we go down the DP.

Suppose P = {p1, p2, ..., pc}. For each interval ai,t (0 ≤ i ≤ k, 0 ≤ t ≤ T
`i
),

q2-dimensional vector ~v (where 0 ≤ vi ≤ n), (qc)-dimensional vector ~u =

(u1,1, . . . , uq,c), where each uγ,σ, 0 ≤ uγ,σ ≤ n, we have an entry in our DP

table A. Suppose ai,t is partitioned into intervals ai+1,t′+1, ..., ai+1,t′+q in Ii+1.

Entry A[ai,t, ~v, ~u], will store the maximum throughput of a schedule in interval

ai,t by selecting subsets of jobs from the following two collections of jobs:

� J(ai,t) ∩ J≥(i+2)

� uγ,σ many jobs with processing time pσ where pσ < `i+2 whose span is

the entire interval ai+1,t′+γ, for each 1 ≤ γ ≤ q, and 1 ≤ σ ≤ c.
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by considering the free slots de�ned by vector ~v (that describes blocked spaces

by jobs of higher levels).

Vector ~u is de�ning the sets of jobs from loose jobs (from higher levels

of DP table) whose span was initially much larger than `i+1, the guesses we

made requires them to be scheduled in interval ai+1,t′+γ (of length `i+1) and

hence their span is the entire interval ai+1,t′+γ. Like before, ~v is de�ning the

portions of the interval which are already used by bigger jobs (that are guessed

at the higher levels), and for similar reasons as in Theorem 10, we only need

to consider ~v's of size at most q2 and each job listed in ~v will be denoted by its

start position and end position (so there is O(|Ψ|2q2
) = nO(q2c) possible values

for ~v).

Similar to Theorem 10, suppose we start at I0. We guess a subset of

tight jobs from J0 to decide on their schedule. Note that tight jobs will have

pj ≥ `0. We also need to guess (and decide on their schedule) those �loose�

jobs j ∈ J0 where pj ≥ `2 = T/q3 (since their position may cross more than

one I1 intervals in the �nal solution). So we guess a set S0 ⊆ J0 with |S0| ≤ q3

of jobs j where pj ≥ `2 and a feasible schedule for them. This will take care of

guessing tight and those loose jobs of J0 with pj ≥ `2. We need to do similarly

for jobs from J1, i.e. we need to guess a set of tight jobs j from J1 (note that

for them pj ≥ `1) and also guess (and decide on their schedule) those �loose�

jobs j ∈ J1 with pj ≥ `2. To do so, we guess a set S1 ⊆ J1 of jobs j where

pj ≥ `2 = T/q3 and a feasible schedule for them (given the guesses for S0);

note that |S0 ∪ S1| ≤ q3 (since all of S0 ∪ S1 must �t in [0, T ]). For each

such guess, their schedule projects a vector of blocked spaces (occupied time

of machine). This will be vector ~v. The projection of ~v to each interval a0,t

will be ~vt which is the blocked area of a0,t. Note that although ~v has up to q3

blocks, each a0,t can have at most q2 blocks since each block has size at least

`2 = T/q3 and each a0,t has size `0 = T/q.

For all the other jobs in J0 ∪ J1 that have pj < `2, because they are

not position-crossing, we can assume their position (in the �nal solution) has

intersection with only one interval of I1. For all these jobs of J0 ∪ J1, we use

the assumption that there is a near optimum solution in which they are not
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scheduled in their head or tail. So for the jobs in J0 ∪ J1 with processing

time less than `2 we can re-de�ne their span to a guessed interval of I1; these

guesses de�ne the qc-dimensional vectors ~ut for each of the q sub-intervals of

a0,t at level I1 (how many loose jobs from J0 ∪ J1 with pj < `2 have their

span rede�ned to be one of sub-intervals of a0,t). The �nal solution will be

maxS0,S1{
∑

tA[a0,t, ~vt, ~ut] + |S0 ∪S1|}, where the max is taken over all guesses

S0 ⊆ J0, S1 ⊆ J1 and ~ut as described above.

To bound the size of the table, as argued before, we would have at most

O(knq) many intervals in all of I0, I1, . . . , Ik. For each of them we consider a

table entry for at most nO(q2c) many vectors ~v, nO(qc) many vectors ~u. So the

total size of the table would be (kq)nO(q2c).

Like before, the base case is when interval ai,t has O(1) many release times

and deadlines. These base cases A[ai,t, ~v, ~u] can be solved using Theorem 9 for

each vector ~v and ~u.

To �ll A[ai,t, ~v, ~u] in general (when 0 ≤ i ≤ k and 0 ≤ t ≤ T
`i
and there

are more than O(1) many release times and deadlines in ai,t), suppose ai,t is

divided into q many equal size intervals ai+1,t′+1, ..., ai+1,t′+q in Ii+1. What we

decide at this level is:

� make a decision for all the jobs j ∈ Ji+2 ∩ J(ai,t); those that are bigger

than `i+3 will be scheduled or dropped by making a guess; the rest we

narrow down their span (guess) to be one of the lower level sub-intervals

of ai,t and will be passed down as ~u′ to sub-problems below ai,t;

� make a decision for jobs in ~u: those that are bigger than `i+3 will be

scheduled or dropped; the rest we narrow down their span (by a guess)

to be one of the lower level sub-intervals of ai,t

As in the case of I0, we need to guess a set of tight jobs from Ji+2 ∩ J(ai,t)

and some loose jobs j with pj ≥ `i+3 and their positions to be processed in

ai,t (considering the blocked areas de�ned by ~v). Let S0 with s0 = |S0| be this

guessed set. Note that s0 ≤ q3 since pj ≥ `i+3 = `i/q
3. Also for each non-zero

uγ,σ where pσ ≥ `i+3 we guess how many of those uγ,σ many jobs should be
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scheduled and where exactly in ai+1,t′+γ (consistent with ~v and S0); let S1 be

this guessed subset and |S1| = s1. Note that s0 + s1 ≤ q3 and there are at

most |Ψ|2q3
possible guesses for S0 and S1 together with their positions; thus a

total of nO(q3c) possible ways to guess S0 ∪ S1 and guess their locations in the

schedule. Then for each possible pair of such guessed sets S0, S1 we compute

the resulting ~v′; this de�nes the space available for the rest of the jobs in

J(ai,t)∩J≥i+3, and those de�ned by ~u where pj < `i+3 after blocking the space

de�ned by ~v and the space occupied by the pair of guessed sets S0, S1 above.

We divide ~v′ into q many vectors ~v′1, ..., ~v
′
q, (as we divided ai,t into q intervals).

We also change ~u to ~u′ by setting all the entries of uγ,σ with pσ ≥ `i+3

to zero and guess how to distribute ~u′ into q many (qc)-dimensional vectors

~u′1, ..., ~u
′
q such that ~u′1 + ~u′2 + ... + ~u′q = ~u′, where ~u′γ is describing the number

of jobs of di�erent sizes whose span is re-de�ned to be one of the sub-intervals

of ai+1,t′+γ at level Ii+2. The number of ways to break ~u′ into ~u′1, . . . , ~u
′
q is

bounded by nO(q2c).

For all the other jobs in Ji+2 ∩ J(ai,t) that have pj < `i+3, because they

are not position-crossing, we can assume their position (in the �nal solution)

has intersection with only one interval of Ii+2. We also use the assumption

that there is a near optimum solution in which they are not scheduled in

their head or tail. So for the jobs in Ji+2 ∩ J(ai,t) with processing time less

than `i+3 we can re-de�ne their span to a guessed sub-interval of ai+1,t′+γ at

level Ii+2; these guesses de�ne the qc-dimensional vectors ~wγ for each interval

ai+1,t′+γ (how many loose jobs from Ji+2∩J(ai,t) with pj < `i+3 have their span

rede�ned to be one of the q sub-intervals of ai+1,t′+γ at level i + 2). Observe

that, by only knowing how many of wσ many jobs with processing times pσ

are scheduled in each interval ai+1,t′+1, ..., ai+1,t′+q in the optimum solution, we

would be able to detect which job is in which interval. The reason is that we

know for each pσ ∈ P , all jobs with processing time pσ are scheduled based on

earliest deadline �rst rule, which basically says that at any time when there are

two jobs with the same processing time available the one with earliest deadline

would be scheduled �rst.

Note that the jobs in J(ai,t) ∩ J≥(i+3) all have processing time at most
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`i+3 and their spans are completely inside one of intervals ai+1,t′+1, ..., ai+1,t′+q.

These jobs will be passed down to the corresponding smaller sub-problems. So

for each given ~v and ~u, we consider all guesses S0, S1 and consider the resulting

~u′, ~v′ and any possible way of breaking ~u′, and ~w into q parts, we check:

A[ai+1,t′+1, ~v
′
1, ~u
′
1+~w1]+A[ai+1,t′+2, ~v

′
2, ~u
′
2+~w2]+. . .+A[ai+1,t′+q, ~v

′
q, ~u
′
q+~wq]+s0+s1,

where s0, s1 are the sizes of the subsets S0, S1 of jobs with processing time

pj ≥ `i+3 guessed from J(ai,t) ∩ Ji+2 and those from ~u with processing time

pj ≥ `i+3. We would choose the maximum over all guesses S0 ⊆ Ji+2 ∩ J(ai,t),

S1, and all possible ways to distribute jobs with pj < `i+3 to create ~u
′
γ and ~w′γ

as described above.

Note that to �ll each entry A[ai,t, ~v, ~u] the number of jobs from Ji+2 ∩

J(ai,t) plus jobs from ~u with processing time bigger than `i+3 possible to be

processed in ai,t would be at most q3, because of their lengths. So we could

have at most nO(q3c) many di�erent ~v′ to consider. For ~u′ and ~w we would

have at most nO(q2c) many ways to distribute each of them into q many qc-

dimensional vectors. This means that we can �ll the whole table in time at

most ΓkqnO(q3c) = nO(ε−6c) logq T , where Γ is the running time of the PTAS

for Theorem 9, which is at most 2ε
−1 log−4(1/ε) + Poly(n). So the total time will

be nO(ε−6c) log T .

3.3.4 Extension to m = O(1) Machines

We show how to extend the result of Theorem 3 to m = O(1) machines. We

�rst do the randomized hierarchical decomposition of time line [0, T ] and de�ne

the classes of jobs J0, J1, . . . as before. Lemmas 6 and 7 can be adjusted to

show that there is a solution with no span-crossing or position-crossing jobs

of value at least (1− O(ε))opt. Lemma 8 still holds for each machine. So we

only need to explain how to change the DP for Theorem 11. Our dynamic

program will be similar, except that for each interval ai,t sub-problems are

de�ned based on m vectors ~v1, ~v2, . . . , ~vm corresponding to the blocked areas

of the interval over machines 1, . . . ,m as well as vector ~u. The sub-problems
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are stored in entries A[ai,t, ~v
1, ~v2, . . . , ~vm, ~u] where each ~vi

′
is a q2-dimensional

vector describing the blocked areas of ai,t on machine i′ using jobs from J≤i+2.

Vector ~u as before is a (qc)-dimensional vector describing (for each 1 ≤ σ ≤ c)

the number of jobs of size pσ that their span is rede�ned to one of the q sub-

intervals that ai,t will be divided into, on any of the machines. So the number

of sub-problems will be (kn)n(m+c)q2
. At each step of the recursion, to �ll in the

entry A[ai,t, ~v
1, ~v2, . . . , ~vm, ~u] we have to make similar guesses as before, except

that now we have to decide on which of the m machines we schedule them.

For the sets S0, S1 guessed from tight jobs and loose jobs from Ji+2 ∩ J(ai,t),

we have |Ψ|2q3
guesses and for each of guesses another m options to decide the

machines. So we will have nO(mq3c) guesses. The number of guesses to break

~u to ~u′1, . . . , ~u
′
q will be the same. The rest of the computation of the entry is

independent of the machines as we don't schedule any more jobs at this point.

Hence, the total complexity of computing the entries of the DP table will be

O(Γε−2knO(mcq3)) = ε−3nO(mcε−6) log T (again noting that Γ being the running

time of algorithm of Theorem 9) and we obtain a (1−O(cε))-approximation.

For �xed m and c and for a given ε′ > 0 one can choose ε = ε′/c to obtain a

(1− ε′)-approximation in time nO(mc7ε′−6) log T .

If all pj's are bounded polynomially in n then we can also use Theorem 3

to obtain a bi-criteria (1− ε, 1 + ε) quasi-polynomial time approximation. For

simplicity consider the case of a single machine (m = 1). Given ε′ > 0, we

scale the processing times up to the nearest power of (1 + ε′). So we will have

c = O(log n/ε′) many distinct processing times. We the run the algorithm of

Theorem 3 with ε = ε′

c
= ε′2

logn
. This will give a (1 + O(εc))-approximation

which we can run on a machine with (1 + ε′)-speedup to compensate for the

scaled-up processing times (so each scaled job will still �nish by its deadline

on the faster machine). Since εc = ε′2

logn
· logn

ε′
= ε′, we obtain a (1 − ε′)-

approximation on (1+ε′)-speedup machine in time nO(ε′−13 log7 n) (as mentioned

earlier a stronger form of this, i.e. for weighted setting was already known [50]).
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3.4 Cutting heads and tails: Proof of Lemma 9

We focus on optimum solution O = OPT
′ and show how to modify O so

that none of the jobs in the modi�ed instance are scheduled in their head

part without much loss in the throughput. For simplicity, we assume that J

only contains the set of jobs scheduled in O. We basically want to construct

another solution O′′ by changing O such that in O′′ the position of each loose

job with processing time p has no intersection with its "head" part and at the

same time its total pro�t is still comparable to O, which allows us to remove

"head" part and still have a feasible solution with the desired total pro�t.

For each job j, recall that spanj = [rj, dj], and if j ∈ Ji and spanj has

intersection with ai,tj , ..., ai,t′j from Ii then headj = spanj ∩ ai,tj and tailj =

spanj ∩ ai,t′j . We let spanj = spanj − (headj ∪ tailj) be the reduced span

of j. Our goal is to modify O so that every loose job j is scheduled in O in

spanj. The idea of the proof is to move each loose job j with processing time

p scheduled in its head (or tail) to be re-scheduled in spanj if there is empty

space for it there. If not, and if we can remove some larger (w.r.t. processing

time) jobs in spanj to make room for j and possibly other loose jobs whose

head is in ai,tj we do so. Otherwise, it means that the entire λ intervals starting

from ai,tj which spanj has intersection with is relatively packed with jobs of

size p or smaller. We want to argue that in this case even if we remove j (and

all other loose jobs in ai,tj) we can �charge� them to the collection of many

jobs scheduled in the next λ intervals; hence the loss will be relatively small.

However, we cannot do this simple charging argument since the intervals to

which we charge (for the jobs removed) are not all disjoint; hence a job that

remains might be charged multiple times (due to the hierarchy of the intervals

we have de�ned). Nevertheless, we show a careful charging scheme that will

ensure the total loss for jobs, that cannot be rescheduled in their reduced span,

is still relatively small.

Proof. Consider O = OPT
′ and assume that J is simply the set of jobs in O.

We focus on the loose jobs of size p that their position in O has intersection

with their �head� (argument is similar for the case of �tail� we just do the
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reverse order). We traverse all the loose jobs of size p in J in the order of

their position in O from the latest to the earliest. For each such job j ∈ J

assume j ∈ Ji for some 0 ≤ i ≤ k and spanj has intersection with ai,tj , ..., ai,t′j

from Ii. Note that since j ∈ Ji it means t′j − tj ≥ λ. While traversing j

if its position in O has intersection with headj we add it to set Xi,tj (which

is initially empty) corresponding to interval ai,tj ∈ Ii and try to move it to

spanj if possible (without changing the position of any other job). This means

if there is empty space in spanj we try to re-schedule j there. If this is not

possible, then temporarily remove it from O (to make room for the rest of the

jobs currently running in their head) and add it to set X ′i,tj (which is initially

empty too).

After changing the position of some loose jobs and removing some others,

it is obvious that the position of each scheduled loose job of size p has no inter-

section with its head in the current solution which we denote by O′. Observe

that for each interval ai,t ∈ Ii for 0 ≤ i ≤ k and 0 ≤ t ≤ T
`i
, we have X ′i,t ⊆ Xi,t

and |X ′i,t| = x′i,t ≤ |Xi,t| = xi,t. Also if x′i,t > 0, then there is no empty space

for a job with processing time p in the following λ− 1 intervals of Ii, i.e. if we

de�ne Yi,t = ai,t+1 ∪ ...∪ ai,t+λ−1, there is no empty space of size p in Yi,t. This

uses the fact that for any job like j whose head is ai,t, its span contains all of

Yi,t. So x
′
i,0 > 0 means there are such jobs of size p (whose head is in ai,t) and

they could not be moved to any space in Yi,t.

Consider interval ai,t for any 0 ≤ i ≤ k and 0 ≤ t ≤ T
`i
. We de�ne yi,t =

|Yi,t|
p

= (λ−1)·`i
p

, and Ai,t as the set consisting of all ai′,t′ such that Yi,t∩Yi′,t′ 6= ∅

and

� i′ > i, or

� i′ = i and t′ > t.

So those in Ai,t are the intervals ai′,t′ whose Y set has overlap with that of

ai,t and either ai′,t′ is at a �ner level of hierarchy, or is at the same level i but

at a later time. We then partition Ai,t into two sets A1
i,t and A

2
i,t:

� if ai′,t′ ⊆ ai,t then ai′,t′ ∈ A1
i,t,
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� else ai′,t′ ∈ A2
i,t.

Observe that for each ai′,t′ ∈ A2
i,t we have ai′,t′ ⊆ Yi,t and this means that

removing any job from ai′,t′ ∈ A2
i,t would make an empty room for a job in

X ′i,t.

Next lemma would provide an important fact about intervals whose Y

parts are not disjoint and basically provides an upper bound on the number of

jobs removed temporarily from all intervals in Ai,t during the �rst phase while

converting O to O′:

Lemma 10. For each 0 ≤ i ≤ k and 0 ≤ t ≤ T
`i
with x′i,t > 0:

� x′i,t +
∑

ai′,t′∈A1
i,t
x′i′,t′ ≤ 3

λ
· yi,t,

� x′i,t +
∑

ai′,t′∈A2
i,t
x′i′,t′ ≤ 3

λ
· yi,t.

We defer the proof of this lemma to later.

Corollary 2. For each 0 ≤ i ≤ k, and 0 ≤ t ≤ T
`i
with x′i,t > 0:

x′i,t +
∑

ai′,t′∈Ai,t

x′i′,t′ ≤
6

λ
· yi,t

Next we traverse all intervals on a speci�c order and change O′ to O′′ so

that we can compare its total pro�t with OPT
′ while still no scheduled job

has intersection with its "head" part. For each i from 0 to k and for each t

from 0 to T
`i
, if x′i,t > 0 do the following:

If (and while) the processing time of the biggest job which is currently

scheduled in Yi,t is more than p, and X ′i,t is not empty yet, remove that biggest

job from O′, add it to set Ri,t (which is initially empty) and add as many

jobs from X ′i,t to O
′ as possible in the empty space which is just freed up by

removing that big job. We repeat this as long as X ′i,t 6= ∅ and the size of the

biggest job currently scheduled in Yi,t is larger than p. Note that jobs in X
′
i,t all

have processing time p and able to be scheduled in whole Yi,t since their span

contains Yi,t. At the end, if X ′i,t 6= ∅ and the processing time of the biggest

remaining job in Yi,t is no more than p (or in the case it was initially at most

p), add all the remaining jobs in X ′i,t to Ri,t, and de�ne p′i,t as the processing
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time of the smallest job in Ri,t and set αi,t = bp
′
i,t

p
c. Note that all the jobs

remaining in Yi,t would have processing time at most p′i,t.

Now we have our solution O′′ which we claim has near optimum total pro�t.

First observe that no loose job of size p in O′′ is scheduled having intersection

with its head. Also, no job is moved to its head. Note that for all 0 ≤ i ≤ k

and 0 ≤ t ≤ T
`i
, Ri,t would contain all the jobs which are actually removed

from optimum solution O:

O = O′′ ∪
⋃
i,t

Ri,t

Let's denote by Si,t the set of jobs scheduled inside Yi,t in solution O′′ for

each 0 ≤ i ≤ k and 0 ≤ t ≤ T
`i
. Then the union of all these sets for all intervals

would be a subset of O′′:⋃
i,t

Si,t ⊆ O′′ ⇒ |
⋃
i,t

Si,t| ≤ |O′′|

Our goal is to show that |
⋃
i,tRi,t| ≤ 60

λ
|
⋃
i,t Si,t| which completes the proof

of Lemma 9:

|O′′| = |O| − |
⋃
i,t

Ri,t| ≥ |O| −
60

λ
· |
⋃
i,t

Si,t| ≥ |O| −
60

λ
· |O′′| ≥ (1− 60

λ
)|O|

The next lemma which upper bounds |Ri,t| by a small fraction of |Si,t| can

be proved using the �simple� charging scheme explained at the beginning of

this section. We defer the proof of this lemma to later.

Lemma 11. For each 0 ≤ i ≤ k and 0 ≤ t ≤ T
`i
with x′i,t > 0:

|Ri,t| ≤
30

λ
|Si,t|

This means that the number of jobs removed from O for each interval ai,t

(namely |Ri,t|), is at most 30
λ
of the number of jobs scheduled in interval Yi,t

(namely |Si,t|). If it was the case that for any two intervals ai1,t1 and ai2,t2 ,

we have Si1,t1 ∩ Si2,t2 = ∅, then Lemma 11 would be enough to complete the

proof of Lemma 9. But the problem is that for any two di�erent intervals ai1,t1

and ai2,t2 , by de�nition, Ri1,t1 and Ri2,t2 are disjoint but Si1,t1 and Si2,t2 could

58



have intersection. In other words we might have some intervals ai1,t1 , ai2,t2 with

Yi1,t1 ∩ Yi2,t2 6= ∅ which means Si1,t1 ∩ Si2,t2 6= ∅. The next lemma will help us

to �uncross� those Y 's:

Lemma 12. For each interval ai,t with x
′
i,t > 0, we can partition Ai,t into two

parts A1 and A2 such that

|Ri,t ∪
⋃

ai′,t′∈A1

Ri′,t′ | ≤
60

λ
|Si,t \

⋃
ai′,t′∈A2

Si′,t′|

Using Lemma 12 we can partition all intervals into a number of disjoint

groups such that for each group the number of total jobs removed from O is a

60
λ
fraction of the number of jobs scheduled in O′′ in that group.

Suppose ai,t is an interval with the lowest i value (breaking the ties with

equal i by taking the smallest t) with x′i,t > 0. Using Lemma 12 we �nd some

A1 ⊆ Ai,t and the �rst group G1 of intervals we de�ne will be G1 = {ai,t}∪A1.

If we denote R(G1) = Ri,t ∪
⋃
ai′,t′∈A1

Ri′,t′ and S(G1) = Si,t \
⋃
ai′,t′∈A2

Si′,t′

then using Lemma 12: |R(G1)| ≤ 60
λ
|S(G1)|. Also S(G1) ∩ Si′,t′ = ∅ for

any ai′,t′ /∈ A1 ∪ {ai,t} for the following reason: if ai′,t′ ∈ A2 then clearly

S(G1) ∩ Si′,t′ = ∅ from de�nition of S(G1); if ai′,t′ 6∈ A1 ∪A2 then Yi′,t′ has no

intersection with Yi,t and hence S(G1) ∩ Si′,t′ = ∅. Note that if Ai,t = ∅, then

we can use Lemma 11, we have G1 = {ai,t} and |R(G1)| ≤ 60
λ
|S(G1)|, holds

for this case too.

So we can remove group G1 along with the corresponding sets R(G1) and

S(G1) and continue doing the same for the remaining intervals to construct

the next group. Observe that at each step by removing a group of intervals,

the remaining intervals are not changed and this allows us to be able to do

the same process for them. Finally we obtain a collection of groups G1, G2, . . .

where for each Gi: |R(Gi)| ≤ 60
λ
|S(Gi)| and the sets S(Gi)'s are disjoint. Since⋃

i S(Gi) is a subset of all jobs scheduled in O′′ and
⋃
iR(Gi) is the set of all

jobs removed from O to obtain O′′, the proof of Lemma 9 follows.
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3.4.1 Proof of Lemma 10

Proof. Recall that the �rst step of converting O to O′ was to traverse all the

scheduled jobs based on their position in O. To prove the �rst statement of

Lemma 10, note that all the jobs removed while traversing ai,t and A
1
i,t, have

processing time p and had initially intersection with interval ai,t with length

`i in O. Observe that their length is p and so all could be scheduled in an

interval with length `i + p. Assuming λ > 3 we have:

x′i,t +
∑

ai′,t′∈A1
i,t

xi′,t′ ≤
`i + p

p
≤ 2`i

p
≤ 2`i

p
· 3(λ− 1)

2λ
=

3

λ
· yi,t. (3.1)

To prove the second statement, observe that while traversing the jobs in

A2
i,t we have temporarily removed

∑
ai′,t′∈A2

i,t
x′i′,t′ many jobs with processing

time p and they make room for the same number of jobs (of size p) in ai,t.

Note that all x′i,t many jobs which are temporarily removed while traversing

ai,t could be scheduled in the whole interval Yi,t (as their span contains Yi,t).

So from at most `i+p
p

many jobs initially intersecting with interval ai,t, at

most `i+p
p
−
∑

ai′,t′∈A2
i,t
xi′,t′ many of them would be temporarily removed while

traversing ai,t:

x′i,t +
∑

ai′,t′∈A2
i,t

xi′,t′ ≤
`i + p

p
≤ 3

λ
· yi,t. (3.2)

We only need to sum up inequalities (3.1) and (3.2) to prove Corollary 2:

x′i,t +
∑

ai′,t′∈Ai,t

x′i′,t′ ≤
(
x′i,t +

∑
ai′,t′∈A1

i,t

xi′,t′
)

+
(
x′i,t +

∑
ai′,t′∈A2

i,t

xi′,t′
)
≤ 6

λ
· yi,t

3.4.2 Proof of Lemma 11

Proof. Fix some 0 ≤ i ≤ k and 0 ≤ t ≤ T
`i
. First observe that for each interval

ai,t with positive x′i,t, we have removed at most d x
′
i,t

αi,t
e many jobs from O to

obtain O′′. This is obvious if α = 1. For α > 1 note that for each job bigger

than p removed from Yi,t we could schedule at least αi,t many jobs of size p.

|Ri,t| ≤ d
x′i,t
αi,t
e ≤

2x′i,t
αi,t

(3.3)
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Also note that the length of Yi,t is (λ− 1) · `i and all the jobs inside Yi,t in

solution O′′ have processing time at most p′i,t ≤ 2pαi,t and between any two

consecutive scheduled job there can be at most p′i,t empty space. So the time

between the starting time of each two consecutive scheduled job in Yi,t could

not be more than 2p′i,t.

|Si,t| ≥ b
(λ− 1)`i

4pαi,t
c ≥ yi,t

5αi,t
(3.4)

Considering Lemma 10 we have:

x′i,t ≤
3

λ
· yi,t (3.5)

To complete the proof of Lemma 11 we only need to combine Inequalities

(3.3), (3.4), and (3.5):

|Ri,t| ≤
2x′i,t
αi,t
≤ 2

αi,t
· 3yi,t
λ

=
30

λ
· yi,t

5αi,t
≤ 30

λ
|Si,t|

3.4.3 Proof of Lemma 12

Proof. Fix some 0 ≤ i ≤ k and 0 ≤ t ≤ T
`i
and suppose we have sorted all

intervals ai′,t′ ∈ Ai,t based on their αi′,t′ values (in descending order) and for

simplicity rename them so that Ai,t = {ai1,t1 , ai2,t2 , . . . , air,tr} where αi1,t1 ≥

αi2,t2 ≥ . . . ≥ αir,tr .

Suppose h is the highest index where αih,th ≥ αi,t (h = 0 if there is no such

index). We claim that there is an index s, h ≤ s ≤ r, such that the statement

of Lemma 12 holds for A1 = {ai1,t1 , . . . , ais,ts} and A2 = {ais+1,ts+1 , . . . , air,tr}.

By way of contradiction suppose that the statement of Lemma 12 is not valid

for any s, h ≤ s ≤ r. Thus:

|Ri,t ∪
s⋃

u=1

Riu,tu| >
60

λ
|Si,t \

r⋃
u=s+1

Siu,tu| (3.6)

Also based on Lemma 10 we have:

x′i,t +
r∑

u=1

x′iu,tu ≤
6

λ
· yi,t =

6

λ
· |Yi,t|

p
(3.7)
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We are going to show that we cannot have Inequalities (3.7) and (3.6) for

all s, h ≤ s ≤ r at the same time and reach a contradiction. First of all

to �nd an upper bound for the left side of Inequality (3.6), observe that, by

de�nition, for any two intervals ai,t and ai′,t′ there is no intersection between

Ri,t and Ri′,t′ . By using Inequality (3.3), for each s, h ≤ s ≤ r we have:

|Ri,t ∪
s⋃

u=1

Riu,tu| = |Ri,t|+
s∑

u=1

|Riu,tu| ≤
2x′i,t
αi,t

+
s∑

u=1

2x′iu,tu
αiu,tu

(3.8)

To have a lower bound for the right side of Inequality (3.6) we are going

to de�ne Y ∗iu,tu for each u, h < u ≤ r and Y ∗i,t:

Y ∗ir,tr = Yir,tr ∩ Yi,t

h < u < r ⇒ Y ∗iu,tu =
(
Yiu,tu ∩ Yi,t

)
\
(
Y ∗iu+1,tu+1

∪ . . . ∪ Y ∗ir,tr
)

Y ∗i,t = Yi,t \
(
Y ∗ih+1,th+1

∪ . . . ∪ Y ∗ir,tr
)

Note that Y ∗i,t along with all Y ∗iu,tu 's are a partition of Yi,t:

|Yi,t| = |Y ∗i,t|+
r∑

u=h+1

|Y ∗iu,tu| (3.9)

Also note that for each u, h < u ≤ r jobs scheduled inside Y ∗iu,tu in O
′′ have

processing time at most p′iu,tu ≤ 2pαiu,tu and the empty space between any two

consecutive scheduled job is no more than p′iu,tu too (otherwise we were able

to add some more jobs from Xp
i,t to O

′′), and jobs scheduled inside Y ∗i,t have

processing time at most p′i,t ≤ 2pαi,t. So for each s, h ≤ s ≤ r we have:

|Si,t\
r⋃

u=s+1

Siu,tu | ≥ b
|Y ∗i,t|
4pαi,t

c+
s∑

u=h+1

b
|Y ∗iu,tu|
4pαiu,tu

c ≥
|Y ∗i,t|
5pαi,t

+
s∑

u=h+1

|Y ∗iu,tu |
5pαiu,tu

(3.10)

The only thing we need to prove to complete the proof of the Lemma 12

is that there is an index s, h ≤ s ≤ r such that:

x′i,t
αi,t

+
s∑

u=1

x′iu,tu
αiu,tu

≤ 6

λ

( |Y ∗i,t|
pαi,t

+
s∑

u=h+1

|Y ∗iu,tu|
pαiu,tu

)
(3.11)

Combining Inequalities (3.8), (3.10), and (3.11) completes the proof:

|Ri,t ∪
s⋃

u=1

Riu,tu| ≤
2x′i,t
αi,t

+
s∑

u=1

2x′iu,tu
αiu,tu
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≤ 12

λ

( |Y ∗i,t|
pαi,t

+
s∑

u=h+1

|Y ∗iu,tu|
pαiu,tu

)
≤ 60

λ
|Si,t \

r⋃
u=s+1

Siu,tu |

Thus, we now prove Inequality (3.11). We consider two cases. For the �rst

case suppose that h = r, which means that αi,t ≤ αiu,tu for all 1 ≤ u ≤ r.

Note that in this case Y ∗i,t = Yi,t and Inequality (3.11) would be proved using

the inequality (3.7):

x′i,t
αi,t

+
s∑

u=1

x′iu,tu
αiu,tu

≤ 1

αi,t

(
x′i,t +

s∑
u=1

x′iu,tu
)
≤ 6

λ

|Y ∗i,t|
pαi,t

(3.12)

Hence we suppose h < r and for the sake of contradiction suppose that

Inequality (3.11) is not true for any value of s. So for all s, h ≤ s ≤ r we have:

x′i,t
αi,t

+
s∑

u=1

x′iu,tu
αiu,tu

>
6

λ

( |Y ∗i,t|
pαi,t

+
s∑

u=h+1

|Y ∗iu,tu|
pαiu,tu

)
(3.13)

What we do is, for each value of s, h ≤ s ≤ r, we multiply both sides of

Inequality (3.13) and sum all of them to derive a contradiction. For s = h,

multiply both sides of Inequality (3.13) by αi,t−αih+1,th+1
and for s = r multiply

both sides by αir,tr , and for every other s, h < s < r multiply both sides of

Inequality (3.13) associated with s by αis,ts − αis+1,ts+1 . Note that considering

the de�nition of h and the fact that h < r, we have αi,t > αih+1,th+1
≥ . . . ≥

αir,tr ≥ 1, so all the coe�cients are non-negative (and in fact the �rst one is

positive):

(αi,t − αih+1,th+1
) ×

(
x′i,t
αi,t

+
x′i1,t1
αi1,t1

+
x′i2,t2
αi2,t2

+ . . .+
x′ih,th
αih,th

>
6

λ

( |Y ∗i,t|
pαi,t

))

(αih+1,th+1
−αih+2,th+2

) ×

(
x′i,t
αi,t

+
x′i1,t1
αi1,t1

+. . .+
x′ih+1,th+1

αih+1,th+1

>
6

λ

( |Y ∗i,t|
pαi,t

+
|Y ∗ih+1,th+1

|
pαih+1,th+1

))

(αih+2,th+2
−αih+3,th+3

) ×

(
x′i,t
αi,t

+
x′i1,t1
αi1,t1

+. . .+
x′ih+2,th+2

αih+2,th+2

>
6

λ

( |Y ∗i,t|
pαi,t

+
|Y ∗ih+1,th+1

|
pαih+1,th+1

+
|Y ∗ih+2,th+2

|
pαih+2,th+2

))
...

(αis,ts−αis+1,ts+1) ×

(
x′i,t
αi,t

+
x′i1,t1
αi1,t1

+. . .+
x′is,ts
αis,ts

>
6

λ

( |Y ∗i,t|
pαi,t

+
|Y ∗ih+1,th+1

|
pαih+1,th+1

+. . .+
|Y ∗is,ts|
pαis,ts

))
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...

(αir−1,tr−1−αir,tr) ×

(
x′i,t
αi,t

+
x′i1,t1
αi1,t1

+. . .+
x′ir−1,tr−1

αir−1,tr−1

>
6

λ

( |Y ∗i,t|
pαi,t

+
|Y ∗ih+1,th+1

|
pαih+1,th+1

+. . .+
|Y ∗ir−1,tr−1

|
pαir−1,tr−1

))

(αir,tr) ×

(
x′i,t
αi,t

+
x′i1,t1
αi1,t1

+. . .+
x′ir,tr
αir,tr

>
6

λ

( |Y ∗i,t|
pαi,t

+
|Y ∗ih+1,th+1

|
pαih+1,th+1

+. . .+
|Y ∗ir,tr |
pαir,tr

))
Now we sum up all these inequalities (with the corresponding coe�cients)

to reach a contradiction. Since all coe�cients are ≥ 0 and the very �rst one

is positive (αi,t−αih+1,th+1
> 0) this ensures that we have non-zero sum. Note

that for each 1 ≤ s ≤ h, term
x′is,ts
αis,ts

has appeared in the left hand side of all

the above inequalities and so its coe�cient in the sum would be the sum of all

the coe�cients:

(αi,t−αih+1,th+1
)+(αih+1,th+1

−αih+2,th+2
)+. . .+(αir−1,tr−1−αir,tr)+(αir,tr) = αi,t

This is the case for terms
x′i,t
αi,t

and
|Y ∗i,t|
pαi,t

as well. Also for each s, h < s ≤

r, terms
x′is,ts
αis,ts

and
|Y ∗is,ts |
pαis,ts

have appeared in the left hand side and the right

hand side of Inequality (3.13) associated with all values s, s + 1, s + 2, . . . , r,

respectively. So the coe�cient for
x′is,ts
αis,ts

and
|Y ∗is,ts |
pαis,ts

in the sum would be:

(αis,ts−αis+1,ts+1)+(αih+1,th+1
−αih+2,th+2

)+. . .+(αir−1,tr−1−αir,tr)+(αir,tr) = αis,ts

This means that the sum of all the inequalities written above can be sim-

pli�ed to:

αi,t
(x′i,t
αi,t

+
h∑
s=1

x′is,ts
αis,ts

)
+

r∑
s=h+1

αis,ts ·
x′is,ts
αis,ts

>
6

λ

(
αi,t
|Y ∗i,t|
pαi,t

+
r∑

s=h+1

αis,ts
|Y ∗is,ts|
pαis,ts

)

=⇒ αi,t
(x′i,t
αi,t

+
h∑
s=1

x′is,ts
αis,ts

)
+

r∑
s=h+1

x′is,ts >
6

λ

( |Y ∗i,t|
p

+
r∑

s=h+1

|Y ∗is,ts|
p

)
Considering that αi1,t1 ≥ αi2,t2 ≥ . . . ≥ αih,th ≥ αi,t, and Equality (3.9) we

have:

x′i,t+
r∑
s=1

x′is,ts ≥ αi,t
(x′i,t
αi,t

+
h∑
s=1

x′is,ts
αis,ts

)
+

r∑
s=h+1

x′is,ts >
6

λ
·
|Y ∗i,t|+

∑r
u=h+1|Y ∗iu,tu|
p

=
6

λ
· |Yi,t|
p

⇒ x′i,t +
r∑
s=1

x′is,ts >
6

λ
· |Yi,t|

p
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This contradicts Inequality (3.7), which was based on Lemma 10 for interval

ai,t. This contradiction show that for at least one value of s, Inequality (3.11)

holds, which completes the proof of Lemma 12.
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Chapter 4

Hierarchical Clustering

Recall that in Hierarchical Clustering the set of data points of input are repre-

sented as the vertices of a weighted graph G = (V,E) where for any two nodes

i and j, wi,j is the weight (similarity or dissimilarity) between the two data

points. Then one can think of a hierarchical clustering as a tree T whose leaves

are nodes of G and each internal node corresponds to the subset of nodes of the

leaves in that subtree (hence root of T corresponds to V ). For any two data

points i and j we use Ti,j to denote the subtree rooted at the least common

ancestor (LCA) of i and j and wi,j represents the similarity between i, j.

Cohen-Addad et al. [31] considered Dasgupta's [32] objective function but

for dissimilarity-based graphs, where wi,j is the weight of dissimilarity between

two nodes i and j. In this version a good clustering should have larger Ti,j

when wi,j is relatively large. Here the objective is to maximize the following

formula:

Rev(T ) =
∑
i,j∈[n]

(
wi,j × |Ti,j|

)
(4.1)

We build upon the work of [22] and present an algorithm that takes advan-

tage of some conditions in which their algorithm fails to perform better. Since

the �nal algorithm (and its analysis) is more complex, and for ease of expo-

sition, we start with a simpler algorithm which achieves ratio 0.6929. Then

through a series of improvements we show how we can get to 0.71604 ratio to

prove Theorem 4 which is saying for hierarchical clustering on dissimilarity-

based graphs, there is an approximation algorithm to maximize objective of

(1.5) with ratio 0.71604.
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We also introduce a new objective function for hierarchical clustering and

present approximation algorithms for this new objective. More precisely, con-

sider any tree T , we de�ne Hi,j as the number of common ancestors of i and j

in T . In other words, when we think of the process of building the tree as a top-

down procedure, Hi,j is the step in which we decide to separate i and j from

each other (they were decided to be together in Hi,j−1 many steps). Then for

dissimilarity-based graphs, we propose to minimize the following objective:

CostH(T ) =
∑
i,j∈[n]

(
wi,j ×Hi,j

)
. (4.2)

The problem we are looking to solve here is to �nd a full binary tree with

the minimum CostH(.). One of the advantages of this objective function over

the one introduced by Dasgupta [32] is when we have a complete graph with

unit weights. All trees would have the same cost when we consider Dasgupta's

objective function. But when we consider CostH(T ), balanced trees have the

least cost.

It is easy to see that any algorithm that gives a balanced binary tree would

have approximation ratio at most O(log n) since the height of such trees is

O(log n). Furthermore, it is not hard to verify that the average-linkage algo-

rithm would not perform well for this new objective function. The following

example is an instance for which the cost of the solution of the average-linkage

algorithm is at least O( n
logn

) times the cost of the optimum solution. Consider

a graph with n vertices: v1, v2, ..., vn. Then for each 2 ≤ j ≤ n and for each

1 ≤ i < j let wi,j = j − 1. In this graph the summation of all the edges would

be O(n3) but running average linkage on this graph would result in a tree

T with CostH(T ) = O(n4) while the optimum tree (as well as any balanced

binary tree) will have cost O(n3 log n).

We are going to show that a top-down algorithm that chooses the ap-

proximated weighted max-cut at each step, would be a 4αGW
4αGW−1

-approximation

algorithm to minimize CostH(T ), where αGW is the ratio of the max-cut ap-

proximation algorithm. Considering that the best known approximation algo-

rithm for weighted maximum cut problem has ratio αGW = 0.8786 [41], the

ratio of this algorithm would be 1.3977. This will prove Theorem 5.
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4.1 Prior Work

An alternative interpretation of Dasgupta's cost function is in terms of cuts.

In a top-down approach at each step we must partition a set of items into two

groups (recall that the optimal tree is binary). We can set a cost for each

step such that the total cost would be the summation of the costs of all the

steps. If in one step we partition set A ∪ B of items into two sets A and B,

then the cost for this step would be Cost(A,B) = |A ∪ B| × w(A,B) where

w(A,B) is the summation of all pairwise similarities between members of A

and B. Considering this, taking the minimum cut as the partition at each

step seems a reasonable choice, although we will see later that this would not

give a good approximation ratio. A nice property of this objective function

is its modularity. More precisely, suppose u is an internal node in tree T . If

we replace Tu, the subtree rooted at u, by another subtree T ′u containing the

same set of items as leaves, and denote the new tree by T ′, then the change

in the total cost of the tree is only the di�erence between the costs of Tu and

T ′u: Cost(T
′) = Cost(T ) + Cost(T ′u)− Cost(Tu).

Now let us consider a complete graph where any pair of items i and j are

similar to each other with wi,j = 1 as the �rst canonical example. In this case

any binary tree T with n leaves would have Cost(T ) = 1
3
(n3 − n). Also, if

we consider the line graph on n nodes in which only consecutive items has

unit similarities and any other pair of items has zero similarities, then the best

tree would be the balanced binary tree which has the cost equal to O(n log n).

Another interesting fact about this objective function is that the problem of

minimizing the cost is equivalent to the problem of maximizing it. And here is

the reason: For any graph G with unit edge weights denote its complement by

Gc. Then for each tree T the summation of Cost(T ) over G and Cost(T ) over

Gc would be the same and equal to the cost of a complete graph: 1
3
(n3 − n).

To prove the NP-hardness, we can use a reduction from a variant of Not-

All-Equal SAT where each clause has two or three literals and each variable

appears exactly three times, once in a 3-clause and twice with opposite po-

larities in two of 2-clauses and the hard problem is to �nd out if there is any
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assignment to the variables such that all the variables in each clause are not

the same.

Dasgupta's shown that the top-down heuristic, which takes the minimum

sparsest cut (approximately) at each step, has approximation factor ofO(α log n)

[32], where α is the best approximation ratio for minimum sparsest cut prob-

lem which is O(
√

log n) [7]. (In a more recent work, that we will discuss later,

Charikar and Chatziafratis [21] showed that the algorithm of [32] in fact has

approximation ratio of O(α).)

The intuition why the sparsest cut is a good option comes from the alterna-

tive interpretation of the cost function where we assigned a cost to each step.

Recall that the cost of splitting A∪B into A and B would be |A∪B|×w(A,B).

To reduce the multiplier on subsequent steps that would be a good choice to

shrink the set of items as much as we can, at each step. More precisely for a

random item, the expected amount by which its cluster shrinks after this step

would be:
|A|
|A ∪B|

· |B|+ |B|
|A ∪B|

· |A| = 2|A||B|
|A ∪B|

This means that a natural heuristic algorithm would be to choose a cut

with maximum shrinkage per unit cost which is the minimum sparsest cut:

w(A,B)

|A||B|

We will provide some intuition on why this algorithm has a good approxi-

mation ratio later when we are discussing more recent works.

Later Roy and Pokutta [69] improved the previous result by giving an LP -

based O(log n)-approximation algorithm for the same objective function. They

interpret the tree T as inducing an ultrametric dT on the nodes as follows:

dT (i, j) = Ti,j − 1

This is actually an ultrametric because dT (i, j) = 0 if and only if i =

j, and for any three nodes i, j, k we have dT (i, j) ≤ max{dT (i, k), dT (j, k)}.

They introduced the notion of non-trivial ultrametrics as below and they are

precisely the ultrametrics that are induced by any tree decompositions of the
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items corresponding to Dasgupta's cost function. Ultrametric d is non-trivial

if:

� For every non-empty set of items S, there is a pair of items i, j ∈ S such

that d(i, j) ≥ |S| − 1.

� For every 1 ≤ t ≤ n−1, and every equivalence class St of the items under

the relation i ∼ j if and only if d(i, j) ≤ t, any pair of items i, j ∈ St

have d(i, j) ≤ |St| − 1.

They proved two other properties of non-trivial ultrametrics. First, For

every 1 ≤ t ≤ n − 1, and every equivalence class St of the items under the

relation i ∼ j if and only if d(i, j) ≤ t, restriction of d to St would be a non-

trivial ultrametric on St. Second, the range of any non-trivial ultrametric on

a set with cardinality n is contained in the set {0, 1, ..., n− 1}.

They utilize these properties to conclude that for any non-trivial ultramet-

ric d on the set of items, there is a corresponding hierarchical clustering T

such that for any pair of items i, j we have d(i, j) = Ti,j − 1. Moreover this

tree could be constructed using d in O(n3). This means that we can minimize

our objective function over non-trivial ultrametrics with range contained in

{0, 1, ..., n− 1} instead of trees.

They formulated the problem as an Integer Linear Program motivated by

[73] and introduced variables xtij for each pair i, j of items and 0 ≤ t ≤ n− 1

which is 1 if and only if d(i, j) ≥ t. The objective function could be written

as follow:

Cost(d) =
∑
i,j∈[n]

(
wi,j ×

n−1∑
t=1

xtij
)

Roy and Pokutta [69] �nally managed to relax the variables and then round

it to have an O(log n)-approximation for the problem which was considered

an improvement at that time. (As we mentioned before, the simple heuristic

sparsest cut algorithm was actually better than this with approximation ratio

of O(
√

log n) [21])

Roy and Pokutta [69] also provided some hardness results for the problem.

Assuming the Small Set Expansion Hypothesis [67], the objective function
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introduced by Dasgupta [32] is hard to approximate to within any constant

factor. In addition, they provided some experimental results that compares

their algorithm with the current known algorithms including Average Linkage,

Single Linkage, Complete Linkage, Ward's Method and bisecting k-means.

Their results show that their algorithm often gives better pruning compared

to the other standard clustering algorithms with respect to a notion of error

they de�ned.

One year later, Charikar and Chatziafratis [21] provided a similar linear

programming relaxation leading to an LP -based O(log n) approximation algo-

rithm and the same constant factor inapproximability results for this problem

simultaneously. In addition they presented a new spreading metric SDP re-

laxation and proved the integrality gap of O(
√

log n) for it. In their analysis

of that simple top-down Recursive Sparsest Cut (RSC), they managed to drop

the log n factor and showed that the same algorithm actually yields an O(α)

approximation.

Here is a brief intuition for the unweighted case: For each 0 ≤ t ≤ n, let

us Ot be the set of all maximal clusters of size at most t in optimal solution.

Also, denote the set of edges that are cut in Ot (has endpoints in two di�erent

clusters) by Et. Also, set E0 = E1 = E. The �rst observation would be this:

OPT =
n−1∑
t=0

|Et|

The reason is that, for each edge (i, j) ∈ E, suppose that the size of the

minimal cluster in optimal solution containing both i and j is r. Then the

contribution of this edge to OPT is r. Also, (i, j) ∈ Et for all t ≤ r − 1.

Hence the contribution of this edge to the right-hand side is also r. Using this

observation, we can have this lower bound for the optimal solution:

2OPT = 2
n−1∑
t=0

|Et| ≥
n∑
t=0

|Ebt/2c|

Now consider a cluster A with cardinality r in the solution produced by

RSC algorithm and suppose it is partitioned into B1 and B2 with cardinalities

s and r−s, respectively, such that s ≤ r/2. Now consider Obr/2c which contains
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the maximal clusters of size at most r/2 in the optimal solution, restricted to

A. Suppose A1, ..., Ak are the induced inside the cluster A by Obr/2c∩A where

|Ai| = ci|A| and ci ≤ 1/2 (because of the choice of r/2). Partition (B1, B2) is

an α approximation for the sparsest cut problem and so we can say this:

|E(B1, B2)|
s(r − s)

≤ α×min
i

|E(Ai, A \ Ai)|
|Ai||A \ Ai|

= α×min
i

|E(Ai, A \ Ai)|
ci(1− ci)r2

Then we can use this simple inequality:

min
i

ai
bi
≤
∑

i ai∑
i bi

By applying this to the previous inequality we have:

|E(B1, B2)|
s(r − s)

≤ α×
∑

i|E(Ai, A \ Ai)|∑
i ci(1− ci)r2

≤ α× 4

r2
· |Ebr/2c ∩ A|

⇒ Cost(A) = r|E(B1, B2)| ≤ 4α× s|Ebr/2c ∩ A| ≤ 4α
r∑

t=r−s+1

|Ebt/2c ∩ A|

Last inequality easily follows from the fact that |Et ∩ A| ≤ |Et−1 ∩ A| by

the de�nition of Et and Et−1. Now let us �x a 1 ≤ t ≤ n−1. We want to know

for which clusters A term |Ebt/2c ∩A| appears in Cost(A). This could only be

the case if A is a minimal cluster with |A| ≥ t > |B2| = r − s ≥ |B1| = s.

Because of this minimality, the set of all such clusters would form a disjoint

partition of all the items. Hence, Ebt/2c ∩ A for all clusters A would form a

partition of Ebt/2c and we can say:

∑
A

r∑
t=r−s+1

|Ebt/2c ∩ A| ≤
n∑
t=0

|Ebt/2c|

Now we can put together this upper bound and the lower bound for the

optimal solution to have this:

Cost(RSC) =
∑
A

Cost(A) ≤
∑
A

4α
r∑

t=r−s+1

|Ebt/2c∩A| ≤ 4α
n∑
t=0

|Ebt/2c| ≤ 8αOPT

This means that the algorithm is actually an 8α-approximation.

Cohen-Addad et al. [30] considered a fairly general random graph model for

hierarchical clustering, called the hierarchical stochastic block model (HSBM),
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and showed that in certain regimes the SVD approach of McSherry [60] com-

bined with speci�c linkage methods results in a clustering that give an O(1)

approximation to Dasgupta's cost function.

Moseley and Wang [63] considered the dual of Dasgupta's objective func-

tion for similarity-based graphs, where the objective is to maximize the fol-

lowing formula:

RevDual(T ) =
∑
i,j∈[n]

(
wi,j × (n− |Ti,j|)

)
(4.3)

For each tree T we have Cost(T ) + RevDual(T ) = nW where W is the

summation of the weights of similarity over all pairs of the items which is not

dependent to the structure of the tree. This means that the optimum solution

for both objective functions is the same. They showed that the classic average-

linkage algorithm as well as the random top-down partitioning algorithm have

approximation ratio 1/3 and provided a simple top-down local search algorithm

that gives a (1
3
− ε)-approximation.

Later Charikar, Chatziafratis and Niazadeh [22] proved that the average-

linkage algorithm is tight for both objective functions (1.5) and (4.3). They

also gave two top-down algorithms to beat the average-linkage ratios. More

speci�cally for maximizing RevDual(T ) (4.3), they provided an SDP -based

algorithm which has approximation ratio 0.336379 (slightly better than 1/3).

For the maximizing dissimilarity-based graphs (1.5), they gave a top-down

algorithm with a factor 0.667078 approximation (slightly better than 2/3).

We will go through this algorithm in more details shortly as one of our results

is to improve their approach.

More recently, Ahmadian et al. [3] provided a 0.4246-approximation algo-

rithm for maximizing RevDual(T ). What they do is to detect the cases where

average linkage is not good and show that in those cases the maximum uncut

bisection would gain a good fraction of the objective of the optimum solution

in the very �rst step. So, by taking the better of the two of average-linkage and

maximum uncut bisection (if we can solve it optimally in polynomial time) in

the �rst step and average linkage for the remaining steps the approximation

ratio would be 4/9. But the best known algorithm for maximum uncut bisec-
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tion has approximation ratio ρ = 0.8776 [8], so the ratio of their algorithm

decreases from 4/9 to 0.4246 which is still much better than the previous best

0.3363-approximation of [22]. They also complemented their positive results

by providing the APX-hardness (even for 0-1 similarities), under the Small

Set Expansion hypothesis [67].

More recently, Alon et al. [5] proved that the algorithm of [3] is actually

giving a 2ρ/3 = 0.585-approximation by proving the existence of a better

maximum uncut bisection. This is considered the third improvement over

the Average-Linkage for revenue maximization of similarity-based Hierarchical

Clustering (4.3), while the best algorithm for the revenue maximization of

dissimilarity-based version (1.5) is still only slightly better than the average

linkage (0.667 vs 2/3).

Chatziafratis et al. [25] considered a version of the problem where we have

some prior information about the data that imposes constraints on the cluster-

ing hierarchy and provided provable approximation guarantees for two simple

top-down algorithms on similarity-based graphs. More recently, Bakkelund [9]

considered order preserving hierarchical agglomerative clustering which is a

method for hierarchical clustering of directed acyclic graphs and other strictly

partially ordered data that preserves the data structure.

Emamjomeh-Zadeh and Kempe [36] considered adaptive Hierarchical Clus-

tering using the notion of ordinal queries, where each ordinal query consists of

a set of three elements, and the response to a query reveals the two elements

(among the three elements in the query) which are �closer� to each other. They

studied active learning of a hierarchical clustering using only ordinal queries

and focused on minimizing the number of queries even in the presence of noise.

Wang and Wang [76] suggested that Dasgupta's cost function is only e�ec-

tive in di�erentiating a good HC-tree from a bad one for a �xed graph, But the

value of the cost function does not re�ect how well an input similarity graph is

consistent with a hierarchical structure and present a new cost function, which

is based on Dasgupta's cost function but gives a cost between 0 and 1 to each

tree.

Charikar et al. [23] were the �rst one to consider Hierarchical Clustering
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for Euclidean data and showed an improvement is possible for similarity-based

graphs on objective (4.3). Later Wang and Moseley [77] considered objective

(1.5) for Euclidean data and showed that every tree is a 1/2-approximation

if the distances form a metric and developed a new global objective for hier-

archical clustering in Euclidean space and proved that the optimal 2-means

solution results in a constant approximation for their objective.

Hogemo et al. [46] considered the Hierarchical Clustering of unweighted

graphs and introduced a proof technique, called the normalization procedure,

that takes any such clustering of a graph G and iteratively improves it un-

til a desired target clustering of G is reached. More recently Vainstein et

al. [74] proved structural lemmas for both objectives (4.3) and (1.5) allowing

to convert any HC tree to a tree with constant number of internal nodes while

incurring an arbitrarily small loss. They managed to obtain approximations

arbitrarily close to 1, if not all weights are small (i.e., there exist constants ε

and δ such that the fraction of weights smaller than δ, is at most 1− ε).

Chehreghani [26] proposed a hierarchical correlation clustering method that

extends the well-known correlation clustering to produce hierarchical clusters.

Later Vainstein et al. [74] provided a 0.4767-approximation and presented

nearly optimal approximations for complementary similarity/dissimilarity weights.

There are also some other works including the ones trying to reduce the time

of the current algorithms [62] and [33], and those introducing Fair Hierarchical

Clustering [4] and Online Hierarchical Clustering [61].

4.2 Maximizing Rev(T ) in Dissimilarity-Based Graphs

For ease of exposition, we �rst present an algorithm and prove it has ap-

proximation 0.6929. Then we show how running the same algorithm with

di�erent parameters and taking the best solution of all we obtain a 0.71604-

approximation. Our algorithm for maximizing Rev(T ) (objective function

(1.5)) builds upon the algorithm of Charikar et al. [22] which has approxima-

tion ratio 0.667078, slightly better than random partition at each step, which

has ratio 2/3.
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As explained in [22], one can see that the top-level cuts of the tree, i.e.

those corresponding to clusters closer to the root are making the large portion

of the optimum value. Therefore, it seems reasonable, in a top-down approach,

to use larger cut sizes at each step. So, this suggests a simple algorithm: at

each step try to �nd a max-cut (or approximate max-cut). However, this

�recursive max-cut� fails. As shown in [22], for a graph of n vertices with a

clique of size εn where the rest of the edges have weight zero, the optimum

solution "peels o�" vertices of the implanted clique one by one (i.e. in initial

steps each vertex of the clique is separated from the rest), and this obtains an

objective value of at least n(1− ε)W , where W is the sum of all edge weights.

But the recursive max-cut (even if we �nd the optimum max-cut in each step)

will have ratio at most 2+ε
3
nW . Thus, this "recursive max-cut" is not going to

perform better than the trivial random partitioning at each step.

Inspired by this, [22] suggested an algorithm that initially will peel o� ver-

tices with high (weighted) degree one by one (depending on a predetermined

threshold) and after that will use a max-cut in one step to partition the re-

maining cluster into two. From there on, we can assume we use the random

partitioning. This is the "peel-o� �rst, max-cut next" algorithm of [22]. Note

that the upper bound used so far in previous works for optimum is nW . Intu-

itively, if the optimum value is close to this lower bound then there must be

a good max-cut, and if the optimum is bounded away from this then random

partition performs better than 2/3. They showed that the better of this "peel-

o� �rst, max-cut next" algorithm and the random partitioning algorithm has

approximation ratio of 0.667078 for maximizing Rev(T ) in dissimilarity-based

graphs, which slightly beats the 2/3-approximation of simply doing random

partitioning.

Our algorithm is based on similar ideas [22] but has more steps added

into it to improve the bound. Our basic algorithm takes the better of the

two of "Random Partitioning" algorithm and our "Peel-O� �rst, Max-Cut

or Random Next" algorithm. This is to make sure in the cases where the

revenue of the optimum solution is too far from nW , the random partitioning

algorithm would give us a good enough approximation and we can focus on
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the case where the revenue of the optimum, which we denote by OPT , is close

to nW .

A key di�erence between our "Peel-O� �rst, Max-Cut or Random Next"

algorithm and algorithm of [22], which is "Peel-O� �rst Max-Cut Next" algo-

rithm, is that after the Peel O� in the �rst phase we then choose the better of

the two of "Random Partitioning" and "Max Cut" algorithms. Actually, by

looking at the fraction ofW which is peeled o� in the �rst phase, we can decide

which one of the "Random Partitioning" or "Max Cut" would be good enough

for the second phase and only go ahead with that one. We have also gener-

alized their analysis by considering a few more parameters to �nally improve

the approximation ratio from 0.667078 to 0.6929.

In our algorithm, we �rst set a parameter γ ≥ 1 and start the Peel-O�

process. More precisely we de�ne Wv for each remaining vertex as the current

total of the weights of the edges incident to v and remove vertices with Wv ≥

γ 2W
n

and all their edges, where W is the total of the weight of all the edges

(not only the remaining edges) and n is the total number of vertices. So, Wv is

a dynamic value (this is di�erent from what [22] do as they compare the initial

Wv with the threshold value). After removing one vertex (which is always the

one with the largest Wv) we remove all the edges incident to it and update Wv

for the remaining vertices accordingly. Note that, we do not update W and

n and these two are �xed (to the initial values) throughout the entire peel-o�

process. So our Peel-O� process is a bit di�erent than the one used in [22] as

we need to update Wv for the remaining vertices after removing each vertex.

After we reach a state where all the remaining vertices have Wv < γ 2W
n
,

we then look at the fraction of theW which is peeled o�. Let us denote all the

peeled o� vertices by VR and call them "Red" vertices (this is similar to the

terminology used by [22]). We also denote all the edges incident to at least

one red vertex, those that are removed from the graph after the peel o� phase,

by red edges, ER, and denote the total weight of all the red edges by WR and

de�ne R = WR/W as the weighted fraction of the red edges. We also call the

vertices and edges that are not red, as blue vertices and edges, respectively:

VB = V \ VR and EB = E \ EB.
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At this stage of our algorithm if R is greater than a pre-de�ned parameter

0 < R∗ < 1/2 (to be chosen later) this means that a good fraction of the

vertices are peeled-o� and we continue the algorithm by doing the random

partitioning. Otherwise, this means that remaining graph is pretty dense,

and we can prove there should be a big cut. So, if R ≤ R∗ we continue the

algorithm by doing an approximated max-cut. After max-cut we do the rest

using random partitioning. Formally we propose "Peel-o� First, Max Cut or

Random Next" (Algorithm 1) and prove Theorem 12.

Algorithm 1 Peel-o� First, Max Cut or Random Next

Input: G = (V,E), dissimilarity weights{wi,j}(i,j)∈E, and parameters γ ≥ 1
and 0 < R∗ < 1/2

de�ne W =
∑

(v,u)∈E wv,u and n = |V |.
Initialize hierarchical clustering tree T ← ∅.
Initialize VB ← V and EB ← E.
While there exists a vertex v ∈ VB with Wv =

∑
u∈VB :(v,u)∈EB wv,u ≥ γ 2W

n

Choose v∗ ∈ VB with the largest Wv.
Update T by adding the cut ({v∗}, VB \ {v∗}).
Update VB by removing v∗; VB ← VB \ {v∗}.
Update EB by removing all the edges incident to v∗; EB ← EB \ {e ∈

EB : e incident to v∗}.
de�ne WR = W −

∑
(v,u)∈EB wv,u and R = WR

W
.

IF R > R∗

Recursively run Random Partitioning Algorithm on VB and update T .
ELSE
Run approximate Max-Cut [41] on GB = (VB, EB)
Let the resulting cut be (VL, VR) and update T by adding this cut.
Recursively run Random Partitioning Algorithm on VL and VR and up-

date T .
RETURN T

Theorem 12. For Hierarchical Clustering on dissimilarity-based graphs, there

exists a choice of γ ≥ 1 and 0 < R∗ < 1/2 such that the better of Algorithm 1

and "Random Partitioning" algorithm would be an α-approximation algorithm

to maximize Rev(T ), where α = 0.6929.
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4.2.1 Proof of Theorem 12

To prove Theorem 12, we �rst need to have some more de�nitions. First recall

that in an instance with n vertices and the total weights of dissimilarities of

W , the random partitioning algorithm always has revenue at least 2nW/3 [25].

In the cases where OPT is too far from nW the random partitioning algo-

rithm would be good enough. More precisely we consider OPT = (1− ε)nW ,

and this de�nes ε, which is not known to us. If ε ≥ α−2/3
α

, then OPT ≤ 2
3α
nW

and the random partitioning algorithm would be an α-approximation. So, we

assume ε < α−2/3
α

and prove that there exist choices of γ and R∗ which make

Algorithm 1 an α-approximation for α = 0.6929.

Lemma 13. Let the number of vertices that are peeled o� after the �rst phase

of our algorithm be |VR| = n`. Then ` ≤ R
2γ

Proof. Recall that only those vertices that have Wv ≥ γ 2W
n

at the time of the

peel-o� are peeled o� in the �rst phase. So, we can say that WR, which is the

summation of Wv of all the peeled o� vertices, is at least n` ·γ 2W
n
. This means

WR ≥ 2γ`W .

Now assume ALGP is the contribution of all the red edges (of our algo-

rithm) to the �nal objective revenue Rev(T ). This is the revenue which is

obtained in the peel-o� phase. The following lemma is a stronger version of

Lemma 5.1 of [22].

Lemma 14. ALGP ≥ (1− `/2)nWR

Proof. Suppose VR = {v1, v2, ..., vn`} where vi is the i'th vertex which is peeled

o�. Recall that at each step of the peel-o� phase of the algorithm we choose

the vertex with the largest Wv. Thus Wv1 ≥ Wv2 ≥ ... ≥ Wvn` ≥ γ 2W
n
. Now

consider the revenue which is obtained in the peel-o� phase. While removing

vi the size of the tree is n− i+ 1, so we have:
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ALGP = nWv1 + (n− 1)Wv2 + ...+ (n− n`+ 1)Wvn`

≥
(∑n

i=n−n`+1 i
)
·
(∑n`

j=1Wvj

)
n`

=
(n` · (n+ (n− n`+ 1))/2

n`

)
·WR

= (1− `/2 + 1/n) · nWR

≥ (1− `/2)nWR.

As we mentioned earlier, after the peel-o� phase, the algorithm will look

at the ratio R = WR/W and compares it with the given parameter R∗. If

R > R∗, the second phase will be to do the random partitioning and no max-

cut is needed. Otherwise, if R ≤ R∗, then the algorithm will use Goemans and

Williamson's algorithm for Max-Cut [41] on the remaining graph (blue vertices

and edges) to do one partition (the rest can be done in any arbitrary manner,

say random partition). So, we separate our analysis in those two cases and

prove necessary lemmas and theorems in each case.

Case 1: R > R∗

Let us denote the total revenue obtained in the random partitioning phase of

the algorithm by ALGR. Then the total revenue of our algorithm would be at

least ALGP +ALGR. For this case of R > R∗ we prove the following theorem:

Theorem 13. If R > R∗: ALGP + ALGR ≥ nW · (2
3

+ γ−1
3γ
·R∗ + 1

12γ
·R∗2).

This means that the ratio of our algorithm in this case is at least (2
3

+

γ−1
3γ
· R∗ + 1

12γ
· R∗2). Note that to have this ratio, we are actually comparing

our revenue with nW (and not OPT which might in fact be smaller) and if

we somehow �nd a better upper-bound for OPT , comparing our revenue with

OPT might prove a better ratio for our algorithm. To prove this Theorem,

we �rst recall that in an instance with n vertices and the total weights of

dissimilarities ofW , random partitioning algorithm has revenue at least 2nW/3

[25].

Lemma 15. ALGR ≥ 2
3
(1− `)n(W −WR).
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Proof. This follows easily from the observation mentioned above since after

the peel-o� phase the number of remaining vertices is |VB| = n−n` = (1− `)n

and the total weights of the remaining edges is WB = W −WR.

The rest of the proof of Theorem 13 will be done by simply using Lemmas

13, 14, 15, and the fact that R > R∗. Combining Lemmas 14 and 15 we have:

ALGP + ALGR ≥ (1− `/2)nWR +
2

3
(1− `)n(W −WR)

⇒ ALGP + ALGR

nW
≥ (1− `/2)R +

2

3
(1− `)(1−R).

The RHS is decreasing with ` increasing, so using Lemma 13, we have:

⇒ ALGP + ALGR

nW
≥ (1− R

4γ
)R+

2

3
(1− R

2γ
)(1−R) = (

2

3
+
γ − 1

3γ
·R+

1

12γ
·R2).

This bound is increasing with R, so considering the fact that R > R∗, it

implies Theorem 13.

Let us de�ne function F (R) =
(

1− R
4γ

)
R + 2

3

(
1− R

2γ

)
(1 − R) and note

that in Theorem 13 we just proved that if R > R∗ then ALGP + ALGR ≥

nW · F (R∗). We will use this bound later.

Case 2: R ≤ R∗

Like the other case, let us denote the total revenue obtained in the max-

cut phase of the algorithm by ALGC . Then the total revenue of our algorithm

would be at least ALGP +ALGC . Note that we are not considering the revenue

obtained after the max-cut phase, which uses random partitioning (as we do

not have a good bound on the value/weight of the edges left after performing

the max-cut). For this case of R ≤ R∗ we prove the following theorem:

Theorem 14. Suppose R ≤ R∗ and the following conditions for ε, R∗, and γ

hold (where αGW is the ratio of approximation for max-cut [41]):

R∗ < 1− 6αGW
3αGW − 2

· ε. (4.4)

γ ≤ (1−R∗)2 · 3αGW − 2

9α2
GW

· 1

ε
. (4.5)

1

3
≥ R∗ ·

(
αGW

2
− 1

6

)
+ γ · (1− αGW ). (4.6)
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Then ALGP + ALGC ≥ nW · F (R∗).

This means that the ratio of our algorithm in this case (like the other case)

is at least F (R∗) if conditions (4.4), (4.5), and (4.6) are met.

We continue by looking at the layered structure of the optimum tree similar

to the one done in [22]. Fix parameter δ < 1/2 (to be speci�ed later) and

imagine we start from the root of the optimum tree. We are looking for the

smallest (i.e. deepest) cluster of the tree with size more than n(1 − δ). This

is a cluster where itself and all its ancestors have size more than n(1− δ) but

both its children are smaller. Consider each time the optimum tree performs

a partition of a cluster into two. Since δ < 1/2, either both of these clusters

must be of size at most n(1 − δ) (at which point we stop), or exactly one of

them is smaller than n(1− δ) and the other is strictly larger than n(1− δ). In

the latter case, we go down the bigger branch and keep doing this until both

children have size at most n(1− δ). At this point we have found the smallest

< δn

< δn

> (1− δ)n

> (1− δ)n

≤ (1− δ)n
≤ (1− δ)n

L R

|L ∪R| = (1− c)n > (1− δ)n
= cn < δn

Layered structure of optimum tree and red/blue vertices

cluster (internal node) of the tree with size more than n(1 − δ), which then

has two (children) clusters of size at most n(1 − δ). We denote these two

children clusters by L and R and we have: |L| < n(1 − δ), |R| < n(1 − δ),

|L∪R| > n(1−δ), and �nally |V \(L∪R)| < nδ. We de�ne c = |V \(L∪R)|/n

and we know 0 ≤ c < δ.

Now we partition the blue vertices (vertices that survived the peel o� phase)
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into two groups. VB−Cut = VB ∩ (L ∪ R) and VB−Chain = VB \ (L ∪ R).

Note that VB−Cut are those inside the smallest cluster (internal node) of the

optimum tree with size more than n(1 − δ) and VB−Chain are those outside

it. We also de�ne WB−Chain as the total weights of the blue edges incident

to at least one vertex of VB−Chain. Now WB is partitioned into four part:

WB = WL +WR +WL,R +WB−Chain, where WL,R are those with one end in L

and the other in R while WL and WR are those with both ends in L and R,

respectively. Now we are ready for our �rst lemma.

Lemma 16. WB−Chain ≤ 2cγW .

Proof. We know that |VB−Chain| ≤ |V \ (L∪R)| = cn. We also know that each

v ∈ VB−Chain has Wv < γ 2W
n
:

WB−Chain ≤
∑

v∈VB−Chain

Wv < |VB| · γ
2W

n
= 2cγW.

Now it iss time to �nd a cut in VB with provably good size. This layered

structure of the optimum tree would suggest the cut (L,R) with sizeWL,R and

the following lemma will give us a lower-bound on its size:

Lemma 17. WL,R ≥ δWB−(ε+2cδγ)W
δ−c .

Proof. Consider the revenue of the optimum solution. By looking at the lay-

ered structure we just introduced we have:

OPT ≤ n(WR +WB−Chain) + n(1− δ)(WL +WR) + n(1− c)WL,R.

This is because the size of the cluster when the optimum solution produces

cut (L,R) is exactly n(1 − c) and after that the size of the following clusters

could not be more than n(1−δ). Now we useOPT = (1−ε)nW andWL+WR =

WB −WB−Chain −WL,R in the above inequality:

OPT = (1−ε)nW ≤ n(WR+WB−Chain)+n(1−δ)(WB−WB−Chain−WL,R)+n(1−c)WL,R.

By dividing both sides by n and considering the fact that W = WR +WB

we have:
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⇒ W − εW ≤ W − δ(WB −WB−Chain −WL,R)− cWL,R.

⇒ δ(WB −WB−Chain)− εW ≤ (δ − c)WL,R.

Considering the fact that c is strictly less than δ and using Lemma 16 this

completes the proof of the lemma.

The next lemma will provide a lower bound on ALGC .

Lemma 18. ALGC ≥ αGW · (1− `)nWL,R.

Proof. Note that after the peel-o� phase, we are going to use Goemans and

Williamson's max-cut algorithm to �nd a cut in VB whose size is n−n`. As we

know there is a cut with size at leastWL,R, we can �nd one with size αGWWL,R

and because there are (1 − `)n many blue vertices left after the �rst phase,

the revenue we will have on the �rst step of the second phase will be at least

αGW · (1− `)nWL,R.

Note that if we can somehow �nd a lower-bound for the revenue which

is obtained after this max-cut step, (perhaps using a bi-section instead of a

max-cut) our ratio could be even better. We should point out that using a

bi-section [3] obtained the improved ratio for the similarity-based version.

Considering the fact that R = WR/W , W = WR +WB and combining the

previous two lemmas we have:

ALGC ≥ αGW · (1− `)nW
(
δ(1−R)− (ε+ 2cδγ))

δ − c

)
. (4.7)

Now we want to set δ = 3αGW
3αGW−2

· ε
1−R∗ , and to be able to do that we need

Condition (4.4). That is because we have to make sure δ < 1/2 and Condition

(4.4) will be enough to have that:

R∗ < 1− 6αGW
3αGW − 2

·ε ⇒ 6αGW
3αGW − 2

·ε < 1−R∗ ⇒ 3αGW
3αGW − 2

· ε

1−R∗
< 1/2

Now we apply δ = 3αGW
3αGW−2

· ε
1−R∗ to Equation (4.7):
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Corollary 3. ALGC ≥ αGW ·(1−`)nW ·G(c) where G(c) =

(
(1−R)−(1−R∗) 3αGW−2

3αGW
−2cγ)

1−c (1−R∗)
ε

3αGW−2

3αGW

)
.

Note that 0 ≤ c < δ = 3αGW
3αGW−2

· ε
1−R∗ , and the following lemma would make

sure the worst case for us is when c = 0 (see Appendix 4.4 for proof).

Lemma 19. If Condition (4.5) holds, then G(0) ≤ G(c) for all 0 ≤ c < δ =

3αGW
3αGW−2

· ε
1−R∗ .

Using this lemma and applying c = 0 to Corollary 3 we have:

ALGC ≥ αGW · (1− `)nW
(

(1−R)− (1−R∗)3αGW − 2

3αGW

)
. (4.8)

Using this and Lemmas 13 and 14 we can conclude:

ALGP + ALGC

nW
≥
(

1− R

4γ

)
R+αGW ·

(
1− R

2γ

)(
(1−R)− (1−R∗)3αGW − 2

3αGW

)
.

(4.9)

Let us de�ne function F̃ (R) =
(

1− R
4γ

)
R+αGW ·

(
1− R

2γ

)(
(1−R)− (1−R∗)3αGW−2

3αGW

)
.

Note that the equation above says ALGP+ALGC
nW

≥ F̃ (R) and:

F̃ (R∗) =

(
1− R∗

4γ

)
R∗ + αGW

(
1− R∗

2γ

)(
(1−R∗)− (1−R∗)3αGW − 2

3αGW

)
=

(
1− R∗

4γ

)
R∗ + αGW

(
1− R∗

2γ

)
(1−R∗)

(
1− 3αGW − 2

3αGW

)
=

(
1− R∗

4γ

)
R∗ + αGW

(
1− R∗

2γ

)
(1−R∗) 2

3αGW

=

(
1− R∗

4γ

)
R∗ +

2

3

(
1− R∗

2γ

)
(1−R∗)

= F (R∗)

So, the only thing we need to show to complete the proof of Theorem 14

is that F̃ (R) is decreasing with R increasing in interval 0 ≤ R ≤ R∗ and the

following lemma will prove this (see Appendix 4.4):

Lemma 20. If Condition (4.6) holds, then F̃ (R∗) ≤ F̃ (R) for all 0 ≤ R ≤ R∗.

It is easy to see that Equation (4.9) together with Lemma 20 imply Theo-

rem 14.
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Using Theorems 13 and 14 to prove Theorem 12

To complete the proof of Theorem 12, we use Theorems 13 and 14 to conclude

that if we can set γ and R∗ such that Conditions (4.4), (4.5), and (4.6) are

met, then the ratio of our algorithm would be at least F (R∗):

F (R∗) =

(
1− R∗

4γ

)
R∗ +

2

3

(
1− R∗

2γ

)
(1−R∗). (4.10)

Recall that we can assume ε < α−2/3
α

as otherwise the random partitioning

gives a better than α-approximation. If we �x a value for α, this condition

implies a bound for ε, which then using Condition (4.5) gives a bound for γ:

γ = (1−R∗)2 · 3αGW−2
9α2
GW
· α
α−2/3

and this in turn implies the best value for R∗ using

the equation above for F (R∗). Note that the ratio of our algorithm would be

the minimum of α and F (R∗). It is easy to verify that by having α = 0.6929,

we will get R∗ = 0.227617 which maximizes F (.) exactly at F (R∗) = α; for

this value γ will be set to 1.442042. Note that these values of α, R∗ and γ

will satisfy all the conditions of Theorem 14 and the ratio of algorithm will be

0.6929. This completes the proof of Theorem 12.

4.2.2 Improving the ratio to 0.71604

In this section we will show how to improve the ratio of our algorithm to

0.71604. A key observation from the past section is that while we use ε in our

conditions, at the end we are comparing the revenue obtained by the algorithm

with nW and not with OPT = (1− ε)nW . In other words, the function F (.)

is obtained based on comparing the solution of the algorithm with nW (in

both Theorems 13 and 14). This is because we do not have any lower-bound

on ε and it really could be arbitrarily close to 0. However, when ε is close to

0, then our conditions, especially Condition (4.5), will let us choose better γ

and R∗. We will take advantage of this to �nd a series of values for γ and R∗,

such that if we run our algorithm with these parameters and take the better

of all solutions then the ratio will be 0.71604.

Recall that to maximize the ratio of our algorithm we �rst set α and use our

conditions to �nd the bestR∗ and γ to maximize F (R∗) (using Equation (4.10))
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and �nally the ratio would be the minimum of α and F (R∗). If F (R∗) < α,

it means that our initial choice of α was too high and vise versa. Suppose we

set α to some value such that based on that value we obtain R∗1 and γ1 that

are maximizing F (R∗1) but F (R∗1) < α. As we mentioned earlier, since the

actual ratio of our algorithm is
F (R∗1)

1−ε (since we assume OPT = (1 − ε)nW ),

there is an ε2 < ε where
F (R∗1)

1−ε2 = α and for all values of ε where ε2 ≤ ε ≤ ε1

(we de�ne ε1 = α−2/3
α

) the algorithm with parameters R∗1 and γ1 is actually an

α-approximation and all three conditions of Theorem 14 are met. But what

happens if ε < ε2? In this case the bounds of those three conditions are in fact

better and we can set the parameters R∗ and γ di�erently to obtain better

ratios.

As an example, suppose that we want to improve the ratio to α = 0.7.

Using the bound ε ≤ ε1 = α−2/3
α

= 1/21, we use Condition (4.5) and set

γ = (1 − R∗)2 · 3αGW−2
9α2
GW

· 21 = 1.9218297 · (1 − R∗)2 and �nd the best R∗

to maximize F (R∗) in Equation (4.10). It turns out the maximum of F (.)

is obtained at R∗1 = 0.173114 and γ1 = 1.314032, with F (R∗1) = 0.682358.

This means that by running our algorithm with parameters R∗1 and γ1 we will

have the revenue at least 0.682358nW . To make this an α-approximation (for

α = 0.7), we must have a lower-bound on ε. More precisely 0.682358nW ≥

αOPT = 0.7 · (1 − ε)nW only if ε ≥ ε2 = 0.02520285. This means that if

ε2 ≤ ε ≤ ε1, then the revenue gained by our algorithm using parameters R∗1

and γ1 is at least αOPT . Recall that if ε > ε1, then random partitioning is

an α-approximation. The only remaining case is if ε < ε2, and in this case we

can set γ = (1 − R∗)2 · 3αGW−2
9α2
GW
· 1
ε2

= 3.6311637(1 − R∗)2 and again �nd the

best R∗ to maximize F (R∗). We must set R∗2 = 0.316719 and γ2 = 1.695292

to maximize F (R∗2) = 0.714896 which is even greater than α. This means that

if ε < ε2, then the revenue gained by our algorithm using parameters R∗2 and

γ2 is at least αOPT . Note that for γ1, R
∗
1 and ε1 = α−2/3

α
and for γ2, R

∗
2, ε2 all

three conditions of Theorem 14 are met. Because we do not know the exact

value of ε, the only thing we need to do is to take the better of the following

three:
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1. Run Random Partitioning Algorithm all the way.

2. Run Algorithm 1 with parameters R∗1 and γ1.

3. Run Algorithm 1 with parameters R∗2 and γ2.

So, with only two sets of parameters for R∗ and γ and running Algorithm 1

for each (and taking the better of the results as well as random partitioning) we

can get a 0.7-approximation. It turns out using this approach and running the

algorithm with several more parameters we can get slight improvement. More

speci�cally, starting with α = 0.716 we will �nd 83 triples of values γi, R
∗
i , εi

(1 ≤ i ≤ 83) such that for each triple, the three conditions of Theorem 14 are

met and for each pair of γi, R
∗
i if we run Algorithm 1 with these parameters if

the actual value of ε is between εi+1 and εi (with the assumption of ε84 = 0)

then the revenue of the solution is at least αOPT . These 83 triples of γi, R
∗
i , εi

are obtained using a simple computer program and are listed in Table 4.1 in

Section 4.5. By choosing α = 0.71604 we will have 211 triples of γi, R
∗
i , εi and

ratio will be at least 0.71604.

4.3 Proof of Theorem 5

We discuss a method for bounding the cost of any top-down algorithm re-

garding this new objective function (1.6). When a top-down algorithm splits

cluster A ∪ B into clusters A and B, the least common ancestor for any two

pair of nodes a ∈ A and b ∈ B is determined. But for each two nodes a, a′ ∈ A

(also for b, b′ ∈ B), the distance between their least common ancestor and

the root in the �nal tree is increased by 1. Given this, we de�ne the cost of

partitioning a cluster into two clusters A and B as the following formula:

split-costH(A,B) =
∑
a,a′∈A

wa,a′ +
∑
b,b′∈B

wb,b′ .

Notice that the total cost CostH(T ) is exactly the sum of the split-cost

over all internal nodes of tree T plus and additional
∑

i,j∈[n] wi,j. We model

the problem as a multi-step game. At each step we have to choose a cut (S1, S2)

in G and remove its cutting edges δ(S1) = δ(S2). The cost of step 0 is W and
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the cost of each step is the total weight of all the remaining edges. Then the

total cost of the algorithm would be summation over all iterations. Considering

this view, it would make sense to choose the maximum weighted cut at each

step. One of our main results is to analyze this algorithm by showing that

it has a constant approximation ratio. Note that this algorithm has a large

approximation ratio when we want to minimize Dasgupta's objective function

Cost(T ) or maximize its dual RevDual(T ).

The method we use to prove Theorem 5 is inspired by the work done by

Feige et al. [37]. We assume all the weights are integers and for each edge

(i, j) ∈ E we replace it with wi,j many unit weight edges to make the graph

unweighted. Let OPT be the cost of the optimal tree and AMC be the cost

of the approximated Max-Cut algorithm. For i = 1, 2, ... let X∗i and Xi be the

sets of edges removed at step i by the optimal tree and approximated Max-Cut

algorithm, respectively. Also, let R∗i and Ri be the sets of edges remained after

step i of the algorithms. We also set R∗0 = R0 = E. Notice that for each i ≥ 0

we have Ri = E \∪i−1
j=1Xi, Ri = Xi+1∪Ri+1 and Ri = ∪nj=i+1Xj (same for R∗i ).

Now observe that we have:

OPT =
n∑
i=0

|R∗i | =
n∑
i=1

i · |X∗i | and AMC =
n∑
i=0

|Ri| =
n∑
i=1

i · |Xi|.

Now we de�ne p1 = 0 and for each i ≥ 2 we de�ne pi = |Ri−1|
|Xi| and for each

e ∈ E we set pe = pi if e ∈ Xi, we then have:∑
e∈E

pe =
n∑
i=1

∑
e∈Xi

pi =
n∑
i=1

|Xi| ·pi =
n∑
i=2

|Xi| ·
|Ri−1|
|Xi|

=
∑
i=1

|Ri| = AMC−|R0|.

Observe that if you use an algorithm that chooses a cut that contains at

least half of the edges at each step, including approximated maximum cut,

then for each e ∈ E \ X1 we have pe ≤ 2. Note that pe = p1 = 0 for each

e ∈ X1, so we have the following upper-bound for AMC:

AMC − |R0| =
∑

e∈E\X1

pe ≤
n∑

e∈E\X1

2 = 2|R1| ⇒ AMC ≤ |R0|+ 2|R1|.

Now we consider two cases. For the �rst case we assume |R∗1| > 2αGW−1
2αGW

·

|R0|, and the second case is when |R∗1| ≤ 2αGW−1
2αGW

· |R0|, where αGW is the ratio

of approximate max-cut algorithm.
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For the �rst case, note that X1 is the cut the approximated maximum cut

chooses in the �rst step and it has at least half of the edges, so |R1| ≤ |E|
2

= |R0|
2
.

If use the lower bound of |R0|+ |R∗1| for OPT , then we have:

AMC

OPT
≤ |R0|+ 2|R1|
|R0|+ |R∗1|

<
|R0|+ |R0|

|R0|+ 2αGW−1
2αGW

|R0|
=

2

1 + 2αGW−1
2αGW

=
4αGW

4αGW − 1
.

For the second case, note that X∗1 is a cut in G and X1 has at least αGW

fraction of the maximum cut or any other cut including X∗1 , so:

|X1| ≥ αGW · |X∗1 |.

So, for R1 we have:

|R1| = |R0|−|X1| ≤ |R0|−αGW ·|X∗1 | = |R0|−αGW ·(|R0|−|R∗1|) = (1−αGW )|R0|+αGW ·|R∗1|.

Then again, we use the lower bound of |R0|+ |R∗1| for OPT to bound the

ratio of the Approximated Max-Cut algorithm:

AMC

OPT
≤ |R0|+ 2|R1|
|R0|+ |R∗1|

≤ |R0|+ 2(1− αGW )|R0|+ 2αGW · |R∗1|
|R0|+ |R∗1|

=
(3− 2αGW )|R0|+ 2αGW · |R∗1|

|R0|+ |R∗1|
.

Remember that in this case |R0| ≥ 2αGW
2αGW−1

· |R∗1|, so:

AMC

OPT
≤ (3−2αGW )+

(4αGW − 3) · |R∗1|
|R0|+ |R∗1|

≤ (3−2αGW )+
(4αGW − 3) · |R∗1|
2αGW

2αGW−1
· |R∗1|+ |R∗1|

.

⇒ AMC

OPT
≤ (3− 2αGW ) +

(4αGW − 3)(2αGW − 1)

(4αGW − 1)
=

4αGW
4αGW − 1

.

Thus, in either case, the cost of the solution returned by the recursively

�nding an αGW -approximate max-cut is at most 4αGW
4αGW−1

times the optimum.

This completes the proof of Theorem 5.

4.4 Missing Proofs

Proof of Lemma 19. To prove this lemma, we need to show that G(c) is

increasing with c. And note that a function like X−Y c
1−Zc , where X, Y and Z are

all independent of c, is ascending if and only if XY ≥ Z. In G(c) we have

X = (1 − R) − (1 − R∗)3αGW−2
3αGW

, Y = 2γ and Z = (1−R∗)
ε

3αGW−2
3αGW

. Now recall

that we are in a case where R ≤ R∗, so:
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X ≥ (1−R∗)−(1−R∗)3αGW − 2

3αGW
= (1−R∗)·(1− 3αGW − 2

3αGW
) = (1−R∗) 2

3αGW
.

Now using the de�nition of X, Y, Z and the bound above for X, Condition

(4.5) implies XZ ≥ Y , which completes the proof of the lemma.

Proof of Lemma 20. First we do some simpli�cations to F̃ (R):

F̃ (R) =

(
1− R

4γ

)
R + αGW

(
1− R

2γ

)(
(1−R)− (1−R∗)3αGW − 2

3αGW

)
= αGW − (1−R∗)(αGW − 2/3)−R ·

(
αGW +

αGW
2γ
− 1− (1−R∗)(αGW − 2/3)

2γ

)
+ R2 ·

(
αGW
2γ
− 1

4γ

)
.

LetX = αGW−(1−R∗)(αGW−2/3), Y =
(
αGW + αGW

2γ
− 1− (1−R∗)(αGW−2/3)

2γ

)
,

and Z =
(
αGW

2γ
− 1

4γ

)
; then F̃ (R) = X−Y R+ZR2. Observe that since γ > 0,

Z is positive. Also, we will soon show that Y is positive too. Thus, the min-

imum of F̃ (R) is at R = Y
2Z
. If we show that R∗ ≤ Y

2Z
then we have shown

that F̃ (R) is totally descending in the interval 0 ≤ R ≤ R∗. So, it is enough

to show:

R∗ ≤
αGW + αGW

2γ
− 1− (1−R∗)(αGW−2/3)

2γ

2(αGW
2γ
− 1

4γ
)

.

Or equivalently we need to have:

R∗(αGW − 1/2) ≤ R∗(αGW/2− 1/3) + 1/3− γ(1− αGW ).

This inequality is exactly what we have in Condition (4.6). Also, since this

condition implies that R∗ < Y
2Z

and we know that R∗ > 0, this also means

Y > 0. Thus, the minimum of F̃ (R) is at R = R∗ and this completes the proof

of the lemma.

4.5 R∗ and γ Values to have a 0.716-approximation
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Table 4.1: Values of parameters R∗, γ and ε to run Algorithm 1 and take the
best and improve the approximation ratio to 0.716

R∗ γ F (R∗) ε

R∗1 = 0.07852 γ1 = 1.1278206 F (R∗1) = 0.670089 ε1 = 0.0689014

R∗2 = 0.09761 γ2 = 1.1621875 F (R∗2) = 0.67189 ε2 = 0.0641222

R∗3 = 0.10809 γ3 = 1.1817295 F (R∗3) = 0.673031 ε3 = 0.0616056

R∗4 = 0.11489 γ4 = 1.1946796 F (R∗4) = 0.673828 ε4 = 0.0600121

R∗5 = 0.11973 γ5 = 1.2039729 F (R∗5) = 0.67442 ε5 = 0.0588994

R∗6 = 0.12337 γ6 = 1.2110441 F (R∗6) = 0.67488 ε6 = 0.0580723

R∗7 = 0.12622 γ7 = 1.216645 F (R∗7) = 0.67525 ε7 = 0.0574297

R∗8 = 0.12853 γ8 = 1.2211909 F (R∗8) = 0.675554 ε8 = 0.0569138

R∗9 = 0.13045 γ9 = 1.2249629 F (R∗9) = 0.67581 ε9 = 0.0564888

R∗10 = 0.13206 γ10 = 1.2282025 F (R∗10) = 0.676029 ε10 = 0.0561313

R∗11 = 0.13346 γ11 = 1.2309501 F (R∗11) = 0.676219 ε11 = 0.0558255

R∗12 = 0.13467 γ12 = 1.2333801 F (R∗12) = 0.676386 ε12 = 0.05556

R∗13 = 0.13574 γ13 = 1.2355205 F (R∗13) = 0.676535 ε13 = 0.0553267

R∗14 = 0.13669 γ14 = 1.2374426 F (R∗14) = 0.676668 ε14 = 0.0551194

R∗15 = 0.13755 γ15 = 1.2391589 F (R∗15) = 0.676788 ε15 = 0.0549334

R∗16 = 0.13832 γ16 = 1.2407467 F (R∗16) = 0.676898 ε16 = 0.0547652

R∗17 = 0.13903 γ17 = 1.2421809 F (R∗17) = 0.676999 ε17 = 0.0546119

R∗18 = 0.13968 γ18 = 1.2435107 F (R∗18) = 0.677092 ε18 = 0.0544711

R∗19 = 0.14029 γ19 = 1.2447186 F (R∗19) = 0.677178 ε19 = 0.0543411

R∗20 = 0.14085 γ20 = 1.2458665 F (R∗20) = 0.677259 ε20 = 0.0542204

R∗21 = 0.14138 γ21 = 1.2469242 F (R∗21) = 0.677335 ε21 = 0.0541076

R∗22 = 0.14187 γ22 = 1.2479438 F (R∗22) = 0.677406 ε22 = 0.0540017

R∗23 = 0.14234 γ23 = 1.2488869 F (R∗23) = 0.677474 ε23 = 0.0539018

R∗24 = 0.14278 γ24 = 1.2497992 F (R∗24) = 0.677539 ε24 = 0.0538072

R∗25 = 0.1432 γ25 = 1.2506663 F (R∗25) = 0.6776 ε25 = 0.0537172

R∗26 = 0.14361 γ26 = 1.2514715 F (R∗26) = 0.677659 ε26 = 0.0536313

R∗27 = 0.14399 γ27 = 1.2522842 F (R∗27) = 0.677716 ε27 = 0.0535489

R∗28 = 0.14437 γ28 = 1.2530263 F (R∗28) = 0.67777 ε28 = 0.0534697

R∗29 = 0.14473 γ29 = 1.2537652 F (R∗29) = 0.677823 ε29 = 0.0533932

R∗30 = 0.14508 γ30 = 1.2544791 F (R∗30) = 0.677875 ε30 = 0.0533192

R∗31 = 0.14542 γ31 = 1.255175 F (R∗31) = 0.677925 ε31 = 0.0532473
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R∗32 = 0.14575 γ32 = 1.2558593 F (R∗32) = 0.677974 ε32 = 0.0531771

R∗33 = 0.14607 γ33 = 1.2565379 F (R∗33) = 0.678022 ε33 = 0.0531086

R∗34 = 0.14639 γ34 = 1.2571865 F (R∗34) = 0.67807 ε34 = 0.0530414

R∗35 = 0.1467 γ35 = 1.2578398 F (R∗35) = 0.678116 ε35 = 0.0529754

R∗36 = 0.14701 γ36 = 1.2584728 F (R∗36) = 0.678162 ε36 = 0.0529103

R∗37 = 0.14732 γ37 = 1.2590901 F (R∗37) = 0.678208 ε37 = 0.0528459

R∗38 = 0.14762 γ38 = 1.2597255 F (R∗38) = 0.678253 ε38 = 0.0527821

R∗39 = 0.14792 γ39 = 1.2603536 F (R∗39) = 0.678299 ε39 = 0.0527187

R∗40 = 0.14822 γ40 = 1.2609785 F (R∗40) = 0.678344 ε40 = 0.0526554

R∗41 = 0.14852 γ41 = 1.2616042 F (R∗41) = 0.678389 ε41 = 0.0525923

R∗42 = 0.14883 γ42 = 1.2622052 F (R∗42) = 0.678435 ε42 = 0.0525289

R∗43 = 0.14913 γ43 = 1.2628447 F (R∗43) = 0.678481 ε43 = 0.0524653

R∗44 = 0.14943 γ44 = 1.2634973 F (R∗44) = 0.678527 ε44 = 0.0524013

R∗45 = 0.14974 γ45 = 1.2641378 F (R∗45) = 0.678574 ε45 = 0.0523366

R∗46 = 0.15006 γ46 = 1.2647704 F (R∗46) = 0.678622 ε46 = 0.052271

R∗47 = 0.15038 γ47 = 1.2654297 F (R∗47) = 0.67867 ε47 = 0.0522044

R∗48 = 0.1507 γ48 = 1.2661208 F (R∗48) = 0.67872 ε48 = 0.0521367

R∗49 = 0.15103 γ49 = 1.2668193 F (R∗49) = 0.678771 ε49 = 0.0520674

R∗50 = 0.15138 γ50 = 1.2675011 F (R∗50) = 0.678823 ε50 = 0.0519965

R∗51 = 0.15173 γ51 = 1.2682323 F (R∗51) = 0.678876 ε51 = 0.0519237

R∗52 = 0.15209 γ52 = 1.26899 F (R∗52) = 0.678932 ε52 = 0.0518486

R∗53 = 0.15246 γ53 = 1.2697821 F (R∗53) = 0.67899 ε53 = 0.0517711

R∗54 = 0.15285 γ54 = 1.2705873 F (R∗54) = 0.679049 ε54 = 0.0516907

R∗55 = 0.15325 γ55 = 1.2714451 F (R∗55) = 0.679112 ε55 = 0.051607

R∗56 = 0.15368 γ56 = 1.2723064 F (R∗56) = 0.679177 ε56 = 0.0515197

R∗57 = 0.15412 γ57 = 1.273244 F (R∗57) = 0.679246 ε57 = 0.0514283

R∗58 = 0.15459 γ58 = 1.2742119 F (R∗58) = 0.679319 ε58 = 0.0513321

R∗59 = 0.15508 γ59 = 1.2752568 F (R∗59) = 0.679396 ε59 = 0.0512306

R∗60 = 0.1556 γ60 = 1.2763678 F (R∗60) = 0.679478 ε60 = 0.051123

R∗61 = 0.15616 γ61 = 1.2775371 F (R∗61) = 0.679566 ε61 = 0.0510085

R∗62 = 0.15676 γ62 = 1.2787913 F (R∗62) = 0.67966 ε62 = 0.0508861

R∗63 = 0.1574 γ63 = 1.280162 F (R∗63) = 0.679762 ε63 = 0.0507544

R∗64 = 0.1581 γ64 = 1.2816267 F (R∗64) = 0.679872 ε64 = 0.0506122

R∗65 = 0.15886 γ65 = 1.2832312 F (R∗65) = 0.679993 ε65 = 0.0504577
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R∗66 = 0.15969 γ66 = 1.2850016 F (R∗66) = 0.680126 ε66 = 0.0502888

R∗67 = 0.16061 γ67 = 1.2869469 F (R∗67) = 0.680274 ε67 = 0.0501029

R∗68 = 0.16163 γ68 = 1.2891241 F (R∗68) = 0.680439 ε68 = 0.0498968

R∗69 = 0.16277 γ69 = 1.2915835 F (R∗69) = 0.680625 ε69 = 0.0496664

R∗70 = 0.16407 γ70 = 1.2943462 F (R∗70) = 0.680837 ε70 = 0.0494067

R∗71 = 0.16555 γ71 = 1.2975399 F (R∗71) = 0.681081 ε71 = 0.0491107

R∗72 = 0.16727 γ72 = 1.3012328 F (R∗72) = 0.681366 ε72 = 0.0487696

R∗73 = 0.16928 γ73 = 1.305618 F (R∗73) = 0.681704 ε73 = 0.0483715

R∗74 = 0.17169 γ74 = 1.310843 F (R∗74) = 0.682112 ε74 = 0.0478995

R∗75 = 0.17461 γ75 = 1.3172771 F (R∗75) = 0.682614 ε75 = 0.0473301

R∗76 = 0.17825 γ76 = 1.3253364 F (R∗76) = 0.68325 ε76 = 0.0466283

R∗77 = 0.18292 γ77 = 1.3357437 F (R∗77) = 0.68408 ε77 = 0.0457406

R∗78 = 0.18912 γ78 = 1.3497665 F (R∗78) = 0.68521 ε78 = 0.0445811

R∗79 = 0.19775 γ79 = 1.3696989 F (R∗79) = 0.686838 ε79 = 0.0430022

R∗80 = 0.21061 γ80 = 1.4001298 F (R∗80) = 0.689369 ε80 = 0.0407297

R∗81 = 0.23172 γ81 = 1.4523369 F (R∗81) = 0.693804 ε81 = 0.0371936

R∗82 = 0.27259 γ82 = 1.5620635 F (R∗82) = 0.703325 ε82 = 0.0309996

R∗83 = 0.32069 γ83 = 1.7081291 F (R∗83) = 0.716 ε83 = 0.0177022
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Chapter 5

Conclusion

We conclude by discussing some directions for future work for the problems

considered in this thesis and some of their variants.

5.1 Future Directions - The RMFC Problem

Regarding this problem the main important question is to whether it is possible

to �nd an asymptotic polynomial time approximation scheme (APTAS) or

not. We believe that it should be possible to have an asymptotic PTAS for

the RMFC problem. Perhaps one way is to somehow guess the upper part

of the optimal solution in polynomial time and then use the LP to round

the solution for the height reduced instance for which we initially applied the

height reduction lemma.

Recall that the RMFC problem on trees does not admit better than 2-

approximation unless NP = NP [57]. However, this does not rule out the

possibility of a +1 approximation or an asymptotic PTAS. Our result is an

indication that it is plausible that an asymptotic PTAS exists, especially since

the exponent is O(log log n), not O(log n).

5.2 Future Directions - Throughput Maximiza-

tion

There are so many possible directions regarding the Throughput Maximization

problem. Here are a summary of the questions that seem interesting but we
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could not answer:

� (Q)PTAS for general c and m = O(1):

One interesting and important question is if it is possible to �nd a PTAS

using our approach (cutting heads and tails and using DP) for general c.

Currently the best algorithm for unweighted throughput maximization

on m = O(1) machines for general c has approximation ratio (α0 − ε)

(running in time nO(m/ε5)) for some absolute α0 > 1−1/e [49]. So �nding

a PTAS (or even a QPTAS) would be a huge improvement.

Recall that there is another algorithm with ratio 1−O(
√

(logm)/m− ε)

(for any ε > 0) on m machines [49]. This ratio approaches 1 as m

grows, so, the only case we should try to improve is when the number of

machines is constant.

Here is what we think might be a good approach towards such result.

Based on Lemma 8 we can remove the heads and tails of the span of

all the jobs with relatively small processing times (with respect to their

span size) to have a more structured instance. But this is coming with a

loss of O(εc) fraction of the total number of jobs where c is the number

of distinct processing times.

Improving Lemma 8 by considering all the jobs at the same time (instead

of once for each processing time p ∈ P ) to reduce the loss to only an

O(ε) fraction of the jobs, would eliminate the need to introduce ε′ = ε/c,

so the total running time of the algorithm would be much better.

Also, reducing the running time of the dynamic programming that we use

to prove Theorem 11 to ε−3(log n/ε)O(ε−6c) log T (right now the running

time of the dynamic programming part of our algorithm is ε−3nO(ε−6c) log T )

with possibly another O(ε) loss in the objective function using a rounding

technique, will give a PTAS for a more general case of c = O( logn
log logn

).

� NP-Hardness and APX-Hardness Results:

There are only two main hardness results for Throughput Maximization

Problem. Spieksma [72] showed that the discrete version of the problem
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is MAX-SNP hard using a reduction to a version of MAX-3SAT . For

the continuous version, it has been shown in [35] that even for m = 1

and pj ∈ {p, q} where p and q are strictly greater than 1 the prob-

lem is NP-Complete. So, there could be so many di�erent interesting

questions regarding the NP-hardness or APX-hardness of Throughput

Maximization Problem and its di�erent special cases. One main question

that seems more interesting is to check if the problem is APX-Hard for

general c or not.

� Throughput Maximization with Resource Augmentation:

As an easy corollary, the PTAS we present for c distinct processing

times implies a bi-criteria QPTAS as well, i.e. a (1− ε)-approximation

using (1 + ε)-speed up with quasi-polynomial running time for general

values of c. This would be the same as the best known algorithm for the

problem presented by [50]. One interesting question is to �nd a bi-criteria

PTAS for throughput maximization with resource augmentation. An

obvious way to achieve this is to improve the running time of our dynamic

programming to be polynomial when c = polylog(n). Another possible

way is to use the machine speed-up, not only for rounding the processing

times to reduce c to log n, but also throughout the algorithm. Adjusting

Lemma 8 considering the speed-up, to reduce the loss from O(εc) to

O(ε), and changing our dynamic programming approach to utilize the

speed-up ability and reduce the running time even more, would result in

a PTAS for a more general case of c = O( logn
log logn

).

� Machine Minimization Problem:

Another interesting open question is whether it is possible to use our

method to improve the best ratios in the Machine Minimization prob-

lem or not. For the problem of machine minimization, where we have

to �nd the minimum number of machines with which we can sched-

ule all the jobs, the algorithm provided in [66] has approximation ratio

O(
√

log n/ log log n) only when OPT = Ω(
√

log n/ log log n), and ra-
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tio O(1) when OPT = Ω(log n). Later Chuzhoy et al. [27] presented

an O(OPT )-approximation which is good for the instances with rela-

tively small OPT . Combining this with the earlier works implies an

O(
√

log n/ log log n)-approximation. Chuzhoy and Naor [28] showed a

hardness of Ω(log log n) for the machine minimization problem.

� Resource Allocation Extension:

Another generalization of the problem is when we assign a height to

each job as well and allow them to share the machine as long as the

total height of all the jobs running on a machine at the same time is no

more than 1. The �rst approximation algorithm for this generalization is

provided by Bar-Noy et al. [13] which has ratio 1/5. Chuzhoy et al. [29]

improved it by providing an (e − 1)/(2e − 1) > 0.3873-approximation

algorithm which is only working for the unweighted and discrete version

of the problem. So, another direction is to check if our approach could

improve the approximation ratio for resource allocation problem or not.

There is also another extension of the problem where each job j needs

mj many machines at the same time to be able to be processed. In the

regular Throughput Maximization mj = 1 for all jobs. This could also

be a good direction to check if our approach could be extended.

5.3 Future Directions - Hierarchical Clustering

This is a list of the open questions one can consider regarding this problem:

� Providing Algorithms with Better Approximation Ratios for

RevDual(T ):

As we discussed in the previous work section Alon et al. [5] proved that

the algorithm of [3] is actually giving a 2ρ/3 = 0.585-approximation,

by detecting the cases where average-linkage is not good and provided

another algorithm which performs better in those cases, using Maximum

Un-Cut Bisection in the �rst step and Average Linkage (or Random) for
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the remaining clusters. Then they managed to show that, by taking the

better of the two solutions the approximation ratio would be better.

One question is to see whether using a similar "peel o�" phase at the

beginning and then choosing the better of the two of Random (or Av-

erage Linkage) and Minimum Cut (Maximum Un-Cut) would make any

improvement in the approximation ratio, or not.

When we have wi,js as similarities, then it makes sense to peel o� those

nodes with Wv < γ 2W
n
, or those with less than average similarity to

others. Then, what remains is a set of nodes with big similarities to each

others. Running the better of the two of Minimum Cut and Random

might lead to a better approximation ratio.

� Hardness Results for CostH(T ):

As we discussed before, there is an NP-hardness result for the problem

of minimizing Cost(T ) [32] and APX-Hardness result for the problem

of maximizing Rev(T ) [3]. We believe that it could be possible to �nd

such results for the newly introduced objective function CostH(T ).
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