
University of Alberta

Probabilistic and Stochastic Computational Models:

from Nanoelectronic to Biological Applications

by

Jinghang Liang

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Department of Electrical and Computer Engineering

 Jinghang Liang

Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential

users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatever without the author’s prior written permission.

©

To my family and friends

ABSTRACT

A finite state machine (FSM) is a classical abstract model for sequential circuits

that are at the core of any digital system. Due to fabrication defects and transient

faults, the reliable operation of sequential circuits is greatly desired. In this thesis,

computational models are initially constructed using state transition matrices

(STMs) and binary decision diagrams (BDDs) of an FSM; a phenomenon called

error masking and the restoring properties of sequential circuits are then analyzed

in detail. This analysis provides a basis for further devising efficient and robust

implementation when designing FSMs.

Arithmetic circuits play an important role in many digital systems and have

fundamentally critical applications in signal processing. Addition is perhaps the

most important and basic arithmetic operation for many applications. Recent

research has focused on probabilistic and approximate adders that trade off

accuracy for energy saving. Since there was a lack of appropriate metrics to

evaluate the efficacy of these inexact designs, several new metrics are proposed in

this work for evaluating the reliability as well as the power efficiency of an adder.

These new metrics can be used in future designs for a better assessment of the

power and precision tradeoff.

Although current digital systems are based on complementary metal–oxide–

semiconductor (CMOS) technology and employ binary values in the

representation of signals, multiple valued logic (MVL) circuits using novel nano-

devices have been investigated due to their advantages in information density and

operating speed. In this thesis, pseudo-complementary MVL circuits are further

proposed for implementations using carbon nanotube field effect transistors

(CNTFETs). Because of the fabrication non-idealities, reliability evaluation of

these MVL circuits becomes important. Subsequently, stochastic computational

models (SCMs) are developed to analyze the reliability of CNT MVL circuits.

Finally, the stochastic computational model is applied in the modeling of

biological networks. Specifically, stochastic Boolean networks (SBNs) are

proposed for an efficient modeling of genetic regulatory networks (GRNs). The

proposed SBN can accurately and efficiently simulate a GRN without and with

random gene perturbation, which will help to reveal biologically meaningful

insights for a better understanding of the dynamics of GRNs.

PREFACE

As technology scales down in the nanometer regime, either complementary

metal–oxide–semiconductor (CMOS) or novel technology-based circuits suffer

from the problems of fabrication defects and transient faults. Noise and process

variations are unavoidable in an implementation [1]. As a result, the behavior of

future circuits is predicted to be probabilistic instead to be deterministic and

therefore reliability evaluation techniques will become more important for future

circuit design. Several computational methodologies have been developed for

evaluating the reliability of combinational logic circuits. The analysis of the

operation of sequential circuits is mostly considered as a direct extension of

combinational techniques. However, sequential circuits have some unique

features. As the feedback signals in a sequential circuit can be logically masked

by specific combinations of primary inputs, the cumulative effects of soft errors

can be logically masked. This phenomenon, referred to as error masking, is

related to the presence of so-called restoring inputs and/or the consecutive

presence of specific inputs in multiple clock cycles (equivalent to a synchronizing

sequence in switching theory [96, 97]). State transition matrices (STMs) and

binary decision diagrams (BDDs) are used to analyze the reliable function of a

finite state machine (FSM). Extensive simulations of benchmark circuits are

performed to provide a basis for further devising efficient and robust

implementations of FSMs.

As a fundamental arithmetic operation in many applications of inexact computing,

soft addition has attracted a lot of research attention [37, 38, 40]. Generally, a soft

adder is based on the operation of deterministic approximate logic or probabilistic

imprecise arithmetic. Since the traditional metric of reliability (defined as the

probability of system survival) is not appropriate for use in evaluating

approximate designs, new design metrics are urgently needed to evaluate the

effectiveness of various designs. This thesis has proposed new metrics for

evaluating adder designs with respect to reliability and power efficiency for

inexact computing. A detailed analysis and simulation results are presented to

assess the reliable performance of these adders using the proposed new metrics. It

is shown that these metrics can be useful in assessing future inexact adder designs.

Recently, carbon nanotube field effect transistors (CNTFETs) have been

extensively studied as a possible successor to silicon metal–oxide–semiconductor

field effect transistors (MOSFETs) and as a possible implementation of multiple-

valued logic (MVL) [48, 49]. In this thesis, a pseudo-complementary CNTFET-

based MVL design is proposed. In particular, ternary and quaternary gates are

illustrated in detail as examples. Due to the presence of manufacturing defects,

these proposed gates operate in a probabilistic way. Therefore the reliability

analysis of the proposed MVL gates and circuits is considered next. Since

previous methods of reliability evaluation have a large complexity, an approach

using stochastic computational models (SCMs) is developed for the proposed

MVL gates and circuits as a scalable technique for reliability evaluation in this

thesis.

Similar to nanoscale circuits, biological networks also present probabilistic

behaviors. Probabilistic Boolean networks (PBNs) have been proposed to address

these probabilistic behaviors of gene regulatory networks (GRNs) [66, 67].

However, their computational complexity makes them difficult to use. To address

this, stochastic Boolean networks (SBNs) are proposed as an efficient approach to

modeling GRNs. The SBN approach is able to reproduce biologically-proven

regulatory behaviors, such as the oscillatory dynamics of the p53-Mdm2 network

and the dynamic attractors in a T cell immune response network. The proposed

approach can further predict the network dynamics when the genes are under

perturbation, thus providing biologically-meaningful insights for a better

understanding of the dynamics of GRNs. Our proposed algorithms and methods

have been implemented in Matlab packages and can be used for future

applications of GRN analysis.

ACKNOWLEDGEMENTS

The work presented in this thesis could not have happened without the help of

many people. My supervisor, Dr. Jie Han, has always been providing me with not

only support and guidance in my research work, but also a constant source of

encouragement throughout the duration of this thesis. I would like to thank Dr.

Fabrizio Lombardi for his insightful advices into this research. I would also like to

thank Dr. Bruce Cockburn and Dr. Guohui Lin for serving on my dissertation

committee.

I would like to thank Hao Chen, who has always provided wonderful feedback,

ideas, and friendship. I would also like to thank many other people for the

discussions: Zhiyin Zhou, Russel Dodd, Joyce Li, Zhixi Yang, Peican Zhu and

Linbin Chen.

I wish to thank my entire family, for their love, support, and encouragement.

TABLE OF CONTENTS
CHAPTER 1 Introduction... - 1 -

1.1. Background and Motivation... - 2 -

1.1.1. Technology Scaling .. - 2 -

1.1.2 Permanent Defects and Soft Errors .. - 3 -

1.2. Related Work ... - 3 -

1.2.1. Probabilistic Transfer Matrices (PTMs).. - 3 -

1.2.2. Probabilistic Gate Models (PGMs) ... - 4 -

1.2.3. Stochastic Computational Models (SCMs) ... - 5 -

1.3. Contribution of this Work .. - 6 -

1.4. Thesis Outline .. - 7 -

CHAPTER 2 Analysis of Error Masking and Restoring Properties of Sequential Circuits

 .. - 8 -

2.1. Defintions ... - 9 -

2.2. Error Masking .. - 12 -

2.2.1. Restoring inputs .. - 12 -

2.2.2. Error masking in multiple steps .. - 14 -

2.2.3. Case study: s27, ISCAS’89 benchmark circuit - 20 -

2.2.4. Partial error masking ... - 22 -

2.2.5. Complexity .. - 23 -

2.3. Analysis using BDDs ... - 24 -

2.3.1. Finding the restoring inputs .. - 24 -

2.3.2. Multiple-step error masking .. - 26 -

2.3.3. Simulation results .. - 27 -

2.4. Summary .. - 28 -

CHAPTER 3 New Metrics for the Reliability of Approximate and Probabilistic

Adders ………………………………………………………………………………..- 32 -

3.1. Review ... - 33 -

3.1.1 Conventional Full Adder (CFA) .. - 33 -

3.1.2 Lower-Part-OR Adder (LOA) .. - 34 -

3.1.3 Approximate Mirror Adder (AMA) ... - 35 -

3.1.4 Probabilistic Full Adder (PFA) .. - 35 -

3.2. Sequential Probability Transition Matrices .. - 36 -

3.2.1 Definitions.. - 36 -

3.2.2 Probabilistic transfer matrices (PTMs) .. - 37 -

3.2.3 Formulation of sequential PTMs (SPTMs) .. - 38 -

3.2.4 Reliability evaluation using SPTMs .. - 40 -

3.3. Mean and Normalized Error Distances .. - 45 -

3.3.1 Error Distance .. - 45 -

3.3.2 Mean Error Distance (MED).. - 46 -

3.3.3 Mean Error Distance (MED) Evaluation ... - 50 -

3.3.4 Normalized Error Distance (NED) and its Evaluation - 51 -

3.4. Power and Precision Trade-off .. - 53 -

3.5. Summary .. - 58 -

CHAPTER 4 Design and Reliability Analysis of Multiple Valued Logic Gates using

Carbon Nanotube FETs... - 61 -

4.1. Design of Multiple Valued Logic Gates using CNTFETs - 62 -

4.1.1 Review ... - 62 -

4.1.2 Pseudo-complementary CNTFET-based MVLs - 63 -

4.2. Stochastic Logic using Non-Bernoulli Sequences ... - 68 -

4.2.1 Stochastic Logic ... - 68 -

4.2.2 Non-Bernoulli Sequences .. - 70 -

4.2.3 Non-Bernoulli vs. Bernoulli Sequences ... - 73 -

4.3. Reliability Analysis of Multiple Valued Logic Gates using CNTFETs - 75 -

4.3.1 Fault Models for CNTFETs ... - 75 -

4.3.2 Reliability analysis of MVL gates ... - 77 -

4.4 Stochastic Computatioanl Models for MVLs ... - 82 -

4.4.1 Ternary and quaternary inverters ... - 82 -

4.4.2 SCMs for combinational MVLs ... - 84 -

4.5. Summary .. - 87 -

CHAPTER 5 Stochastic Boolean Networks: An Efficient Approach to Modeling Gene

Regulatory Networks .. - 88 -

5.1. Background .. - 89 -

5.2. Methods.. - 92 -

5.2.1 Probabilistic Boolean Networks (PBNs) .. - 92 -

5.2.2 Stochastic Boolean Networks (SBNs) ... - 94 -

5.2.3 Applications of SBNs .. - 100 -

5.2.4 Example: The p53-Mdm2 Network ... - 103 -

5.3. Results and Discussion .. - 108 -

5.3.1 Simulations with Randomly Generated Networks - 108 -

5.3.2 Experiments on a T-cell Time Series Dataset - 113 -

5.3.3 Relationship to Other GRN Models ... - 122 -

5.3.4 Application on GRN Analysis ... - 125 -

5.4. Summary .. - 126 -

CHAPTER 6 Conclusions... - 128 -

BIBLIOGRAPHY ... - 134 -

LIST OF TABLES

2.1. Simulation results for S27 23

2.2. Restoring inputs obtained by the BDD analysis for s27 27

2.3. The number of single-step restoring inputs (No.) for ISCAS’89 benchmark circuits found

using BDDs with runtime (T) and memory usage (M) 28

2.4. The number of restoring inputs of benchmark circuits found using BDDs (No.) and the

required memory usage (M) and runtime (T) 29

3.1. Truth table of conventional mirror adder and its approximate implementations 36

3.2. The reliability of some sequential circuits obtained using SPTMs 45

3.3. Mean Error Distance for four clock cycles with random inputs 48

3.4. Power and saving per lower bit of the adder implementations 56

3.5. Power consumption of various implementations of a 32-bit adder with a largest MED of 16

 57

4.1. Truth table for three ternary inverters 64

4.2. All possible scenarios for an STI when Input<0.3V (Logic 0) 79

4.3. Output probabilities of an STI when Input<0.3V (Logic 0) 80

4.4. Output probabilities of an STI when 0.3V<Input<0.6V (Logic 1) 80

4.5. Output probabilities of an STI when Input>0.6V (Logic 2) 80

4.6. Output probabilities of the proposed STI 81

4.7. Output probabilities of the NMIN operator 81

4.8. Output probabilities of the NTI and PTI operator 82

4.9. All possible scenarios of quaternary inverter when Input<0.3V (Logic 0) 82

4.10. Output probabilities of quaternary inverter when Input<0.3V (Logic 0) 82

4.11. Output probabilities of a quaternary inverter 83

4.12. Simulation results of the decoder using SCMs (sequence length = 10000 bits) 87

5.1. State transition probabilities of the p53-Mdm2 network 106

5.2. Truth table of the PBN for the p53-Mdm2 network 106

5.3. Errors in the state transition matrices obtained using SBNs without perturbation, compared to

the results by using the analytical approach in [74] 110

5.4. Run time and errors in the computation of state transition matrices (the original SBN sequence

length = 1000 bits, no perturbation, n: the number of genes, and N: the number of BNs) 111

5.5. Run time and errors in the computation of state transition matrices (sequence length = 1000

bits, perturbation probability = 0.01, n: the number of genes, and N: the number of BNs) 111

5.6. Minimum sequence length and run time required in the computation of state transition

matrices for given accuracies, measured by Norm 2 (no perturbation, n: the number of genes, and

N: the number of BNs) 112

5.7. Minimum sequence length and run time required in the computation of state transition

matrices for given accuracies, measured by Norm 2 (perturbation probability = 0.01, n: the number

of genes, and N: the number of BNs) 112

5.8. Run time and errors in the computation of state transition matrices for SBN and the

approximation method in [75] (no perturbation, n: the number of genes, and N: the number of BNs)

 113

5.9. Time consumption of the time frame expansion technique for randomly-generated networks

 115

5.10. Code of the 12 genes in the T cell immune response network 118

5.11. Attractors found by the SBN approach, compared to the experimental results in [91] 121

5.12. Pseudo-attractors found by the SBN with perturbation 124

LIST OF FIGURES

1.1 (a) A general combinational circuit with m inputs and n outputs; (b) PTM of the circuit 4

1.2. A stochastic encoding 5

2.1. Mealy model of a sequential circuit 10

2.2. State transition diagram for an N-step error masking 12

2.3. An STM indicating the existence of a restoring input 14

2.4. Example of a two-step error masking 18

2.5. Example of N-step error masking 20

2.6. Schematic diagram of S27 21

2.7. of S27 is the STM for the 14th primary input 22

2.8. An STM with the occurrence of partial error masking 24

2.9. BDDs for the next state of s27 26

2.10. Time frame expansion of a sequential circuit 27

3.1. A k-bit sequential adder 34

3.2. A one-bit conventional full adder (CFA) 34

3.3. Hardware structure of the lower-part-OR adder (LOA) 35

3.4. Hardware structure of the probabilistic full adder (PFA) 37

3.5. An ITM and PTM for a two-input NAND gate 38

3.6. Mealy model of a sequential circuit 39

3.7. S-PTM evaluation of a sequential half adder with one primary input, one flip-flop and one

primary output 43

3.8. The S-PTM for the two lower bits of the 3-bit adder 49

3.9. (a) Reliability vs. the number of lower bits in a 32-bit adder, and (b) MED vs. the number of

lower bits in the 32-bit adder 52

3.10. Normalized Error Distance (NED) vs. the number of lower bits 53

3.11. The power-NED product vs. the number of lower bits for different adder implementations

and gate error rates 57

3.12. The power saving-NED ratio vs. the number of lower bits for different adder

implementations and gate error rates 58

3.13. Relationship between power and precision, given by the power consumption per bit and the

NED of a design 59

4.1. CNTFET structure with four CNTs in the channel 63

4.2. (a) A pseudo-complementary STI; (b) A pseudo-complementary ternary NMIN operator 65

4.3. Proposed ternary pseudo-complementary NTI and PTI 65
4.4. Voltage transfer diagram for the ternary inverters (STI, PTI and NTI) 66

4.5. Transient simulation results of the ternary inverters 66

4.6. Transient simulation results of ternary NMIN operator 67

4.7. (a) A pseudo-complementary quaternary inverter; (b) A pseudo-complementary quaternary

NMIN operator 68
4.8. Voltage transfer diagram for the quaternary inverter of Figure 4.7(a) 68

4.9. Transient simulation results of quaternary inverter and NMIN operator 69
4.10. An inverter and a stochastic encoding 69

4.11. Stochastic AND logic 71

4.12. Stochastic computational model for (a) a ternary inverter (b) a quaternary inverter 84

4.13. Schematic diagram of the ternary decoder 87

4.14. Reliability evaluation using stochastic computational models for the ternary decoder 87

5.1. Stochastic logic 97

5.2. A stochastic Boolean network (SBN) without perturbation (for a single gene) 98

5.3. An SBN with perturbation 100

5.4. An SBN for a deterministic asynchronous PBN 102

5.5. A time-frame extended SBN 104

5.6. The p53-Mdm2 network (adapted from [55]) 105

5.7. An SBN for the p53-Mdm2 network (without perturbation) 107

5.8. An SBN for the p53-Mdm2 network (with perturbation) 108

5.9. Comparisons of runtime of the SBN technique and the technique in [74] 114

5.10. A T cell immune response network inferred from a time series gene expression dataset

(adapted from [91]) 117

5.11. An SBN for the GRN in Figure 5.10 119

5.12. State distributions of the SBN in Figure 5.11 after 28, 29 and 30 clock cycles obtained using

the time-frame expansion technique 122

5.13. Steady state distribution of the T cell network with perturbation rate of 0.01 123

5.14. A flowchart for the application of the SBN approach in GRN analysis 128

LIST OF ACRONYMS

ACCNT Asymmetrically-Correlated Carbon Nanotube

AMA Approximate Mirror Adder

BDD Binary Decision Diagram

BN Boolean Network

CMOS Complementary Metal Oxide Semiconductor

CNTFET Carbon Nanotube Field Effect Transistor

CFA Conventional Full Adder

CME Chemical Master Equation

CSTM Cumulative State Transition Matrix

DA-BN Deterministic-Asynchronous Boolean Network

DA-PBN Deterministic-Asynchronous Probabilistic Boolean Network

DRAM Dynamic Random Access Memory

ED Error Distance

FET Field Effect Transistor

FSM Finite State Machine

GRN Gene Regulatory Network

IDCT Inverse Discrete Cosine Transform

ITRS International Technology Roadmap for Semiconductors

LIA Lower-bit Ignored Adder

LOA Lower-part OR Adder

MA Mirror Adder

MCMC Markov Chain Monte Carlo

MC Monte Carlo

MED Mean Error Distance

MPU Micro Processor Unit

MVL Multiple Valued Logic

NED Normalized Error Distance

NS Next States

NTI Negative Ternary Inverter

PBN Probabilistic Boolean Network

PCMOS Probabilistic Complementary Metal Oxide Semiconductors

PDD Probabilistic Decision Diagram

PFA Probabilistic Full Adder

PGM Probabilistic Gate Model

PS Present States

PTI Positive Ternary Inverter

PTM Probabilistic Transfer Matrix

SBN Stochastic Boolean Network

SCM Stochastic Computational Model

SER Soft Error Rate

SEU Single Event Upset

SPICE Simulation Program with Integrated Circuit Emphasis

SPTM Sequential Probabilistic Transfer Matrix

SSA Stochastic Simulation Algorithm

STI Standard Ternary Inverter

STM State Transition Matrix

VLSI Very-Large-Scale Integration

- 1 -

CHAPTER 1

Introduction

Finite state machines (FSMs) play significant roles in modern circuits and

systems. Reliability evaluation of FSMs is urgently needed due to the problems

of fabrication defects and transient faults. As reliability is becoming a major

design metric [1], various reliability evaluation techniques have been proposed for

use in combinational logic circuits. These include accurate but computationally

expensive techniques such as those using probabilistic transfer matrices (PTMs)

[2], probabilistic gate models (PGMs) [3] and probabilistic decision diagrams

(PDDs) [4], as well as those more efficient but approximate approaches using

Bayesian networks [5], Boolean difference calculus [6], circuit transformations [7]

and several other scalable techniques [8]. A recent approach using stochastic

computational models (SCMs) has been presented for a highly accurate analysis

of logic circuits with moderate computational complexity [9].

This chapter includes an introduction to several approaches for evaluating the

reliability of combinational circuits. It is organized as follows. Section 1.1

describes the background and motivation of reliability evaluation. Section 1.2

reviews several existing approaches and related work. Section 1.3 provides a

- 2 -

description of the contribution of this work and Section 1.4 gives the outline of

this thesis.

1.1. Background and Motivation

Following Moore’s Law, the number of transistors in a single chip is doubled

every 18 months. Device scaling refers to the reductions in feature size and

voltage levels of transistor. This improves performance because smaller devices

require lower voltages to turn on or off, and thus can be operated at higher

frequencies. As transistors become smaller, they switch faster, dissipate less

power, and are cheaper to manufacture. However, this downscaling also brings

many challenges for future technologies.

1.1.1. Technology Scaling

According to the International Technology Roadmap for Semiconductors (ITRS),

which predicts complementary metal–oxide–semiconductor (CMOS) feature size

scaling and directs research effort to address future challenges, the feature size of

CMOS transistors has been becoming smaller and the density of transistors per

unit area is doubled every generation [10].

There is no doubt that downscaling has a positive impact on performance and cost;

however, the power density has increased with higher clock frequency and higher

 than predicted [11]. Therefore, temperature-related noise and interference

become more significant. In order to reduce static power consumption, lower

 as well as higher are adopted. This increases supply voltage noise [12]

and threshold variations [13] that lead to lower circuit reliability. Besides, smaller

transistor sizes make devices more susceptible to manufacturing defects [14].

Consequently, future design will have to place more emphasis on coping with

those unpredictable circuit behaviors.

- 3 -

1.1.2 Permanent Defects and Soft Errors

In practical implementations, defects are almost unavoidable. Random defects in

flash, dynamic random access memory (DRAM) and micro-processor unit (MPU)

remain the same generation by generation [10]. Typical defects in very-large-

scale integration (VLSI) chips include process defects, material defects, age

defects as well as package defects. Permanent defects that occur either during

manufacturing or during the use of devices and could cause the system to fail

permanently.

Different from permanent defects, soft errors, also called transient faults or single-

event upsets (SEUs), are due to electrical noises or external radiations [15].

Specifically, many soft errors are caused by high energy neutrons resulting from

cosmic rays colliding with particles in the atmosphere. The existence of cosmic

ray radiation has been known for over 50 years, and the capacity for this radiation

to create transient faults in semiconductor circuits has been studied since the early

1980s [15].

1.2. Related Work

1.2.1. Probabilistic Transfer Matrices (PTMs)

Most faults in nanometric logic circuits are either inherently probabilistic, or can

be modeled probabilistically [2]. The signal probability of an input or output of a

logic gate is usually defined as the probability that the signal is logical “1”. A

logic function transforms its inputs to its output probability. The reliability of an

output is defined as the probability of the output with an expected logic value of

“1,” or its complement otherwise.

In PTMs, signal probabilities are represented in matrices and signal propagations

are formulated as matrix operations. Accurate modeling of reliability makes

PTMs an elegant approach for combinational logic circuits [2]. Circuit PTMs that

map the probabilistic distribution of primary inputs into that of the primary

- 4 -

outputs can be obtained by combining gate PTMs using simple matrix operation

rules. Each entry in a circuit PTM represents a joint transition probability between

an input and an output combination, and as a result, the circuit PTM scales

exponentially with the number of inputs and outputs of a circuit, shown in Figure

1.1. PTMs therefore become impractical when dealing with large scale circuits.

Figure 1.1 (a) A general combinational circuit with m inputs and n outputs; (b) PTM of the

circuit.

1.2.2. Probabilistic Gate Models (PGMs)

Soft error, or SEU, can be modeled by a von Neumann fault that flips a gate’s

correct output with an error rate . Therefore, the output of a gate can be

described as follows:

 () () (1.1)

where is the gate error rate and p is the probability that a fault-free gate outputs

a “1”. A PGM is developed based on (1.1) and describes the relationship between

a gate’s output probability, its input probabilities and the gate error rate [3].

Circuit reliability can then be calculated by the executions of PGMs guided by the

connectivity of gates. In particular, by identifying and decomposing the

reconvergent fanouts following the circuit topology, problems such as signal

correlations due to reconvergent fanouts and correlated inputs can be effectively

handled. However, with the number of dependent reconvergent fanouts increasing,

the PGM algorithm has a computational complexity that increases exponentially

[3]. Due to the very large computational overhead, the accurate analysis of large

- 5 -

circuits is likely to be impractical and the use of PGM is therefore only limited to

small circuits.

1.2.3. Stochastic Computational Models (SCMs)

In stochastic computation, real numbers or probabilities are represented by

random binary bit sequences. Typically, signal probabilities are encoded as the

proportion of the mean number of 1’s in a bit stream. Figure 1.2 illustrates a

stochastic encoding [16].

Figure 1.2 A stochastic encoding [16]

In [9], Chen and Han used stochastic computational models (SCMs) to compute

the signal probabilities as specified by the PGM equation (1.1). A PGM equation

for an arbitrary logic function can be implemented using an SCM with a

stochastic logic version of XOR as follows:

 () () () (1.2)

Therefore, an SCM can be obtained by adding an XOR gate to an unreliable gate

where the gate error is processed by the XOR.

The implementation of the SCM approach is straightforward in that a stochastic

computational network can be constructed by adding an XOR gate to each logic

gate in a combinational circuit, feeding random input sequences into the network

and propagating them from the primary inputs to outputs. Since signal

dependencies are encoded in the random distribution of the binary streams, the

computational complexity of the SCM approach is significantly reduced.

Simulation results in [9] indicate an average error rate of less than 0.1% for the

- 6 -

LGSynth91 benchmarks, compared to the results obtained by the accurate PGM

algorithm. It is potentially useful for various VLSI applications.

1.3. Contribution of this Work

With the scaling of CMOS technology into nanometric feature sizes, the reliable

operation of FSMs has attracted much concern. In this thesis, we provide the

analysis of the operation of sequential circuits, especially the case where the

feedback signals in a sequential circuit can be logically masked by specific

combinations of primary inputs. With state transition matrices (STMs) and binary

decision diagrams (BDDs) of a finite state machine (FSM) model, the so-called

error masking phenomenon is extensively analyzed. The analysis of error masking

is potentially useful in implementing efficient and robust sequential circuits. For

instance, the use of restoring inputs can eliminate the need for an external reset

signal and therefore reduce the required numbers of pins and pads in chip

packaging.

Arithmetic circuits are critical components for signal processing. As one of the

most fundamental functions in arithmetic operations, addition has attracted a lot

of research interests. Different adders, such as those based on probabilistic logic

and approximate logic, have been proposed for inexact computing to trade off

accuracy for energy in recent years. Appropriate metrics to evaluate the efficacy

of different adder implementations are thus urgently desired. Several new metrics

are proposed in this thesis for evaluating the reliability of adders [18, 19]. These

metrics can effectively describe the trade-off between power consumption and

precision and can be used to point out a direction for adder design in the future.

Most modern circuits and systems are binary and based on CMOS field effect

transistors (FETs). However, multiple valued logic (MVL) circuits have potential

advantages in information density and operating speed compared to their binary

counterparts. Previous designs of MVL using carbon nanotube field effect

transistors (CNTFETs) are either resistor-loaded that require off-chip resistors or

- 7 -

complementary designs that require more CNTFETs. Here in my thesis a pseudo-

complementary MVL design is proposed for implementations in CNTFETs. Since

there are fabrication non-idealities of CNTFETs, a transistor-level reliability

analysis method is proposed to accurately estimate the error rates of MVL gates

[21]. Further, the stochastic approach is developed to achieve scalability of

reliability evaluation for general MVL circuits [20, 21].

Stochastic computation can not only be applied in reliability evaluation of circuits,

but also in the modeling of biological systems. A detailed study is applied in

modeling genetic regulatory networks (GRNs). Various computational models

have been proposed for GRNs previously. In this thesis, a novel implementation

of GRNs based on the notions of stochastic logic and stochastic computation is

originally proposed. The new structures are referred to as stochastic Boolean

networks (SBNs) [22]. The computational complexity of an SBN is effectively

reduced, and it is shown that an SBN is able to reproduce biologically-proven

regulatory behaviors, and predict the network dynamics when the genes are under

perturbation. The algorithms and methods of SBNs have been implemented in

Matlab packages and can be applied in general GRN modeling.

1.4. Thesis Outline

In this dissertation, we focus on probabilistic and stochastic models of nanoscale

circuits and biological networks. The thesis proceeds as follows. Chapter 2

presents the analysis of error masking/restoring properties of sequential circuits.

Chapter 3 discusses the new metrics to evaluate the performance of different

inexact adders. Chapter 4 provides designs of multiple-valued logic gates with

CNTFETs as well as approaches to evaluating the reliability of these circuits.

Chapter 5 demonstrates an application of stochastic computation techniques in

modeling biological networks. Chapter 6 concludes the thesis.

- 8 -

CHAPTER 2

Analysis of Error Masking and Restoring

Properties of Sequential Circuits*

The scaling of complementary metal–oxide–semiconductor (CMOS) technology

down to nanometric feature sizes has raised concerns for the reliable operation of

logic circuits. For example, such circuits are expected to be vulnerable to the

presence of soft errors. This chapter deals with the analysis of the operation of

sequential circuits. As the feedback signals in a sequential circuit can be logically

masked by specific combinations of primary inputs, the cumulative effects of soft

errors can be eliminated. This phenomenon, referred to as error masking, is

related to the presence of so-called restoring inputs and/or the consecutive

presence of specific inputs in multiple clock cycles (equivalent to a synchronizing

sequence in switching theory). In this chapter, error masking is extensively

analyzed using the operations of the state transition matrices (STMs) and binary

decision diagrams (BDDs) of a finite state machine (FSM) model. The

characteristics of the state transitions with respect to the correlation between the

restoring inputs and the time sequence are mathematically established using

STMs; although the applicability of the STM analysis is restricted due to its

complexity, the BDD approach is more efficient and scalable for use in the

analysis of large circuits. These results are supported by simulations of

__

*A version of this chapter has been accepted for publication [17].

- 9 -

benchmark circuits and may provide a basis for further devising efficient and

robust implementation when designing FSMs.

This chapter is organized as follows. Section 2.1 defines the terminologies used in

this chapter. Section 2.2 presents one of the major contributions of this chapter,

namely the STM framework for characterizing error masking. Section 2.3

presents an efficient evaluation using BDDs; simulation results are also provided.

Section 2.4 concludes the chapter.

2.1. Defintions

Consider a Mealy model of a sequential circuit, as shown in Figure 2.1. In this

circuit, there are m+n inputs: m of them are Primary Inputs while the remaining n

inputs are Present States (i.e., the feedback signals from the flip-flops). There are

also l+n outputs: l of them are Primary Outputs, while the remaining n outputs are

Next States (they will be stored in the flip-flops and then fed back into the

combinational logic as Present States during the next clock period).

Figure 2.1. Mealy model of a sequential circuit.

A finite state machine (FSM) is a classical abstract model for the functions of a

sequential circuit. An FSM of the general Mealy model is defined as a six tuple <I,

S, 𝛿, S0, O, 𝜆 >, where I is the set of inputs, S is the set of states, 𝛿: 𝑆 × 𝐼 → 𝑆 is

the next-state function of an input and the present state, 𝑆0 ⊆ 𝑆 is the set of initial

states, O is the set of outputs, and 𝜆: 𝑆 × 𝐼 → 𝑂 is the output function of an input

- 10 -

and the present state [23]. For the sequential circuit of Figure 2.1, I is a set of

vectors of m bits, O is a set of vectors of l bits, and S can be represented by a set

of vectors of n bits. An FSM can efficiently be described by a state transition

graph, in which every node (or vertex) represents a state of the machine and every

arc (or directed edge) indicates a state transition and an output.

The state transitions in an FSM can be described by a state transition matrix

(STM); in the traditional representation, the STM has Boolean entries (0 or 1) to

denote the deterministic functions of a sequential circuit. For a probabilistic

operation (due to the occurrence of soft errors for instance), the state transitions

are described by a transition probability matrix [24, 25] due to the underlying

Markov nature of the FSM. For the sequential circuit of Figure 2.1, let 𝐼

{𝑥0 𝑥1 … 𝑥2 −1} , 𝑆 {𝑠0 𝑠1 … 𝑠2 −1} and 𝑂 {𝑦0 𝑦1 … 𝑦2 −1} ; the

transition probability matrix 𝐢 is a 2n × 2n matrix for a given input vector 𝑥𝑖:

 𝐢

[

 (𝑠0|𝑠0) (𝑠1|𝑠0) … (𝑠2 −1|𝑠0)

 (𝑠0|𝑠1) (𝑠1|𝑠1) … (𝑠2 −1|𝑠1)
………………………………………… ……………
…………………………………………… …………

 (𝑠0| 𝑠2 −1) (𝑠1|𝑠2 −1) … (𝑠2 −1|𝑠2 −1)]

, (2.1)

where the (k, j) entry (sk|sj) denotes the transition probability from the present

state sj to the next state sk for the input 𝑥𝑖 . For deterministic operations,

 (sk|sj) 0 or 1 for any k and j, thus yielding an ideal STM 𝚻𝐢 for the input 𝑥𝑖.

Since an STM is unique for every input vector 𝑥𝑖, a total of 2m STMs are required

to describe the operations of the sequential circuit of Figure 2.1.

 Next, a cumulative STM (CSTM) is defined; a CSTM, 𝚻𝐭 𝐭 , describes the

state transitions from time 𝑡1 to 𝑡2 for a sequence of inputs (applied between 𝑡1

and 𝑡2). It is given by:

𝚻𝐭 𝐭 ∏ (r)

r=

 (2.2)

- 11 -

where (r) (with 𝑡1 ≤ 𝑟 ≤ 𝑡2) is an STM at time r (for a corresponding input).

For a sequence of inputs between time 0 and t-1, for example, the corresponding

CSTM is 𝚻𝟎 𝐭− . Given an initial state, 𝒔(𝟎), the state at a subsequent time t can

be computed as:

𝒔(𝒕) 𝒔(𝟎) ∗ 𝚻𝟎 𝐭− (2.3)

 Similar matrices can be defined for the transition probabilities between the

present states and the outputs. These matrices are referred to as output transition

matrices. The STMs and the transition probability matrices are essentially

equivalents of the ideal transfer matrices (ITMs) and probabilistic transfer

matrices (PTMs) [26, 27], so they can be constructed by extending and combining

the gate ITMs and PTMs (as applicable to combinational circuits) to the topology

and operation of a sequential circuit. Transition probability matrices have also

been used for the Markovian analysis of FSMs [28] and fault-tolerant systems

[29].

Figure 2.2. State transition diagram for an N-step error masking scenario. An arrow

indicates a state transition for a given input (shown on the left).

 In a sequential circuit, the restoring inputs are the primary inputs or a sequence

of primary inputs that logically mask the feedback signals. Error masking in a

- 12 -

sequential circuit refers to the phenomenon that the feedback signals are logically

masked by specific sequences of primary inputs (i.e., the restoring inputs). This

error masking can occur in one or multiple steps. An N-step error masking

scenario is illustrated in the state transition diagram of Figure 2.2. Assume that the

state of an FSM at t=0 is not deterministic, but probabilistic (possibly due to the

effects of soft errors in a sequential circuit); so in principle, it can take any of the

2n states, as shown in the first row in Figure 2.2. However, this state space can be

reduced at later steps as result of the state transition properties of the FSM. This is

determined by the STMs and thus the primary input at each step. If this state

space is reduced to one that has only one single state after N steps, then the initial

state at time t0 becomes irrelevant for determining the final state; hence, any

initial error would be masked by this N-step transition process. The inputs that

result in the occurrence of this error masking scenario are a sequence of restoring

inputs. In a state transition graph, this is indicated by various state transition paths

(represented by directed edges) that eventually lead to the same destination state

(represented by a vertex). Therefore, a sequential circuit is said to be reliable if

error masking frequently occurs; it is unreliable otherwise.

2.2. Error Masking

2.2.1. Restoring inputs

In switching theory it is well known that among all output combinations of a

sequential circuit, some are determined only by the primary inputs, and not by the

feedback signals (or present states). This property is very useful as these inputs

can be utilized for determining the values of the outputs and therefore voids the

cumulative effects of errors. As defined previously, these inputs are called

restoring inputs. A circuit is considered reliable if these restoring inputs

frequently appear. In a reliable circuit, when the feedback signals are logically

masked (i.e. not relevant for determining the next state or output values), the

cumulative effects of errors are effectively mitigated and/or possibly eliminated.

- 13 -

The next-state function in an FSM is particularly important as it determines

whether an accumulation of errors could occur. If the next state is always fully or

partially determined by the present state, then the design is considered as

unreliable, i.e., errors and their effects through the feedback signals will

accumulate. An unreliable design will fail with a high probability after a

sufficiently long time. Hence, a Moore machine in which the outputs are only

determined by the present states (or feedback signals), tends to be unreliable in

the presence of random soft errors. This is consistent with the homogeneity in the

Markov characterization of the FSMs.

For nanoscale computing, the rate of an error is projected to be finite but small,

so the next state is expected to be ideal with a very high probability. In a

sequential circuit, therefore, a transition probability matrix is expected to have

entries that are approximately 0’s and 1’s. This leads to the convergence of the

transition probability matrix and its ideal STM. In fact, the STMs contain original

information on the distinctive features of a circuit, so they are of fundamental

importance when determining the restoring inputs.

Figure 2.3. An STM indicating the existence of a restoring input. ‘𝚻𝐢’ is the STM for the ith

input. ‘PS’ denotes the present state and ‘NS’ denotes the next state.

- 14 -

Consider as an example the STM shown in Figure 2.3 for an input in the set 𝐼0.

In this STM, if the entries in a column, which indicate the transitions from the

present states to a specific next state, are all 1’s, then the primary inputs for this

STM (i.e., those in the set 𝐼0) are a set of restoring inputs. A similar procedure can

be applied to the analysis of output transition matrices, which characterizes

whether restoring inputs exist to at least partially eliminate the accumulated

effects of errors to the primary outputs.

2.2.2. Error masking in multiple steps

Restoring inputs can appear in single and multiple steps (or clock cycles). For a

single step, the STM for a restoring input is expected to have all 1’s in a column.

For multiple steps, restoring inputs can be found by analyzing the CSTM obtained

by (2), i.e., the product of STMs at these steps.

2.2.2.1 Two-step process

As an example, the two-step case will be first presented for establishing the

conditions such that the restoring inputs exist. Let 𝐮 and 𝐯 be the two 2𝑛 × 2𝑛

STMs involved in a two-step operation (for inputs 𝑥𝑢 and 𝑥𝑣 respectively). If 𝑥𝑢

and 𝑥𝑣 are the restoring inputs for the jth next state, the two-step CSTM is given

by

 𝐮 ∗ 𝐯

 0 … j j j … 2n

[

 0
 0
 0
 …
 0

⋮
⋮
⋮
⋮
⋮

 0
 0
 0
 …
 0

 …

 0
 0
 0
 …
 0

⋮
⋮
⋮
⋮
⋮

 0
 0
 0
 …
 0]

 (2.4)

Here, “*” means conventional matrix multiplications.

Let the elements in the ith row and the jth column in 𝐮 and 𝐯 be given by 𝑎𝑖𝑗

and 𝑏𝑖𝑗 respectively (0 ≤ 𝑖 ≤ 2𝑛 and 0 ≤ 𝑗 ≤ 2𝑛), then

- 15 -

 𝐮 ∗

[

b0j

b1j

b2j

…
b(2 −1)j]

 =

[

…
]

 (2.5)

Also, the following is always applicable

 𝐮 ∗

[

…
]

 =

[

…
]

 (2.6)

Subtracting (2.5) from (2.6) gives

 𝐮 ∗

[

 b0j

 b1j

 b2j

…
 b(2 −1)j]

[

0
0
0
…
0]

 (2.7)

Since 𝑎𝑖𝑗 and 𝑏𝑖𝑗 can be either 0 or 1 for any i and j, there is only one element in

each row of 𝐮 being 1, due to the deterministic operation in the state transitions.

Assume for any i,

𝑎𝑖𝑐
 . (2.8)

Then by (2.7),

 𝑏𝑐 𝑗
 0 or 𝑏𝑐 𝑗

 . (2.9)

Both (2.8) and (2.9) determine the positions of 1’s in the two STMs that

establish the conditions for the restoring inputs in two steps.

Moreover, (2.8) and (2.9) can be used to analyze two extreme conditions.

- 16 -

If 𝑐𝑖 ≠ 𝑐𝑗 (∀ 𝑖 ≠ 𝑗), the following condition must be applicable for a two-step

masking:

𝑏0𝑗 𝑏1𝑗 𝑏2𝑗 …𝑏(2 −1)𝑗 . (2.10)

This implies that if the first step does not contribute to error masking, then the

second step must solely contribute to masking. Consider the second extreme

condition; if 𝑐0 𝑐1 𝑐2 ⋯ 𝑐2 −1 𝑘, then for a two-step masking it is

only required that,

𝑏𝑘𝑗 (2.11)

Of course, this corresponds to the opposite case of the first condition.

To better understand the relationship between 𝐮 and 𝐯 in a two-step restoring

process, an example is presented next.

Example I: Let 𝐮𝟎
 and 𝐯𝟎

 be two 4x4 STMs, as shown in Figure 2.4. The

Boolean digit under each column of a matrix indicates whether the next state

corresponding to this column is possible (value of 1) or not (value of 0) after each

step. For example, a 1 for the first and third columns of 𝐮𝟎
 indicates that the first

and third next states (i.e., “00” and “10”) are the two possible next states after the

first step of operation. Since the output from the first step serves as the present

state for the second step, only the possible next states from the first step are still

relevant and should be considered in the second step. In this example, these next

states are the first and third, i.e., “00” and “10”. They determine that only the first

and third rows of 𝐯𝟎
 are relevant in the second step of operation (all other rows

are masked in the first step). This is illustrated in the second row of Figure 2.4,

where the relevant columns are marked in red. Subsequently, if the 1’s in the

remaining rows of 𝐯𝟎
belong to a single column, this two-step process is then

expected to yield a single next state corresponding to this column, regardless of

the present states. Therefore, a two-step error masking occurs.

- 17 -

Figure 2.4. Example of a two-step error masking.

2.2.2.2 N-step process

In the general case that restoring occurs in N steps, the CSTM is given by

 𝐮
 ∗ 𝐮

 ∗ … ∗ 𝐮

 0 … j j j … 2n

[

 0
 0
 0
 …
 0

⋮
⋮
⋮
⋮
⋮

 0
 0
 0
 …
 0

 …

 0
 0
 0
 …
 0

⋮
⋮
⋮
⋮
⋮

 0
 0
 0
 …
 0]

 (2.12)

as applicable to a restoring to the jth next state.

Due to the state-transition property, each row in 𝐮𝐢
 (1 ≤ i ≤ N) has only one 1

and all other elements are 0. Assume that 𝐫𝐢𝐣 （0 0…0 0…0 0) is the jth row

in 𝐮𝐢
, then

 𝐮𝐢

[

𝐫𝐢𝟎

𝐫𝐢
𝐫𝐢

…
𝐫𝐢(−)]

 . (2.13)

- 18 -

Further, let 𝑐𝑖𝑗 be the column index of the 1 in 𝐫𝐢𝐣;

Then for the first two steps,

 𝐮
∗ 𝐮

[

𝐫 𝟎

𝐫
𝐫

…
𝐫 (−)]

∗

[

𝐫 𝟎

𝐫
𝐫

…
𝐫 (−)]

[

𝐫 𝐜 𝟎

𝐫 𝐜

𝐫 𝐜

…
𝐫 𝐜 ()]

. (2.14)

For the N steps, the CSTM is

 𝐮
 ∗ 𝐮

 ∗ … ∗ 𝐮

[

𝐫 𝟎

𝐫
𝐫

…
𝐫 (−)]

∗

[

𝐫 𝟎

𝐫
𝐫

…
𝐫 (−)]

∗ … ∗

[

𝐫 𝟎

𝐫
𝐫

…
𝐫 (−)]

[

𝐫
 (𝐜()……(𝐜

 (𝐜 𝟎)
)
)

𝐫
 (𝐜()……(𝐜

 (𝐜)
)
)

𝐫
 (𝐜()……(𝐜

 (𝐜)
)
)

…
𝐫

 (𝐜()……(𝐜
 (𝐜

 ()
)
)
)

]

 (2.15)

where 𝑐(𝑁−1)……(
 ()

)
 with 0 ≤ 𝑖 ≤ 2𝑛 , determined by the positions of 1’s in

the STMs of previous steps, gives the index of the row vector in 𝐮
.

 If error masking occurs, then all the 1’s are in the same column in the matrix

obtained by (2.15), so all the rows of the matrix are the same, i.e.,

𝐫
 (𝐜()……(𝐜

 (𝐜 𝟎)
)
)

 𝐫
 (𝐜()……(𝐜

 (𝐜)
)
)

 𝐫
 (𝐜()……(𝐜

 (𝐜)
)
)

 ⋯

𝐫

 (𝐜()……(𝐜
 (𝐜

 ()
)
)
)

, (2.16)

and equivalently, the column indices of 1’s are the same, i.e.,

c
N(c()……(())

)
 c

N(c()……(())
)

 c
N(c()……(())

)
 ⋯

- 19 -

c

N(c()……(
 (

 ()
)
)
)

 (2.17)

For a two-step restoring process (as given by (2.4)), it can be obtained from

(2.17) that

𝑐2𝑐
 𝑐2𝑐

 𝑐2𝑐
 ⋯ 𝑐2𝑐 ()

 𝑗 (2.18)

i.e., as 𝑎𝑖𝑐
 = 1 and 𝑐2𝑐

 𝑗 , we have 𝑏𝑐 𝑗
 , for any 0 ≤ 𝑖 ≤ 2𝑛 .

 Hence, (2.16) and (2.17) reveal the underlying relationships among multiple

STMs, as required for obtaining the restoring inputs. STMs are sparse matrices, so

these relationships can be used to efficiently analyze N-step error masking.

Figure 2.5. Example of N-step error masking.

Similar to the case of two-step masking presented previously, an example is given

in Figure 2.5. It reveals the mappings between the STM elements (as

- 20 -

characterized by (2.16) and (2.17)) and the accumulating effect of error masking

in an N-step process.

For an unreliable design, fault-tolerant and error-mitigation techniques can be

used to reduce the error effects [30, 31]. A simple method to accomplish this

objective is to reset a sequential system periodically as this may help to recover

from the accumulated errors. This however may not be possible in all applications

due to the disruption of normal circuit operation caused by the reset.

A possible solution to this problem is to use approximate logic to change the truth

table, thus introducing error masking into the circuit. This will also introduce a

tradeoff in the precision of the computed function and hence is applicable to

inexact computing (also often referred to as soft computing), attaining more

masking and less error accumulation.

2.2.3. Case study: s27, ISCAS’89 benchmark circuit

 The ISCAS’89 benchmark circuit s27 is considered in this section using the

STM analysis to substantiate the characterization of error masking. s27 is a circuit

with four primary inputs, three D flip-flops and one primary output (Figure 2.6).

When error masking occurs, the next state is totally dependent on the primary

Figure 2.6. Schematic diagram of s27.

- 21 -

inputs, but not on the feedback (present state). This is applicable to s27 and shown

as follows.

For s27, its STM is an 8x8 matrix. Consider the STM for the input “1110,”

as shown in Figure 2.7; the next state (NS) is expected to be “110” regardless of

the present state (PS). So when “1110” appears at the primary input, errors may

have accumulated but are logically masked; therefore the reliability increases. An

error masking STM can also be a result of several steps of STM operations. For

example, neither the input “1001” nor “0110” is a restoring input; however, the

synergetic effect of the consecutive presence of these two inputs leads to a two-

step error masking.

Figure 2.7. of s27 is the STM for the 14th primary input (i.e., “G0G1G2G3”=”1110”).

“PS” denotes the present state (G21, G22 and G23) and “NS” denotes the next state (G13,

G10 and G11).

Table 2.1 shows the probability of occurrence of multiple-step error masking in

s27; this probability is given by the ratio of the number of input sequences

causing error masking over the total number of input sequences. For example, 34

out of the total 256 input sequences result in error masking for the two-step

operation. Note that an N-step error masking process means that at least N steps

are required to ensure error masking, i.e. if error masking occurs in M steps

- 22 -

(M<N), then this is classified as an M-step masking and is not considered as a part

of the N-step masking process.

Table 2.1. Simulation results for s27. The probability that multiple-step error masking

occurs is given as the ratio between the number of restoring inputs and the total number of

inputs.

Number of steps 1 2 3 4 5

Error masking probability 5/16 34/256 60/4096 92/65536 136/1048576

Run time (s) 0.0055 0.0159 0.2019 3.7354 72.3031

Memory (MByte) 0.1 0.3 1.1 2.1 2.8

 The run time and memory usage of the STM analysis are also shown in Table

2.1. Although the memory usage steadily increases with the number of error

masking steps, the run time changes more drastically because a significantly

increased number of inputs must be considered in a multiple step masking. This

makes the analysis of large circuits difficult, if not impossible. The complexity

issues are further discussed in Section 2.3.5.

2.2.4. Partial error masking

When errors only affect some of the state bits, their effects can be affected by so-

called partial error masking. Partial error masking refers to the phenomenon in

which some of the feedback signals are logically masked by specific

combinations of primary inputs and other feedback signals. Consider the

sequential circuit model of Figure 2.1; if some of the present state signals are

unreliable, then their error effects can be masked by a combination of the other

present state signals and a primary input. In the STM for such a primary input,

this means that the rows can be re-ordered such that the unreliable state bits are

next to each other and the corresponding adjacent rows lead to the same next state.

This process is shown in Figure 2.8.

- 23 -

Figure 2.8. An STM with the occurrence of partial error masking. In 𝚻𝐢 (i.e., the STM for

the ith input), the third and fourth bits in the present state (PS) are masked by the

combinations of the ith input and the remaining present-state signals, shown in the four rows

in the middle of the STM.

The analytical procedure outlined in Section 2.3.2 is applicable also to multiple-

step partial error masking; however, since only a subset of the state signals are of

interest, a sub-matrix of each STM is needed in the analysis. Similarly, as partial

error masking also applies to output signals, therefore it can be analyzed using the

output transition matrices of the sequential circuit.

2.2.5. Complexity

 The analysis using STMs reveals the fundamental mechanism of error masking.

The mapping relationships given in (2.16) and (2.17) can be used for an optimized

analysis by leveraging the fact that STMs are sparse matrices. Nevertheless, this

analysis incurs a large computational complexity for finding the restoring inputs.

Consider the circuit model of Figure 2.1 as an example; there are a total of 2

STMs. To find the restoring inputs in an N-step process, a total of (2)𝑁 CSTMs

need to be examined, thus resulting in a computational complexity of at

least𝑂(2 𝑁). This computation is of course not scalable for analysing large

circuits. In the next section, an approach using BDDs is proposed for a more

efficient analysis.

- 24 -

2.3. Analysis using BDDs

A binary decision diagram (BDD) is a canonical (or unique) representation of a

Boolean function [32]. It is also efficient at representing a large combinatorial set.

BDDs have been shown to be effective in many applications involving FSMs [23].

In this section, a computationally-efficient technique employing BDDs is used for

analyzing error masking in sequential circuits. The CUDD package has been used

throughout this study [33].

2.3.1. Finding the restoring inputs

A BDD is a directed acyclic graph, in which each node represents a variable and

each edge is labeled “True” or “False” (or, “1” or “0”). The edges lead to leafs

labelled “1” or “0” at the bottom of the graph. For the sequential circuit model of

Figure 2.1, a BDD can be generated for every variable (or bit) of the next state

(and the primary output) as a function of the primary inputs and the present state.

Therefore, a total number of n diagrams must be generated for the n variables in

the next state. The variables in a BDD are usually ordered to find an optimal

diagram; this ordering is typically done heuristically by relying on specific

features of the system being analyzed [34]. To find the restoring inputs, a special

ordering is imposed such that the variables in the primary inputs are first analyzed,

followed by those in the present state. The BDDs generated for the next state of

the benchmark circuit s27 are shown in Figure 2.9.

 In a BDD, if there exists a path that starts from the root (or a primary input)

and reaches a leaf “1” or “0”, without traversing through any present state

variable, then the primary input dictated by this path is a restoring input for this

variable in the next state. Given the BDDs for the other variables in the next state,

the restoring inputs for those variables can be found in the same way. The

restoring inputs for a circuit are then obtained as the intersection of the set of

restoring inputs for each variable in the next state. This establishes the conditions

for a single-step error masking. For partial error masking, a similar procedure

- 25 -

applies when only a subset of the present state variables are considered as

required by nature of the partial masking process.

 (a)

 (b)

 (c)

Figure 2.9. BDDs for the next state of s27: (a) G10, (b) G13, (c) G11.

Example II: Consider s27 again. Figure 2.9(b) shows the BDD for the variable

G13 in the next state. In this BDD, G21 is the only existing present state variable

and two paths starting from the primary input reach the end leafs without

traversing G21. These paths correspond to the primary inputs G2=”1” and

G2G1=”01,” or equivalently, G0G1G2G3 =”XX1X” and “X10X,” where “X”

denotes the don’t-care condition. Similar analysis can be performed for G10 and

G11, and the results are shown in the second row of Table 2.2. The restoring

- 26 -

inputs for s27 can then be obtained as the intersection of the three sets of inputs as

shown in the third row of Table 2.2. This confirms the results obtained by the

STM analysis in Table 2.1.

Table 2.2. Restoring inputs obtained by the BDD analysis for s27; “X” denotes a don’t-care

value.

The next state variable G10 G11 G13

Restoring inputs for each variable

(G0G1G2G3)

0XXX

1XX0

11X 1

11XX

10X0

XX1X

X10X

Restoring inputs for s27 1010, 1100, 1101,1110,1111

2.3.2. Multiple-step error masking

For a multiple-step operation in the temporal domain, the so-called time-frame

expansion technique can be used to convert the operation into a single step

process, as proposed for the soft error analysis of sequential circuits in [35]. This

is illustrated in Figure 2.10. For an N-step operation, the present states from the

second to the Nth steps are treated as internal signals; only the initial present state

serves as the present state of the expanded iterative circuit, while all the primary

inputs in the N steps become the primary inputs of the new circuit. The BDD

analysis proposed in the previous subsection can then be used for a multiple-step

error masking analysis.

Figure 2.10. Time frame expansion of a sequential circuit. The N frame expansion of

a sequential circuit can be treated as a single sequential circuit with x(1),

x(2),…,x(N) as inputs, y(1), y(2),…,y(N) as outputs, s(0) as the present state and s(N)

as the next state.

- 27 -

2.3.3. Simulation results

The CUDD package [33] was used to generate the BDDs from the netlist of a

circuit. A customized program was then written for extracting the restoring inputs

from the BDDs. Table 3 shows the simulation results for the ISCAS’89 sequential

benchmark circuits for finding (if any) single-step restoring inputs using the

proposed BDD method. These benchmarks have also been used in [14] and [24]

for SER analysis. A single-step error masking mostly occurs due to the presence

of a “reset” signal, as observed for s382, s400, s444, s526, s820, s832 and s1488.

Although other single-step restoring inputs are present in some circuits (such as

s27, as discussed previously, and s1196), they do not always exist in a sequential

circuit; this is generally due to the feature of a sequential circuit by which the next

state is determined by both the primary inputs and the present state. Even though

beyond the scope of this chapter, don’t-care values in the logic definition of a

sequential circuit could be assigned through synthesis to implement restoring

inputs, thus avoiding the additional implementation of the “reset” signal as well as

improving error masking.

Table 2.3. The number of single-step restoring inputs (No.) for ISCAS’89 benchmark

circuits found using BDDs with runtime (T) and memory usage (M). The runtime includes

the time for generating the BDDs and extracting the restoring inputs; the memory usage is

for the use of the CUDD package in producing BDDs.

Circuits Gates Inputs Outputs FFs No. T (s) M (MByte)

s27 10 4 1 3 5 0.8147 1.068

s382 158 3 6 21 4 1.6324 1.089

s400 164 3 6 21 4 1.9575 1.089

s444 181 3 6 21 4 2.1576 1.089

s526 193 3 6 21 4 1.8003 1.089

s820 289 18 19 3 21 335.79 1.172

s832 287 18 19 5 21 389.91 1.172

s953 395 16 23 29 0 23.098 1.160

s1196 529 14 14 18 4890 79.965 1.166

s1488 653 8 19 6 128 15.971 1.145

 The runtime and memory usage required by this approach are also reported in

Table 2.3. The runtime includes the time for generating BDDs and extracting the

- 28 -

restoring inputs, while the memory usage is only for using the CUDD package to

produce the BDDs. While the memory usage is relatively stable for different

circuits, the runtime is largely affected by the number of restoring inputs that must

be extracted from the BDDs. Typically, it takes no more than a few seconds to

generate BDDs for circuits of this size.

 To find a multiple-step restoring input, the netlist of a time frame extended

circuit was first produced. Table 2.4 shows the results of multiple-step error

masking; the reported runtime and memory usage further confirm the efficiency

of the proposed BDD method. In these cases, the next state of the circuit is

determined by a multiple clock-cycle state dependency. This process is more

complicated than a single-step masking as it implies that a time domain overhead

will be incurred in the masking process due to the inherent latency. Hence, a

designer is confronted with a tradeoff assessment of achieving error masking with

a smaller number of cycles (or simply in one step) versus additional design

complexity in the implementation of a sequential circuit.

The error masking phenomena observed for some circuits, such as the semaphore

circuits s382 and s400, result from the “reset” signal. This occurs because the next

state of a semaphore circuit is always determined by its present state unless the

circuit is reset. Binary counters, whose next state is totally determined by the

present state, also exhibit this property. Therefore, these features should be

considered by designers when assessing the reliable operation of these types of

circuits.

2.4. Summary

This chapter analyzes the reliable operation of sequential circuits in the presence

of errors as likely to occur at nanometric feature sizes. The major contribution of

this chapter is the analysis of the phenomenon (referred to as “error masking”)

that affects the reliability of a sequential circuit, by utilizing the state transition

matrices (STMs) and the binary decision diagrams (BDDs) in an FSM model.

- 29 -

Table 2.4. The number of restoring inputs of benchmark circuits found using BDDs (No.) and the

required memory usage (M) and runtime (T). Both the numbers of restoring inputs for up to N-step

masking and for only N-step masking are reported (separated by ’/’). The memory is from the use of

the CUDD package in producing the BDDs and the runtime includes the time for generating the BDDs

and extracting the restoring inputs.

Circuits

N=1 N=2 N=3 N=4 N=5

No.
M

(MByte)
T (s) No.

M

(MByte)
T (s) No.

M

(MByte)
T (s) No.

M

(MByte)
T (s) No.

M

(MByte)
T (s)

lion 0/0 1.068 0.0743 1/1 1.068 0.3922 13/5 1.068 1.1712 88/0 1.079 4.0344 476/0 1.079 8.6948

train4 1/1 1.068 0.0609 7/0 1.068 0.7547 37/0 1.068 1.6463 175/0 1.079 7.4456 781/0 1.079 12.490

train11 0/0 1.068 0.0186 0/0 1.068 0.4387 2/2 1.068 1.3816 21/5 1.079 4.7655 154/20 1.079 7.7952

dk27 0/0 1.068 0.0224 0/0 1.068 0.5497 0/0 1.068 1.7537 2/2 1.068 2.0119 9/1 1.068 3.5688

s8 0/0 1.068 0.0585 9/9 1.079 1.5853 552/282 1.079 8.3371

16978

/1042

1.079 21.531

399238

/4454

1.089 48.779

tav 0/0 1.068 0.0498 0/0 1.068 0.8308 0/0 1.079 1.0540 0/0 1.079 3.1299 0/0 1.089 4.0540

bbtas 0/0 1.068 0.1190 0/0 1.068 0.3517 1/1 1.068 1.9340 13/6 1.079 2.6892 79/0 1.079 5.7482

mc 0/0 1.068 0.0959 0/0 1.068 0.9172 24/24 1.079 5.6541 464/80 1.079 12.263 7584/1152 1.079 32.469

beecount 4/4 1.068 0.1340 52/4 1.068 0.3804 351/0 1.079 2.6020 2464/0 1.079 15.162 24303/0 1.079 26.794

dk17 0/0 1.068 0.0163 0/0 1.068 0.8407 4/4 1.068 1.3112 43/15 1.079 4.5285 228/32 1.079 7.4427

dk512 0/0 1.068 0.0655 0/0 1.068 0.2543 0/0 1.068 1.0782 2/2 1.068 3.1656 8/0 1.068 5.2290

donfile 0/0 1.068 0.0680 0/0 1.084 0.2435 6/6 1.111 2.1524 88/40 1.111 6.9961 609/0 1.128 13.913

ex2 0/0 1.068 0.0276 0/0 1.084 0.2511 0/0 1.111 0.8258 2/2 1.128 2.1067 33/18 1.160 5.0838

ex3 0/0 1.068 0.1057 0/0 1.068 0.8143 0/0 1.068 1.5383 13/13 1.079 3.2599 72/17 1.095 5.8687

ex5 0/0 1.068 0.0849 1/1 1.068 0.1966 19/11 1.068 2.7749 126/12 1.079 3.4505 502/0 1.079 6.0046

ex7 0/0 1.068 0.1386 0/0 1.068 0.3500 1/1 1.068 1.9106 20/12 1.079 3.4314 154/26 1.095 7.9619

s27 5/5 1.068 0.8147

169

/34

1.079 2.6787 3471/60 1.079 7.7577

61173

/92

1.079 18.849

1018443

/136

1.089 38.934

s208.1 0/0 1.095 1.5472 0/0 1.122 1.9293 0/0 1.149 4.1450 0/0 1.163 7.8173 0/0 1.224 21.182

s382 4/4 1.089 1.9593 48/0 1.106 2.6160 448/0 1.155 5.3998 3840/0 1.303 9.2638 31744/0 1.424 20.622

s400 4/4 1.089 1.8909 48/0 1.106 2.4733 448/0 1.155 5.1233 3840/0 1.303 9.5132 31744/0 1.424 18.580

s444 4/4 1.089 1.6991 48/0 1.139 2.7513 448/0 1.204 6.0497 3840/0 1.405 14.945 31744/0 1.608 26.369

s526 4/4 1.089 1.5060 48/0 1.139 3.2551 448/0 1.239 5.1112 3840/0 1.528 11.184 31744/0 1.685 21.344

- 30 -

In a sequential circuit, restoring inputs allow for the masking of feedback signals

and thus eliminating the cumulative effect of errors. A partial error masking

occurs when part of the feedback signals are logically masked by a specific

combination of the primary input and the other feedback signals.

 In spite of its large computational complexity and limited applicability, the

STM-based analysis reveals the fundamental mechanism of error masking. This

framework is enhanced by using BDDs to extend the proposed analysis to large

circuits. Computational efficiency can further be improved by using appropriate

ordering of variables in the construction of BDDs, as well as an optimized process

for extracting the restoring inputs.

 Simulation results have shown the effectiveness of the proposed approach.

They also point out a few attractive features that albeit beyond the scope of this

chapter, can be exploited to improve the reliable operation of sequential circuits.

In an implementation of FSMs, for example, the don’t-care values at the inputs

can be configured into restoring inputs in logic synthesis such that errors in the

state variables can be corrected during normal operation. Although an external

reset can be utilized to clear the state variables, the use of restoring inputs has the

following advantages:

 1) Error masking due to restoring inputs occurs as an inherent part of the

operation of an FSM without incurring an interruption. Therefore, the restored

state is readily available for the next-step operation of the FSM. The time

overhead incurred in this process is therefore significantly reduced.

 2) The use of restoring inputs eliminates the need for an external reset signal,

so it simplifies the related logic design and reduces the required numbers of pins

and pads in chip packaging; this subsequently has an impact on the performance,

area and cost of a chip [36].

- 31 -

 3) Multiple-step restoring and partial error masking allow for more flexibility

as well as an extended functionality in the operation of an FSM, compared to the

basic function of a reset.

 Hence, the proposed error masking is a potentially useful property of FSMs

that can be exploited for an efficient and robust implementation of sequential

circuits.

- 32 -

CHAPTER 3

New Metrics for the Reliability of

Approximate and Probabilistic Adders*

Addition is a fundamental function in arithmetic operation; several adder designs

have been proposed for implementations in inexact computing [37, 40]. These

adders show different operational profiles; some of them are approximate in

nature while others rely on probabilistic features of nanoscale circuits. However,

there has been a lack of appropriate metrics to evaluate the efficacy of different

designs. In this chapter, new metrics are proposed for evaluating the reliability as

well as the power efficiency of approximate and probabilistic adders. Reliability

is analyzed using the so-called sequential probability transition matrices (SPTMs).

The error distance (ED) is first defined as the arithmetic distance between an

erroneous output and the correct output for a given input. The mean error distance

(MED) and the normalized error distance (NED) are then proposed as unified

figures that consider the averaging effect of multiple inputs and the normalization

of multiple-bit adders. It is shown that the NED is a nearly invariant metric that is

almost independent of the size of an adder implementation; the NED, is therefore,

useful in characterizing the reliability of a specific design. Since inexact adders

are often used for saving power, the product of power and NED is further utilized

__

*A version of this chapter has been accepted for publication in [18] and [19].

- 33 -

for evaluating the tradeoffs between power consumption and precision. Although

illustrated using adders, the proposed metrics are potentially useful in assessing

other arithmetic circuit designs for applications of inexact computing.

The rest of the chapter is organized as follows. Section 3.1 contains a review and

Section 3.2 presents sequential probability transition matrices (S-PTMs). Section

3.3 presents the notions of error distance (ED) and the evaluations of mean error

distance (MED) and normalized error distance (NED). Section 3.4 discusses the

power and precision tradeoff. Section 6 concludes the chapter.

3.1. Review

In most digital systems, sequential circuits are utilized, so this chapter primarily

deals with sequential adders. A sequential adder, such as the one shown in Figure

3.1, consists of a k-bit full adder concatenated with a k-bit register. In this section,

different implementations of a full adder are reviewed. Particular emphasis is

devoted to features relevant to soft and inexact computing.

Figure 3.1. A k-bit sequential adder.

3.1.1 Conventional Full Adder (CFA)

 Figure 3.2 shows a one-bit (precise) conventional full adder (CFA); the CFA is

commonly connected in a ripple-carry implementation, i.e., by cascading

instances of the circuit of Figure 3.2 in a linear array.

- 34 -

A
B

Cin

Cout

S

Figure 3.2. A one-bit conventional full adder (CFA).

3.1.2 Lower-Part-OR Adder (LOA)

Figure 3.3. Hardware structure of the lower-part-OR adder (LOA) [37].

Differently from conventional designs that strictly operate according to the exact

function (as defined by its truth table), an approximate logic implementation alters

some entries in the truth table. This feature allows balancing precision with other

performance metrics. The recently proposed LOA is based on such a design [37].

A LOA divides a k-bit addition into two smaller parts, i.e., two modules of m-bits

and n–bits. As shown in Figure 3.3, the m-bit module of a LOA uses a smaller but

precise adder (referred to as the sub-adder) to compute the exact values of the m

most significant bits of the result (also referred to as the upper part). Additional

OR gates are used to approximately compute the n least significant bits (also

referred to as the lower part) of the sum by applying a bitwise OR operation on

- 35 -

the respective input bits. An additional AND gate is used to generate the carry-in

for the precise sub-adder when the most significant bits of both the lower-part

inputs are “1.” As this implementation ignores the “trivial” carries in the lower

part of the LOA adder, it may result in a loss of precision. Albeit using different

structures, the approximate adder designs in [38] and [39] belong to the same

category.

3.1.3 Approximate Mirror Adder (AMA)

 A Mirror Adder (MA) is not based on the complementary structure of CMOS

logic. It is based on a special arrangement of the transistors and is yet another

common design for implementing conventional adders [40]. When approximate

logic is applied to the MA cells, approaches such as IMPACT [40] have been

reported to tradeoff precision for power and area. Three implementations of an

approximate mirror adder (AMA) are proposed in [40] by removing different

numbers of transistors. The truth table of these three approximate

implementations is shown in Table 3.1. Similarly, AMAs can be used in the least

significant n-bit (or the lower part) of an approximate sequential adder.

Table 3.1. Truth table of conventional mirror adder and its approximate implementations

[40]; enclosed entries indicate incorrect outputs.

Inputs
Accurate AMA1 AMA2 AMA3

Cout Sum Cout Sum Cout Sum Cout Sum

0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 1 0 1 0 1 0 0

0 1 0 0 1 1 0 0 0 0 1

0 1 1 1 0 1 0 0 1 0 1

1 0 0 0 1 0 1 1 0 0 0

1 0 1 1 0 1 0 1 0 1 0

1 1 0 1 0 1 0 1 0 1 1

1 1 1 1 1 1 0 1 1 1 1

3.1.4 Probabilistic Full Adder (PFA)

 Probabilistic CMOS (PCMOS) is a technique for achieving savings in power

consumption, while balancing performance at nanometric ranges. In a k-bit PFA,

the most significant m-bit adders are implemented using perfectly reliable (and

- 36 -

thus deterministic) gates, while the least significant n bits are implemented in

PCMOS. Although new adder architectures have been proposed to optimize the

use of PCMOS technology [41], probabilistic implementations of a conventional

full adder are considered in this work. The structure of this type of adder is shown

in Figure 3.4.

Figure 3.4. Hardware structure of the probabilistic full adder (PFA).

3.2. Sequential Probability Transition Matrices

3.2.1 Definitions

Prior to presenting the analysis, several definitions are first introduced. The signal

probability is defined as the probability of a signal being a logical “1.” In a

combinational circuit, the output probability for a specific input vector i is defined

as the joint probability that all of the outputs are “1” when the input vector is i.

The output reliability for input i is defined as the joint probability that all outputs

are correct for i. Any output that deviates from the correct value, is considered a

faulty output. This definition of reliability considers the correlation among signals

and is therefore used in this chapter unless noted otherwise. Circuit reliability is

defined as the average output reliability over all applicable input vectors. (In this

chapter, the adders introduced previously are analytically assessed for circuit

- 37 -

reliability using the so-called sequential probability transition matrices (S-PTMs),

as presented next.)

3.2.2 Probabilistic transfer matrices (PTMs)

The PTM approach represents a computational framework for the evaluation of

circuit reliability in the presence of both deterministic and probabilistic errors [2].

A PTM is a matrix, in which the (𝑖 𝑗) entry represents the conditional

probability of the output vector of value j, determined by the circuit structure for

the input vector i. Since a fault-free circuit has correct outputs with probability 1,

it has an ideal transfer matrix (ITM), in which an entry is either 0 or 1. A two-

input NAND gate’s ITM and PTM are shown in Figure 3.5.

(a) (b) (c)

Figure 3.5. An ITM and PTM for a two-input NAND gate: (a) a two-input NAND gate, (b)

ITM of the NAND gate, (c) PTM of the NAND gate (the gate has a probability of 1-p to

produce an error).

A circuit PTM can be obtained by combining the gate PTMs using simple rules of

matrix operations and the connectivity of the gates. Matrix multiplications are

used for gates connected in series, while tensor products are used for gates

connected in parallel. Special PTMs and ITMs are constructed for fanouts,

interconnects and swapping of wires by taking into account their topologies. Since

signal representation and propagation are incorporated into the formulation of

PTMs, a circuit PTM contains accurate and comprehensive information about the

probabilistic behavior of a circuit. A PTM can also be extended to account for

more complex circuit structures. In [27], PTMs are used to estimate the soft error

- 38 -

effect in sequential circuits. In this chapter, the notions of sequential PTMs (S-

PTMs) are defined and a detailed formulation is presented to consider the

topology and structure of sequential circuits for reliability evaluation.

3.2.3 Formulation of sequential PTMs (SPTMs)

Consider a general Mealy model of a sequential circuit (Figure 3.6). In this

circuit, there are M+N inputs: M of them are Primary Inputs and the remaining N

inputs are Present States (i.e., the feedback signals from the flip-flops). There are

also K+N outputs: K of them are Primary Outputs, while the remaining N outputs

are Next States, which will be stored in the flip-flops and then fed back into the

inputs during the next clock cycle.

Combinational
Logic

{ }
M

Primary
Inputs

K
Primary
Outputs

}
N

Next
States{

N
Present
States

Flip-Flops

Figure 3.6. Mealy model of a sequential circuit.

For this circuit, S-PTMs define several matrices mapping from the M+N inputs

to the N next states (denoted by 𝜱𝒏𝒔) and to the K primary outputs (denoted by

𝜱𝒑𝒐), also from the N next states to the N present states. In the S-PTM 𝜱𝒏𝒔, the

entries denote the transition probabilities from the 2M+N input combinations to

the 2N next states. 𝜱𝒏𝒔 is therefore a 2M+N × 2N matrix, given by

- 39 -

𝜱𝒏𝒔

[

(0|0) (|0) …

 (0|) (|) …
… … …

 (j|0) … (2N |0)

 (j|) … (2N |)
… … …

 (0|i) (|i) …
… … …

 (0| 2M+N) (| 2M+N) …

 (j|i) … (2N |i)
… … …

 (𝑗| 2M+N) … (2N |2M+N)]

 (3.1)

where (j|i) represents the conditional transition probability that the next state has

the 𝑗 value, given that the inputs have the 𝑖 value. Similarly, the entries in

𝜱𝒑𝒐 are given by the transition probabilities from the 2M+N input combinations

to the 2K primary output combinations.

Furthermore, the circuit S-PTM 𝜱 is defined for the mapping from the M+N

inputs to the K+N outputs. In the likely circuit scenario, the primary outputs and

the next states are correlated due to the fanouts of signals to both the primary

inputs and the next states (an example is evident in the half adder circuit of Figure

3.7). So, 𝜱 , like any other SPTM, can be obtained in a similar way as the

combinational PTMs, i.e. by combining the gate PTMs following the matrix

operation rules and the connectivity of the gates in a circuit.

If the flip-flops are also subject to errors, the SPTM 𝜱 must be defined. For a

single flip-flop with an error rate of , its SPTM 𝜱 − is given by

 𝜱 − [

]. (3.2)

For N independent flip-flops, the S-PTM 𝜱 is obtained as

 𝜱 𝜱 −

, (3.3)

i.e., 𝜱 is the nth tensor product of 𝜱 − . Its entries are the transition

probabilities from the 2N input combinations and the 2N output combinations of

the flip-flops.

At time t, the primary-input vector is given by

- 40 -

 𝐢(t) ((0 t) (t) …… ((2
M) t) (3.4)

where (i t) is the probability that the primary inputs have the 𝑖 value at time t.

The present-state vector is given by

 (t) ((0 t) (t) …… ((2
M) t) (3.5)

where (i t) is the probability that the present states have the 𝑖 value at time t.

Therefore inputs can be represented by a vector of length 2M+N given by

 𝐢 (t) 𝐢(t) (t) (3.6)

where indicates the tensor product.

For the N next states, their joint distribution is described by a vector (t) of

length 2N, and

 (t) 𝐢 (t) ∗ 𝜱𝒏𝒔 (3.7)

The present-state vector at time t+1, (t), can be calculated as follows:

 (t) (t) ∗ 𝜱 (3.8)

Similarly, the primary-output vector (t) is given by

 (t) 𝐢 (t) ∗ 𝜱𝒑𝒐 (3.9)

3.2.4 Reliability evaluation using SPTMs

In a sequential circuit, the cumulative effect of errors is modeled by matrix

operations (as according to the Markov process); specifically, error propagation is

described by matrix multiplications, while the combination of signals is described

- 41 -

by tensor products. By considering the S-PTMs defined previously for the

sequential circuit of Figure 3.6, the input vector at time t+1, 𝐢 (t), can be

computed by

 𝐢 (t) 𝐢(t) (t) 𝐢(t) (𝐢 (t) ∗ 𝜱𝒏𝒔 ∗ 𝜱) (3.10)

It can be shown that

 𝐢 (t) 𝐢 (t) ∗ (𝐢(t) (𝜱 ∗ 𝜱)) (3.11)

as per the Theorem in the Appendix.

Let

𝜱 𝒏(𝑡) 𝐢(t) (𝜱 ∗ 𝜱) (3.12)

(3.11) can be written as

 𝐢 (t) 𝐢 (t) ∗ 𝜱 𝒏(𝑡) (3.13)

𝜱 𝒏(𝑡) is a time-dependent SPTM, whose entries are the transition probabilities

from the 2M+N input combinations at time t to the 2M+N input combinations at

time t+1. Therefore, (3.13) describes the (error) characteristics of the sequential

circuit (under its current primary inputs) and captures the temporal correlation

between the inputs at different time steps.

At time t+1, the primary output vector can now be computed as

 (t) 𝐢 (t) ∗ 𝜱𝒑𝒐 𝐢 (t) ∗ 𝐢 (t) ∗ 𝜱𝒑𝒐

 𝐢 (t) ∗ 𝜱 𝒏(𝑡) ∗ 𝜱 𝒏(𝑡) ∗ 𝜱𝒑𝒐

 ⋯

- 42 -

 𝐢 (t) ∗ 𝜱 𝒏(𝑡 𝑘) ∗ 𝜱 𝒏(𝑡 𝑘) ∗ … ∗ 𝜱 𝒏(𝑡) ∗ 𝜱𝒑𝒐

 ⋯

 𝐢 (0) ∗ 𝜱 𝒏(0) ∗ 𝜱 𝒏() ∗ … ∗ 𝜱 𝒏(𝑡) ∗ 𝜱𝒑𝒐

 𝐢 (0) ∗ (∏ 𝜱 𝒏(𝑘)𝒕
 =𝟎) ∗ 𝜱𝒑𝒐

 (3.14)

Furthermore, assume that in the error-free case, the ideal output vector is given by

 (t); so if the primary inputs at every time step and the initial state are

known, the output reliability of a sequential circuit at time t+1 can be computed

by:

 (t) (t) (t), (3.15)

i.e. the dot product of the two vectors.

Example: Consider the sequential half adder circuit shown in Figure 3.7. Given

the gate PTMs, the circuit PTM can be found by first dividing the combinational

part of the circuit into several levels and then evaluating the PTMs at each level.

Alternatively, 𝜱𝒏𝒔 and 𝜱𝒑𝒐 can be obtained for the next state and output logic.

Figure 3.7. S-PTM evaluation of a sequential half adder with one primary input, one flip-

flop and one primary output.

- 43 -

Assume a gate error rate of 0.01, we obtain

𝜱𝒑𝒐 [

0 0 0
0 0 0
0 0 0
0 0 0

] (3.16)

and

𝜱𝒏𝒔 [

0 0 0
0 0 0
0 0 0
0 0 0

] (3.17)

Also assume that the flip-flop has an error rate of 0.02, i.e., 0 02, then

𝜱 𝜱 − [
0 0 02
0 02 0

] (3.18)

Given the primary input at each time step, the reliability of the primary output can

be calculated as follows. Let the initial state of the flip-flop be (0)

(0 0 0). If the primary-input vector is given by 𝐢(0) (0 0 0), then

at t=0, the input vector can be calculated as

 𝐢 (0) 𝐢(0) (0) (0 0 0 000 0 0 0 00) (3.19)

At t=1, the present-state vector is given by

 () (0) ∗ 𝜱 𝐢 (0) ∗ 𝜱𝒏𝒔 ∗ 𝜱 (0 0 0) (3.20)

If the primary input vector at t=1 is given by 𝐢() (0 0 02), then the

input vector 𝐢 () is given by

 𝐢 () 𝐢() () (0 0 0 0 00 0 0) (3.21)

- 44 -

For the sequential adder, all outputs (both primary outputs and the next states)

must be included for the final reliability evaluation. The output vector is obtained

as

 () 𝐢 () ∗ 𝜱𝒑𝒐 (0 2 0 02) (3.22)

(3.22) gives the output distribution after one clock cycle for the probabilistic

sequential adder. The above process can also be computed directly from (3.14) for

t=0.

 Since the ideal error-free output vector is () (0), the reliability can be

obtained from (3.12) as:

 () () () 0 2 (3.23)

i.e. the output reliability at this time is 0.9721.

Table 3.2. The reliability of some sequential circuits obtained using SPTMs. The input vector

is randomly generated at each clock cycle.

Circuits

Characteristics Reliability (ε=0.005)

Gates Inputs Outputs DFFs T=1 T=2 T=3 T=4 T=5

2-bit counter 2 0 2 2 0.990 0.980 0.971 0.961 0.952

Simplified semaphore 6 0 2 2 0.983 0.965 0.948 0.932 0.916

s27 10 4 1 3 0.975 0.990 0.985 0.960 0.948

2-bit probabilistic

sequential adder
10 4 1 2 0.976 0.962 0.948 0.935 0.922

2-bit Lower-part OR

sequential adder
3 4 1 2 1 0 0 0 0

2-bit AMA1 based

sequential adder

22

(transistors)
4 1 2 0 1 1 0 0

2-bit AMA2 based

sequential adder

22

(transistors)
4 1 2 1 0 0 0 0

2-bit AMA3 based

sequential adder
N/A 4 1 2 0 0 0 0 0

- 45 -

Table 3.2 shows the simulation results of some sequential circuits that were

analyzed using the SPTM approach. Albeit with an exponential complexity, the

SPTM approach can efficiently be used by decomposing a large circuit into small

modules [27]. Alternatively, the reliability can be evaluated using probabilistic

gate models [3] or stochastic computational models [9]. As can be seen in Table

3.2, the reliability values are very different at different clock cycles (different ‘T’)

for the probabilistic and approximate designs. For example, for the LOA and

AMAs, the reliability is mostly 0, which indicates that these designs are totally

unreliable. However, they can be useful in many applications, where a partial loss

of precision can be tolerated. Therefore, these new paradigms need to be better

assessed as efficient design alternatives. Toward this end, new metrics are

proposed subsequently to characterize the extent of loss of precision and its gain

in reducing power consumption.

3.3. Mean and Normalized Error Distances

3.3.1 Error Distance

In this section, a new metric is proposed for evaluating the reliability of an adder

and SPTMs are used in the computation of this metric. Consider as an example

the case in which the exact output Sum of an adder is “100101” and other values

can result as inexact outputs. For example, both “100100” and “110101” represent

inexact values. However, these two output values have different implications

when compared to the correct value: “100100” means the output is different by 1

(or at a distance of 1) from the correct value, while “110101” is different by 16

(or at a distance of 16) from the correct value. So, an output can take erroneous

values that are substantially different from the correct one. This is determined by

the error effects on the addition; for example, a lower bit error has less impact on

the output of an adder.

Under these circumstances, the metric of circuit reliability has limited usefulness

in assessing an adder because it considers only the presence of an error, but not

- 46 -

the error’s implication on the performed addition. A new metric referred to as

error distance (ED) is therefore proposed to better characterize the reliability of

an adder.

In general, the ED between two binary numbers, a (erroneous) and b (correct,

i.e., golden), is defined as the arithmetic distance between these two numbers, i.e.,

 (b) | b| |∑ 𝑖 𝑖 ∗ 2 ∑ b j 𝑗 ∗ 2j|, (3.24)

where i and j are the indices for the bits in a and b, respectively. In the previous

example, the two erroneous values “100100” and “110101” have an ED of 1 and

16 to the golden “100101,” respectively.

 For a non-deterministic implementation, the output is probabilistic and usually

follows a distribution for a given input 𝑎𝑖 . In this case, the ED of the output

(denoted by 𝑖) is defined as the weighted average of EDs of all possible outputs

to the nominal output. Assume that for a given input, the output has a nominal

value b, but it can take any value given in a set of vectors 𝑏𝑗 (≤ 𝑗 ≤ 𝑟); the ED

of the output is then given by:

 𝑖 ∑ (bj b)𝑗 ∗ j, (3.25)

where 𝑗 is the output probability of 𝑏𝑗.

3.3.2 Mean Error Distance (MED)

 When the primary inputs to a circuit are non-deterministic and thus each input

occurs at certain probability, the mean error distance (MED) of a circuit (denoted

by) is defined as the mean value of the EDs of all possible outputs for each

input. Assume that the input is given by a set of vectors 𝑎𝑖 (≤ 𝑖 ≤ 𝑠) and that

each vector occurs with a probability given by a corresponding value 𝑖 (≤ 𝑖 ≤

𝑠). Then, the MED of the circuit is given by:

dict://key.0895DFE8DB67F9409DB285590D870EDD/weighted%20average

- 47 -

 ∑ 𝑖 ∗ , (3.26)

where 𝑖 is the ED of the outputs for input 𝑎𝑖, which can be computed by (3.25).

For simplicity, uniformly-distributed random inputs are considered hereafter, i.e.,

each input occurs with the same probability. Consider as an example a 3-bit adder.

In Figure 3.3 and Figure 3.4, let k = 3, m = 1 and n = 2. A 3-bit CFA is used to

calculate the correct output value. A gate error rate of 0.028 is used for PFA; this

value is selected such that the MED is close to that of the LOA (as shown in

subsequent sections). Table 3.3 shows the results of three experiments, each of

which consists of four consecutive clock cycles. As expected, the CFA has a

MED of 0 throughout the four clock cycles in all experiments. However, the

MED for the PFA is significantly greater than that of its LOA counterpart in most

cases. Also shown is that the MEDs of the LOA and AMAs can be reduced to 0 at

an intermediate time step. For example, the MED of the LOA has a value of 0 at

both Clk1 and Clk4 in Experiment 3; this is due to the effect of error masking, as

discussed next.

Table 3.3. Mean Error Distance for four clock cycles with random inputs.

Experiment Architecture Clk1 Clk2 Clk3 Clk4

No. 1

CFA 0 0 0 0

PFA 0.7400 1.1920 1.4620 2.1900

LOA 0 2 1 1

AMA1 1 1 2 3

AMA2 1 0 1 2

AMA3 0 0 1 2

No. 2

CFA 0 0 0 0

PFA 0.7220 1.0260 1.5940 1.9640

LOA 0 1 1 1

AMA1 0 1 1 2

AMA2 0 1 1 1

AMA3 1 2 2 3

No. 3

CFA 0 0 0 0

PFA 0.7820 1.2100 1.5180 2.2340

LOA 0 2 1 0

AMA1 0 2 3 3

AMA2 1 0 2 3

AMA3 2 1 2 3

- 48 -

(a) (b)

(c)
(d)

(e) (f)

Figure 3.8. The S-PTM for the two lower bits of the 3-bit adder: (a) CFA (b) LOA (c)

AMA1 (d) AMA2 (e) AMA3 and (f) PFA. Each row corresponds to an input consisting of

two bits from the primary inputs and two bits from the feedbacks; each column corresponds

to a 3-bit output of the 2-bit addition. An entry in a matrix indicates a transition

(probability) from an input to an output.

- 49 -

For uniformly distributed inputs, the 16 input values occur with the same

probability of 1/16 for this 3-bit adder. Based on the S-PTM model, the transition

matrix 𝜱𝒏𝒔 for the lower two bits is given in Figure 3.8 for each implementation

(as the higher bits are accurate and are therefore the same). Given these transition

matrices, the ED of an output can be computed for an input against the

corresponding output of the CFA (taken as the golden value). Given 𝜱 in

Figure 3.8(b), for example, the MED of the LOA is:

1

1
∗ (0 0 0 0 0 0 0 0 2 2 0 2

) 0 2 . (3.27)

 The MED of the PFA is calculated using 𝜱 in Figure 3.8(f) as:

 m
1

1
∗ ∑ 𝑖 0 . (3.28)

Similarly, the MEDs of the AMAs are obtained as follows:

 M 1
1

1
∗ (2 0 2 0 0 0

0 2) 2 , (3.29)

 M 2
1

1
∗ (0 2 0 2 2 0 0

 0) , (3.30)

 M
1

1
∗ (0 0 0 0 2 2 2 2

) . (3.31)

This shows that the AMA1 has the largest MED, while the MED of the PFA

(0.6167) is only slightly different from that of the LOA for an error rate of 0.028.

However, the cumulated error distances are quite different in the sequential adders,

as shown in Table 3.2. This is mainly due to a result of partial error masking [17].

For the LOA and AMA2, several so-called restoring inputs are found, as indicated

- 50 -

by the neighboring 1’s in the columns of 𝜱 and 𝜱 . By these inputs,

errors can be logically masked, which leads to the same next state from different

present states. This can also be explained as follows. For certain primary inputs,

the approximate logic masks the cumulative errors in the LOA and AMA2.

However, this is not the case for the PFA (or CFA), because it is always affected

by errors; therefore, errors accumulate rather than being masked.

3.3.3 Mean Error Distance (MED) Evaluation

In this section, the MEDs of the various designs are evaluated against a baseline

design of a reduced precision adder, i.e., the lower-bit ignored adder (LIA). In this

implementation, rather than using n-bit unreliable adders for computation, the

lower significant bits are ignored.

Consider the general case of a 32-bit adder (k=32). Figure 3.9(a) shows the

reliability of each adder design, while the MEDs are plotted in Figure 3.9(b) by

varying the number of lower bits, n. A comparison of the adder implementations

shows that the interpretation of these metrics (i.e., reliability and MED) leads to a

different assessment result; for example under the MED metric, the performance

of LOA is similar to a PFA with a gate error rate of 0.028. However, under the

reliability metric the reliability of LOA is significantly lower than the reliability

of PFA for the same gate error rate.

As shown in Figure 3.9(b), an n-bit ignored LIA performs slightly better in

terms of the MED than an n-bit PFA at a gate error rate of 0.2 for the 32-bit adder.

However, a PFA with an error rate significantly lower than 0.2 is expected to have

a smaller MED. The AMAs have a similar performance as a PFA with an error

rate of approximately 0.05. Moreover, as shown in Figure 3.9(b), the expected

MEDs of both the LOA and the PFA increase exponentially with the number of

lower bits. For the LOA, error masking occurs when the carry bit is ignored -

there is no carry for the lower bits. Therefore, errors in a lower bit are

operationally isolated. In this way, error masking occurs in the combinational

- 51 -

circuit. Therefore, errors in the lower bits cannot be propagated to the higher bits,

thus preventing their cumulative effect.

(a)

(b)

Figure 3.9. (a) Reliability vs. the number of lower bits in a 32-bit adder, and (b) MED

vs. the number of lower bits in the 32-bit adder.

The simulation results of Figure 3.9 show the effectiveness of the proposed

evaluation technique. It reveals that, although there is no cumulative error for the

LOA, an error due to the approximate logic makes its MED not as optimistic as

expected, especially for an increased number of lower bits. This is due to the fact

that an error can occur in the most significant lower bit. The PFA shows a

- 52 -

different scenario. Errors in the lower bits are likely to be propagated to the higher

bits. So, its MED is rather large even for a small error rate, due to the cumulative

errors from the lower bits (even though the error that results from the most

significant bit is not that large).

3.3.4 Normalized Error Distance (NED) and its Evaluation

It is shown that in Figure 3.9(b), the MED increases exponentially with the

number of lower bits in an adder. Therefore, MED is an unfair metric when a

comparison is made between two adders with different lower bits, as the

maximum value of error that can be effectively reached, has also changed. To

overcome this limitation, a normalized MED, referred to as a normalized error

distance (NED), is defined as follows:

 𝑛

, (3.32)

where is the MED and D is the maximum value of error that an unreliable

adder can have. This maximum value is usually 2n for n lower bits, so we obtain

 𝑛

2 . (3.33)

Figure 3.10. Normalized Error Distance (NED) vs. the number of lower bits.

- 53 -

Figure 3.10 shows the NEDs of the various adder implementations. The NEDs of

the LIA are constant at 0.5 and thus serving as a baseline. For other

implementations, as revealed in the figure, the NED shows little change and only

fluctuates in a small interval when different lower bits are compared. This is

consistent with the results in Figure 3.9(b), i.e., the MED increases exponentially

with the number of lower bits.

Hence, NED is a stable metric that is almost independent of the size of an

implementation and is useful in assessing the reliability of a specific design. This

feature also brings a new perspective for the evaluation and comparison of

different adder implementations for inexact computing.

3.4. Power and Precision Trade-off

As discussed previously, inexact computing is confronted with many similarities

and often contradictory features that can also be found in bio-inspired systems,

i.e., systems made of a large number of unreliable modules. These systems utilize

extensive networks to circumvent the unreliable nature of the computational

modules while still retaining low power/energy consumption. The adder

configurations presented previously draw significant resemblance to this type of

system. The LOA and AMAs resort to approximate logic to target reliable

modules and PFA resorts to characterizing probabilistic behavior of nanoscale

modules. However, one of the issues that must be addressed for inexact

computing is that probabilistic implementations may likely tradeoff too much

accuracy for little saving in area and power. In this section, this tradeoff is

evaluated using the product of power and NED of an implementation.

 Consider first the power consumption of the adders. As suggested in [42], the

energy (E) consumed by a probabilistic inverter increases exponentially with the

probability of its correct functioning, p, if the noise magnitude remains constant.

For simplicity, here we assume that the energy consumption of any binary gate

increases exponentially with p. It is further assumed that the power of a 1-bit CFA

- 54 -

is normalized to 1, i.e.

 1−C . (3.34)

 And it should be noted that all the power consumption in this chapter is

normalized to a 1-bit CFA. Therefore, the power consumption of a 1-bit PFA is

then:

 1− 1−C ∗
e

e e −1. (3.35)

 For a k-bit CFA, its power is then:

 C ∗ 1−C . (3.36)

 For a k-bit PFA with m higher bits and n lower bits, its power consumption is

given by:

 m ∗ 1−C n ∗ 1− m n ∗ e −1. (3.37)

 Since adders perform a similar function (i.e., an addition), we assume that the

switching activities of the gates in an adder are similar. Therefore, the power

consumption is considered to be proportional to the number of logic gates for an

approximate implementation. In a single-bit LOA, there is only one OR gate

instead of five gates as in a conventional adder. So as a first-order estimation, the

power consumption of the lower bits in a LOA is 1/5 of that in a CFA, i.e.,

 m ∗ 1−C n ∗ R m 0 2 ∗ n. (3.38)

For the three AMAs, a reduction in the number of transistors allows for a lower

operating voltage, which subsequently reduces the power consumption. An

application of the Inverse Discrete Cosine Transform (IDCT) is considered for

evaluating the power consumption in [40]. Compared to an operating voltage of

1.13 V for the accurate IDCT operation (equivalent to an operation using the

- 55 -

CFA), an AMA-based IDCT operation requires a voltage of 1.04 V, 1.1 V and

1.01 V, respectively, for the three approximate implementations [40]. Therefore,

the power can be estimated as

 M −1 m ∗ 1−C n ∗ 1− M −1 m n ∗
1 04

1 1 . (3.39)

 M −2 m ∗ 1−C n ∗ 1− M −2 m n ∗
1 1

1 1 . (3.40)

 M − m ∗ 1−C n ∗ 1− M − m n ∗
1 01

1 1 . (3.41)

Table 3.4. Power and saving per lower bit of the adder implementations (the power

consumption value is normalized to 1-bit CFA).

Implementation Power per bit Power saving per bit

PFA

p=0.05 : 0.9512 0.0488

p=0.028: 0.9724 0.0276

p=0.02: 0.9802 0.0198

p=0.01: 0.9900 0.0100

p=0.005: 0.9950 0.0050

LOA 0.2 0.8

LIA 0 1

AMA1 0.8471 0.1529

AMA2 0.9476 0.0524

AMA3 0.7989 0.2011

 For the LIA, its power consumption is simply:

 I m. (3.42)

The power consumption and saving of each lower bit compared to the CFA are

reported in Table 3.4 for the various implementations. Given a fixed power budget,

it has been shown that the MED of the PFA drastically increases with the number

of lower unreliable bits, while the LIA has a significantly lower MED and the

LOA performs the best with the smallest MED [18]. For a fixed MED, similarly,

the power consumption of a 32-bit sequential adder can be considered.

Table 3.5 shows the power consumption of the various implementations at

MED=16. There is no substantial difference in the power consumption; however,

the LOA has the best performance with the LIA as a close second. The PFAs

- 56 -

consume more power than the LIA. For more unreliable bits, a lower error rate is

required, so a higher power consumption results. So far, the comparison is

constrained by either a fixed power budget or MED. Next, a different metric is

used to evaluate the tradeoff between power consumption and precision (as

represented by NED).

Table 3.5. Power consumption of various implementations of a 32-bit adder with a largest

MED of 16 (the power consumption value is normalized to 1-bit CFA).

Implementation Features Power consumption

PFA

m=27, n=5 : p=0.05 31.7561

m=26, n= 6 : p=0.031 31.8169

m=25, n= 7 : p=0.014 31.9027

LOA m=26, n=6 27

LIA m=28, n=4 28

AMA1 m=26, n=6 31.0823

AMA2 m=26, n=6 31.6856

AMA3 m=26, n=6 30.7933

Figure 3.11. The power-NED product vs. the number of lower bits for different adder

implementations and gate error rates.

This metric is given by the product of the normalized power and NED, i.e., the

power-NED product. As shown in Figure 3.11, the power-NED product of an

implementation has a rather constant value, which is nearly independent of the

- 57 -

number of lower bits. For an implementation such as the PFA with a gate error

rate of 0.005, its power consumption is considered high, while its NED is low. For

a larger gate error rate, the power consumption decreases, while the NED

increases. However, this synergetic effect of power and NED is captured by the

power-NED product; the smaller the product, the better the design, in terms of a

tradeoff between power consumption and precision. As shown in Figure 3.11, the

AMA2 has a similar power precision tradeoff as the PFA with a gate error rate of

0.05, while the AMA3 has a better power efficiency. Also shown is that the PFA

with a gate error rate of 0.005 has a comparable power-NED product to that of the

LOA, so a PFA with a lower gate error rate is preferred.

Figure 3.12. The power saving-NED ratio vs. the number of lower bits for different adder

implementations and gate error rates.

This tradeoff can further be explained by the ratio of the normalized power saving

and NED, i.e., the power saving per bit (compared to the CFA) divided by the

NED. This power saving-NED ratio provides a quantitative measure to assess the

implications of the efficiency as related to the power saving per unit of the

resulting error distance. Since it is normalized, as shown in Figure 3.12, the power

saving-NED ratio is also nearly independent of the number of lower bits.

- 58 -

Moreover from Figure 3.12, the LOA has the highest ratio; so when trading off

precision for power saving, the LOA has a better efficiency than other designs

considered in this chapter.

Figure 3.13. Relationship between power and precision, given by the power consumption per

bit and the NED of a design. Each dashed curve indicates a value of the product of power

per bit and the NED. The arrow points to the direction for a better design with a more

efficient power and precision tradeoff.

The relationship between power and precision, however, is further revealed in

Figure 3.13, in which the analysis of CFA and LIA is included. Power and

precision are represented by the power consumption per bit and the NED of a

design. While the LIA and CFA are the two extreme corner designs (with a power

of 0 and an NED of 0, respectively), the other designs generally save power by

allowing for some loss of precision. The LOA shows a better tradeoff between

power saving and precision loss. Clearly, a design with a better power saving

efficiency in terms of precision loss is desired (as indicated by the direction of the

arrow in Figure 3.13). As the product of normalized power and NED is used to

investigate the precision/power relationship, this imposes an equal weight on the

- 59 -

impact of power consumption and precision. In practice, a different measure that

emphasizes the importance of a particular metric (such as the power or precision)

can be used for a better assessment of a design according to the specific

requirement of an application.

3.5. Summary

This chapter has proposed several new metrics for evaluating approximate and

probabilistic adders with respect to their reliability and power efficiency, as

unified figures of merit for design assessment in inexact computing applications.

The Error distance (ED) is defined as the arithmetic distance between an

erroneous output and the correct one. The Mean error distance (MED) and the

normalized error distance (NED) have been proposed by considering the

averaging effect of multiple inputs and the normalization of multiple-bit adders.

Since the NED is nearly invariant with the size of an implementation, it is useful

for the reliability assessment of a specific design. To evaluate the tradeoff

between power consumption and precision, the product of power and NED has

been considered and the power efficiency against the precision loss is computed

for gaining an insight into the effectiveness of a design. The so-called sequential

probability transition matrices (SPTMs) have been used in the computation of the

proposed metrics.

Using the proposed metrics, several adder implementations, namely the LOA,

AMAs and PFA, are compared against a baseline implementation, the LIA.

Simulation results have indicated that, compared to probabilistic adders such as

the PFA, approximate adders such as the LOA and AMAs are advantageous in

terms of power saving, but with a relatively low precision (comparable to that of

the PFA with a high gate error rate). Probabilistic adders such as the PFA, on the

other hand, are able to provide a high precision, especially for a low gate error

rate, but at the cost of a relatively high power consumption. This tradeoff in

precision and power are quantitatively evaluated using the proposed metric of

power-NED product. The evaluation results are further supported by the analysis

- 60 -

of the power saving and NED ratio that indicates the efficiency of a design in

trading off precision for power. Although not discussed and beyond the scope of

this chapter, the proposed metrics may also be useful in assessing other arithmetic

circuits [43] for inexact computing and/or fault-tolerant designs [31] in

nanocomputing applications.

- 61 -

CHAPTER 4

Design and Reliability Analysis of Multiple

Valued Logic Gates using Carbon Nanotube

FETs*

With emerging nanometric technologies, multiple valued logic (MVL) circuits

have attracted significant attention due to advantages in information density and

operating speed. In this chapter, a pseudo-complementary MVL design is initially

proposed for implementations using carbon nanotube field effect transistors

(CNTFETs). This design utilizes no resistors in its operation. To account for the

properties and fabrication non-idealities of CNTFETs, a transistor-level reliability

analysis is proposed to accurately estimate the error rates of MVL gates. This

approach considers gate structures and their operation, so it yields a more realistic

framework than a logic-level analysis of reliability. To achieve scalability,

stochastic computational models (SCMs) are developed to accurately and

efficiently analyze MVL gates; the extension of these models to circuits is briefly

discussed.

__

*A version of this chapter has been accepted for publication in [21] and submitted for

publication in [20].

- 62 -

This chapter starts with a newly proposed CNTFET-based MVL family. Before

modeling the reliability of MVL circuits, a mathematical analysis of our proposed

SCM, especially compared to the traditional stochastic computing methods is

presented in Section 4.2. Targeting at the reliability evaluation of the newly

proposed MVL, a transistor-level analysis will be presented and SCM for MVL

will be developed in Section 4.3. Finally Section 4.4 goes to the conclusion.

4.1. Design of Multiple Valued Logic Gates using

CNTFETs

4.1.1 Review

Drain

Source

Gate
Intrinsic CNT

regions

(under the gate)

Heavily doped

CNT segments

for source/drain

 Figure 4.1. CNTFET structure with four CNTs in the channel.

The features of high mobility of charge carriers and the reduction in

subthreshold slope in gate geometry make the CNTFET a promising candidate as

a post-CMOS device [10, 47]. Figure 4.1 illustrates the device structure of a

CNTFET with four ideal single-wall semiconductor CNTs in the channel [48].

Current CNT fabrication processes are not ideal; in addition to the traditional

CMOS fabrication defects (such as faulty open and bridge contacts), the CNTFET

manufacturing process suffers from new variation challenges, such as in CNT

diameters and bandgap. Therefore, many sources of uncertainty and defects affect

the reliable operation of CNTFET devices.

A metallic CNT is one of the most dominant defects; a CNT can be either

metallic (m-CNT) or semiconducting (s-CNT) depending on its chirality.

Currently, there is no known technique available to grow 100% s-CNTs. The

conductivity of m-CNTs cannot be controlled by the gate due to the zero or near-

- 63 -

zero bandgap and therefore the removal of m-CNTs or m-CNT tolerance is

required.

4.1.2 Pseudo-complementary CNTFET-based MVLs

4.1.2.1 Pseudo-complementary ternary logic

Table 4.1. Truth table for three ternary inverters

Input STI NTI PTI

0 2 2 2

1 1 0 2

2 0 0 0

(a)

(b)

Figure 4.11(a) A pseudo-complementary STI; (b) A pseudo-complementary ternary NMIN

operator.

Ternary logic gates can be designed using CNTFETs [48, 49]. In [49], a

resistance-loaded design is realized for ternary logic as a basis to further use

CNTFETs. This approach however suffers from the disadvantage of large area

overhead (due to a large resistance) and power dissipation. However, its

operational principles are valuable, which establishes some important features for

CNTFET-based design. A pseudo-complementary implementation of MVL based

on CNTFETs is proposed next. The proposed design replaces the resistors used in

[49] with p-type CNTFETs (with the gate connected to ground), while threshold

voltage operation is accomplished by adjusting the chirality and the number of

CNTs in each CNTFET. This approach (referred to as pseudo-complementary)

- 64 -

exploits the similarities in threshold voltage control in the p- and n-types while

ensuring a correct MVL design for both ternary and quaternary logic gates.

Figure 4.3 Proposed ternary pseudo-complementary NTI and PTI.

Consider first ternary operation. There are three types of ternary inverters

(Table 4.1): standard ternary inverter (STI), negative ternary inverter (NTI), and

positive ternary inverter (PTI). Figure 4.2(a) shows the proposed pseudo-

complementary STI using CNTFETs. It consists of two n-type CNTFETs and two

p-type CNTFETs. One of the CNTFETs (1) has a chirality of (8, 0); it is used as

the pull-up network, while the other three CNTFETs are used as the pull-down

network. The chiralities of N1 and N2 are (10, 0) and (19, 0), and the

corresponding threshold voltages are 0.559 V and 0.293 V respectively. Consider

an input voltage 𝑖𝑛. For small values of 𝑖𝑛, both N1 and N2 are off. Hence, the

output node (OUT) is held at . As n increases beyond 2 (0.293 V), N2 is

turned on. The output voltage is determined by the resistance ratio of 1 2 and

 N2; therefore it is held approximately at 2 until n reaches 1 (0.559 V).

Once n exceeds 1, N1 is turned on and the output is pulled down to nearly

zero. The voltage at the output node is plotted in Figure 4.4 (obtained by HSPICE

simulation). Similarly, Figure 4.3 shows the proposed pseudo-complementary

NTI and PTI implementations. The HSPICE simulation results in Figure 4.4 and

Figure 4.5 show the correct operations of the proposed designs.

- 65 -

Figure 4.4 Voltage transfer diagram for the ternary inverters (STI, PTI and NTI).

Figure 4.5 Transient simulation results of the ternary inverters.

A pseudo-complementary ternary NMIN is designed next (Figure 4.2(b)). This

gate consists of six CNTFETs, with four different chiralities. In this gate, similar

to the ternary STI in Figure 4.2(a), the CNTFETs with chiralities (10, 0) and (19,

0) have threshold voltages of 0.559 V and 0.293 V, respectively. HSPICE

simulation (shown in Figure 4.6) confirms the correctness of the proposed design.

- 66 -

Figure 4.6 Transient simulation results of ternary NMIN operator.

4.1.2.2 Pseudo-complementary quaternary logic

Similarly, pseudo-complementary quaternary logic gates are designed in this

section. Figure 4.9(a) shows a pseudo-complementary CNTFET quaternary

inverter, while Figure 4.7(b) shows a pseudo-complementary CNTFET quaternary

NMIN operator.

The inverter consists of three n-type CNTFETs and three p-type CNTFETs,

each with a different chirality; the NMIN operator consists of six n-type

CNTFETs and three p-type CNTFETs. Each of the p-type CNTFETs has a

distinct chirality, while the six n-type CNTFETs have three chiralities. Figure 4.8

shows the voltage transfer diagram of the quaternary inverter. Compared to the

simulation results of the ternary inverter (Figure 4.4), Figure 4.8 shows the

reduced noise margin for the quaternary logic. Figure 4.9 shows the transient

simulation results (simulated by HSPICE).

- 67 -

(a)

(b)

Figure 4.7 (a) A pseudo-complementary quaternary inverter; (b) A pseudo-complementary

quaternary NMIN operator.

Figure 4.8 Voltage transfer diagram for the quaternary inverter of Figure 4.7(a).

Figure 4.9 Transient simulation results of quaternary inverter and NMIN operator.

0.9v

Quaternary Inverter

TP1

Tubes=1

(8,1)

TP3

Tubes=1

(13,0)

TP2

Tubes=2

(25,0)

TN3

Tubes=3

(25,0)

TN2

Tubes=3

(13,0)

TN1

Tubes=3

(8,1)IN IN IN

OUT

0.9v

Quaternary NMIN

TN3

Tubes=3

(25,0)

TN2

Tubes=3

(13,0)

TN1

Tubes=3

(8,1)

TN6

Tubes=3

(25,0)

TN5

Tubes=3

(13,0)

TN4

Tubes=3

(8,1)

TP1

Tubes=1

(8,1)

TP3

Tubes=1

(13,0)

TP2

Tubes=2

(25,0)

B B B

A A A

OUT

- 68 -

4.2. Stochastic Logic using Non-Bernoulli Sequences

4.2.1 Stochastic Logic

In stochastic computation, signal probabilities are encoded into binary bit streams,

i.e., serially in the time domain. Randomly generated bit streams are used to

encode signal probabilities; a specific probability is represented by a number of

bits sequence to a value that is usually in proportion to the mean number of 1’s in

a bit stream. Figure 4.10 shows a stochastic encoding and an inverter. As Boolean

operations can be mapped to arithmetic operations, the inverter probabilistically

implements the complement operation of Rule I. Note that in Figure 4.10, a

sequence length of 10 bits is used for illustration purposes; a larger sequence

length is usually needed in practice.

Figure 4.10 An inverter and a stochastic encoding.

Stochastic computation transforms Boolean logic operations into probabilistic

computations in the real domain. Although each binary bit is processed by a

Boolean gate, signal operations are no longer Boolean in nature, but they are

arithmetic computations by stochastic logic. Bernoulli sequences are often used as

binary bit streams in stochastic computation [16, 44]. In a Bernoulli sequence,

every bit is independently generated with a probability p. The mean and variance

of the number of 1’s in an N-bit Bernoulli sequence are respectively given by

 , (4.1)

and

 () (4.2)

- 69 -

For the inverter of Figure 4.1, if the input probability is a, the mean number of 1’s

in its output sequence is

 1 (𝑎), (4.3)

and the variance is

 1 𝑎(𝑎). (4.4)

This is the same as the variance of the input sequence.

Complex arithmetic operations can be implemented by simple stochastic logic.

According to Rule II, for instance, multiplication can be implemented by an AND

gate, as shown in Figure 4.2(b). In this multiplication, the input binary streams

must not be correlated for a correct computation. However, the bit-wise

dependencies between the input random binary streams can be used to yield new

stochastic logic models that account for the statistical correlation in input signals.

This is shown in Figure 4.2(a) as a general stochastic model of AND in which the

two input signals may be correlated.

Figure 4.11 Stochastic AND logic: (a) the general model; (b) the special case of multiplication,

when the two inputs are statistically independent.

If the inputs of the AND are two independent Bernoulli sequences with generating

probabilities a and b respectively, the mean number of 1’s in the output sequence

is:

- 70 -

 2 𝑎𝑏 (4.5)

and the variance is given by:

 2 𝑎𝑏(𝑎𝑏) (4.6)

For the AND gate in Figure 4.11(a) with possibly correlated inputs,

 () () () (|). (4.7)

Let 𝑎 (), 𝑏 () and 𝑐 (|); then

 () 𝑎 𝑐. (4.8)

 The use of Bernoulli sequences as inputs results in a Bernoulli sequence at the

output with a generating probability given by (4.8); therefore, the mean number of

1’s in the output sequence and its variance are given by:

 2 𝑎 𝑐 (4.9)

and

 2 𝑎 𝑐(𝑎 𝑐) (4.10)

respectively.

 The use of Bernoulli sequences however incurs a large computational

overhead that severely limits its application for reliability analysis. This aspect is

addressed through the use of non-Bernoulli sequences, as discussed next.

4.2.2 Non-Bernoulli Sequences

 In this work, non-Bernoulli sequences are used for reducing the computational

complexity and inaccuracy. Specifically, each initial input stochastic sequence

contains a fixed number of 1’s and the positions of the 1’s are determined by a

- 71 -

random permutation. For a given probability p and a sequence length of N bits,

the number of 1’s to be generated is given by Np. When Np is not an integer, it

must be rounded to an integer, thus introducing a quantization error into the

representation. The effect of quantization errors is discussed in a later Section; the

output distributions of the inverter and AND gate, when non-Bernoulli sequences

are used as inputs, are treated in more detail next.

 For an inverter, assume that the input has a probability of a to be “1”; so Na is

the number of 1’s in the input sequence of N bits. Then the expected value of 1’s

in the output sequence is given by:

 1
 (𝑎). (4.11)

Since there is no variation in the input, the variance in the output is considered to

be 0, i.e.,

 1
 0. (4.12)

 For an AND gate, the use of the non-Bernoulli sequences resembles von

Neumann’s NAND multiplexing technique, as discussed in [45, 46] for fault-

tolerant logic design. The following Lemma shows that its output follows

approximately a Gaussian distribution when the sequence length N is large.

Lemma 1: For an AND gate, assume that the two inputs are “1” with probabilities

a and b and represented by non-Bernoulli sequences of N bits (as random

permutations of fixed numbers of 1’s and 0’s). For a large N, the output sequence

follows a Gaussian distribution with a mean number of 1’s given by:

 2
 𝑎𝑏 (4.13)

and a variance:

 2
 𝑎(𝑎)𝑏(𝑏). (4.14)

- 72 -

Proof: The two input probabilities a and b give r=a*N and s=b*N as the numbers

of 1’s in the input sequences. In these two inputs, the numbers of possible

permutations are:

 (

𝑟
)

𝑁

 ∗(𝑁−)
, (4.15)

and

 (

𝑠
)

𝑁

 ∗(𝑁−)
, (4.16)

respectively. Assume that the AND gate produces t 1’s in the output sequence;

then, the number of permutations that causes this occurrence, can be obtained by

combinatorial analysis [45, 46]. This leads to:

 (

𝑡
) ∗ (

 𝑡
𝑟 𝑡

) ∗ (
 𝑟
𝑠 𝑡

)
𝑁

 ∗(−) (−) (𝑁− − +)
 (4.17)

The probability that t 1’s result in the output sequence, is given by the number of

output permutations divided by the total possible number of input permutations,

i.e.,

 (𝑡)

 ∗

 (𝑁−) (𝑁−)

 (−) (−) (𝑁− − +) 𝑁
. (4.18)

Assume that the expected output probability is z, and therefore

𝑁
 (4.19)

As per [45], the application of Stirling’s formula results in:

 ()
1

√2 𝑁
√ − 𝑁, (4.20)

where

- 73 -

1

 (1−) (1−)
 (4.21)

(−)

2 (1−) (1−)
 (4.22)

(4.20), (4.21) and (4.22) indicate that the output sequence follows approximately

a Gaussian distribution with a mean number of 1’s given by (4.13) and a variance

given by (4.14). □

4.2.3 Non-Bernoulli vs. Bernoulli Sequences

Next, the comparison between the use of Bernoulli and non-Bernoulli input

sequences in stochastic logic is pursued. For an inverter, it is easy to find that

(4.11) = (4.3) and (4.12) = 0. This indicates that the use of non-Bernoulli input

sequences results in a deterministic output value equal to the mean value of the

one by using Bernoulli input sequences. For an AND gate, the following theorem

applies for independent inputs.

Theorem 1: Compared to the case when Bernoulli sequences are used to represent

the initial input probabilities, the use of large non-Bernoulli sequences as random

permutations of fixed numbers of 1’s and 0’s results in an output sequence with

the same mean number of 1’s and a smaller variance for an AND gate when its

inputs are independent.

Proof: From Lemma 1, it can be seen that (4.13) = (4.5) and

 2 2
 𝑎𝑏(𝑎𝑏) 𝑎(𝑎)𝑏(𝑏) 𝑎𝑏(𝑎(𝑏)

𝑏(𝑎)) 0 (4.23)

so proving the theorem. □

 The general case of correlated inputs is considered as follows. When non-

Bernoulli sequences are used as inputs, the random permutation allows for some

- 74 -

randomness in the inputs, albeit with a correlation between them. Without loss of

generality, assume that input A is first generated; input B is then generated

conditionally on A. For the 1’s in the sequence of A, further assume that the

corresponding bits in B are generated as a Bernoulli sequence with probability 𝑐.

For the 0’s in the sequence of A, subsequently, the number of 1’ in the

corresponding bits in B is actually determined due to the nature of the non-

Bernoulli sequence used to represent the input B. Since the number of 1’s in the

sequence of A is Na, the mean number of 1’s in the corresponding bits in B and its

variance are given by:

 2
 𝑎 𝑐, (4.24)

and

 2
 𝑎 𝑐(𝑐). (4.25)

The combinations of 1’s in inputs A and B produce the 1’s in the output sequence,

so the mean number of 1’s at the output and the variance are given by (4.24) and

(4.25) respectively for an AND gate with non-Bernoulli input sequences that may

be correlated.

 Hence, it can be seen that (4.9) = (4.15) and from (4.10) and (4.25),

 2 2
 𝑎 𝑐(𝑎 𝑐) 𝑎 𝑐(𝑐) 𝑎 𝑐

2(𝑐) 0 (4.26)

This indicates that, when compared to Bernoulli input sequences, the use of non-

Bernoulli input sequences as random permutations of fixed numbers of 1’s and

0’s results in an output sequence with the same mean number of 1’s and a smaller

variance for an AND gate when its inputs may be correlated.

 Any logic function can be implemented with inverters and AND gates; so, a

smaller variance in the output of AND gates (as achieved by using the non-

Bernoulli inputs) will result in a smaller variance in the output of a function

- 75 -

implemented with inverters and AND gates. Also, the same mean value results

from the use of non-Bernoulli and Bernoulli inputs. Therefore in a logic network,

the use of non-Bernoulli and Bernoulli sequences as initial inputs will produce

evaluation results with the same mean, but different variance; the former method

results in a smaller variance than the latter method.

 We conjecture this result as follows: compared to the case when Bernoulli

sequences are used to represent the initial input probabilities, the use of large non-

Bernoulli sequences as random permutations of fixed numbers of 1’s and 0’s

results in an output sequence with the same mean number of 1’s and a smaller

variance for a combinational logic network.

4.3. Reliability Analysis of Multiple Valued Logic Gates

using CNTFETs

4.3.1 Fault Models for CNTFETs

4.3.1.1 The ACCNT technique

Since techniques such as the selective chemical etching [50] are not perfect

and cannot guarantee a robust circuit fabrication, a VLSI-compatible

methodology referred to as asymmetrically-correlated carbon nanotubes

(ACCNTs) has been proposed for reliable circuit design [51].

As a metallic-CNT tolerant technique, ACCNT can tolerate short defects (as

caused by metallic CNTs) by utilizing uncorrelated stacks of CNTFETs in series.

Furthermore, the ACCNT technique uses correlated branches of parallel

CNTFETs to increase the device drive strength without degrading the failure rate

[51]. ACCNT requires a conventional CNTFET process, and does not conflict

with other metallic removal or breakdown solutions. Although this technique

incurs a large area overhead, it has been shown to be efficient in tolerating

metallic-CNTs at wafer level in the manufacturing process flow. Therefore, the

ACCNT technique can effectively enhance yield.

- 76 -

4.3.1.2 Open and short defect probabilities for ACCNT

An accurate mathematical model that considers the density variation in

ACCNTs has been proposed in [52]. Let the CNT placement be totally random

(i.e., at a probability of 0.5 at any given site), the average density of the CNTs be

D CNTs/μm, the window size (or CNTFET width) be W μm; then the average

number of CNTs in each CNTFET is given by

 ̅ 𝑁 (4.27)

For a placement probability of 0.5, 2 ̅ 𝑁 CNTs need to be placed in the

channel for an expected value given by (4.27). The probability of an open defect

is then given by:

 (𝑁) 0 2�̅� (4.28)

A CNTFET is defective (short) when at least one metallic CNT is present; so

by considering the CNT density variation,

 ̅ (𝑁) ∑
(2�̅�)

𝑘 (2�̅� −𝑘)
0 2�̅� ()𝑘

2�̅�
𝑘=1 (4.29)

where denotes the probability of a CNT to be metalic.

For uncorrelated CNTFETs in series of stacks, the probability that an

ACCNT-based transistor has short defects, is given by

 (𝑁) ̅
𝑁 (4.30)

The probability that an ACCNT-based transistor has open defects, is

 (𝑁) ()𝑁 (4.31)

- 77 -

In the general case, a metallic CNT has a probability of around
1

, i.e.,

1

.

Assume ̅ 𝑁 and , the following defect probabilities are found:

 (𝑁)=0.046 and (𝑁)=0.053. (4.32)

For simplicity and without loss of generality, an independent defect rate of

 (CCN)= (CCN)=0.05 is considered in the following calculations.

4.3.2 Reliability analysis of MVL gates

Most previous methods for reliability evaluation are based on the simple

assumption that every gate fails with a given probability. This assumption is

common due to its simplicity in a mathematical model and efficiency in a gate-

level evaluation. However, this assumption is not fully applicable when gate

complexity is taken into account; for example, in a binary CMOS circuit, an

inverter consists of one PMOS transistor and one NMOS transistor, while an

AND gate usually consist of three PMOS transistors and three NMOS transistors.

Due to the non-idealities in fabrication and operational conditions (such as

induced noise), it is evident that an AND gate has a larger probability to fail

compared to an inverter.

This section proposes a transistor level analysis to estimate the probabilistic

behavior of MVL gates; with no loss of generality, the pseudo-complementary

CNTFET logic gates proposed in the previous section are utilized to illustrate the

proposed method. However, the method is sufficiently flexible that it can easily

be extended and generalized to other MVLs.

4.3.2.1 Ternary logic

As discussed previously, open and short defects can be modeled on a

probabilistic basis. Consider the function of the ternary inverter in Figure 4.2(a).

When the input voltage is lower than 0.293 V (logic 0), both N1 and N2 are

- 78 -

expected to be turned off. However, on a probabilistic basis by taking into

account the error probability of each CNTFET, the correct response of the

inverter (so by considering all CNTFETs in this gate) is given by a probability of

only ()(s)2. To consider other defect scenarios, for example, there is

a probability of (s)2 for 1 to be open, N1 to be operating correctly or

open, and N2 to be operating correctly or open. The output can also be floating

and therefore, its current value is determined by the previous value. The detailed

analysis of all scenarios and the corresponding probabilities are given in Table 4.2.

Table 4.2. All possible scenarios for an STI when Input<0.3V (Logic 0) (“floating” indicates

both pull-up and pull-down networks are off. N: normal; S: short defect; O: open defect; X:

don’t care; ‘/’ means ‘or’.)

Scenario Probability OUT logic

TP1:N/S;TP2:X;N1:N/O;TN2:N/O. ()(𝑠)2 2

TP1:O;TP2:X; TN1:N/O;TN2:N/O. (𝑠)2 Floating

TP1:X;TP2:X; TN1: S; TN2: X. 𝑠 0

TP1:O;TP2:O; TN1: N/O; TN2: S. 2(𝑠) 𝑠 Floating

TP1:S/N;TP2:O;TN1: N/O; TN2:S. () (𝑠) 𝑠 2

TP1:N/S;TP2:N/S;TN1:N/O;TN2: S. ()2 (𝑠) 1

TP1:O;TP2:N/S; TN1: N/O; TN2: S. ()(𝑠) 𝑠 0

Based on Table 4.2, the output probability distributions for an input at logic 0

can then be calculated (as shown in Table 4.3).

Similarly, the output probabilities of a ternary inverter when the input is at

logic 1 and 2 can be found in Tables 4.4 and 4.5, respectively.

By combining for an input the values of the output probabilities (given in Table

4.3, Table 4.4 and Table 4.5), a single comprehensive table can be generated. This

- 79 -

comprehensive table describes the probabilistic mapping from the primary inputs

to the primary output of a gate.

Table 4.3. Output probabilities of an STI when Input<0.3V (Logic 0)

Output Probability

0 r b0|0 𝑠 ()(𝑠) 𝑠

1 r b1|0 ()2 (𝑠)

2 r b2|0 ()(𝑠)2 () (𝑠) 𝑠

Floating r b n |0 (𝑠)2 2(𝑠) 𝑠

Table 4.4. Output probabilities of an STI when 0.3V<Input<0.6V (Logic 1)

Output Probability

0 r b0|1 s+ (s)()2

1 r b1|1 ()2(s)2

2 r b2|1 ()(()2)(s)

Floating r b n |1 (s)(()2)

Table 4.5. Output probabilities of an STI when Input>0.6V (Logic 2)

Output Probability

0 r b0|2 2()2

1 r b1|2 ()

2 r b2|2 () (()2)

Floating r b n |2 2(()2)

So for a ternary inverter, the input can have three different logic values, while

the output can have four different values, including the additional floating

scenario. When floating, the gate operates as a DRAM (Dynamic Random Access

Memory) and the current output is determined by the previous value. The vector

that estimates the probability of the previous value to be the logic values of ‘0’, ‘1’

and ‘2’ is therefore given by

 𝒑𝒓𝒆 re=0 re=1 re=2 (4.33)

So for an input ‘i’, the probability for the output being ‘j’ is calculated as

 𝑗|𝑖 𝑟 𝑏𝑗|𝑖 𝑟 𝑏𝑓𝑙 𝑖𝑛 |𝑖 ∗ 𝑝 𝑒=𝑗 (4.34)

- 80 -

Assume re=0 re=1 re=2
1

; using the analysis in the previous

section, Ps=Po=0.05. So, the values of the conditional probabilities are now given

in Table 4.6:

Table 4.6. Output probabilities of the proposed STI

Input Output=0 Output=1 Output=2

0 0|0 0 0 1|0 0 0 2|0 0

1 0|1 0 0 1|1 0 0 2|1 0 0

2 0|2 0 2 1|2 0 0 2 2|2 0 00

Table 4.6 can then be expressed by a single equation given by:

𝑂𝑢𝑡 𝑢𝑡𝑖𝑛𝑣𝑒 𝑒 (2 ∗ 2|0 ∗ 1|0 0 ∗ 0|0) ∗ 𝑖𝑛𝑝𝑢 =0

 (2 ∗ 2|1 ∗ 1|1 0 ∗ 0|1) ∗ 𝑖𝑛𝑝𝑢 =1

 (2 ∗ 2|2 ∗ 1|2 0 ∗ 0|2) ∗ 𝑖𝑛𝑝𝑢 =2

 ∑ (𝑖𝑛𝑝𝑢 =𝑖 ∗2
 =0 ∑ 𝑗 ∗ 𝑗|𝑖)

2
j=0 (4.35)

By a similar process, the transistor-level equation for any ternary gate can be

found. Table 4.7 shows the results for the NMIN operator of Figure 4.2(b), while

Table 4.8 shows the results for the NTI and the PTI of Figure 4.3.

Table 4.7. Output probabilities of the NMIN operator

Inputs Output=0 Output=1 Output=2

00 0|00 0 0 2 1|00 0 0 2|00 0

01 0|01 0 020 1|01 0 0 2|01 0 20

02 0|02 0 0 1|02 0 0 0 2|02 0

10 0|10 0 020 1|10 0 0 2|10 0 20

11 0|11 0 0 1|11 0 2|11 0

12 0|12 0 0 0 1|12 0 0 2|12 0

20 0|20 0 0 1|20 0 0 0 2|20 0

21 0|21 0 0 0 1|21 0 0 2|21 0

22 0|22 0 0 1|22 0 0 2|22 0 0

- 81 -

Table 4.8. Output probabilities of the NTI and PTI operator

Type Input Output=0 Output=1 Output=2

NTI

0 0|0 0 0 1|0 0 2|0 0 2 2

1 0|1 0 2 1|1 0 2|1 0 0

2 0|2 0 2 1|2 0 2|2 0 0

PTI

0 0|0 0 0 1|0 0 2|0 0 2 2

1 0|1 0 0 1|1 0 2|1 0 2 2

2 0|2 0 2 1|2 0 2|2 0 0

4.3.2.2 Quaternary logic

The previously designed quaternary inverter is considered as a further example

to show that the proposed method is applicable at a higher base of 4.

Table 4.9. All possible scenarios of quaternary inverter when Input<0.3V (Logic 0).

(“Floating” indicates that both pull-up and pull-down networks are turned off. N: normal; S:

short defect; O: open defect; X: don’t care; ‘/’ means ‘or’.)

Scenario Probability OUT logic

TP1:X;TP2:X;TP3:X; TN1:S;TN2:X;TN3:X; s 0

TP1:N/S;TP2:N/S;TP3:N/S; TN1: N/O; TN2:S;TN3:S. () (s) s2 1

TP1:N/S;TP2:N/S;TP3:N/S; TN1:N/O;TN2:S;TN3:N/O. () (s) s(s) 1

TP1:N/S;TP2:N/S;TP3:O; TN1: N/O; TN2:S;TN3:X. ()2 (s) s 1

TP1:N/S;TP2:N/S;TP3:N/S; TN1:N/O;TN2:N/O;TN3:S. () (s)2 s 2

TP1:N/S;TP2:O;TP3:N/S; TN1: N/O; TN2:S;TN3:S. ()2 (s) s2 2

TP1: N/S; (TP2 OR TN2): O; (TP3 OR TN3): O; ()(s)(() s)2 3

TP1: O; (TP2-TN2 PATH OR TP3-TN3 PATH): S; (s) (() s)2] 0

TP1: O; (TP2 OR TN2): O; (TP3 OR TN3): O; (𝑠)(() 𝑠)2 Floating

Using the expressions in Table 4.9, the output probability distributions for an

input at logic 0 can be calculated as shown in Table 4.10.

Table 4.10. Output probabilities of quaternary inverter when Input<0.3V (Logic 0)

Output Probability

0 r b0|0 s (s) (() s)2]

1 r b1|0 ()2(s) s

2 r b2|0 ()2(s) () s s

3 r b |0 ()(s)(() s)2

Floating r b n |0 (s)(() s)2

- 82 -

As previously discussed, the output probabilities for input = 1, 2 and 3 are

calculated and shown in Table 4.11.

Table 4.11. Output probabilities of a quaternary inverter

Input Output=0 Output=1 Output=2 Output=3

0 0|0 0 0 2 1|0 0 0 2|0 0 0 |0 0 2

1 0|1 0 0 2 1|1 0 0 0 2|1 0 |1 0 0

2 0|2 0 0 2 1|2 0 2|2 0 0 |2 0 00

3 0| 0 2 1| 0 0 2 2| 0 00 2 | 0 000

4.3.2.3 Generalized transistor level analysis

As indicated by (4.35), for any MVL gate with d+1 possible logic values (0, 1,

2, …, d), the final output of this gate can be described by the following equation:

 ut ut ∑ (𝑖𝑛 𝑢𝑡 𝑗) ∗ (∑ 𝑖 ∗ (𝑖|𝑗))
𝑖=0𝑗 , (4.36)

where j is the index to an input from the set of all input vectors. (4.36) has

significant implications on the reliability evaluation of a MVL gate. So rather than

simply assuming that the gate is affected by a given probability, (4.36) describes

the probabilistic behavior based on a physical structure, therefore providing a

more detailed characterization and evaluation (as detailed in the next section).

4.4 Stochastic Computatioanl Models for MVLs

In this section, different stochastic computation models (SCMs) are analyzed

for reliability evaluation of ternary/quaternary inverters, an arbitrary MVL gate

and a MVL combinational circuit.

4.4.1 Ternary and quaternary inverters

As discussed in [9, 20], stochastic computation transforms Boolean logic

operations into a probabilistic computation in the real domain. In this process the

so-called stochastic multiplexer plays an important role. A stochastic multiplexer

is equivalent to a weighted adder and its function can be described by:

- 83 -

𝑂𝑢𝑡 𝑢𝑡 ∑ 𝑗 ∗ 𝐼𝑗𝑗∈ , (4.37)

where A represents the set of all combinations of the control bits, 𝑗 is the

probability of the control vector being j, and 𝐼𝑗 represents the input value

corresponding to the scenario for the control vector j.

(4.37) can then be used as basis for a stochastic computational model (SCM) as

applicable to MVL gates. The SCM for the proposed STI is shown in Figure

4.12(a). The sequences of all three inputs can be determined using Table 6. In this

case, a sequence length of 10000 is employed. The first sequence corresponding

to input = ‘0’, as discussed previously, consists of 673 0’s, 579 1’s and 8747 2’s.

The second input sequence consists of 945 0’s, 8160 1’s and 895 2’s. The third

input sequence consists of 9523 0’s, 429 1’s and 47 2’s.

mux
Out

Seq for input = ‘0’

Input

Seq for input = ‘1’

Seq for input = ‘2’

mux
Out

Seq for input = ‘0’

Input

Seq for input = ‘1’

Seq for input = ‘2’

Seq for input = ‘3’

(a) (b)

Figure 4.12 Stochastic computational model for (a) a ternary inverter (b) a quaternary

inverter

Therefore, each sequence can be described by the following expression:

 ut ut(𝑗) ∑ 𝑖 ∗ (𝑖|𝑗)2
𝑖=0 (4.38)

With the stochastic multiplexer function and (4.38), the equation of the final

output of this gate is given by:

 ut ut ∑ (𝑖𝑛 𝑢𝑡 𝑗) ∗ ut ut(𝑗)2
𝑗=0 (4.39)

- 84 -

By combining (4.38) and (4.39), it is clear that Figure 4.12(a) is an

implementation of (4.35) (or the more general expression given by (4.36)).

Similarly to the previous discussion for Table 4.11, a general stochastic

computation model can also be obtained for a quaternary inverter. Figure 4.12(b)

shows the SCM for a quaternary inverter.

The ternary and quaternary NMIN operators can also be evaluated by the

proposed approach. In fact, the SCM represents a general framework that is

applicable to the reliability evaluation of any MVL gate. Due to space limitations,

however, this is not discussed in detail.

4.4.2 SCMs for combinational MVLs

Based on the proposed SCM, a stochastic computational network can be

constructed using the SCMs of the gates for circuit reliability evaluation. As

discussed in [9, 20], the computational network is a nonlinear structure

constituted by SCMs. Feeding stochastic input sequences into the network and

propagating them from the primary inputs to the outputs calculate the output

probabilities. A distinguishing feature of the SCM approach is that it handles

reconvergent fanouts at a very small effort; when signals are processed in the

form of bit streams (such as consisting of 0’s, ‘1’ and ‘2’s in ternary logic case),

logic operations do not need to consider the correlation caused by reconvergent

fanouts. Moreover, signal dependencies are inherently maintained in the

distribution patterns of the random bit streams. A detailed analysis and discussion

of these features can be found in [9, 20].

So, the evaluation procedure using the proposed SCM approach for a ternary

circuit can be described as follows:

1. Compute the error rate for the CNTFET and execute the transistor level

analysis for every type of ternary logic gates.

- 85 -

2. Construct the stochastic computational model by replacing every logic gate

with a ternary multiplexer.

3. Generate the initial random bit streams by encoding the output distributions

for every input vector. These random bit streams are used as inputs of the

multiplexers.

4. Propagate the bit streams from the primary inputs to the outputs and obtain a

random bit stream for each output.

5. Decode the signal probability and calculate the reliability of each output from

the obtained random bit stream.

An example of a MVL circuit is analyzed in more detail next. As discussed in

[48], a ternary decoder is required for designing arithmetic circuits such as ternary

adders and multipliers. The ternary decoder is a one-input and three-output

combinational circuit that generates unary functions for the input X; the function

of the ternary decoder is described by:

 k {
2 i
0 i ≠

 (4.40)

where 𝑘 has a logic value of 0, 1, or 2.

Using the proposed pseudo-complementary ternary gates (STI, NTI, PTI and

NMIN) as discussed in Section III, a decoder is designed; this circuit is

functionally equivalent as the design proposed in [48].

Based on Section 4.4, the SCM for the decoder in Figure 4.13 is constructed by

replacing each gate with a multiplexer, as shown in Figure 4.14. Simulation was

performed on a PC with an Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz and a

4.00 GB RAM. Table 4.12 shows the simulation results.

As shown in Table 4.12, even if the number of gates in the decoder is small, the

joint reliability is rather low; this is due to the low reliability of each gate. This

suggests that to enhance reliability, the fabrication process of CNTFET gates

- 86 -

should be improved and fault-tolerant techniques must be applied. Also, the time

for SCM simulation is very small.

NTI

PTI NTI

STI

STI

STINMIN

X X0

X1

X2

Figure 4.13 Schematic diagram of the ternary decoder.

Figure 4.14 Reliability evaluation using stochastic computational models for the ternary

decoder.

Table 4.12. Simulation results of the decoder using SCMs (sequence length = 10000 bits)

Input Joint reliability Simulation Time (s)

0 0 0 0

1 0 0 0 0

2 0 0 0 0 0

random 0 0 0 0 2

- 87 -

4.5. Summary

Stochastic Computational Models based on non-Bernoulli sequences are

mathematically compared with traditional stochastic computing methods at the

beginning of this chapter, which shows that the newly proposed SCM not only

costs less time but also results in higher accuracy.

This chapter has also presented the design and reliability evaluation of multiple

valued logic (MVL) gates. A pseudo-complementary implementation of MVL

based on CNTFETs has been proposed; it replaces the resistors used in [49] with

p-type CNTFETs (with their gates connected to ground) and utilizes threshold

voltage operation by adjusting the chirality and the number of CNTs in each

CNTFET. Therefore, this approach (referred to as pseudo-complementary)

exploits the similarities in threshold voltage control in the p- and n-types while

ensuring a correct MVL design for both ternary and quaternary logic gates.

Simulation results using HSPICE have confirmed the validity of the proposed

pseudo-complementary approach.

A transistor-level analysis has further been proposed to accurately estimate the

error rate of the MVL gates. This analytical approach is based on the structure of

the gate so it is significantly different from previous approaches that assume the

same error rate for all logic gates. A general stochastic computational model for

reliability evaluation of MVL gates has also been proposed. The initial application

of this approach to MVL circuits has been briefly presented by simulating a

ternary decoder.

- 88 -

CHAPTER 5

Stochastic Boolean Networks: An Efficient

Approach to Modeling Gene Regulatory

Networks*

Since a probabilistic Boolean network (PBN) considers molecular and genetic

noise, it is regarded as one of the most important models of a gene regulatory

network. The study of PBNs can not only provide more insights into the

understanding of the dynamics of GRNs, but can also lead to advances in

developing genetic therapeutic methods. However, the applications of PBNs are

hindered by the huge computational complexities.

We have presented a novel implementation of PBNs based on the notions of

stochastic logic and stochastic computation. This stochastic implementation of a

PBN is referred to as a stochastic Boolean network (SBN). An SBN provides an

accurate and efficient simulation of a PBN without and with random gene

perturbation. Simulation results have shown that an SBN can not only recover

biologically-proven regulatory behaviors but can also predict the network

dynamics when the genes are under perturbation. The algorithms and methods

presented in this chapter have been implemented in Matlab packages and can be

applied in modeling of a general GRN.

__

*A version of this chapter has been accepted for publication in [22].

- 89 -

This chapter is organized as follows. Section 5.1 reviews the background. Section

5.2 presents the SBN method. Applications and examples are also provided in this

section. Section 5.3 presents simulation results and discussions. Section 5.4

summarizes this chapter.

5.1. Background

Biological systems are inherently noisy, yet robust in the presence of noise. The

function and malfunction of a system are regulated through the interactions

among genes, proteins and other molecules in the cellular network. For instance,

the tumour suppressor gene p53 controls cell growth and plays an important role

in preventing the development and progression of tumour cells [53-56]. Therefore,

it has been of great interest to understand the regulatory mechanisms of genes,

and various computational models have been developed for a better understanding

of gene regulatory networks (GRNs) [57].

These models can be classified into three broad categories: logical models,

continuous models and stochastic models at the single-molecule level [58].

Boolean networks (BNs) are logical models that utilize discrete state levels and

usually assume synchronous and discrete time steps in the evolution of a network

[59], whereas continuous models, such as those using linear or ordinary

differential equations [60], employ real-valued state variables over a continuous

timescale. Although continuous models are in principle more accurate and may

describe the dynamics of a system in more detail, they require extensive high-

quality experimental data that may not always be available to modelers. As a

single-molecule level model, Gillespie’s stochastic simulation algorithm (SSA)

[61, 62] is based on the chemical master equation; it describes the interactions

among single molecules and accounts for noise and stochasticity in the regulation

of a genetic network. While the SSA provides the most accurate description of the

regulatory behavior, it requires a large number of parameters and a detailed

understanding of the regulatory mechanism. Despite the development of

approximate SSAs that trade off accuracy for efficiency [63, 64], algorithms using

- 90 -

single-molecule level models are generally slow to run, especially in the modeling

of large genetic networks.

Albeit simplistic, BNs have been shown to be efficient in the modeling of GRNs

by taking advantages of low complexity and a minimum requirement on the

quality (and quantity) of experimental data [65]. To account for the intrinsic noise

in genetic and molecular interactions, probabilistic Boolean networks (PBNs)

have been developed as a generalization of BNs [66-68]. In a PBN, the inherent

stochastic nature of molecular and genetic interactions dictates that the next state

of target genes is predicted by several BNs with various probabilities. The

evolution of such a system is thus a Markov chain and the state transitions can be

described by a transition probability matrix. A steady-state analysis further tells

whether a PBN will evolve into a stable target state in the presence of random

gene perturbations, thereby providing valuable information for developing

intervention-based therapeutic approaches [69 – 73].

The computation of the steady-state distribution of a PBN, however, presents a

challenge. In a PBN with n genes and N Boolean networks, the complexity to

compute the state transition matrix is (n 22n) [67] and it is more difficult to

compute the steady-state distribution. This complexity is reduced to (n 2n) for

a sparse state transition matrix [74] and can further be reduced (to the same order,

but with a smaller N) by ignoring the Boolean networks with probabilities below

certain threshold [75]. Methodologies have also been developed by eliminating

genes [76] and using optimal control policies [77] to reduce computational

complexity. State reduction techniques have been used for network intervention

[78] and to reduce the model complexity of context-sensitive PBNs [79].

Nevertheless, it remains a difficult problem to reduce the computational

complexity of a PBN without compromising the accuracy of an evaluation.

Although synchronicity is usually assumed in the state transitions of PBNs,

asynchronous PBNs have been considered by accounting for different updating

- 91 -

periods of genes in the constituent BNs. Asynchronous PBNs are potentially more

accurate in describing the regulatory behaviour of genetic networks and may

provide a better vehicle for investigating intervention strategies that lead to

optimal therapeutic methodologies [80, 81].

As an application of BNs, logic circuits have been used to simulate genetic

networks [82]. Recently, circuit diagnosis techniques have been utilized to

identify the most vulnerable molecules in cellular networks [83]. Synchronous

simulation of Boolean networks has been proposed for the analysis of biological

regulatory networks [84]. An unreliable logic circuit usually behaves

probabilistically and thus becomes an instance of PBNs. Initially proposed for

reliable circuit design [16, 45], stochastic computation has been demonstrated in

several physical and biological applications [85, 86].

In this chapter, a stochastic computational model is presented for an efficient

representation and simulation of PBNs; this implementation of a PBN is referred

to as a stochastic Boolean network (SBN). It is shown that in an SBN, the

complexity to compute the state transition matrix is (n 2n), where L is a factor

related to the minimum sequence length required for obtaining an evaluation

accuracy and is significantly smaller than N in a network with a large number of

genes. By using a time-frame expanded structure of the SBN, the steady-state

distribution can be efficiently computed. Asynchronous PBNs can also be

modeled by SBNs for studying the state dynamics of GRNs. With the recent

development of BN models [65, 87, 88], the SBN technique is potentially useful

in the modeling of large genetic networks. The accuracy and efficiency of the

proposed techniques are demonstrated through extensive simulation results.

Albeit proposed on the formalism of PBNs, the SBN framework is potentially

applicable in improving the simulation efficiency of continuous models (using

linear or ordinary differential equations) and single-molecule level models such as

those based on SSAs. These aspects are further discussed in the Results and

Discussion section.

- 92 -

5.2. Methods

5.2.1 Probabilistic Boolean Networks (PBNs)

In a PBN, genes are represented by a set of binary-valued nodes and the state

transitions of genes are described by a list of Boolean functions. Following [67], a

PBN is defined by G (V, F), where V = { 1 2 … 𝑛} is a set of binary-valued

nodes, F = (1 2 … 𝑛) is a list of sets of Boolean functions:

 𝑖 { 1
 (𝑖)

 2
 (𝑖)

 … 𝑙(𝑖)
 (𝑖)

} and l(i) is the number of possible functions for gene i.

Each node 𝑖 represents the state of gene i, denoted by 𝑥𝑖 and 𝑥𝑖 (or 0)

indicates that gene i is (or not) expressed. The set 𝑖 contains the rules that

determine the next state of gene 𝑖. Each 𝑗(𝑖)
 (𝑖)

: {0 }n → {0 } for ≤ 𝑗(𝑖) ≤ (𝑖)

is a mapping or a Boolean function determining the value of gene i.

Due to the noise in genetic networks, the functions in a PBN occur with certain

probabilities. The next state of gene 𝑖 is determined by all the l(i) functions in 𝑖,

i.e., by 1
 (𝑖)

, 2
 (𝑖)

… 𝑙(𝑖)
 (𝑖)

 with probabilities 𝑐1
 (𝑖)

, 𝑐2
 (𝑖)

…𝑐𝑙(𝑖)
 (𝑖)

. Thus, the next state of

genes is totally determined by the possible functions and the present state of genes.

This indicates that a PBN is modeled as a Markov chain. The fact that all genes

are supposed to be updated synchronously also suggests a finite state machine

(FSM) model for a PBN.

A PBN is independent if the functions from 𝑖 are independent. This means that

the selection of Boolean functions for gene 𝑖 has no influence on the selection of

Boolean functions for gene 𝑗 (𝑖 ≠ 𝑗) [89]. As a first study, the discussions in this

chapter are limited to independent PBNs. For an independent PBN of n genes,

there are a total number of ∏ (𝑖)n
 =1 possible BNs, each of which is a

possible realization of the genetic network.

For the jth BN (≤ 𝑗 ≤), let 𝑗 [𝑗(1)
 (1)

 𝑗(2)
 (2)

… 𝑗(𝑛)
 (𝑛)

] where ≤ 𝑗(𝑖) ≤ (𝑖)

and 𝑖 2…𝑛 The probability that the jth BN is selected is:

- 93 -

 𝑗 ∏ 𝑐𝑗(𝑖)
(𝑖)𝑛

𝑖=1 , (5.1)

where 𝑐𝑗(𝑖)
(𝑖)

 is the probability that the Boolean function j(i) is selected for gene i.

By a different selection of the BNs during a state transition, the genes can reach a

different state from their present state. This property of a PBN can be described

by a state transition matrix as:

[

 (0|0) (|0) …… (2n |0)

 (0|) (|) …… (2n |)
…………………………………………… …………………………
…………………………………………… …………………………
 (0| 2n) (| 2n) …… (2n | 2n)]

, (5.2)

where each entry is a conditional (transition) probability that the genes transfer

from a given present state into a next state. Since each BN results in a unique next

state, the matrix can be obtained by ∑ 𝑗 𝐣
𝑁
𝑗=1 , where 𝑗 is the probability

that the jth BN occurs and 𝐣 is the state transition matrix due to the jth BN. This

way of computing results in a complexity of 𝑂(𝑛 22𝑛) [66]. Random gene

perturbation, which can occur in an open genome system, is caused by random

inputs from outside under external stimuli [69]. By a perturbation, a gene flips its

state from 1 to 0 or vice versa. Since a PBN with perturbation is an aperiodic and

irreducible homogeneous Markov chain [67], any PBN with perturbation will

reach a steady state in a long run. A variant of the state transition matrix can be

used to model the effect of perturbation; however the analysis of its steady-state

distribution is complex [69].

Usually, synchronicity is assumed in the state transitions of PBNs. However, a

gene-level asynchronous model considers different updating periods of genes in

the constituent BNs. In a deterministic-asynchronous Boolean network (DA-BN),

a gene is assumed to have a fixed updating period [68]. A PBN that uses DA-BNs

as constituent networks is defined as a deterministic-asynchronous probabilistic

Boolean network (DA-PBN). More rigorously, a DA-PBN of n genes consists of a

- 94 -

set { 𝑖}𝑖=1
𝑛 , where 𝑖 represents the expression level of the ith gene, denoted

by 𝑥𝑖 and 𝑥𝑖∈{0, 1} [68]. In a DA-PBN, a gene updates its state by its updating

period using the DA-BN involved. At time t, a binary variable 𝑖(t) can be used

to indicate whether the state of gene i is updated or not, by a value of 1 or 0

respectively. The next state of gene i, 𝑥𝑖(𝑡), is then determined by:

𝑥𝑖(𝑡) {
 𝑗(𝑖)

 (𝑖)(𝑥1(𝑡) … 𝑥𝑛(𝑡)) with r b bi it 𝑐𝑗(𝑖)
 (𝑖) i 𝑖(t)

𝑥𝑖(𝑡) therwise
 (5.3)

where 𝑗(𝑖)
 (𝑖)

 is a function in the DA-BN for gene i, selected with probability 𝑐𝑗(𝑖)
 (𝑖)

(≤ 𝑗(𝑖) ≤ (𝑖)).

5.2.2 Stochastic Boolean Networks (SBNs)

5.2.2.1. An SBN without perturbation

In stochastic computation, real numbers are represented by random binary bit

streams and information is carried in the statistics of the binary streams [44]. A

stochastic processing element is typically implemented by a logic gate. Stochastic

logic processes information encoded in the random binary bit streams. Probability

is represented by a proportional number of bits, usually the mean number of 1’s in

a bit sequence. Given independent inputs, for example, an inverter computes the

complement of a probability while the multiplication of probabilities is

implemented by an AND gate. Hence, stochastic computation transforms Boolean

logic operations into probabilistic computation in the real domain. Signal

correlations can be efficiently handled in a stochastic network by the bit-wise

dependencies encoded in the random binary streams, so making it an efficient

approach to computing probabilities [20].

- 95 -

MUX
‘0’

‘1’

…10110…

…00101…

…10101…

Pa=0.4

Pb=0.3

Pc=0.6

…00111…

Pout=(1-Pc)Pa+PcPb=0.34

…10110…
Pa=0.4

…00101…
Pb=0.3

…10011…

Pout=(1-Pa)Pb+(1-Pb)Pa=0.46

1010001001
Pa=0.4

0110101100
Pb=0.5

0010001000

Pout=PaPb=0.2

1010001001

Pa=0.4

0101110110

Pout=1-Pa=0.6

XOR

ANDNOT

1010001001
Pa=0.4

0110101100
Pb=0.5

1110101101

Pout
OR

Pout=1-(1-Pa)(1-Pb)=0.7

Pout

1010001001

Pa=0.4
1010001001

Pout
BUF

Pout=Pa=0.4

Pout

PoutPout

(a) (b)

(c) (d)

(e) (f)
Figure 5.1. Stochastic logic. (a) a NOT gate, (b) an AND gate, (c) a Buffer, (d) an OR gate, (e)

an XOR gate and (f) a Multiplexer.

Figure 5.1 shows an inverter (NOT), an AND, a buffer, an OR, an XOR gate and

a multiplexer. While an XOR gate performs a controlled inversion, a multiplexer

takes one of its inputs as output according to the values of the control bits. For the

2-to-1 multiplexer of Figure 5.1(f), for example, its output takes the value of its

input ‘a’ or ‘b’ when the control bit ‘c’ is 0 or 1. Similarly, a stochastic

multiplexer chooses one of its inputs as output according to the distributions of

0’s and 1’s and thus the probability of 0 and 1 encoded in the random sequences

of the control bits. For a sequence length of 1000 bits, for example, an input

probability of 0.4 indicates that approximately 400 1’s are in the random sequence

of the input ‘a,’ as shown in Figure 5.1(f). If the random input sequences are

independent, the output of the multiplexer is expected to be (c) c

- 96 -

0 , which means that approximately 340 1’s are expected in the output

sequence. Note that this number is only approximate due to the stochastic

fluctuations inherent in the representation of the random binary bit streams. This

is an important feature in stochastic computation as probabilistic values are

propagated rather than deterministic ones, which results in inevitable random

fluctuations in the representation of probabilities. It has been shown, however,

when non-Bernoulli sequences of random permutations of fixed numbers of 1’s

and 0’s are used for representing initial probabilities, these fluctuations are

significantly smaller than in a random sampling based simulation, which is

equivalent to the case when Bernoulli sequences are used [20]. It is shown later in

the Result section that these fluctuations are generally negligible when reasonably

long random bit sequences are used.

Figure 5.2. A stochastic Boolean network (SBN) without perturbation (for a single gene).

A general structure of the stochastic Boolean network (SBN) is defined as follows.

As shown previously, the next state of genes in a PBN is updated by a set of

Boolean functions according to certain probabilities. In an SBN, these

probabilities are represented by random binary bit sequences and the selection of

the Boolean functions is implemented by a stochastic multiplexer with properly

generated control sequences. A general structure of an SBN for a single gene is

shown in Figure 5.2.

…
S1

S2

Sm
…

Boolean function 1

Boolean function 2

Boolean function l(i)

…

x1

x2

xn

…

xiMUX

- 97 -

Generally, if a total number of l(i) Boolean functions are needed to determine the

next state of gene i, an l(i)-input multiplexer is used to simulate the selection of

functions in the PBN for gene i. The number of control bits is given by m

= ⌈ 2((𝑖))⌉. In fact, the number of possible Boolean functions for one gene is

usually small - between 1 and 4 for 93% of genes [90, 91]. This indicates that one

or two bits are usually sufficient to control a multiplexer in an SBN. By using the

stochastic multiplexer with the control bit streams 1~ m, as shown in Figure 5.2,

a function in the jth BN is selected with probability 𝑐𝑗(𝑖)
(𝑖)

 for gene i. When all the

genes are accounted for, therefore, an SBN accurately implements the

probabilistic functions of a PBN, as dictated by (5.1).

5.2.2.2. An SBN with perturbation

While a switch of Boolean functions may indicate a structural change in the

network, a random perturbation could cause a transient change of a gene’s state

under external stimuli. In a PBN with perturbation, a gene may change its value

with a small probability p during each state transition.

Assume (𝑥1 𝑥2 … 𝑥𝑛) represents the current state of an n-gene network at

time t and is the vector that indicates the effect of random perturbation, the next

state is given by [69]:

 {
 with r b bi it ()𝒏

 𝑘() with r b bi it ()𝒏
 (5.4)

where is the modulo 2 of additions and 𝑘() represents the function of the kth

Boolean network at time t. The effect of perturbation to the state transition matrix

can then be described by a matrix called the perturbation matrix [75]. The

perturbation matrix is determined by the number of genes and the gene

perturbation probability p. It is usually computed by a (complex) analytical

approach.

- 98 -

1

n

Present
State

XOR

XOR

Pert 1

Pert n

MUX

‘0’

‘1’

Original SBN

without

perturbation

Perturbation

OR

2

.
.
.

1

n

Next
State

2
.
.
.

General structure
for gene 1

XOR
Pert 2.

.
.

.
.
.

General structure
for gene 2

General structure
for gene n

...

.
.
.

.
.
.

Figure 5.3. An SBN with perturbation.

However, the effect of perturbation can be readily accounted for in an SBN.

Figure 5.3 illustrates a general model of SBNs with perturbation. As perturbation

introduces a probabilistic inversion to the state of a gene, XOR gates are used to

implement the addition modulo 2 of the perturbation vector and the present state.

The probability that either a Boolean function works or a perturbation works

(given in (5.4)) is computed by a stochastic n-input OR gate. This probability is

then encoded into the output sequence of the OR gate and used as the control

sequence of a bus multiplexer. If the perturbation vectors (‘Pert 1’ … ‘Pert n’ in

Figure 5.3) are all 0’s, which means there is no perturbation, then the output

sequence of the OR gate contains all 0’s, which subsequently determines that the

next state is given by the original SBN without perturbation; otherwise, the next

state is determined by the perturbation probability encoded in the output sequence

of the stochastic OR gate. Per the stochastic functions of XOR, OR and the

multiplexer, the next state is given as the output of the SBN with perturbation, by:

 () ∗ (()𝑛) 𝑘() ∗ ()𝑛 , (5.5)

- 99 -

which is equivalent to (5.4). This indicates that a PBN with perturbation can be

accurately implemented by an SBN with perturbation.

5.2.2.3. An SBN for asynchronous PBNs

In contrast to synchronous PBNs, each gene in an asynchronous PBN has a

different period of updating time. Mathematically, this is described by (5.3) for

the so-called deterministic-asynchronous probabilistic Boolean networks (DA-

PBNs). In a DA-PBN, the state of each gene is independently updated according

to its own updating period.

While the deterministic asynchronicity changes the temporal sequence of state

transitions, it has no impact on the logic relationships among genes, so the

Boolean functions are preserved for each gene in a DA-PBN. To model this

asynchronicity, an SBN can be constructed by considering the timing information

as follows:

(1) Construct the Boolean functions for each gene using the proposed SBN

structure.

(2) Sort the genes by the updating period and record the sequence. For example, a

sequence can be created as = { 1, 2, … , 𝑛}, where the updating periods

of 1, 2, … , 𝑛 are in an ascending order.

(3) Consider the first gene, i.e., the gene with the smallest updating period in ,

denoted by 𝑖. Since the state of 𝑖 will first be updated while the states of the

other genes remain unchanged, the BNs at this stage consist of the Boolean

functions of 𝑖 and buffers for the other genes. A buffer is a logic element with a

delayed input as its output. In this structure, a buffer is used to preserve the state

of a gene that is not being updated.

(4) Delete 𝑖 from .

- 100 -

(5) Repeat steps (3) and (4) until is empty.

1

n

Present
State

2

.
.
.

1

n

Next
State

2

.
.
.

General
structure

for gt_1

.
.
.

gt_2

gt_n

General
structure

for gt_2

.
.
.

gt_n

gt_1

...

General
structure

for gt_n

.
.
.

gt_1

gt_2

Figure 5.4. An SBN for a deterministic asynchronous PBN.

An SBN for a DA-PBN is shown in Figure 5.4. Since the state transition of a fast-

response gene may occur several times before a slow-response gene updates its

state, the Boolean functions for a fast gene may appear in a number of times in the

network of Figure 5.4.

5.2.3 Applications of SBNs

5.2.3.1. Computation of the State Transition Matrix

In an SBN, each input combination yields output sequences that contain

information about the transition probabilities from this input state to an output

state. Therefore, the statistics, i.e., the proportions of the number of each state

encoded in the output sequences return the transition probabilities in a row in the

state transition matrix. This row corresponds to the given input state and thus all

the transition probabilities from this input can be generated in a single run. For a

PBN with n genes, the SBN needs to be run for each of the 2𝑛 input states and an

𝑂(𝑛) number of sequences need to be generated for the control signals of the

multiplexers.

- 101 -

The accuracy in the computed state transition probabilities is determined by the

sequence length of the random binary bit streams. In general, longer sequences

are required in a larger network for achieving certain evaluation accuracy. To

consider the overhead incurred in the use of a larger sequence length, a factor, L,

is introduced and together with the other considerations, a complexity of 𝑂(𝑛 2𝑛)

results for computing all the entries in the state transition matrix for a desired

accuracy.

It has been shown that the required sequence length approximately increases

linearly with the size of a combinational network [20]. In an SBN, the network

size is typically on a polynomial order of the number of genes. This is in contrast

with the number of BNs, N, which generally increases exponentially with the

number of genes. As a result, the complexity of using an SBN to compute the

transition matrix, i.e., 𝑂(𝑛 2𝑛), is significantly smaller than the analytical result

of 𝑂(𝑛 2𝑛), especially for a network with a large number of genes. This is

demonstrated by simulations using several measures to determine the minimum

sequence length required for certain accuracy.

The procedure of computing the state transition matrix using an SBN is

summarized as follows:

(1) Construct an SBN by inserting a multiplexer for each gene in a PBN.

(2) For each input state, generate initial random binary streams encoding the

control signal probabilities for each multiplexer.

(3) Propagate the binary streams from the present state (inputs) to the next state

(outputs) and obtain a random bit sequence for each output.

(4) Obtain the statistics, i.e., the proportions of the number of each state

encoded in the output sequences as the transition probabilities for this input state.

(5) Repeat steps (2), (3) and (4) for all 2n input states to compute all the entries

in the state transition matrix.

- 102 -

For an SBN with perturbation, the state transition matrix can be similarly

computed using the procedure outlined above with an exception in the

construction of the SBN (Step 1).

5.2.3.2. Estimation of the Steady-State Distribution

SBN

Time frame 1

Initial

State

1

n

2 SBN

Time frame 2

...

...

...

... SBN

Time frame N
...

1

n

2

...
...

...

Steady

State

Figure 5.5. A time-frame extended SBN.

Given the size of the state transition matrix of a PBN, the analysis of the steady-

state distribution is challenging for using both analytical and simulative

approaches. The Markovian nature of a PBN makes its analysis similar to that of a

finite state machine (FSM). An FSM is equivalent to a sequential circuit

implementation. By a time-frame expansion, a sequential circuit can be unrolled

into a series of identical combinational modules connected in the spatial domain.

Using a similar technique, the temporal operation of an SBN can be transformed

into a spatial operation of identical SBNs connected in series. This is shown in

Figure 5.5. This spatial extension of an SBN can be used for the steady-state

analysis and the required iterations of the SBN are determined by the number of

state transitions before reaching a steady state.

A steady-state analysis using a time-frame expanded SBN starts with an initial

input state, generate the random bit sequences for the inputs and control bits to

multiplexers, and then propagate the stochastic signals through the expanded SBN

structure. This process is equivalent to an analytical procedure of multiplying the

- 103 -

input probabilities with the powers of the state transition matrix. Finally, a small

variance threshold is used to determine whether the system has reached a steady

state. The steady-state distribution is then obtained from the output sequences at

the end of the operation.

In the above process, the speed of convergence to a steady state depends on a

number of factors, including the length of random bit sequence, the variance

threshold value and the perturbation rate. In practice, a sequence length that is

long enough to have a resolution of at least two magnitudes smaller than the

threshold value is used to guarantee that the convergence is not dominated by

stochastic fluctuations. It is shown later that the analysis using an extended SBN

structure provides an alternative and efficient way of estimating the steady-state

distribution of a PBN without resorting to the state transition matrix.

5.2.4 Example: The p53-Mdm2 Network

p53

Mdm2

DNA damage

- +

Figure 5.6. The p53-Mdm2 network (adapted from [55]).

In a p53 network, signaling pathways are triggered by DNA damage and external

factors such as chemotherapeutic drugs and ultraviolet light. For instance, DNA

double strand breaks (DSBs) activate pathways that involve the p53 and Mdm2

genes (Figure 5.6) [55, 56]. In response to the DSBs, the ATM kinase is first

stimulated and the Chk2 is then stimulated by ATM. These activated kinases

subsequently induce an increase in the concentration level of p53 and a decrease

in the interactions between p53 and Mdm2. The increase in the p53 protein level

- 104 -

and its transcription activity promote the expression of the Mdm2 gene, which in

turn proceeds to trigger the degradation and destruction of p53. This prior

knowledge enables us to come up with the transition rules for the p53-Mdm2

interactions, as shown in Table 5.1. Based on these rules, an independent PBN of

the two genes p53 and Mdm2 can be established: V = (1 2) with the function

classes 1= { 1
 (1)

, 2
 (1)

,
 (1)

 4
 (1)

} and 2 ={ 1
 (2)

 2
 (2)

 (2)

 4
 (2)

}. The state

transitions of this PBN are given in the truth table of Table 5.2.

Table 5.1. State transition probabilities of the p53-Mdm2 network.

Present State Next State Probability

p53, Mdm2
(or,)

p53 Mdm2

0 1 0 1

00 0.01 0.99 0.99 0.01

01 0.1 0.9 0.9 0.1

10 0.9 0.1 0.1 0.9

11 0.5 0.5 0.5 0.5

Table 5.2. Truth table of the PBN for the p53-Mdm2 network.

 ()

 ()

 ()

 ()

 ()

 ()

 ()

 ()

00 1 1 1 0 0 0 0 1

01 1 1 0 0 0 0 1 1

10 0 0 1 1 1 1 0 0

11 0 1 1 1 1 0 0 0

𝐜𝐣
 (𝐢)

 0.5 0.4 0.09 0.01 0.5 0.4 0.09 0.01

In Table 5.2, the leftmost column indicates the present state of the genes p53 and

Mdm2. The internal entries in the table indicate whether a function will result in a

logical 1 or 0 at the next state of each gene. The row on the bottom shows the

probability of each transition by a function. Given an initial state of ‘01,’ for

example, the next state of the genes can be ‘00’ with a probability of (0 0

0 0) ∗ (0 0) 0 0 , ‘01’ with a probability of (0 0 0 0) ∗

- 105 -

(0 0 0 0) 0 0 , ‘10’ with a probability of (0 0) ∗ (0 0)

0 or ‘11’ with a probability of (0 0) ∗ (0 0 0 0) 0 0 . A PBN is

determined by the truth table of Table 5.2 and its state transition matrix can be

computed as:

 [

0 00 0 000
0 0 00 0 0 00

0 0 0 00
0 00 0 0 00

0 0 00 0 00
0 2 00 0 2 00

0 0 00 0 0 00
0 2 00 0 2 00

]. (5.6)

Present
State

Next
State

p53 p53

Mdm2 Mdm2

NOT

NOT

NOT

NOT

NOT

NOT

OR

OR

AND

AND

BUF

BUF

S1 S2

S3 S4

‘00’

‘01’

‘10’

‘11’

‘00’

‘01’

‘10’

‘11’

Figure 5.7. An SBN for the p53-Mdm2 network (without perturbation).

For this PBN, an SBN can be constructed using stochastic multiplexers and

random binary bit streams as information carriers, as shown in Figure 5.7. As

discussed previously, the control binary sequences determine the probability that

each Boolean network is selected. For example, as the Boolean functions for the

p53 gene occur with probabilities 0.5, 0.4, 0.09 and 0.01, the binary bit sequences

for the control vectors ‘S1S2’ to the multiplexer are generated with a probability

of 0.5 to be ‘00,’ a probability of 0.4 to be ‘01’, a probability of 0.09 to be ‘10’

and a probability of 0.01 to be ‘11.’ Then the output bit sequences are read out

- 106 -

and decoded into (transition) probabilities. With a sequence length of 10000 bits,

the state transition matrix is obtained as follows:

 [

0 00 0 000
0 0 0 0 0

0 0 0 00
0 0 0 0

0 0 0 0 0
0 2 0 2

0 00 0 0 0
0 2 0 2

]. (5.7)

p53

Mdm2

Present
State

Pert 1

Pert 2

MUX

‘0’

‘1’

Original SBN
without

perturbation

Perturbation

p53

Mdm2

Next
State

S5

NOT

NOT

NOT

NOT

NOT

NOT

OR

OR

AND

AND

BUF

BUF

S1 S2

S3 S4

‘00’

‘01’

‘10’

‘11’

‘00’

‘01’

‘10’

‘11’

XOR

XOR
OR

Figure 5.8. An SBN for the p53-Mdm2 network (with perturbation).

The difference between (5.6) and (5.7) can be evaluated using the following

norms: || ||1 and || || , which specify the maximum absolute value of the

summed differences of columns and rows of the two matrices respectively, and

|| ||2, which is a measure on the average difference of all the entries in these

matrices. For (5.6) and (5.7), we obtain || ||1 0 00 , || ||2 0 002 and

|| || 0 00 , which indicate that the SBN structure accurately computes the

state transition matrix of the PBN.

- 107 -

With random gene perturbation, an SBN with perturbation can be constructed, as

shown in Figure 5.8. If the stochastic OR outputs a ‘1’ (indicated by S5 in Figure

5.8), which means that at least one of the p53 and Mdm2 are perturbed, the

multiplexer is then switched to the perturbation network. If the output of the OR

is 0, the multiplexer is switched to the original SBN and the network works as the

one in Figure 5.7 without perturbation.

A similar procedure can be used to compute the state transition matrix of the SBN

with perturbation – the result is shown in (5.8) for a perturbation probability of

0.01:

 ̃ [

0 00 0 0 00
0 0 0 0 0

0 0 0 00
0 0 0

0 0 0 2
0 2 0 2

0 00 2 0 0
0 2 0 2 0

]. (5.8)

Compared to the analytical result by a method based on (5.4):

 ̃ [

0 00 0 0 00
0 0 0 00

0 0 0 00
0 0 0 0

0 0 0 0
0 2 0 2

0 00 0 0
0 2 0 2 0

], (5.9)

the differences between (5.8) and (5.9) are revealed in the measures of || ||1

0 00 2 , || ||2 0 00 0 and || || 0 00 2 . These show that the proposed

approach using an SBN can accurately and efficiently compute the state transition

matrix. The differences in these results come from the stochastic fluctuation,

which is an intrinsic property of stochastic computation. More simulation results

are presented in the Results and Discussion section, which show that the

fluctuations are generally small. A steady state analysis using (5.8) further

confirms the p53-Mdm2 oscillatory dynamics observed in experiments.

An SBN for an asynchronous p53-Mdm2 network can also be constructed, as in

Figure 5.4 and following the aforementioned procedure. Due to space limitations,

however, this is not further discussed and will be pursued in future work.

- 108 -

5.3. Results and Discussion

5.3.1 Simulations with Randomly Generated Networks

Table 5.3. Errors in the state transition matrices obtained using SBNs without perturbation,

compared to the results by using the analytical approach in [74].

Number of genes (n)

2 3 4 5 6
Error

Length

(bits)

 rr r|| ||
1000 0.0070 0.0330 0.0420 0.0477 0.0649

10000 0.0027 0.0052 0.0105 0.0179 0.0186

 rr r|| ||
1000 0.0100 0.0314 0.0408 0.0287 0.0405

10000 0.0038 0.0047 0.0102 0.0109 0.0099

 rr r|| ||
1000 0.0160 0.0640 0.0908 0.0735 0.1293

10000 0.0056 0.0096 0.0248 0.0303 0.0248

The state transition matrices of several randomly generated PBNs have been

computed using the proposed SBN structure. The Boolean functions of each

network are generated for a given number of genes (n) and a total number of BNs

(N). The simulation is run on a PC with an Intel Core i3-2100 CPU (@3.10 GHz)

and 6G memory. The results for using sequence lengths of 10000 and 1000 bits

are first compared to those obtained using an analytical approach, as shown in

Table 5.3. While a larger sequence length of 10000 bits produces results with a

higher precision, a sequence length of 1000 bits also provides highly accurate

results and is therefore used next in the evaluation of the computed state transition

matrices for larger networks.

The run time and accuracy for the SBNs without and with perturbation are shown

in Tables 5.4 and 5.5, respectively. It can be seen that the SBN approach requires

a significantly shorter runtime than the analytical approach, especially in the

evaluation of large networks.

- 109 -

Table 5.4. Run time and errors in the computation of state transition matrices (the original

SBN sequence length = 1000 bits, no perturbation, n: the number of genes, and N: the

number of BNs).

n N SBN (s) Method [74] (s) rr r|| || rr r|| || rr r|| ||

2 6 0.015169 0.009068 0.0080 0.0126 0.0240

3 8 0.020842 0.009696 0.0190 0.0186 0.0280

4 16 0.044102 0.028376 0.0310 0.0269 0.0610

5 32 0.073996 0.129098 0.0520 0.0278 0.0672

6 64 0.170900 0.569229 0.0676 0.0274 0.0780

7 128 0.356299 2.591382 0.1375 0.0402 0.0998

8 256 0.778123 8.748113 0.1897 0.0559 0.1411

9 512 1.736358 40.189629 0.2929 0.0609 0.2322

10 1024 4.174700 178.876554 0.3946 0.0699 0.2401

11 2048 9.685876 783.659986 0.5950 0.0765 0.3584

12 4096 22.673064 3473.738188 1.1312 0.1041 0.4799

Table 5.5. Run time and errors in the computation of state transition matrices (sequence

length = 1000 bits, perturbation probability = 0.01, n: the number of genes, and N: the

number of BNs).

n N SBN (s) Method [74] (s) rr r|| || rr r|| || rr r|| ||

2 6 0.062898 0.043643 0.0086 0.0096 0.0165

3 8 0.040697 0.017449 0.0200 0.0150 0.0228

4 16 0.065944 0.046525 0.0452 0.0310 0.0607

5 32 0.101961 0.135997 0.0507 0.0327 0.0688

6 64 0.206113 0.623719 0.0941 0.0397 0.0890

7 128 0.410313 2.739103 0.1262 0.0467 0.1131

8 256 0.905610 12.567407 0.1924 0.0587 0.1378

9 512 2.061321 58.454630 0.2746 0.0639 0.2376

10 1024 4.770391 254.769805 0.4458 0.0686 0.2642

11 2048 11.481596 973.364318 0.6339 0.0771 0.3311

12 4096 25.686332 3892.347395 1.0837 0.0970 0.4433

- 110 -

Table 5.6. Minimum sequence length and run time required in the computation of state

transition matrices for given accuracies, measured by Norm 2 (no perturbation, n: the

number of genes, and N: the number of BNs).

n N

SBN (Norm 2 = 0.04) SBN (Norm 2 = 0.02)

Method [74] (s)

Sequence length Time (s) Sequence length Time (s)

2 6 100 0.005797 500 0.011028 0.009068

3 8 400 0.017755 800 0.018843 0.009696

4 16 500 0.022734 1000 0.044102 0.028376

5 32 800 0.057780 1500 0.108644 0.129098

6 64 1000 0.160139 2200 0.348080 0.569229

7 128 1200 0.412106 3500 1.140480 2.591382

8 256 1900 1.445489 5200 3.890074 8.748113

9 512 2400 4.054003 6500 10.800441 40.189629

10 1024 3200 12.861136 8000 32.625211 178.876554

11 2048 4000 37.448054 10000 92.367577 783.659986

12 4096 5000 109.651805 12000 266.546885 3473.738188

Table 5.7. Minimum sequence length and run time required in the computation of state

transition matrices for given accuracies, measured by Norm 2 (perturbation probability =

0.01, n: the number of genes, and N: the number of BNs).

n N

SBN (Norm 2 = 0.04) SBN (Norm 2 = 0.02)

Method [74] (s)

Sequence length Time (s) Sequence length Time (s)

2 6 100 0.007354 300 0.015849 0.043643

3 8 300 0.009444 800 0.022467 0.017449

4 16 600 0.034080 1200 0.051354 0.046525

5 32 700 0.066767 1500 0.128628 0.135997

6 64 1000 0.206113 2300 0.413640 0.623719

7 128 1300 0.514317 4000 1.542643 2.739103

8 256 2000 1.754765 5200 4.411751 12.567407

9 512 2800 5.505697 6500 12.855831 58.454630

10 1024 3500 15.903428 9000 40.870411 254.769805

11 2048 4200 44.044262 11000 115.636105 973.364318

12 4096 5300 130.875398 14000 355.611421 3892.347395

- 111 -

Table 5.8. Run time and errors in the computation of state transition matrices for SBN and

the approximation method in [75] (no perturbation, n: the number of genes, and N: the

number of BNs).

n N

SBN (s)

(Length =

10000 bits)

Method [75] (s)

(lower bound=

10-4)

 rr r|| || (SBN) rr r|| || [75]

 rr r|| || rr r|| ||
 rr r|| ||

 rr r|| || rr r|| ||
 rr r|| ||

11 2048 92.367577 183.617225 0.2031 0.0268 0.1209 0.2416 0.0463 0.0221

12 4096
221.84918

3
1125.969347 0.3448 0.0301 0.1540 0.6387 0.0929 0.0386

13 8192
489.26547

8
4395.954714 0.4581 0.0552 0.2249 1.6583 0.1414 0.0874

14 16384
1063.8924

15
9415.812415 1.0152 0.0825 0.4287 2.1642 0.2283 0.1895

On the other hand, however, the error incurred due to stochastic fluctuations also

increases with the size of the network under evaluation. Subsequently, therefore, a

minimum accuracy requirement is given and the length of the stochastic

sequences is increased for a larger network in order to meet this requirement.

Tables 5.6 and 5.7 show the minimum sequence lengths and run time required for

two different accuracy values, given by the aforementioned “norm 2” that

measures the average difference of all the entries in two matrices. Finally, the

efficiency of the SBN technique is compared to that of an approximate analytical

approach [75] for several networks with more than 10 genes. The results are

shown in Table 5.8.

As revealed in the tables, while an analytical approach is fast in computing the

state transition matrices of small networks, it becomes cumbersome to use for

larger networks. This is because an analytical approach is limited by the number

of BNs (N), which generally increases exponentially with the number of genes in

a PBN. In an SBN, however, all the state transition probabilities for each input

state are encoded in the output sequences, so the computation of the state

transition matrix is very efficient. Although a longer stochastic sequence length is

required to meet an evaluation accuracy, the proposed SBN approach still

- 112 -

outperforms an analytical approach for networks with a large number of genes

and BNs. This is further shown in Figure 5.9, in which the runtime of the two

techniques is compared for the same accuracy requirements. While both

techniques require an exponential complexity (in the number of genes), the

proposed SBN technique is more efficient as it is not directly limited by the

number of BNs.

Figure 5.9. Comparisons of runtime of the SBN technique and the technique in [74].

The state transition matrix computed using an SBN can be used to obtain the

steady state of a network. However, the size of the network that can be evaluated

is restricted due to the exponential increase of the size of the matrix. As an

alternative and efficient approach, the time-frame expansion technique can be

used to evaluate much larger networks under perturbation. Recently, several BN

models have been developed for GRNs with tens of genes [65, 87, 88]. Although

the parameters for use in a PBN have not been obtained, the time frame expansion

technique is well suited for simulating a network of such size, once the necessary

parameters become available. Our experiments have shown that a 20-gene

network with a perturbation rate of 0.01 can be evaluated in approximately 3.6

seconds using the time-frame expanded SBN technique. In Table 5.9, the runtime

for simulating networks of 20 and 30 genes is shown for various accuracy

- 113 -

requirements and perturbation rates. These results indicate that the time-frame

expanded SBN technique is potentially useful in the analysis of large GRNs.

Table 5.9. Time consumption of the time frame expansion technique for randomly-generated

networks.

Number
of genes

Sequence
length (bits)

Threshold
value (Norm

infinity)

Perturbation

rate

SBN

No. of Periods
before convergence

Time
consumption (s)

20

100,000 0.001 0.0001 1723 1524.043060

100,000 0.001 0.001 202 195.614374

10,000 0.01 0.01 29 3.570570

30

1,000,000 0.0035 0.0001 71 721.123598

1,000,000 0.01 0.0001 23 258.757348

1,000,000 0.1 0.0001 19 199.884261

5.3.2 Experiments on a T-cell Time Series Dataset

A network inferred from a time series gene expression dataset [91] is further

modelled using SBNs. The dataset was taken from an IL-2-stimulated immune

response experiment using a murine T cell line called CTLL-2. Cells were

collected at 12 different time points before IL-2 stimulation (0 h) and after IL-2

stimulation (15, 30 mins, 1, 2, 4, 6, 8, 10, 12, 16 and 24 h). The dataset was then

normalized to the same expression level and clustered based on the similarities in

the regulatory behaviour of the genes. This produced simplified networks of gene

groups, referred to as meta-genes, instead of actual genes. This result has

significantly reduced the complexity of the analysis and interpretation of the

inferred networks. Finally, the dataset was discretized for the implementation of a

Boolean network inference algorithm. This algorithm is discussed in detail next.

5.3.2.1. Inference of Boolean Dynamics of the GRN

PBNs have been inferred from steady-state data using the coefficient of

determination [67] and from time series data to estimate the perturbation

- 114 -

probabilities and switching probabilities between the constituent BNs [92]. Large

amounts of data are usually required by these methods due to their computational

complexity. In [91], the Boolean inference is based on the activation and

inhibition functions of a target gene and its control genes. This is similar to the

qualitative inference method used in [93], but it considers all possible networks

rather than a single most likely one. While the number of possible inputs to a

Boolean function is limited in this method, the restriction on the amount of data

required to perform an inference is released. The number of possible networks is

then counted and all networks are enumerated.

For the T-cell time series dataset, a total of 161,558 networks were discovered by

the inference algorithm. The inference algorithm further explores the dynamics of

the inferred networks. This is based on the fact that finite BNs are expected to

exhibit a cyclic pattern of expression [59]. During this step, the steady states or

attractors are computed to validate the inferred networks. It was found that

160,657 (99.4%) of these networks did not exhibit the fluctuations expected in the

steady-state dynamics of the IL-2 stimulated T cell network. Therefore, these

networks were discarded and 901 (0.6%) of the networks that produced

biologically meaningful attractors were left for further analysis. The 901 networks

were based on twelve meta-genes and yielded a consensus network as shown in

Figure 5.10. The steady-state dynamics in the 901 networks consist of three time

points (shown in Table 3 of [91]). It has also been shown that the computational

complexity of this inference algorithm increases exponentially with the maximum

number of inputs to a node [91]. Since the maximum input number is limited by

the size of a network with a power low [94], this number is expected to be smaller

than 5 for a network with less than 100 nodes.

The resulting network is not unique in that the occurrence of different Boolean

functions results in different BNs. In Figure 5.10, the activation and inhibition

relationships that occur in all 901 networks are indicated by solid arrows, while

the relationships that occur in a fraction of the networks are indicated by dashed

- 115 -

arrows. The value associated with a dashed arrow indicates the fraction of

networks having that relationship. To infer a PBN, this fractional occurrence of a

function is considered probabilistic and its associated value is taken as the

occurrence probability of a Boolean function in the network. These probabilities

are then utilized to obtain the switching probabilities between the constituent BNs

in the PBN. Since a solid arrow indicates a relationship that exists in all 901

networks in Figure 5.10, this function is considered to occur with a probability of

1. The inferred PBN is shown in the truth tables, for which the Boolean functions

are assumed to occur independently in a BN.

L-Myb12E-Jun-Fos

L-Nsbp1 I-BIc3

L-Foxm1

I-Myc

E-Cdkn2c E-Stat1-6

I-Rpo1-Hnr

E-Stat5a

E-Stat5b

L-Mcmd

1/3

1/2

1/2

1/2

1/2 1/2

1/21/2

1/2

1/31/3

Figure 5.10. A T cell immune response network inferred from a time series gene expression

dataset (adapted from [91]).

5.3.2.2. Modeling the network with SBN

To build an SBN for the inferred network of Figure 5.10, each of the 12 genes is

assigned a number, as shown in Table 5.10. For these 12 genes, there are 212

 0 states, each of which is indexed by the state of each gene as follows:

- 116 -

𝑘 ∑ (𝑖) ∗ 2𝑖−112
𝑖=1 , (5.10)

where i is the gene index and (𝑖) is the state of gene i (i.e., 1 or 0).

Table 5.10. Code of the 12 genes in the T cell immune response network.

Gene E-Jun-Fos L-Nsbp1 L-Foxm1 I-BIc3 I-Myc L-Myb12 E-Cdkn2c E-Stat1-6 I-Rpol-hnr E-stat5a E-stat5b L-Mcmd

Symbol g(1) g(2) g(3) g(4) g(5) g(6) g(7) g(8) g(9) g(10) g(11) g(12)

Since solid arrows in Figure 5.10 indicate regulatory interactions found in all 901

networks, they are considered to have a priority over other interactions, i.e., any

other relationships are overruled by a solid-line interaction if they occur

simultaneously. For the dashed arrows, the priority is determined according to the

observations in the experiments. Take ‘E-stat5b’ for example; the solid arrow

indicates that L-Myb12 inhibits E-stat5b in all the networks, so the activation of

L-Myb12 overrules any other function applied on E-stat5b. When the state of E-

stat5b is only affected by the dashed arrows, the activation by E-Cdkn2c is

considered to take precedence over the inhibitions by I-BIc3 and I-Myc, as the

upregulation of E-stat5b has been observed in the experiments.

An SBN is constructed for the genetic network of Figure 5.10, as shown in Figure

5.11. The construction is based on the following principles:

(1) An inhibiting signal is considered logical “low” while an activating signal is

considered logical “high.” Therefore, an inverter or a buffer is applied to represent

an inhibition or an activation relationship between genes. For example, L-Myb12

inhibits E-Jun-Fos, so an inverter is used to simulate this relationship between

 () and +1() . For the activation of L-Foxm1 by L-Nsbp1, a buffer is

applied between (2) and +1().

(2) An OR gate is applied to model multiple activations while a NOR (inverted

OR) gate is applied to model multiple inhibitions on the same gene. For example,

L-Myb12 can be activated by any one of E-Jun-Fos, I-Rpol-Hnr, E-stat5b and L-

- 117 -

Mcmd, so in Figure 5.11, (), (), () and (2) are used as the four

inputs to an OR gate. However, due to the inhibition of L-Myb12 by E-stat5a, an

inverter is applied and its output is ANDed with the output of the 4-input OR gate

to produce the output of +1(). The use of the AND is dictated by the priority

rule of the inhibition over the activation of L-Myb12, as explained as follows.

MUX

MUX

MUX

MUX

g(1)

g(2)

g(3)

g(4)

g(5)

g(6)

g(7)

g(8)

g(9)

g(10)

g(11)

g(12)

g(1)

g(2)

g(3)

g(4)

g(5)

g(6)

g(7)

g(8)

g(9)

g(10)

g(11)

g(12)

Present state Next state

Figure 5.11. An SBN for the GRN in Figure 5.10.

- 118 -

(3) When an inhibition and activation occur on the same gene, the logic gate is

determined by the priority of the two functions: an AND gate is applied if the

inhibition has a higher priority, while an OR gate is used if the activation has a

higher priority. For instance, an AND gate is used to model the relationship

between the activation and inhibition of L-Myb12 in the example of (2), as shown

in Figure 5.11.

(4) A solid arrow indicates a relationship that exists in all 901 networks and

therefore is considered to occur with a probability of 1. The corresponding

function then exists in every Boolean function that produces an input to a MUX.

For example, E-stat5a inhibits L-Myb12 in all the networks, so inverters are

present in both of the two Boolean functions that lead to +1().

5.3.2.3. Steady-state Evaluation

For this SBN, the state transition matrix is of the size 4096 x 4096 and

computed in about 70s. See additional file 5: The Matlab program that describes

the structure of the SBN in Figure 5.11 and computes its state transition matrix

(for both without and with perturbation).

Given an initial input, 𝟎 = [0, 0… 0, 1, 0… 0], as indicated by the vector at T =

1h in Table 5.3 of [91] that corresponds to the state 1730 (by (5.10)), the output

response after t clock cycles can be computed by:

 ut ut(𝑡) 𝐼0 ∗
 . (5.11)

A clock cycle here corresponds to the time interval between two discrete time

points as a period of biological response. It has been shown that the network

reaches a steady state consisting of three time points [91]. In our simulation, a

periodic behaviour of state transitions has been observed after 20 clock cycles.

- 119 -

Table 5.11. Attractors found by the SBN approach, compared to the experimental results in

[91].

Number of cycles States with highest probabilities Attractors found in [91]

28

1224 Attractor 1

711 Attractor 3

1768 Attractor 2

29

1768 Attractor 2

1224 Attractor 1

711 Attractor 3

30

711 Attractor 3

1768 Attractor 2

1224 Attractor 1

As shown in Table 5.11, the obtained stationary states perfectly match the three

attractors found at the time points t1, t2 and t3 in [91], referred to as Attractors 1,

2 and 3 at states 1224, 1768 and 711.

Figure 5.12. State distributions of the SBN in Figure 5.11 after 28, 29 and 30 clock cycles

obtained using the time-frame expansion technique.

- 120 -

Alternatively, and more efficiently, the aforementioned time-frame expansion

technique can be used to find the attractors with a greatly reduced complexity.

The results are shown in Figure 5.12 for the same SBN simulation of 28, 29 and

30 cycles and the largest runtime is only 0.22s, compared to more than 70s by

using the matrix-based analysis. It can be seen that the attractors match those in

Table 5.11. These show the effectiveness and efficiency of the time-frame

expansion technique.

5.3.2.4. Perturbation and Prediction

When the genes in a network are perturbed with a small probability, an SBN with

perturbation can be constructed (as in Figure 5.3) for analyzing the stability of the

network under perturbation. Since biological networks are usually robust and

stable, the same attractors are expected to exist for the same network by a small

perturbation. Assume that each gene is independently perturbed by a probability

0.01, Figure 5.13(a) shows the steady state distributions of the SBN with

perturbation for the network of Figure 5.10.

Figure 5.13. Steady state distribution of the T cell network with perturbation rate of 0.01: (a)

computed using state transition matrices and (b) obtained using the time frame expansion

technique.

- 121 -

It can be seen that the known Attractors 1, 2 and 3 (or, states 1224, 1768 and 711)

are among those shown in Figure 5.13(a) with probability 0.1901, 0.1804 and

0.1750, respectively. What is interesting, however, is that pseudo-attractors, i.e.,

the attractors due to random gene perturbation, exist. These pseudo-attractors are

listed in Table 5.12 with their steady state probabilities. It can be seen that most of

the pseudo-attractors differ from the closest known attractor by only one gene. In

particular, the most prominent pseudo-attractor, located at state 1736 with a

probability larger than 0.1, differs from Attractor 2 or state 1768 by the

expression of L-Myb12. L-Myb12 is a late response gene and plays an important

role in the regulation of the T-cell network, so this result confirms the sensitivity

of L-Myb12 in the regulatory behavior. Since biological experiments are not

straightforward or easy to be implemented for investigating the T-cell network

under perturbation, such study may provide insights into the understanding of

potential physiological implications in a perturbed network. In a long run, this

may be helpful in the development of genetic therapeutic methodologies.

Table 5.12. Pseudo-attractors found by the SBN with perturbation (perturbation probability

= 0.01; state 1224 with probability 0.1901, state 1768 with probability 0.1804 and state 711

with probability 0.1750).

State Number Probability Closest attractor Difference

1736 0.1099 Attractor 2 g(6) (L-Myb12)

967 0.0203 Attractor 3 g(9) (I-Rpol-hnr)

199 0.0164 Attractor 3 g(10) (E-stat5a)

3816 0.0147 Attractor 2 g(12) (L-Mcmd)

3866 0.0135 Different from all the attractors by more than 3 genes

743 0.0120 Attractor 3 g(6) (L-Myb12)

1352 0.0101 Attractor 1
g(8) (E-Stat1-6)

g(9) (I-Rpol-hnr)

1256 0.0100 Attractor 1 g(6) (L-Myb12)

- 122 -

Application of the time-frame expansion technique yields similar predictions for

the network under perturbation. For a perturbation rate of 0.0001 and a threshold

value of 0.001 for norm 2, it only takes 93.72s to obtain the steady state

distribution using a sequence length of 100,000 bits. The simulation results are

shown in Figure 5.13(b), which agree with those in Figure 5.13(a), so the time-

frame expansion technique provides a highly efficient tool for analyzing the

dynamics of a network with (and without) perturbation.

The proposed SBN technique is more efficient than a random sampling approach,

due to the use of non-Bernoulli sequences of random permutations of fixed

numbers of 1’s and 0’s in the representation of initial probabilities [20]. The time-

frame expansion technique is also more efficient compared to the Markov Chain

Monte Carlo (MCMC) method. It can be proved that the time-frame expanded

SBN technique converges faster to a steady state than the MCMC method,

because it requires a fewer number of clock cycles or time frames to converge and

generates less pseudo-random numbers at each time frame. These indicate that the

proposed SBN approach is more accurate and more efficient than a simple

random sampling approach (such as the MC simulation) in the computation of

state transition matrices and the evaluation of steady state distributions.

5.3.3 Relationship to Other GRN Models

5.3.3.1. Continuous Models

Continuous models based on linear or ordinary differential equations can

potentially be implemented using SBNs, provided that the underlying principles

of the differential equations can be formulated in state transition matrices. In this

case, a network of n genes is modeled by:

- 123 -

[

⋮

]

 [

 1

 2

⋮
 𝑛

] (5.12)

where 𝑖, (i = 1, 2, … n), indicates the level of a gene and T is a matrix of n rows

and n columns. The entries in T are determined by factors such as the reaction rate

constants. If the gene level can be expressed as the occurrence rate of a gene,

denoted by 𝑖, (i = 1, 2, … n), which, for example, can be obtained by the ratio

between the number of a particular type of genes and the total number of genes,

then (5.12) can be expressed as:

[

 𝑝

 𝑝

⋮
 𝑝

]

 [

 1

 2

⋮
 𝑛

]. (5.13)

In an SBN, the next state of genes, 𝒕+ , is determined by the current state, 𝒕,

and the state transition matrix, A, i.e.,

 𝒕+ 𝒕, (5.14)

where A is a 2nx2n matrix, as given by (5.2). Then a new transition matrix of n

rows and n columns, denoted by G, can be obtained by summarizing the entries in

the rows and columns of A, such that

 𝒕+ 𝒕, (5.15)

where 𝒕+ and 𝒕 indicate the gene levels at two consecutive time steps. Further

assume that

 𝒕+ 𝒕. (5.16)

- 124 -

In the limit, we obtain:

 𝒕 − 𝒕

 −

 𝒕, (5.17)

where I is the identity matrix. Finally, (5.13) and (5.17) lead to

 ∗ 𝑡, (5.18)

which describes the relationship between the transition matrices in a continuous

model and an SBN.

5.3.3.2. Single-Molecule Level Models

In a single-molecule level model, significant stochastic effects of biochemical

reactions are accounted for each molecular species. The stochastic simulation

algorithm (SSA) tracks the number of molecular species in a biochemical system,

so it accurately simulates the discrete, random biochemical reactions specified by

the chemical master equation (CME) [61, 62]. Essentially, the SSA follows a

discrete Markov process, in which two values are generated from two independent

random variables at each time step. The first value predicts when the next reaction

will occur and the second decides which reaction will occur. In order to

characterize the evolution of the system, repeated trials are required to perform,

which leads to a significant run time for simulating a large network.

Due to the same underlying Markov models in the SSA and PBNs, the SSA can,

in principle, be implemented using SBNs. However, this implementation is not

straightforward as the SSA simulates the function of the CME while the SBN

implements the state transitions of Boolean functions. A challenge is therefore to

formulate the underlying principles of the CME in the form of state transition

matrices. Nevertheless, it is possible for the SSA and SBN to be used in a hybrid

method. In this method, a logical model is first used to simulate a large network

and to identify the sensitive nodes in the network. Then, a single-molecule level

- 125 -

model such as the SSA can be used to find out more details of the identified

sensitive genes. In this way, this hybrid method leverages the efficiency of a

logical model and the accuracy of a single-molecule level model, so it may

provide an effective means to model large gene regulatory networks.

5.3.4 Application on GRN Analysis

Experimental data

Infer GRN:
Activation and inhibition

relationships between

all the genes in the GRN

Construct SBN

(without perturbation)

 Without

perturbation

With

perturbation

Matrix

-based

analysis

Time

frame

expansion

Construct SBN

(with perturbation)

State

transition

matrix

Time

frame

expansion
Simulation of the state

distribution after certain

cycles

Estimate steady state

distribution

 Whether

steady

state is

reached

Compare:
Experimental

data and

simulation

results Calibrate

Matrix

analysis &

operations

Yes No

Figure 5.14. A flowchart for the application of the SBN approach in GRN analysis.

In summary, for a GRN inferred from microarray time series data, an SBN can be

constructed to analyze the dynamics of the network with or without gene

perturbation. This provides the biologists an efficient means to evaluate the steady

- 126 -

state distribution of a genetic network. A general procedure for applying the

proposed SBN approach in a GRN analysis is given in the flowchart of Figure

5.14.

5.4. Summary

This chapter proposes a novel structure of stochastic Boolean networks (SBNs)

for an accurate and efficient implementation of probabilistic Boolean networks

(PBNs). The application of an SBN is demonstrated through the computation of

the state transition matrix and the steady-state analysis of a PBN. The state

transition matrix can be accurately and efficiently computed in an SBN with a

complexity of 𝑂(𝑛 2𝑛), where n is the number of genes in a PBN and L is a

factor determined by the stochastic sequence length. Since the required minimum

sequence length for a given evaluation accuracy usually increases slower with n

than the number of Boolean networks, i.e., N, L is typically much smaller than N,

especially in a network with a large number of genes. This result is an

improvement compared to the previous results of 𝑂(𝑛 22𝑛) and 𝑂(𝑛 2𝑛). The

steady state can be estimated using the obtained state transition matrix or the

time-frame expansion technique. The latter approach has shown a significant

speedup in the computation of the steady state distribution.

SBNs have been constructed for the p53-Mdm2 network and an inferred T cell

immune response network. Simulations of the SBNs have recovered the state

dynamics that have been experimentally demonstrated for these two networks.

The proposed approach is able to discover network dynamics when the genes are

under perturbation, which is a task difficult to implement in experiments or by

other modeling approaches due to its complexity. So in this case, the SBN

technique can be used to provide biologically meaningful insights for a first

understanding of the dynamics of a GRN. The relationship between an SBN and

continuous/stochastic models has also been discussed and a hybrid approach may

be useful in a more efficient modelling of a large GRN. Finally, the SBN

- 127 -

approach is able to account for signalling pathway information [95], so it may

provide an effective solution to the modeling of complex genetic networks.

- 128 -

CHAPTER 6

Conclusions

Based on applications in nanoelectronic circuits and biological networks, the

efficiency and effectiveness of probabilistic and stochastic computation have been

shown in this thesis.

The aggressive scaling of complementary metal-oxide-semiconductor (CMOS)

technology has resulted in small device dimensions and low tolerance to design

and process variations, thus having a negative impact on the reliability of digital

circuits [1]. New failure modes have been observed due to high integration and

device fabrication effects, such as the time-dependent dielectric breakdown of

materials, hot carrier injection and negative bias temperature instability in

transistors. In addition to permanent defects, soft errors have also become a

concern as the temporary interference by noisy environments affects the reliable

operation of nanometric digital circuits. High integration densities and low

voltage/current thresholds have increased the soft error rates (SERs) of circuits

and systems.

- 129 -

The approach proposed in [17] and Chapter 2 in this thesis is able to characterize

and assess the reliable operation of a sequential circuit through a detailed analysis

of its state transition matrices (STMs). The dependency of circuit reliability on its

input distribution and sequences is revealed due to the masking of errors. Error

masking in a sequential circuit refers to the logic masking effect imposed on the

feedback signals by specific combinations of primary inputs (referred to as

restoring inputs). As a result, the presumably monotonically decreasing reliability

of a sequential circuit can actually be interrupted and restored by the primary

inputs. The restoring inputs are equivalent to the synchronizing sequences in

switching theory [96, 97], that have been extensively used to facilitate testing of

sequential circuits [98]. Both experimental and theoretical approaches have been

used to compute synchronizing sequences for testing an FSM [99, 100].

Error masking is theoretically analyzed using the STMs in a finite state machine

(FSM) model as a mathematical framework. To alleviate the complexity issues in

the STM computation, an efficient approach using binary decision diagrams

(BDDs) is further employed for analyzing error masking in large circuits in [17]

and Chapter 2 in this thesis. Simulation results are presented to show that single

and multiple step restoring inputs can be found by the proposed approach. Future

work is to complement this methodology and related observations with timing and

electrical information for formulating error mitigation schemes for nanoscale

systems.

Methodologies for inexact (or soft) computing rely on the feature that many

applications can tolerate some loss of precision and therefore, the solution can

tolerate some degree of uncertainty [101, 102]. Deterministic, explicit, and precise

models and algorithms are not always suitable to solve these types of problems.

However, inexact computing applications are mostly implemented using digital

binary logic circuits, thus operating with a high degree of predictability and

precision. A framework based on a precise and specific implementation can still

be used with a methodology that intrinsically has a lower degree of precision and

- 130 -

an increasing uncertainty in operation. While this may be viewed as a potential

conflict, such an approach tailors the significant advantage of inexact computing

(and its inherent tolerance to some imprecision and uncertainty) to a technology

platform implemented by conventional digital logic and systems [102]. The

paradigm of inexact computation relies on relaxing fully precise and completely

deterministic building blocks (such as a full adder) when for example,

implementing bio-inspired systems. This allows nature-inspired computation to

redirect the existing design process of digital circuits and systems by taking

advantage of a decrease in complexity and cost with possibly a potential increase

in performance and power efficiency [101, 102].

One of the fundamental arithmetic operations in many applications of inexact

computing is addition [103, 104]. Soft additions are generally based on the

operation of deterministic approximate logic or probabilistic imprecise arithmetic

(categorized in [105] as design-time and run-time techniques). Several recently

proposed adder architectures are representatives of these types. To evaluate the

effectiveness of these architectures, new design metrics are urgently needed.

However, the traditional metric of reliability (defined as the probability of system

survival) is not appropriate for use in evaluating deterministic approximate

designs. Therefore new metrics for assessing adder designs with respect to

reliability and power efficiency for inexact computing are proposed in [18, 19]

and Chapter 3 in this thesis. A new figure of merit, referred to as error distance

(ED), is proposed to characterize the reliability of an output of an adder. ED is

then used to obtain two new metrics: the mean error distance (MED) and the

normalized error distance (NED). The MED and NED can be obtained using

sequential probability transition matrices (SPTMs) and are able to evaluate the

reliability of both probabilistic and deterministic adders. NED is a stable metric

that is almost independent of the size of an implementation; this feature brings a

new perspective for the evaluation and comparison of different adder

implementations. The power and NED product is further used to evaluate the

power and precision tradeoff. An adder implementation with reduced precision,

- 131 -

referred to as the lower-bit ignored adder (LIA), is investigated as a baseline for

assessing the lower-bit OR adder (LOA), approximate mirror adders (AMAs) and

probabilistic full adders (PFAs). A detailed analysis and simulation results are

presented to assess the reliable performance of these adders using the proposed

new metrics.

As CMOS approaches physical and technological limits, new devices have been

proposed to implement nanoscale architectures, such as the multiple-valued logic

(MVL) operation with a base higher than two. MVL allows for more than two

levels of logic; depending on the number of levels, ternary (base 3) and

quaternary (base 4) logic have been advocated for different applications. MVL

enjoys many advantages over its binary counterpart; for example, each wire can

transmit more information than binary, so the number of connections in a chip can

be reduced, thus decreasing circuit complexity. However, MVL circuits are

subject to issues such as low noise margins.

Recently, carbon nanotube field-effect transistors (CNTFETs) have been

extensively studied as a potential alternative to the silicon-based metal–oxide–

semiconductor field effect transistors (MOSFETs) for implementing MVL circuits

[48, 49]. The resistor-loaded designs utilize fewer transistors to implement MVL

gates, but the off-chip resistors and also large static power consumptions limit the

integration and applications [49]. The complementary designs, which can be fully

integrated, consume little static power but use more transistors [48]. In order to

make a trade-off between static power consumption and area cost (i.e., the

number of transistors), a pseudo-complementary CNTFETs-based MVL design is

proposed in [21] and also Chapter 4 in this thesis.

Similar to nanoscale CMOS circuits, CNTFETs-based MVL circuits are affected

by manufacturing variations and noise, so their operation is probabilistic and

subject to errors. Therefore, the analysis of reliability of MVL circuits is of

significant concern. A number of approaches have been proposed for the

- 132 -

reliability evaluation of binary circuits. However, no approach has been proposed

for the reliability analysis of MVL gates before. In particular, the structure and

topologies of MVL gates need to be taken into consideration in an accurate

evaluation approach. Hence, a transistor-level analysis is highly desirable because

it can provide a better assessment of the gate structure as well as the error

susceptibility of a particular implementation. For this process to be viable, it is

important to efficiently evaluate the reliability though a simple, yet efficient

method to provide insight on reliability as well as its enhancements. Stochastic

computational models (SCMs) for MVL are developed for evaluating the

reliability of gates in [21] and also Chapter 4 in this thesis; the applicability of

these models to circuits is briefly treated through an illustrative example.

As discussed previously, biological systems also present some probabilistic

behaviors because of noise or perturbation. In recent years, various computational

models have been of interest due to their use in the modeling of gene regulatory

networks (GRNs). As a logical model, probabilistic Boolean networks (PBNs)

consider molecular and genetic noise, so the study of PBNs provides significant

insights into the understanding of the dynamics of GRNs, which will ultimately

lead to advances in developing therapeutic methods that intervene in the process

of disease development and progression. The applications of PBNs, however, are

hindered by the complexities involved in the computation of the state transition

matrix and the steady-state distribution of a PBN. For a PBN with n genes and N

Boolean networks, the complexity to compute the state transition matrix is

 (𝑛 22𝑛) or (𝑛 2𝑛) for a sparse matrix.

Stochastic Boolean networks (SBNs) are proposed as an efficient approach to

modeling gene regulatory networks (GRNs) in [22] and also Chapter 5 in this

thesis. The state transition matrix is computed in an SBN with a complexity

of (𝑛 2𝑛), where L is a factor related to the stochastic sequence length. Since

the minimum sequence length required for obtaining an evaluation accuracy

approximately increases linearly with the size of a network, L is typically smaller

- 133 -

than N, which is usually on an exponential order of n, especially in a network with

a large number of genes. Hence, the computational complexity of an SBN is

primarily limited by the number of genes, but not directly by the total possible

number of Boolean networks. Furthermore, a time-frame expanded SBN enables

an efficient analysis of the steady-state distribution of a PBN. These findings are

supported by the simulation results of a simplified p53 network, several randomly

generated networks and a network inferred from a T cell immune response dataset.

An SBN can also implement the function of an asynchronous PBN and is

potentially useful in a hybrid approach in combination with a continuous or

single-molecule level stochastic model. The SBN approach is able to recover

biologically-proven regulatory behaviors and also further predict the network

dynamics when the genes are under perturbation. The proposed algorithms and

methods in [22, Chapter 5] have been implemented in Matlab packages and can

be applied in the modeling of a general GRN.

- 134 -

BIBLIOGRAPHY

[1] S. Borkar, “Designing Reliable Systems from Unreliable Components: The

Challenges of Transistor Variability and Degradation,” in IEEE Micro, vol. 25, no. 6,

pp. 10-16, Nov. 2005.

[2] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Probabilistic

transfer matrices in symbolic reliability analysis of logic circuits,” ACM Trans. Des.

Autom. Electron. Syst., vol. 13, no. 1, pp. 1–35, 2008.

[3] J. Han, H. Chen, E. Boykin, J. Fortes, "Reliability evaluation of logic circuits using

probabilistic gate models," Microelectronics Reliability, vol. 51, no. 2, 2011, pp.

468-476.

[4] A. Abdollahi, “Probabilistic Decision Diagrams for Exact Probabilistic Analysis,”

Proc. Int’l Conference on Computer Aided Design, 2007.

[5] T. Rejimon and S. Bhanja, “Scalable probabilistic computing models using Bayesian

networks,” in Proc. Int. Midwest Symp. Circuits Syst., 2005, pp. 712–715.

[6] N. Mohyuddin, E. Pakbaznia, M. Pedram, "Probabilistic Error Propagation in Logic

Circuits Using the Boolean Difference Calculus," in IEEE Intl. Conf. on Comp. Des.,

Lake Tahoe, CA, USA, pp. 7-13 (2008)

[7] S. Sivaswamy, K. Bazargan, M. Riedel, "Estimation and Optimization of Reliability

of Noisy Digital Circuits," in International Symposium on Quality Electronic Design,

San Jose, CA, USA, pp. 213-219 (2009)

[8] M. R. Choudhury and K. Mohanram, “Reliability analysis of logic circuits,” IEEE

TCAD, vol. 28, no. 3, pp. 392–405, March 2009.

[9] H. Chen, J. Han, "Stochastic Computational Models for Accurate Reliability

Evaluation of Logic Circuits," Proc. Great Lakes Symp. VLSI (GLVLSI),

Providence, RI, USA, 2010.

[10] International Technology Roadmap for Semiconductors, Process Integration,

Devices, and Structure. ITRS 2009 edition. [Online] Available:

http://www.itrs.net/Links/2011ITRS/2011Chapters/2011PIDS.pdf. Last accessed on

Aug. 1
st
, 2012.

[11] Rejimon and S. Bhanja, “Scalable probabilistic computing models using Bayesian

networks,” in Proc. Int. Midwest Symp. Circuits Syst., 2005, pp. 712–715.

[12] N. Mohyuddin, E. Pakbaznia, M. Pedram, "Probabilistic Error Propagation in Logic

Circuits Using the Boolean Difference Calculus," in IEEE Intl. Conf. on Comp. Des.,

Lake Tahoe, CA, USA, pp. 7-13 (2008)

[13] S. Sivaswamy, K. Bazargan, M. Riedel, "Estimation and Optimization of Reliability

of Noisy Digital Circuits," in International Symposium on Quality Electronic Design,

San Jose, CA, USA, pp. 213-219 (2009)

- 135 -

[14] M. R. Choudhury and K. Mohanram, “Reliability analysis of logic circuits,” IEEE

TCAD, vol. 28, no. 3, pp. 392–405, March 2009.

[15] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, L. Alvisi, “Modeling the Effect

of Technology Trends on the Soft Error Rate of Combinational Logic”, In Proc. Intl.

Conf on Dependable Systems &Networks. 2002, pp. 389-398.

[16] B. R. Gaines, “Stochastic Computing”, Spring Joint Computer Conf., 1967, Vol. 30,

pp. 149-156.

[17] J. Liang, J. Han, F. Lombardi: "Analysis of Error Masking and Restoring Properties

of Sequential Circuits" IEEE Transactions on Computers. (Accepted).

[18] J. Liang, J. Han, F. Lombardi: “On the Reliable Performance of Sequential Adders

for Soft Computing” IEEE int’l Symposium on Defect and Fault Tolerant in VLSI

systems (DFT), Vancouver, BC, Canada, pp. 3-10, 2011.

[19] J. Liang, J. Han, F. Lombardi: “New Metrics for the Reliability of Approximate and

Probabilistic Adders” IEEE Transactions on Computers. (Accepted).

[20] H. Chen, J. Liang, J. Han and F. Lombardi, “A Stochastic Computational Approach

for Accurate and Efficient Reliability Evaluation,” IEEE Transactions on Computers.

(Revised).

[21] J. Liang, J. Han, F. Lombardi: "Design and Reliability Analysis of Multiple Valued

Logic Gates using Carbon Nanotube FETs" IEEE/ACM International Symposium

on Nanoscale Architectures, the Netherland, pp. 131-138, 2012.

[22] J. Liang, J. Han. "Stochastic Boolean Networks: An Efficient Approach to Modeling

Gene Regulatory Networks" BMC Systems Biology (Accepted).

[23] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms,

Springer; 1 edition. Jun 30, 1996.

[24] R. Das and J. P. Hayes, "Monitoring Transient Errors in Sequential Circuits,"

pp.319-322, 16th IEEE Asian Test Symposium (ATS 2007), 2007.

[25] R. Das and J. P. Hayes, “Recovery from Transition Errors in Sequential Circuits”

Design and Test Workshop, 2007. IDT 2007. 2nd International. Cario, Egypt, pp.

105-110.

[26] S. Krishnaswamy, G. F. Viamontes, I.L. Markov and J. P. Hayes: “Probabilistic

transfer matrices in symbolic reliability analysis of logic circuits.” ACM Trans. on

Design Automation of Electronic Systems, vol. 13, article 8, Jan. 2008.

[27] C-C Yu and J. P. Hayes, “Scalable and accurate estimation of probabilistic behavior

in sequential circuits” IEEE VLSI Test Symposium (VTS), 2010 28th. Santa Cruz,

CA. pp. 165 – 170.

[28] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi, “Markovian Analysis of Large

Finite State Machines,” In IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), Vol. 15, No. 12, pp. 1479-1493, December

1996.

- 136 -

[29] J. Han and P. Jonker, “A System Architecture Solution for Unreliable Nanoelectronic

Devices,” IEEE Trans. Nanotechnology, vol. 1, no. 4, pp. 201-208, December 2002.

[30] J. Han and P. Jonker, “A defect- and fault-tolerant architecture for nanocomputers,”

Nanotechnology, vol. 14, no. 2, pp. 224–230, 2003.

[31] J. Han, J. Gao, Y. Qi, P. Jonker, J.A.B. Fortes. “Toward Hardware-Redundant, Fault-

Tolerant Logic for Nanoelectronics," IEEE Design and Test of Computers,

July/August 2005, vol. 22, no. 4, 328-339.

[32] R. E. Bryant,. Graph-Based Algorithms for Boolean Function Manipulation.

Computers, IEEE Transactions on. Aug. 1986 pp.677 – 691

[33] F. Somenzi. CUDD: CU decision diagram package release 2.4.2.

http://vlsi.colorado.edu/~fabio/CUDD/. (2009).

[34] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary Decision

Diagrams,” ACM Computing Surveys, Vol. 24, No. 3 (September, 1992), pp. 293-

318

[35] N. Miskov-Zivanov, D. Marculescu, “Modeling and Optimization for Soft-Error

Reliability of Sequential Circuits,” In IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), Vol. 27, Issue. 5, pp. 803-816,

2008

[36] J. M. Rabaey, A. Chandrakasan and B. Nikolic, “Digital Integrated Circuits; a design

perspective,” Second Edition, Pearson Education, 2003.

[37] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, C. Lucas, “Bio-Inspired Imprecise

Computational Blocks for Efficient VLSI Implementation of Soft-Computing

Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57,

no. 4, pp. 850-862, April 2010.

[38] A. K. Verma, P. Brisk, P. Ienne, “Variable latency speculative addition: A new

paradigm for arithmetic circuit design,” DATE, pp. 1250-1255, 2008.

[39] N. Zhu, W. L. Goh, K. S. Yeo, “An enhanced low-power high-speed adder for error

tolerant application,” ISIC, pp. 69-72, 2009.

[40] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, K. Roy, “IMPACT: IMPrecise

adders for low-power approximate computing” Low Power Electronics and Design

(ISLPED) 2011 International Symposium on. 1-3 Aug. 2011.

[41] J. Kim, S. Tiwari “Inexact computing for ultra low-power nanometer digital circuit

design”, in IEEE/ACM International Symposium on Nanoscale Architectures

(NANOARCH), 2011, pp. 24-31.

[42] K.V. Palem, “Energy Aware Computing through Probabilistic Switching: A Study of

Limits,” IEEE Trans. Computers, 2005, pp. 1123-1137.

[43] P. Kulkarni, P. Gupta and M. Ercegovac. "Trading Accuracy for Power with an

Underdesigned Multiplier Architecture," Proc., IEEE/ACM International

Conference on VLSI Design, Mar 31, 2011.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5934628
http://nanocad.ee.ucla.edu/pub/Main/Publications/C54_slides.pdf
http://nanocad.ee.ucla.edu/pub/Main/Publications/C54_slides.pdf

- 137 -

[44] B. Brown and H. Card, “Stochastic neural computation I: Computational elements,”

IEEE Tran. Computers, vol. 50, pp. 891–905, Sept. 2001.

[45] J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms from

unreliable components,” Automata Studies, Shannon C.E. & McCarthy J., eds.,

Princeton University Press, pp. 43-98, 1956.

[46] Jie Han, “Fault-Tolerant Architectures for Nanoelectronic and Quantum Devices”,

Universal Press, Veenendaal, The Netherlands, 2004. A Ph.D. dissertation of the

Delft University of Technology, 1-135. ISBN: 90-9018888-6

[47] S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-temperature transistor

based on a single carbon nanotube", Nature 393, 49-52, May, 1998.

[48] S. Lin, Y. Kim and F. Lombardi, "CNTFET-Based Design of Ternary Logic Gates

and Arithmetic Circuits" IEEE Transactions on Nanotechnology, Vol. 10, No. 2, pp.

217-225, March 2011.

[49] A. Raychowdhury and K. Roy, “Carbon-nanotube-based voltage-mode multiple-

valued logic design,” IEEE Trans. Nanotechnol., vol. 4, no. 2, pp. 168–179, Mar.

2005.

[50] G. Zhang, et al., “Selective Etching of Metallic Carbon Nanotubes by Gas-Phase

Reaction”, Science, Vol. 314, pp. 974 –977, 2006.

[51] A. Lin, N. Patil, J. Zhang, H. Wei, S. Mitra and H.-S.P. Wong, “ACCNT - A

Metallic-CNT-Tolerant Design Methodology for Carbon Nanotube VLSI: Analysis

and Design Guidelines,” IEEE Trans. Electron Devices, 2010.

[52] P. Zarkesh-Ha, A. A. M. Shahi, "Stochastic Analysis and Design Guidelines for

CNFETs in Gigascale Integrated Systems," Electron Devices, IEEE Transactions on ,

vol.58, no.2, pp.530-539, Feb. 2011

[53] R. A. Weinberg, “The Biology of Cancer. Garland Science”, 1 edition. 2006.

[54] Vogelstein, D. Lane, A. J. Levine, “Surfing the p53 network”, Nature 2000,

408:307–310.

[55] G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A. J. Levine, M. B. Elowitz,

and U. Alon, “Dynamics of the p53-Mdm2 feedback loop in individual cells”,

Nature Genetics 2004, 36, 147 – 150.

[56] E. Batchelor, A. Loewer, and G. Lahav, “The ups and downs of p53: understanding

protein dynamics in single cells”, Nature Reviews Cancer 2009, 371-377.

[57] H. de Jong, “Modeling and simulation of genetic regulatory systems: a literature

review”, Journal of Computational Biology. January 2002, 9(1): 67-103.

doi:10.1089/10665270252833208.

[58] G. Karlebach, R. Shamir, “Modelling and analysis of gene regulatory networks”,

Nature Reviews Molecular Cell Biology. Volume 9, Oct. 2008.

[59] S. A. Kauffman, “Metabolic stability and epigenesis in randomly constructed genetic

nets”, J. Theor. Biol. 1969, 22, 437-467.

- 138 -

[60] E. Klipp, “Systems Biology In Practice: Concepts, Implementation And

Application”, Wiley-VCH, Weinheim, 2005.

[61] D. T. Gillespie, “A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions”, J. Comput. Phys. 22, 403. 1976.

[62] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions”, J. Phys.

Chem. 81, 2340-61. 1977.

[63] M. Gibson, and J. Bruck, “Efficient exact stochastic simulation of chemical systems

with many species and many channels”, J. Phys. Chem. 104, 1876–1889. 1999.

[64] D. T. Gillespie, “Approximate accelerated stochastic simulation of chemically

reacting systems”, J. Chem. Phys. 115, 1716-1733. 2001.

[65] S. Pandey, R. Wang, L. Wilson, S. Li, Z. Zhao, T. Gookin, S. Assmann, and R.

Albert, “Boolean modeling of transcriptome data reveals novel modes of

heterotrimeric G-protein action”, Molecular Systems Biology, Article number 372;

doi:10.1038/msb.2010.28

[66] I. Shmulevich, E. R. Dougherty, W. Zhang, “From Boolean to probabilistic Boolean

networks as models of genetic regulatory networks”, Proceedings of IEEE, 2002, 90,

pp.1778-1792.

[67] I. Shmulevich, E. R. Dougherty, S. Kim, W. Zhang, “Probabilistic Boolean networks:

a rule-based uncertainty model for gene regulatory networks”, Bioinformatics, 2002,

18: 261-274.

[68] I. Shmulevich, E. R. Dougherty, “Probabilistic Boolean Networks: The Modeling

and Control of Gene Regulatory Networks”, Society for Industrial & Applied

Mathematics, U.S., 2010.

[69] I. Shmulevich, E. R. Dougherty, W. Zhang, “Gene perturbation and intervention in

probabilistic Boolean networks”, Bioinformatics, 2002, 18 (10):1319-1331.

[70] I. Shmulevich, I. Gluhovsky, R. F. Hashimoto, E. R. Dougherty, W. Zhang, “Steady-

state analysis of genetic regulatory networks modelled by probabilistic Boolean

networks”, Comparative and Functional Genomics, 2003, 4: 601–608. doi:

10.1002/cfg.342

[71] E. R. Dougherty, R. Pal, X. Qian, M. L. Bittner, A. Datta, “Stationary and Structural

Control in Gene Regulatory Networks: Basic Concepts”, International Journal of

Systems Science, 2010, Vol. 41, No. 1, 5-16.

[72] B. Faryabi, G. Vahedi, A. Datta, J F. Chamberland, E. R. Dougherty, “Recent

Advances in Intervention in Markovian Regulatory Networks”, Curr Genomics.

2009, 10(7): 463–477.

[73] G. Karlebach, R. Shamir, “Minimally perturbing a gene regulatory network to avoid

a disease phenotype: the glioma network as a test case”, BMC Systems Biology

2010, 4:15.

- 139 -

[74] S. Zhang et al. “Simulation study in probabilistic Boolean network models for

genetic regulatory networks”, Int. J. Data Min. 2007, 1:217-240.

[75] W. Ching et al. “An approximation method for solving the steady-state probability

distribution of probabilistic Boolean networks”, Bioinformatics, 2007, 23 pp. 1511–

1518.

[76] I. Ivanov, R. Pal, E.R. Dougherty, “Dynamics Preserving Size Reduction Mappings

for Probabilistic Boolean Networks”, IEEE Transactions on Signal Processing, 2007,

Vol. 55, No. 5, 2310-2322.

[77] X. Qian, I. Ivanov, N. Ghaffari, E. R. Dougherty, “Intervention in gene regulatory

networks via greedy control policies based on long-run behavior”, BMC System

Biology, 2009, 3:61.

[78] X. Qian, N. Ghaffari, I. Ivanov, E. R. Dougherty, “State reduction for network

intervention in probabilistic Boolean networks”, Bioinformatics, 2010, 26 (24):

3098-3104.

[79] R. Pal, “Context-Sensitive Probabilistic Boolean Networks: Steady-State Properties,

Reduction, and Steady-State Approximation”, Signal Processing, IEEE Transactions

on, vol.58, no.2, pp.879-890, Feb. 2010.

[80] B. Faryabi, J-F. Chamberland, G. Vahedi, A. Datta, E. R. Dougherty, “Optimal

intervention in asynchronous genetic regulatory networks”, IEEE Journal of

Selected Topics in Signal Processing. 2(3):412-23. 2008.

[81] B. Faryabi, G. Vahedi, J. F. Chamberland, A. Datta, E. R. Dougherty, “Intervention

in context-sensitive probabilistic Boolean networks revisited”, EURASIP Journal on

Bioinformatics Systems Biology. 2009.

[82] H.H. McAdams, L. Shapiro, “Circuit simulation of genetic networks”, Science

1995, 269 (5224), 650.

[83] A. Abdi, M. B. Tahoori, E. S. Emamian, “Fault diagnosis engineering of digital

circuits can identify vulnerable molecules in complex cellular pathways”, Sci Signal.

2008 Oct 21;1(42):ra10.

[84] G. Kervizic, L. Corcos, “Dynamical modeling of the cholesterol regulatory pathway

with Boolean networks”, BMC Systems Biology 2008, 2:99.

[85] R. Adar, Y. Benenson, G. Linshiz, A. Rosner, N. Tishby, E. Shapiro, “Stochastic

computing with biomolecular automata”, PNAS July 6, 2004 vol. 101 no. 27 9960-

9965.

[86] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro, “An autonomous molecular

computer for logical control of gene expression”, Nature, 2004, 429, 423-429.

[87] D. Wittmann, J. Krumsiek, J. Saez-Rodriguez, D. Lauffenburger, S. Klamt, F. Theis,

“Transforming Boolean models to continuous models: methodology and application

to T-cell receptor signaling”, BMC Systems Biology, September 2009.

- 140 -

[88] N. Duarte, S. Becker, N. Jamshidi, I. Thiele, Mo, M., Vo, T., Srivas, R. and Palsson,

B.: Global reconstruction of the human metabolic network based on genomic and

bibliomic data. PNAS, vol. 104, no. 6, pp. 1777–1782, February 6, 2007.

[89] H. Lähdesmäki et al. “Relationships between probabilistic Boolean networks and

dynamic Bayesian networks as models of gene regulatory networks”, Signal

Processing 2006, 86:814-834.

[90] N. Guelzim, S. Bottani, P. Bourgine, F. Kepes, “Topological and causal structure of

the yeast transcriptional regulatory network”, Nature, 2002, Genetics 31, 60–63.

[91] S. Martin, Z. Zhang, A. Martino, J-L. Faulon, “Boolean dynamics of genetic

regulatory networks inferred from microarray time series data”, Bioinformatics,

2007, 23(7): 866-874.

[92] S. Marshall, L. Yu, Y. Xiao, ER. Dougherty, “Inference of a probabilistic boolean

network from a single observed temporal sequence”, EURASIP Journal on

Bioinformatics and Systems Biology. 2007:32454.

[93] T. Akutsu et al. “Inferring qualitative relations in genetic networks and metabolic

pathways”, Bioinformatics, 16, 727–734. 2000.

[94] K. Basso et al. “Reverse engineering of regulatory networks in human B cells”, Nat.

Genet., 37, 382–390. 2005.

[95] R. K. Layek, A. Datta, E. R. Dougherty, “From biological pathways to regulatory

networks”, Mol. BioSyst., 2011, 7, 843-851.

[96] E.F. Moore, “Gedanken-experiments on sequential machines,” in Automata Studies.

C.E. Shannon and J. McCarthy, Eds., Princeton University Press, 1956, pp129-153.

[97] Z. Kohavi and N.K. Jha, “Switching and Finite Automata Theory”, Cambridge

University Press, 2010.

[98] I. Pomeranz, S.M. Reddy, “On removing redundancies from synchronous sequential

circuits with synchronizing sequences,” Computers, IEEE Transactions on. Jan.

1996, pp. 20 – 32.

[99] I. Pomeranz, S.M. Reddy, “On Synchronizable Circuits and Their Synchronizing

Sequences,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems (TCAD), Vol. 19, No. 9, pp. 1086-1092, September 2000.

[100] C. Pixley, S.-W. Jeong, and G. D. Hachtel, “Exact calculation of synchronizing

sequences based on binary decision diagrams,” in IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD), Vol. 13, No. 8, pp. 1024-

1034, August 1994

[101] Y. Dote, and S.J. Ovaska, “Industrial Applications of Soft Computing: a Review,”

Proc. IEEE, Vol. 89, no. 9, pp. 1243-1265, 2001.

[102] R. Hegde and N.R. Shanbhag, “Soft digital signal processing,” IEEE Trans. VLSI

Syst., vol. 9, no. 6, pp. 813–823, 2001.

- 141 -

[103] V. Beiu, S. Aunet, J. Nyathi, R.R. Rydberg III and W. Ibrahim, “Serial Addition:

Locally Connected Architectures,” IEEE Trans. Circ. and Sys. I, vol. 54, no. 11, Nov.

2007, pp. 2564–2579.

[104] S. Cotofana, C. Lageweg, S. Vassiliadis, “Addition related arithmetic operations

via controlled transport of charge,” IEEE Trans. Computers, , vol. 54, no. 3, pp. 243-

256, March 2005.

[105] J. Huang and J. Lach, “Exploring the Fidelity-Efficiency Design Space using

Imprecise Arithmetic,” ASPDAC, 2011.

