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Abstract

Let R be a finite commutative ring of odd characteristic. Let
Spa.(R) be the symplectic group associated to a symplectic space of
rank 2n over R. Weil representations of Sp,,(R) are carefully defined,
explicitly constructed and thoroughly investigated.
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Chapter 1

Introduction

We are interested in the so-called Weil representations of the finite symplectic group
Sp = Sp,,(R) = Sp(R, V, (, )); here R stands for a finite commutative ring with identity
and odd characteristic ¢, V for a free R-module of rank 2n and (, ) for a non-degenerate
alternating bilinear form on V. The symplectic group Sp is the subgroup of GL(V') that
preserves ( , ).

Weil representations of Sp, when R is the Galois field Fy, have been the subject of
intensive research (e.g. [BRWS61], [War72], [How73], [Sei75], [Isa73] [Ger77], [Gow89],
[Gro90]) and are receiving considerable attention at the moment ([Tie97], [TZ97], [ST97],
[Sze98]). Several authors have studied representations of various linear groups over special
types of finite commutative rings (e.g. [Tan67], [Lee78], [Hil95]). However, the only
literature known to the author on the specific subject under consideration is [CMS].

Weil representations arise as follows. Let H = H2,(R) = H(R,V,(, )) be the Heisen-
berg group associated to the symplectic space (V, (, }); thatis H = {(r,v):r € R,v € V},
with multiplication given by (ri,vi)(rs, v2) = (r1 + r2 + (v1, v2), v1 + v2). We see at once
that Z(H) = (R,0) = H'. Let E be any field whose characteristic does not divide ¢ and
consider the cyclotemic extension F' = E((,).

The theory starts off by choosing a non-trivial group homomorphism A : Rt — F™.
The assumption on E makes this possible. Denote by I, the largest ideal contained in

Ker A and let X be the additive linear character that A induces on R = R/I). Substituting



R by its epimorphic image R and A by A, if necessary, we may assume that A is already
primitive, in the sense that Iy = (0). This assumption amounts to saying that each local
component R; of R has a minimum ideal min amongst all its non-zero ideals (Proposition
3.2.3). In other words, (0) must be an irreducible ideal of each R; (in the terminology of
[ZS58], Chapter IV, § 16). These local rings are called irreducible (according to [Lam53],
Definition 3).

With these considerations regarding the nature of B and A behind us, we proceed by
extending A to a maximal abelian subgroup 4 of H. As it turns out, there are precisely
|R|™ = [H : A] = [A : Z(H)] such extensions, and they all can be constructed by means of
(, ) and X itself. In other words, they are all H-conjugate to one another and the inertia
group of any of them, say p, is A itself. Thus, the induced character n = inddp is an
absolutely irreducible character of H over F whose restriction to Z(H) is equal to [R|™A.
The characters 7 and A are thus fully ramified with respect to H/Z(H), in the sense that
7 is the unique irreducible character of H lying over A.

Let Sp act on H by means of 9(r,v) = (r,gv). Since Sp acts trivially on Z(H), the
irreducible character 79 also lies over A, and it is therefore equal to 7, for each g € Sp.
In other words, 7 is Sp-invariant. By the Schrédinger representation associated to A we
shall understand any representation S : H — GL(X) affording . Theorem 4.2.6 shows
that any such S can be extended to an ordinary (not just projective) representation of
H x Sp (Theorem 4.2.6), still afforded by X. Its restriction W = W) to Sp we call the
Weil representation of Sp associated to A.

This thesis is devoted to the study of W.

1.1 Main results

The difficulties in studying W present themselves at the outset, since it is only after a
careful study of S that one can convince oneself that W must exist at all. To be concrete

we shall assume that F' = Q({,).

After considerable effort Theorem 5.6.1 gives W in matrix form. This requires the



computation of a projective representation P : Sp — GL(X) that intertwines the Sp-
conjugates of S and the determination of a correcting factor ¢ : Sp — F™ which renders
P(g) into an ordinary representation W(g) = P(g)c(g). The precise determination of c(g)
involves the computation of certain expressions which are well-known if R is a field but
otherwise rather elusive. We are referring to two objects:

The linear character p : R* — {*1}, defined by B™ 3 k — (-1)liellke-IH ¢ (41},
where I is any subset of R\ {0} containing precisely one element out of each pair {r, —r}
of non-zero elements of R and the quadratic sum }_(A) = ), cp A(r?). It was Gauss who
first determined p ([Rib72], page 52) and 5_()) ([Lan70], chapter 4) in the field case. The
answer in the general case is given in Section 3.1 for yx and Sections 3.2 and 5.7 for 3_().

They are unavoidably interwoven.

The Weil representation W is unique unless Sp,,(R) is imperfect. This can only occur
when n = 1 and some local component of R has residue field equal to F3 (Corollary 2.4.4),

in which case we carefully select one W to which all our results apply.

The group of symplectic similitudes GSp, which is the subgroup of all ¢ € GL(V) that
preserve ( , ) up to multiplication by a unit k(g) € R, plays an important role in the theory,
inasmuch as it allows us to pass from a given W), into any other W)y,. More precisely, any
other primitive linear character A’ of Rt is of the form A{k] (which is A premultiplied
by k € R) and W} >~ Wy for any g € GSp. Thus, the Weil representations are all
GSp-conjugate. Moreover, Wy =~ W] if and only if k(g) is a square. This is related to
the fact that conjugation by g € GSp restricts to an inner automorphism of Sp if and only
if k(g) is a square. Thus, there are essentially two types of Weil representations, which
can be obtained from one another by means of an outer automorphism of Sp coming from

GSp (Proposition 5.7.2 and Theorem 7.3.1).

It is possible to assume, and we make this assumption, that R is local ring with residue
field F, and maximal ideal m of nilpotency degree I > 1 (Proposition 4.3.1). Here ¢ is a
power of an odd prime p. An important class of examples is obtained by letting R = O/ pt,
where O is the ring of integers of an algebraic number field and p is a prime ideal of O

lying over p. The theory of Weil representations for such rings and more generally, for any
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principal local ring R, is very satisfactory. The general case of a general irreducible ring
is much more difficult. Nevertheless, quite a lot can still be said about W, as described

below.

If Q denotes the character of W, then the character inner product [©2, ] equals the
number of Sp-orbits of V. In fact, End#(X) and the natural permutation module v arising
from V are isomorphic as FSp-modules. An explicit isomorphism is given in Theorem 7.2.1.
This recovers the known result ([Isa73] Theorem 4.8, [Ger77] Theorem 4.4) that in the
field case the absolutely irreducible components of X are the +1-eigenspaces X* of the

central involution ¢ of Sp.

Suppose until further notice that R is not a field. This assumption adds entirely new
features to the submodule structure of X (which is intimately connected with the ideal
structure of R). Indeed, various FSp-submodules of X can be obtained as follows. Fix an
an ideal I of R of square (0) and let J be the annihilator of /. Consider next the subgroups
D(I)=(0,1V) and E(J) = (R,JV) of H. Then the fixed points X (I) of D([) in X form
an irreducible F(E(J)/D(I))-submodule of X of dimension |.J/I|® which is Sp-invariant
(Proposition 6.1.2). As such, Theorem 7.1.1 ensures thatif K = (I : J) ={r€ R|rJ C I}
is the conductor of J into I then the restriction of the subrepresentation of W afforded
by X (I) to the congruence subgroup Sp(K) ={g € Spjgv=v mod KV forallve V}is
trivial.

Let Y (I) be any FSp-invariant complement to X(I) in X and write Z* = Z N X*

for any FSp-submodule Z of X. Furthermore, set Top = Y (min) and consider the FSp-

decomposition
X =Topt @ Top~™ & X (min). (1.1)

Since m'~2 C (min : m), Theorem 7.1.1 guarantees that Sp(m/~2) acts trivially on X (min).
Thus (1.1) provides a decomposition of X into those FSp-submodules truly pertaining to
Sp and the rest, which in fact constitutes an FSp,,(R/m!~?)-module. In view of (1.1} the
study of X can be carried out according to the following plan:

(1) Describe T'op® in as much detail as possible.

4



(2) Study X (min) as a module for the symplectic group Sp,,(R/m'~2), associated to
the “smaller” ring B/m!~2.

This is a summary of our progress in these directions:

(1) Theorem 7.2.4 proves that Top* are absolutely irreducible FSp-modules of mul-
tiplicity one in X and common degree (|R|™ — |m/min|®)/2. Moreover, Proposition 7.2.5
shows that the representations of Sp and PSp respectively afforded by Top~ and Top*
are faithful.

Write Sp — GL(JWV} for the F-linear representation arising from the permutation

representation Sp — GL(JV/IV). Then Theorem 7.2.1 states that
JV/IV ~ Endp(X(I)) (1.2)

as FSp-modules. If Qz denotes the character of the subrepresentation of W afforded by
a given FSp-module Z of X, then (1.2) says that [Qx (1), Qx(p] is equal to the number of
Sp-orbits of JV/IV. The absolute irreducibility of Top¥ is consequence of Theorem 7.2.1
applied to I = (0) and [ = min.

If R possesses an ideal which is its own annihilator, then the Weil representation of Sp

afforded by Top and Top* are monomial (Theorem 7.7.1).

The character field of Top* or, for that matter, any Y (I)* is equal to Q (,/(_Tl)q)
(Theorem 7.4.1).

Top™* can be always be realized over its character field (Theorem 7.5.1).

Top~ can be realized over its character field if and only if Q (, / (’Tl)q) is not a real
field; that is, ¢ =3 mod 4 (Theorem 7.5.1). Thus, if ¢ =1 mod 4 then the Schur index

mQ(Q1,,-) is equal to two due to the Brauer-Speiser Theorem.

(2) If R is principal, say m = (), then Theorem 7.6.2 shows that the representation
of Sp,,(R/m!~2) afforded by X (min) is equal to the Weil representation associated to
the primitive linear character of R/m'~2 defined by r 4+ 7/~2R ~— A(rw?). This results
constitutes, in effect, a truly recursive procedure to study the irreducible components of

W. There are I + 1 of them, all inequivalent to one another.
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The case of a general irreducible ring R is more difficult. We are currently working on

this problem.

The field case is of particular interest. In this case, not only do we know when X¥* can
be realized over Q(Qx+) [Gow89], but we can actually perform the realization explicitly,
whenever possible. In other words we can write down an explicit family of matrices A,
each of which conjugates the matrix Weil representations over F associated to X¥* (as
given in Theorem 5.6.1) into matrix representations with coefficients in the character
fields Q(Qx+), provided mq(Qx+) = 1. This result can be found in [Sze98].

Furthermore, [Sze98] constructs Weil representations of GSp, realizes them over their
character fields and determines the Sp and GSp-invariant bilinear forms that are uniquely
associated -up to scaling- to their Weil components, whenever self-contragredient. These

results easily extend to the general case of an irreducible ring R.

Finally, we can embed the finite unitary group U,(q) canonically into Sp,,(¢) and
study the restriction of W to U,(g) and various of its subgroups, most notably SU,(g).

This material can be found in [Sze], in the case when n is even.

1.2 General conventions

We shall assume throughout that R is a finite commutative ring with 1 and odd character-
istic ¢; that is, 2 is invertible in Z/cZ C R. Further assumptions on R will be specifically
stated in each chapter or section if needed. We shall write R = R1 X ... X Ry, the decom-
position of R into local rings ([AMS69], chapter 8). Given an integer s > 1, denote by (, a
primitive s-th root of unity. Let F' be the cyclotomic field FF = Q((.)-

Should R be a local ring itself, its maximal ideal will be denoted by m and its residue
field R/m by F,, where ¢ is a power of an odd prime p. Since R is finite m is nilpotent,
say with nilpotency degree [ > 1. We shall also write |R| = ¢%® and ¢ = p°.

Composition of functions proceeds from right to left. Accordingly, left actions are
associated to homomorphisms and right actions to anti-homomorphism. If G is a group

and g,h € G, then 9h = ghg™!. Suppose that E;, E, are sets being acted upon from the



left by G. Then G acts on the right on the set of functions f from E; into a fixed set A

(f)(z) = f(°z)
and on the left on the set of functions f : A — E,, by means of

E (=) =2 (f(2))-

We shall usually take f to be W or Q; then G will act on the right disguised as GSp and
on left as Gal(F/Q).

This thesis contains many more variables (letters, symbols) than any one can retain
at any given moment. To facilitate the reading, we have included a list of symbols at
the end of the text, where one can find the first appearance of every letter that has a
global meaning. We allow locally defined variables to have different meanings in different

sections. We strive to adhere to standard terminology and notation.

1.3 To the reader

To get an overall idea of this work read the Introduction. Chapters 2 and 3 contain
necessary but auxiliary material; these results can be read as they become necessary
elsewhere in the text. Chapter 4 lays the foundations of the theory of Weil representations;
it must be read.

If there is one topic whose elaboration required far more time than any other in this
thesis it is the construction of W given in Chapter 5. With it, the author had the oppor-
tunity to see representation theory in action for the first time. Starting the process with
SL2(p), and passing through SL,(g), Sp,,(¢) and Sp,,(R) for a principal ring R, a com-
plete solution was finally attained for a general irreducible ring R. Highly recommended,
but not logically necessary on a first reading.

Chapter 6 develops the language to be used later in Chapter 7. Read up to Proposition
6.1.2 inclusive, and come to it afterwards as it becomes necessary. The last chapter contains

mostly theorems, the ones described in the Introduction. It must be read.



Chapter 2

Symplectic Groups

This chapter is included for the sake of completeness. It contains no new results. The
presentation is inspired by [Die48] with help from [Jac85]. Further references are [0’M78]
for the field case, [Kli63] for the local case and [HO89] for utmost generality.

2.1 Basic definitions

Let V be a free module of rank 2n over R. An alternating bilinear form on V is a map

(,):V xV — R satisfying
(rz + sy, z) = r{z, z) + s(y, 2),
(z,ry + sz) = r(z,y) + s(z, z),
(z,z) =0 (2.1)
for all z,y,z€ V and r,s € R. Since 2 is invertible in R (2.1) is equivalent to
(z,9) = —{y,2)

forall z,y e V.
We shall not be concerned here with just any alternating form (e.g. the zero form),

but only with those {, ) whose associated map from V into its dual space V'~
Voavm—(v,-)eV" (2.2)
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is an monomorphism. Since V'~ is also free of rank 2n and R is finite
V| = V| =R,

whence (2.2) is an isomorphism. We fix one such (, ) and refer to (V, (, )) as a symplectic
space of rank 2n over K.
Let Sp denote the symplectic group associated to the symplectic space (V,(, )); that

is
Sp=Sp(R,V,{(, )) =Sp,.(R) = {g € GL(V) : {gv, gv") = (v, v") for all v,v' € V'}.

The elements of Sp are called symplectic transformations. For instance, if r € R and

z € V then the map p,  defined by
v v+r{z,v)z

is a symplectic transformation. Observe the relations

gpr,.‘::g_1 = Pr.gz: (23)
Pr.sz = Prs?,z: (2'4)
Pr+s,z = PrzPs,z, (2°5)

valid forall g e Sp,r,s€e Randz e V.
We proceed to describe symplectic groups and spaces in as much detail as is necessary
later in the text. We treat the case when R is local and indicate in Section 2.7 how to

deal with the general case.

2.2 Generation by symplectic transvections

We shall assume here that R is local. We summarize below the basic properties of local

rings to be used in the sequel.



2.2.1 Lemma (a) The cardinality of every ideal of R is a power of q.
(b) Every element of the multiplicative group 1 4+ m is a square.
(c) k € R™ is a square if and only if £+ m € F; is a square.
(d) k% = 1 if and only if k = £1. Thus R*/(R*)? ~ C», whence the only group ho-

momorphisms from R* into {£1} are the trivial homomorphism and the Legendre symbol

k 1 if k£ is a square
ke (5)=

—1 otherwise
(e) B* = (1+m) x U, where U ~ Fy is the unique subgroup of R* of order |R™/1 +m|.
(f) Every element of (Z/p¢Z)~ C R™ is a square if and only if g is a square.

Proof: (a) Form the F,-spaces m‘I/mt!] and count.

(b) |1 4+ m| = |m]| is a power of ¢ and hence odd.

(c)Ifk =12+ s forsome s € mand r € R™ then k = r?(1 + r=2s) = r%2 = (rt)? for
the unique ¢ € 1 + m satisfying t2 = 1 + r~2s.

(d) If (k—1)(k+ 1) =0 then k— 1 or £+ 1 € m, but not both since 2 ¢ m; thus
precisely one of them is a unit, whence k = 1 or else £ = —1.

(e) The order lﬂlr%{-"ll = {% —1of R*/1+4 m is coprime to the order |m| of 1 +m. Thus
the exact sequence 1 =+ 1+ m — R™ — F; — 1 splits.

(f) The image of Z 3 z +—> z.1gr € R lives in the prime field F}, of F; modulo m. Now
apply (c). O

A symplectic basis is a basis
{u11u21"'1un1vlvv21"'1vn} (2'6)

of V such that

(uiyuj) = (v, v5) = 0, (ui,v5) = —(vj, w) = 6ij.

By a primitive vector we shall understand a vector belonging to some basis of V. The
set of all such vectors will be denoted by P. Thus P = V' \ mV. A pair of vectors (x, v)
will be called hyperbolic if (u,v) = 1. The set of all such pairs will be denoted by HP.

10



Given a subset L of V let

L*={veV|{vz)y=0forall z € L}

and

L°={v"eV~|v (z)=0forall ¢ € L}.

Thus Lt is the preimage of L° under (2.2).

2.2.2 Lemma  The following conditions are equivalent:
(a) V has a symplectic basis.
(b) The map (2.2) is an isomorphism.

(c) Every element w € P belongs to a symplectic basis.

Proof: (2)=>(b) and (c)=>(a) are clear. (b)=(c) Given w € P, let {w, €2, ..., €2n} be a basis
of V. Choose an element z = rjw + r9e2 + ... + roneon, € V satisfying (w, z) = 1. Some
coefficient r;, with ¢ > 2 must be a unit. Relabeling if necessary we can assume that rn,;
is a unit, whence {w, ey, €3, ...€p, 2, €142, ---, €20} is a basis of V.

Write f; = e; — (e;, D)w+ (es, w)z, i #1,n+ 1, Ugp = Rw® Rz, U = @iz1..+1 Rf; and
(s Ju={(, Muxv. Then V=Us® U, U = U and (U,(, )v) is a symplectic space of
rank 2(n — 1). By recurrence (U, {, )r) has a symplectic basis, which can be adjoined to
{w, ..., z,...} to yield a symplectic basis of V. O

We shall fix the basis (2.6) throughout. A simple but useful observation is that g €
GL(V') belongs to Sp if and only if g maps symplectic bases into symplectic bases.

As a result of Lemma 2.2.2 we obtain

2.2.3 Corollary @ P =V \ mV is an Sp-orbit.

Given an ideal I of R, denote by Sp(I) = Spa. () the congruence subgroup associated
to 7, that is, Sp(J) = {g € Sp|gv = v mod IV}. A symplectic transformation g is called
a symplectic transvection if ¢ = p,, for some primitive vector z € V and some r € R.
Alternatively, if the matrix of g relative to some symplectic basis is elementary. According
to this definition, p,. € Sp(J) if and only if r € I. Denote temporarily by T2, (I) the
subgroup of Sp,,,(R) generated by (pr,z)rerzep-

11



2.2.4 Lemma  Suppose that n = 1 and let I be an ideal of R. Then Sp(]) is generated

by symplectic transvections.
Proof: In matrix form, we need to prove that

SLa(I) = {A € SLy(R) | A~ 1 € Ma(I)}

1 r 1 0
, rsel (2.7)

01 s 1

r r

is generated by

and their conjugates.

2

l+7‘4

A T 1 A [
O ICIEIET)

whence SLa(]) is indeed generated by (2.7) and their conjugates.

1+
Suppose first that 7 # R. Given ( ) € SL2(I), denote the inverse of 141
r3

by s. Then

If I = R the above reasoning remains valid, provided 1+r is invertible. If this is not the

. . . . 1 1 1+r T
case, then r3 is certainly invertible, whence the (1, 1)-entry of
01 T3 1+ry

is now invertible and the above reasoning applies.

We have proven, incidentally, that

2.2.5 Proposition SL2(R) is generated by

1 r 10
) r,s € R.
(O 1) (s 1)

The corresponding result for SLo(]) is false.

2.2.6 Proposition  Let I be an ideal of R. Then Sp,, (/) is generated by symplectic

transvections.
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Proof: By induction on n. The base case n = 1 was proved in Lemma 2.2.4. Suppose that
n > 1 and the result is true for all 1 < m < n. Let T2,(/) act on P and HP, and denote
the relation of being in the same T,,(])-orbit by ~.

Claim. Every Sp,, (I)-orbit of HP is a T2, (f)-orbit.

Suppose the Claim is true. Given g € Sp,,(I) and (w,z) in HP, choose go € T2n(])
such that g- (w,z) = go - (w, z). Write Up = Rw® Rz, U = Ui and V =Ug & U asin the
proof of Lemma 2.2.2. The inductive hypothesis applies, yielding ggg 1 ¢ Ty, (I), whence
g € Ton(1).

We prove the Claim when I # R. The case I = R is similar and will be omitted. Fix
any hyperbolic pair (w, z). To see the Claim is suffices to prove that

lL.w~w+vforallvelV.

2. (w,z) ~ (w,z+v) for all v € IV such that (w, z+ v) € HP.

Observe that 1 and 2 can be obtained by repeated application of

'"w~w+rvforallrel and v e P.

2. (w,z) ~ (w,z+rv) for all r € I and v € P such that (w,rv) =0.

We proceed to the proof of 1’ and 2°. Let r € I and v € P. Suppose that (v, w)
is a unit in B. Then p.¢u)-1,0 = w4+ rv. If (v,w) is not a unit, then (z,w) and
(v—z,w+rz) are certainly units, whence w ~ w+rz ~ w4rz+r(v—z) = w+rv. This
establishes 1°. To see 2’ observe that if (v, z) is a unit, then p,(, ;y-1 ,(w, 2) = (w, 2+ rv).
If (v, z) is not a unit, then (w+v,z) and (—w, z + r(w + v)) are certainly units, whence

(w,2) ~ (w,z 4+ r(w +v)) ~ (w, 24+ r(w+v) — rw) = (w, z + rv), as desired. a

2.2.7 Corollary Given an ideal I of R and a primitive vector z € V, the normal

closure of (p,z)rer is equal to Sp(l).

Proof: This is consequence of Proposition 2.2.6, Corollary 2.2.3 and (2.3). O

2.2.8 Theorem  Suppose that ¢ > 3. Then the only normal subgroups of Sp are its
center {1,:}, the congruence subgroups Sp(I) and the subgroups {1, :}Sp(I), where I runs
through all ideals of I.

Proof: See [K1i63]. a
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2.3 Generation by elementary matrices

Assume here that R is local.

Set M =Ru; &...® Ru, and N = Rv; & ... © Rv,. Denote by Spar the subgroup of
Sp preserving M (and similarly for other submodules of V), by SpM the one fixing every
point of M and by Spys x the one preserving both M and N. Let S,(R) be the abelian
(additive) group of all n x n symmetric matrix with coefficients in R. Then relative to the

symplectic basis (2.6)

1|S "
Sa(R) 3 S ¢+ B(S) = € spM,
0|1

1{0
Sa(R) BSHC(S)z( ) € Sp”,
S|1

and

[ al o
GL.(R) 3 A  D(A) = ( € Sparw (2.8)

are group isomorphisms. The natural actions
AS = ASA!, AS=(A"1)ISA™!
of GL,(R) on Sp(R) translate into
DAB(S) = B(Aas4!), PWC(S) =C((A™1)iISA™Y, (2.9)

whence

Spar = SP™ % Spasn = Su(R) X GLy(R)

and
Spar = Sp™ % Spasn = Sa(R) 3 GLo(R).

Observe that M and N are totally isotropic, in the sense that (, ) vanishes on them,
and they are maximal relative to this property. Denote by M the collection of all maximal

totally isotropic submodules of V. As opposed to the field case, not all members of M
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are in the same Sp-orbit. In fact, they need not be even isomorphic as groups. This
phenomenon is due to the presence of members of M constructed as follows.

Let (I,J) be any pair of ideals of R and consider the submodule Ly y =IN @& JM of
V. Then Ly s is totally isotropic if and only if IJ = (0) and L; s € M if and only if the

annihilator Ann(7) of I is equal to J and vice versa. In fact, we have the following result:

2.3.1 Lemma Let I,J be ideals of R. Denote by I’ and J’ the annihilators of I and

J, respectively. Then

LI'L’J = LJI'Il.

Proof: This follows from the very definitions of the objects involved. a
One subset of M stands out, namely the one comprising only free submodules of V.
Denote by F the set of all free submodules of V. We record a few properties of members

of these classes.

2.3.2 Lemma  Let L € M. Then for any g € Sp* we have
() gz—ze€ LforalzeV.
(b) (z,9y —y) =(y,9z —z) forall z,y e V.

Proof: The argument given in [Died8], pages 7-8, goes through verbatim. a

2.3.3 Lemma A submodule L of V is free if and only if it is complemented.

Proof: It is a standard result that every projective module over a local ring is free. Given
a basis {e1,...,e} of V and {fi,...,fr} of L € F, write fi = X jciconTiei- One of
the r; is a unit, for otherwise m/~1f; = 0. There exists thus a basis {fi,e5 ..., 5.}
of V. Suppose we have found a basis {fi,..., f. €l ;... €5,} of V and write fiy; =
2icice Sifi + Et+15i_<_2n v:e?. If no v; is a unit then m~1fiy; € m/~1fi + ..+ m'71f,
contradicting the linear independence of the f;. The above process can thus be continued,

yielding a basis {f1,..., fr, e” ), ..., €4} of V. a

2.3.4 Lemma  (a) Every L € M N F has rank n.
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(b) Given L € M N F there exists a hyperbolic pair (w, z) such that w € L, and any
such pair belongs to some symplectic basis of V' that contains a basis of L.

(c) Sp acts transitively on M N F and also on the set of all pairs (Lo, L;) that belong
to M NF and satisfy Lo@ Ly =V.

Proof:

(a) If L € MNF has rank r then L = L' is the preimage of L® under the isomorphism
(2.2), and has therefore rank 2n — r. The invariance of rank forces r = n.

(b) Let {ey, ..., en} be a basis of L. Extend it to a basis {ey, ..., én, €nt1,..., €2n} of V as
in Lemma 2.3.3 and set w = e;. Then Lemma 2.2.2 ensures the existence of a hyperbolic
pair (w,z). Define f;, ¢ # 1,n+ 1, Up, U and (, )y as in the proof of Lemma 2.2.2.
Then the basis {f2, ..., fn, fn+2;s ---; fan} of U contains the basis {fa,..., fu} of UN L. By
recurrence, there exists a symplectic basis of U that contains a basis of U N L. Adjoining
(w, ) to this basis we obtain the desired result.

(c) The first assertion follows from (b); for the second, start with bases {ey,...,en} of

Lo and {eni1,...,€2,} of Ly and proceed as in the proof of (b), mutatis mutandis. a
2.3.5 Proposition (Spar,Spn) acts transitively on P.

Proof: Let z € P. Then either (M, z) = R or (IV, z) = R; say (w, z) = 1 for some w € M.
Then Lemma 2.3.4 ensures the existence of g € Sp, satisfying gu; = =. O
2.3.6 Proposition (Spar:Spy) = Sp.

Proof: Sp,s contains all transvections p,,,, 7 € R. Given a transvection p, s, such that
z € P, Corollary 2.3.5 ensures the existence of g € (Sp,s, Spyy) such that gu; = z. Hence
Prz = 9Pru, 9 " € (Spar, Spn)- The result now follows from Proposition 2.2.6. ]

The generating set Sp™ U Spar,n U Sp" is still too big to be any practical use. A first

simplification can be obtained as follows. Let
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Then

9M.N B(S) = C(-S) (2.10)
and
9y.¥ D(A) = D((A™1)). (2.11)

We deduce that

IMN Sprr = Spys

whence

2.3.7 Corollary  Sp is generated by Sp™ U Spar,n U {gs,n}-

A slight variation of Corollary 2.3.7 can be obtained as follows. Given r € R define

the elements g™ (r) and gV (r), respectively belonging to SpM and Sp?, by
1|r ‘ 10
gM(r) = , g = :
0|1 r 1

g = g™ (=1)g"V (1)gM(-1), (2.12)

Then

whence

2.3.8 Corollary  Sp is generated by Sp™ U Sparn U {gV(1)}.

It is on the generating sets given in Corollaries 2.3.7 and 2.3.8 that the Weil represen-
tation will be defined. The next, and last, generating set can be used in conjunction with
Theorem 5.6.1 to produce concrete examples of Weil representations.

Denote by E*/ the n X n matrix having a 1 in the (i, j)-entry and 0 everywhere else.

Then
pru; = B(rE¥), 1<i<n (2.13)
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and

Prui+u; — Prui — Pru, = B(T'(Eij + Eji)), 1 S 1 # ] <mn,

whence

2.3.9 Lemma  Sp™ is generated by B(rE¥) and B(r(E" +E*)), when r runs through
Rand1<i#j7<n.

Observe also that

2.3.10 Lemma  (a) SLg(R) is generated by elementary matrices.
(b) GLq(R)' = SLa(R).
(c) GL4(R) = SL4(R) x {diag(k,1,...,1) |k € R*}.

Proof: Reason as in the field case, mutatis mutandis. O

We can finally state
2.3.11 Proposition Sp is generated by
B(rE%)1<i<a, B(r(EY + E¥)) 1<iticny D(1+TE7)1<icicn, GMN

when r runs through R.

Proof: Denote temporarily by G the subgroup generated by the alluded matrices. In
view of Lemma 2.3.9 and (2.10), G contains Sp™ and SpN. On the other hand, due to
Lemma 2.3.10(a) and (2.11) G contains {D(A4) |detA = 1}. However, in light of (2.10)
and Proposition 2.2.5 B(rE1) and gas,n suffice to generate {D(diag(k, 1,...,1)) |k € R™}.
Thus Lemma 2.3.10(c) ensures that G contains also Spy; y, and must therefore be equal

to Sp. O

2.4 The derived subgroup

Assume here that R is local.
2.4.1 Proposition Sp,n (R) is perfect if ¢ > 3.
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Proof: In view Proposition 2.2.6 it suffices to show that every p, . is in Sp’ when z € P.
Since R/m has more than three elements there exists a k € R* such that k2 — 1 is also
a unit. Set s = (k2 — 1)~!r. Since z and kz are primitive Corollary 2.2.3 ensures the
existence of a g € Sp satisfying gz = kz. Now (2.3) and (2.4) yield gps-9~' = pg2 r,
whence (2.5) gives

(9, psz] = P(k2-1)s,z = Pr,z:

as required. O

2.4.2 Proposition Sps, (R) is perfect if n > 2.

Proof: There is no loss of generality in assuming that n = 2. Given r € R, let S, =

r|0
( ) € S2(R). In view of (2.9), (2.13) and Proposition 2.2.6 it suffices to find
0f0

A € GLy(R) and S € S2(R) such that A*SA - S =S§5,.

For this purpose, let S = and think of S as the matrix of a bilinear form B
10

on a free R-module with basis {w,z}. Then the matrix of B relative to {w + tz, z} will
2t 1 10

be ( ) ;that is, if A = ( ) is the matrix associated to the change of basis, then
10 t 1

1 0
A'SA - S = Sy, as required. a

2t 1
AtSA = ( ) . Since 2 is invertible in R we can choose ¢t so that 2¢ = r, whence

2.4.3 Proposition  If n =1 and ¢ = 3 then Sp(m) C Sp’ and [Sp : Sp'] = 3.

Proof: Denote by — the epimorphism Sp — Sp,, = Sp,(3) and by D and D the derived
groups of Sp and Sp, respectively. Since [Sp : D] = 8 we have [Sp : DSp(m)] = 3. It
remains to show that Sp(m) C D.

1 0
Given r € m, choose k£ € 1+m so that k2 = 1+4r; thatis, k2—1 = r. Set go = ( )

1 1
k10 10
and ¢ = . Thus any = [g1, go] belongs to D. The result now follows
0 % r 1
from Corollary 2.2.7. .
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2.4.4 Corollary Sp is imperfect if and only if » = 1 and ¢ = 3, in which case there are

precisely three group homomorphisms ; : Sp — F*, given by 7:(p1.4,) = G, 0<1<3.

Proof: The first assertion is consequence of Propositions 2.4.1, 2.4.2 and 2.4.3; for the
second inflate the corresponding homomorphisms from Sp,(3). d
2.5 The group of symplectic similitudes
Denote by GSp the group of symplectic similitudes

GSp = {g € GL(V) : 3k(g) € R" such that (gv, gv") = k(g) (v, ) for all v,v' € V}.

We record a few properties of GSp to be used in the sequel. The scalar k£(g) is uniquely

attached to g € GSp. Moreover, given g;, g, € GSp we have
k(g192) = k(g1)k(g2)- (2.14)

Given k € R™ define the elements gi € Sp and B € GSp by

k| O k|0
gk — ] —Br'c = .
0|k! 01

We easily see that, abusing our notation,

k(Br) =k (2.15)
and
GSp = Sp % ((Bk)ker*)- (2.16)
Observe also the important relations
Bi2 k7! 1y = gy (2.17)
and
Brgpn = grgnr,v- (2.18)
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Note also that

Bkg € SpA«[,Nv (2'19)
det (Pxg)|n = det g|n (2.20)

for all g € Spyy v, and
BrgN(r) = g™ (k7'r) (2.21)

for all r € R.

2.6 Some Sp-orbits

Assume that R is local.

If G -+ Sym(A) is a permutation representation of a finite group G and z € A, we
shall denote by O, the G-orbit of A containing z, by O(A) the set of G-orbits of A and by
o(A) the cardinality of O(A). The relation of being in the same G-orbit will be denoted
by ~. We record a few facts pertaining to the set-up G =Spand A= V.

The determination of the Sp-orbits of V depends on the ideal structure of R. The

simplest case, albeit an important one, occurs when R is principal

2.6.1 Lemma  Suppose that R is principal. Then V' decomposes into /41 orbits under

the action of Sp, namely
VmV, mV\ m?V, ..., w1V \ n'V, m'v = {0}.

Proof: This is consequence of Corollary 2.2.3 and the fact that R is a local principal ring.
O

2.6.2 Lemma  (a) If I C J are ideals of R then the map
O(JVI\O(IV) 3 Oy =+ Oy rv € O(JV/IV) \ {0} (2.22)

is an epimorphism.
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(b)
o(JV/IV) < o(JV) — o(IV) + 1.

(c)
o(mV) =o(V) — 1.

Suppose that R contains a unique minimal ideal min amongst all non-zero ideals of R.

Then

(d)
o(minV) = 2.

(e)
o(IV/minV) = o(IV) — o(minV) + 1 (2.23)
for all non-zero ideals [ of R.

Proof:

(a) This follows immediately from the definition of the objects involved.

(b) Consequence of (a).

(c) Consequence of Corollary 2.2.3.

(d) View minV as a symplectic space over F, and then apply Corollary 2.2.3.

(e) A moment of reflexion reveals that (2.23) is equivalent to the following statements:
the map (2.22) is injective,
OwtminV = Oytminvy = Oy = O, for all v, w € IV \ minV,
w~v+u=w~uvforal v,weIV\minV, u € minV,
v+u~vioral velIV\minV, u € minV. (2.24)

We proceed to prove (2.24). The case I = min is vacuously true, while the case v = 0
is trivial. Denote by m a fixed generator of (the necessarily principal ideal) min. Then

0 # u € minV can be written in the form u = mgz for some z € P. Extend ¢; =z to a

22



symplectic basis {ey, ..., e2,} of V by means of Lemma 2.2.2 and write v = rye;+...+T2n€2n-

Three case may arise:

Case A. rp41 # 0. Since m € min C (rp41) we have m = tr,y; for some t € R. Then
Pt,el(v) =v+ t(ela U)el =v+irpp1€1 =v+u,

whence v ~ v+ u.

Case B. r,y; =0 and r; € '\ min. Since r; does not belong to the annihilator min of

m we can choose ¢ € m such that ri£ # 0. Then
Ptiensy (V) = v+ t(ent1,V)eny1 = v — Titeny = w (2.25)
and
Ptiens: (¥) = u+t{enyy, U)eny1 = 4 + tm(enqr, €1)enyr = U. (2.26)
Making use of (2.25) and (2.26) in conjunction with Case A applied to w we discover that
v~w~wtu~v+tu.

Case C. rpy; =0, ry € min and r; € I \ min for some 7 # 1,n + 1. Again, we choose
t € m so that r;t # 0. Without loss of generality assume that ¢ > n. Then
Ptensitein (V) =0+ t(en+1 + €i—n, U)(€nt1 + €izn)
= v +t(ein, U) (Ent1 + €i-n)
=v+iriegy) +iriei_p, = w

and

Ptepri+ei—n (U) =u+ t(€n+1 + ei—n, m€1>(€n+1 + ei—n) = u.

As above, this implies that

v~w~wt U~V U
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2.7 Passage from the local to the general case

Most of the material developed in the previous sections goes through in the general case
with no or obvious modifications. This will be used implicitly in what follows. We proceed

to explain this phenomenon.

Given an ideal I of R we shall adopt the following notational conventions:
Ry=R/I, Vi=V/IV, rr=r+IR, vi=v+1IV, (vr,wrr=(v,w),

Spr =Sp(Rn, Vi, {, Y1)y Hr={(Rn,Vy(,)1), hr=(rr,vr) and gror = (g9v)1,
forall r€ R, v,w€ V and g € Sp.
If the ideal I is clear from the context we shall write

R=R;, V=V etc. (2.27)

The symplectic space (V,(, )) over a general ring R = R; X ... X R can be studied by
transporting properties from the corresponding spaces associated to its local components
Ri. Set I; = [[;,; R; and produce symplectic bases of (V7,,( , ),), 1 <5 £t as
explained in Lemma 2.2.2. We then obtain a uniquely determined symplectic basis of
(V.(, )), much like in the Chinese remainder theorem. Thus, every symplectic space has
a symplectic basis.

Similarly, the study of symplectic groups over R = R; X ... X R can be reduced to the

local case. More precisely, we have
2.7.1 Proposition The natural map
Sp2n(R) 3 g+ (91, “'1glt) € Span(R1) X ... X Sp?n(Rt) (2.28)

is a group isomorphism.

Proof: Since prz = prz, Proposition 2.2.6 shows that (2.28) must be an epimorphism. Its

kernel is, by definition, N;<;<iSp(;) = (1). g
2.7.2 Corollary  Sp,,,(R) is generated by (prz)rerzev-
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2.7.3 Corollary Let I be an ideal of R. Then the natural map Sp> g~ g€ Sp is
an epimorphism with kernel Sp(7).
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Chapter 3

Technical Results

3.1 A generalized Legendre symbol

A system to detect the Number of Sign Changes, or NSC-system, is a pair (G, E), where
E'is a set being acted upon by the groups G and {£1} in such a way that these actions
commute and —1 does not have any fixed points in E. A moiety of E is then a subset [
of E that contains precisely one element out of every pair {z, —z} of elements of E; here
—z = (—1)z. Given k € G, let I, = {i € I|ki € —I} and define the map u(G, E) by
means of

G 3k — (-1 ¢ {£1}.

3.1.1 Lemma = The map (G, E) is a group homomorphism independent of the choice
of I.

Proof:

Independence. Let I and J be moieties of E. We shall show that the maps corre-
sponding to I and J are equal if I and J differ in precisely one pair {¢,—}; here i € T
and —¢ € J. The result then follows by recurrence. Let k£ € G. Several cases arise:

e ki =1i. Then I} = Ji.

® kit = —i. Then I} \ {i} = Je \ {—1} and 7 € I, —i € J, whence [I}| = [Jg|-

® ki # +i. Then k™ # +1 and I \ {¢, —k~1i} = J \ {—¢, k" 14}.
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Suppose that ¢ € I. Then —i ¢ J because ki & J. If —k~'i € I then 7, -k~ € I}
but —i, k=1 ¢ Ji because k~'i ¢ J, whence [I| = [Je| + 2. If —k~1¢ ¢ I then k™1 € Ji,
whence |I| = |Jk|-

Suppose finally that ¢ € Ir. Then |[Ix| = [Ji| if =k~ € I and |Ji| = |[[e] + 2 if
—k~1i ¢ I, as above. Thus (—1)!%! = (=1)Mxl, as claimed.

Homomorphism. Consider the polynomial ring T = Z[(X,).ecg]- Given k € G consider
the automorphism of T given by X, ~— Xi,. This gives a group homomorphism from G
into Aut(T), and we denote the action of k € G on P € T by ¥P. Let I be a moiety of E

and P = J[;c;(X;— X_;) € T. Then kP = u(G, E)(k)P, whence

w(G, E)(kK) = u(G, E)(k)u(G, E) (£). (3.1)

O

3.1.2 Question @ What is (G, E) ?

As a first example, let Q be a finite set and E = {(z,y)|z,y € Q and = # y}. Let
G = Sym(Q) and {£1} act on E by means of k(z,y) = (kz, ky) and —1(z,y) = (¥, T)-
Then p(G, E) is the sign homomorphism.

Observe that if Gg is contained in the kernel of the given permutation representation
G — Sym(E) then u(G/Go, E)(k) = p(G, E)(k), since I = It for all k € G and corre-
sponding k € G/Gy. It can thus be assumed that the action of G on E is faithful and, a
fortiori, that G itself is finite.

Also, if Ey, ..., E4 are mutually disjoint and exhaustive subsets of E which are stable
under G and —1 then

w(G E)k)= ] wG,Ejk) (3-2)

1<5<d

for all £ € G. One could then assume that G acts transitively on E.

We shall find it necessary to answer Question 3.1.2 in the following context. Suppose
that T is a finite ring with 1 such that 2 =14 1 is invertible. Let A be a T-module and
E a T~-stable subset of A. Then (T, E \ {0}) is an NSC-system relative to the action of
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—1 € T=. If A =T affords the left regular representation we shall write x(7"™) to mean
u(T=, T\ {0}).

We are particularly interested in p(GL(A), A\{0}), when A is free with basis {ey, ..., €q}
over R, and p(R*), henceforth denoted by u. The former problem can easily be reduced
to the latter, which in turn can be reduced to the local case, a complete answer for which
is given in Theorem 3.1.4 below. The reason for our interest is that g(GL(A4), A\ {0}) is
inevitably involved in the determination of the Weil representation of Sp,,(R).

Identify GL(A) with GLg(R) by means of the given basis. In order to determine
u(GL(A), A\ {0}) it suffices to find its action on each A(k) = diag(k,1,...,1), kK € R~
(Lemma 2.3.10). Given a moiety I of R\ {0} define a moiety U = U(I) of A\ {0} by
letting U; = {ZISJ'Si riej|rj € R,r; € It and U = Uj<i<nU;. Then

u€E Uy & Ak)ue —U e u=re
for a unique r € Ix. Thus p(GL(A4), A\ {0})(A(k)) = p(k) = p(det A(k)), whence
1(GL(4), A\ {0})(g) = p(det g) (3.3)
for all ¢ € GL(A). This takes care of the first reduction.
3.1.3 Lemma  Suppose that R = R; X ... X Ry, and write y; = u(R7). Then
gk, ooy k) = pa (k1) pe(ke)

for all units (ky,...,k) € R

Proof: By recurrence, it suffices to prove the statement when ¢t = 2. Let I; be a moiety
of R; \ {0}, « = 1,2. Consider the mutually disjoint and exhaustive R*-stable subsets
Ey = R; \ {0} and E; = R; x (R \ {0}) of R\ {0}, with moieties I; and R; X I,
respectively. Then (3.2) gives u(ky, k2) = u(R, E1)(k1, k2)u(R, E3) (k1, k2). Since |R;f is
odd, we have p(R, E;)(ky, k2) = p:(k;), 1 = 1, 2, as desired. O

This takes care of the second reduction.
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3.1.4 Theorem If Ris local then u = (é)da. In other words,

trivial if dp is even
p= (3-4)

(%) if dr is odd.
Proof: By induction on |R|. If R = Fj the result was proved by Gauss ([Rib72], page 52).
This covers the base case. Suppose that R is not a field and the result to be true for all

rings of smaller size than R. Let U be a minimal ideal of R, which is a one-dimensional

vector space over Fy. In view of (3.1) and the truth of (3.4) in the field case we have

W(R U\ {0}) (k) = (-’;—) _ (-g) , (3.5)

where k£ € F, is the canonical image of k € R*. Let B = R/U and let P : R — R be the
canonical projection. Given a moiety J of R\ {0} let J = P~1(J). Then J is a moiety of
E = Ju—J, which is an R™-stable set that contains all elements of R not belonging to U.

Given k € R™, set k = P(k). Then
teJieo kte-Jokte -JTeotelr

Thus |[Ji| = |U|[Jz|, whence

w(B", E) (k) = (%)dﬁ= (%) " (3.6)

by inductive hypothesis and Lemma 2.2.1. Note that dgp = dg+ 1.
Since E and U \ {0} are R*-stable disjoint subsets whose union is equal to R\ {0},
(3.2), (3.5) and (3.6) give

(k) = (B, YR, U 008 = () () T (%) "

3.2 Quadratic sums

A complex linear character of Rt (or an additive linear character of R) is a group homo-
morphism A : Rt — C~. Since ¢r = 0 for all » € R*, the image of A lies in F. We shall

say that A is primitive if its kernel does not contain any non-zero ideals of R.
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To any linear character A, whether primitive or not, we can associate a quadratic sum

> () =D Ar?).

reR

The aim of this section is to determine ) (A) as explicitly as possible. One reason to
do this is that these quadratic sums are unavoidably involved in the determination of the
Weil representations. An alternative approach will be taken in Section 5.7.

A closely related concept is that of a Gauss sum Y (x, A), where x is a multiplicative
linear character of R; that is, a group homomorphism x : R~ — C~. The corresponding
Gauss sum is then defined by

D 06N =D x(R)AK).
kER*
The Gauss sums Y_(x, A) are completely described in [Lam53]. The computation of both
>.(A) and 3°(x, A) can be reduced first to the case that R is local and then to the case
when A and y are both primitive. To say that x is primitive means that its kernel does
not contain any subgroup of the form 1+ 7, where [ is an ideal of .

[t is easy to see that in the field case R = F; one has

S eA) =S, (3.7)

whenever A is not trivial (and hence primitive) and x is the Legendre symbol (3) It is
false however, in general, that given any primitive A there exists a x such that (3.7) holds
(e.g. R =12Z/9Z). What it is true is that the values Y (x,A) and >_(A) all lie in the same
circumference of radius \/W, for any primitive A and x.

We proceed to establish the aforementioned reductive steps in the computation of
2_(A). Denote by A; be the additive linear character of the local component R; obtained
by restricting A to R;. We then have
3.2.1 Lemma

=D (An) D> (N)
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Proof: This follows from the very definitions of the objects involved. a

Assume henceforth that R is a local ring. Consider next the largest ideal I = I
contained in the kernel of A; such ideal exists because the sum of finitely many ideals
contained in Ker A is also contained in Ker A. Adopt the notation of (2.27) for I = I\. We

can define a primitive linear character Xof B as follows:
A(F) = A(r). (3.8)
Then Y (A\) and 33(}) are related by

3.2.2 Lemma > (A) =]I| e

Proof:
SS= S ST+ = D Ar)D_A@2rs+5)
reT(R/I) s€l reT(R/D) sel
= S A =11>3.
reT(R/I)

a
This takes care of the promised reductions. We shall henceforth assume that A is a
primitive linear character of R*. This assumption should not be taken lightly, since it
is definitely false that every local ring R possesses a primitive linear character. In other
words, the primitivity of A forces R to belong to a class of rings strictly smaller than the
universe of all local rings. We proceed to determine this class.
We shall say that R is irreducible if (0) cannot be written as the intersection of non-
zero ideals; that is, if R possesses a unique minimal ideal min amongst all non-zero ideals

of R. An ideal I will be said to be irreducible if R/I is an irreducible ring.
3.2.3 Proposition R possesses a primitive additive linear character if and only if R
is irreducible.

Proof:
Sufficiency: If R = Fy is a field then any non-trivial linear character of R* is primitive.

Otherwise the number of non-primitive linear characters of Rt is equal to the number
p q
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| R/min| of linear characters of (R/min)*. Thus |R| — |R/min| > 0 linear characters of R*
are primitive.

Necessity: If R is not a field, let J and J be different minimal ideals of R, neither of
which is equal to (0) or R. Then m/ = mJ = (0) and K = I & J is a vector space of
dimension two over F,. A proper subset L of K is an ideal of R if and only if L is an
Fy-line (through the origin).

Let A be a primitive linear character of R*. Since K is an elementary abelian p-group,
ImA C C* must be isomorphic to C,. It follows that Ker AN K is a hyperplane of K,
viewed as a vector space over Fp.

Denote by PK the set of all Fi-lines in K and by HK the set of all Fp-hyperplanes of
K. Observe that |PK| = ¢+ 1 and [HK| = £=L. Given any L € PK denote by HK;,
the set of all Fp-hyperplanes of K containing L. The cardinality of HKf is equal to the
number of Fy-lines in a vector space of dimension one over fy, that is, g:—i. Observe that
the union Upepgx HK 1 is disjoint, since the sum of any two Fj-lines in K equals K. Thus
|Ureprx HKL| = 952_:11- = |HK]|, thereby proving that every F,-hyperplane of K, and in
particular Ker AN K, contains an F,-line of K. This contradicts the primitivity of A. d

Thus, by supposing that A is primitive we are automatically assuming that R is irre-

ducible. The next result produces all primitive additive linear characters of E.

3.2.4 Lemma  Denote by R* the group of all linear characters of Rt. Then the map
Rt s3r— \r]e R+, where A[r](7") = A(rr’), is a group isomorphism and all the primitive

linear characters of Rt are of the form A[k], k € R™.

Proof: The first assertion is consequence of the primitivity of A and the fact that |[R*| =
|R*| is finite. Given r € R, either Ann(r) is zero or not depending on whether r is a unit

or not, which proves the second assertion. a

3.2.5 Definition We shall say that A and A[k] are equivalent if £k € R* is a square.

This breaks up the set of all primitive linear characters of Rt into two equivalence classes.

We resume our discussion about quadratic sums. The field case will not be treated
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since it is already known. In fact, if B = F; then

Sw=+/(F) (3.9)

and

Som= (%) Tw (3.10)

for all k € F;. Moreover, the sign in (3.9) can be determined ([Lan70}, chapter 4).
Suppose henceforth that R is not a field. We shall determine >_ () either by itself,
if dp is even, or in terms of the quadratic sum associated to a primitive linear character
X of Fq*’, if dp is odd. We proceed to construct the character X. As we shall see, the
equivalence class of X depends only on A and not on the actual way we define it.
Since min is one-dimensional over R/m, it is generated by any of its non-zero elements.

Fix one of them, say m , and define X by means of (3.8), as follows:

A= ’\/[I?L
that is,
A7) = A(rm). (3.11)

We record some basic properties related to this construction.

3.2.6 Lemma Llet k€ R~andset k=k+me F,. Then

(2
k] = A[&] (3.12)

(b)
S (k) = (5 ) (D (313)

Proof:

(a) This is clear.
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(b) In view of Lemma 3.2.2, Lemma 2.2.1(c), (3.10) and (a) we have
S (Akm]) = [m] S_(km)) = [m| S_(ED = [m] S_(XF)
k - k
= (2) I 2 = (5) Soum.

a
In order to make progress we need to record some subtle properties enjoyed by every
irreducible ring. If I, J are ideals of R we shall denote by (f : J) = {r € R|rJ C I} the

conductor of J into I. Then in an irreducible ring we have

(0):((0): 1)) =1 (3.14)
and

|&] = 1]|((0) : 1) (3.15)

A proof of (3.14) can be found in [ZS58], chapter IV, § 16. For a historical perspective see
[Kru68]. A ring-theoretical proof of (3.15) is given in [Lam53], page 159. An independent
character-theoretical proof of both (3.14) and (3.15) will be given in Section 4.1, as a
consequence of the very existence of the Schrédinger character.

The following observation is quite useful.

3.2.7 Lemma  If I, J are ideals of R and J = ((0) : I) then ([ : J) = ((0) : J?).

Proof:
ze(l:N)ezJClez/i=(0)ezc ((0): 7).

O

Another property of irreducible rings proved in [ZS58], chapter IV, § 16 is the following;:

3.2.8 Proposition  An ideal I of an irreducible ring R is irreducible if and only if
J = ((0) : I) is a principal ideal.

Proof: Suppose that I is irreducible and let X be a primitive linear character of R/I.

Inflate A to a linear character of R. According to Lemma 3.2.4 this inflated character
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must be equal to A[r] for some r € R. The statement that X is primitive is equivalent to
((0) : (r)) = I, whence (3.14) gives J = (r), as claimed.

Conversely, if J = (r) then ((0) : (r)) = I and therefore X(z + I} = A(rz) defines a
primitive linear character of R/I, as required. O

A pair of ideals (I, J) such that I? = (0) and J = ((0) : I) will be referred to as an
A-pair. Thus I C J and ((0) : J) = I for any A-pair ([, J). Should R be principal then
its A-pairs are precisely (m/~%, m), 0 < ¢ < {I/2].

The set of all A-pairs can be ordered by declaring (7, J) < (I, J,) whenever either of

the following equivalent conditions holds:
Ich, L1cJd, ICLCNLiCJ

The only minimal A-pair is the trivial one, namely (0, R). The maximal ones need not be
unique.

We shall say that an A-pair (/,J) is a B-pair if (/ : J) is equal to R or m. We
can reformulate the definition of B-pair as follows: it is an A-pair (/,J) such that either
J? = (0), in which case I = J, or else J?> = min. This follows immediately from Lemma
3.2.7 and the fact that min = ((0) : m). Should R be principal then its only B-pair is
(ml/2] mlis2ly,

Every irreducible ring has a B-pair. In fact, we have the following result due to

Lamprecht ([Lam53], page 162).

3.2.9 Proposition Every maximal A-pair (/,J) in an irreducible ring is a B-pair.

Proof: In view of the above discussion we need to prove that either J2 = (0) or J? = min

holds. Suppose that J2 # (0). If 22 € min for all z € J then
22312}2 = (Zl +z2)2 - .’L'% - 23% € min

for all z,,z5 € J, whence J2 = min. We proceed to show that no z € J satisfies 2 € min.
Indeed, if such z exists then there must also exist a y € m such that 0 # yz2min. Since

y € m and y2? € min we have
0=y(yz?) = (yz)*. (3.16)
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In light of (3.16) and the fact that zy belongs to J we have

(I + (z))* = (0),

whence zy € I by the maximality of I. Since z € J we deduce that z?y = 0, against the
choice of y. ' a

Given a B-pair (1, J), let dr,;y = dimg, J/I. If (I1,J1) is an A-pair which is preceded a
B-pair (1, J) then (I, J1) is itself a B-pair and d; y = dy, s, if and only if ({,J) = (11, J1)-
This follows from I C I; C J; C J. In general, neither (I,J) = (I1,J1) nor dr,y = dp, 4,

need to hold. However, we do have

3.2.10 Lemma The parity of dr,s is an invariant of the ring. In other words, if (1, J)

and ([,Jy) are B-pairs, then dr y = dy,,;, mod 2

Proof: We have
¢*® = |R| = [J||I| = ¢**/|I]?

due to (3.15). Now apply Lemma 2.2.1(a). a

Lemma 3.2.10 establishes a clear dichotomy amongst irreducible rings; as we shall
see, > (A) is subtle enough to distinguish between these classes. Moreover, there are two
essentially different cases that arise when dp is even, namely whether R has an ideal which
is its own annihilator or not, and these can also be detected by Y _(A). Indeed, each B-pair
comes equipped with a natural structure of orthogonal space over Fy, and the type of
orthogonal space thus arising is, in a sense, independent of the actual choice of the B-pair.
The value of ) (A) ultimately depends on the type of orthogonal space attached to the
maximal B-pairs of R.

Our presentation, thus, requires a basic knowledge of orthogonal spaces over finite
fields of odd characteristic. We introduce some elementary definitions and refer the reader
to [Jac85], [Wan93] for details. An orthogonal space over F, is a pair (Q, (,)) where Q is
a finite dimensional vector space over Fy and (,) is 2 non-degenerate symmetric bilinear
form on Q. For convenience, we shall allow d = dimp,Q to be zero. A subspace Qg of Q

is totally isotropic if (Qg, Qo) = 0. The Witt index v of the space (@, (,)) is the common
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dimension of all maximal totally isotropic subspace. There are precisely four types of
orthogonal spaces, if we disregard the dimension of the space and only take into account

its parity. They can be defined as follows:

3.2.11 Proposition There is a basis {z,, ..., z4} of @ where the matrix of (,) is of

one, and only one, of the following four types:

0|1,
type 0 =
1,0

or
01,010
1,000 —b
type 2 = , —}=-~1
0j(0|1|0 q
0|0 (0]|b
if d is even, and
/01, ]0
type 1 = 1,010
\o]o|1
or
01,40
b
typed=1 1,100 |, (5) =-1
0{0|bd

if d is odd. The four matrices defined above are not cogredient. Here 1, denotes the v x v

identity matrix.

Proof: See [Wan93], chapter 6. g
We shall say that (Q, (,)) is of type 0, 1, 2 or 3 depending on whether @Q affords a basis

where (,) looks like a matrix of one these types.

3.2.12 Proposition  Let (I,J) be any B-pair and d = dr,s. Then
J/IxJ/I >3 (Z,7)— zy € min= Fym

defines an orthogonal space (J/I,(,)) of dimension d over Fj.
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Proof: Since IJ = II = (0), (,) is a well-defined symmetric bilinear form. It is non-

degenerate because if T # 0 then z ¢ I = Ann(J) and there exists y € J such that
(z,9) = zy #0. -

3.2.13 Lemma  Let (/,J) be a B-pair. Set d = d s and let {zy,...,z4} be a basis of
J/I over F,;. Then
= DD A(ezy + .. + a4z4)?). (3.17)
a1,-raa€Fy
Proof:
= 3 DME+9N= DAY D A@2rs). (3.18)
reT(R/I) s€I reT(R/1) sel
For a fixed » € R, the map I 3 s — A(2rs) € F~ is a linear character of /. Since A is

primitive, this is the trivial character if and only if » € Ann(J) = J. Thus

0 ifr¢gJd

Z A(2rs) =

sel |I| otherwise

Therefore (3.18) can be rewritten as
e > A =11 Y. Maz+ ...+ aiza)?),
reT(J/I) a1 yeraa€Fy
as claimed. o
To avoid unnecessary repetitions we shall say that R is homogeneous if it possesses
an ideal which is its own annihilator. The theory of Weil representations of Sp,,(R) for

homogeneous rings R is substantially simpler than in the general case.

3.2.14 Theorem  Let R be an irreducible ring and A a primitive linear character of

R*. Then

vV IR| if dr is even and R is homogeneous
Z(/\) =193 —-VIR| if dp is even but R is not homogeneous

VIE[/¢SS(X)  if dg is odd. (3.19)
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If dp is odd, we define X as in (3.11) by letting m = z2 for any z € J\ I and any maximal
B-pair (/,J) of R. This is a canonical choice that leads to the same equivalence class of
A, regardless of the choices of z and ([, J).

The following relations are satisfied:
Y () =+Vu(-1IR] (3.20)

and

S (A = uk) Y (A (3.21)

for all units k£ € R.

If (I,J) is any maximal B-pair then the dimension d = dy ; is an invariant of R. In

fact:

0 if dr is even and R is homogeneous
d= 42 ifdpgis even but R is not homogeneous

1 ifdp is odd.

Moreover, the isomorphism type of the orthogonal space (J/I,(,)) is also an invariant of

the ring. In fact, there is a basis of J/I over Fy where (,) looks like

.
0] if dp is even and R is homogeneous
10
4 : (—"qé) = -1 if dp is even but R is not homogeneous
0 b (3.22)
(1) if dp is odd.

If dp is odd we set m = z? for any z € J \ I. This is a canonical choice that leads to the

same isomorphism class of orthogonal space, regardless of the choices of z and (7, J).

Proof: Given any B-pair (lo,Jo), construct the orthogonal space (Jo/Io, (,)) given in
Proposition 3.2.12. We shall consider the natural bijection between the set of ideals I
that satisfy Iy C I C Jo and the set of subspaces of Jy/Ig to be an identification. Under
this identification totally isotropic subspaces correspond to ideals of square (0) and the

relation Ann(J) = J corresponds to I+ = J.
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Let {y1,...,y:} be a basis of Jo/Iy where (,) looks like one of the matrices of the
aforementioned types. Let ] = Foy1 @ ...® F,y, and J = I'*. Then
I if (,) is of type 0
ICJ=(T+Fy1®Fyya if (,) is of type 2
I+ Foy: if (,) is of type 1

and J+ = I, which is a maximal totally isotropic subspace of Jo/ly. Set d = dj ;. Three
cases arise:

Case 0. d =0. Then Lemma 3.2.13 and (3.15) give

> (N =I= VIRl

Case 1. d = 1. Then J/I has a basis {z}, where 22 # 0, and Lemma 3.2.13 gives

SN =11 MaP?) = 11D ().

a€F,
But (3.15) shows that
|R| = |J||I] = q|I/?,

whence

> () =ViRl/¢d>_ ().

10
Case 2. d = 2. Then J/I has a basis {z;, z,} where (, ) looks like ( ) . (;qé) = —1.
0 b

Now (3.17) becomes

=111 > Aalm+adbm)=11> %) > (Ap])

ay,a2€F,
() zer-n() ()
=11 (%) e =il =~VIE]

since |R| = [J||I| = ¢?|I|?, due to (3.15).
Since the value of )~ () is independent of the choice of maximal B-pair, Lemma 3.2.10

and the above reasoning show that the expressions appearing in (3.19) are exhaustive,
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mutually exclusive and do not depend on the choice of (1.J ). Thus, neither do any of the

alluded objects attached to (Z,J). The independence of (3.22) and A from z is clear.
Applying Theorem 3.1.4, Lemma 2.2.1(c), (3.10) and (3.12) to (3.19) we see that (3.20)

and (3.21) are correct. a

3.2.15 Example  Let R = F,[s,t], subject to the relations t* = bs?, st =0, sS=1t=
0; here b belongs to a transversal of Fy relative to (F7)2.

Then R = F,® Fys® Fyt ® Fys? and m = (s.t), min = (s?) = m?. Set [ = min, m = s?
and J = m. Then (I, J) is a B-pair. Let A be any primitive linear character of Rt (just
set A(m) = some primitive p-th root of unity). On the basis {s,t} of J/I over Fy, (,)
looks like (1 0) . Thus (,) is of type 0 i (_?b-) - 1.

0 b 2 otherwise

If ('Tb) = 1, say a® = —b, then (s +a~'t) is its own annihilator and So(A) = \/[_Iﬂ,

whereas if (_Tb) = —1 then such ideal does not exists and 3 () = -V1Rl.

3.3 Projective versus Ordinary Representations

The goal of this section is to provide the tools needed to establish the existence of the
Weil representation. We develop our machinery in a slightly more general scenario that
captures the essential features encountered in the latter setting. Thus, we shall let G be
an arbitrary finite group and P : H — GL(X) a projective representation of @G over an
arbitrary field F. The aim is to construct, if possible, an ordinary representation W = Pc
of G by suitably choosing a correcting factor ¢: G — F~.

It is not hard to see that if X possesses P-invariant F-subspaces of coprime dimensions
then P can indeed be corrected to an ordinary representation. The problem is: where
should one look for these subspaces, if they exist at all? As shown below, subspaces natu-
rally associated to central elements of G are good candidates, provided certain relatively

mild conditions hold. We are ready to state:

3.3.1 Proposition Suppose that there exist P-invariant F-subspaces Xo, e X, of X
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whose dimensions dy, ..., d; satisfy
1 = sodg + ... + 5:d; (3.23)
for some integers so, ..., s;. Then the function ¢ : G — F~ defined by

c(g) = (det P(g)Ixo) ™% ..(det P(g) %) ™™ (3.24)

is a correcting factor for P. In other words, W(g) = P(g)c(g) defines an ordinary repre-

sentation of G over F.

Proof: Let f be the factor set corresponding to P. Then taking determinants in

P(g1)1x.P(92)|x. = P(g192)|x.f (g1, 92)

we obtain f% = §(1;), where v;(g) = det P(g)|x, and §(v:)(g1, 92) = vi(91)vi(g2)vi(9192) ™"
Thus the factor set of W = Pc is equal to

fé(e) = fs°d°+"'+s‘d‘5(l/o)-s°...5(14)_3’ = (fdog(yo)-1)50_“(fd:5(yt)—1)s: -1.
a

3.3.2 Proposition Let z be a central element of G of order m. Suppose either that
trP(z) # 0 or that G contains no non-trivial cyclic quotient group of order dividing m.

Then
P(g)P(z) = P(z)P(g)

for all g € G.

Proof (due to R. Gow; see also [Sze98], Proposition 1): As P is a projective representation

and z is central, it is elementary to check that
P(g)P(2) = 7(9)P(2)P(9)
for all g, where 7(g) is a non-zero scalar. Thus
P(9)P(2)P(g)~" = 7(9)P(2)-
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Taking traces, we obtain
trP(z) = 7(g)trP(2)
and thus 7(g) = 1 for all g if trP’(z) # 0.

If tr P(z) = 0, we proceed as follows. Given g and A in G, we have

P(g)P(R) = f(g, h)P(gh),
where f is the factor set associated with P. Now
T(gh)P(z) = P(gh)P(2)P(gh) ™"
= f(g, ) 'B(9)P(h)P(2) f (9, R)P(R)T'P(g) "
= 7(g)7(h)P(2).
Thus 7 : G = F~ is a homomorphism.
Since P is a projective representation and z has order m, it follows easily that
PzY"=al
for some a € F. Thus taking m-th powers,
(B(9)P(2)P(9)™")" = P(9)P(2)"P(g)~"
=al
=1(g)"P(z)™

=7(g)"al.

Thus 7(g)™ = 1 and it follows that 7 is a homomorphism from G into the group of m-th

roots of unity in F. In particular,

G/Ker r & 7(Q) = a subgroup of a cyclic group of order m

and we see that r(g) = 1 for all g if G contains no non-trivial cyclic quotient group of

order dividing m.

3.3.3 Note  The following example shows that the relevant hypothesis cannot be dis-

posed of altogether. Let H = (i, j|i* = 1,72 = i?,jij~' = i™') and let G be the subgroup
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of Aut(H) generated by {a, z}, where a is conjugation by ¢j and z is the automorphism
that swaps ¢ and j. Then G is the Klein group of four elements and z is central in G. Let

S be the two-dimensional complex representation of H defined by

i_01 ,_\/:Io
“\-1 0 S e

This is G-invariant and can be extended to H x (z) in precisely two ways:

g L (VT
R U R y

with characters +¢. However, tr(z) = 0 and (£¢)® = F¢. Thus, none of ¢ is G-invariant,

and therefore S cannot be extended to an ordinary representation of H x G.

3.4 Hilbert’s Theorem 90 for matrices

The results contained in this section are all known. They are required in the computation
of the Schur index of the Weil representation and are included for the sake of completeness.
Part of the presentation is extracted from (unpublished) notes written by Mazi Shirvani.

Let K C F be a finite separable field extension and let & be a set of n X n matrices
with coefficients in F. We are interested in the following:

When and how is & realizable over K? That is, under which conditions there exists
A € GLg4(F) such that ASA™! € M, (K) forall § € &7

We are mainly interested in the case when & = T(G) and T : G — GLy(F) is an
absolutely irreducible representation of a group G all whose character values are contained
in K

Note that there is no loss of generality in supposing that K C F is a finite Galois
extension with Galois group Gal, and we shall make this assumption. Accordingly, a

matrix A € GL4(F) realizes G over K if and only if
T(ASA™Y) = ASA™E,

that is
as = (UA)—IAS((GA)—IA)—I
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for all o € Gal and S € &. Thus if & is realizable over K, there exists L, = (FA)"tA e
GLg(F) such that

9§ = LySL;! (3.25)

forall S € & and ¢ € Gal.

In order to make progress we shall assume henceforth that & is equivalent to its Galois
conjugates; that is, there exist (Lo)oecat in GL4(F) such that (3.25) holds. Furthermore,
we shall assume that the centralizer of G in My4(F) is equal to F.1;. Under these hypothesis

the above discussion translates into

3.4.1 Proposition A € GL4(F) realizes G over K if and only if there exist (ac)oeGal
in I such that

(CA)'A=a,L, (3.26)
for all o € Gal.

Applying 7 € Gal to (3.25) and comparing the result with the corresponding expression

for 7o (this means apply o first, then 7) we deduce the existence of f(, o) € F~ satisfying
Lre = f(r,0) Lo L. (3.27)
The associative law of Gal implies that f € Z2(Gal, F*), that is
Tf(o,8) f(r,00) = f(r0,8) f(T,0)

and we see that f changes by a coboundary when L, is replaced by a scalar multiple. This
gives a uniquely determined element [f] € H?(Gal, F").

Suppose that A realizes S over K, so that Ly = a1 (°A)"1A. Substituting this into
(3.27) we get

f(r,0) ="aa;} o, - (3.28)

that is [f] = 1.
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3.4.2 Proposition A necessary condition for the realizability of & over K is that
(fl=1.

Suppose, conversely, that (3.28) holds. Then setting M, = a;L, we obtain
M.y =" MM,

which means that M € H(Gal,GL4(F)). But this set is trivial ([Ser79], Section X.1,
Proposition 3), which means that there exists A € GLy4(F) such that (“A)7'A = M, =

agLs.
3.4.3 Proposition A sufficient condition for the realizability of & over K is that
[fl=1
Given o € Gal denote by r the order of ¢ and by F” the fixed field of o. Observe that
S=L:'.9S-Ly=(La)™" - (“Lg)™ -8 -"Lo- Ly = ..
= (VLo T LoL,) 87 Lo 7 Lo

and therefore
a,(r—-l) o p
Ly---°LoLs = as (329)

is a non-zero scalar in F. Applying ¢ to (3.29) and noting that L, commutes with
olr=tp ...oL, (their product is a scalar) we see that a, actually belongs to F7.

If A realizes G over K then (3.26) gives
A=qay-"A-Lo=0a, -a, -‘2A-"L, Lo =..
= adaaa . .a(r-l) aU . A . a("—l) LU .. 'a’Lng.

Thus, (3.29) yields

. a(r—l) -1

-
Qg Qg *- e = Qg

whence

NF/E‘LT(QU) = a;l.
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3.4.4 Proposition A necessary condition for the realizability of & over K is the solv-

ability of the norm equations Ng/fo(z) = a;l, o € Gal

In order to analize the sufficiency of this condition we make the further assumption
that Gal is solvable. Accordingly, let 1 =Go 4G, 9 ... 4Gm = Gal be a subnormal
series for Gal, where Gi;1/G; is cyclic. Then F = FG DFS D ..D Fém = Kis a
descending chain of sub-extensions of F/K, where FG: /F9:+! is Galois with Galois group
Gi+1/Gi. Since G is realizable over K if and only if & is realizable over F&i for all ¢, there
is no harm, in theory, in assuming that F/K is cyclic with Galois group Gal = (o) of order
r.

Set L = L, and a = a,. Make the (valid) choice
Ly=°""L---°LL, 0<i<r.
According to this choice, we have

o 1 ifi+j<r
fle* o?) =

a otherwise

for all 0 < 4,7 < r. Suppose that Ng/k(a) = a~! for some a € K. Then, if we set

— Al alr=
By =ac--

and
oy = (By1) 7
for all 0 < i < r, we see that (3.28) holds for all elements of Gal.
3.4.5 Proposition If Gal is cyclic then a sufficient condition for the realizability of &

over K is the solvability of the norm equation Ng/x(z) = al.

As a corollary we obtain

3.4.6 Proposition Let K C F be a finite cyclic Galois extension with Galois group

(o) of order r. Let T : G — GLq4(F) be an absolutely irreducible matrix representation of
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an arbitrary group G, and let the character ¢ of T have values in K. Let L € GLq4(F) be

the unique -up to scaling- operator satisfying
LT(g)L™" =T (g)

for all g € G (such an L exists because “¢ = ¢). Then o™'[...°LL = a is a non-zero
scalar in K and T is realizable over K if and only if the norm equation NF/K(J:) =alis

solvable.

The name of this section derives from the ensuing result, whose proof is contained in

the preceding discussion.

3.4.7 Proposition Let K C F be a finite cyclic Galois extension with Galois group
(o) of order r. Then L € GL4(K) satisfies

ar—l

L---°LL=1y

if and only if
L=(4)7'A

for some 4 € GLy(K).
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Chapter 4

The Schrodinger and Weil

Representations

Denote by H the Heisenberg group associated to the symplectic space (V,(, )); that is
H=H(R,V,(,)) = Ha(R)={(r,v): € RveV}
with multiplication given by
(r,0) (', v") = (r + 7' + (v, V"), v + V).

Then
(ry v)—l = (—r, -v), (o) (r,v)= (r+ 2(w1 v)v v)

and

Z(H) = (R,0)=H'.
Note that GSp acts on H by means of
I(r,v) = (k(g)r, gv). (4.1)

Assume henceforth that R admits an additive primitive linear character A. In view
of Proposition 3.2.3 this is equivalent to saying that each local component of R is an

irreducible ring. Under this assumption there exists a unique irreducible character n of
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H whose restriction to Z(H) is a multiple of A. In view of the action (4.1) of Sp on
H, n must be Sp-invariant; a Weil representation of Sp is one that intertwines the Sp-
conjugates of a given S affording 7. We proceed to prove the existence of these truly

fascinating representations.

4.1 The existence of the Schrédinger Representation and its

consequences

4.1.1 Lemma Let E < G be finite groups and ¢, x absolutely irreducible characters
of E and G respectively. Suppose that x|g = d¢ for some positive integer d. Then x is

the only irreducible character of G lying over ¢ if and only if d? = [G : E].

Proof: = By Frobenius reciprocity and hypothesis indgqi =dx. Thus
d? = [ind$e, indGd] = (¢, resEind§d] = [¢, [G : E]¢] = [G : E],

since ¢ is G-invariant. < By Frobenius reciprocity x enters d times in indgqb. On the

other hand, since x|z = d¢é and d? = [G : E]
degdy = d*deg ¢ = degindZo,

whence indgé = dx. By Frobenius reciprocity no irreducible character of G other than x
lies over ¢. O
Given a submodule L of V denote by L the group of all complex linear characters of

L. If v € V denote by [, the element of V defined by
l,(v) = A2(v,w)), uveV.
4.1.2 Lemma If L is a submodule of V' then the map
Vov—allrel — (4.2)

is a group homomorphism with kernel LL.
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Proof: It is clear that (4.2) is a group homomorphism. Suppose that v belongs to its

kernel. Since L is a submodule and 2 is invertible in R the set
Ip ={(viu)|u€ L} = {2(v,u)|ue L}

is an ideal of R contained in the kernel of A. Given the primitivity of A we have I, 1 = (0)

and, a fortiori, v € L*. a

4.1.3 Corollary Let L be a totally isotropic submodule of V and p any extension of
A to (R, L). Then the inertia group of p in H is equal to (R, L.
Proof:
(r,v) € Stabg(p) & p") (s, u) = p(s,u), s€Ru€l
& p(s+2(v,u),u) =p(s,u), s€ R,uelL
& A2(v,w)) =1, uel
o velt.
a
In the sequel we shall denote by po the extension of A to (R, L) that is trivial on L.

The next fundamental result was proven in collaboration with Gerald Cliff and David A.

McNeilly.

4.1.4 Theorem Let A= (R,M) andsetn=mn\ = indﬁ"po. Then n is an absolutely
irreducible character of H of degree |R|™ whose restriction to Z(H) is equal to |R|™A.

- Proof: The inertia group of pp in H is precisely A, due to Corollary 4.1.3. By Clifford

theory 7 is absolutely irreducible and moreover
Nz = [H : AJA=[V : MM = |R|" .

a
We shall refer to 77, as the Schrodinger character of H associated to A, and any repre-
sentation S = S, affording it will be called the Schrédinger representation of H associated

to A. The Schrédinger module will be denoted by X.

51



The rest of this section is devoted to study the numerous consequences of Theorem
4.1.4. The first of these says that 7y is bound to A by a very strong relationship. Indeed,
the number of times that A appears in 7:|zz) is equal to the square root of [H : Z(H)],

hence Lemma 4.1.1 gives

4.1.5 Corollary ny is the unique irreducible character of H whose restriction to Z(H)

is a multiple of A.

Accordingly, there is great freedom in the way 7, can be constructed from A.

4.1.6 Corollary Let L be a totally isotropic submodule of V and p any extension of

Ato A= (R,L). Then indf p is a multiple of 7. It is equal to 7 if and only if LeM.
A n

Proof: The restriction of indf{p to Z(H) is a multiple of A and Corollary 4.1.5 applies.
This proves the first assertion. According to Corollary 4.1.3 indf{ p is irreducible if and
only if L € M, as required in the second assertion. a

The fact that so many different paths lead to the same object has strong consequences.

4.1.7 Corollary If L is a totally isotropic submodule of ¥ then the map (4.2) is an

epimorphism. Thus all extensions of A to A = (R, L) are H-conjugate to one another.
Proof: Let ¢ € L and define the extension p of A to A by means of
p(s,u) = A(s)d(u), s€R,uel.

By Corollary 4.1.6 n enters both ind% p and ind# pg. By Frobenius reciprocity both p and
po enter 7|4. But by Clifford theory all components of 7|4 are H-conjugate. Thus there
exists (r,v) € H such that p = pg'v); that is

A(s)b(w) = p(s, w) = p§* (5, 4) = pols + 2(v, 1), ) = A()A(2(v, v))
for all s € R, u € L. We conclude that
¢ =L,
as desired. |
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Denote by A the collection of all maximal abelian subgroups A of H. Note that any

such A must necessarily contain Z(H) and it is therefore normal in H. We easily see that
M>3L&(RL)=AcA
establishes a bijection between M and A.

4.1.8 Corollary  Let 4 = (R, L) € A. Then 7|4 is the sum of all extensions of A to A.

Proof: Since Stabgpe = 4, 7|4 is the sum of all H-conjugates of pg, with no repetitions.

In light of Corollary 4.1.7 every extension of ) to A is H-conjugate to po, as desired. O

4.1.9 Corollary Let L be a totally isotropic submodule of V. Then

ILIIL*] = V. (4.3)
Thus
|L||L° = V] (4.4)
and
Le M & |L*=|V|&|L|=|RI" (4.5)

Proof: In view of Lemma 4.1.2 and Corollary 4.1.7 we have
|LIILH = [ZIILH = V.

This implies (4.4) in virtue of the equality [L*| = |LO|. Likewise, (4.5) follows from (4.3)
and L C Lt. a

We are in a position to prove the following amazing result:

4.1.10 Theorem Let R be a finite commutative ring of odd characteristic. Then the
following conditions are equivalent:
(a) Each local component of R is irreducible.

(b) R possesses a primitive linear character.
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(c) Ann(Ann(I)) = I for any ideal I of R.

(d) {I||Ann(I)| = |R| for any ideal I of R.

(e) If V is free R-module of finite rank and L is a submodule of V then IL||L% = | V.
(f) If V is free R-module of finite rank and L is a submodule of V then o0(L% = L.

Here %(L°) denotes the set of zeros of L°.

Proof: (a)<>(b) Proposition 3.2.3. (b)=>(e),(f) Set Vo = V@ V and endow Vo with
a non-degenerate alternating form that makes V a maximal totally isotropic subspace.

Write Lq for L considered as a subspace of V. Corollary 4.1.9 applies, yielding
|Lol|Lg! = | Val.

But we easily see that

L3l = IL|I VI,

whence (e) follows. We can now obtain (f) as a formal consequence of (e). Indeed, applying
(e) to L? we get
ILOL%) = [V = [V].

Making use of the natural isomorphism V — V™™ we obtain
L@ = VI (4.6)

But L € 9(L?), hence (e) and (4.6) give (f). (e)=>(c) Let V be R. (f)=>(d) Let V be E.
(c)=>(a) We can safely assume that R is local and then take I to be any minimal ideal.

(d)=>(a) We can safely assume that R is local and then take / = m. U
4.2 The Weil Representation and its ordinary nature
4.2.1 Definition A representation W = W) : Sp — GL(X) satisfying

W(g)S(h)W(g)™" = S(h) , BNCR

for all g € Sp, h € H, will be referred to as a Weil representation of Sp associated to A.
Its character will be denoted by Q = Q..
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The aim of this section is to prove the existence of this wonderful representation. We
start by showing that ), is indeed Sp-invariant. More generally, we describe the behavior

of the Schrédinger character when subjected to the action of objects outside H.

4.2.2 Corollary  The Schrodinger characters of H are GSp-conjugates. In fact, for
any g € GSp we have

M3 = MAlk(g)]

Proof: Immediate consequence of Lemma 3.2.4 and Corollary 4.1.5. a
The next corollary was obtained in collaboration with Gerald CIiff and David A. Mc-
Neilly.

4.2.3 Corollary 7, is Sp-invariant.
This ensures the existence of a projective representation P of Sp satisfying
P(g)S(h)P(g)"'=S(°h), g€Sp,h€H. (4.8)

Finally, we show that the Schrddinger characters 9k}, k € (Z/cZ)* C R", form a

Galois-orbit. Indeed, consider the isomorphism
(Z/cZ)" 3 k — o(k) € Gal(F, Q]J,

where o (k) is the automorphism (c —* ¢*k. We can thus subject 7x to the action of o(k)

and apply Corollary 4.1.5 to obtain
4.2.4 Corollary  For any k € (Z/cZ)~ we have

c(*Inx = Nty = TAM-

We next produce a Schrédinger module Xp for each L € M and construct a map
Pr : Spy — GL(X) that satisfies (4.8) and is also a group homomorphism from the
subgroup Spy, of Sp that preserves L. This requires the use of new notation, to be used

extensively in what follows.
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The symbol 7" will be reserved to designate a transversal. We shall usually feel the need
to be quite specific about transversals; thus, if Vg is a submodule of V then by 7(V/Vo) we
shall mean a transversal of V relative to V5. We can always choose T(V/Vp) so that it is
—1l-invariant, and this will be the only type of transversal of V ever to be considered. Note
that 0 € T(V/Vp). By S(V/Vg) we shall understand a subset of 7(V/Vp)\ {0} that contains
precisely one element out of every pair {v, —v} of non-zero elements of 7(V/Vo); We shall
refer to S(V/Vy) as a moiety of T(V/Vp) \ {0}. Note that |S(V/Vo)| = (IT(V/Vo)l — 1)/2.

Given 4 = (R, L) € A, extend X to linear character p of A x Spy, as follows:

p((r,u)g)=A(r), r€R,ueclL,gé€Spg.

Let A x Sp; — GL(Y") be a one-dimensional representation affording p; that is Y = Fy

and
(r,u)g-y=Mr)y, r€R,u€L,g€Spr.
Consider the induced character
61 =ind i 5otp
afforded by the induced module

. (HxS
Xt = mdA:S::Y = F(H % 5pL) @F(axsp,) ¥-

This gives a representation
H xSpy — GL(XL) (4.9)

whose restriction to Spy, we denote by Pr. We are ready to state

4.2.5 Lemma Given L € M, write X = X, and P = P;. Then

(a) The restriction of (4.9) to H is the Schrédinger representation S of H associated
to A.

(b) Let T = T(V/L) and

e, =(0,v)®@y, veT.
Then (ey)ye7 is an F-basis of X.
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(c) P satisfies (4.8) and its action on X is given by
P(g)es = A({gv, v))ew. (4.10)

Here g € Sp;, v runs through 7 and v’ € T satisfies gv = v’ mod L.
(d)

P(e,=e_,, veT. (4.11)
(e)
te(P(e)) = 1. (4.12)
(f) The £1-eigenspaces X+ of P(¢) have dimensions
(IR[™ +1)/2 and (|R|™ — 1)/2.
(g) If S = S(V/L) then X4 have bases

(60, (eu + e—-u)uGS) and (ev - e—u)ves-

(det P(e)|x,) " (det P(e)|x_) = (~1)UAI"-D/2 = 1), (4.13)

Proof: (a) The restriction of ¢ to Z(H) equals |R|®A and Corollary 4.1.5 applies. (b)
T is a transversal of H relative to A and hence of H x Sp;, relative to A x Sp;. Since
Y is one-dimensional, the result follows from abstract nonsense. (c) Since (4.9) is a
group homomorphism whose restriction to H is the Schrédinger representation, it must
satisfy (4.8) when restricted to Sp;. This proves the first assertion. As for the second, if

gv=v"4u, u € L, then

g6, =9(0,v) @y =9(0,v)9®y= (0,9v)®gy= (0, v +u)®y
= (0, UI) ® ((u?vl>1 0)(0, u)y = A({(gv, v,>)eu'-
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(d) Make the substitution g = ¢ in (4.10). (e) Immediate consequence of (d). (f) Immediate
consequence of (e) and P(¢)2 = 1x. (g) Immediate consequence of (b) and (d). (h) The
very definitions of X and X_ in conjunction with (f) give
(det P(s)|x,) 7! (det P()]x_) = (1) IR/ ) (RP=0/2 = (—q)(RI=172
_ (_1) n( Rzl—l)

On the other hand the very definition of u gives

Thus
p(=1)" = (-1)"5F = (det P(o)|x,) " (det P()]x.).
a
A projective representation P of Sp satisfying (4.8) will be said to be normalized if
P(.) has trace equal to 1. Note that that if P and P’ are normalized then P/(¢) = P(¢).
Indeed, since S is absolutely irreducible, P’(t) = aP(:) for some a € F, whence a =1 by

taking traces. As a consequence of Lemma 4.2.5 and Propositions 3.3.1 and 3.3.2 applied

to z = ¢ we obtain

4.2.6 Theorem A Weil representation W of Sp exists. In fact, let P any normal-
ized projective representation satisfying (4.8) and let X; be the £1-eigenspaces of P(¢).
Further, set ¢(g) = (det P(g)|x,) "(det P(g)lx_). Then W(g) = P(g)c(g) defines an

ordinary representation of Sp satisfying (4.7).

4.3 Reduction to the local case

It seems appropriate at this point to show how one can restrict the theory to the local

case. Write R = R; X ... X Ry, a direct product of local rings. Then
/\(7‘1, ceny Tg) = /\1(r1).../\t(rt)

where A; is a primitive linear character of R;. Let Sy, : Hza(R:) — GL(X;) be the
Schrédinger representation associated to A; and let W)y, : Sp,, (R;) — GL(X;) be a Weil
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representation associated to A;. For each j set I; = Hi# R; and use the notation that

preceeds (2.27).
4.3.1 Proposition The natural map

Hon(R) 3 h = (hr, .oy hr) € Hop(R1) X oo X Hon(Ry)
is a group isomorphism compatible with (2.28), in the sense that

((gh')ll L (gh)[t) = (911 h[17 ._‘,91,, hh)'

Thus
Hyn(R) 3 h— S (hp,) ® ...8 Sx (k1) € GL(X,1® ...0 X\)

is the Schrédinger representation associated to A and

Spon(R) 3 g — Wi, {91,) ® ... @ Wi, (g1,) € GL(X1 9 ...® X))
is a Weil representation associated to A.

Proof: It all follows from the very definitions of the objects involved.

4.4 Uniqueness of the Weil Representation
Assume here that R is an irreducible ring.

4.4.1 Lemma Sp possesses a unique Weil representation of associated to A, provided

n#lorgqg#3.

Proof: Suppose that W and W' satisfy (4.7). Given the absolute irreducibility of S,
W = rW’, for some linear character 7 of Sp. If n # 1 or ¢ # 3 then Sp is perfect
(Corollary 2.4.4), whence 7 = 1 and, a fortiori, W' = W. |

We shall shortly distinguish amongst the Weil representations arising in the imperfect
case. In the meantime, we shall speak freely of the Weil representa‘tion whenever we deem

it convenient.
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Chapter 5

Construction of the Weil

Representation

We shall merely assume here that R admits an additive primitive linear character A. There
will be no need to make use of the structure of local rings.

In this chapter we construct a Weil representation W = W, following the procedure
indicated in Theorem 4.2.6. We shall assume to start off that X = X,s and P is any
projective representation of Sp that satisfies (4.8) and extends Pys. Let T =T (V/M) =N
and denote by S a moiety of V \ {0}. Then

(601 (ev + e—u)ues) and (ev - e-U)uGS (5'1)

are F-bases for the +1-eigenspaces Xy and X_ of P(¢), and

¢(g) = (det P(g)lx,) " (det P(g)|x.) (5-2)

for each g € Sp. Since W]sp,, and Py are group homomorphisms, so must be the correct-
ing factor c|sp,, : Sppr — F™.

We shall define W on the generators of Sp given in Corollary 2.3.7. For reasons that
will become apparent in Section 5.7 we want to define W on all g% (r):, r € R. In order to
achieve our goal we shall

(a) Compute ¢(g) for each g € Sp™.
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(b) Compute c{g) for each g € Spys -
(c) Find a P(g) € GL(X) satisfying (4.8) for each g € Sp".
(d) Compute ¢(g) for each g € Sp™.

We proceed to carry out this program
5.1 Construction of W on Sp¥
Let g € Sp™ and v € N. Then the translation of (4.10) into our setting reads
P(g)es = A({gv, v)) ey (5.3)
We have used the fact that gv — v € M (Lemma 2.3.2(a)). Thus

P(g)(ev £ e-y) = A({gv, v)}{ev L €-)

for all v € S, whereby
c(g) = M(90,0)) ™" = 1.

We have thus established the following equations:

W(g)ew = A((gv,v))ew (5.4)
Qg) =Y M(gv, v))- (5.5)
veN

In particular, if g is the symplectic transvection p,,, then

Q(g) =|RI™1 D " A(rs?). (5.6)

SER

Indeed, we have gv = v + r(uy, v)u1, whence {gv, v) = r(u;, v)2. Thus (5.5) gives

Qg) = Z Ar{ug, 5101 + ... + spUn)%) =[B! Z A(rsd).

31,.-.,31;6}2 51€R
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5.2 Construction of W on Sp,, v
Let g € Spyrv and v € N. Then (4.10) gives
P(g)ev = €gv (57)

since gv also belongs to N. The definition (5.2) thus yields the group homomorphism
c[spM_N, defined by

g3 Sparn — (—1)1{vES1ave=SH ¢ (41}

which is nothing but p(Spyr . NV \ {0}). In view of (3.3) and the identification (2.8), we

have
CISP.\{.N (9) = p(det g|n)

for all g € Spys n- The following identity has been established:

W(g)e, = p(det g|n)ege. (5.8)

The linear character u is completely determined in Lemma 3.1.3 and Theorem 3.1.4.

5.3 Computing P on Sp"

In what follows u will denote an arbitrary element of M and v, w arbitrary elements of N.

Set S =S, and let r € R. Then
S0, w)e, = (0,w)(0,v)Qy = (0, w+ V) QY = €ytu,

S(0,u)ey = (0,u)(0,v) ® y = (0,v)(0, ») ® (2(u, v), 0)y = A(2(u, v))e,
and
S(r,0)e, = (r,0)(0,v) @ y = (0,v) ® (r,0)y = A(r)e,.

The following formulae have been established

S(0,w)e, = €ytw, - (5.9)

S(0,u)e, = A(2(u, v))ey, (5.10)

62



S(r,0)e, = A(r)e,. (5.11)
Let g € SpV. Then gz —z € N for all z € V (Lemma 2.3.2(2)). Thus,

59(0,u) = S(0, gu) = S(0,gu — u + u) = S ((0, gu — ) (0, u)((u, gu),0))

(5.12)
and
59(0, w) = S(0,gw) = S(0, w). (5.13)
It follows from (5.9), (5.10), (5.12) and (5.13) that
S7(0, We, = M2(ur v) + (1, gu))eyi(gucy, (5.14)
S9(0, w)e, = eytuy- (5.15)

Suppose that P(g) has been found. Then P(g) commutes with all the shift operators

S(0, w), and it is therefore determined by its action on eg. More precisely,

P(g)e, = 5(0,v)P(g)eo- (5.16)
Since P(g) is invertible,
zg = P(g)eg # 0. (5.17)
Moreover,
S9(0,u)zo = S9(0, ) P(g)e0 = P(g)S(0,u)eo = P(g)eq = zo-
Thus

zgo is a fixed point of all the operators S9(0,u), u € M. (5.18)
Conversely, suppose that P(g) € End (X)) satisfies (5.16), (5.17) and (5.18). Then
P(g)#0 (5.19)
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due to (5.17) and

P(g)S(0, w) = 57(0, w) P(g) (5.20)
due to (5.9), (5.15) and (5.16). Moreover,

P(g)5(0,u) = §9(0,u) P(g). (5.21)
Indeed, from

(0, gu)(0,v) = (0, v)(0, —v)(0, gu)(0, v) = (2(g, v}, 0)(0, v)(0, gu)

and
(gu,v) = ((gu — u) +u,v) = (v, v)
we deduce
(0, gu)(0,v) = (2(x, v),0)(0, v)(0, gu).
whence

59(0,u)S (0, v) = A(2(u, v))S(0,v)S9(0, u) (5.22)
upon applying S. Thus, in view of (5.10), (5.16), (5.18) and (5.22)

P(g)S(O' u)eu = /\(2(’&, U))P(g)ev = /\(2(’&6, ’U))S(O, U):Eo
= A(2(u, v))S(0,v)S%(0, u)zq = S7(0, u)S(0, v)zo = S9(0, u) P(g)ew,

as claimed. Given (5.19), (5.20), (5.21) and the fact that S is irreducible, Schur’s Lemma
yields that P(g) is an invertible operator intertwining S and §7.

Since S is absolutely irreducible, P(g) is determined up to multiplication by a scalar.
But P(g) depends solely on zo; thus, the fixed points of the group S$9(0, u)uem must be
one-dimensional. This also follows from the facts that the fixed points of S(0, u)uenr are
equal to Feg and that S is similar to 59. We proceed to determine zg.

Given w € Im(g — 1) there exists an element u € M satisfying’

gu — u = w. (5.23)
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If v’ € M also satisfies (5.23) then Lemma 2.3.2(b) gives
(u, w) = (u,gu’ — v’) = (¢, gu — u) = (', w).

Thus the expression (u, w) is independent of the choice of u. We shall denote by u9* € M

an arbitrary element satisfying (5.23). We claim that

To = Z /\((ug,w’ w))ew (5-24)

we€lm(g—1)

satisfies (5.18). Indeed, in view of (5.14)

S9(0, u)zo = Z A(2(u, w) + (u, gu) + (v, w))ew+gu—uv (5.25)
w€lm(g-1)

Make the change of variables w' = w + gu — u; then the expression
2(u, w) + (u, gu) + (u9'*, w),
appearing in (5.23), is transformed into
2(u, w'y — 2u, gu) + (u, gu) + (w9 05 W' — (gu - u)). (5.26)
Taking u9¥'~s¥=%) = y9%' _ y the expansion of (5.26) becomes
2(u, w') — 2(u, gu) + (u, gu) + (w9, w") — (W9, gu — u) — (u, w') + (u, gu),

which is nothing but (u9*', w'), since

(@, gu —u) = (u, gu?™ — ') = (u, ")

due to Lemma 2.3.2(b). Thus (5.25) is equal to 5_ 1) A{(u9', w'))eyr, as claimed.

w’ €lm(g—
We have proven that, up to scaling,

P(g)e, = Z A((w?, w)) eyt (5.27)

w€lm(g—1)
5.3.1 Note  To see how to arrive at (5.24), write an element z of X in terms of the
basis (e,)ven and force it to satisfy (5.18). Making use of Theorem 4.1.10 it can be shown
that £ = z, up to scaling. This is the reasoning that allowed the author to conjecture

Theorem 4.1.10 in the first place.
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5.4 Computing ¢ on Sp”

Let g € Sp”. Denote by N be the group of all linear characters Nt — F~, and for each
veNsety, = Y wen V(w)ey. A standard argument shows that (y.),¢x is an F-basis of
X that diagonalizes all the S(0, w). In fact (y.),c5 diagonalizes any commuting family of
operators that contains all the S(0,w); in particular (3.}, diagonalizes P(g).

Given v € N denote by —v the character (—v)(w) = v(—w) = v(w)~" and by 0 the
trivial character w — 1. Let (if),cx be the eigenvalues of P(g) corresponding to the

eigenvectors (y,),c5- The very definitions of y, and P(.) give
Py, = y-v- (5.28)
and, on the other hand, Proposition 3.3.2 guarantees that
P(:)P(g) = P(g) P(:)- (5.29)
The unconvinced reader might want to verify (5.29) directly. We deduce that

19, =19, (5.30)

v

Indeed,
P(g)y—, = P(g)P()y, = P()P(g9)y, = {P( )y = By-v-

Denote by I a moiety of N \ {0}. Then (5.28) shows that (yo, (y» + ¥-v),¢y) and
(v + Y-u), ¢ 2re basis of Xy and X_, respectively. Therefore (5.2) and (5.30) give

c(g) = ()% (5.31)

here {J is the scalar satisfying P(g)yo = Iyo, where yo = 3 v €w- Using the definition
(5.27) of P(g) we discover that P(g)yo = {§yo forces

B= > A, w)). (5.32)

welm(g—1)

Since P(g) is invertible, its eigenvalue [§ satisfies
19 0. (5.33)
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We have proven that

c(g)=( > A((ug"",w») (5.34)

welm(g—1)

for all g € Sp.

5.5 Putting the pieces together
We specialize the above analysis to the elements gN(b), b € R™. By definition,
gV (b)z = z + b(z, v)vuy + ... + b(z, V) V.

Thus
M>u i 25 (b) ! Z b(u,v)v; €N

1<i<n

is a linear isomorphism. Given w € N the unique u € M satisfying (5.23) is given by

u= z b (u;, w)u;.

1<i<n
Thus
(u, w) = Z b~ u;, w)?,
1<i<n
whence

P(gV(b))en =D A (b- » - (ui, w) ) Cutu-

weN 1<i<n

Making the change of variables w’ = v 4+ w, (5.27) is finally transformed into

P(gV())e=>_ A (b‘ > (ww-—v ) €w- (5.35)

weN 1<i<n
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Moreover, (5.32) becomes

g=> A (b“ > (u,-,w)2)

weN 1

N

In view of (5.33)

Thus (5.34), (5.35) and (5.36) give

WigV(e)e. =D (AL T DA S (uw,w ~ v)?)e.

Recall that g™ (-1)(z) = z + (z, w1)u1 + ... + (2, un)un. Then (5.4) gives

<ikn

b1 Z (Ui, 5101 + ooo 4 5052

1<i<n

S #o.

weN 1<i<n

W(gY(-D)e, = A= Y (v,u))es.

1<i<n

As a result of (2.12), (5.38) and (5.39) we finally obtain

Wigmn)en =2 (N D A

5.6 The final product

We are ready to state

weN
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-2 Z (ui, w){u;, v)

1<i<n

)

) €w-

(5.36)

(5.38)

(5.39)

(5.40)



5.6.1 Theorem  The Weil representation W = W), is defined as follows on the gener-

ators Spys, gMr N, gM(b) of Sp and the basis (e,)ven of X = Xar:

(

.U'(det; gl.'V)egu if ge Spﬂ/f,N'
A((gv, v))ey if g € SpM
TN Tuen A (-2 Tigicnlun w)(wav)) ew g =0n (5.4
kZ (’\[b—ll)—n 2 weN Gk ELS;Sn(Ut‘y w—v)?ey, ifg= g™ (b).

W(g)ev =9

5.6.2 Definition By the Weil Representation of Sp associated to A we shall understand

any representation of Sp similar to the one constructed in Theorem 5.6.1.

5.7 An alternative approach to compute quadratic sums
This section shows how one can use W itself to determine the quadratic sum }_(A).

5.7.1 Proposition

Y- () ==Vu(-1)IR| (5.42)

Proof: Set n =1 in (5.41), so that N is one-dimensional over E. We obtain

Wgnv)er =Y (A1 D A(—2if)e;
JER
for all 7 € R, whence
Wignn)lei =Y (N2> A=27( +t))es (5.43)
teRjER
The linear character j — A(—27(i +t)) of R¥ is trivial if and only if i +¢ = 0, due to the
primitivity of A. Thus (5.43) and (5.8) give

(—1)YURIDe_; = W(i)e; = W(gkrn)ei =D _ (A) 72| Rle~.

We have determined the quadratic sum Y (A) up to a £ sign:

3 () = £/ (~1)20R=D| B = /(- DRI

69



a

It seems unlikely that the Weil representation can provide us with such detailed infor-
mation about the sign in (5.42) as obtained in Section 3.2.

In order to establish (3.21) we shall recur to the group of symplectic similitudes GSp.

An independent in-depth analysis of the interaction between GSp and W, is given in

Section 7.3.

5.7.2 Proposition GSp transitively permutes the Weil characters of Sp. In fact,
WPk = Wy (5.44)
for all units £ € R.

Proof: In view of (2.16) the action of GSp on the Weil characters is determined by the
Bg’s. In light of Lemma 3.2.4 the Weil characters are the characters of (Wy(x))ker--

We shall verify (5.44) on the generators Spyy, (¢ (b))scr~ of Sp, given in Corollary
2.3.8. Let ve N.

Case 1. g € Spyr,v- Then Bk gy = gv, hence (2.19) and (2.20) give
Wk (9)es = p(det glv)egy = Wage (9)ev-

Case 2. g € Sp™. Then

Bk gy = Brgv = Br((gv — v) + v) = k(gu — v) + v,
so that
(Brgu, v) = k{gv, v),
whence
W (g)es = A(k(gy, v))e, = Wap(9)es-

Case 3. If g = g™V (b). Then (2.21) gives

WE(g)e, = Wa(g™ (k710))ew = D (ALk6™) ™" D Akb™ D (ui, w — v)?)ew

weN 1<ikn

= Wipy(9)ew-

70



The relation (5.44) has been established.

As a corollary of Theorem 5.6.1 and Proposition 5.7.2 we finally obtain

5.7.3 Proposition
STORD = s(6) )
for all units k£ € R.

In view of (2.18) and Proposition 5.7.2, we have

Wi (gvn) = Wa(Brgarn) = Wi(grgn n) = Walgr) Walgarn)-

Set n =1 in (5.41), so that IV is one-dimensional over R. Then (5.48) reads:

> ARDT D A(=2kig)e; = u(k™h S (NI A(=2i)ex;

JER JER
for all i € R. But the right hand side of (5.47) is equal to
-1
(k) S° ()7 3 M=2kig)e,
JER
whence

D KD = p(R) >N

5.8 Uniqueness of the Weil Representation revisited

(5.46)

(5.47)

Assume here that R is an irreducible ring. We come back to the uniqueness question to

see how one can tell the Weil Representation apart when Sp is imperfect.

5.8.1 Lemma If Sp is imperfect there are precisely three types of Weil representations

of associated to A, in the sense of Definition 4.7. The Weil representation, in the sense of

Definition 5.6.2, is the only one of the three whose character Q satisfies:

Qprw) = R[™D ()

(5.48)



Proof: It was shown in (5.6) that Q satisfies (5.48).

Suppose that W also satisfies (4.7). Again, given the absolute irreducibility of S,
W = TI'V, for some linear character 7 of Sp. In view of Corollary 2.4.4 we have r = 7; for
some 7,0 < i < 3. Denote by Q the character of W. If we force Q to also satisfy (5.48)
then

Do) =Qoru) = Qo1 =G (V) (5.49)

But (5.37) gives Y (A\) # 0. Thus, (5.49) forces i = 0, whence + = 1. O
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Chapter 6

FSp-submodules of X

Assume here that R is an irreducible ring. In preparation for the study of the irreducible
FSp-components of X, we present here several useful tools in defining, constructing and

handling FSp-submodules of X.

6.1 The FSp-submodules X () of X

Of course, X itself cannot be irreducible since the *l-eigenspaces of W(.) are FSp-

submodules.
We state the following immediate consequence of Lemma 4.2.5 and Theorem 4.2.6 in

order to be absolutely precise about the action of W{:) on X.

6.1.1 Corollary Let L€ L, X=X and T =T (V/L). Then the action W{(:) of ¢ on
X is given by

W()e, =pu(-1)"e—y, veET (6.1)
and the character value of ¢ is equal to
Q) = p(-1)" ] (6.2)

Definition 5.6.2 is not required here because any linear character of Sp is trivial on ¢

(Corollary 2.4.4). We shall henceforth denote by X* the +1-eigenspaces of X relative to
g
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W (). In the case R = F, they exhaust all the proper submodules of X. In general, this
is far from true, as explained below.

As a general principle, if S is any subset of H x Sp normalized by Sp then the fixed
points X5 of S in X form an FSp-submodule. In the sequel we shall be only interested in
the following cases.

e S =Sp(I) ={g € Sp|gv = v mod IV}, the congruence subgroup of Sp associated
to the ideal I of R.

e S = D(I) = (0,IV), the abelian subgroup of H corresponding to a given ideal I of
R of square (0).

e S = E(I) = (R, IV), the subgroup of H corresponding to a given ideal I of R.

We shall fix an A-pair (I,J) until the end of this section. By far the most important
A-pair when R is not a field is (min, m). Denote by X (I) = X D) the fixed points of D(I)
in X and by Y(I) the FSp-module X/X (I), or any FSp-submodule of X complementing
X (I). Since Ng(D(I)) = Cu(D(I)) = E(J), X(I) is an F(E(J)/X(I))-module. Given
a FSp-submodule Z of X let Wy z and Q2 z be corresponding Weil objects attached to
Z, and let Z* be the FSp-submodules Z N X%. The most important modules for us are
X (min) and Top*, where Top = Y (min) if R is not a field and Top = X otherwise.

The following result is extremely useful in dealing with X (I). It was originally proved

in collaboration with Gerald Cliff and David A. McNeilly for a principal ring R.

6.1.2 Proposition  Let G be any subgroup of H satisfying (J%,JV) C G C E(J).
Then X = indg(J)X(I), whence X (I) is an absolutely irreducible F(G/D(I))-module of

dimension |J/I|™.

Proof: Take any A = (R, L) € A containing E(I). In view of Corollary 4.1.8 po enters n] A,
whence E(I} 3 (r,v) = A(r) € F* enters n|g(p). Corollary 4.1.3 and Lemma 2.3.1 show
that the inertia group of 7 is precisely E(J). Thus, by Clifford theory, X = indg( nZ,
where Z = {z € X|(r,v)z = A(r) forall (r,v) € E(I)} is an absolutely irreducible
FE(J)-module. Note however that Z = X (/) and that (R, 0) acts by scalar multiplication
on X. Thus X = indg( X (1) and X (1) is an absolutely irreducible F' (G/D(I))-module,
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for any G as above. (Eq. 3.15) finally gives

|E(D
|H]|

nR J2n
_ g Bl

dimX(I) = dimX TR

=\|J/I"

a
6.1.3 Lemma  Qx5)(¢) = p(-=1)". Thus dimY (I)* = dimY ([)~ = (|R|" - [J/I|*}/2
and dimX (1% = (|J/I|* £ p(-1)")/2.

Proof: Let L=L;;=IN&JM, X = X and P = Pr. Construct 7 = T(V/L) so that
it contains a transversal 77,y of JIV relative to IN. For each v € 77,y and (0, w) € D(I)

we have
(0, w)ey = (0, w)(0,0) @y = (0,v)(0, w) @y = (0, v) @ (0, w)y = (0,v) @Y = €.
Since dim X (J) = |J/I|™ = |T1,sl, (év)veT; ; is indeed a basis of X (I). Thus (6.1) gives
Qx (L) = p(=1)" (6.3)
As a consequence of (6.2) and (6.3) we obtain
Qy(r)(e) =0. (6.4)
Since W(:)2 =1, (6.3) and (6.4) give
dimX (I)* = (|J/1|" £ u(-1)")/2

and

dimY (I)* = dimY (1)~ = (|BR[* = |J/I")/2.

a

6.1.4 Lemma Suppose that I = J. Then Sp acts trivially on the one-dimensional

FSp-module X (). Moreover, if L = IV then Sp; = Sp and P = W,.

Proof: Since Sp preserves L, Sp = Spy. The dimension of X (I).is given in Proposition
6.1.2. By definition, P gives a Weil representation associated to A. Thus, P must be equal
to W, if Sp is perfect, in which case Sp acts trivially on X (I), since dimX (I) = 1.
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At any rate, if X = X and P = P, then P satisfies
P(g)eo = A((g0,0))e0 = o

for all g € Sp, whence Sp acts trivially on X (/) via P. It remains to verify that P satisfies
(5.48). To see this, let g = p14, and Ty = T(R/I), T = T(V/IV) = (tu; + sv1)seT;-
Then gv =v mod [V for some v € T if and only if v = tu; for some ¢t € T;. Thus (4.10),
(3.15) and (3.19) give
te(P(g)) = D A((tur,tw)) = [Tt = [R/I| = VIR[ = Y (N,
teTr

as desired. d

6.2 X(I) via idempotents of F'(H x Sp)

Making a slight change in the point of view, we approach the study of the FSp-modules
X (I) and Y(I) via Sp-invariant idempotents of F/(H x Sp).

We begin by introducing some notation. Denote by h(I) the idempotent of FFH C
F(H x Sp) associated to D([); that is

1 1
h(I):lD—(memWZ( IQnZ(Ow > (0,u).

heD(I) welV welN uelM (6 5)

Since D(I) is normalized by Sp, h(I) is Sp-invariant. Similarly, let (1 + ¢)/2 be the
idempotent of FSp C F(H x Sp) associated to the central subgroup {1,:} of Sp. Denote
by SW the Weil representation H x Sp — GL(X) defined by SW(hg) = S(h)W(g)
and use the same symbol to denote its linear extension to the corresponding F-algebra
homomorphism F(H x Sp) — Endp(X). By abuse of notation, we shall write A(I) =
SW(h()), 1+ /2 = SW((l +¢)/2) and (1 —¢)/2 = SW((1 - ¢)/2). Accordingly,
1—h(I), h(I), 1 and 1 15t are commuting projections in Endrsp(X) satisfying:

VA

X)) =h(HX, YI)=1-r(D)X, Z+=1'2*'4 X 1-1

Z and Z7 = 5
(6.6)
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for all FSp-submodules Z of X. We shall distinguish elements of F(H x Sp) from elements
of Endg(X) by the context.

We proceed to produce bases of X (I)* and Y (I), that will prove useful in the sequel.
We treat first the model X = Xjr. One of the aims is to show that the matrices of
W= (g) and Wy (y=(g) relative to these bases have rational entries, for all g € Spys v-
This will constitute the first step in the process of realizing Wr,,+(g) over a minimal field.

Set X = Xyr. Given v € N we have

hm%=ﬁ;§jmm<23mww0%, (6.7)
weIN u&IM
due to (6.5) and (5.10). In view of Corollary 4.1.2 the linear character u — A(2(u, v})) of
I'M is trivial if and only if v € JN, whence (6.7) and (5.9) give

]—Ill—" Y weIN Cv+w IE U EJN,

& = h(le, = (6.8)

0 otherwise,

an equation originally obtained by David A. McNeilly. In virtue of (6.6), the vectors
1+,

( 9 h(I)eu)veN (69)
generate X (I)¥, while
(B340 - AD)een (6.10)

generate Y (I)*. Thus, in view of Proposition 6.1.2

B(I) = (&) ver(an/IN) (6.11)

must be a basis of X (I). Let S(JN/IN) be a moiety of T(JN/IN)\ {0}. Then

14, . {eo} ifp(-1)"=1
B(I)*t = 5 (év)vesnyiny U (6.12)

] otherwise

is a basis of X (I)* and

1—¢, . {eo} ifp(-1)"=-1
(€v)vesanyIny U (6.13)
0 otherwise

B(I)~ =
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is a basis of X (I)~.

Extract bases C(I)¥ of Y (I)* by removing redundant vectors from (6.10), starting in
any order. Then the matrix of change of basis from (e, ),ex to B(L)tuB(I)~uC(I)tuC(I)~
has rational entries, since all vectors appearing in (6.9) and (6.10) are rational linear
combinations of the basis vectors (e,),en, due to (6.8).

On the other hand, the matrix of any W (g), g € Spys - has rational entries relative

to the basis (e,)ven, due to (5.8). We have thus proven

6.2.1 Lemma  The matrices of Wx()x(g) and Wy (1)z(g) relative the bases B(I)* and

C(I)* have rational entries, for all g € Spys -

Substitute I = (0) in Lemma 6.2.1 when R is a field and / = min otherwise. We obtain

6.2.2 Corollary The matrices of Wr,,+(g) relative to the bases

B(0)* if R is a field
(6.14)

C(min)T  otherwise

have rational entries for all g € Spys v

In the next result, we locate X (min) and Top* within other models of X.

6.2.3 Proposition  Suppose that (/,J) is a non-trivial A-pair. Set L = L ; and
X =Xr. Given T = T(V/L), let T m be the transversal of mV relative to L contained
within it. Set Pg =7 \ Tr,m and let Sy be a moiety of Py. Then

(a) (ev)ves is a basis of X (min).

(b) (ev)vep, is a basis of Top and (1£e,),cs, are bases of Top™.

Proof:
(a) We have |Tz,m| = |m/I|*|/m/J|*. On the other hand, |I||J] = |R| = |min||m|, due
to (3.15). Thus |Tr,m| = |m/min|™, which is equal to dimX (min), in view of Proposition

6.1.2. It thus suffices to show that every e,, v € Ty n is fixed by every (0, w) € D(min).
Well, _

(Oaw)ev = (O,W)(O, v) Yy = (09 v)(ov ‘lU)®y = (0, v) ® (O,w)y = (O’U) RY = ey,
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since m - min = (0) and D(min) C (0, L).
(b) There is a priori no reason why (e,),ep, should generate an FSp-stable submodule.
We shall prove that each e,, v € Py, is in the kernel of A(min), whence span(e,).ep, =

Ker A(min). For v € Py and (0, w) € D(min) we have

(0, w)e, = (0, w)(0,v) @y = (0, v)(0, w) (2w, v),0) @ y = A(2(w, v)ey,
since D(min) C (0,L). Fix v € Py and consider the linear character w — A(2(w, v)) of
minV’. Since v is primitive, this is not the trivial character, whence

h(min)e, (ID(M P (! w> (ID(mm > A@(w, v))

wemmV wemmV

as required. The last assertion is consequence of Lemma 6.1.3. d

6.3 Explicit decompositions of X

We produce decompositions of X* (and hence X) into (non-isomorphic) FSp-submodules
of strictly descending dimensions, starting from strictly ascending chains of A-pairs of R.
When R is principal this gives the decomposition of X into [ 4+ 1 absolutely irreducible
FSp-submodules.

The idea is to start from a decomposition of 1 € F(H xSp) into orthogonal Sp-invariant
idempotents and produce a decomposition of 1 € Endrsp(X) into orthogonal projections,
via the Weil representation. Of course, one has to check what non-zero idempotents of
F(H x Sp) yield non-zero projections in Endpsp (X).

Given A-pairs (I,J) and (I',J’), the idempotents h(I) and h(I') satisfy the usual

relations:
(1,J) < (I',J) = h(I)h(I') = h(I') = R(I')A(T). (6.15)

We shall write h(I, ) for the Sp-invariant idempotent h(I) - h(I') € F(H x Sp) and, by
abuse of notation, also by h(/,I') the projection k(I) — R(I') € Endpsp (X).

Let ¢ > 0 be an integer. Given a strictly ascending chain C of A-pairs
(0, R) = (IO,JO) < (Il, J]_) < .. < (It, Jt) (616)
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write the decompositions D*(C) of of %‘—‘ (and hence 1) as follows:

1+ 1+ 1+ 1:!:
= = ko, ) + e =l [ + =5

h(Ie).

Apply SW and denote also by D(C) the resulting decompositions of 1 € Endrsp(X)

into orthogonal projections belonging to Endpsp (X).

6.3.1 Proposition = The decompositions D*(C) of H:‘ € Endpsp(X) satisfy:

(a) dimp5h (i, Li41) X = dimpisth(l, L)X = ([J [ = |Jig1/Tit1]™) /2 for all
0<i<t.

(b) dimpiF-A(L) X = (|Je/ L™ £ n(=1)")/2.

(c) Any member of D¥(C) is orthogonal to any D~ (C).

(d) If0<i<t~1then

1+

dim i Tipr) > dimpl—;'—fh(fi+1,ri+-z),

while

)

i 494

forall0<i<t.

Proof: (a) and (b) follow from Proposition 6.1.2 and Lemma 6.1.3, while (c) is obvious. It
remains to prove (d). Since I; C Iy C Jit1 C J; we have [[i41] > q|L| and |Ji] > qlJitils

whence Lemma 2.2.1(b) gives
lJi/[iln > q2nlJi+1/Ii+1|. (617)

Combining (6.17) with (a) we obtain (d). g

Thus the i — th projections in D*(C) and D~(C) have the same rank, except for the
t—th projections which differ by 1, while within each decomposition D*(C) the projections
strictly decrease in rank. Denote by T(C) the combined total of non-zero projections in

D*(C) arising from the chain C. Then

2(t + 1) if I,  Jp.
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6.4 Some character values

6.4.1 Lemma  If Z is any FSp-submodule of X then Qz+(g) = (Qz(g) £ Qz(rg))/2
for all g € Sp.

Proof: Given g € Sp we have
Qz(g) = Qz+(9) + Qz-(g)

Qz(g) = Qz+(g9) — QUz-(9),

whence Qz+(g) = (z(g) £ Qz(.9))/2- .
6.4.2 Lemma  If g € SpM then Q(tg) = u(-1)".
Proof: Let X = Xr and 7T =T(V/M) = N. Then Theorem 5.6.1 gives
W(wg)ew = p(—1)"A((gv, v)) e,
for all v € N, whence Q(¢g) = u(~1)". O

6.4.3 Lemma Let I beanideal of R, J = ((0) : I) and K = (I : J). If g € Sp(K)
then Qy(p(eg) = p(-1)"

Proof: In view of Theorem 7.1.1 W(g)|x(1) = lx(r)- Thus Qx(5)(¢9) = Qx(n(s) = p(-1)*,
due to Lemma 6.1.3. O
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Chapter 7

Fundamental properties of the

Welil Representations

Assume here that R is an irreducible ring.

7.1 The congruence subgroup Sp(K) acts trivially on X ([)

The next result is of great importance for us. It was originally proved in collaboration

with Gerald Cliff and David A. McNeilly for a principal ring R.
7.1.1 Theorem  Let (/,J) be an A-pair and denote by K = (I : J) the conductor of

J into I. Then the congruence subgroup Sp(K) acts trivially on X (I).

1** Proof (Independent of the appearance of W): Observe that X (I) is an E(J) x Sp and
hence E(J)/D(I) xSp-module. Also, the action of Sp(K) on E(J)/D(I) is trivial, thereby

yielding the action

Sh=3%h

of Spx on E(J)/D(I). But X(I) is an absolutely irreducible F(E(J)/D(I))-module,

whence Sp(K) acts by a linear character on X (7). We thus obtain a representation

Spr 37— W(g)lxnF~ € PGL(X(I)),
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and hence a lift P : Spgr — GL(X (I)), which is a projective representation satisfying

P(3)S(R)P(9)~" = S(°k) = S(7h). (7.1)
Here S(h) = S(h)|x(r for all A € E(J) and corresponding & € E(J)/D(I).
We specifically choose P(z) = P(t)|x(n), where P is as defined in Lemma 6.1.3. Then
the +1-eigenspaces of P(z) have dimensions (|J/I|" £+ 1)/2 and tr(P(z)) = 1.
It follows from Propositions 3.3.1 and 3.3.2 applied to z = 7 that P can be corrected
to an ordinary representation; that is, there is a representation W : Spr — GL(X (1))

satisfying (7.1). Inflate W to Sp by means of Wy(g) = W (g) obtaining the equation

Wa(9)S (h)|xyWo(9) ™t = S(h)|x(n

for all ¢ € Sp and h € E(J). Since X (I) is an absolutely irreducible FE(J)-module

W(gllxnr(g) = Walg), g€Sp (7.2)

for some linear character r of Sp. Apply (7.2) to any g € Sp(K'). Three cases arise:

Case 1. Sp is perfect. Then Wo(g) = 7(g) = 1 and therefore W (g)|x ) = 1.

Case 2. Sp is imperfect but I # J. Then K C m and a fortiori, Sp(K) C Sp’
(Proposition 2.4.3). Thus W(g)|x () =1, as above.

Case 3. Sp is imperfect and I = J. Then Lemma 6.1.4 gives that Sp = Sp(K) acts
trivially on X (7).

2"d Proof (Based on the appearance of W): In view of Corollary 2.2.7, Sp(K) acts
trivially on X (I) provided all (pr<)rer act trivially on X (I) for some z € P. To verify
this, let v € N and g € SpM NSp(K) (eg. g= Pru;, T € K). Then

W(g)h(I)e, = h(I)W(g)e, = A({gv, v))h(I)ey (7.3)
due to (5.4). Since Sp(K) acts trivially on JV/IV, we have
A{gv,v)) =1

for all v € JV, whence
Wi(g)h(I)e, = h(I)e,

for all v € N, due to (7.3) and (6.8). a
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7.2 The FSp-isomorphism JV/IV ~ Endg(X(I))

We have come to one of the most important results concerning Weil representations and
this thesis.

Given a permutation representation G — Sym(A) of a group G, we shall denote by
G — GL(/S) the corresponding F-linear representation. Thus A has a basis (fz)zea and

G acts on A by means of 9 f; = fyz.
7.2.1 Theorem Let (I,J) be any A-pair. Then
JVIIV 3 forrv = 5(0,v)| 51 € Ende(X (1)) (7.4)

defines an isomorphism of FSp-modules.

Proof: The map (7.4) is well defined since X (/) is preserved by E(J) and acted upon
trivially by D(I). Given g € Sp and v € JV we have

 for1v = fgurrv = S(0,99)[xny = S0, v))x ()
= W(DlxnSO, ) x W ()5 = ¢S50, v)lx)

Since X(I) is an absolutely irreducible FE(J)-module, the Jacobson density theorem
ensures that the F-span of the S(0, v) is all of Endg(X (I)). Thus (7.4) is an epimorphism,

and therefore 2 monomorphism, since the dimensions match (Proposition 6.1.2). O

7.2.2 Corollary Let (I,J) be any A-pair and denote by K the conductor of J into I.
Then the kernel of the representation Sp — GL(X (I)) is precisely Sp(K). In particular,

the Weil representation is faithful.

Proof: If g € Sp acts trivially on X (I) then g acts trivially on Endr(X(/)) and hence
on Jm. This readily implies that ¢ € Sp(K). The reverse inclusion is the content of
Theorem 7.1.1. |

7.2.3 Corollary Let (I,J) be any A-pair. Then

Qlx ) Qx(n] = o(JV/IV). (7.5)
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Proof: Passing to the fixed points in (7.4) we deduce that End (X ([)) and Jm' contain
the trivial representation an equal number of times, which is a restatement of (7.5). O

As a consequence of (7.5) we obtain the following fundamental result:

7.2.4 Theorem  Top* are absolutely irreducible FSp-modules of common degree

(IR|* — |m/min|™)/2 if R is not a field
(" £(ZH™)/2 if R=F,.
and multiplicity one in X.
Proof: The degrees of Top* are given in Lemma 6.1.3. We divide the rest of the proof

into two cases.

Case 1. R is a field. We have
2=0(V), Lemma 2.6.1
=[Q,Q], Corollary 7.2.3
= [Qropt + Qlrop=: QTopt + QT0p-]
= [Qrop+ ) QTop+] + [LTop-1 Urop-] + 2[Q rop+: 7 op-1-
Case 2. Ris not a field. We have
[ X (min) » QX (min)] = o(mV/minV), Corollary 7.2.3
=o(mV)} —o(minV) +1, Lemma 2.6.2
=(o(V)—1)—-2+1, Lemma 2.6.2
=o(V)—-2
=[Q,Q] -2, Corollary 7.2.3
= [QIX(miﬂ)' Q[Jf(mi“)] + [Q70p, Qrop] + 2[Q|X(min)1 QTop],
whence
[QTops QTop] + 2[Q X (min), QTop) = 2,
as required. |

Denote by PSp = Sp/Z(Sp) = Sp/{1, .} the projective symplectic group.
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7.2.5 Proposition Suppose that ¢ > 3. Then Top™~ and Top* afford faithful repre-

sentations of Sp and PSp, respectively.

Proof: We divide the proof into two cases.

Case 1. Ris a field. Since ¢ does not act trivially on Top~ and Top* does not afford
the trivial representation, the result follows from Theorem 2.2.8.

Case 2. R is not a field. The result follows from Theorem 2.2.8, as above, if we can
show that Sp(min) does not act trivially on Top*. For this purpose, fix a non-zero element
r in min and define g € Sp(min) N Sp,, y by vy = (1 + r)vy, uy — (1 + r)~luy, and all
other basis vectors u;, v; remain fixed. Set X = X,r. Since det glzy = 1+ r is a square,
(5.8) gives W(g)4(1 — h(min))e,, = L&¢(1 - h(min))e(;4,),,- Now use (6.8) applied to

I = min, to verify that Top* 3 15*(1 - h(min))e,, # 15(1 - h(min))e(1r)u, - O

7.3 Weil representations associated to different characters

Given primitive linear characters A,7 : R* — F *, what is the relationship between W,
and W:? An initial approach to this question was taken in Proposition 5.7.2, based on the
actual appearance of W). A more satisfactory answer is given in Theorem 7.3.1 below,
whose proof is independent of Theorem 5.6.1.

In view of (2.15), (2.16) and (2.17), conjugation by g € GSp restricts to an inner
automorphism of Sp if k(g) € R™ is a square. As shown below, the converse is also true

and lies at the heart of the problem.

7.3.1 Theorem GSp acts transitively on the set of Weil characters. Moreover, if

X = Xrand g € Sp, k € R™ then

Wk (g) = Wigg(9), (7.6)
Wiik21(9) = Wa(gx) Wi (g) Wa(gx) ™! (7.7)

and )
Wi =Wy < A~ AE]. (7.8)
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In words, W) and W,( are similar if and only if k£ is a square. Thus conjugation by

g € GSp restricts to an inner automorphism of Sp if and only of k(g) € R™ is a square.
Furthermore, the relations (7.6) and (7.7) hold in all FSp-submodules Z of X. The

same is true for (7.8) provided Z = X% when R is a field and Z = Y (I),Y(J)%¥ when R

not a field and (7, J) is any non-trivial A-pair.

Proof: In view of (2.15) and Corollary 4.2.2, we have

B
M = M,

whence

ka s S,\(k) .

Set X = Xyr. Given h € H, write h = (r,u + w) for unique r € Rand u € M, w € N.
Then
Bxh = (kr, ku+ w),

whence (5.9), (5.10) and (5.11) give

55%(0, wye, = eyiuw, 7.9)
5B (0, u)e, = M(2k(u, v))e., (7.10)
SBk(r,0)e, = A(kr)e, (7.11)

for all v € N. Comparing (5.9), (5.10), (5.11) with (7.9), (7.10), (7.11) we conclude that
3% (h) = Sy () (7.12)

for all h € H. In view of (7.12) and the absolute irreducibility of Sy( we deduce that
W2 must be equal to:
e The Weil representation W associated to A(k], if Sp is perfect.

e Some Weil representation associated to A[k], if Sp is imperfect. Note however that

W2 (1) = WA(B*p14,) = Wi (0kw,)s
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whence Qf"(pl'ul) = >_(A[%]), due to (5.6). Lemma 5.8.1 ensures that W’f" = Wi as
claimed.

Applying (2.15) and (2.17) to (7.6) we obtain (7.7). Since the processes g — Wff" (9)
and g = Wy (g)|z commute, (7.6) and (7.7) hold in all FSp-submodules Z of X.

In light of (2.16), (2.17) and (7.7), conjugation by g € GSp restricts to an inner
automorphism of Sp and W) ~ Wilk(g)): Provided k(g) is a square.

Assume henceforth that & is not a square. Two cases arise:

Case 1. R is not a field. Recall that m denotes a fixed generator of the minimal ideal

min of B. Let g = pm y,. In view of Lemma 3.2.6 and (5.6) we have

Qaen(e) = 1R k) = (5 ) 1R ) = (£) 200
(7.13)

This proves that Qg # 2. Furthermore, suppose that (7,J) is a non-trivial A-pair.

Then J C m, whence min C K. Thus
g € Sp(min) C Sp(K),
whereby g acts trivially on X (/) in virtue of Theorem 7.1.1. It follows that
Qyna(g) = 2a(g) = xn.a(9) = 2 (g) — dimX (7). (7.14)

Combining (713) and (7.14) we deduce that Qy([)',\[k] # Qy([),,\.
In light of Lemmas 6.4.2 and 6.4.3 we have

Qyna(tg) = Qa(e9) ~ Ux(n,2(eg) = p(=1)" — u(-1)" = 0. (7.15)

Thus Lemma 6.4.1 gives
Qynzal9) = rna(9)/2,

whence Qy(nz iy # Qv ()22, in virtue of (7.13) and (7.14).
Case 2. R =F;. Let g = p1,4,. Applying the above reasoning we obtain

Qi (9) = (g) Qa(9), (7.16)
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which proves that Qyp # Q. Furthermore,
Qx£(9) = (Q\(9) £ pu(-1)")/2 (7.17)

due to Lemmas 6.4.1 and 6.4.2. It follows from (7.17) and (7.16) that Qxx k] 7 Qxx 2
as claimed.
We conclude that conjugation by g € GSp does not restrict to an inner automorphism

of Sp if k(g) is not a square.

7.4 Character fields

We have accumulated enough machinery to describe the character fields of the Weil rep-

resentations.
7.4.1 Theorem  Gal(F/Q) acts transitively on the set of Weil characters. In fact,
R0y = Qg

for all k € (Z/p°Z)~. Furthermore, let X = X, and consider the Weil representations as

matrix representations relative to the F-basis (e,),enx of X. Then
R = Wy (7.18)
and
Wi (g) = Wa(ge) Wa(9) Wa(gx) ™ (7.19)

for all g € Sp.

If (1, J) is any A-pair then (7.18) and (7.19) hold on the FSp-submodules X(I), X (D%,
Y (I)* and Y (I) of X, relative to their bases B([), B*(I), C*(I) and C*(I)uC~(I). Thus,
if Z=X, X%, Y(I) or Y(J)* then

Q(QA.Z)=Q( (:q—l-)q . ’ (7.20)
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Proof: (Eq. 7.18) can be read off from Theorem 5.6.1. Alternatively, Corollary 4.2.4 gives

“Elny = mawg-

Reasoning as in the proof of Theorem 7.3.1 we discover that actually
“®IS\ = S\, (7.21)

relative to the basis (e,)yen of X = Xjr. Reasoning again as in the proof of Theorem
7.3.1 we see that (7.21) implies that 7(¥) V¥, is equal to:
e The Weil representation Wy associated to A[k], if Sp is perfect.

¢ Some Weil representation associated to A[k], if Sp is imperfect. Note however that

“E (o) = T (Qu(oru)) =B (A) = (KD,

hence Lemma 5.8.1 ensures that 1, = Wi

(Eq. 7.19) follows from (7.18), (7.6) and (7.7). Since the matrix of change of basis
from (e,)ven to B(J)Y U B(I)~UC(I)* UC(I)~ has rational entries (7.18) and (7.19) also
hold on X (I), Y (1), X (I)¥ and Y (I)*.

The last assertion follows from the above, Theorem 7.3.1 and Lemma 2.2.1(f). (|

7.5 Schur indices

The Weil representations afforded by Top™ will be thought of as matrix representations

relative the bases (6.14).

7.5.1 Theorem  (a) T'op™ can be realized over its character field Q (,/ (’Tl)q ).

(b) Top™ can be realized over its character field Q (, / (—'q—l)q ) if and only if Q ( ('Tl)q
is not a real field, that is, if ¢ =3 mod 4. The Schur index of Top~ over Q is precisely

twoif g=1 mod 4.

Proof: We shall implicitly use the results proven in Theorems 7.3.1 and 7.4.1. The trans-
lation of Proposition 3.4.6 into our setting reads as follows:

o T = pVTopi;
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Q if ¢ is a square,
Q ( (_Tl)q otherwise;

oz if q is a square,
e g =

where z is a generator of (Z/p°Z)™;
o2 otherwise,

Let y be any of the two elements of R* satisfying

if ¢ is a square,

y? =z? otherwise,

Such y exists due to Lemma 2.2.1;
o L =Wr,x(gy);
[pe“(p -1) if ¢ is a square,

o r—
1Pe"1(p ~1)/2 otherwise
Thus r = order of ¢ = &e;"f-—l. In view of Lemma 6.2.1

r—1

L---°LL=L"= I’VTopi(gy") = I'VTopﬁf(") = Elrops.

o

whence

ea=xl.
In view of Proposition 3.4.6, (a) is proven.

(b) If g =3 mod 4 then p=3 mod 4 and [F: K = p*~!(p — 1)/2 is odd. Therefore
Neg(-1) = (-1)FXl = _1, whence Top™ can be realized over K.

Suppose henceforth that ¢ = 1 mod 4. Then [F : K] is always even and K =
Q (,/(_Tl)q) is always a real field. Pairing each 7 € Gal(F/K) with its complex con-

= -1 is unsolvable
and the Schur index cannot be one. The fact that it is precisely two follows from the

Brauer-Speiser theorem [Fei70].

Jugate we see that Ng/x(z) is always non-negative. Thus Np/k(z)
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7.6 The case of a principal ring

Assume here that R is an irreducible ring. The case R = (0) will be extraordinarily
allowed, in which case we shall assume that H, Sp and the terms Schrédinger and Weil
representations have the trivial meaning.

Fix a primitive linear character A of R* and an A-pair (7,J). Let K = (I : J) and
adopt the notation (2.27) for the ideal K, unless otherwise stated.

The results described in this section generalize and extend work that was originally

started in collaboration with Gerald CIliff and David A. McNeilly.

7.6.1 Proposition Let (I,J) be an A-pair and let K = (I : J). Suppose that J/I =
Rt + I is principal and let G = (J2,JV) C H. Then

G/D(I) 3 (t*r, tv)(0,IV) — (7, 9) € H (7.22)
is a group isomorphism. If & denotes the image of A € G under (7.22) then
Sh=9h (7.23)

for all h € G and g € Sp.
The representation S of H afforded by X (I) via (7.22) is the Schrédinger representation

associated to the character X of R, defined by
X(T) = A(t?r). 7.24)

Proof: We first observe that the set-up makes sense. Indeed, since (7, J) is an A-pair
and J/I = Rt + I the ideal J? = (¢t?) is principal. But in view of (3.14) and Lemma
3.2.7 J? is the annihilator of K, whence Lemma 3.2.8 ensures that R/K does admit the
primitive linear character A.

Now the first two assertions follow from the very definition of the objects involved.
Proposition 6.1.2 shows that X(I) is an absolutely irreducible F(G/D(I)), and hence
F(H)-module. By definition ‘

-g(h) = S(h)lX([), heqG. (7.25)
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In particular, if 2 = (¢2r, 0) then (7.25) reads
S(F,0) = S(t*r,0) x(ny = A(F*r)1x(n = AP 1x)-
Theorem 4.1.4 guarantees that S is the Schrédinger representation associated to A O

7.6.2 Theorem Let (I,J) be any A-pair. The restriction to Sp(K’) of the Weil repre-
sentation W) x(y) of Sp afforded by X (I) is trivial. The corresponding representation w
of Sp is a Weil representation if and only if J/I is principal, in which case the associated

character is (7.24).

Proof: Since K = (I : J), Theorem 7.1.1 asserts that W) x(j) is trivial when restricted to
Sp(K).
Suppose first that J/I = Rt + I is principal. The very definitions of § and W, and

the compatibility condition (7.23) show that the equation
W@ xnSBxoW () xm =SCh)xu)y 9€SP heG
can be written as
W@SRW(@ ™ =SFh), geSp.heH. (7.26)

Since S is the Schrédinger representation of H associated to X, (7.26) says that W is a
Weil representation of Sp associated to A. Two cases arise:

Sp is perfect. There is nothing to be done.

Sp is imperfect. Then n =1 and ¢ = 3. We need to verify that the character Qof W

satisfies the condition of Lemma 5.8.1. That is,
QU x(y(prw) = Qega) =D XF) (7.27)
FeR
To compute Q) x(7)(p1,4,) We use the basis (6.11) of X(I). Note that ¥ = Rv;. Set
g =piu €SpM and T = T(Jui/Ivy) = T(J/I). Then (5.4) gives

Wa(9)&, = [—}—, ; A(g(0+ W), v+ 0))eypn = A({gv,v))E vET
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since (vp, wo) = 0 for all vg € Ju; and wo € [v;. Thus
Quxn(@) = Y Algv,v) = D A(lgron,rvn)) = D A(r?). (7.28)
veT reT reT

On the other hand, in view of the bijection
R/IK>r+ Kert+Iel/l (7.29)

we can write
STarh = Y A= SoAE) =Y X7 (7.30)
reT rt+lIeJ/I FeR FeR

In light of (7.28) and (7.30), (Eq. 7.27) is established.

Suppose now, conversely, that X (I) affords a Weil representation of Sp. First of all

observe that
|J/I|" =deg X (I) = |R/K|" (7.31)

due to Proposition 6.1.2 and Theorem 4.1.4.

In view of Corollary 7.2.2 X (I) affords a faithful representation of Sp. Thus, if this is
a Weil representation it must be associated to a primitive linear character of R (one can
associate Weil representations to any linear character; only if the character is primitive
the resulting representation will be faithful). Therefore K is an irreducible ideal.

Now K = Nzey(I : (z)), hence
K= (1:(t) (7.32)

for some t € J due to the irreducibility of K. It follows from (7.32) that (7.29) is an
injection, and hence a bijection in light of (7.31). We conlcude that J/I is principal, as

claimed. O

7.6.3 Note  On the day this thesis was submitted a proof of the following result was
nearly finished: X (I) affords a tensor product of Weil representations of Sp if and only if
J? is principal.
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7.6.4 Theorem IF R is principal then X decomposes as the sum of [ + 1 absolutely
irreducible FSp-modules non-equivalent to one another. There are |[/2] of them contained
in each of X¥, with degrees g"('=2(+1))(¢2" —1)/2 0 < i < |I/2], plus the one dimensional
trivial module X (7'/2) if | is even and the ¢?*-dimensional module X (x(+1)/2) affording the
Weil representation of Sp,,,(q) and having absolutely irreducible components X (zw(!+1)/2)=

if { is odd.

Proof: By induction on [. If [ =0 then R = (0), Sp = {1} and X is the one-dimensional
trivial module. The field case was already treated in Theorem 7.2.4. Suppose that [ > 1
and the result is true for all R with nilpotency degree less than I. By Theorem 7.6.2
and inductive hypothesis, X (min) = X (x/~!) breaks up into the sum of { — 1 absolutely
irreducible FSp-modules of the desired degrees. Since X = Top* & Top~ & X (min),
Corollary 7.2.3 and Lemma 2.6.1 guarantee that Top* and the /— 1 components of X (min)
are all absolutely irreducible and non-equivalent to one another. The degrees of Top* are
given in Lemma 6.1.3. O

The next result gives the entire decomposition of X, without recurring to Theorem

7.6.2.

7.6.5 Theorem  Suppose that R is principal and let D¥ = D*(C), where C is the

strictly ascending chain of A-pairs
(0, B) = (m!, m0) < (min, m) = (m!~%,m}) < ... < (w2, ml¥/2)),

Then D¥* give the decomposition of X into { + 1 absolutely irreducible non-zero FSp-

components, non-isomorphic to one another.

Proof: According to (6.18) the number of non-zero components of D* is always equal
to ! + 1, regardless of the parity of {. The fact that they are absolutely irreducible and

non-isomorphic follows from Corollary 7.2.3 and Lemma 2.6.1. a
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7.7 The case of a homogeneous ring

Assume here that R is a homogeneous ring and fix an ideal / which is its own annihilator.
We prove that then T'op* and Top afford monomial characters of Sp.

Set L=Lr;=1IV and X = Xr. Then P = P is equal to W, as shown in Lemma
6.1.3; there is no need to deal with projective representations.

Given v € V, denote by Sp(I, v) the subgroup of Sp consisting of all g satisfying gv = v
mod IV. In view of (4.10) the map &, : Sp(Z,v) = F~

g — A({gv, v))
is a linear character. Observe that
Sp(I,v) x (¢) ={g€Sp|gv=+v mod IV} (7.33)

and denote by 6 the extension of &, to Sp(J,v) x (¢) defined by 6 (1) = 1.

The next result was originally proved by Gerald CIiff for a principal ring E.
7.7.1 Theorem  Qr,p and Qr,,+ are monomial characters. In fact,
Qrops =Indg0 ;1 0 6F (7.34)
and Q7o = indgg([‘u)&, for any v € P.

Proof: Let 7 = T(V/L) and let Ty, be the transversal of mV’ relative to IV contained
within it. Set Po={v € T : v & mV} = T\ T,z Lemma 6.2.3 shows that (e)veT
is a basis of X (min). Denote temporarily by Z the F-subspace of X with basis (ey)vePq-
Since Z is FSp-invariant (use (4.10) or Proposition 6.2.3) and complements X (min) we
necessarily have Z = Top.

Since Sp acts transitively on Py (Corollary 2.2.3), (4.10) tells us that Sp permutes
transitively the one-dimensional subspaces of X spanned by the basis vectors (e,)vep,-
Moreover, given a fixed vector v € Py, we recognize the stabilizer of Fe, in Sp as Sp(Z, v),

affording the character é,. Thus, Qr.p = indgg( I u)&,, as claimed.
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Write f* =e, £e_,, v € P, and observe the relations:
W) fE = 5, =+f7,

W(g) £ = M(gv, ) FF,

in the notation of (4.10). Reasoning as above, and taking into account (7.33), we see that

Qrops = indgg(['v)x(L)Sui for any v € Po. O
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Examples

Example 1 Let R = Fy[s,t], subject to the relations s? =t?2 = 0. Then X (min) affords
the permutation representation of Sp,,(¢) ~ Sp,, (R)/Sp(m) arising from its natural action
on a symplectic Fy-space of dimension 2n.

Proof: R is local since the maximal ideal m = (s, ¢) is nilpotent. The nilpotency degree
of m is equal to [ = 3, while min = m? = (st) is the unique minimal ideal of R. The
cardinality of R is q*.

Proposition 6.1.2 gives dimX (min) = |m/min|® = ¢?", as required. To compute with
X (min) we shall let I = (s}, so that Ann(J) = I, and take X = Xjv.

Choose T = T(V/IV) and let Tg be the transversal 7g of mV relative to IV contained
within it. Then Lemma 6.2.3 shows that (e,),e7; is a basis of X (min). To be specific, let
W=Fu®..9 Fju, ® Fu1 $ ... & Fyu, and observe that V=W & siW & tW & stW =
(WetW)e (IV). We can thus take 7 = T(V/IV) = WatW and Tp = tW. Observe that
(W, (, Mlwxw) is a 2n dimensional symplectic space over F,; another such symplectic space
is (EW, {, )¢), where (tz, ty): = (z,y) for all z,y € W. The symplectic group corresponding
to each of them is precisely the subgroup of Sp,, (R) preserving W. There is no danger of
confusion if we denote this subgroup by Sp,,.(q).

According to this definition, we have Sp,,(R) = Sp(m) X Sp,,(g). Since (min: m) = m,
Theorem 7.1.1 tells us that Sp(m) acts trivially on X (min). We proceed to compute the
corresponding representation of Sp,,(g) afforded by X (min). Given v € 7g and g € Sp,
Lemma 6.1.4 and (4.10) tell us that W(g)e, = A({gv, v"))e,, where gv = v’ mod IV for
a unique v’ € 7. Since v, gv and v’ belong to ¢V and (¢£)? = (0), we have A({gv,v)) = L.
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Since Sp,,,(q) preserves Tp, v/ = gv. We have thus proven that
W(g)ev = €gy

for each g € Sp,,(¢) and each v € (¢tW, (, )¢), as claimed. a

Example 1 shows that:

(2) Strong results such as Theorem 7.6.2 cannot possibly hold for a general special ring
R.

(b) Strong statements such as (7.8) might fail miserably on X ([I), let alone on an
arbitrary FSp-submodule Z of X. This pathology is essentially impossible when R is
principal. Indeed, in this case, Wy z ~ W,z for a non-square £ € R~ if and only if [ is
even and Z = X (r*/?) affords the trivial representation.

(c) There is no hope, in general, that F is sufficiently large to ensure that all the
irreducible Weil components are absolutely irreducible. Indeed, even if n = 1, the permu-
tation CSp,, (¢)-module V has components whose character values lie outside F, except
when ¢ = 3 ([Tie97] § 3, [Dor71] § 38). This pathology cannot occur when R is principal.

Example 2 Let (I, J) be a B-pair in an irreducible ring R (the existence of such pair
is ensured by Proposition 3.2.9) and let d = dimg, J/I. One can use the results of section
7.6 to show that, depending on the nature of d, X (/) affords the following representation
of Span(q):

0 = trivial representation,
d=41 => Weil representation,

> 2 = tensor product of d Weil representations.

Example 1 is a particular instance of this phenomenon.
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Topics for further investigation

There is an explicit formula to realize the Weil representations of Sp,,(g) afforded by X ¥,
provided mq(Qx+) = 1 [Sze98]. It is natural then to pose

Problem 1 Suppose that mq(Q2x+) = 1. When and how are Wy« realizable over
the ring of integers of Q(2x+)? What can be said about the corresponding lattice?

For instance, if g is square, it is definitely possible to conjugate Wx+ into a matrix
representation with coefficients in Z. We even wrote an algorithm that given an input I
consisting of a finite set of rational d Xxd invertible matrices, produces as output a conjugate
set O of integral matrices, provided I generates a finite group. There seems to be no way,

yet, to write down a closed formula for the matrix that performs the conjugation.

Work in the general case of an irreducible ring can be continued with

Problem 2 Describe X (min) in as much detail as possible.

Nice as it might be, Theorem 7.7.1 is false, in general, if R is not homogeneous. It is
reasonable then to pose

Problem 3 Find necessary and sufficient conditions for TopT to afford monomial
characters. Find subgroups G* and G*-modules Z% such that Top* = indz‘;Zi.

David A. McNeilly has made progress in regards to Problem 3.

Lemma 4.2.5 invites us to write down W relative to different models of X. This might
allow us to see W from different perspectives than that of Theorem 5.6.1, and discover
further properties, as in the case when R is homogeneous. This prompts us to pose

Problem 4 Find explicit H-isomorphisms between the different models of X given
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in Lemma 4.2.5. Then use Theorem 5.6.1 and the H-isomorphism X =~ Xjs to write down

W relative to X.
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