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Abstract

The MS/MS spectrum of a compound can be manually interpreted to understand its

structure. However, given the fact that manual interpretation of fragmentation spec-

tra is time-intensive and often impractical, libraries containing spectra information

have been developed to provide reliable source of metabolite identification.

In this work, by applying in silico fragmentation approach, a predicted MS/MS

spectrum of a compound was created by compiling a list of fragment ions gen-

erated based on chemical bond cleavage of the compound structure. We develop a

MS/MS search program which allows a user to search an experimental MS/MS data

against our MyCompoundID database which contains 383,000 simulated MS/MS

compounds for spectral match. A search program, DnsID, has been developed in

MyCompoundID for automated identification of dansyl labeled metabolites. These

methods allow user to narrow down the candidate-list which generated from MS

search into one or a few unique structures.
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Chapter 1

Introduction

Metabolomics is the scientific study of chemical processes involving metabolites.

Specifically, metabolomics is the systematic study of the unique chemical finger-

prints that specific cellular processes leave behind, the study of their small-molecule

metabolite profiles [1]. The metabolome refers to the complete set of small-molecule

chemicals found within a biological sample. Also, it represents the collection of all

metabolites in a biological cell, tissue, organ or organism, which are the end prod-

ucts of cellular processes [5]. Since the metabolic profiles are context dependent,

and vary in response to a variety of factors including environment and environ-

mental stimuli, health status, disease and a myriad of other factors, it can be used to

detect the physiological changes caused by toxic insult of a chemical, and reveal the

set of gene products being produced in the cell, data that can represent one aspect

of cellular function. When combined with genomic transcriptomic and proteomic

studies, metabolomics can also help in interpretation and understanding of many

complex biological processes. Indeed, metabolomics is now widely recognized as

being a cornerstone to all of systems biology [9].

There are many detection methods used in metabolomics. The most widely used

techniques are Mass spectrometry (MS) and Nuclear magnetic resonance (NMR).

Mass spectrometry (MS)-based metabolomics has been developed quite dramatical-

ly in the past decades. However, the metabolite identification of the MS data is still

a bottleneck. MS coupled with chromatographic separation techniques, is a key

analytical approach for high-throughput analysis of small molecules. To achieve

the structural information in MS experiment, collision-induced-ionization has been
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developed to break down a compound and record the compound’s fragments. The

matching of experimental MS/MS spectrum with a reference MS/MS spectrum pro-

vides confidence of the compound identification.

1.1 MS/MS Spectra

1.1.1 Introduction

MS/MS spectrometry is both the science and the art of displaying the spectra of

the mass and structure information of a sample of material. The x-axis of MS/MS

spectrum represents a relationship between the mass of a given ion and the number

of elementary charges that it carries. This is written as the IUPAC standard m/z to

denote the quantity formed by dividing the mass of an ion in the unified atomic mass

unit and by charge number. The y-axis of the spectral represents signal intensities

of the ions. MS/MS spectrum is produced using a tandem mass spectrometer, each

peak represents one fragment’s mass and intensity information. MS/MS spectrum

also can be manually interpreted, often against a possible chemical structure, to

confirm or disapprove a structural assignment. For these reasons, MS/MS spectrum

can be used to reveal the structure information of the molecule [8].

1.1.2 Related Work

Metabolite MS/MS spectral library are available from spectral libraries such as

MassBank [3], HMDB [16], Metlin [11]. However, the metabolites with reference

spectra available are very limited and it turns out to be an issue for the metabolite

identification of MS/MS spectra that can’t match with any available reference spec-

tra. This problem can be solved by the accurate prediction of compound structure

from its experimental MS/MS data.

There are several approaches to achieve the goal of computational MS/MS an-

notation. The first approach is the rule-based fragmentation spectrum prediction.

This method works based on the hypothesis that by applying fragmentation rules to

chemical structures, it is possible to generate predicted spectra which is similar to

their real MS/MS spectra. In practice, such rules are curated from MS literature.
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Nowadays, there are two major commercial tools that predict MS fragmentation

based on rules: Mass Frontier (Thermo Scientific, Waltham, USA), ACD/MS Frag-

menter (Advanced Chemistry Labs, Toronto, Canada). However, these mentioned

commercial softwares haven’t published their algorithmic details. The second ap-

proach is combinatorial fragmentation. This approach aims at explaining the peaks

in a measured spectrum rather than simulates the fragmentation spectrum of a given

compound in the rule-based fragmentation. Metfrag is an example of this combina-

torial fragmentation approach. It can be applied to a metabolite database to find the

compound that best explains the experimental spectrum [10].

1.2 Retention Time for Metabolite Identification

Chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-

MS) is an enabling technology that provides accurate quantification of metabolites

with high submetabolome coverage. It is based on rational design of the labeling

reagents to target a class of metabolites sharing the same functional group to im-

prove metabolite separation, detection and quantification [2]. Metabolite identifica-

tion remains to be one of the major analytical challenges. The first path of metabo-

lite identification often involves the search of accurate mass and MS/MS spectrum

of a given peak against a compound library for possible match [14]. Several com-

pound libraries containing accurate masses and MS/MS spectra information have

been developed. One major limitation of this approach is that not all metabolites

can produce a sufficient number of fragment ions for library search. On the other

hand, using mass search alone can lead to many possible structure candidates.

The interval between the instant of injection and the detection of the component

is known as the retention time. Because retention times vary with identity of the

component, they can be used to identify component. According to these reasons,

retention time (RT) of metabolites can be another important piece of information.

However, RT can vary greatly, depending on a number of factors including LC setup

[15], column type and elution conditions used, and thus is not commonly used as

a search parameter in a publicly available compound library. RT match is often
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performed at the final stage of confirming a metabolite identity using an authentic

standard. By spiking a standard to a sample or running identical LC-MS conditions

for the standard and sample, retention time can then be compared [4].

1.3 The Motivation

Metabolomics research has advanced rapidly in the last decade, but the metabo-

lite identification remains analytical challenge. Firstly, all the currently available

MS/MS prediction needs huge amount of calculation. The calculation takes quite

a bit of time to complete one structure annotation and thus not suitable for LC-

MS/MS experiment. Secondly, all the currently available computational MS/MS

annotation programs only work on metabolites that are known in the metabolome

library. For the potentially existing metabolites that do not exist in the metabolome

library, the computational interpretation approach does not work. Last but not the

least, there still is no effective and efficient compound identification algorithm to

take full advantages of mass spectral features.

For these consideration and to satisfy the practical needs, we first developed an

evidence based metabolome database: MyCompoundID [6]. It consisting two sub

datasets: 8,300 known human metabolites from HMDB and 383,000 metabolites

which generated from the first one after one reaction. We then developed a web-

based pipeline of tools to identifying unknown metabolites in metabolome profiling.

Our program allows user to upload MS/MS spectral data and search against the

MyCompoundID databses for metabolite identification.
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Chapter 2

MS/MS Search Construction

In this chapter, we will introduce our MS/MS chopping reaction algorithm and

database construction. The paper 1 has been submitted to Analytical Chemistry

according to this work.

2.1 Searching Inputs and Outputs

Our search program let the user to input the precursor ion and experimental MS/MS

fragmentation peak list. The precursor ion is first to search against the database. A

list of candidate molecules with molecular mass the same as the precursor mass

would be isolated out. Then, the experimental MS/MS fragmentation peak list is

used to compare with the predicted MS/MS peak list of all the candidate molecules

in the candidate list. A score is then assigned to each of the comparison to evaluate

the similarity between experimental and predicted MS/MS spectra. The work flow

is shown in Figure 2.1.

2.2 Preparation for Chopping Algorithm

2.2.1 Chemical Graph

Since our chopping reaction is based on the chemical graph, we give this definition

at the very beginning of the chapter. In chemical graph theory, a molecular graph

1T. Huan, C. Tang, R. Li, Y. Shi, G. Lin and L. Li. MyCompoundID MS/MS Search: Metabo-

lite Identification Using a Library of Predicted Fragment-Ion-Spectra of 383,000 Possible Human

Metabolites. Analytical Chemistry
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Figure 2.1: Work flow of MS/MS search.

is a representation of the structural formula of a chemical compound in terms of

graph theory. A chemical graph is a labeled graph whose vertices correspond to

the atoms of the compound and edges correspond to chemical bonds. Its vertices

are labeled with the kinds of the corresponding atoms and edges are labeled with

the types of bonds. The hydrogen-deleted molecular graph which we used as our

data structure is the molecular graph with hydrogen vertices deleted. There is a

limitation of this data structure that is this molecular graph does not contain any

information about the 3D arrangement of the bonds so that we can not distinguish

conformational isomers.

2.2.2 Data Structure and API

According to the chemical graph in the above subsection, we modify the data struc-

ture in Chemistry Development Kit [7] to convert chemistry molecule to a special

graph structure. The following figures give detail information of our data structure.

Our chopping algorithm is based on this data structure.
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Atom structure

Usage: Represents the idea of a chemical atom

Normal Constructor: Atom(String elementname)

Constructs an Atom from a String containing an element symbol

This structure have the following important methods:

Function Returns Type Description

getMass() Double Returns the mass of this atom

getName() String Returns the name of this atom

getHCount() Integer Returns the hydrogen count of this atom

Figure 2.2: Atom structure.

Bond structure

Usage: Implements the concept of a bond between two atoms

Normal Constructor: Bond(Atom a1, Atom a2,int Order)

Constructs a bond with a given order between two given atoms

This structure have the following important methods:

Function Return Type Description

atoms() Iterable<Atom> Returns the iterator to atoms making up this bond

contains(Atom a) Boolean Returns true if the given atom participates in this

bond
getOrder() integer Returns the bond order of this bond

setAtom(Atom[] a) void Sets an Atom in this bond

setOrder(int o) void Sets the bond order of this bond

Figure 2.3: Bond structure.

2.3 Chopping Algorithm

2.3.1 Molecule Ring Detection

In chemical graph, a cyclic compound is a compound in which a series of atoms is

connected to form a loop or ring [12]. Since the ring detection is very important

in our chopping algorithm, so we give the ring detection algorithm (Algorithm 1)

based on the chemical graph data structure described above. Actually, this algorith-

m can be explained by the following steps which maybe easier to understand:

7



AtomContainer structure

Usage: Base class for all chemical objects that maintain a list of Atoms and

related bonds.

Normal Constructor: AtomContainer()

Constructs an empty AtomContainer.

This structure have the following important methods:

Function Return Type Description

addAtom(Atom a) void Adds an atom to this container

addBond(int a,int b,int

o)

void Adds a bond to this container.

atoms() Iterable<Atom> Returns an Iterable for looping over all atoms in this container

bonds() Iterable<Bond> Returns an Iterable for looping over all bonds in this container

contains(Atom a) boolean True, if the AtomContainer contains the given atom object

contains(Bond b) boolean True, if the AtomContainer contains the given bond object

getBond(int number) Bond Get the bond at position number in [0, ..]
getAtom(int number) Atom Get the atom at position number in [0, ..]

Figure 2.4: AtomContainer structure.

1. The input atom is the start atom, and if the target is also this atom we can

check if this input atom is in the ring.

2. Access all bonds connected to this atom.

3. Check whether we already visited this atom before. If not, add the connected

atom to the path.

4. If the connected atom is our target then return true. If not, we can recursively

visit the neighbors of this connected atom and try to find our target. If we

successfully find the target, then return true, the path still contains all the

atoms which lead us from start atom to the target atom.

5. If we can not find the target atom, we remove this atom and bond from the

path.

6. After visiting all the neighbor atoms, if we still can not find the target, then

we return false. The path should be empty.

8



Algorithm 1 Ring detection algorithm

Input: AtomContainer molecule, Atom atom, Atom target, AtomContainer path.

Output: boolean value whether the atom can connected to the target, and the

path will contain all atoms we visited to get to the target.

function DFS(AtomContainer m, Atom atom, Atom target, AtomContainer path)

atom.visited=true

for Bond b in m.getConnectedBonds(atom) do

Atom connected = b.getConnectedAtom()

if connected.visited is false then

path.addAtom(connected)

path.addBond(b)

if connected is target then

return true;

else

if DFS(m, connected, target, path) then

return true;

else

path.removeAtom(connected)

path.removeBond(b)

end if

end if

end if

end for

return false

2.3.2 Benzene Ring Detection

Benzene is a special organic chemical compound with the molecular formula C6H6.

Its molecule is composed of 6 carbon atoms joined in a ring, with one hydrogen

atom attached to each carbon atom. Since the benzene ring has some unique charac-

ters, so we need to detect whether the compound has a benzene ring. The following

algorithm is used to detect benzene ring (Algorithm 2) and it can can be explained

by the following steps:

1. The input is an Atom-Container, using algorithm 1 we achieve all the rings in

this molecule.

2. Filter rings obtained by the first step which contain less or more than 6 carbon.

3. Check whether there is any atom in the ring which is not carbon. If not, go to

the next step.

9



4. Go though all the bonds in the ring. If the sum degree is not equal to 9, return

false.

5. If the ring satisfies all constraints described above, this ring has a benzene

structure.

Algorithm 2 Benzene ring detection algorithm

Input: AtomContainer molecule

Output: Whether this molecule has a benzene ring.

function isBenzenering(AtomContainer m)

List<AtomContainer> ringset=m.getRingset().

for AtomContainer container in ringset do

if container.getatomcount() is not 6 or one of the atoms is not carbon then

Continue;

end if

Set BondSum equals to 0

Iterable<Bond> iter=container.bond()

while iter.hasNext() do

BondSum =BondSum+iter.next().degree

end while

if BondSum != 9 then

return false;

end if

end for

return true;

2.3.3 Chopping Algorithm

First, we will introduce some definition which is related to our chopping algorithm.

Definition 2.3.1. Terminal-atom is an atom which has only one edge connects to

another atom.

Definition 2.3.2. Ring-set is a set which contains all the ring structure in a molecule.

Definition 2.3.3. Split-able-bond is a bond which doesn’t connect to the terminal-

atom and shouldn’t be a double bond in the ring-set.

We then proceed to chop the compound by the following steps (Algorithm 3):

10



Algorithm 3 K-layer chopping algorithm

Input: AtomContainer molecule

Output: MS/MS fragments

function Klayerchopping(AtomContainer m)

List<Fragments> fragments.

List<Bond> bondset=m.getSplitBond().

for Atom atom in m.getTerminalatom() do

if atom is hetero then

Fragment f = split(m,atom);

fragments.add(f);

end if

end for

int K;

if Bondset.size()<=40 then

K = 4

end if

if Bondset.size()>40 and Bondset.size()<=60 then

K = 3

else

K = 2

end if

fragments.add(split(m,bondset,k)).

return fragments;

1. Iterate all the terminal-atoms, if the atom is hetero (O,N,P,etc), then we chop

this atom and add these two fragments’ mass in our mass-set.

2. Check the size of the split-able-bonds, if it less than 40 we do 4-layer chop-

ping, between 40-60 then 3-layer chopping, more than 60 then 2-layer chop-

ping.

3. Get all the split-able-bonds in the ring-set and the benzene ring-set.

4. Get all the fragments after step 3, we do linear K-layer chopping according

to the size of their split-able-bonds.

The reason we use different layers chopping for different compounds is because

sometimes the metabolite is huge, it’s too time-consuming for us to do the 4-layer

chopping and too many fragment ion masses will be created. Figure 2.5 shows an

example of ring chopping, while Figure 2.6 shows an example of layer chopping.
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Figure 2.5: An example of ring chopping.
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2.4 Scoring Scheme

After the chopping algorithm, we can get the predicted MS/MS fragments. An algo-

rithm was developed to gauge the similarity between the experimental MS/MS data

and the predicted MS/MS sepectrum. The equation for the comparison is shown be-

low. A weight is calculated for each comparison by the dot product of the matched

m/z’s and intensities. A m/z tolerance is set to determine if the experimental m/z is

matched with the predicted m/z. For providing the optimal match score, the expo-

nent for m/z is 3 and for intensity is 0.6, which was taken from the literature [13].

A score is calculated by normalization against the maximum weight in all the can-

didates. A higher score indicates a better match between the experimental MS/MS

and the predicted MS/MS.

weighti =<
−−→
m/z >3 · <

−→
Int >0.6

Socrei =
1

max(weight)
weighti

<
−−→
m/z > : the matched list of m/z

<
−→
Int > : the matched list of intensities

i : index number of compounds in candidate set

Besides the match score, a fit score is used to quantify how well the experimental

fragmentation are matched to the predicted spectrum. The fit score is defined as:

fit score =
<

−−→
m/z > · <

−→
Int >

<
−→
M > · <

−→
I >

<
−−→
m/z > : the matched list of m/z

<
−→
Int > : the matched list of intensities

<
−→
M > : the experimental list of m/z

<
−→
I > : the experimental list of intensities

A higher fit score will be generated if all or most of the experimental fragment ion

peaks are explained by the predicted spectrum. The fit score calculation considers

the experimental peaks’ march quality, while the match score calculation does not.

The match score is useful for ranking the mass-matched metabolite candidates and

the fit score is useful for judging the quality of a match with the predicted spectrum.
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2.5 Database

We use MySQL as database to store our metabolite compounds information. In this

section, we will introduce the structure and capacity of our database.

2.5.1 Zero Reaction Database

We have two tables for the zero-reaction database, Table 2.1 has three fields, hmd-

b id, mw, ms, while Table 2.2 contains the detailed information such as the chem-

ical formula and common names. We make a connection between the two tables

through the foreign key hmdb id. This table contains 8021 zero-reaction metabo-

lites and the .mol files can be downloaded from HMDB. Figure 2.7 shows the mass

distribution of 8021 standard metabolites in our zero reaction database. The x-axis

represents the mass in Da while the y-axis represents the number of compounds in

the round number.

Table 2.1: Myid mw table

Name Type Usage

hmdb id varchar(25) HMDB.No as a primary key

mw double(12, 6) molecular mass

ms blob molecular MS/MS spectrum

Table 2.2: Myid detail table

Name Type Usage

hmdb id varchar(25) HMDB.No as foreign key

formula varchar(255) Proportions of atoms that

constitute a particular com-

pound

common name varchar(255) Common Names of Chemical

Compounds
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Figure 2.7: Zero reaction 8021 compound mass distribution graph.

2.5.2 One Reaction Database

Based on 76 commonly encountered metabolic reactions, we extended the zero-

reaction database to one-reaction database. The structure of the table is shown in

Table 2.3, where each table entry is for one compound. This database contains

383,000 one-reaction metabolites. In Table 2.3, a compound has a unique reac-

t id, for example, ”HMDB00003 35” which reveals this compound is the product

of HMDB00003 after #35 reaction in the possible reactions table which is in our

web-site. The ms column contains all the fragments’ mass which is generated by

our chopping algorithm while the isShow reveals whether the compound has been

validated by our users and indicates whether the entry is going to be searched a-

gainst. Figure 2.8 shows the mass distribution of 383,000 one-reaction metabolites

in our one reaction database.

Table 2.3: One reaction table

Name Type Null Key Default Usage

react id varchar(25) No PRI unique key for the compound

mw double(12, 6) No MUL Null molecular mass

ms medium-blob Yes Null molecular MS/MS spectrum

isShow tinyint(1) Yes 0 whether to show this compound
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Figure 2.8: 373,000 one-reaction metabolites mass distribution.

2.5.3 Database Indexing

Our databases use HMDB.No and React.ID as primary key and the mass informa-

tion can be seen as a data in the table. For every mass search, our program should

return all candidates that have mass within the mass tolerance range. We compare

3 different database-structures’ performance, B-Tree, Hash, Index File which can

be implemented by adding a second file associated with a data file of mass infor-

mation. First, we randomly pick 1500 entries and use their HMDB.No or React.ID

to do key search, then we use their exact mass to do mass search, the last step is

range search we use 0.005Da as mass tolerance and search the candidates in our

database. Table 2.4 and 2.5 show the performance of these database-structures, for

zero-reaction and one-reaction respectively.

Table 2.4: Average performance of zero reaction database in millisecond

B-Tree Hash Index File

Key Search 1,563 1,203 803

Data Search 78,156 56,998 605

Range Search 8,886 83,568 3,489
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Table 2.5: Average performance of one reaction database in millisecond

B-Tree Hash Index File

Key Search 2,589 1,688 1,896

Data Search 356,911 256,389 1,568

Range Search 268,546 508,129 8,566

According to the tables above, the B-tree and Hash databases performed key and

data searches with similar efficiency. However, the Hash database performed range

search much slower than the B-tree database. The index file shows the best aver-

age performance on all 3 types of searches compared to B-tree and Hash database

implementations. The marked performance increase for the data and range search

in the index file is due to the implementation of a secondary database in which the

key-value pairs of the primary are swapped. Due to the frequent use of range search

in our program, the index file is the most appropriate type for our database.

2.5.4 Database Capacity

In this subsection, we will describe capacity of our database. Figure 2.9 shows the

capacity for different databases in our program. The x-axis represents the number

of reactions while the y-axis represents the capacity on a logarithmic scale in Gi-

gabyte. The MS database is used in MS search, from the graph we can see that the

capacity of MS/MS version 2.0 database is much larger than the version 1.0, the

reason is that we implement the ring chopping algorithm and the K-layer chopping

algorithm which generate more fragments than the old chopping algorithm.

Since database generation is time-consuming and we need large space to store

the information, the two-reaction MS/MS database haven’t been implemented yet.

From the graph, the database capacity for one-reaction MS/MS version 2.0 is about

40.56GB and we have 76 common reactions. According to the above information,

we can predict the capacity for two-reaction MS/MS database is about 40GB∗76 ≈

3TB.
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Figure 2.9: Database capacity graph

2.6 Web Services

MyCompoundID Version 2.0 was set up for users on May 1, 2015. This chapter

presents the main framework design and the display of results.

2.6.1 Search Parameters

In our search page, the user should input 7 parameters for our search program.

They are Reaction type, Neutral or ionized, Precursor mass, Mass tolerance type

and range, Query mass, MS/MS tolerance type and range and Deisotype option.

We put the most common default value for users, while the user can also choose

to use our batch search model which allows uploading a csv file containing all the

MS/MS information from LC-MS/MS experiments. The following Figure 2.10 and

Figure 2.11 show the search interfaces for the these two models respectively.

We then give some detail information about the parameters. Firstly, the re-

action type means the user can select either zero-reaction metabolite database or

one-reaction metabolite database. Secondly, the user has the option to search for

neutral molecules, [M +H]+ ions, [M −H]− ions and the most common adducts

obtained by the ionization process. Then the user should enter a single mass and

mass error threshold in either parts Daltons (Da) or per million (ppm). The default

is 0.005 Da or 5 ppm, which is the typical mass accuracy readily achievable by high
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resolution instruments. Lastly, the user should enter MS/MS query and also error

threshold in two ways. The ”Deisotope” option shows whether the user wants to

filter the isotope result.

Figure 2.10: MS/MS single search page.

2.6.2 Search Result Display

After the user clicks the ”Submit Query” button, the result page will display (Figure

2.12). The result page for MS/MS search have two tables, the first table shows the

detail of the users’ input data and parameters, while the second table shows the

candidate list which is sorted by score from high to low. For this particular search,

there were three possible hits of matches. The highest score of the candidate is the

best match and most likely to be the true structure of the experiment data.

There are 11 columns in the result table (Figure 2.12). This table can be ordered

using every column as key. The second one ”HMDB ID” also provides the link

for the metabolite substrate to HMDB. Column ”Spectrum” shows the score of the

candidate compounds which can be clicked by the user to show how the experiment

data match the simulated one.
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Figure 2.11: MS/MS batch search page.

Figure 2.12: Search result page-1.

20



Figure 2.13 shows the MS/MS match graph and the table. Firstly, for the graph,

the y-axis represents the signal intensity of MS/MS peaks while the x-axis repre-

sents the peaks’ mass which also in the table below. The red peaks in the graph

are the matched experimented fragments while the grey peaks are not matched. On

the right side of the graph we add the ChemDraw plug-in which allows users to

fragment the compound by themselves to validate our results. There are 4 columns

in the result table, the first two columns corresponding to the peaks in the graph one

by one. The third column represents the number of structures which generated by

our chopping algorithm match this peak.

After clicking on the ”Detail” button, Figure 2.14 will display this table shows

how each peak matched by our chopping algorithm and the user can also check the

structure by ChemDraw.

Figure 2.13: Search result page-2.

In addition to single spectrum search, a user can upload a CSV file generated

from LC-MS/MS analysis of a sample to MCID MS/MS for batch mode search. The

file format used is shown in the tutorial of our web-site. Batch mode search is useful

for examining all the possible matches in a metabolomic profiling experiment. A
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Figure 2.14: Search result page-3.

partial screenshot of the batch mode search results is shown in Figure 2.15. In

this case, MS/MS spectra of metabolites were acquired from a human urine sample

using LC-QTOF-MS. As Figure 2.15 shows, the summary table lists information on

retention time, precursor mass, number of matched metabolites, matching scores

with links, matching quality. Again, by clicking the ”detail” of a match, several

levels of information can be displayed for manual inspection of the match.

2.6.3 Web Server Framework

We use web MVC frameworks to build this web server. Tomcat and Apache are

used as the web server container. JSP, Jquery and HTML are used to build the View,

while Java-Servlets is used as the Controller and Java is the main programming

language which is used to build the Model. Finally, the MySQL is used as the

database. Figure 2.16 shows the framework of our web server.

In the future, as the number of users increases, we will build a distributed system

and a load balancer to distribute work to different servers which will be built in

different countries. This distributed system haven’t been implemented yet, but we
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Figure 2.15: Batch result-1.

will do that in the near future.

MySQL Database

JDBC

MS/MS Search Page JSP

MS/MS Batch Search Page JSP

Search Servlet

input data

input data

Search potential candidates

Scoring Scheme
JDBC

Candidates information

Search Result Page

Rank candidates by their socre

Result Detail Page

Chopping Algorithm to Generate Fragments Structure

Java Program

Fragments Structure Page

Figure 2.16: Web server framework.
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2.7 Result of MS/MS Search Program

2.7.1 MS/MS Search of Standards

To evaluate the performance of MCID MS/MS search, we searched the MS/MS

spectra of 50 human metabolite standards against the predicted MS/MS spectral

library. These metabolites were randomly picked in order to cover as many different

types of compounds as possible. These MS/MS data were searched using both

zero reaction and one reaction. Figure 2.17 shows the search results generated,

while Table 2.6 shows more detail information of these standards. For the zero-

reaction search, an average of 5.6 compounds were mass-matched to a standard,

while MS/MS search resulted in an average of 1.3 matches. For the one-reaction

search, an average of 16.7 compounds were matched to a standard when accurate

mass search alone was used. With MS/MS search, an average of 1.4 compounds

were matched to a standard. Both zero-reaction and one-reaction search results

indicate that the MS/MS search provides a great improvement over a mass-only

library search.

Figure 2.17: Validation result.

Since all the predicted MS/MS spectra were stored in the server, the MCID
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HMDB No. Common name
Score rank/Total hits

(zero-reaction library)

Score rank/Total hits

(one-reaction library)

HMDB00034 Adenine 1/5 1/19

HMDB00053 Androstenedione 3/12 2/33

HMDB00073 Dopamine 1/6 1/22

HMDB00121 Folic acid 1/1 1/7

HMDB00123 Glycine 2/3 1/18

HMDB00125 Glutathione 1/4 1/5

HMDB00159 L-Phenylalanine 1/14 1/40

HMDB00161 L-Alanine 1/4 1/32

HMDB00235 Thiamine 1/6 2/15

HMDB00235 2 Thiamine 1/6 2/15

HMDB00244 Riboflavin 1/1 1/6

HMDB00262 Thymine 1/6 1/6

HMDB00271 Sarcosine 1/4 1/45

HMDB00294 Urea 1/8 3/12

HMDB00303 Tryptamine 1/13 1/8

HMDB00306 Tyramine 1/13 1/8

HMDB00518 Chenodeoxycholic acid 2/18 7/44 (2/10)∗

HMDB00562 Creatinine 1/3 1/1

HMDB00688 Isovalerylcarnitine 1/3 1/16

HMDB00688 2 Isovalerylcarnitine 1/3 3/16

HMDB00696 L-Methionine 1/6 1/8

HMDB00954 trans-Ferulic acid 1/13 1/35

HMDB01044 2’-Deoxyguanosine 1/4 1/32

HMDB01129 N-Acetylmannosamine 2/8 1/20

HMDB01389 Melatonin 1/3 2/6

HMDB01431 Pyridoxamine 1/8 1/16

HMDB01904 3-Nitrotyrosine 1/5 1/8

HMDB02064 N-Acetylputrescine 1/11 4/8

HMDB04816 FAPy-adenine 7/18 (3/8)∗ 5/8 (2/4)∗

HMDB04825 p-Octopamine 1/2 1/6

HMDB29865 Umbelliferone 1/1 1/3

HMDB00064 Creatine 1/17 1/4

HMDB00168 L-Asparagine 1/24 1/10

HMDB00192 L-Cystine 1/1 1/4

HMDB00214 Ornithine 1/23 1/12

HMDB00239 Pyridoxine 1/8 1/26

HMDB00251 Taurine 1/5 1/2

HMDB00289 Uric acid 1/9 1/1

HMDB00292 Xanthine 1/19 1/3

HMDB00299 Xanthosine 1/4 1/9

HMDB00300 Uracil 1/9 1/1

HMDB00575 DL-Homocystine 1/10 1/4

HMDB00641 L-Glutamine 5/15 (2/5)∗ 2/17

HMDB00670 Homo-L-arginine 1/13 2/8

HMDB00687 L-Leucine 1/8 1/18

HMDB00715 Kynurenic acid 1/5 1/6

HMDB00719 L-Homoserine 4/8 (2/4)∗ 4/18 (2/6)∗

HMDB00725 4-Hydroxyproline 1/17 1/52

HMDB00881 Xanthurenic acid 1/5 1/10

HMDB00883 L-Valine 1/8 1/19

Table 2.6: Summary of MS/MS search results for 50 metabolite standards using the

zero-reaction and one-reaction libraries in MCID

MS/MS searching was very fast. For the 50 standards , the search time was less

than 2.5 s per compound. Because the automated MS/MS search can remove a lot

of false matches generated from the mass-search alone, only a few top candidates

* in Table 2.6 represents another rank after considering isomers as one group
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need to be manually inspected to confirm or disapprove a match. As Figure 2.17

shows, for the zero-reaction search, 43, 3 and 1 out of 50 , gave the correct identity

as the top, 2nd and 3rd ranked match, respectively. There was only 2 match below

the 3rd rank. Even for the one-reaction search, 38, 6 and 2 out of 50, gave the

correct identity as the top, 2nd and 3rd ranked match, respectively. Only 4 had

the correct match below the 3rd rank. These results suggest that all or most of the

metabolites could be correctly identified as one of the top three candidates from

the MS/MS search. Thus, only these candidates need to be inspected manually

for match confirmation, greatly improving the metabolite identification efficiency.

Table 2.6 shows the detailed rank for these 50 metabolites for both zero reaction

and one reaction database. For those metabolites matched below the top 3, Table

2.6 also provides another rank after considering isomers into one group.

2.7.2 MS/MS Search of Urine Metabolites

To demonstrate the utility of MCID MS/MS search for real world applications, a

human urine sample was used to test our program. After uploading the MS/MS data

file to the MCID MS/MS website and entering the precursor ion mass tolerance of

5 ppm and fragment ion mass tolerance of 5 ppm, the program performed a batch

mode search. Figure 2.18 shows a partial screenshot of the search result page using

the zero-reaction spectral library. Figure 2.19 shows an example of urine sample’s

MS/MS spectra in MCID. Table 2.7 lists the identified metabolites, the last column

shows the availability of standard MS/MS spectra in the Bruker library (Yes or No).

In this case, using the MS/MS spectra collected from the three LC-MS/MS runs

to search the zero-reaction library, there were 45 matches. For the ones matched

with zero-reaction metabolites, we have tried to perform a cross-validation of these

matches using the Bruker human metabolite MS/MS spectral library. This Bruker

library of about 800 metabolite standards was created in the same QTOF instrument

as the one used for running the urine sample. Thus, excellent fragmentation pattern

match of the urine metabolite and library metabolite is expected, which should in

turn provide high accuracy for validation of a MCID MS/MS search result of a urine

metabolite. From the table, we can see there are 84.4% metabolites which are in
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the Bruker library. Thus, the MCID MS/MS search result was cross-validated.

Figure 2.18: Urine sample search result.
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Table 2.7: Urine sample identified metabolites

HMDB ID Common Name Mass (Da) Score Validation

HMDB07951 PC 765.530857 1.00 Yes

HMDB00212 N-Acetylgalactosamine 221.089939 1.00 Yes

HMDB00238 Sepiapterin 237.08619 1.00 Yes

HMDB11479 LysoPE 475.269892 0.67 Yes

HMDB04326 2’-O-Methyladenosine 281.112405 1.00 Yes

HMDB03331 1-Methyladenosine 281.112405 1.00 Yes

HMDB00107 Galactitol 182.07904 1.00 No

HMDB00247 Sorbitol 182.07904 0 Yes

HMDB05862 2-Methylguanosine 297.10732 1.00 No

HMDB01563 1-Methylguanosine 297.10732 1.00 Yes

HMDB00517 L-Arginine 174.111676 1.00 No

HMDB03416 D-Arginine 174.111676 1.00 Yes

HMDB01961 1,7-Dimethylguanosine 311.12297 1.00 No

HMDB02994 Erythritol 122.05791 1.00 No

HMDB02023 Ethyladipic acid 174.08921 1.00 No

HMDB00893 Suberic acid 174.08921 0.92 Yes

HMDB06509 Nervonyl carnitine 102.128274 1.00 Yes

HMDB05041 Donepezil 379.214744 1.00 Yes

HMDB13122 LysoPC(P-18:0) 507.368877 1.00 Yes

HMDB06294 16-hydroxy hexadecanoic acid 271.22732 1.00 Yes

HMDB06059 20-Carboxyleukotriene B4 366.20424 1.00 Yes

HMDB11603 4-(Methylnitrosamino) 207.100777 1.00 Yes

HMDB02171 Glycylprolylhydroxyproline 285.132472 1.00 Yes

HMDB05764 Melanostatin 284.184841 1.00 Yes

HMDB06059 20-Carboxyleukotriene B4 366.20424 1.00 Yes

HMDB05768 Kyotorphin 337.175005 1.00 No

HMDB00670 Homo-L-arginine 188.127326 1.00 No

HMDB06790 Galactosylglycerol 254.10017 1.00 Yes

HMDB03950 7-Methylinosine 283.104246 0.95 Yes

HMDB00389 2’-Deoxysepiapterin 221.091275 1.00 Yes

HMDB06357 cis-2-Methylaconitate 188.03209 1.00 Yes

HMDB01410 2-Amino-4-oxo-6 267.06037 0.01 Yes

HMDB00824 Propionylcarnitine 217.131409 1.00 Yes

HMDB00157 Hypoxanthine 136.038511 1.00 Yes

HMDB01185 S-Adenosylmethionine 399.145066 1.00 Yes
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Figure 2.19: S-Adenosylmethionine MS/MS spectra.

2.8 Conclusions and Future Work

In this work, we have developed a web server for MS/MS metabolite identification

based on accurate MS and MS/MS search using a comprehensive library of pre-

dicted spectra of human metabolites. In this program, we have an efficient method

of predicting fragments ions using heteroatom-initiated bond breakage rules and

then applied it to all the possible human metabolites in the MCID databases to gen-

erate a predicted MS/MS spectral library. An automated MS/MS search program

was developed that allows a user to search an experimental MS/MS spectra against

this MCID MS/MS spectral library for spectral match. The search results could

be manually interpreted for possible metabolite identification. This MCID MS/MS

web server allows a user to narrow down the possible metabolite structures and thus

guide the synthesis of chemical standards for eventual structure confirmation.

For the web services, we use the MVC model which enables quick updating and

modifications. In the future, when the number of users increases, we will implement

a distributed system and a load balancer to control the work load.

The major limitation of the MCID MS/MS search, compared to a standard M-
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S/MS library, is that the accuracy of any match to a predicted spectrum is not as

high as a match between the experimental spectrum and a standard spectrum. Thus,

we feel that MCID MS/MS search provides a complimentary tool to the standard

MS/MS library search. Also we feel that with more experimental data collected we

can use advanced machine learning algorithms to learn more chopping rules from

the data and develop a better scoring scheme.
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Chapter 3

DNS Library Construction

The paper has been submitted to Analytical Chemistry according to this work.

3.1 DnsID Program for Metabolite Identification

Identification of labeled metabolites in a sample is usually done in two steps. The

first step is to run the RT calibration program mixture in LC-MS to produce the

retention time information for all the calibrants. The next step is to run a real

sample under the same LC-MS condition as those used for running the calibrants.

The two data files are then uploaded to the DnsID program which is hosted at

http://mcid.cs.ualberta.ca:8080/Compound MRT/. In DnsID, the retention times

of all the labeled metabolites detected in the sample are first corrected using the

retention time information obtained from the RTcal. The program then compares

the accurate mass and corrected retention time of individual unknown metabolite

to those in the Dns-library for possible match. If a tandem mass spectrometer is

available, MS/MS spectrum of a matched metabolite can be generated and searched

against the standard MS/MS spectra in the Dns-library for further confirmation of

the metabolite identity. This program’s work flow is shown in Figure 3.1. Figure

3.2 shows the distribution of metabolites in our library, the x-axis represents the

retention time in Min while the y-axis represents the mz light of compounds in Da.

T. Huan, Y. Wu, C. Tang, G. Lin, L. Li. DnsID in MyCompoundID for Rapid Identification of

Dansylated Amine- and Phenol-containing Metabolites in Metabolomics. Analytical chemistry
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Figure 3.1: Work flow of Dns library

Figure 3.2: Distribution of Dns library

3.2 Retention Time Calibration Algorithm

In building the Dns-library, RT of individual Dns-metabolite has been normalized

to those of RT calibration. Thus, the purpose of RT calibration is to correct any
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RT shifts of metabolites in the LC-MS dataset generated in a user’s laboratory and

those of the Dns-library. This is accomplished by using a set of carefully chosen RT

calibrants with their RT data already stored in the Dns-library. Algorithm 4 shows

the RT calibration algorithm. This algorithm can be explained by the following

steps:

1. Check the type of calibration file and read the corresponding system file.

2. Crate windows for each item in the calibration file.

3. Iterate all the items in the system file and put potential candidates which

satisfy all constraints into the window.

4. Find the candidate in the window which has the highest intensity value. This

candidate will be the matched one corresponding to the calibration file.

5. Use linear RT correction to calculate the predicted RT shift.

The ”Type” in the algorithm means the user can choose the system files which

contain 10 and 22 Dns-standards respectively see Table 3.1 and 3.2. Then the RT

calibration works by dividing the whole LC chromatogram into 10 or 22 time in-

tervals. Except the first and last time intervals, all the other 9 or 21 intervals were

bracketed by two reference standards from the RTcal. In each interval, the RT dif-

ferences of the two reference metabolites between the sample LC-MS run and the

stored RTcal data are calculated (△ta,△ta+1). Then, a linear RT correction is ap-

plied to calculate the predicted RT shift (△t) (Figure 3.3). To correct the RT shift

of any peak within the interval, the predicted RT shift (△t) is used to subtract from

the original RT (to) and generate a corrected RT (tc), see the following equation for

detail.

tc = to +∆ta +
(to − ta) ∗ (∆ta+1 −∆ta)

ta+1 − ta
ta ∈ Standards = {t1, t2, ...tm−1} m ∈ {10, 22}

∆ta ∈ Shifts = {∆t1,∆t2, ...∆tm−1} m ∈ {10, 22}

where to >= ta and to <= ta+1
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Algorithm 4 RT calibration algorithm

Input: List sample RT,List Mass,boolean Type, Double input RT

Output: Double output RT

function RT Calibration(List sample RT,List Mass,boolean Type, Double in-

put RT)

if Type then

List<metabolite> system = systemfile(1).

else

List<metabolite> system = systemfile(2).

end if

List calibrated RT.

for i in range(0,rt.size()) do

List<metabolite> window.

for j in range(0,system.size()) do

if Math.abs(Mass.get(i)-system.get(j).getmass())<=0.005 and

Math.abs(sample RT.get(i)-system.get(j).getRT())<=60 then

window.add(system.get(j))

end if

end for

Double max intensity;

metabolite matched;

for metabolite m in window do

if m.intensity > max intensity then

matched= m;

max intensity = m.intensity;

end if

end for

calibrated RT.add(matched.getRT());

end for

Double output RT=input RT;

for i in range(0,calibrated RT.size()-1) do

if input RT>=calibrated RT.get(i) and input RT<=calibrated RT.get(i+1)

then

output RT=system.get(i).getRT()+(input RT-

calibrated RT.get(i))/(calubrated RT.get(i+1)-

calibrated RT.get(i))*(system.get(i+1).getRT()-system.get(i).getRT())

end if

end for

return output RT
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Table 3.1: 10 Dns-standards in system file

Index Retention Time(Sec) Mz Light(Da) Mz heavy(Da)

1 211 408.1700 410.1773

2 245 339.1009 341.1082

3 320 353.1166 355.1239

4 448.8 323.1060 325.1133

5 624.8 349.1217 351.1290

6 676.9 383.1094 385.1167

7 806.9 399.1373 401.1446

8 937.1 354.0702 356.0775

9 1,053.2 307.1111 309.1184

10 1,360.8 324.5953 326.6020

Table 3.2: 22 Dns-standards in system file

Index Retention Time(Sec) Mz Light(Da) Mz heavy(Da)

1 146.4 408.1700 410.1773

2 264 339.1009 341.1082

3 303 381.1115 383.1188

4 347.4 353.1166 355.1239

5 395.4 309.0903 311.0976

6 454.2 323.1060 325.1133

7 534.6 337.1216 339.1289

8 610.8 349.1216 351.1289

9 653.4 383.1094 385.1167

10 764.4 399.1373 401.1446

11 823.2 528.1799 530.1872

12 846.6 354.0702 356.0775

13 880.2 251.0849 253.0922

14 949.2 368.0859 370.0932

15 1,048.2 307.1111 309.1184

16 1,148.4 355.1475 357.1548

17 1,262.4 360.1138 362.1211

18 1,343.4 285.1162 287.1235

19 1,359.0 307.1111 309.1184

20 1,479.0 322.1058 324.1131

21 1,537.8 356.1315 358.1388

22 1,602.0 289.0767 291.840
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Figure 3.3: Interval Linear Calibration

The performance of the RT calibration method is illustrated in Figure 3.4 where

retention time correlations of different LC-MS experiments before and after apply-

ing RT calibration are shown. In this case, 20 standards have been selected from the

library with retention time span over the entire metabolite elution window. Figure

3.4 also shows the RT correlation plots of the 20 standards from the data obtained

by LC-FTICR-MS and those in the Dns-library. Before applying the RT calibration,

there is a near-constant shift to a higher RT for the LC-FTICR-MS data. The RT

shift can be as large as 4.8 min. Although the RT shift becomes smaller at high or-

ganic elution region, the shift is still greater than 0.5 min (30 s). Nevertheless, even

with these large RT variations, after applying the RT calibration, an excellent linear

correlation between the corrected RT and the library RT can be obtained, with a s-

lope of 1.0079. For all these 20 standards, the RT shift after calibration is below 15

s, which is the typical RT tolerance threshold we use for performing DnsID M-RT

search. This example illustrates that the RT calibration method is able to correct for

RT shifts found in different LC-MS setups.
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Figure 3.4: Retention times of RTcal obtained by LC-FTICR-MS vs. those in the

Dns-library.

3.3 Search Algorithm

For the DnsID library, we have two search options for the users, one is M-RT

search and the other one is MS/MS search. For the M-RT search, DnsID automat-

ically performs RT calibration using the calibration file against data in our Dns-

library, then we use RT tolerance and mass tolerance to filter the metabolites and

display the potential candidates to the user (see Algorithm 5). This algorithm can

be explained by the following steps:

1. Check the type of calibration file and achieve the corresponding system file.

2. Use Algorithm 4 to calculate the RT shift in the calibration file and linear

correct the RT.

3. Check the type of mass tolerance and calculate the corresponding tolerance.
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Algorithm 5 MRT search algorithm

Input: File Calibration, Double mass, Double RT, Boolean Type, Boolean isPP-

M, Double tolerance m, Double tolerance rt

Output: List<metabolite> result

function MRT search(List sample RT,List Mass,boolean Type, Double input RT,

Double tolerance m, Double tolerance rt)

if Type then

List<metabolite> system = systemfile(1).

else

List<metabolite> system = systemfile(2).

end if

List<metabolite> result =new List();

RT c = RT calibration(Calibration,RT,system);

List<metabolite> library= Dns library();

if isPPM then

tolerance m = tolerance m*mass*10−6;

end if

for metabolite m in library do

if Math.abs(mass-m.getMass())<=tolerance m and Math.abs(m.getRT(i)-

RT c)<=tolerance rt then

result.add(m);

end if

end for

return result;

4. Use mass tolerance and retention time tolerance to filter the metabolites in

DNS library.

For the MS/MS search program, the dansyl compound MS/MS spectral library can

be searched using an acquired MS/MS spectrum, then we use the MS/MS scoring

scheme which is in the Chapter 2.4 to filter and rank the metabolites in Dns-library,

see Algorithm 6. This algorithm can be explained by the following steps:

1. Achieve all the metabolites in DNS library.

2. Check the input MS tolerance type and MS/MS tolerance type and calculate

the corresponding absolute value.

3. Use Algorithm 5 to filter the results and obtain the potential candidates.
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4. Iterate all the potential candidates and use MS/MS scoring scheme to calcu-

late the score for each candidates.

5. Sort the results by score.

Algorithm 6 MRT MS/MS search algorithm

Input: Double mass, List<Double> Intensity, List<Double> MSMS, Double

MSMS tolerance, Boolean isPPM

Output: List<Double> scores;

function MRT MSMS search(List<Double> Intensity, List<Double> MSMS,

Double mass, Double MSMS tolerance, Boolean isPPM)

if isPPM then

MSMS tolerance = MSMS tolerance * mass * 10−6.

end if

List<metabolite> library= Dns library();

for metabolite m in library do

List<Double> MSMS m= m.getMSMS();

List<Double> Match =new List();

for Double fragments in MSMS do

if there is a item in MSMS m and let Math.abs(item-fragments)< MSM-

S tolerance then

Match.add(fragments);

else

Match.add(0);

end if

end for

Double score=0;

for int i in Range(0,Match.size()) do

score= score+ Match.get(i)3*Intensity.get(i)0.6;
end for

scores.add(score);

end for

sort(scores);

return scores;
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3.4 DnsID Web Services

3.4.1 M-RT Search

As Figure 3.5 shows, there are two modes of M-RT search. In the single search

mode, a calibration file is first uploaded. Accurate mass of a Dns-metabolite of

interest found in a sample is entered along with the mass tolerance. The retention

time of the metabolite and its tolerance are then entered. The RT tolerance should

be within the limit of RT variation which is typically within 15s and the mass error

is within 10ppm. After submitting the query, a search result page is displayed

(see Figure 3.6). It shows the matched compound name, HMDB number, several

numeric parameters as well as external links to HMDB and KEGG. These links

are useful to extract biological information about the matched metabolite. On the

summary page, there is also a ”Show Detail” column which provides a link to the

ion chromatogram and MS/MS spectrum of the Dns-standard (see Figure 3.7). The

standard’s chromatogram is particularly useful for manual inspection of a match

with a larger RT error (i.e., between 15 and 30s). A larger RT error is acceptable if

this is due to relatively poor peak shape. Otherwise, the match may be false.

Figure 3.5: M-RT search page.
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Figure 3.6: M-RT result page.

Figure 3.7: M-RT result detail.
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For untargeted metabolite identification, the batch mode M-RT search can be

used. In this case, both the calibration file and the CSV file of a sample LC-MS

run are uploaded (see Figure 3.5). The mass tolerance and retention time tolerance

are also entered. The search result page displays all the matches that can be sorted

according to an individual parameter. Figure 3.8 shows a partial list of matches

from the analysis of a dansyl labeled human urine sample. The mass error and RT

error of each match are shown in the search result. On the search result page, there

is an option of saving the search results as a CSV file to the user’s computer. This

file can be opened locally by Excel or other program for presentation or further

processing.

Figure 3.8: M-RT batch result.

3.4.2 DnsID MS/MS Search

In our DnsID, the dansyl compound MS/MS spectral library can be searched using

an acquired MS/MS spectrum. There are two options of MS/MS search. The first

option is to enter the precursor ion mass and the fragment ion masses with user-

defined mass tolerances, while the 2nd option is to enter the fragment ion masses
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with a mass tolerance without specifying the precursor ion mass (see Figure 3.9).

The latter is useful to find related metabolites having similar core structure and

fragment ions. An example is shown in Figure 3.10. In this case, the unknown

metabolite matches to Dns library based on the fragment ions only, we filter the

metabolites which have score 0.

Figure 3.9: M-RT MS/MS search page.

Figure 3.10: M-RT MS/MS search result page.
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3.4.3 Web Server Framework

The web server framework of DnsID is relatively simple. The current Dns-library

consists of 315 metabolites and should be expandable in the future, because of the

size of library we don’t use database to store the information of metabolites which

maybe implemented with the size of Dns-library growing up. The framework is

also similar to the MCID MS/MS project (See Figure 3.11).

M-RT Search Page

M-RT MS/MS Search Page

RT Calibration Algorithm

MS/MS Scoring Scheme 

input data

input data

Search Servlet
Correctted RT

Single Search Model

Batch Search Model

Potential Candidates 

Potential Candidates 

Result Display Page

Show Detail Page

Figure 3.11: M-RT web server framework.

3.5 Conclusions and Future Work

We have developed a dansyl standards library and a library search program, DnsID,

for rapid identification of metabolites in dansylation LC-MS targeting the analy-

sis of the amine/phenol submetabolome. For each Dns-metabolite, accurate mass,

MS/MS spectrum and retention time are included. To overcome the problem of

RT shifts often found in LC-MS data sets collected using different experimental

conditions, a RT calibration method based on the use of a mixture of 10 or 22
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Dns-standards eluted across the entire retention space in RPLC has been devel-

oped. The retention time of Dns-metabolite in Dns-library is a normalized RT a-

gainst the RTcal, allowing comparison of the library values with those of a sample

obtained under slightly different LC-MS conditions after applying the RT calibra-

tion. This library along with the DnsID search program is freely accessible from

http://mcid.cs.ualberta.ca:8080/Compound MRT/. We demonstrate that DnsID can

be used to perform M-RT search for metabolite identification with high confidence

in the LC-MS data obtained from a dansyl labeled human urine sample. MS/MS

spectral search can be used to provide additional confidence for metabolite identifi-

cation. In addition, MS/MS search can be used to find related metabolites including

derivatives and isomers of the library standards.
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