
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

Performance Evaluation of Blockchain
Systems: A Systematic Survey
CAIXIANG FAN1, SARA GHAEMI1 (Student Member, IEEE), HAMZEH KHAZAEI2 (Member,
IEEE), AND PETR MUSILEK1,3 (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
2Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada
3Department of Applied Cybernetics, University of Hradec Králové, Hradec Králové, Czech Republic

Corresponding author: Caixiang Fan (e-mail: caixiang@ualberta.ca).

The support provided by the Future Energy Systems under the Canada First Research Excellence Fund (CFREF) at the University of
Alberta is gratefully acknowledged. The authors would also like to thank Compute Canada, SAVI and Cybera that supported this research
through their cloud services.

ABSTRACT Blockchain has been envisioned to be a disruptive technology with potential for applications
in various industries. As more and more different blockchain platforms have emerged, it is essential to
assess their performance in different use cases and scenarios. In this paper, we conduct a systematic
survey on the blockchain performance evaluation by categorizing all reviewed solutions into two
general categories, namely, empirical analysis and analytical modelling. In the empirical analysis, we
comparatively review the current empirical blockchain evaluation methodologies, including benchmarking,
monitoring, experimental analysis and simulation. In analytical modelling, we investigate the stochastic
models applied to performance evaluation of mainstream blockchain consensus algorithms. Through
contrasting, comparison and grouping different methods together, we extract important criteria that can be
used for selecting the most suitable evaluation technique for optimizing the performance of blockchain
systems based on their identified bottlenecks. Finally, we conclude the survey by presenting a list of
possible directions for future research.

INDEX TERMS blockchain, distributed ledger technology, performance modelling, performance
evaluation, systematic survey.

I. INTRODUCTION

S INCE its first introduction in Bitcoin by Nakamoto [1]
in 2008, blockchain has been recognized as a disruptive

technology in various industries beyond cryptocurrency,
including finance [2], [3], Internet of Things (IoT) [4],
[5], health care [6], [7], energy [8]–[10] and logistics [11],
[12]. In 2019, CB Insights identified 55 industries that
can be transformed by this technology [13]. Compared to
conventional, centralized solutions, blockchain has some
significant advantages such as immutability, enhanced
security, fault tolerance and transparency. However, the
decentralized nature of blockchain dramatically limits
its performance (e.g., throughput and latency). For
example, Bitcoin can only achieve a low throughput of
7 transactions per second (TPS), and it takes around
10 minutes for a transaction to get confirmed [14]. In
contrast, current centralized payment systems such as
VisaNet and MasterCard can reach thousands of TPS and

almost real-time payments. By taking a similar consensus
algorithm, proof-of-work (PoW), other blockchain platforms
such as Ethereum [15] and Litecoin [16] also inherit
the performance flaws of Bitcoin. Without doubt, the
performance issue has become the major constraint of
blockchain’s applications in production. This is especially
true for systems demanding high performance such as the
online transaction processing (OLTP) and real-time payment
systems.

To overcome this problem, many blockchains put efforts
on improving their performance, e.g., by modifying the
system structure and designing new consensus algorithms.
These solutions include, but are not limited to, off-
chain [17]–[20], side-chain [21]–[24], concurrent execution
(smart contract) [25]–[27] sharding [28]–[32], and directed
acyclic graph (DAG) [33]–[40].

Existing and new solutions should be comparatively
evaluated in a meaningful manner to show their efficiency

VOLUME X, 2020 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

and effectiveness. For example, different versions of
Hyperledger Fabric (HLF), e.g., HLF v0.6 and HLF v1.0,
should be compared in the same evaluation framework to
demonstrate the performance advantages/disadvantages of
the new release. In addition, through performance evaluation
and analysis, bottlenecks can be identified and used to
inspire further optimization ideas. Therefore, performance
evaluation plays an important role in the area of blockchain
research.

To this end, it would be useful to summarize, classify
and survey the existing efforts on blockchain performance
evaluation and to identify future directions in this area.
However, most existing related surveys only focus on
improvement (scalability) solutions or a specific evaluation
topic of blockchain performance. A representative list of
existing surveys, shown in Table 1, clearly identifies the
need for a systematic survey on blockchain performance
evaluation.

TABLE 1. Research scope of existing blockchain performance related surveys

Year Survey Research scope

2018 Kim et al. [41] scalability solutions

2019 Rouhani and
Deters [42]

security, performance, and
applications of smart contract

2019 Zheng et al. [43] challenges of
performance and security

2019 Wang et al. [44]
benchmarking tools

and performance
optimization methods

2020 Zhou et al. [45] scaling solutions to blockchain

2020 Yu et al. [46] sharding for
blockchain scalability

In this contribution, we present a comprehensive,
systematic survey on blockchain performance evaluation.
The survey covers existing studies on evaluating the
performance of various mainstream blockchains, and
compares their advantages and disadvantages. It addresses
the following research questions:

RQ1. What are the current mainstream techniques, main
evaluation metrics and benchmark workloads for
blockchain performance evaluation?

RQ2. How to comparatively evaluate the performance of
two blockchain systems with different consensuses?

RQ3. What are the significant bottlenecks identified in
various blockchain systems?

RQ4. What are the main challenges and opportunities in
blockchain performance evaluation?

To answer these questions, the authors have searched
and reviewed the latest papers published since 2015.
The papers have been retrieved from major scientific
databases, including ACMDL, IEEEXplore, Elsevier, MPDI
and SpringerLink. In addition, closely related papers
cited by the selected communications have also been
taken into consideration. Note that this survey focuses

DLT	Performance	Evaluation	

Empirical	evaluation Analytical	modelling

queueing
models

experimental
analysis simulation other	models

stochastic
Petri	nets

monitoring
benchmarking Markov	chains

FIGURE 1. A landscape of DLT performance evaluation approaches and
evaluated ledgers.

only on blockchain performance evaluation, and solutions
for blockchain performance or scalability improvement
are not discussed. Interested readers may refer to the
published surveys of performance improvement solutions for
blockchain [41]–[46] listed in Table 1.

To the best knowledge of the authors, this is the
first survey that systematically reviews the state-of-the-
art on the blockchain performance evaluation from several
different perspectives. The reviewed evaluation approaches
can be classified into two high-level groups: empirical
evaluation and analytical modelling, as shown in Figure 1.
Empirical evaluation includes benchmarking, monitoring,
experimental analysis and simulation. Analytical modelling
mainly covers three types of stochastic models: Markov
chains, queueing models and stochastic Petri nets (SPNs).
Through this classification, we aim to depict a big
picture of the performance evaluation landscape, identify
current challenges in this area, and provide suggestions for
future research. The contributions of this survey can be
summarized as follows:

• It provides a systematic survey on the blockchain
performance evaluation, covering all existing evaluation
(empirical and analytical) approaches for evaluating the
mainstream blockchain systems.

• It introduces existing popular models for analytical
performance evaluation of prominent blockchain
platforms, categorizes them and performs a comparative
analysis of their advantages and disadvantages.

• It identifies the current challenges in this area, and
subsequently provides suggestions for future research.

The remainder of this paper is organized as follows.
Section II provides some prerequisite knowledge on
distributed ledger technology (DLT), its categorization
and architecture. Section III introduces the blockchain
performance evaluation solutions from the perspective of
empirical analysis, including benchmarking, monitoring,

2 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

experimental analysis and simulation. Section IV focuses
on the technical and mathematical introduction of existing
commonly used performance modelling solutions including
Markov chains, queueing models and stochastic Petri nets.
The following Section V summarizes the major findings
and points out potential opportunities in this area for future
research according to the identified open issues. Finally, the
survey is concluded in Section VI.

II. BACKGROUND
Blockchain is a major type of distributed ledger technologies
(DLTs). The relationship of blockchain to DLT is just like
the car to the vehicle [47]. As such, terms “blockchain”
and “DLT” are used interchangeably throughout this paper.
Any ledger that is stored in a distributed fashion and shared
among a set of nodes or participants can be referred to as a
distributed ledger. For new information to be added to this
ledger, all participating nodes must reach a consensus on
whether the information is legitimate or not. The algorithm
which determines how this decision is reached, called
consensus algorithm, is an important part of the DLT. In
this section, we introduce a categorization of DLT and its
abstraction layer architecture.

A. CATEGORIZATION OF DLTS
A possible taxonomy of distributed ledger technologies is
shown in Figure 2. DLTs can be categorized based on their
data architecture. Two main categories are blockchain and
directed acyclic graph (DAG). In blockchain, transactions
are stored in containers called blocks, which are chained
together using their hash values. This chain of information,
similar to a linked list, is immutable. Examples of this
category are Bitcoin, Ethereum, EOS, and Litecoin. In DAG,
on the other hand, transactions are connected to one another
by a reference relationship, forming a directed graph rather
than a linked list. This category includes DLTs such as
IOTA, Byteball, and Nano. In addition, there are distributed
ledgers that have their unique data structure and do not fall
into either of these categories, such as Radix and Corda.

Based on the permissions of the ledger, DLTs can
be classified as permissioned and permissionless, which
usually makes one think of another taxonomy: private and
public based on the ledger accessibility. In permissioned
distributed ledgers, the identity of all the participants is
known. By contrast, everyone can participate anonymously
in a permissionless DLT network. Public and private DLTs
can be distinguished by who can read the data on the ledger
and verify its validity. Public ledgers are open and anyone
can read the data on the ledger and host a node without the
need to be approved [48]. Private ledgers, by contrast, are
only accessible by those who are pre-approved.

Therefore, based on the permissions and accessibility
of the ledger, DLTs can be divided into four groups, as
shown in Figure 2. Public permissionless ledgers, such as
Bitcoin, Ethereum, and Litecoin, have no restriction on the
participating parties. In public permissioned ledgers, the

Distributed Ledger Technology Categorization

Data Structure Permission and Accesability

Public Permissionless
e.g., Bitcoin, Ethereum, Litecoin

Private Permissionless
e.g., LTO, Holochain, Monet

Public Permissioned
e.g., EOS, Ripple, Sovrin

Private Permissioned
e.g., Hyperledger, Corda 

Blockchain
e.g., Bitcoin, EOS, Litecoin

DAG
e.g., IOTA, Byteball, Nano

Others
e.g., Radix, Corda

FIGURE 2. Categories of distributed ledger technologies.

identity of participants should be known but anyone can
read and validate the ledger. EOS, Ripple, and Sovrin are
examples of this type. In private permissionless blockchains,
the identities of the participants are not known but only
pre-approved nodes validate the data. Examples of this
category include LTO, Holochain, and Monet. Finally, in
private permissioned ledgers, such as Hyperledger and
Corda, access is restricted to pre-approved participants and
the identities of the participants are known.

B. DLT ABSTRACTION LAYERS
Dinh et al. [49] introduced a blockchain design comprised
of four identified abstraction layers, namely application,
execution engine, data model and consensus. In the Oracle
blockchain guidance book [47], the authors defined five
layers to display the general architecture of blockchain,
including the application and presentation layer, consensus
layer, network layer, data layer and hardware/infrastructure
layer. To better describe the architecture of DLT for
the purpose of performance evaluation, we formulate
an abstraction layer architecture following mainly Dinh’s
model [49], but extend it to five layers shown in Fig. 3.

1) Application Layer
As the top presentation of DLT’s technology stack, this
layer contains the applications that are mainly used by
the end users. Up to date, the most popular one is still
cryptocurrency. As the first published digital currency,
Bitcoin has controlled most of the marketplace and
developed many variants. Ethereum has its own currency
called Ether. IOTA also has its currency with the same
name as the network, IOTA [38]. Other examples include
the wallet to manage cryptocurrency, smart contracts, and
all kinds of decentralized applications (DApps). In a DLT
system, a smart contract is a piece of code designed
to digitally facilitate, verify, or enforce the execution of
a contract. For Ethereum, the smart contract is running

VOLUME X, 2020 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

Application Layer
Smart Contracts, Chaincode, DApps etc.

Data Layer
Blocks, Transactions, Indexing, Signature,

 Hash, Merkel Tree etc.

Consensus Layer
PoW, PoS, PBFT, BFT-SMaRt etc.

Network Layer
Peer-to-Peer network

Execution Layer
VM, Compilers, Dockers etc.

FIGURE 3. Abstraction layer model for DLT

on a dedicated virtual machine (called EVM); and most
contracts on the system are related to cryptocurrency. While
HLF’s smart contract is running in a container such as
Docker. One of the best-known DApps is the decentralized
autonomous organization (DAO) in Ethereum, which creates
communities to raise funding for exchange and investment.

Because this layer is in charge of presenting the final
results executed from the distributed ledger system, it is
supported and impacted by all the lower layers. Therefore,
the performance evaluation results of the application layer
reflect the overall performance of tested DLTs.

2) Execution Layer
The execution layer is in charge of executing contract
or low-level machine code (bytecode) in a runtime
environment installed on DLT network nodes. Ethereum
has its own machine language and a virtual machine
(EVM) developed to run the smart contracts code.
Unlike Java virtual machine (JVM), the EVM reads and
executes a low-level representation of smart contracts
called the Ethereum bytecode. The smart contracts are
programmed in a dedicated high-level language named
Solidity, which is first compiled to bytecode by Solidity
compiler. The Ethereum bytecode is an assembly language
made up of multiple opcodes. Each opcode performs
certain action on the Ethereum blockchain. In contrast,
HLF does not take the semantics of language into
consideration. It runs the compiled machine codes (from
chaincode) inside Docker images. In addition, HLF’s smart
contract (chaincode) supports multiple general high-level
programming languages such as Go, node.js, and Java rather
than a dedicated language like Solidity of Ethereum. IOTA
does not support smart contracts up to date. It adopts Java
as the main development language and runs its reference
implementation (IRI) in JVM. IOTA also has a version
running in Docker image.

The runtime environment used to execute contracts

or transactions needs to be efficient. And the execution
result should be deterministic to avoid the uncertainty and
inconsistency of transactions on all nodes. Any transaction
abortion caused by inconsistent execution would result
in computation resource waste and further decrease the
performance. Additionally, the resource configurations (e.g.,
CPU and RAM) may impact the execution performance.

3) Data Layer
In the data layer, a wide range of data-related topics are
defined, including transaction models, data structure, Merkel
trees, hash function, encryption algorithms, etc. There are
two popular transaction models: unspent transaction output
(UTXO) and account. For UTXO, one owner completes
value transfers by signing a transaction transferring the
ownership of the UTXO to the receiver’s public key. It
involves an extra step of searching for ownership of the
transaction from the sender’s side. The account-based model
is more efficient as it atomically updates two accounts in
one transaction. A smart contract (chaincode for HLF) is a
special type of account.

For blockchain, blocks containing transactions and
contract execution states are chained together in a linked
list by putting the hashed result of its previous block’s
content into the header of the current block. Ethereum
and HLF employ a two-layer data structure to organize
the block’s content. All states are stored in a key-value
database on a disk and indexed in a hash tree. The hash
tree root is contained in the block’s header. With a similar
design, different DLTs have their own storage solutions for
each level. For example, Ethereum uses LevelDB, and HLF
uses CouchDB to store the states; Ethereum and Parity
employ Patricia-Merkle (key-value store) tree, while HLF
implements Bucket-Merkle tree to store the indices [49].
For IOTA, transactions are directly appended to the DAG
structure called tangle in a hashed manner. The IRI uses
RocksDB database to store the snapshot, a pruned ledger to
prevent the tangle from expanding too large in size.

Besides the factors mentioned above, there are other
design parameters in the data layer, such as hash functions
(e.g., SHA 256 v.s. SHA 128), encryption algorithms (RSA
v.s. ECC), and block size. All these factors may influence
the performance of a blockchain system.

4) Consensus Layer
The consensus protocol is the core of a DLT system.
It sets the rules and forces all nodes to follow them
to reach an agreement (e.g., transaction confirmation) on
blockchain content. Generally, there are two basic types
of consensus mechanisms, which are proof-based and
vote-based consensuses [50]. The most popular proof-
based consensus is proof-of-work (PoW), which has been
employed by many blockchain systems. PoW is a very
computation intensive consensus. It requires the nodes to
solve a difficult puzzle to compete for the right of recording
the ledger. Only the first node (called winner) solving

4 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

the puzzle can append the block to the ledger and gets
incentives accordingly. Since PoW provides high security,
integrity and decentralization in an untrusted environment,
it is very popular in public blockchains [51]. However, the
classic PoW protocol has a poor efficiency on processing
transactions. To tackle this problem, many variations have
been proposed to keep the same safety while achieving a
better performance [52]. Examples include greedy heaviest
observed subtree (GHOST), proof of authority (PoA), proof
of stake (PoS) and proof of elapsed time (PoET).

The vote-based consensuses are communication intensive.
Different from PoW, vote-based solutions always give
a deterministic execution result and usually achieve a
relatively high performance. They rely on frequent message
transitions among different roles in a network to ensure that
all nodes reach an agreement on the block order. It is very
popular in permissioned blockchains. Raft and Byzantine
fault tolerance (BFT)-based, (e.g., PBFT and BFT-SMaRt)
algorithms are two representatives of this consensus type.
Raft has only crash fault tolerance (CFT), while PBFT and
BFT-SMaRt can address Byzantine fault.

There are also some hybrid DLTs [53] that combine
different types of consensuses. For example, Tendermint
combines PoS and PBFT; EOS takes a hybrid design
combining PBFT and DPoS. Both target on improved
performance and enhanced security. Interested readers
may refer to the published surveys of blockchain
consensus. Because of the deterministic properties, BFT-
based consensus algorithms have a much lower transaction
delay than PoW. But the expensive communication cost
makes it difficult to scale, especially in a large network.
Therefore, consensus design, evaluation and optimization in
DLTs still remain an active research topic.

5) Network Layer
A peer-to-peer (P2P) network is the foundation of a DLT
system. It takes care of peer discovery, transactions, and
block propagation. In a public blockchain such as Bitcoin,
this network is very large, with thousands of nodes working
together to reach consensus. For private blockchain systems,
the scale varies from several entities to over a hundred.
Either way, a basic requirement for the P2P network is to
provide speed and stablility. When a new participant wants
to join, this layer ensures that nodes can discover each other.
Then, all connected nodes communicate, propagate and
synchronize with each other to maintain the current state of
the blockchain network. Specifically, transaction broadcast,
validation and transaction commit are all completed via this
layer, as well as the world state propagation. In the P2P
network, there are two basic types of nodes: full nodes
and light nodes. Full nodes take care of mining, transaction
validation and execution of consensus rules, while light
nodes only keep the header of the blockchain (keys) and
act as clients to issue transactions.

Therefore, the network layer is critical, especially for
communication-intensive DLTs. Peer discovery and ledger

synchronization among neighbours directly rely on the
network, so that the speed determines the efficiency. And
some detailed metrics, such as the number of transactions
per network data are also related to this layer. Moreover, the
package loss rate and network delay may have an impact
on the performance of DLT.

III. EMPIRICAL ANALYSIS IN BLOCKCHAIN
PERFORMANCE EVALUATION
In this section, we investigate existing approaches to
blockchain performance evaluation from the perspective
of empirical analysis. Specifically, different solutions,
including benchmarking, monitoring measurements, self-
designed experiments and simulation, are reviewed and
compared. In practice, these approaches are usually
used together to provide more evidence for blockchain
performance evaluation.

A. BLOCKCHAIN BENCHMARKING TOOLS
The performance benchmarking has been well studied and
documented for the cloud (e.g., Hadoop, Mapreduce and
Spark) and database (e.g., relational and NoSQL) systems.
Some proposed benchmark frameworks such as TPC-
C [54], YCSB [55] and SmallBank [56] are well-established
and have essentially formed the industrial standards. For
example, YCSB is widely used for benchmarking NoSQL
databases such as Cassandra [57], MongoDB [58] and
HBase [59]; and SmallBank is a popular benchmark for
OLTP workload.

However, these frameworks cannot be directly applied to
benchmark distributed ledger systems due to the diversity
of consensus mechanisms and APIs. As more and more
blockchain systems emerge striving to improve DTL
performance, it becomes imperative to devise a solution for
comparing different platforms in a meaningful manner.

Up to date (June 2020), there are three popular
performance benchmarks dedicated to evaluating blockchain
systems, as listed in Table. 2.

Blockbench [49] is the first benchmark framework
designed for evaluating private blockchains in terms of
performance metrics on throughput, latency, scalability
and fault-tolerance. Presently, it supports measurement on
four major private blockchain platforms, namely Ethereum,
Parity, HLF and Quorum. However, it claims to support
the evaluation of any private blockchain by accordingly
extending the workload and blockchain adaptors.

In the design of Blockbench, four abstraction layers in
blockchain are identified: consensus, data model, execution
engine and application, from the bottom (low level) to
the top (high level). The consensus layer is in charge
of setting the rule of agreement and getting all network
participants to agree on the block content so that it
can be appended to the blockchain. The data model
defines the data structure, content and operations on the
blockchain data. The execution engine contains resources
of the runtime environment such as the EVM and Docker,

VOLUME X, 2020 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

TABLE 2. A comparison of three popular blockchain benchmarks

Frameworks Supported DLTs Workloads Used Evaluated Metrics Pros & Cons

Blockbench [49]
Ethereum, Hyperledger

Fabric (HLF), Parity and
Quorum.

• macro: YCSB(k-
v store),
Smallbank(OLTP),
EtherId, Doubler, and
WavesPresale

• micro: DoNothing,
Analytics, IOHeavy,
and CPUHeavy

throughput, latency,
scalability and
fault-tolerance.

adaptor-based framework,
scalable; carefully

designed workloads;
but they are constant.

DAGbench [60] IOTA, Nano and Byteball

• value/data transfer
• transaction query:

1) input/output
transaction numbers
and 2) balance for a
given account

throughput, latency,
scalability, success
indicator, resource

consumption, transaction
data size and transaction

fee

adaptor-based framework,
scalable; specific for

DAG DLT; workloads
are not representatives.

Hyperledger
Caliper [61]

Hyperledger blockchains
(Fabric, Sawtooth, Iroha,

Burrow and Besu),
Ethereum, FISCO BCOS

Self-defined in the
configuration file

throughput, latency,
resource consumption,

success rate

adaptor-based framework,
scalable; no pre-defined

workload design, but
support more DLT systems.

which support the execution operations of blockchain codes.
The application layer includes all kinds of blockchain
applications such as smart contracts and different types
of DApps. It is worth noting that Blockbench adopts
and designs various workloads to test the performance of
different layers, as shown in Table 3.

Hyperledger Caliper [61] is a performance evaluation
framework mainly focusing on benchmarking Hyperledger
blockchains such as Hyperledger Fabric, Sawtooth, Iroha,
Burrow and Besu. In the system architecture, there are two
main components: Caliper core and Caliper adaptors. The
former defines system workflow, while the latter are used to
extend evaluation for other blockchains such as Ethereum
and FISCO BCOS. Before running a test, benchmark
workloads and necessary information interfacing adaptor
to the system under test (SUT) need to be predefined in
configuration files. During the test, a resource monitor runs
to collect resource utilization information (e.g., CPU, RAM,
network and IO) and all clients publish their transaction rate
control information to a performance analyzer. When a test
is finished, a detailed test report is generated by a report
generator.

DAGbench [60] is a relatively recent framework
dedicated to benchmarking DAG distributed ledgers such
as IOTA, Nano and Byteball. The currently supported
indicators are throughput, latency, scalability, success
indicator, resource consumption, transaction data size and
transaction fee. From the system design perspective,
DAGbench shares the same approach with Blockbench and
Caliper which adopt a modular adaptor-based architecture.
Users just need to choose (or develop if not available)
associated adaptors for different workloads and blockchain
systems under evaluation.

Besides the general performance metrics evaluation, there
are also studies focusing on specific metrics for particular
blockchain. For example, OpBench [62] and another

benchmark framework [63] are proposed to evaluate if a
miner’s award is proportional against to the CPU execution
time or consumed computation power for Ethereum smart
contracts.

B. BLOCKCHAIN PERFORMANCE MONITORING

Blockchain benchmarking usually requires a standardized
environment and a well-documented workload as input.
However, for public blockchain systems, it is impossible
to have a good control against the real workload and
consensus participants, which makes the benchmarking
more challenging. In terms of evaluating public blockchains,
there are two potential solutions.

The first solution is to build a private version of
the associated test network and leverage the existing
benchmarks mentioned above to evaluate blockchain under
artificially designed workloads. This may require new
adapter development for either workload or blockchain
network. In addition, this approach should take into
consideration the scalability problem of blockchain because
the tested private version of blockchain may encounter
scaling issues when implemented publicly. Therefore, the
tested result may show better values of performance metrics
compared to the real public network.

The second solution is to monitor and evaluate the live
public system’s performance under realistic workload [64].
Zheng et al. [65] proposed a detailed, real-time performance
monitoring framework using a log-based approach. It
has lower overhead, more details, and better scalability
compared to its counterpart solution via remote procedure
call (RPC). The high-level system framework is shown in
Fig. 4.

6 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

TABLE 3. Blockbench workloads for evaluating each layer of blockchain

Layer Benchmark Workload Workload Description Measurement
Identifier

Application Macro Workloads

YCSB Key-value store throughput and latency
Smallbank OLTP workload throughput and latency

EtherId Name registrar contract throughput and latency
Doubler Ponzi (pyramid) scheme throughput and latency

WavesPresale Crowd sale throughput and latency
Execution Engine

Micro Workloads

CPUHeavy Sort a large array latency

Data Model
VersionKVStore Keep state’s versions (HLF only) latency

IOHeavy Read and write a lot of data latency
Consensus DoNothing Simple contract, do nothing latency

User/Manager

Web Frontier
Visualization

Data Collector
Back-end calculation

Log Parser/
Analyzer

Validating
Peer

Validating
Peer

Synchronize
Peer

Log Parser/
Analyzer

Log Parser/
Analyzer

Monitoring

JSON-RPC Interaction
Deploy/Invoke smart contract

... ... ...Validating
Peer

Anomaly detection RESTful API

Asynchronous 
interaction

Synchronize
Peer

FIGURE 4. Blockchain performance monitoring framework [65]

C. EXPERIMENTAL ANALYSIS OF BLOCKCHAIN
SYSTEMS
In this section, we look at DLT performance evaluation
from the perspective of empirical analysis based on self-
designed experiments. Even though empirical analysis can
hardly provide standardized test results like benchmarking,
this approach is very flexible in parameterization. It can be
used to identify potential bottlenecks and pave the way to
further performance improvements.

Experiment-based approaches have been widely employed
to evaluate distributed ledger systems such as Hyperledger,
Ethereum and DAG-based ledger. Various private
blockchain platforms and different versions of a certain
blockchain can be compared on performance by running
tests under a well-controlled test environment. In addition,
some studies examined the detailed performance, for
example, the performance of different encryption and hash
algorithms, from the data layer in the blockchain abstraction
model.

1) Hyperledger Performance Analysis
Nasir et al. [66] conducted an experimental performance
analysis of two versions of HLF (v0.6 and v1.0) on
their execution time, latency, throughput and scalability by
varying the workloads and node scales. The overall results
indicate that HLF v1.0 consistently outperforms HLF v0.6
across all evaluated performance metrics.

Baliga et al. [67] took an experimental approach to
study throughput and latency of HLF v1.0. Using Caliper
as the benchmarking tool, the authors configured different
transaction and chaincode parameters to explore how they
impact transaction latency and throughput under micro-
workloads. Fabric’s performance characteristics were also
studied by varying the number of chaincodes, channels and
peers. The results show that the throughput of HLF v1.0
is sensitive to the orderer settings, and it is a significant
drawback for the commiter in this version that it does
not process transactions in parallel, incapable of taking
advantage of multiple vCPUs.

Another comprehensive empirical study was conducted
by Thakkar et al. [68] who explored the performance
bottlenecks of the HLF v1.0 under different block
sizes, endorsement policies, number of channels, resource
allocation and state database choices (GoLevelDB vs.
CouchDB). The experimental results indicated that
endorsement policy verification, sequential policy validation
of transactions in a block, and state validation and
commit (with CouchDB) were the three major bottlenecks.
Accordingly, the authors suggested three optimization
solutions, including parallel VSCC validation, cache for
membership service provider (MSP), and bulk read/write for
CouchDB. All these optimizations have been implemented
in release HFL v1.1.

A study completed at IBM by Androulaki et al. [69]
focused on HLF v1.1 to explore the impact of block size,
peer CPU, and SSD vs. RAM disk on blockchain latency,
throughput and network scalability under different numbers
of peers. The results show that HLF v1.1 achieves end-to-
end throughput of 3500+ TPS in certain popular deployment
configurations, with the latency of a few hundred ms, scaling
well to 100+ peers.

Nguyen et al. [70] conducted an experimental study
to explore the impact of large network delays on the
performance of Fabric by deploying HLF v1.2.1 over an area
network between France and Germany. The results reveal
that an obvious network delay (3.5s) brings 134 seconds
offset after the 100th block between two clouds, which
indicates that the tested version of Fabric can not provide
sufficient consistency guaranties. Therefore, HLF v1.2.1

VOLUME X, 2020 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

cannot be used in critical environments such as banking
or trading. This was the first work that experimentally
demonstrated the negative impact of network delays on a
PBFT-based blockchain.

Another HLF performance evaluation work focusing on
the underlying communication network was conducted by
Geyer et al. [71] using Caliper [61] and a dedicated testbed
on which network parameters, such as latency or packet
loss, can be configured. In the experiments, the influence
of transaction rate, chaincode, network properties, local
network impairment, and block size have been separately
examined and quantitatively analyzed. The experiment
results identified the validation of the transactions as the
major contributor to the transaction latency in HLF.

As the first long-term support release, HLF v1.4 caught
the attention of several blockchain researchers. Kuzlu et
al. [72] investigated the impact of network workloads on the
performance of a blockchain platform in terms of transaction
throughput, latency, and scalability (i.e., the number of
participants serviceable by the platform). Following network
load parameters were varied in the experiment: number of
transactions, transaction rate and transaction type.

Although the practical Byzantine fault tolerance (PBFT)
algorithm has been adopted as the consensus protocol since
its version 0.6, dishonest participants and their attacks such
as intentionally delaying messages, sending inconsistent
messages and distributed-denial-of-service (DDoS) never
stop. Malicious behaviour may significantly undermine the
system in terms of both security and performance. To
explore the performance of HLF with malicious behaviour,
Wang [73] designed multiple malicious behaviour patterns
and experimentally tested the transaction throughput and
latency on HLF. The results show that delay attacks, along
with keeping some replicas out of working, dramatically
decrease the system performance.

Apart from Fabric, Z. Shi et al. [74] empirically
studied the performance of Sawtooth, another well-known
permissioned blockchain platform from Hyperledger. The
examined performance metrics include consistency (i.e.,
whether the platform’s performance behaves consistently
each time with the same workload and cloud VM
configuration), stability (i.e., whether the platform’s
performance remains stable with the same workload, but
different cloud VM configurations) and scalability (i.e.,
how the platform performance achieves scalability with
different workloads and configuration parameters). The
adjustable configuration parameters identified for optimizing
the performance of Sawtooth are scheduler and maximum
batches per block.

From the results of empirical performance analysis
summarized above, it is obvious that Hyperledger needs
improvement on both geographical scalability (limited by
the network latency) [70] and size scalability (the platform
fails scaling beyond 16 nodes [49]). The bottleneck is
the adopted PBFT consensus, which is a communication
bound mechanism as opposed to the computation intensive

PoW [75] consensus.

2) Ethereum Performance Analysis
Rouhani and Deters [76] studied the performance of
Ethereum on a private blockchain by analyzing two most
popular Ethereum clients: PoW-based Geth and PoA-based
Parity. The results indicate that, compared to Geth, Parity is
89.82% faster in terms of transaction processing, on average,
under different workloads.

Yasaweerasinghelage et al. [77] introduced an approach
to predict the latency of blockchain-based systems
using software architectural modelling tool Palladio
workbench [78] and simulation. They leveraged the
proposed method to test latency on a private Ethereum
(Geth) experimental environment. The results show a low
relative error of response time, mostly under 10%.

Bez et al. [79] conducted an initial quantitative analysis
on the scalability of Ethereum. The transaction throughput
was evaluated under an extensible test environment with
synthetic benchmarks. The results indicate that Ethereum
follows the scalability trilemma, which claims that a
blockchain platform can hardly reach decentralization,
scalability and security simultaneously.

3) DAG DLT Performance Analysis
In traditional blockchain systems, transactions are stored
in blocks that are then organized as a ledger in a single
chain data structure. This structure makes it incapable
of concurrently generating blocks, and thus limiting the
transaction throughput. In DAG-based distributed ledgers,
transactions or blocks are organized in different vertices of
the directed graph, which allows parallel block generation
and inclusion. Based on this idea, many distributed ledgers
have been proposed with their own consensus mechanisms.
For example, IOTA [38] employs a cumulative weight
approach for transaction confirmation and Markov chain
Monte Carlo (MCMC) sampling algorithm for random tip
selection; Byteball [39] achieves consensus by relying on
12 selected reputable Witnesses; and Nano [40] adopts a
balance-weighted vote mechanism to reach agreement on
transaction confirmation.

Even though DAG-based ledgers are designed to
theoretically have faster transaction speed than blockchain,
it is necessary to evaluate the performance of existing
DAG distributed ledger implementations and identify their
potential bottlenecks. Fan et al. [80] demonstrated the
scalability of IOTA under IoT scenarios in a private
network with 40 nodes. The experiment results indicated
that transaction throughput (TPS) has good linear scalability
against the transaction arrival rate. Three representatives
of DAG-based distributed ledgers, namely IOTA, Nano
and Byteball, were comparatively evaluated using the
proposed DAGbench in [60]. From the experimental results,
some useful observations, such as the advantages and
disadvantages of the three tested DAG implementations, can
be obtained.

8 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

4) Comparative Analysis
Before developing a blockchain-enabled application,
decision makers should first assess the suitability [81]
of blockchain implementation. Then, a comparative
performance analysis is often necessary to select a
blockchain platform that will perform well in the target
application environment.

After developing Blockbench, Dinh et al. [49] used this
tool to conduct a comparative performance analysis on
three mainstream private blockchains, namely Ethereum
(geth v1.4.18), Parity (v1.6.0) and HLF (v0.6.0-preview).
Their findings can be summarized as follows: 1) HLF
performs consistently better than Ethereum and Parity across
all macro (e.g., throughput and latency) and micro (e.g.,
IOHeavy) benchmarks, but it fails to scale up to more
than 16 nodes; 2) The consensus protocols are identified as
major bottlenecks for HLF and Ethereum, while transaction
signing is a bottleneck for Parity. The authors further
compared the performance of two different versions of HLF
v0.6.0 and v1.0.0 against IOHeavy workload in their more
recent work [75].

Because of the lack of interface standards, evaluating
different blockchains remains difficult. To overcome this
problem, a generic workload performing the same functions
on different blockchain interfaces was designed in [82]
to comparatively evaluate three prominent consortium
blockchain platforms for IoT. They were HLF v0.6 with the
PBFT consensus, HLF v1.0 with the Byzantine fault-tolerant
state machine replication (BFT-SMaRt) consensus, and
Ripple with the Ripple consensus. Results confirmed that
the evaluated blockchains could offer reasonable throughput
but with very limited scalability.

Pongnumkul et al. [83] conducted a preliminary
performance analysis of two popular private blockchain
platforms HLF (v0.6) and Ethereum (geth 1.5.8, private
deployment) under varying workloads. The experimental
results demonstrated that HLF outperforms Ethereum in
terms of all evaluated metrics (execution time, latency and
throughput). However, this study also pointed out that the
performances of both platforms are still not competitive with
current mainstream database systems, especially under high
workloads. This conclusion was tested and confirmed by
another, more recent study [84], in which Ethereum and
MySQL were compared.

Comparative analysis can also be conducted on consensus
algorithms of different blockchains. For example, Hao et
al. [85] compared the performance between Hyperledger
(PBFT) and private Ethereum (PoW) via their proposed
benchmark framework constructed with four modules:
workload configuration module, consensus smart contract
module, data collector module and the target blockchain
platforms. The evaluation results show that HLF consistently
outperforms Ethereum in terms of average throughput (TPS)
and latency. This study also points out that the consensus
mechanism induces performance bottleneck in private
blockchains. Another example is the performance analysis

conducted on PoW and the Proof-of-Collatz Conjecture
(PCC) [86]. PCC [87] is a recently introduced number-based
theoretic PoW using a new metric called Collatz orbits,
which are defined in the Collatz Conjecture algorithm.
Authors evaluated these two consensus algorithms with
respect to the execution time, the deployment time and the
latency on a private blockchain network. The experiment
results demonstrate that PCC-based blockchain consistently
outperforms PoW-based blockchain in terms of all tested
metrics and even steadily achieves 1000× faster execution
speed than of PoW.

To provide system designers suggestions on smart
contract platform selection, Benahmed et al. [88] conducted
a comparative performance analysis of Hyperledger
Sawtooth, EOS and Ethereum. Following the workloads
used in Blockbench [49], the authors modified and defined
three types of workloads, namely CPUHeavy, KVStore
(Key-Value Store), and SmallBank, to comparatively test
CPU consumption, memory consumption, load scalability
and network scalability in distributed ledgers. The results
reveal that the third generation platform EOS outperforms
the other two in both resource consumption and speed, but
with some shortcomings such as centralization. In addition,
according to their performance in the test, Sawtooth was
suggested for use in the Internet of Things and Ethereum’s
PoA implementation for the fast development of web-
oriented applications.

To explore whether existing blockchain solutions can
scale to large IoT networks, Han et al. [89] comparatively
evaluated the performance of five selected prominent
distributed ledgers using classic consensus protocols:
Ripple, Tendermint, Corda and v0.6 and v1.0 of HLF. A
series of exclusive tests were run to evaluate the throughput
and latency with different numbers of nodes (ranging from
2 to 32) for each of the ledgers. The results show that
even though these systems can sometimes provide thousands
of TPS throughput, their networks usually do not scale to
tens of devices as the performance drops dramatically when
the number of nodes increases. Table 4 lists an overview
of various DLTs’ performance extracted from the reviewed
experimental analysis studies.

5) Encryption Performance Analysis
In addition to the end-to-end performance metrics, there
are also some evaluation works focusing on the detailed
performance of a certain step or subprocess such as the
efficiency of encryption and hash function. According to
Park et al. [90], the transaction processing time equation is

T = ti + tc = (tv + tpow + tn + te) + tc, (1)

where ti refers to the issuance time, tc to the confirmation
time, tv to the validation time, tpow to the PoW time, tn to
the network overhead, and te to the processing overheads.
The processing overheads include encryption/decryption,
hashing and authentication. Efficient encryption and hashing

VOLUME X, 2020 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

TABLE 4. Overview of different DLT performance (throughput and latency) under various evaluation environments

DLT Consensus Throughput
(TPS) Latency (Secs) Workload Network (Size) Node

Configuration

HLF v0.6 [49] PBFT 1273 38 YCSB 8 nodes
PBFT 1122 51 Smallbank 8 nodes

Ethereum geth
v1.4.18 [49]

PoW 284 92 YCSB 8 nodes E5-1650
3.5GHz

PoW 255 114 Smallbank 8 nodes CPU, 32GB

Parity v1.6.0 [49] PoA 45 3 YCSB 8 nodes RAM, 2TB HD
PoA 46 4 Smallbank 8 nodes

Quorum 2.0 [67] Raft 2,000+ 1.5 write-only/null 3 nodes 8 vCPUs
IBFT 1,900 3.2 null 4 nodes 4 cores 3.6

IBFT 1,800 3.5 write-only 4 nodes GHz, 16GB
RAM

HL Sawtooth
v1.1.2 [88]

Proof of
Elapsed

Time (PoET)
3 - Smallbank 6 nodes Dockers share

VM on Intel

EOS
v1.5.3 [88]

Delegated
Proof of

Stake (DPoS)
21 - Smallbank 6 nodes Xeon X7350

CPU 16 Cores,

Ethereum Geth
v1.8.21 [88] PoW 10 - Smallbank 6 nodes 2.93GHz,

64GB RAM

HLF v1.0 [82] BFT-SMaRt 1,700 - Payment
transaction 16 nodes E5-2630 CPU

HLF v0.6 [82] PBFT 2600 1.8 Invoking
chaincode 16 nodes 8 cores

2.4GHz,
Ripple

v0.60.0 [82] XRP 1450 6 Payment
transaction 16 nodes 64GB RAM

Tendermint
v0.22.4 [89]

PBFT and
Casper 6,000 0.15

Invoke
Payment

transaction
16 nodes E5-2630 CPU

Tendermint
v0.22.4 [89]

PBFT and
Casper 5,600 0.05 Query Payment

transaction 16 nodes 4 cores
2.4GHz,

R3 Corda
v3.2 [89] BFT-SMaRt 50 8 Query Payment

transaction 4 nodes 12GB RAM

Geth
v1.7.3 [85] PoW 130 1,297 YCSB(N=10,000) 4 nodes

Geth
v1.7.3 [85] - 235 569 YCSB(N=10,000) 4 nodes 8GB RAM,

HLF v1.0 [85] BFT-SMaRt 535 78 YCSB(N=10,000) 4 nodes 128GB SSD
HLF v1.0 [85] - 1,033 40 YCSB(N=10,000) 4 nodes

Geth [76] PoW - 0.199 Payment
transaction 1 node Core i7-6700

Parity [76] PoW - 0.105 Payment
transaction 1 node CPU, 24GB

RAM

Geth 1.5.8 [83] - 21 361 TransferMoney
(N=10,000) 1 node AWS EC2

Intel E5-1650

HLF v0.6 [83] - 160 4 TransferMoney
(N=10,000) 1 node

8 core CPU,
15GB RAM,
128GB SSD

algorithms contribute to transaction issuance speed in DLT.
Chandel et al. [91] analyzed and compared the performance
of the two most commonly used encryption algorithms
in blockchain, Rivest-Shamir-Adleman (RSA) and elliptic-
curve cryptography (ECC). Their comprehensive analysis
results based on the key size, key generation performance
and signature verification performance show that the ECC
algorithm (adopted by Bitcoin and Ethereum) outperforms
RSA in general. This study also points out that ECC satisfies
the security needs of blockchain better than RSA.

More recently, Ferreira et al. [92] conducted a study
on Blockchain-based IoT (BIoT) [93] to explore the
performance of hash function in blockchains. Particularly,
authors developed a blockchain in an IoT scenario to
evaluate the performance of different cryptographic hash

functions such as MD5, SHA-1, SHA-224, SHA-384 and
SHA-512. The test results show that SHA-224 and SHA-384
are the best hash functions for blockchain due to their lack
of collision attacks. In hashing ciphers, a collision attack is
the problem that there exist two different messages m1 and
m2, such that hash(m1) = hash(m2). In addition, these two
hash functions are more time-efficient than others to process
blockchain functions with the advantage of producing a
smaller average block size.

D. SIMULATION
All the evaluation solutions mentioned above (i.e.,
benchmarking, monitoring and experimental analysis)
require the availability of the systems, no matter private or
public blockchains. However, the system under evaluation

10 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

is not always available. For instance, when a company
needs to make a selection between two blockchain platforms
under development according to their performance, none of
the previously discussed solutions is feasible. Moreover, it
is usually costly on both time and resources to construct
a real blockchain network for testing. This brings us to
explore another evaluation approach, namely, simulation. A
blockchain simulator can mimic the behaviours of network
nodes in reaching the consensus, providing performance
similar to a real system. Besides, a blockchain simulator
usually provides a convenient way for users to tune the
system parameters to run different settings for the sake of
comparison. In this subsection, we will take a look at the
role of simulation in the blockchain world.

1) BlockSIM

In 2019, there were three similar simulators with the same
name, BlockSim (or BlockSIM), proposed for simulating
blockchain systems. Alharby and Moorsel [94] proposed
and implemented a framework called BlockSim to build
discrete-event dynamic system models for PoW-based
blockchain systems. This framework was organized in three
layers: incentive layer, connector layer and system layer.
Using the proposed simulation tool, the authors explored
the block creation performance under the PoW consensus
algorithm. This simulator helped to understand the details
of the block generation process in PoW. The predefined test
cases were validated and verified in their extension study,
where the simulation outcomes were compared with results
of real-life systems such as Bitcoin and Ethereum to show
the feasibility of this approach. However, the extensibility
of this simulator is still a problem for future research.

To help architects better understand, evaluate and plan
for the system performance, Pandey et al. [95] proposed
and developed a comprehensive open-source simulation
tool called BlockSIM for simulating private blockchain
systems. This tool is designed to evaluate system stability
and transaction throughput (TPS) for private blockchain
networks by running scenarios, and then decide on the
optimal system parameters suited for the purposes of
architects. The comparison results between BlockSIM
and a real-world Ethereum private network running PoA
consensus show that BlockSIM can be used effectively.

More recently, Faria and Correia [96] presented a flexible
discrete-event simulator (also called BlockSim) to evaluate
different blockchain implementations. With a good design of
APIs, new blockchains can be easily modelled and simulated
by extending the models. Running this simulator for Bitcoin
and Ethereum, the authors got some interesting performance
conclusions. For instance, doubling the block size (number
of transactions) had a small impact on the block propagation
delay (10ms), while encrypting communication had a higher
impact on that delay (more than 25%).

2) DAGsim
Similarly, Zander et al. [97] presented a continuous-time,
multi-agent simulation framework called DAGsim, for DAG-
based distributed ledgers. Specifically, the performance of
IOTA in terms of the transaction attachment probability was
analyzed using this tool. The results indicate that agents
with low latency and high connection degrees have a higher
probability of having their transactions accepted in the
network. Another multi-agent tangle simulator [98] built
with NetLogo simulates both random uniform and MCMC
tip selection in a visualized and interactive way.

In addition to pure simulators, some other studies
leverage simulations combined with analytical results to
conduct validation or exploration. Park et al. [90] proposed
and implemented a general DAG-based cryptocurrency
simulator using Python. This simulator was used to validate
the proposed analytical performance model, through which
they found that by issuing a transaction with a smaller
average number of parents n in DAG, the transaction
speed (TPS) can be increased. Kusmierz et al. [99] ran
IOTA tangle simulations in a continuous-time model to
explore how different tip selection algorithms, i.e., uniform
random tip selection (URTS) and unbiased random walk
(URW), affect the growth of the tangle. Simulations under
varying transaction arrival rates were used to analyze the
performance of the tangle.

E. COMPARISON OF DIFFERENT EVALUATION
SOLUTIONS
In the previous subsections, we introduced four types of
empirical evaluation solutions and surveyed existing studies
which adopted the associated approaches. In this subsection,
we comparatively discuss the advantages and disadvantages
of the above-mentioned solutions. This comparison is
based on both the general characteristics of the individual
approaches and their suitability in evaluating different
types of blockchains. The compared items are divided
into two categories: solution requirements and solution
efficiency, see Table 5. Solution requirements describe
the network specifications for evaluating blockchain
systems in terms of the node, network and workload.
Solution efficiency provides three dimensions, namely
parameterization, extensibility and difficulty, to compare the
efficiency and effectiveness of different solutions.

Monitoring the performance of a blockchain system
requires a realistic deployment of the system in production
with real workloads. Even though this approach can also
be used to evaluate a private blockchain in an experimental
setup, we argue that it is more suitable to evaluate public
blockchain when compared with benchmarking. In the
context of evaluating a public blockchain, it becomes
difficult to change any parameters for multiple tests. The
challenge of the extensibility lies in the development of
adaptable log parser for various blockchains. But, it is
easy to deploy for certain blockchains using the existing
solutions [65].

VOLUME X, 2020 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

TABLE 5. A comparison on different empirical performance evaluation solutions for blockchain system

Solutions Characteristics Efficiency
Node Network Workload Parameterization Extensibility Difficulty

Monitoring Real Real Real Low Low Easy
Benchmarking Real Test Artificial Low High Easy
Experimental

Analysis Real Test Artificial High Low Medium

Simulation Virtual Virtual Virtual Very High Very High Hard

Benchmarking requires a well-controlled evaluation
environment with a test network and artificial workloads.
Once a benchmark tool is selected, the supported workloads
and test metrics are limited, as well as the parameters which
can be tuned. For example, Blockbench doesn’t support
tuning the network layer parameters such as network delay
and, up to date, it only supports evaluating four types
of blockchain platforms, i.e., Ethereum, HyperledgerFabric
(HLF), Parity and Quorum. However, the well-designed
APIs allow users to develop their own adaptors and extend
its feasibility to evaluate any private blockchains. So,
the extensibility of benchmarking is relatively higher than
monitoring. In addition, this solution is easy to deploy
since there have been several popular and well-documented
benchmark tools, see Table 2.

Experimental analysis refers to the evaluation solution
based on self-designed experiments. This is a very general
solution that is commonly used. It is very similar to
benchmarking but different in two main aspects. First,
self-design gives more flexibility in evaluating impact
factors, providing a high capability of parameterization. For
example, the impact of network delay on HLF performance
can be evaluated in a self-designed experiment, which is
not supported by benchmarking. Second, the test is usually
dedicated to a specific blockchain and is not as standardized
as benchmarking, which limits the extensibility. So, the
deployment difficulty partly depends on the complexity of
the SUT and what to evaluate.

Simulations have a relatively greater difficulty in the
stage of simulator design and development. But, once it
is completed, the simulator usually provides a number
of advantages in comparison to other approaches. The
simulation solution is very extensible and can be used to
quickly test different configuration parameters at a low
cost. As mentioned in subsection III-D, another obvious
advantage of simulation is that it does not require the
availability of the blockchain. However, as for the evaluation
results, there may be a relatively large difference (e.g., 10%)
between simulation and experiment, which induces concerns
about the accuracy of this solution. Moreover, some metrics
cannot be evaluated in simulators such as the transactions
per CPU, transactions per memory second, transactions per
disk IO, and transactions per network data for a blockchain
system.

IV. ANALYTICAL MODELLING IN BLOCKCHAIN
PERFORMANCE EVALUATION
Analytical modelling of performance leverages mathematical
tools to formalize blockchain system in an abstract way
and to solve ensuing models with rigor. The model output
(e.g., average transaction latency being expressed as a
function of network indicators) provides analytical evidence
for blockchain performance evaluation. In this section, we
survey the performance evaluation solutions of distributed
ledger systems based on analytical modelling. We aim to
summarize the mainstream techniques, explore how and why
these models are employed for certain distributed ledgers,
and then identify the current challenges in blockchain
performance modelling. In particular, we focus on surveying
the stochastic models, which have been used to successfully
model many cloud systems.

In Table. 6, we classify the existing popular solutions
of performance modelling for distributed ledgers into four
categories: Markov chains, queueing models, stochastic
Petri nets and other models.

A. MARKOV CHAINS FOR MODELLING DLT
CONSENSUSES
In probability theory, Markov processes are a type of
stochastic process with Markov property. Also called
memoryless property, it refers to the fact that the future
states of the process depend only on the present state, but
not on the previous ones. Markov chain is defined as a
Markov process with discrete state space. It is a fundamental
mathematical tool to evaluate the performance of distributed
ledger systems [116]. In this subsection, we investigate how
Markov chains are used to model two different consensus
algorithms: Raft and the tangle for IOTA. The specific type
of process used for this modelling is called discrete time
Markov chain (DTMC).

DTMC for Modelling Raft: In a Raft [117] cluster, each
node is at any given time in one of the three states: follower,
candidate and leader. Normally, there is only one leader
in a Raft cluster. We call it network split in the case of
two or more leaders being elected simultaneously, which
may dramatically impact the performance of the system.
After the leader has been elected, it handles all requests
from the client and sends them to followers for validation.
Followers simply receive requests from and respond to
leaders and candidates. Candidates are a mid-state transiting
from follower to leader. The whole Raft consensus can be

12 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

TABLE 6. A summary of blockchain performance modelling studies

Model Types Models Consensus DLs Model Outputs

Markov chains

Absorbing Discrete Time
Markov chain (DTMC) [100] Raft private blockchains

network split probability
as a function of packet

loss rate, election
timeout, and network size

Discrete Time Markov
chain (DTMC) [101] the tangle IOTA cumulative weight and

transaction confirmation delay

queueing models

M/GB/1 queue variant [102] PoW Bitcoin tx confirmation time

CTMC GI/M/1 queue [103] PoW Bitcoin
mean number of txs in

the queue and in a block;
average tx-confirmation time.

CTMC GI/M/1 queue [104] PoW Bitcoin mean stationary number of txs
in the queue and in the block

M/G/1 queue variant [105] PoW Bitcoin confirmation time and tx delay

non-exhaustive queue [106] PoW NA
mean number of txs and
mean confirmation time

of txs in the system
Discrete-time

GI/GIN/1 queue [107] Proof-of-Authority Ethereum system queue size
and tx waiting time

M/MB/1 queue [71] BFT-SMaRt HLF tx latency
M/G/1 and M/M/1 queue [108] PBFT NA system delay

(n,k) fork-join queue [109] vote-based
consensus

permissioned
blockchain

blocks commitment delay,
block validation response
time and synchronization

processes among mining nodes.

Fluid queue [110] the tangle IOTA
conflicting txs cannot coexist
when a random tip-selection

algorithm is employed

stochastic Petri nets
Generalized stochastic

Petri nets (GSPN) [111] PBFT HLF v1.2 latency and throughput
of each phase

Stochastic Reward
Nets(SRN) [112] PBFT HLF v1.0 throughput, utilization and

mean queue length at each peer

other models

World State Prediction
model [113] PoW Ethereum transaction time cost

Stochastic network model [114] PoW Ethereum tx processing rate

Random Graph model [115] PoW Bitcoin block propagation delay
and traffic overhead

divided into several ever increasing timely manners called
terms which have two processes: leader election and ledger
replication. Each term starts with a leader election, in which
all nodes start from follower state. Then, a node transits to
candidate, candidate to leader or back to follower according
to the rules depicted in Fig. 5 [117]. Once a leader is elected
successfully, the ledger replication process starts with the
leader sending heartbeat messages to all other nodes to
establish its authority and prevent new elections. Once the
leader receives responses of writing new transaction entry
to the ledger from the majority of the followers, it notifies
them and the client that the transaction is committed.

To explore the impact of network properties on the
blockchain performance, Huang et al. [100] have built
a simple Markov chain model for the process of a
node transferring from follower state to candidate. They
consequently present the network split probability as a
function of the network size, the packet loss rate, and
the election timeout period. Let us define the packet loss
probability as a constant value p for a given network, the
timeout period for each round of election as Et uniformly

Follower Candidate Leader

times out,
starts election

times out,
new election

receives votes from
majority of servers

starts up

discovers server
with higher term

discovers current
leader or new term

FIGURE 5. Node states transition illustration in Raft consensus.

initiated from a range [a,b], and interval between two
heartbeats as τ . Thus, the maximum number of heartbeats
for an election to timeout is K ∈ {K1,K2, ...,Kr}, where
K1 = ⌊a/τ⌋ and Kr = ⌊b/τ⌋. Then, two discrete time
stochastic processes at time n can be defined: g(n) as the
stage status {1,2,...,r} of a given node, and b(n) as the
remaining steps (i.e., number of heartbeats) for the election
phase to timeout in a term.

Therefore, the transition process for an observed node

VOLUME X, 2020 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

6
1

3
1

9
1

�3

7
1

�4

3
1

2
1

4
1

8
1

�2

1
1

�10
�7

�8

�6

�1

�5

�9

ConfirmedTip

MCMC Random
 Walk Path

W
w

11
1

Cumulative 
weight

Own weight

 directly approves �3 �6
 indirectly 

approves 
�6

�1

1
1

�11

UnconfirmedW
w

W
w

FIGURE 6. An example of the IOTA tangle.

from follower to candidate can be modelled as a two-
dimensional stochastic process {g(n),b(n)}. It can be further
transformed to an absorbing DTMC on the state space
{(1,K1),...,(1,0),..., (i,K1),...,(i,0),...,(r,Kr),...,(r,0)}.

Using the mathematical derivations proven in [100], the
network split probability before n-th step can be obtained.

DTMC for Modelling IOTA Tangle: IOTA tangle [38]
is a DAG-based distributed ledger designed for the
microtransactions in the IoT. Its consensus encourages all
participants to contribute in maintaining the ledger through
referencing (i.e., approving) two unapproved transactions
called tips before issuing any new transaction. For the
new coming transaction, IOTA tangle leverages the MCMC
random walk algorithm to select two tips. All transactions
directly or indirectly approved by this new transaction then
add its weight to their cumulative weights, as shown in
Fig. 6. For an approved transaction, its cumulative weight
gradually increases to reach a predefined threshold. Finally,
the corresponding transaction is considered confirmed and
permanently recorded in the ledger.

To explore the impact of various transaction arrival rates
on the cumulative weight and confirmation delay of an
observed transaction, Cao et al. [101] built a Markov chain
model to analyze the tangle consensus. They classified the
network into four different regimes, according to the load
situations: high load (HR), low load (LR), high-to-low load
(H2LR) and low-to-high-load (L2HR). In each regime, the
consensus process can be divided into two stages, namely
the reveal stage and accumulating stage [38]. Since the first
two steady regimes HR and LR have been analyzed in [38],
the authors only focus on two unsteady regimes H2LR and
L2HR.

The system can be modelled as a two-dimensional
stochastic process S(t) = W (t), L(t) at an arbitrary time t,
where W (t) is the cumulative weight of a transaction
observed at time t, and L(t) is the total number of tips
in the tangle at time t, t = kh, k = 0,1,2,...,∞. Considering
that W (t + h) and L(t + h) are only determined by
the current states W (t) and L(t), but not related to the
earlier status, the consensus process for a new observed
transaction from issuance to confirmation can be formulated
as a Markov process. Furthermore, this Markov process
can be formalized as a DTMC on discrete transaction
arrival time intervals. Here, one step transition of the

observed transaction is defined as the arrival of an incoming
transaction with randomly selecting two tips for reference
from L(t) tips. Based on this DTMC model, the expected
cumulative weight and confirmation delay at a certain time
in both H2LR and L2HR can be obtained.

B. QUEUEING THEORY FOR MODELLING DLT
CONSENSUSES
Queueing theory was originally proposed by Agner Krarup
Erlang in 1909, to describe the Copenhagen telephone
exchange. It was later developed to solve different types
of system problems that involve waiting, such as customers
waiting for teller service in banks. In recent years, queueing
theory has been widely used to model computer networks
and systems [118], cloud computing centers [119], and
blockchain systems. In a blockchain system, transactions
issued by clients need to wait for servers (e.g., miner,
validator or orderer) to provide service (e.g., mining,
validating or ordering), and finally get confirmed.

Using queueing theory, different consensus processes of
DLTs can be modelled as different types of queue systems,
which are named according to the Kendall’s notation [120].
Within a queue system, it is possible to quantitatively answer
some system performance questions such as what is the
expected number of transactions in the system, what is the
transaction throughput of the system and what is the average
service time (i.e., transaction time). In this subsection, we
focus on introducing the typical queueing models (e.g.,
M/M/1, M/G/1 and G/M/1 queues) used for addressing
these performance questions of some mainstream consensus
algorithms for blockchain.

1) Queueing Models for Proof-based Consensuses
Proof-based consensus is a type of consensus mechanism
that requires the network participants to provide enough
proof to compete for the chance of updating the ledger. Here,
we review the queue systems for modelling some popular
consensus mechanisms such as PoW and PoA.

Queueing Models for PoW: In PoW-based blockchain
such as Bitcoin [1], the ledger is maintained and updated by
the mining process. In the mining process, a bunch of nodes
called miners compete for solving very difficult puzzle-
like problems, which consume a lot of computation power.
Transactions issued by users are grouped into a container
called a block, and the mining competition winner who first
finds the algorithmic puzzle answer specialized for the block
has the right to add the new block to the blockchain and
accordingly gets incentives.

In 2017, Kawase and Kasahara [102] first built a
modified M/GB/1 queue with batch service to model the
Bitcoin mining process, trying to deal with the transaction-
confirmation time. In this model, transaction arrival was
assumed to be a Poisson process and service time interval to
be a general (or arbitrary) distribution. Arriving transactions
are served in a batch manner with a maximum batch size b.
In a typical M/GB/1 queue system, an idle server starts

14 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

service immediately if there are one or more customers
awaiting service in the system [121]. But in this variant
model, newly arriving transactions wait in the queue for
getting served until the next block-generation time, even
when the number of transactions is smaller than b. This
is regarded as the service with multiple vacations. This is
a very straightforward model description from the Bitcoin
block generation and mining process based on Nakamoto’s
consensus, in which new transactions are grouped into a
block to wait for being mined in the next block-generation
time or even later on.

To analyze this queue system, the authors leveraged
the joint distribution of the number of transactions in the
system and the elapsed service time to derive the mean
transaction-confirmation time. Then, by using the method of
supplementary variables, a system of differential-difference
equations was set up to formalize the problem. However,
they have not successfully provided the unique solution
of the differential-difference equations’ system, leaving
analysis of the blockchain queue system as an interesting
open problem for future research.

To overcome the difficulties encountered in the original
model [102], Li et al. introduced a new blockchain queueing
model [103] by decomposing the mining process into two
different exponential service stages: block-generation and
blockchain-building processes. The sum of both stages’
times is regarded as the transaction-confirmation time, also
called service time. In this model, all Bitcoin transactions
are assumed to be arriving according to a Poisson process,
namely the arrival interval times follow an exponential
distribution with arrival rate λ. Service times in two stages
of batch services are also simply assumed to be i.i.d. and
exponentially distributed with rates µ2 and µ1, respectively.
First, each transaction enters a queue waiting room and
waits for services. Then, in the first service process, a group
of transactions are mined into a block with rate µ2 and,
simultaneously, a nonce is appended to the block by the
mining winner. The block has a limited transaction capacity
of b, also called batch size in the model. In practice, the
selection of transactions may not follow a first-come-first-
serve (FCFS) discipline, meaning that some latter coming
transactions in the queue may be preferentially first selected
into the block. But in this model, all computations are based
on the FCFS discipline for the reason of simplification.
Finally, a generated block with all transactions wrapped in it
is attached to the blockchain in a transaction rate of µ1. The
simple blockchain queueing model is illustrated in Fig. 7.

To analyze this queueing model, the authors defined
two random variables I(t) and J(t) as the numbers of
transactions in the block and in the queue at time t,
respectively. Thus, the system can be modelled as a
two-dimensional continuous-time Markov chain (CTMC)
X(t) = {I(t), J(t)} on the state space Ω = {(i, j) : i =
0, 1, ..., b; j = 0, 1, 2...}. By analyzing the state transition
diagram (see [103] for details), the only three possible
transitions from an arbitrary state (i, j) are to state: (i,

block-generation blockchain-building

FCFS

�

μ1

blockchain

two stages of batch services 

μ2

FIGURE 7. Blockchain queueing model with two batch service processes.

j+1), the same level; (0, j), i levels up; or (l, i+j-l), l
(1 ≤ l ≤ b) levels down. With all these characteristics,
the corresponding Markov transition matrix (or infinitesimal
generator) Q is a lower Hessenberg matrix, which is
constructed by different repetitive small matrix blocks.
Therefore, X(t) is a continuous-time Markov process
of GI/M/1-type. This block-structured Markov chain (the
other two examples are M/M/1-type and M/G/1-type) can
be solved using the matrix-analytic (or matrix-geometric)
approach.

However, this model has very strong assumptions on
transaction arrival and service processes. It is too specific
and not suitable for many practical conditions of blockchain
systems. To generalize this model, in their more recent
work [104], the authors changed the transaction arrivals
from Poisson to Markov arrival process (MAP), the service
times from exponential to phase-type (PH), and the service
discipline from FCFS to service-in-random-order. Under
the new assumptions, the blockchain queueing model
description keeps the same. Note that this is also a
structured GI/M/1-type Markov chain. For the solution,
matrix-geometric approaches are adopted to analyze and
find the stable condition. This is the same as the stationary
condition of the previous model. The simple expressions for
the average stationary number of transactions in the queue
waiting room E(N1) and the average stationary number of
transactions in the block E(N2) are obtained separately.

Because of the batch service and the Service-In-Random-
Order discipline for choosing transactions from the queueing
waiting room into a block, the Markov chain structure
becomes more complicated. This makes the computation
of transaction-confirmation time very difficult. To overcome
the challenge, the authors borrowed a computational
technique by means of both the PH distributions and the
RG factorizations [104].

There have been other blockchain queueing models
proposed for analyzing the performance of PoW consensus.
Ricci et al. [105] proposed a framework combining machine
learning with queueing theory to study Bitcoin transaction
delays. They introduced a simple queueing model for
characterization of the transaction confirmation that can
be consiered a variant of M/G/1 queue. Different from
complicated mathematical derivations, the authors mainly

VOLUME X, 2020 15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

leveraged the operational laws in queueing theory, such as
Little’s Law to solve the queue system. The most important
result, namely average transaction delay experienced by a
user, is given as E(D) = αE(B) +E(Br), where α is the
expected number of blocks that a user needs to wait until
a transaction is confirmed, E(Br) denotes the residual time
of the inter-block time, and E(B) stands for the average
time between block confirmations. This formalization is
inspired by the standard M/G/1 queueing model, where the
coefficient of the residual service time equals the system
utilization. In this variant of the model, a block is always
being mined, making the utilization 100% all the time.

Zhao et al. [106] established a type of non-
exhaustive queueing model to study the average transaction
confirmation time in a PoW-based blockchain system. For
such system, any block has a size limitation, and the block
cannot be confirmed during the mining process. Therefore,
a non-exhaustive queue with a limited batch service and a
possible zero-transaction service is naturally more suitable
to capture the system features. In this queueing model, the
mining process is treated as a vacation, and the block-
verification process is regarded as a service. Transaction
arrival is assumed to be a Poisson process with rate λ. The
time duration V for a mining process and the time duration
S for a block-verification process are both i.i.d. variables
that follow a general distribution with distribution functions
V (t) and S(t), respectively. Laplace-Stieltjes transform
(LST) has been widely used in modelling both mining and
block-verification processes to provide integral expressions
for E[V ] and E[S]. Through a series of mathematical
transformations and derivations, the authors eventually
obtained the following expression for average transaction
confirmation time: E[C] = E[S] +E[V ] (refer to [106] for
details).

Queueing Models for PoA: To evaluate the performance
of the mining process in Proof-of-X based blockchains,
Geissler et al. [107] proposed a generic discrete-time
GI/GIN/1 queueing model. Their goal was to investigate
key performance indicators, such as the mean queue
size and mean transaction waiting time, and to identify
significant impact factors. To make this model general, the
authors abstracted the blockchain network as a single server
by neglecting the information propagation delays among
network nodes. Then, the model was built around a fixed-
point iteration of the queue size distribution by representing
the system state with queue size Qn.

In this system model, the transaction interarrival time A
follows a general distribution a(k) described as A(k) =
P (A < k) =

∑︁k
i=0 a(k), k ∈ [0,∞). The service time

T is also assumed to follow a general distribution. Every
time a new transaction arrives, the size of queue Q(k)
increases by one, while every block generation decreases
the queue size by confirming a batch of transactions from
the queue. Thus, the queue size distribution can be defined
recursively, with iteration based on an embedded Markov
chain with embedding times right before a block generation

event. Furthermore, the distribution of key performance
indicator transaction waiting time can be defined by
the recurrence time distribution of the block generation
process rT (x) and the coefficient of weighted probability
c(k). The corresponding expressions are obtained through
recursive solutions, Little’s law of queueing theory and
basic probability mathematical derivations, see [107] for
details. In the evaluation part, the authors obtained a good
match by comparing the model data and the experimental
measurements, which showed the effectiveness and accuracy
of the model. Unfortunately, this general model was only
validated by using a specific Ethereum implementation
based on the Proof-of-Authority (PoA) consensus. It
discounts the versatility of this model, since the more
popular PoX consensuses such as PoW and PoS have not
been examined.

2) Queueing Models for Vote-based Consensuses
Vote-based consensus is a type of high performance
algorithms relying upon voting to reach agreement on
transaction processing among participant nodes in a
distributed system. It is the most popular consensus
mechanism used in permissioned blockchain. Three
widely used representatives of the vote-based consensus
implementations are PBFT [122], BFT-SMaRt [123], and
delegated Byzantine fault tolerance (dBFT).

Queueing Models for PBFT: The classic PBFT
algorithm was firstly proposed in 1999 to solve the
transmission errors and Byzantine faults in distributed
systems [122]. It consists of five steps: request, pre-prepare,
prepare, commit and reply. When the PBFT is adopted
in constructing blockchain systems such as Hyperledger
Fabric v0.6 [69], Zilliqa [124], and EOS [125], it has
different implementations and/or combinations with other
protocols. For example, EOS takes a hybrid consensus
of combining PBFT with DPoS, to greatly reduce the
required consensus time. Zilliqa uses an optimized version
of classic PBFT binded with sharded PoW to achieve
consensus in an efficient manner, yielding a high throughput
for the blockchain system. HLF, as the most well-known
permissioned enterprise-level distributed ledger platform,
implements the PBFT consensus algorithm among the
network peers (i.e., endorser, orderer and committer) mainly
through three phases: endorsement, ordering and validation,
as illustrated in Fig. 8.

Phase 1. Endorsement (also called proposal or execution):
1⃝ The client generates transaction proposals and

submits to endorsers for execution. 2⃝ The endorsers
simulate the transactions by executing the operation
previously written on the chaincode, and then return
responses with signed endorsements to the client. The
endorsements contain the values read or written called
read/write set (or rw-set) by the chaincode.

Phase 2. Ordering: The client sends the transaction together
with the endorsements to the Solo orderer for
ordering service. 3⃝ The orderer collects transactions

16 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

Client

Endorser

Committer

Orderer (Solo)

Endorsement Ordering Validation

Endorser 1

3

4

52

FIGURE 8. Hyperledger Fabric transaction workflow.

FCFS

�
μ blocks

batch Ordering  service  

tx

FIGURE 9. Hyperledger Fabric ordering service illustration and M/MB/1
queueing model.

submitted from different clients, establishes a total
order on them for each channel, packages multiple
transactions into blocks and generates a hash-chained
sequence of blocks. As for HLF v2.0, there are three
implementations of ordering peers: Solo, Kafka, and
Raft.

Phase 3. Validation (also called validation and commit): 4⃝
The ordered blocks are delivered to committers through
gossip protocol broadcasting. All peers are committers
by default, including pure committers and committers
with additional endorser responsibilities. Subsequently,
the peers validate each transaction contained in the
received blocks. If all validations are passed, the
transaction’s write set is applied to the peer’s world
state, and the client gets a notification about the
successful execution of the transaction 5⃝. Otherwise,
any check fail will mark the transaction as invalid, and
its effects are disregarded.

Geyer et al. [71] modelled the Solo ordering process
of HLF as an M/MB/1 queueing system. According to
the previously described three phases, transactions with
endorsements arrive at the orderer at different times and are
queued. While the queued transactions reach a threshold
number B (called batch size), the orderer immediately
provides ordering service and packages them all at once
into a block. If the transactions arrive according to a
Poisson process with rate λ and the ordering service time is
assumed to follow exponential distribution with rate µ and
FCFS discipline, the service process can be described as an
M/MB/1 queueing system, as shown in Fig. 9.

To solve this model, the authors borrowed the results
from a well-studied general bulk service queueing model
M/Ma,b/1 [126]. They simply modified the batch size range
to a = b = B. Then, the average time spent in the ordering
phase E(T ) can be expressed by the given parameters,

among which the batch size B is approved to be significant
to E(T ) from the numeric evaluations. This model well
captures the characteristics of the ordering phase in Solo
implementation. However, its shortcomings are obvious:
1) it is not suitable for Raft or Kafka implementations; and
2) it does not describe the whole transaction delay in the
HLF system.

Alaslani et al. [108] focused on PBFT blockchain system
end-to-end delay evaluation in IoT. To study the system
delay, the authors built a model with two standard queues
to capture the features of PBFT consensus from the system
level. In this system, there are M IoT devices working as
clients to send transaction requests, and K intermediate
switches and R consensus replicas working together to
process transactions. Since different IoT applications have
different latency requirements to guarantee their service
level agreement (SLA), network parameters need to be
analyzed to meet the requirements. In the first part of
the model, an M/G/1 queue is considered in which the
maximum number of network hops K∗ needs to be
calculated under the application latency constrains. In
the second part of the model, an M/M/1 queue is used
to calculate R, the number of consensus replicas (i.e.,
blockchain consensus participants) needed to maintain the
end-to-end requirements. Next, operational laws such as
Little’s law are used to analyze the network hops, and the
number of consensus replicas, where three main phases (i.e.,
preprepare, prepare, and commit) of PBFT and its fault
tolerance capability f out of N = 3f +1 replicas are taken
into consideration.

Fork-join Queue for Vote-based Consensus: In vote-
based permissioned blockchain systems, transactions are
broadcast to all authenticated voting peers of the P2P
overlay after being proposed. These voting peers, called
miner nodes or validators, are selected and authorized to
validate transactions, generate new blocks and record data
to the local ledger if a transaction gets enough validation
votes, e.g., k out of n. For example, in the PBFT, a block
is accepted and recorded if 2f +1 out of n = 3f +1 peers
independently agree on the block of transactions, where f is
the maximum number of Byzantine fault peers this system
can tolerate.

The idea of leveraging an (n, k) fork-join queue to
model vote-based blockchain is based on the fact that the
service process of this queue system matches well with
the above-mentioned transaction propagation and validation
procedure. In an (n, k) fork–join queue, the incoming jobs
are split/forked on arrival for simultaneous and independent
service by numerous servers and joined before departure.
While in a vote-based blockchain system, if we consider the
confirmation of a transaction as a big job requiring enough
validations from n nodes, this job can be split into n sub-
tasks, associated with being broadcast to n nodes and being
validated independently at the same time. Once any k out
of n sub-tasks are finished, they are joined to finish the
service and make the transaction confirmed and recorded

VOLUME X, 2020 17



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

Block�

...

μ

μ

μ

...

JoinFork

FIGURE 10. A typical fork-join queueing model. All blockchain voting nodes
are homogeneous with the common service rate µ.

to the local ledger. The remaining n − k sub-tasks keep
executing until being finished. This is called a non-purging
(n, k) fork- queue. By contrast, a purging (n, k) fork-join
queue removes all remaining sub-tasks of a job from both
sub-queues and service nodes once it receives the job’s kth
answer.

In the literature, this model is highly prevalent for
performance modelling (e.g., estimating the sojourn time
of jobs in the queues) of parallel and distributed systems.
Recently, it has been found effective for use in studying
the delay performance of the synchronization process of
the vote-based permissioned blockchain systems [109]. A
typical non-purging (n, k) fork-join queueing model is
illustrated in Fig. 10.

Even though few analytical results exist for fork–join
queues, various approximation solutions are known. An
example is the linear transformation approach [127], which
can be used to approximately compute the sojourn time
t(n, k) of a general non-purging (n, k) fork-join queue for
the vote-based blockchain system.

3) Fluid Queue for IOTA Tangle

In queueing theory, a fluid queue (also called fluid model)
is a mathematical model used to describe the fluid level in
a reservoir, for which the periods of filling and emptying
are randomly determined. It can be viewed as a large tank
connected to a series of pipes that pour fluid into the tank
and a series of pumps that remove fluid from the tank. The
capacity of this tank is typically assumed to be infinite. The
fluid level X(t) of this tank at time t is a random variable
that can be calculated if the fluid arrival and leaving rates
are given.

This model was successfully used to describe the dynamic
behaviour of the IOTA tangle [110]. First, a fluid model was
heuristically built based on some requisite stochastic models
and the assumptions on the transaction arrival rate. Through
solving the proposed delay differential equations system, the
authors analyzed the stability of conflicts, which impacted
the performance in return.

C. STOCHASTIC PETRI NETS FOR MODELLING DLT
CONSENSUSES
Another type of commonly used analytical tool for BFT-
based consensus performance modelling is stochastic Petri
net (SPN), especially its variants generalized stochastic
Petri net (GSPN) and stochastic reward net (SRN).
Petri nets (PNs) are a type of powerful mathematical
modelling language used to model and simulate discrete-
event distributed systems. They are graphs consisting of
two types of nodes: places and transitions, which represent
variables of system states represented by circles and actions
made by the system represented by rectangles. When the
firing times of all transitions are exponentially distributed
(timed transitions), the model is called SPN. Built on
SPN, a GSPN allows transitions to have zero firing times
(immediate transitions) and inhibitor arc – an arc from
a place to a transition that inhibits the firing of the
transition when the input place is not empty. According
to the literature, any GSPN model can be converted to
an equivalent CTMC, and vice versa. At the net level, an
SRN substantially improves the modelling power of the
GSPN by adding guard functions, marking dependent arc
multiplicities, general transition priorities, and reward rates.

HLF V1.0+ adopts a highly modular architecture design
by decomposing the transaction process into three main
stages as shown in Fig. 8. They can be also refined into five
phases, namely HTTP, endorsement, ordering, validation
& committing, and response [111]. HLF’s modular design
makes it possible to separately build a model for each
phase and then cascade them to analyze the performance
from the net/system level. There have been two studies
on HLF performance analysis using GSPN [111] and
SRN [112], respectively. Both follow these general steps:
1) clarify transaction process steps and the business logic
behind them; 2) create the associated transition diagrams
of Petri nets according to the corresponding rules under
reasonable assumptions; 3) translate to Markov chains for
analytical solutions or directly leverage mathematical tools
for numerical simulation solutions. The second step is
critical because it bridges the real system to an analytical
model and paves the way to solutions for the performance
indicators such as transaction throughput, latency, average
queue length and utilization. Here, we focus on the Petri
nets’ transition diagrams of the ordering phase from the two
reviewed studies, as shown in Fig. 11.

In Fig. 11 (a), the ordering service starts with taking
endorsed transactions as inputs under the assumptions of
the exponentially distributed request arrival and constant
size of each transaction. The symbols in the figure are
interpreted as follows: Te is a transition signifying the arrival
of an endorsed transaction. Pwait_o is a place signifying
the transaction is queuing, the number of token #(Pwait_o)
denotes the queuing length. N is the batch processing size
in number of transactions. Pserve_o is a place signifying
transactions are being ordered. Pidle_o is a place signifying
the server is idle now, the number of token #(Pidle_o) denotes

18 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

Pwait_o Pnext

Pidle_o

N
ToPserve_oTin

(a)

(b)

Te

TTx POS TOS Pnext

M M

FIGURE 11. SPN models for ordering service in HLF V1.0+: (a) GPSN [111]
(b) SRN [112].

the number of idle servers. Tin is an immediate transition
whose enable predicate is #(Pwait_o) > 0 & #(Pidle_o) > 0,
which means there are idle servers and queuing transactions.
Pnext is a place signifying the next processing phase.

Similarly, other phases can be modelled by following
the same methodology. Consequently, the proposed analytic
system model based on GSPN indicates that the HLF system
is composed of multiple successive M/M/1 queue networks,
and the system throughput is equal to the lowest throughput
of all those phases. Using a tool embedded in Matlab named
pntool, this system can be numerically solved to determine
the latency and throughput.

The second part of Fig. 11 describes a simple SRN model
for HLF ordering service in a network with one client, two
endorsers and one peer running the validation logic. After
the client receives a response from both endorsing peers,
it sends the endorsed transaction to the ordering service
(transition TTx), specified by a token deposited in place
POS. When the number of pending transactions reaches
block size (denoted by M ) or block timeout for general, a
number of transactions are ordered into a block (transition
TOS). The block is delivered to the committing peers (place
Tnext) for validations, such as VSCC validation and MVCC
validation. Finally, all successfully validated transactions in
the block are recorded into the local ledger. As for solving
this SRN model, one can use the simulation approach called
Stochastic Petri net Package (SPNP) [128] to numerically
find answers for the following performance metrics.
• throughput: corresponds to the rate of each transition,

using function rate() in SPNP to capture. E.g., the rate
of transition TLedger signifies the block throughput of
the system, which can be used to multiply by M to
obtain transaction throughput.

• utilization: computed by the probability that the
corresponding transition in SRN is enabled, using
function enabled(), or computed using reward functions
for transitions with function-dependent marking rate
(such as TVSCC).

• mean queue length: obtained by the number of tokens in

the corresponding phase, using function mark(). E.g.,
the mean number of tokens in place POS indicates the
mean queue length at the ordering service.

D. OTHER MODELS IN DLT PERFORMANCE
MODELLING
Besides the stochastic models described earlier, there
have been other analytical models proposed for analyzing
blockchain performance. For example, a prediction
model [113] derived from the core Ethereum’s structure
called World State was proposed to provide companies with
a more accurate estimation of performance and required
storage. By analyzing the modified Merkle Patricia tree
(MPT), which is the implementation of the World State in
Ethereum, the expectation and the max tree height were
derived as a function of the total number of transactions n.
These results linked to the performance and storage, which
were meaningful for decision making and early warnings.
Another study [114] adopted stochastic network models to
analyze the overall block generation rate for the PoW-based
Ethereum. Through this model, the blockchain evolution and
dynamics can be captured and used to analyze the impact
of the block dissemination delay and hashing power of the
member nodes on the block generation rate.

Random graph (also called Erdős-Rényi model) is a
powerful mathematical tool first introduced by Erdős [129]
and Rényi [130] to model and analyze complex networks.
It has properties suitable for modelling the peer-to-peer
overlay networks used by blockchain systems [115]. There
are two main variants of the Erdős-Rényi model. One of
them is Gp(N), which is a graph constructed by randomly
connecting nodes. Each edge is included in the graph
with probability p independent from every other edge.
Shahsavari et al. [115] presented a random graph using
Gp(N) to model the Bitcoin blockchain network, where N
is the total number of nodes, and p refers to the independent
probability that there exists a link between any two observed
nodes in the peer-to-peer overlay network. Based on the
well-established random graph analysis results, some key
performance measures can be derived in terms of block
dissemination delay and traffic overhead.

V. FINDINGS AND SUGGESTIONS FOR FUTURE
RESEARCH
In this section, we summarize the main findings from
previous evaluation sections. First, we discuss the findings
from the empirical and analytical evaluations. We then take
a look at the performance bottlenecks identified from all
reviewed solutions. Finally, we point out some open issues
and provide suggestions for future research.

A. FINDINGS FOR EMPIRICAL ANALYSIS
Performance metrics and workloads: The evaluated
performance metrics can be divided into two categories:
macro (or overall) metrics and micro (or detailed) metrics.
Macro metrics provide an overview of the system’s

VOLUME X, 2020 19



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

performance for users from the application level, such as
transaction throughput, latency, scalability, fault tolerance,
transactions per CPU/memory second/disk IO/network data.
The first two metrics (transaction throughput and latency)
are evaluated most frequently, over all blockchains. Micro
metrics depict the performance of different subprocesses
of transactions or specific layers in the blockchain
abstract model for developers, such as peer discovery rate,
RPC response rate, transaction propagating rate, contract
execution time, state updating time, consensus-cost time,
encryption and hash function efficiency. Both macro and
micro metrics are evaluated under well-designed workloads.

In blockchain performance benchmarking or monitoring
frameworks, these workloads have been designed to evaluate
the performance of different layers of blockchain. Macro
workloads, such as YCSB, Smallbank, EtherId, Doubler
and WavesPresale, are designed to evaluate the application
layer in blockchain. Micro workloads, such as DoNothing,
Analytics, IOHeavy and CPUHeavy, are designed to
evaluate lower layers of blockchain, including execution,
data and consensus layers [49].

In general, there are two popular ways to generate
workloads for experiment-based performance evaluation.
One is to construct a synthetic application with commonly
used functions (e.g., CreateAccount, IssueMoney and
TransferMoney), and leverage a client node to send requests
of transactions (i.e., implemented functions) to a blockchain
system [83]. The other is to leverage HTTP performance
testing toolkit for generating requests, for example, using
the loadtest library of Node.js to specify an HTTP request
as a JSON-formated object, and constructing workloads for
blockchains as separate JSON objects [82], [89].

Evaluated blockchains: HLF (v0.6 with PBFT and v1.0+
with BFT-SMaRt), private Ethereum (Geth with PoW and
Parity with PoA/PoW) and Ripple with XRP consensus
are the most often comparatively evaluated blockchain
platforms [49], [76], [83], [85]. Among them, HLF and
Ripple can reach 1,000+ TPS within a small network and
outperform the Ethereum platforms in terms of throughput
and latency, under both macro and micro benchmark
workloads. However, because of the underlying consensus
algorithms they use, both HLF and Ripple fail to scale
beyond a certain number of nodes in the network (e.g.,
16 [49] for HLF v0.6). For HLF, it is well-known that BFT-
based consensuses (e.g., PBFT and BFT-SMaRt) rely on
a leader for processing transactions, which may act as a
bottleneck and cause performance limitations. For Ripple, a
limited and fixed number of validators receive and process
numerous transaction requests, and finally fail to scale when
the number of requests goes beyond the capability of the
validators. This conclusion is shared by a number of early
evaluation studies such as [49], [82], [83], [85]. Between
the different versions of HLF, its new release v1.0+ has
better performance than v0.6 [66] across all evaluated macro
metrics such as execution time, latency, throughput and
scalability. In addition, another blockchain proposed for IoT

(i.e., Tendermint) outperforms HLF V0.6 and Ripple on both
the throughput and the latency [89].

It is worth noting that we did not encounter any
improvement solutions such as off-chain, side-chain,
concurrent execution and sharding in the evaluated
blockchain systems. In fact, many of the proposed solutions
only exist at the conceptual stage at the time of writing this
survey. Some of them provide a brief comparative evaluation
and analysis under a specific use case for the purpose
of proof-of-concept, but lack a systematic evaluation in a
meaningful manner to demonstrate their effectiveness and
efficiency.

Consensus finality: Consensus finality refers to the
deterministic property of a blockchain where a block is
considered confirmed once it is appended to the ledger.
BFT-based blockchains are all with consensus finality,
while those PoW-based are usually not. This property has
a direct impact on the transaction latency. For example,
Bitcoin usually requires six successive confirmations as a
secure finality that a transaction will not end up being
pruned and removed from the blockchain, which makes the
latency reach an unacceptable time of almost one hour. In
contrast, HLF with BFT-based consensuses can finalize a
transaction within seconds right after it is appended to the
ledger. Therefore, BFT-based blockchains have an obvious
advantage over PoW-based blockchain systems in terms of
performance.

B. FINDINGS FOR ANALYTICAL MODELLING
Performance modelling strategies: Most models neglect
information propagation delays in the network and simply
collapse the whole network into a single node that provides
service to process and confirm transactions. These models
are usually queue systems that provide bulk services such
as M/MB/1 and M/GB/1 queues. Only a small portion
of models consider the system as separate disjoint nodes
and take the network latency among network nodes into
consideration. They aim to calculate system end-to-end
output (e.g., delays) using queue networks or by cascading
different queues such as M/G/1 and M/M/1 together to
model the blockchain network.

An (n, k) fork-join queue combines both modelling
strategies. It first regards the system as a single server
when the system receives a job request. Then, it splits the
job into several sub-tasks for independent and simultaneous
processes on different network nodes. In the joint phase,
process results are collected from different nodes to finish
the original job (e.g., block validation).

C. IDENTIFIED PERFORMANCE BOTTLENECKS
From the perspective of users or managers, performance
evaluation results can be used for decision making
on blockchain system selection. Developers and system
designers, on the other hand, may care more about the
identified bottlenecks rather than the comparison results.
They can analyze these bottlenecks and propose solutions

20 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

for further performance optimization. All bottlenecks
identified in the reviewed papers are listed in Table 7.

As we can see, most bottlenecks are still unresolved.
This means that corresponding effective solutions to
solve the performance problems have not yet been
found. Another observation is that most bottlenecks are
identified by empirical analysis, which can be attributed
to two reasons. First, there are more empirical analyses
conducted than performance modelling. Second, due to
the involved mathematical expressions, analytical modelling
is much more difficult than experimental solutions in
exploring the impact of design parameters. In blockchain
performance modelling, even one simple extra parameter
can significantly increase the model complexity. Therefore,
empirical analysis becomes more efficient and popular in
bottleneck identification than its modelling counterpart.

D. OPEN ISSUES AND FUTURE DIRECTIONS

As a fundamental component of blockchain research,
performance evaluation plays an important role in boosting
blockchain applications. Although numerous blockchain
improvements have been proposed and implemented, only
a small number of them have been well evaluated.
The evaluation methods also need more analysis and
explorations. Here, we identify some open issues and
suggest potential directions for future research in this area.

• For empirical analysis, difficulties lie in comparative
evaluation among different blockchain platforms,
especially for those with very different consensus
algorithms and data structures. The main reason is
the lack of interface standards in running workloads.
For example, when evaluating blockchain platforms
for IoT such as HLF 1.0, Ripple and IOTA, it is
difficult to design a common interface for uploading
workload. Since smart contracts are not supported by
Ripple or IOTA, one solution is to design an equivalent
workload such as transferring a unity amount from
account A to another account B [82]. However, this
approach has limited extensibility, and requires to
deploy a dedicated workload for each blockchain under
evaluation. Thereby, there is a great potential for
future research to develop more extensible tools for
comparative evaluation of blockchain platforms.

• Many methods of experimental analysis rely on RPCs
to communicate with blockchain consensus nodes
and collect transaction statistic data (e.g., the total
number of confirmed transactions of certain duration).
Although the RPC API protocols (e.g., gRPC and
JSON-RPC) claim to be efficient, they still induce
extra overhead onto the consensus peers [65], which
is counted as the peer consumption and in turn
makes the evaluation results inaccurate. Therefore, a
more light-weight and low-overhead data collection
approaches, such as log-based approach [65], deserve
more attention in the future.

• RPC methods are widely used for data collection
in empirical performance evaluation of blockchain
systems. For micro metrics and micro workload design,
it is challenging to decouple the impact from other
layers. For example, two queries on transaction values
are designed to evaluate the data model performance.
For Ethereum, both queries can be easily implemented
via invoking JSON-RPC APIs. However, for HLF, a
chaincode (VersionKVStore) must be implemented as
there are no APIs to query historical states in the
system. Inevitably, this involves execution of a smart
contract making the evaluation inaccurate by adding
extra overhead. Therefore, for detailed evaluation of
performance metrics in specific blockchain abstraction
layers, it is an open issue to design a reasonable
workload that alleviates the impact of other layers and
improves accuracy.

• Besides the classic blockchain systems such as HLF
and Ethereum, there is an urgent need for evaluating
the performance of their proposed improvements. For
example, sharding claims to be a promising solution
and has been implemented in many blockchains.
However, there is no evaluation work for comparing
different shard-based blockchain systems. Different
solutions, such as sharding v.s. DAG and off-chain v.s.
side-chain also need to be comparatively evaluated. In
addition, it would be beneficial to combine empirical
and analytical approaches in blockchain performance
evaluation in the future.

VI. CONCLUSION
As blockchain has matured to receive more and more
attention, its performance problems (e.g., low throughput
and high latency) have became critical. To resolve these
issues, there have been many improvements proposed,
from system level optimization to new efficient consensus
protocols. However, such blockchain modifications need
to be evaluated in a meaningful manner to demonstrate
their performance advantages. In this paper, we present a
systematic survey covering existing blockchain performance
evaluation approaches. From the high level perspective, they
can be categorized into empirical and analytical evaluation
methods.

The empirical analysis can be further divided into
four groups: performance benchmarking, monitoring,
experimental analysis and simulation. Three popular
benchmark frameworks (i.e., Blockbench, DAGbench and
Hyperledger Caliper) are introduced and comparatively
analyzed. Performance monitoring is recognized as the best
solution for performance evaluation of public blockchain.

Analytical modelling approaches are more powerful than
empirical solutions especially for analyzing the consensus
layer of blockchain system. There are three main types
of modelling approaches compared in this survey: Markov
chains, queueing models and stochastic Petri nets. This
comparison can provide directions for selecting blockchain

VOLUME X, 2020 21



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

TABLE 7. Identified performance bottlenecks for different blockchain systems

Blockchain Bottlenecks Identified Evaluation Approaches Latest State
Ethereum v1.5.9 peer discovery, transactions propagation, consensus-cost Monitoring [65] Unresolved

Geth v1.4.18 consensus protocols Benchmarking [49] Unresolved
HLF v0.6.0 consensus protocols Benchmarking [49] Unresolved
Parity v1.6.0 transaction signing Benchmarking [49] Unresolved

HLF v1.0
endorsement policy verification, sequential

policy validation of transactions in a block, and
state validation and commit (with CouchDB)

Experimental analysis [68] Resolved (HLF v1.1)

Byteball data storage which is a relational database Benchmarking [60] Unresolved
HLF v1.0 No parallel transaction processing on the committing peer Experimental analysis [60] Unresolved

HLF Ordering service Experimental analysis [71] Unresolved
Private Ethereum Module responsible for reading and writing data Experimental analysis [84] Unresolved
Private Ethereum consensus mechanism Experimental analysis [85] Unresolved

HLF consensus mechanism Experimental analysis [85] Unresolved

HLF v1.0+ transmission from client to the
ordering service and ledger write Analytical modelling [112] Resolved

HLF v1.2 committing phase if the number of transactions in a
block is small and endorsement phase if it is large Analytical modelling [111] Unresolved

evaluation approach suitable for given purpose.
We also summarized the results of surveyed performance

evaluation studies and identified the bottlenecks of
major blockchain platforms. The survey concludes with
identification of open issues and ascertainment of future
research directions in this important area.

REFERENCES
[1] S. Nakamoto and A. Bitcoin, “A peer-to-peer electronic cash system,”

Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf, 2008.
[2] Q. K. Nguyen, “Blockchain-a financial technology for future sustainable

development,” in 2016 3rd International conference on green technology
and sustainable development (GTSD). IEEE, 2016, pp. 51–54.

[3] L. Cocco, A. Pinna, and M. Marchesi, “Banking on blockchain: Costs
savings thanks to the blockchain technology,” Future internet, vol. 9,
no. 3, p. 25, 2017.

[4] M. Hölbl, M. Kompara, A. Kamišalić, and L. Nemec Zlatolas, “A
systematic review of the use of blockchain in healthcare,” Symmetry,
vol. 10, p. 470, 2018.

[5] C. C. Agbo, Q. H. Mahmoud, and J. M. Eklund, “Blockchain
technology in healthcare: a systematic review,” in Healthcare, vol. 7.
Multidisciplinary Digital Publishing Institute, 2019, p. 56.

[6] L. A. Linn and M. B. Koo, “Blockchain for health data and its potential
use in health it and health care related research,” in ONC/NIST Use
of Blockchain for Healthcare and Research Workshop. Gaithersburg,
Maryland, United States: ONC/NIST, 2016, pp. 1–10.

[7] M. Mettler, “Blockchain technology in healthcare: The revolution
starts here,” in 2016 IEEE 18th international conference on e-health
networking, applications and services (Healthcom). IEEE, 2016, pp.
1–3.

[8] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial internet of things,”
IEEE transactions on industrial informatics, vol. 14, no. 8, pp. 3690–
3700, 2017.

[9] E. Mengelkamp, B. Notheisen, C. Beer, D. Dauer, and C. Weinhardt, “A
blockchain-based smart grid: towards sustainable local energy markets,”
Computer Science-Research and Development, vol. 33, no. 1-2, pp. 207–
214, 2018.

[10] N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decentralized
energy trading through multi-signatures, blockchain and anonymous
messaging streams,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 840–852, 2016.

[11] G. Perboli, S. Musso, and M. Rosano, “Blockchain in logistics and supply
chain: A lean approach for designing real-world use cases,” IEEE Access,
vol. 6, pp. 62 018–62 028, 2018.

[12] E. Tijan, S. Aksentijević, K. Ivanić, and M. Jardas, “Blockchain
technology implementation in logistics,” Sustainability, vol. 11, no. 4,
p. 1185, 2019.

[13] C. Insights, “Banking Is Only The Beginning: 42 Big
Industries Blockchain Could Transform,” https://www.cbinsights.
com/research/industries-disrupted-blockchain//, 2019, last accessed
2020-02-24. [Online]. Available: https://www.cbinsights.com/research/
industries-disrupted-blockchain/

[14] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized
blockchains,” in International conference on financial cryptography and
data security. Springer, 2016, pp. 106–125.

[15] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1–32, 2014.

[16] J. Reed, Litecoin: An Introduction to Litecoin Cryptocurrency and
Litecoin Mining. CreateSpace Independent Publishing Platform, 2017.

[17] J. Teutsch and C. Reitwießner, “Truebit: a scalable verification solution
for blockchains,” 2018.

[18] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten, “Arbitrum: Scalable, private smart contracts,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 1353–1370.

[19] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[20] R. Network-Fast, “cheap, scalable token transfers for ethereum,” 2018.
[21] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,

A. Poelstra, J. Timón, and P. Wuille, “Enabling blockchain innovations
with pegged sidechains,” URL: http://www. opensciencereview.
com/papers/123/enablingblockchain-innovations-with-pegged-
sidechains, vol. 72, 2014.

[22] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,”
White paper, pp. 1–47, 2017.

[23] P. Gazi, A. Kiayias, and D. Zindros, “Proof-of-stake sidechains.” IACR
Cryptology ePrint Archive, vol. 2018, p. 1239, 2018.

[24] A. Kiayias and D. Zindros, “Proof-of-work sidechains,” in International
Conference on Financial Cryptography and Data Security. Springer,
2019, pp. 21–34.

[25] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding
concurrency to smart contracts,” Distributed Computing, pp. 1–17, 2019.

[26] L. Yu, W.-T. Tsai, G. Li, Y. Yao, C. Hu, and E. Deng, “Smart-contract
execution with concurrent block building,” in 2017 IEEE Symposium on
Service-Oriented System Engineering (SOSE). IEEE, 2017, pp. 160–
167.

[27] P. S. Anjana, S. Kumari, S. Peri, S. Rathor, and A. Somani, “An efficient
framework for optimistic concurrent execution of smart contracts,” in
2019 27th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP). IEEE, 2019, pp. 83–92.

22 VOLUME X, 2020

https://www.cbinsights.com/research/industries-disrupted-blockchain//
https://www.cbinsights.com/research/industries-disrupted-blockchain//
https://www.cbinsights.com/research/industries-disrupted-blockchain/
https://www.cbinsights.com/research/industries-disrupted-blockchain/


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

[28] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 17–30.

[29] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 583–598.

[30] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 931–
948.

[31] J. Wang and H. Wang, “Monoxide: Scale out blockchains with
asynchronous consensus zones,” in 16th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19), 2019, pp.
95–112.

[32] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proceedings of the
2019 International Conference on Management of Data, 2019, pp. 123–
140.

[33] Y. Lewenberg, Y. Sompolinsky, and A. Zohar, “Inclusive block chain
protocols,” in International Conference on Financial Cryptography and
Data Security. Springer, 2015, pp. 528–547.

[34] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol.” IACR Cryptology ePrint Archive, vol.
2016, p. 1159, 2016.

[35] Y. Sompolinsky and A. Zohar, “Phantom: A scalable blockdag protocol.”
IACR Cryptology ePrint Archive, vol. 2018, p. 104, 2018.

[36] C. Li, P. Li, D. Zhou, W. Xu, F. Long, and A. Yao, “Scaling nakamoto
consensus to thousands of transactions per second,” arXiv preprint
arXiv:1805.03870, 2018.

[37] S. D. Lerner, “Dagcoin: a cryptocurrency without blocks,” White paper,
2015.

[38] S. Popov, “The tangle,” cit. on, p. 131, 2016.
[39] A. Churyumov, “Byteball: A decentralized system for storage and

transfer of value,” URL https://byteball. org/Byteball. pdf, 2016.
[40] C. LeMahieu, “Nano: A feeless distributed cryptocurrency network,”

Nano [Online resource]. URL: https://nano. org/en/whitepaper (date of
access: 24.03. 2018), 2018.

[41] S. Kim, Y. Kwon, and S. Cho, “A survey of scalability solutions
on blockchain,” in 2018 International Conference on Information and
Communication Technology Convergence (ICTC). IEEE, 2018, pp.
1204–1207.

[42] S. Rouhani and R. Deters, “Security, performance, and applications of
smart contracts: A systematic survey,” IEEE Access, vol. 7, pp. 50 759–
50 779, 2019.

[43] X. Zheng, Y. Zhu, and X. Si, “A survey on challenges and progresses
in blockchain technologies: A performance and security perspective,”
Applied Sciences, vol. 9, no. 22, p. 4731, 2019.

[44] R. Wang, K. Ye, and C.-Z. Xu, “Performance benchmarking and
optimization for blockchain systems: A survey,” in International
Conference on Blockchain. Springer, 2019, pp. 171–185.

[45] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” IEEE Access, vol. 8, pp. 16 440–16 455, 2020.

[46] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in blockchains,” IEEE Access, vol. 8, pp. 14 155–14 181, 2020.

[47] V. Acharya, A. E. Yerrapati, and N. Prakash, Oracle Blockchain Quick
Start Guide: A practical approach to implementing blockchain in your
enterprise. Packt Publishing Ltd, 2019.

[48] K. Wüst and A. Gervais, “Do you need a blockchain?” in 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT). IEEE, 2018,
pp. 45–54.

[49] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, 2017, pp. 1085–1100.

[50] G.-T. Nguyen and K. Kim, “A survey about consensus algorithms used
in blockchain.” Journal of Information processing systems, vol. 14, no. 1,
2018.

[51] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A review
on consensus algorithm of blockchain,” in 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2017,
pp. 2567–2572.

[52] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry,
S. Meiklejohn, and G. Danezis, “Sok: Consensus in the age of
blockchains,” in Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, 2019, pp. 183–198.

[53] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, “A survey on consensus mechanisms and mining strategy
management in blockchain networks,” IEEE Access, vol. 7, pp. 22 328–
22 370, 2019.

[54] S. T. Leutenegger and D. Dias, “A modeling study of the tpc-c
benchmark,” ACM Sigmod Record, vol. 22, no. 2, pp. 22–31, 1993.

[55] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[56] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “Oltp-
bench: An extensible testbed for benchmarking relational databases,”
Proceedings of the VLDB Endowment, vol. 7, no. 4, pp. 277–288, 2013.

[57] V. Abramova and J. Bernardino, “Nosql databases: Mongodb vs
cassandra,” in Proceedings of the international C* conference on
computer science and software engineering, 2013, pp. 14–22.

[58] Y. Abubakar, T. S. Adeyi, and I. G. Auta, “Performance evaluation
of nosql systems using ycsb in a resource austere environment,”
Performance Evaluation, vol. 7, no. 8, pp. 23–27, 2014.

[59] H. Matallah, G. Belalem, and K. Bouamrane, “Experimental comparative
study of nosql databases: Hbase versus mongodb by ycsb,” International
Journal of Computer Systems Science and Engineering (IJCSSE), vol. 32,
no. 4, pp. 307–317, 2017.

[60] Z. Dong, E. Zheng, Y. Choon, and A. Y. Zomaya, “Dagbench: A
performance evaluation framework for dag distributed ledgers,” in 2019
IEEE 12th International Conference on Cloud Computing (CLOUD).
IEEE, 2019, pp. 264–271.

[61] Performance and S. W. Group, “Hyperledger blockchain performance
metrics(white paper v1.01),” HyperLedger Found., Tech. Rep., 2018.

[62] A. Aldweesh, M. Alharby, M. Mehrnezhad, and A. Van Moorsel,
“Opbench: a cpu performance benchmark for ethereum smart contract
operation code,” in 2019 IEEE International Conference on Blockchain
(Blockchain). IEEE, 2019, pp. 274–281.

[63] A. Aldweesh, M. Alharby, E. Solaiman, and A. van Moorsel,
“Performance benchmarking of smart contracts to assess miner incentives
in ethereum,” in 2018 14th European Dependable Computing Conference
(EDCC). IEEE, 2018, pp. 144–149.

[64] M. T. Oliveira, G. R. Carrara, N. C. Fernandes, C. V. Albuquerque, R. C.
Carrano, D. S. Medeiros, and D. M. Mattos, “Towards a performance
evaluation of private blockchain frameworks using a realistic workload,”
in 2019 22nd Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN). IEEE, 2019, pp. 180–187.

[65] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A detailed
and real-time performance monitoring framework for blockchain
systems,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP).
IEEE, 2018, pp. 134–143.

[66] Q. Nasir, I. A. Qasse, M. Abu Talib, and A. B. Nassif, “Performance
analysis of hyperledger fabric platforms,” Security and Communication
Networks, vol. 2018, 2018.

[67] A. Baliga, N. Solanki, S. Verekar, A. Pednekar, P. Kamat, and
S. Chatterjee, “Performance characterization of hyperledger fabric,” in
2018 Crypto Valley Conference on Blockchain Technology (CVCBT).
IEEE, 2018, pp. 65–74.

[68] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance benchmarking
and optimizing hyperledger fabric blockchain platform,” in 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2018,
pp. 264–276.

[69] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference,
2018, pp. 1–15.

[70] T. S. L. Nguyen, G. Jourjon, M. Potop-Butucaru, and K. L. Thai,
“Impact of network delays on hyperledger fabric,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2019, pp. 222–227.

[71] F. Geyer, H. Kinkelin, H. Leppelsack, S. Liebald, D. Scholz, G. Carle,
and D. Schupke, “Performance perspective on private distributed ledger

VOLUME X, 2020 23



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

technologies for industrial networks,” in 2019 International Conference
on Networked Systems (NetSys). IEEE, 2019, pp. 1–8.

[72] M. Kuzlu, M. Pipattanasomporn, L. Gurses, and S. Rahman,
“Performance analysis of a hyperledger fabric blockchain framework:
Throughput, latency and scalability,” in 2019 IEEE International
Conference on Blockchain (Blockchain). IEEE, 2019, pp. 536–540.

[73] S. Wang, “Performance evaluation of hyperledger fabric with malicious
behavior,” in International Conference on Blockchain. Springer, 2019,
pp. 211–219.

[74] Z. Shi, H. Zhou, Y. Hu, S. Jayachander, C. de Laat, and Z. Zhao,
“Operating permissioned blockchain in clouds: A performance study of
hyperledger sawtooth,” in 2019 18th International Symposium on Parallel
and Distributed Computing (ISPDC). IEEE, 2019, pp. 50–57.

[75] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
“Untangling blockchain: A data processing view of blockchain systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 7,
pp. 1366–1385, 2018.

[76] S. Rouhani and R. Deters, “Performance analysis of ethereum
transactions in private blockchain,” in 2017 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS).
IEEE, 2017, pp. 70–74.

[77] R. Yasaweerasinghelage, M. Staples, and I. Weber, “Predicting latency of
blockchain-based systems using architectural modelling and simulation,”
in 2017 IEEE International Conference on Software Architecture (ICSA).
IEEE, 2017, pp. 253–256.

[78] C. Rathfelder and B. Klatt, “Palladio workbench: A quality-prediction
tool for component-based architectures,” in 2011 Ninth Working
IEEE/IFIP Conference on Software Architecture. IEEE, 2011, pp. 347–
350.

[79] M. Bez, G. Fornari, and T. Vardanega, “The scalability challenge of
ethereum: An initial quantitative analysis,” in 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE). IEEE,
2019, pp. 167–176.

[80] C. Fan, H. Khazaei, Y. Chen, and P. Musilek, “Towards a scalable dag-
based distributed ledger for smart communities,” in 2019 IEEE 5th World
Forum on Internet of Things (WF-IoT). IEEE, 2019, pp. 177–182.

[81] F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review
of blockchain-based applications: current status, classification and open
issues,” Telematics and Informatics, vol. 36, pp. 55–81, 2019.

[82] R. Han, V. Gramoli, and X. Xu, “Evaluating blockchains for iot,” in
2018 9Th IFIP international conference on new technologies, mobility
and security (NTMS). IEEE, 2018, pp. 1–5.

[83] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong,
“Performance analysis of private blockchain platforms in varying
workloads,” in 2017 26th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 2017, pp. 1–6.

[84] S. Chen, J. Zhang, R. Shi, J. Yan, and Q. Ke, “A comparative testing
on performance of blockchain and relational database: Foundation
for applying smart technology into current business systems,” in
International Conference on Distributed, Ambient, and Pervasive
Interactions. Springer, 2018, pp. 21–34.

[85] Y. Hao, Y. Li, X. Dong, L. Fang, and P. Chen, “Performance analysis
of consensus algorithm in private blockchain,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2018, pp. 280–285.

[86] H. M. A. Aljassas and S. Sasi, “Performance evaluation of proof-
of-work and collatz conjecture consensus algorithms,” in 2019 2nd
International Conference on Computer Applications & Information
Security (ICCAIS). IEEE, 2019, pp. 1–6.

[87] R. Deloin, “Proof of collatz conjecture,” Asian Research Journal of
Mathematics, pp. 1–18, 2019.

[88] S. Benahmed, I. Pidikseev, R. Hussain, J. Lee, S. A. Kazmi,
A. Oracevic, and F. Hussain, “A comparative analysis of distributed
ledger technologies for smart contract development,” in 2019 IEEE 30th
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC). IEEE, 2019, pp. 1–6.

[89] R. Han, G. Shapiro, V. Gramoli, and X. Xu, “On the performance of
distributed ledgers for internet of things,” Internet of Things, p. 100087,
2019.

[90] S. Park, S. Oh, and H. Kim, “Performance analysis of dag-
based cryptocurrency,” in 2019 IEEE International Conference on
Communications Workshops (ICC Workshops). IEEE, 2019, pp. 1–6.

[91] S. Chandel, W. Cao, Z. Sun, J. Yang, B. Zhang, and T.-Y. Ni, “A multi-
dimensional adversary analysis of rsa and ecc in blockchain encryption,”

in Future of Information and Communication Conference. Springer,
2019, pp. 988–1003.

[92] J. Ferreira, M. Antunes, M. Zhygulskyy, and L. Frazão, “Performance of
hash functions in blockchain applied to iot devices,” in 2019 14th Iberian
Conference on Information Systems and Technologies (CISTI). IEEE,
2019, pp. 1–7.

[93] T. M. Fernández-Caramés and P. Fraga-Lamas, “A review on the use of
blockchain for the internet of things,” IEEE Access, vol. 6, pp. 32 979–
33 001, 2018.

[94] M. Alharby and A. van Moorsel, “Blocksim: a simulation framework
for blockchain systems,” ACM SIGMETRICS Performance Evaluation
Review, vol. 46, no. 3, pp. 135–138, 2019.

[95] S. Pandey, G. Ojha, and B. Shrestha, “Blocksim: A practical simulation
tool for optimal network design, stability and planning.” in 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC).
IEEE, 2019, pp. 133–137.

[96] C. Faria and M. Correia, “Blocksim: Blockchain simulator,” in 2019
IEEE International Conference on Blockchain (Blockchain). IEEE,
2019, pp. 439–446.

[97] M. Zander, T. Waite, and D. Harz, “Dagsim: Simulation of dag-
based distributed ledger protocols,” ACM SIGMETRICS Performance
Evaluation Review, vol. 46, no. 3, pp. 118–121, 2019.

[98] M. Bottone, F. Raimondi, and G. Primiero, “Multi-agent based
simulations of block-free distributed ledgers,” in 2018 32nd International
Conference on Advanced Information Networking and Applications
Workshops (WAINA). IEEE, 2018, pp. 585–590.

[99] B. Kusmierz, W. Sanders, A. Penzkofer, A. Capossele, and A. Gal,
“Properties of the tangle for uniform random and random walk tip
selection,” in 2019 IEEE International Conference on Blockchain
(Blockchain). IEEE, 2019, pp. 228–236.

[100] D. Huang, X. Ma, and S. Zhang, “Performance analysis of the raft
consensus algorithm for private blockchains,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2019.

[101] B. Cao, S. Huang, D. Feng, L. Zhang, S. Zhang, and M. Peng, “Impact
of network load on direct acyclic graph based blockchain for internet of
things,” in 2019 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC). IEEE, 2019, pp. 215–
218.

[102] Y. Kawase and S. Kasahara, “Transaction-confirmation time for bitcoin: a
queueing analytical approach to blockchain mechanism,” in International
Conference on Queueing Theory and Network Applications. Springer,
2017, pp. 75–88.

[103] Q.-L. Li, J.-Y. Ma, and Y.-X. Chang, “Blockchain queue theory,” in
International Conference on Computational Social Networks. Springer,
2018, pp. 25–40.

[104] Q.-L. Li, J.-Y. Ma, Y.-X. Chang, F.-Q. Ma, and H.-B. Yu, “Markov
processes in blockchain systems,” Computational Social Networks,
vol. 6, no. 1, pp. 1–28, 2019.

[105] S. Ricci, E. Ferreira, D. S. Menasche, A. Ziviani, J. E. Souza, and A. B.
Vieira, “Learning blockchain delays: a queueing theory approach,” ACM
SIGMETRICS Performance Evaluation Review, vol. 46, no. 3, pp. 122–
125, 2019.

[106] W. Zhao, S. Jin, and W. Yue, “Analysis of the average confirmation time
of transactions in a blockchain system,” in International Conference on
Queueing Theory and Network Applications. Springer, 2019, pp. 379–
388.

[107] S. Geissler, T. Prantl, S. Lange, F. Wamser, and T. Hossfeld, “Discrete-
time analysis of the blockchain distributed ledger technology,” in 2019
31st International Teletraffic Congress (ITC 31). IEEE, 2019, pp. 130–
137.

[108] M. Alaslani, F. Nawab, and B. Shihada, “Blockchain in iot systems: End-
to-end delay evaluation,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 8332–8344, 2019.

[109] U. R. Krieger, M. H. Ziegler, and H. L. Cech, “Performance modeling of
the consensus mechanism in a permissioned blockchain,” in International
Conference on Computer Networks. Springer, 2019, pp. 3–17.

[110] P. Ferraro, C. King, and R. Shorten, “Distributed ledger technology for
smart cities, the sharing economy, and social compliance,” IEEE Access,
vol. 6, pp. 62 728–62 746, 2018.

[111] P. Yuan, K. Zheng, X. Xiong, K. Zhang, and L. Lei, “Performance
modeling and analysis of a hyperledger-based system using gspn,”
Computer Communications, 2020.

[112] H. Sukhwani, N. Wang, K. S. Trivedi, and A. Rindos, “Performance
modeling of hyperledger fabric (permissioned blockchain network),” in

24 VOLUME X, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006078, IEEE Access

C. Fan et al.: Performance Evaluation of Blockchain Systems: A Systematic Survey

2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA). IEEE, 2018, pp. 1–8.

[113] H. Zhang, C. Jin, and H. Cui, “A method to predict the performance and
storage of executing contract for ethereum consortium-blockchain,” in
International Conference on Blockchain. Springer, 2018, pp. 63–74.

[114] N. Papadis, S. Borst, A. Walid, M. Grissa, and L. Tassiulas, “Stochastic
models and wide-area network measurements for blockchain design and
analysis,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 2546–2554.

[115] Y. Shahsavari, K. Zhang, and C. Talhi, “Performance modeling and
analysis of the bitcoin inventory protocol,” in 2019 IEEE International
Conference on Decentralized Applications and Infrastructures
(DAPPCON). IEEE, 2019, pp. 79–88.

[116] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing networks
and Markov chains: modeling and performance evaluation with computer
science applications. John Wiley & Sons, 2006.

[117] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), 2014, pp. 305–319.

[118] T. G. Robertazzi, Computer networks and systems: queueing theory and
performance evaluation. Springer Science & Business Media, 2012.

[119] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud computing centers using m/g/m/m+ r queuing systems,” IEEE
Transactions on parallel and distributed systems, vol. 23, no. 5, pp. 936–
943, 2011.

[120] E. Gelenbe, G. Pujolle, E. Gelenbe, and G. Pujolle, Introduction to
queueing networks. Wiley New York, 1998, vol. 2.

[121] M. Chaudhry and J. Templeton, “The queuing system m/gb/l and its
ramifications,” European Journal of Operational Research, vol. 6, no. 1,
pp. 56–60, 1981.

[122] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI,
vol. 99, 1999, pp. 173–186.

[123] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for
the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE, 2014, pp.
355–362.

[124] Z. Team et al., “The zilliqa technical whitepaper,” Retrieved September,
vol. 16, p. 2019, 2017.

[125] E. IO, “Eos. io technical white paper,” EOS. IO (accessed 18 December
2017) https://github. com/EOSIO/Documentation, 2017.

[126] J. Medhi, “Waiting time distribution in a poisson queue with a general
bulk service rule,” Management Science, vol. 21, no. 7, pp. 777–782,
1975.

[127] H. Wang, J. Li, Z. Shen, and Y. Zhou, “Approximations and bounds
for (n, k) fork-join queues: a linear transformation approach,” in 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2018, pp. 422–431.

[128] G. Ciardo, J. K. Muppala, K. S. Trivedi et al., “Spnp: Stochastic petri net
package.” in PNPM, vol. 89, 1989, pp. 142–151.

[129] P. Erdos, “On random graphs,” Publicationes mathematicae, vol. 6, pp.
290–297, 1959.

[130] B. Bollobás and B. Béla, Random graphs. Cambridge university press,
2001, no. 73.

CAIXIANG FAN is now a Ph.D. student in
software engineering and intelligent systems at
the Electrical and Computer Engineering (ECE)
Department, University of Alberta. He works
as a Research Assistant at the Performant
& Available Computing Systems (PACS) lab
under co-supervision of Dr. Hamzeh Khazaei
and Dr. Petr Musilek. Previously, Caixiang Fan
has received his MSc degree from the ECE
Department at University of Alberta in 2019

and Bachelor’s degree from the University of Electronic Science and
Technology of China in 2012, respectively. In between, he worked as an IT
Engineer at Huawei Technologies Co. Ltd, China. His research interests are
blockchain and DAG-based distributed ledger system design, performance
evaluation and modelling.

SARA GHAEMI (Student Member, IEEE)
received the B.S. degree in electrical engineering
from Amirkabir University of Technology,
Tehran, Iran in 2018. She is currently pursuing
the M.S. degree in software engineering and
intelligent systems at University of Alberta,
Edmonton, AB, Canada. She is a Research
Assistant in University of Alberta and a visiting
Research Assistant in the Performant and
Available Computing Systems (PACS) lab at York

University, Toronto, ON, Canada. Her research interests include cloud
computing, distributed ledger technologies, and distributed systems.

HAMZEH KHAZAEI (Member, IEEE) is an
assistant professor in the Department of Electrical
Engineering and Computer Science at York
University. Previously he was an assistant
professor at the University of Alberta, research
associate at the University of Toronto and
a research scientist at IBM, respectively. He
received his PhD degree in Computer Science
from the University of Manitoba where he
extended queuing theory and stochastic processes

to accurately model the performance and availability of cloud computing
systems. His research interests include performance modeling, cloud
computing and engineering distributed systems.

PETR MUSILEK (Senior Member, IEEE)
received the Ing. degree (with great Distinction)
in electrical engineering, and the Ph.D. degree
in cybernetics from the Military Academy in
Brno, Czech Republic, in 1991 and 1995,
respectively. In 1995, he was appointed the Head
of the Computer Applications Group, Institute of
Informatics, Military Medical Academy, Hradec
Kralove, Czech Republic. From 1997 to 1999, he
was a NATO Science Fellow with the Intelligent

Systems Research Laboratory, University of Saskatchewan, Canada. In
1999, he joined the Department of Electrical and Computer Engineering,
University of Alberta, Canada, where he is currently a Full Professor. He
was the Director of Computer Engineering Program from 2016 to 2017.
He currently serves as an Associate Chair (Research and Planning) with
ECE Department. His research interests include artificial intelligence and
energy systems. He developed a number of innovative solutions in the areas
of renewable energy systems, smart grids, wireless sensor networks, and
environmental monitoring and modeling.

VOLUME X, 2020 25


