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ABSTRACT

This research is a follow up to preliminary studies reported by Beier
and Sego (2008) and the objective is to investigate laboratory scale
dewatering of oil sands total tailings using cross flow filtration
technology. A laboratory experiment was setup in Oil Sands Tailings
Research Facility and tests were carried out under different
operational conditions using different tailings. The experiments
showed clean filtrate water generated under all test conditions.
Coarser tailings and higher filter pipe porosity resulted in greater
filtrate flux rate. The effect of slurry velocity, residual bitumen, and
transmembrane pressure on cross flow filtration performance was also
evaluated. A dimensional analysis was developed using the laboratory
tests to establish the relationships between measured parameters and

to assist and guide future experimental programs.
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1 INTRODUCTION
1.1 Background
The research conducted in this study investigated the application of

cross flow filtration to dewater oil sands total tailings.

1.1.1 Oil Sands Tailings Slurry Characteristics

The oil sands total tailings slurry from the extraction process is a
mixture of sand particles, dispersed fines, water and residual bitumen.
The mixture has about 55wt% solids, of which 82wt% are sands and
17wt% are fines (<44um), and 1wt% of residual bitumen. This tailings
stream 1is characterized as heterogeneous or settling flow. This
behavior causes total tailings to form two quasi layers, which flow at
different velocities, during pipeline transportation (Sanders et al.,

2004).

After deposition into the storage area, particles settle quickly from the
slurry forming a beach. The remaining fines form a dilute suspension
of about 10wt% solids content that flows into the tailings pond
(Morgenstern and Scott, 1995; Sobkowicz and Morgenstern, 2009).
After a few years of settling, the fines densify to 30-35wt% solids
content with a stable slurry structure and are referred to as Mature
Fine Tailings (MFT). Due to the slow consolidation rate, MFT
requires decades to complete self weight consolidation and require
long term containment of fluid (Chalaturnyk et al., 2002; Sobkowicz
and Morgenstern, 2009).



To describe the segregation issue and to understand this behavior, as
well as what is needed to alter its behavior, the ternary diagram
(Figure 1.1) illustrated by Azam and Scott (2005) is a useful tool.
There are several boundaries illustrated. One important boundary for
tailings management is the segregating-nonsegregating boundary,
which represents the division between two tailings behaviors. Above
the boundary, coarse particles settle from the tailings slurry. This
leaves the fines suspended within the tailings stream and they
eventually form the MFT. Below the boundary, coarse particles are
captured in the fines matrix and the total tailings slurry form a
nonsegregating mixture when deposited (Morgenstern and Scott,

1995).

One potential solution to prevent segregation is increasing the total
tailings stream solids content before depositing into tailings pond, i.e.
dewatering technology (Morgenstern and Scott, 1995). As shown in
the ternary diagram (Figure 1.1), the total tailings have approximately
40wt% to 60wt% solids content and 10wt% to 20wt% fines content,
and are located above the segregation boundary. To achieve a
nonsegregating condition using a dewatering method and without
reducing the fines content, a solids content about of 70wt% is required.
This is easy to illustrate in the ternary diagram (Figure 1.1) by plotting
a straight line (dotted line) from total tailings stream region to the
nonsegregating region. This line should follow a constant fines
content path since fines content will not change during the dewatering
process (Morgenstern and Scott, 1995). Based on the calculation
(Appendix A), about 50wt% of water needs to be removed from the
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total tailings stream to achieve this solids content increase. On a

volume bases 33% of the original tailings volume needs to be reduced.

1.1.2 Cross Flow Filtration

Cross flow filtration is a potential technology to achieve the
dewatering objective previously documented. The working
mechanism of cross flow filtration is shown in Figure 1.2. Compared
to traditional dead-end filtration, the slurry flow direction in cross
flow filtration is parallel to the filter membrane. The shear stress
generated by the flow limits the cake thickness and keeps high filtrate
flux rate at a longer time compared to dead-end filtration. In cross
flow filtration, a pipeline with small pores or slots is used as the filter
membrane. Therefore, since pipeline transportation is used in oil sands
industry to deliver total tailings stream from extraction plants to
tailings ponds, the dewatering pipelines and cross flow filtration could
be utilized as part of the existing pipeline transportation to increase
tailings slurry solids content before deposition into a tailings pond or

other faculty.

Another potential advantage of applying cross flow filtration in
tailings slurry pipeline transportation is water and energy recovery. In
the oil sands extraction process, although recycled water from tailings
ponds provides approximately 80%-85% of the water usage, it was
reported that under current processing conditions, 3.1barrels of
freshwater were needed to produce one barrel of oil (Allen, 2008).
With the application of cross flow filtration, the filtrate water removed

from tailings slurry can be directly reused in the extraction plants. The
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heat generated for the extraction process and pipeline transportation
can also be recovered with filtrate water. Therefore, with increasing
tailings slurry solids content, cross flow filtration can also save water

and energy thus reducing green house gases.

Cross flow filtration has been widely used in purification or
regeneration of process liquids containing very fine suspensions
(Murkes and Carlsson, 1988; Yan et al., 2003). This technology has
also been demonstrated as having potential to increase the solids
content in coarse tailings by Beier and Sego (2008) and gold mine
tailings by Yan et al. (2003). Beier and Sego (2008) conducted
experiments on coarse tailings similar to oil sands total tailings, and
obtained acceptable filtrate quality and quantity. Yan et al. (2003)
performed cross flow filtration on gold mine tailings and achieved an
increase of 9wt% in solids content over a 100m filter pipe length.
Therefore, based on these achievements, the application of cross flow
filtration on actual oil sands total tailings is suitable and good

filtration quality and quantity are expected.

1.2 Objectives

This research continues preliminary work done by Beier and Sego
(2008). Based on the findings of their study, the primary objective of
this research is to investigate the laboratory scale dewatering capacity
of oil sands total tailings using cross flow filtration technology under
different operation conditions and with different feed tailings. This

research program also aims:



1. To investigate the relationship between feed velocity and filtrate
quantity (filtrate flux rate) and quality (filtrate water solids
content);

2. To evaluate the influence of different oil sands total tailings
compositions (particle size distribution) on the cross flow filtration
performance;

3. To evaluate the influence of different filter media on the cross flow
filtration performance;

4. To investigate the relationship between transmembrane pressure
and filtrate quantity (filtrate flux rate) and quality (filtrate water

solids content).

1.3 Methodology

A laboratory scale cross flow filtration system was designed and
constructed at the Oil Sands Tailings Research Facility (OSTRF). The
experimental oil sands total tailings were made by mixing tailings
sands, MFT and tap water. The chemistry of tap water is different with
tailings water, but for these preliminary tests it was deemed acceptable.
The filtrate flow rate was measured and filtrate water samples were
taken during test operation to determine filtrate flux rate and filtrate
water solids content. The feed tailings samples were collected to
determine solids content and fines content at the University of Alberta

Geotechnical Center as required.

1.4 Organization of Dissertation
This thesis has been written in paper format. Chapter 1 briefly
introduces the oil sands tailings characteristics and cross flow
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filtration technology. Chapter 2 details the cross flow filtration theory,
laboratory experiment design, execution, observations, test results and
discussions. Chapter 3 presents the dimensional analysis based on
laboratory results in order to determine the relationship between
different parameters in cross flow filtration. Chapter 4 summarizes the

achievements of this study and requirements for future research.
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2 CROSS FLOW FILTRATION OF OIL SANDS TOTAL
TAILINGS: LABORATORY EXPERIMENTS

2.1 Introduction

Oil sands tailings, which are produced from the bitumen extraction
process, are deposited as a slurry with an average of 55wt% solids
content (percentage of total solids of tailings slurry) and 17wt% fines
content (percentage of particles <44um of total solids). The whole oil
sands total tailings are characterized as heterogeneous or segregating
slurry during pipeline transportation (Sanders et al., 2004). After
discharge from the pipeline into the disposal area, particles settle and
form a beach, leaving a 10wt% fines content suspension in the fluid
flowing to the pond (Morgenstern and Scott, 1995; Sobkowicz and
Morgenstern, 2009). After a few years of settling, the remaining fines
achieve 30-35wt% solids content with a stable structure, which is
called Mature Fine Tailings (MFT). Due to its very slow consolidation
rate, MFT needs many decades to settle and dewater before it achieves
a trafficable surface as required by regulators (ERCB Directive 074)
(Chalaturnyk et al., 2002; Sobkowicz and Morgenstern, 2009).

Consolidated/composite  tailings (CT) technology has been
implemented by industry to reduce the above described segregation by
combining together MFT, gypsum (CaSQO,) and coarse sands (cyclone
under flow). Although CT technology produces non-segregating
tailings, it still segregates unless carefully deposited. Another concern
of CT is the addition of gypsum, which results in accumulation of
Ca™ in the recycle water negatively impacting bitumen extraction

efficiency (Chalaturnyk et al., 2002; Sobkowicz and Morgenstern,
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2009).

To avoid adding chemicals and to prevent segregation, increasing total
tailings solids content to over 70wt% before deposition is a potential
solution. With the increase in tailings slurry solids content, the heated
water removed from tailings slurry can be reused in extraction to save
energy. Cross flow filtration is a potential technology to achieve these
dewatering objectives and has been demonstrated by Yan et al. (2003)
and Beier and Sego (2008).

2.2 Introduction of Cross Flow Filtration

2.2.1 Working Mechanism

In cross flow filtration, the slurry to be filtered flows parallel to the
filter membrane. The working mechanism of cross flow filtration is
shown in Figure 2.1. The flow direction is perpendicular to the
building-up of filter cake, therefore shear stresses generated by the
flow limits the cake thickness to maintain high filtrate flux rate for a
longer period compared to dead-end filtration that rapidly builds cake
thickness. Filtrate flux rate (J; m’/s'm”) is a measure of how much
filtrate volume flows across a given area of the membrane during a
given time interval. It is calculated as (filtrate flow rate)/(filter
membrane surface area). Hwang and Hong (2006) compared cross
flow filtration and dead-end constant pressure filtration. They found
that cross flow filtration always gave a higher filtrate flux rate under a
fixed filtration pressure since a thinner filter cake formed in cross flow

filtration.

12



Due to the slurry flow direction in cross flow filtration, woven hose
and porous/slotted pipes have been used as filter membrane. Yan et al.
(2003) evaluated the first while Beier and Sego (2008) the second.
This pipe filter membrane allows the application of cross flow
filtration as part of the total tailings slurry pipeline transportation used

in the oil sands industry.

Oil sands total tailings are classified as a heterogeneous slurry in
pipeline transportation and could be represented using the
Saskatchewan Research Council (SRC) Two-Layer model (Sanders et
al., 2004). This model considers fully stratified flow with a high
velocity, low solids concentration in the upper layer and a slower
moving, high solids concentration in the lower layer. Fines are
considered as part of the carrier fluid (Sanders et al., 2004). Therefore,
when applying cross flow filtration to total tailings, it is expected that
coarse particles within the tailings slurry settle onto the filter
membrane at the beginning of operation due to their settling
characteristic. Some fine particles, which are smaller than the filter
membrane pores/slots, also drain with the filtrate water in the initial
stage. As operation continues, coarse particles settle to build bridges
across the filter openings and form a stable cake on the filter
membrane. The filtration seepage force holds the particles on the side
and top of the filter pipe forming a thin filter cake (Beier and Sego,
2008).

During a cross flow filtration operation, more fine particles are
brought to the filter cake because of seepage forces in the filtrate water.
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The accumulation of fine particles increases the filter cake resistance
and reduces filtrate flux rate. As this decreases, the seepage force
decreases and leads to fewer but finer particles being deposited in the
cake, which further decreases the filtrate flux rate (Altmann and
Ripperger, 1997). This process continues until the filtrate flux rate
attains steady state (Hwang et al., 2006; Lu et al., 1993). A detailed

scheme of this process is shown in Figure 2.2.

2.2.2 Application of Cross Flow Filtration

Cross flow filtration technology has been used in many fields for
purification or regeneration of process liquids containing fine
suspensions (Murkes and Carlsson, 1988; Yan et al., 2003). It is
widely used with fine particle slurries but few studies have
demonstrated its application with coarse tailings. Yan et al. (2003)
applied cross flow filtration to gold mine tailings using a 48mm
diameter flexible, woven steel hose. The slurry sample used had a Dy
of 35um and a solids density of 2730kg/m’. From their laboratory test,
an increase in solids content, from 44wt% to 53wt%, was obtained
over a 96m length under 160kPa transmembrane pressure and 2.17L/s

(1.2m/s) feed flow rate.

Beier and Sego (2008) examined use of cross flow filtration to
dewater coarse tailings (mixture of sands and kaolinite). Their tailings
mixture was similar to the oil sands total tailings (55wt% solids
content with 15wt% fines content). They studied cross flow filtration
using two different filter pipes. One was a 50mm inner diameter
polyethylene porous pipe with 40um pore size and the other one was a
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50mm inner diameter PVC bottom slotted pipe with 250um wide and
55mm long slots. For both cases studied, suitable filtrate water quality
could be achieved but the bottom slotted pipe required time to obtain
clean filtrate. The filtrate flux rate generated from the porous pipe was
nearly an order of magnitude greater than from slotted pipe in their
study. This could be attributed to the larger open surface (porosity) of
the porous pipe (34%) compared to the bottom slotted pipe (3%).
They operated another cross flow filtration test using porous pipe and
high solids content tailings (70wt% with 15wt% fines content). The
filtrate water quality was also acceptable and a higher transmembrane
pressure (69kPa for 55wt% solids content test; 110kPa for 70wt%
solids content test) was required to produce a similar filtrate flux rate
as the test using 55wt% solids content tailings. Based on these
experimental results, it was concluded that approximately 450m of
50mm diameter porous pipe would be required to dewater the oil
sands total tailings stream from 55wt% solids content to 70wt% under
2.26L/s (1.15m/s) feed flow rate. The performance of cross flow
filtration carried out by Beier and Sego (2008) successfully produced
an acceptable filtrate quality and quantity, and indicated that the
technology held promise for dewatering oil sands total tailings. This

study is a follow up to Beier and Sego (2008).

2.3 Parameters Related To Cross Flow Filtration

There are a number of parameters that affect the performance of cross
flow filtration, including slurry velocity, transmembrane pressure,
slurry particle size distribution and solids content, operation
temperature, and filter membrane properties (Murkes and Carlsson,

15



1988; Yan et al., 2003).

2.3.1 Slurry Velocity

Slurry velocity is a fundamentally important factor in cross flow
filtration (Murkes and Carlsson, 1988). Higher velocity generally
provides higher shear rate which reduces the cake thickness and

results in a higher filtrate flux rate (Yan et al., 2003).

Dahlheimer et al. (1970) conducted experiments using a fiber hose to
dewater a kaolin slurry with a concentration of 80g/L. They concluded
that there was a direct correlation between the filtrate flux rate and
flow velocity. Yan et al. (2003) demonstrated a linear relationship
between slurry velocity (0.7m/s to 2.4m/s) and filtrate flux rate
(1.5x10™°L/ s'm” to 8x10™L/ s'm?).

How slurry velocity affects the filter cake and its structure can be
explained using the “selective cut-diameter” mechanism. The term
“selective cut-diameter” for particle deposition during cross flow
filtration means there exists a critical particle size (cut-diameter),
below which the particles deposit on the filter membrane to form a
cake (Lu et al., 1993). This mechanism is explained using Rupperger
and Altmann’s (2002) description (Figure 2.3) that estimates filtration
drag force and slurry lift force as a function of particle size. The slope
of the lift force versus particle diameter is steeper than that of drag
force. Therefore if a particle is smaller than a certain size
(cut-diameter), which is the intersection point of drag force line and

lift force line, these particles will settle due to the net filtration drag
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force, and a particle larger than the cut-diameter will not settle due to

the net lift force.

For a given particle size distribution, increasing slurry velocity not
only generates higher shear stress on the cake surface, but it also
results in a smaller selective cut-diameter. This results in fewer but
finer particles settling to form a finer cake with a higher resistance to
the filtrate. Moreover, Lu and Hwang (1995) demonstrated the
existence of a cut-diameter using the probability of particle deposition.
Based on their modeling, the probability of particle deposition on the
cake surface suddenly reduced to low values when the particle size
exceeded a certain size, which is the cut-diameter. Hwang and Hong
(2006) demonstrated that at high slurry velocity, the reduction of cake
mass played a more significant role than the increase of cake
resistance to filtration. Therefore increasing slurry velocity could

improve filtrate flux rate.

2.3.2 Transmembrane Pressure

Transmembrane pressure is another important factor because cross
flow filtration is essentially a pressure-driven process (Yan et al.,
2003). Higher transmembrane pressure forces more filtrate liquid to
flow through the filter membrane and increase filtrate flux rate. To the
contrary, higher transmembrane pressure can also compact the cake
structure reducing the filtrate flux rate. It was found that the increase
of filtrate flux rate with transmembrane pressure will continue to a
point, after which the filtrate flux rate will not increase or may even
decrease with increasing transmembrane pressure (Murkes and
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Carlsson, 1988). Sethi and Wiesner (1997) concluded that for large
particles (1um), operating at higher pressure caused the steady state to
be achieved earlier and the increase of filtrate flux rate over the entire

operation.

Ripperger and Altmann (2002) presented cross flow filtration
experiments using monodisperse silica particles. They observed that
the filter cake thickness increased linearly and irreversibly with
transmembrane pressure, which meant with the decrease in

transmembrane pressure cake thickness did not change significantly.

Dahlheimer et al. (1970) investigated the effect of a sudden increase in
transmembrane pressure using a kaolin slurry during cross flow
filtration. The experiment was first operated under 124kPa (18psi) for
1 hour and then changed to 689.5kPa (100psi) rapidly while using
similar slurry velocity. The filtrate flux rate increased significantly
from 4.9x107 to 20.1x107L/ s'm” (95 to 370gpd/ft) 1.5 minutes after
the pressure increase. But after one hour operation, the ultimate filtrate
flux rate decreased to almost the same as was measured under 124kPa
(18psi). They used an extrapolation method to find the filtrate flux rate
value right after the pressure change. The value was 28.9x107L/s'm’
(530gpd/ft’) and it demonstrated the direct proportionality between the
transmembrane pressure and filtrate flux rate, i.e. (689.5kPa)/(124kPa)
= (28.9x107L/ s'm*)/( 4.9x107% L/ s'm°).
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Yan et al. (2003) found that there was an increase in recycled feed
slurry total solids content (wt%) with increased transmembrane
pressure during their cross flow filtration test. This indicated that more
water was removed from the tailings stream under higher
transmembrane pressure resulting in higher solids content in recycled
slurry. This observation demonstrated that filtrate flux rate increased

with transmembrane pressure.

Another concern of increasing transmembrane pressure is the quality
of filtrate liquid. Beier and Sego (2008) observed that although
increasing pressure led to higher filtrate flux rate, fines within the
filtrate liquid also increased. Therefore the optimal transmembrane
pressure should produce both good filtrate flux rate and filtrate

quality.

2.3.3 Slurry Particle Size Distribution

Particle size distribution appears to have a strong influence on filtrate
flux rate. Hwang et al. (2006) observed that for particles larger than
lum, the deposition probability decreased with increasing of particle
size. This means larger particles are more easily swept away from the
cake surface as they arrive. This mechanism could also be explained
using Rupperger and Altmann’s (2002) description (Figure 2.3;
section 2.3.1). Under a certain filtrate flux rate, the net lift force
increases with particle size and then results in less deposition as the
particle size increases. For a slurry with a wide particle size
distribution, it is expected that more particles are deposited initially
under the higher filtrate flux rate which produces higher seepage drag
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forces and a larger cut-diameter. As the particles deposition continues,
filtrate flux rate and filtration drag forces decrease, resulting in fewer
and finer particles being deposited (smaller cut-diameter). This finer
deposition increases cake resistance further decreasing the filtrate flux
rate (Altmann and Ripperger, 1997). The whole process repeats until a
balance develops between lift force and drag force, then the filtrate

flux rate reaches steady state (Hwang et al., 2006; Lu et al., 1993).

Ripperger and Altmann (2002) also described that, for a given slurry,
the percentage of particles in the 50 to 500nm range would control the
steady state filtrate flux rate. This is because particles within this
range have a minimum effective back-transport mechanism, which
means if these particles are deposited, they will be difficult to
reincorporate into the slurry. Based on the MFT particle size
distribution data shown in Figure 2.4, about 20wt% of the particles
were smaller than 500nm with dispersed condition. Therefore the total
tailings containing 15wt% fines content is expected to have 2wt% of

particles smaller than 500nm.

Another concern of applying cross flow filtration to the oil sands
tailings is the presence of coarse particles within the tailings slurry. It
is expected these coarse tailings will form a cake structure with

enhanced coarse sized particles and result in higher filtrate flux rate.

2.3.4 Slurry Solids Concentration
Generally, cross flow filtration is insensitive to the slurry solids
concentration (Murkes and Carlsson, 1988). Yan et al. (2003)
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observed this phenomenon as well. In conventional dead-end filtration,
the increase in feed solids concentration means higher particle
deposition rate and thicker cake development that reduces filtrate flux
rate, but in cross flow filtration, the slurry velocity generates a higher
shear force with a higher slurry solids concentration. This shear limits
the cake thickness and maintains an approximately constant filtrate
flux rate on the membrane and along the pipe length. Yan et al. (2003)
operated a cross flow filtration test using 100m of filter pipe and a
feed tailings slurry with approximately 44wt% solids content. The
increase of slurry solids content after the first 48m was 2-3wt%, and
5-6wt% after the second 48m. The greater increase of solids content in
the second 48m was mainly due to higher slurry density measured in
this section and these test results matched the assumption that filtrate

flux rate remained nearly constant over the pipe length.

Beier and Sego (2008) performed cross flow filtration using coarse
tailings (mixture of sands and kaolinite). Two cross flow filtration
tests were performed on tailings with different solids content, one at
55wt% and the other one at 70wt%. Both tailings contained 15wt%
fines content. The tailings with the higher solids content required a
higher transmembrane pressure (110kPa) to obtain similar filtrate flux
rate compared to the lower solids content tailings (69kPa). They
expected as solids content increases along the filter pipe length, an
increase in transmembrane pressure is needed to maintain constant

filtrate flux rate.
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2.3.5 Filter Membrane Media Properties

The filter membrane/media properties are important in cross flow
filtration (Ripperger and Altmann, 2002). The membrane pore size
should be small enough to ensure that particles are retained on the
membrane and a clean filtrate liquid passes through the pipe wall.
Although the ultimate filtrate flux rate is controlled by the cake, it
needs time to develop and generate clean filtrate liquid if the

membrane pores are too large.

The membrane porosity is another important characteristic. Greater

porosity leads to a higher filtrate flux rate even under low pressure.

The membrane resistance to filtrate water is also important since it
controls the initial filtrate flux rate and contributes to the total layer

resistance to filtrate water (Ripperger and Altmann, 2002).

Yan et al. (2003) presented that for large particles, if the membrane
radius is not sufficiently large compared to the cake thickness, filtrate
flux rate will increase with membrane radius even under the same
shear rate. The reason is that the formation of the cake restricts the
available filtrate area, and with an increase of filter membrane radius,
the available filtrate area increases and results in higher filtrate flux
rate. Sethi and Wiesner (1997) suggested that the slit or outside-in
geometry is more favorable for larger particles (>1um) than the
inside-out filter pipe membrane. Further requirements are membrane

strength, chemical and thermal stability.
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2.3.6 Temperature

Higher operational temperature leads to higher filtrate flux rate due to
lower viscosity (Murkes and Carlsson, 1988). This relationship is the
same for all membrane processes because the filtrate flow rate through
a filter membrane pore is inversely proportional to the fluid viscosity
(Yan et al., 2003). Dahlheimer et al. (1970) observed using fiber hose
and a kaolin slurry concentration at 20g/L, the temperature affected

the filtrate flux rate significantly, from 16.4x10°L/ s-m” (300gpd/ft’)
at 20°C to more than 43.6x10”L/ s'm” (800 gdp/ft®) at 55°C.

Even though high operating temperature resulted in high filtrate flux
rate, the major concern of high operation temperature is the filtrate
membrane thermal stability and whether higher temperatures reduces
the quality of the filtrate. (Murkes and Carlsson, 1988; Ripperger and
Altmann, 2002).

2.4 Experiment

2.4.1 Materials

The oil sands total tailings used in this study consisted of beach sands,
MFT and tap water prepared to 55wt% total solids content and 15wt%
fines content (<44um). The MFT was from Albian Sands External
tailings pond (ASE Main Pond) and was obtained in June 2007. The
beach sands samples were from Syncrude Canada Ltd. and Suncor
Canada Ltd. as beach sands from Albian Sands was not available. The
particle size distributions of these materials are presented in Figure 2.4.
The particle size distribution of beach sands was determined using

sieve analysis (ASTM D422-63) and the particle size distribution of
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MFT was determined using hydrometer tests (ASTM D422-63 and
ASTM D4221-99). In order to maintain the chemistry of MFT, the
water used in non-dispersed hydrometer test was tailings pond water.
According to Millar et al. (2010), in order to minimize the influence of
interparticle interactions, a solids suspension of 2.5wt% (25g dry soil)
was used instead of the normal 5wt% (50g dry soil) in non-dispersed

hydrometer test.

The water used to make the tailings was tap water. That is because the
total water volume required in this study was large and tap water was

considered suitable for this preliminary study.

Three different experimental tailings were used in this study. Tailing 1
was made with Syncrude beach sands, Albian Sands MFT and tap
water. Tailing 2 was made with Suncor beach sands, Albian Sands
MFT and tap water. Tailing 3 was made with 50wt% Syncrude beach
sands and 50wt% Suncor beach sands. The particle size distributions
of these three synthetic tailings based on dispersed MFT condition are
shown in Figure 2.5. Tailing 2 had a coarser particle size distribution

while Tailing 1 had a finer distribution

2.4.2 Filter Membranes

Two different filter pipes were used during this study. One was a
stainless steel porous pipe with nominal 40um pore size and 49%
porosity. The other one was a stainless steel slotted pipe with 250um
slot width but only 13% porosity. The details and photos of these two
filter pipes are provided in Table 2.1 and Figure 2.6. The stainless
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steel porous pipe was manufactured by Mott Corporation. The pipe
material was metal powder compressed into the desired shape and
then the powder was sintered in a controlled atmosphere furnace. The
stainless steel slotted pipe was provided by Johnson Screens. The pipe
was made by wrapping wires on a frame to form continuous slots in

the pipe.

2.4.3 Feed Tanks

Two different feed tanks used in this study. One was a cone shape tank
and the other one was a cylinder shape tank. The cylinder tank was
equipped with a paddle mixer to mix tailings slurry during test

operation. The sketch of these two tanks is shown in Figure 2.7.

2.4.4 Test Setup

A schematic of the cross flow filtration equipments is presented in
Figure 2.8. Figure 2.9 shows the photo of experiment setup. The
system is a closed circuit pipe loop. Beach sands, MFT and water
were mixed in the feed tank. After all materials were fully mixed, the
prepared tailings were then delivered into the filter pipe using a

progressing cavity slurry pump and connecting pipes.

Two pumps were used in this research program. The first pump was a
Monyo® 216 progressing cavity pump and is shown in Figure 2.9.
This pump has a 50mm (2-inch) diameter inlet connected to the feed
tank and a 25mm (1-inch) diameter discharge end connected to the

pipeline and flow meter. The second pump used in the cross flow
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filtration tests was a twin Monyo® 500 36701 progressing cavity
pump and is shown in Figure 2.10. This twin pump has 50mm (2-inch)
diameter inlet connected to the feed tank and 50mm (2-inch) diameter
discharge end connected to the pipe loop. This pump could provide a

flow rate up to 6.5m’/hour.

The dewatered tailings were returned to the feed tank using flexible
rubber hoses. A trough was placed beneath the filter pipe to collect
and convey the filtrate to a measuring system or to return it to the feed
tank. A Coriolis type mass flow meter was attached to the pipeline to
provide simultaneous measurement of slurry density and mass flow, as
well as to measure volumetric flow. Two digital pressure gauges, with
0-200kPa (0-30psi) range, were attached at both ends of the filter pipe
to measure the transmembrane pressure. A 50mm (2-inch) gate valve
was placed at the discharge end of the filter pipe to adjust the

transmembrane pressure.

Filtrate water samples were collected at 15 to 60 minutes intervals. At
each sample interval, filtrate flow rate was measured using a
graduated cylinder, and feed flow rate and transmembrane pressure
were recorded using the flow meter and pressure gauges. Samples of
feed slurry were also obtained as required. The detailed measurement
data of each test (e.g. filtrate flux rate/filtrate solids content versus

time) is contained in Appendix B.

2.5 Results

A summary of different test conditions in this study is included in
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Table 2.2. This table shows the information on the filter pipe, tailings
type, feed slurry velocity, transmembrane pressure and feed tank type
used in each test. The slurry velocity and transmembrane pressure
numbers given in this table are average values recorded during each

test and detailed information for each test is listed in Appendix B.

Also, this table gives a brief description of each test with the different
operational condition, e.g. different fines content. As shown in this
table, the porous filter pipe was used for Test 1 to Test 6 and Test 12 to
Test 16, while the slotted filter pipe were used for Test 7 to Test 11.
Tailing 1 is the major tailings used in this research, and it was used in
Test 1 to Test 4, Test 7 to Test 10 and Test 12 to Test 14. Tailing 2, a
coarser tailings composition, was used in Test 5, Test 11, Test 15 and
Test 16. Tailing 3 was only used in Test 6. The cylinder tank with a
paddle mixer was used in Test 1 to Test 11, while the cone tank was

used 1n Test 12 to Test 16.

Filtrate data (filtrate flux rate) for all tests are shown in Figure 2.11.
As shown in this figure, most tests can achieve quasi-steady state after
one hour operation. The quasi-steady state as used in this thesis is
when the filtrate flux rate becomes constant. Generally the tests using
slotted pipe (dotted line) gave lower filtrate flux rate than the tests
performed using porous pipe (solid line). For the tests using porous
pipe, those carried out using the cone tank (solid symbols) generated
higher filtrate flux rate than those using the cylinder tank (empty
symbols). The highest filtrate flux rate shown in this figure was for
Test 15, which was the first cross flow filtration test using the porous
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pipe. Detail description about the effect of feed tank types, filter pipe
types, tailings types and slurry velocities will be documented in the

following presentation.

Figure 2.12 illustrates the filtrate quality data (solids content) of all
tests except Test 16. As shown in this figure, all cross flow filtration
tests achieved high quality filtrate water (<0.5wt% solids content)
regardless of the pore/slot size. It is shown that Test 8 and Test 9,
which used slotted pipe with the larger pore/slot size, required more
time to produce the high quality filtrate water. Most of the tests using
porous pipe generated clean filtrate water (<0.5wt% solids content)
from the beginning of the test. The photograph of filtrate water drops
exiting the pipe is shown in Figure 2.13. In Test 16, although the
filtrate flux rate was high, it was observed that clean filtrate water was

obtained within 5 minutes of the start.

2.5.1 Filtrate Flux Rate with Pure Water through Filter Pipes

Pure water was pumped through both filter pipes (porous pipe and
slotted pipe) to observe the pipe wall resistance to water. Figure 2.14
shows the variation of filtrate flux rate with transmembrane pressure
and feed slurry velocity using porous pipe. Though pure water was
used in this test, some fines from feed tank and connecting hoses still
flowed into pipe pores with filtrate water. Since the amount of fines

was small, the effect of fine particles was assumed negligible.

As shown in Figure 2.14, the slurry velocity did not affect the filtrate
flux rate as no cake formed. It was observed that if the gate valve at
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the filter pipe discharge was completely closed, all water was drained
out and the transmembrane pressure increased to 276kPa (40psi).
Compared to the filtrate flux rate data shown in Figure 2.11, it is
observed that the filtrate flux rate was around 0.16 L/s'-m” with pure
water under 120kPa pressure. This is close to the test operating
pressure but well below the filtrate rate of 0.01 L/s'm” measured
during this test resulting from the filter cake formation. This
comparison shows that generally one order magnitude decrease in

filtrate flux rate happens with the presence of filter cake.

The pure water test operated with slotted pipe had different behavior.
It was observed that under different feed flow rate conditions, all
water drained when the discharge gate valve was closed and no

transmembrane pressure was generated within the filter pipe.

Based on the observations above, smaller pore/slot size has a higher
resistance to filtrate water. With the presence of the filter cake, the
filtrate flux rate is dominated by the resistance of the cake structure

compared to the resistance offered by the filter pipe.

2.5.2 Effect of Slurry Velocity on Filtrate Flux Rate

Figure 2.15 and Figure 2.16 show the effect of slurry velocity on the
filtrate flux rate using stainless steel porous pipe and slotted pipe
respectively. Tailing 1 and the cylinder tank were used and filtrate
water was recycled in all tests. A larger progressing cavity pump
(TARBY 1-206T036CDQ) was used in Test 4 and Test 10 to achieve
higher feed flow rate. Therefore the whole experiment setup was
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relocated in Oil Sands Tailings Research Facility (OSTRF). Since the
flow meter was hard wired in the piping, it could not be moved, a
TransPort™ PT868 model transit-time ultrasonic flow meter was used
in Test 4 and Test 10 to measure the feed flow rate. The flow rate
provided from this flow meter varied from 70L/min to 300L/min
(0.84m/s to 3.61m/s). Due to the great variation in feed flow rate
measurement an estimated number (>2m/s) was used to indicate the
slurry velocity condition in these tests. Although the increase in slurry
velocity from Test 1 (0.89m/s) to Test 3 (1.08m/s) was small due to
pump capacity limitation, the velocity improvement was 20% and
provides an indication of the relationship between velocity and filtrate

flux rate.

As shown in Figure 2.15, although the filtrate flux rate increased with
slurry velocity, the relationship between slurry velocity and filtrate
flux rate was not linear. The increase of filtrate flux rate from Test 1 to
Test 3, which was 0.0012L/s'm” was greater than that from Test 3 to
Test 4, which was 0.0006L/s-m>.

Another observation in Test 4 is highlighted with a dashed circle in
Figure 2.15. After 53min operation, the pump capacity was increased
from 60% to 65% to observe how increasing feed velocity during the
test influenced the filtrate flux rate. It was observed that an increase in
filtrate flux rate (from 0.005 to 0.0055L/s'm?) occurred as the pump
capacity was increased. Although the filtrate flux rate decreased again
after increasing slurry velocity, there was still an improvement in the
filtrate flux rate with an increase in velocity during this test.
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Figure 2.16 shows the effect of slurry velocity on filtrate flux rate
using the slotted pipe. This figure shows that the increase of slurry
velocity decreased the filtrate flux rate. This was not consistent with
the observation shown in Figure 2.15 for the porous pipe. Another
observation for Test 10 was that at the beginning of cross flow
filtration operation, the filtrate flow was very high and filtrate water
was dirty. But after 1~2min operation, the filtrate flux rate dropped

significantly and clean filtrate water resulted.

2.5.3 Effect of Particle Size on Filtrate Flux Rate

2.5.3.1 Effect of Sands Particle Size

Figure 2.17 and Figure 2.18 show how coarse particles (different
sands composition) in the tailings slurry affect filtrate flux rate with
the porous and slotted pipe respectively. The cylinder tank was used
and filtrate water was recycled during these tests to maintain the solids
content constant. The experimental tailings used in these tests had the
same fines content but were made using different tailings sands. As
introduced in section 2.4.1, Tailing 2 had a coarser particle size
distribution, while Tailing 1 was made from the finer tailings sands.
As shown in these two figures, the coarser tailings results in higher
filtrate flux rate  (0.003-0.005L/s'm”) than finer tailings
(0.0024-0.0035L/s-m?).

Another observation is that the difference in filtrate flux rate with
different tailings slurry using porous pipe (Figure 2.17) was a little
greater than the difference when using slotted pipe (Figure 2.18). It
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appears that the filtrate membrane with smaller pore size is more

sensitive to tailings particle size distribution.

2.5.3.2 Effect of Fines Content

Figure 2.19 shows the effect of different fines content on filtrate flux
rate when using slotted pipe as the filter membrane. Figure 2.20
presents the variation of quasi-steady state filtrate flux rate with slurry
fines content. As discussed earlier, most tests achieved quasi-steady
state after one hour operation. Thus the quasi-steady state filtrate flux
rate of Test 8 was the average after one hour. For Test 7 and Test9, the
quasi-steady state was achieved after half hour. The average after half
hour operation was then used as the quasi-steady state filtrate flux rate
for these tests. The observation is that lower fines content (Test 9)
generated higher filtrate flux rate (0.004L/s'm®) compared to the
higher fines content tailings (0.0024L/s'm?).

2.5.4 Effect of Slurry Solids Concentration on Filtrate Flux Rate

Figure 2.21 shows how increasing the slurry solids content during
cross flow filtration operation affected filtrate flux rate. Tailing 1,
porous pipe and cone tank were used in both tests. The difference
between these two tests was that in Test 12, the filtrate water was
recycled during the test while in Test 14, the filtrate water was
removed at a rate of 4L/hour, which allowed the tailings slurry solids
content to increase from 55wt% at the beginning to about 70wt% after

3 hours of operation.
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As shown in this figure, the filtrate flux rates for both tests were
similar. It appears that increasing tailings solids content during cross
flow filtration has little effect on the filtrate flux rate but the internal

pressure does increase as the solids content increases.

2.5.5 Effect of Filter Pipe Type on Filtrate Flux Rate

Figure 2.22 and Figure 2.23 show the effect of type of filter pipe on
filtrate flux rate. The cylinder tank was used and the filtrate water was
recycled in all tests. Tailing 1 was used in tests shown in Figure 2.22
and Tailing 2 was used in tests shown in Figure 2.23. As shown in
both figures, the tests using porous pipe, which has higher porosity
and smaller pore size, generate higher filtrate flux rate
(0.0035-0.005L/s'm?) than tests using slotted pipe
(0.0024-0.003L/s'm?).

In Figure 2.24, the filtrate flux rate of all tests are normalized to
porosity, i.e. (Filtrate Flux Rate)/(Porosity), to show the relationship
between filtrate flux rate and filter pipe pore/slot size. The normalized
filtrate flux rate physically means the amount of filtrate flow per open
surface area per second. As shown in this figure, slotted pipe with
larger slot size generated higher filtrate flux rate (0.018-0.023L/s'm’)

compared to porous pipe with smaller pore size (0.007-0.01L/s'm?).

2.5.6 Effect of Bitumen on Filtrate Flux Rate

Two feed tanks were used in this research. When the cone tank was
used, it was observed that a bitumen froth formed on top of the slurry
in the tank, while in the cylinder tank it did not form when the paddle
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mixer was used. The bitumen froth was observed on the inside of the
filter pipe, which reduced the filtrate area when the cylinder tank was

used as part of the test apparatus.

Figure 2.25 and Figure 2.26 show the effect of bitumen froth on
filtrate flux rate. Porous pipe was used and filtrate water was kept
recycling in all tests. Tailing 1 was used in the tests shown in Figure

2.25 and Tailing 2 was used in tests shown in Figure 2.26.

Both figures showed that, as the bitumen froth flowed with the slurry
inside the filter pipe, the filtrate flux rate decreased. Another
observation from these figures is that the presence of bitumen caused
greater reduction in filtrate flux rate (AJ=0.0035L/s'm?), almost 40%,
with the coarser tailings (Tailing 2/Figure 2.26), while the reduction in
filtrate flux rate was about 20% with Tailing 1 (AJ=0.001L/s'm?).

2.5.7 Effect of Transmembrane Pressure on Filtrate Flux Rate
Figure 2.27 shows the effect of a slight increase in transmembrane
pressure on filtrate flux rate. Tailing 1, cylinder tank and porous pipe
were used and the filtrate water was recycled in both tests. As shown
in this figure, Test 1, which had higher transmembrane pressure
(AP=35kPa), generated slightly higher filtrate flux rate than Test 2
(AJ=0.0002L/s'm?).

In order to observe the relationship between filtrate flux rate and
transmembrane pressure, a higher pressure test was conducted with
the filter cake under nearly dead-end filtration situation.
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Before each high pressure test, a cross flow filtration test operated for
2 hours to generate the filter cake. After this 2-hour test, the ball
valves on both sides of dewatering pipe were closed and a reservoir
with fine tailings was then connected to the dewatering pipe. The fine
tailings slurry was used to simulate the fines portion of the
experimental tailings and was made by mixing 50wt% MFT and
50wt% tap water. An air compressor with a pressure gauge was
connected to the reservoir and the fine tailings were delivered under
the deserved pressure into the filter pipe. The air pressure was applied
at different levels until steady filtrate flow was achieved. Filtrate
water samples were collected at the beginning of each pressure change
and the steady filtrate flux rate is measured under each pressure level.
Figure 2.28 shows the sketch of high pressure test setup and Figure
2.29 shows a photograph of the test setup.

Two high pressure tests were carried out to investigate how
transmembrane pressure affects the filtrate flux rate. Test HP1 was
carried out following Test 1, which used Tailing 1, and the
transmembrane pressure was applied from high to low value. Test HP2
was done following Test 6 using Tailing 3, and the pressure was
increased from low to high pressure value. All the filtrate flux rate

data were measured after steady filtrate flow was obtained.

The test results are presented in Table 2.4 and Figure 2.30. In Test
HP1, clean filtrate water was obtained after Smin of operation and the
filtrate flux rate dropped significantly with time under the high
pressure 793kPa (115psi). The highest filtrate flux rate (0.0037L/s'm?)

35



in Test HP1 was obtained under 758kPa (110psi). In Test HP2, clean
filtrate was observed at each pressure level. The highest filtrate flux

rate (0.0083L/s'm”) in Test HP2 was obtained under 552kPa (80psi).

2.5.8 Filter Media Plugging

One concern of cross flow filtration using small pore size filter pipe is
the potential blinding of pores within the pipes. During this study, the
filter pipes were cleaned using a hot water flush and pressure wash

from outside to minimize any potential internal clogging effect.

Porous pipe, cone tank were used and filtrate water were kept
recycling in all tests shown in Figure 2.31. Tailing 1 was used in Test
12 and Test 13 while Tailing 2 was used in Test 15 and Test 16. Test
15 was the first cross flow filtration test using the steel stainless
porous pipe, which was operated on Aug. 14" 2008. Test 12 was
operated one month later, on Sep.16™, 2008. Test 16 was carried out

on Nov. 28" 2008, and Test 13 was operated on Sep.O2nd, 20009.

Since the operation conditions for both Test 15 and Test 16 were
similar, it seems a higher filter pipe resistance was observed in Test 16
and it resulted in lower filtrate flux rate. This observation indicates
that the presence of bitumen and fines in the slurry caused clogging
inside pores and increased resistance. Test 12 and Test 13 were also
operated under similar conditions but the filtrate flux rate data were
similar, which indicates that there was little extra clogging during the

one year of operation.
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The observations above show that the cleaning method did not fully
remove bitumen and fines from the porous pipe. Since Test 12 was
operated only one month after Test 15 and little extra clogging
occurred after Test 12, it is reasonable to postulate that the higher filter
pipe resistance was developed mainly following the initial test (Test
15) and the cleaning method maintained similar filter pipe resistance

for all cross flow filtration tests operating following Test 15.

2.5.9 Heat Generation

Figure 2.32 shows the temperature variation during each cross flow
filtration test. Temperatures were always within 40-50°C during the
tests because of the friction between the tailings slurry, filter cake and
pipe wall. The comparison between Test 12 and Test 14 shows that
with increasing solids content during the cross flow filtration
operation, more friction was generated and the temperatures increased
more rapidly. The comparison between Test 2 and Test 4 shows that
more heat was generated under increasing slurry velocity. Although
the input energy was not measured in this research, the higher
temperatures generated with higher solids content and velocity

indicated significant energy consumption.

2.6 Discussion

2.6.1 Effect of Slurry Velocity on Filtrate Flux Rate

As shown in Figure 2.15 and introduced in section 2.5.2, the increase
of filtrate flux rate from Test 1 (0.89m/s; slurry velocity) to Test 3
(1.08m/s) was higher than that from Test 3 to Test 4 (>2m/s). Under
lower velocities (Test 1 & Test 3), the coarse particles in the tailings
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slurry were deposited on the filter membrane first and formed a coarse
cake structure. Based on the deposition velocity prediction shown in
Table C.1 (Appendix C), the slurry velocities in both tests were lower
than the doy deposition velocity. Therefore the coarsest particles settle
at the beginning of both tests to form a coarse filter cake. Since the
slurry velocity in Test 3 was 10% higher than in Test 1, it did not
affect the cake structure significantly. As the cake structure did not
change, a slightly higher slurry velocity during Test 3 reduced the
cake thickness resulting in an improved filtrate flux rate. In Test 4, a
significant higher slurry velocity was used compared to Test 1 and
Test 3. According to the deposition velocity prediction (Table C.1),
this higher flow rate caused few coarse particles to be deposited at the
beginning of test. Then based on the “selective cut-diameter”
phenomenon introduced in section 2.3.1, the high filtrate flux rate at
the beginning of Test 4 allowed fine particles to enter the filter cake
structure and significantly increase its resistance to filtrate flow.
Therefore, the finer cake structure compared to Test 1 and Test 3
counteracted the benefit associated with the higher feed flow rate and
resulted in lower increase in filtrate flux rate. The feed flow rate was
increased after 53min during Test 4, which is highlighted with a
dashed circle in Figure 2.15. An increase in filtrate flux rate was
observed after the velocity increased. This observation indicated that
increasing slurry velocity assisted with stripping particles from the
cake surface layer and reduced the cake thickness, which improved

filtrate flux rate.
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Therefore, although thinner cake thickness was achieved under high
slurry velocities, which improved filtrate flux rate, a finer cake
structure that can develop could counteract this improvement. As a
result, Test 4 conducted with higher slurry velocity compared to Test 3

only showed a small increase in filtrate flux rate.

As shown in Figure 2.16, the slurry velocity increase can result in a
decreased in filtrate flux rate. The reason for the lower filtrate flux
rate under higher slurry velocity situation (Test 10) was also due to the
“selective cut-diameter” phenomenon and the deposition of finer
particles into the thinner cake. At the beginning of Test 10 operation,
the filtrate flow was extremely high and a large amount of dirty filtrate
water drained from the pipe. Compared to Test 4, Test 10 had much
higher filtrate flow at the beginning and few coarse particles were
deposited. The high filtrate flow brought an increasing amount of fine
particles, probably more than in Test 4, into the cake structure to form
a finer matrix. This fine matrix then significantly increased the cake
resistance resulting in lower filtrate flux rate. Therefore it appears that
the amount of fine particles that was incorporated into the cake
structure had an important impact on the filtrate flux rate. It can

counteract the benefit of higher slurry velocity.

Based on these observations, for the oil sands tailings slurry, the
improvement of filtrate flux rate with slurry velocity is not linear and
higher slurry velocity may even reduce filtrate flux rate (Test
10/slotted pipe). Therefore, it 1s expected that if the cross flow
filtration test is first operated under a low velocity to allow a coarse
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cake structure to develop, and then a higher slurry velocity is applied
after this stable cake has formed, an optimal filtrate flux rate may be

achieved.

2.6.2 Effect of Particle Size on Filtrate Flux Rate

Particle size distribution affects filtrate flux rate. As discussed earlier,
the percentage of particles in the 50 to 500nm range determines the
ultimate filtrate flux rate since these particles increase the cake
resistance by forming stable deposits in the cake. For the oil sands
total tailings, the particle size distribution of coarse particles (sands)
also influences the filtrate flux rate since it impacts the cake structure.
In this section, the effect of different coarse particles and fines content

will be discussed

2.6.2.1 Effect of Coarse Particles (Sands) Distribution

As shown in Figure 2.17 and Figure 2.18, it is observed that the
coarser tailings particle size distribution (Tailing 2) resulted in a
higher filtrate flux rate. Based on the heterogeneous characteristic of
the total tailings, coarse particles settled from tailings slurry at the
beginning of the cross flow filtration test and formed the filter cake.
Therefore the cake structure was affected by the size distribution of
initially settled coarse particles. If feed velocity and transmembrane
pressure are the same, coarser tailings generally deposit to form a cake
structure with lower resistance to flow, which allows more filtrate

water through and higher filtrate flux rate is achieved.
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2.6.2.2 Effect of Fines Content

The observation in Figure 2.19 and 2.20 shows that lower fines
content (Test 9) generated higher filtrate flux rate. Since the same
MFT was used in all these three tests, lower fines content
corresponded to lower percentage of particles within the 50 to 500nm
range. As described in section 2.3.3, this percentage is inversely
proportional to the filtrate flux rate. Therefore higher fines content
tailings slurry has more particles within 50 to 500nm range deposited

in cake structure and a lower filtrate flux rate is expected.

2.6.3 Effect of Slurry Solids Concentration on Filtrate Flux Rate
If the cross flow filtration technology could be implemented, the
effect of increasing tailings slurry solids content with filter pipe length

must be accounted for.

As shown in Figure 2.21, the filtrate flux rates of both tests were
similar and the transmembrane pressure increased as solids content
increased. It appears that increasing the tailings solids content during
cross flow filtration operation does not affect the filtrate flux rate. The
reason could be the greater shear force generated when the higher
solids concentration slurry is flowing (Yan et al., 2003), and this
higher shear force limits the cake thickness and maintains filtrate flux

rate.

It was also observed that a higher transmembrane pressure may also
be required under high solids contents, which is consistent with Beier
and Sego’s (2008) observation. According to Beier and Sego (2008), a
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higher transmembrane pressure, in their case 69kPa for 55wt% tailings
and 110kPa for 70wt% tailings, was required to dewater high solids

contents tailings.

Since there was little change in filtrate flux rate with increasing solids
content, it is expected that the slurry flow regime did not change from
55wt% to 70wt% solids. The calculation of Reynolds number in
Appendix D (Table D.1) shows that the slurry flow remains turbulent

as the solids content increased to 70%wt.

2.6.4 Effect of Filter Pipe Type on Filtrate Flux Rate

Filter pipe (filtrate membrane) characteristics are important to the
filtrate flux rate. Higher porosity gives higher filtrate flux rate and
smaller pore size generates clean filtrate faster when compared to the

larger pore size.

Figure 2.22 and Figure 2.23 both show that higher filtrate flux rate
was generated from tests using porous pipe, which has higher porosity
and smaller pore size. This observation is consistent with Beier and
Sego (2008) and demonstrates that higher porosity could produce
higher filtrate flow.

Figure 2.24 shows that the filter pipe with larger pore/slot size (slotted
pipe) generated higher filtrate flux rate than filter pipe with smaller
pore/slot size. Based on the relationship shown in this figure, it is
expected that under the same porosity situation, a filter pipe with
larger pore/slot size generates greater filtrate flux rate.
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2.6.5 Effect of Bitumen Froth on Filtrate Flux Rate

As shown in Figure 2.25 and Figure 2.26, bitumen froth inside the
filter pipe reduced the filtrate flux rate, and the decrease was higher
with the coarser tailings (Figure 2.26). This difference was due to
different feed tanks used in this research. The cylinder tank with a
paddle mixer mixed bitumen froth into the tailings slurry and caused a
reduction in filtrate area. Therefore, in order to achieve an optimal
filtrate flux rate, a preliminary procedure to remove the bitumen froth,
such as cycling oil sands total tailings inside a cone shaped tank, is

recommended before delivering the slurry into the filter pipe.

2.6.6 Effect of Transmembrane Pressure on Filtrate Flux Rate

In Figure 2.27, the cross flow filtration test under slightly higher
transmembrane pressure situation (Test 1) provided slightly higher
filtrate flux rate. This observation indicates that higher transmembrane

pressure produces higher filtrate flux rate.

A high pressure test was utilized to find the relationship between
filtrate flux rate and transmembrane pressure under higher pressure,
up to 758kPa (110psi). The detailed description of test setup and

operation was outlined in section 2.4.6.

Based on the results in Table 2.4 and Figure 2.30, a higher filtrate flux
rate could be obtained as the pressure increased. It appears that an
optimal pressure results in the highest filtrate flux rate and the test
procedure also affects the filtrate flux rate. The optimal filtrate flux
rate was much higher in Test HP2 than Test HP1. Since Tailing 3 (Test
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HP2) had a coarser particle size distribution than Tailing 1, it is

expected that filter cake with coarser structure underwent less

compaction resulting in higher filtrate flux rate under the high

pressure. Because both high pressure tests were operated under near

dead-end filtration situation, the actual cross flow filtrate flux rate

under the same pressure level should be greater since cake thickness

would decrease under the shear force of the flowing tailings.

2.7 Conclusion

1.

The tests operated with pure water showed different behaviors
with two filter pipes. The test operated with porous pipe (smaller
pore/slot size) required pressure to force filtrate water through the
pores while with slotted pipe (larger pore/slot size) the filtrate
water freely drained.

Generally, one order magnitude decrease in filtrate flux rate is
observed under similar transmembrane pressure with the
formation of filter cake (around 0.16L/s'm” with pure water; up to
0.01L/s'm> with filter cake) using porous pipe. The filtrate flux
rate is mainly affected by the resistance within the filter cake
structure.

Higher slurry velocity results in a thinner cake containing higher
amount of fines. The increased fines in the cake reduce the
improvement associated with the thinning of cake. Increasing feed
velocity from 0.89m/s to 1.08m/s resulted in greater improvement
of filtrate flux rate (AJ=0.0012L/s'm”) than from 1.08m/s to over
2m/s (AJ =0.0006L/s'm?).

44



4. In order to achieve the optimal filtrate flux rate, it is recommended
that the cross flow filtration test is first operated under a low
velocity to allow a coarse cake structure to develop. After the
coarse stable cake has formed, a higher slurry velocity is then
applied to reduce cake thickness. This operation procedure is
expected to achieve thinner cake thickness without the large
accumulation of fines in cake structure and result in better filtrate
rate.

5. Tailings with coarse particle size distribution have higher filtrate
flux  rate  (0.003-0.005L/sm>  with coarse tailings;
0.0024-0.0035L/s'm” with fine tailings). The coarse cake structure
results in an increase in hydraulic conductivity. Higher fines
content (<44um) result in lower filtrate flux rate (0.0024L/s'm’
with 15wt% fines content tailings; 0.004L/s'm* with 10wt% fines
content tailings). Increased fine particles in 50 to 500nm range
within the cake increased the resistance to flow through the cake.

6. The cross flow filtration technology is less sensitive to slurry
solids content. Therefore the filtrate flux rate is nearly constant
along the filter pipe length. A higher transmembrane pressure may
be required as slurry solids content increases to maintain the
filtrate flux rate.

7. Higher pipe porosity always gives higher filtrate flux rate. Larger
pore/slot size needs time to generate clean filtrate water. Based on
the normalized filtrate flux rate data, the larger pore/slot size
produces a higher filtrate flux rate regardless of porosity for a
particular  pipe  (0.018-0.023L/s'm> for slotted  pipe;
(0.007-0.01L/s'm” for porous pipe).
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10.

11.

12.

The presence of bitumen froth reduces filtrate area and results in
lower filtrate flux rate (AJ=0.001-0.0035L/s'm”). A pre-treatment
to remove the bitumen or preventing bitumen froth from flowing
with slurry is necessary to achieve the optimal filtrate flux rate.
There 1s an optimal transmembrane pressure to produce the
highest filtrate flux rate when the pressure is gradually increased
during cross flow filtration. Comparing the high pressure test data,
the cake formed from coarser tailings slurry undergoes less
compaction under high pressures and results in higher filtrate flux
rate.

Clean filtrate water (<0.5wt% solids content) is achieved under all
test conditions. Filter pipe with larger slot/pore size needs
additional time to generate clean filtrate water.

Filter pipe cleaning method used in this research did not fully
remove bitumen and fines that clogging the pores. The high filter
pipe resistance was developed following the first test and
following the cleaning, similar resistance was measured for the
rest tests.

Heat generation due to friction between the slurry, filter cake and
pipe wall raises the temperature of each slurry siginificantly.
Higher slurry velocity and solids content both generate higher

temperature.
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2.9 Figures and Tables
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Figure 2.1 Working mechanism of cross flow filtration (Beier and Sego, 2008)
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3 DIMENSIONAL ANALYSIS

3.1 Introduction

The cross flow filtration experiments presented in Chapter 2 were
completed at laboratory scale. A dimensional analysis is presented in
this chapter using this experiment data to establish the relationships
between different variables in cross flow filtration. Dimensional
analysis will provide insight to guide future experiments and to predict

requirements and feasibility for large-scale testing of the technology.

3.2 Dimensional Analysis Procedure

The first step in dimensional analysis is to develop the equation, in
which the dependent variable is expressed in terms of independent
variables. In cross flow filtration, the objective of the dimensional
analysis is to find the relationship between filtrate flux rate and the
important parameters. Therefore the steady state filtrate flux rate (J;
m’/m”s) is selected as the dependent variable. The determination of
independent variables in cross flow filtration dimensional analysis will

be discussed in the following.

Equation 3.1 is a sample equation. Generally, the M-L-T
(mass-length-time) system is chosen for dimensional analysis since
this system eliminates the force dimension in fluid mechanics (Potter

& Wiggert, 1997).
= 0x,%,.0x,) 3.1

There are in total n variables in the original equation and one of them
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is the dependent variable (y) and the others (x;~x,.;) are independent
variables. Each dependent variable and independent variable should
be represented using all 3 dimensions or at least 1, i.e. M, L and/or T.
Then m of the (n-1) independent variables (generally no more than
three) are selected as repeating variables. The dependent variable (y)
and remaining (n-m-1) independent variables will then be combined
into m variables to form dimensionless parameters. Therefore the
original equation will be written in dimensionless form. This
procedure is known as the Buckingham Pi Theorem and the selected
repeating variables should include all of the basic dimensions (Potter

& Wiggert, 1997).

3.3 Dimensional Analysis of Cross Flow Filtration

In geotechnical engineering, water flows through a fully saturated soil
can be represented using Darcy’s Law (Craig, 1997). In cross flow
filtration, filtrate flowing through the filter cake is similar to the water
flow in soil. Therefore the filtrate flow rate in cross flow filtration can
be represented using Darcy’s law, which is a function of coefficient of
hydraulic conductivity (k; m/s), hydraulic gradient (i; dimensionless)
and filtrate area (Ag; m?). The equation is shown as:

AP/y,

Q=kid, =k- (L-C) 3.2

cake

Q: filtrate flow rate; m’/s

k: coefficient of hydraulic conductivity; m/s
1: hydraulic gradient; dimensionless

A filtrate area; m*

AP: transmembrane pressure; Pa (N/m?)

90



vw: unit weight of water; kN/m’
teake: thickness of cake; m
L: length of dewatering pipe; m

C: perimeter of cake; m

Filtrate flux rate (J; m*/m?s) is calculated as (filtrate flow rate)/(total
filtrate area) and is expressed as:
A t 7LD’

s cake ( pipe )

4

J: steady state filtrate flux rate; m’/m>s

J orJ = f(k,AP,y, .t ... 7, C,D ) 3.3

pipe

Aq: surface area of inside of filter pipe; m>

Dyipe: filter pipe inner diameter; m

In equation 3.3, the coefficient of hydraulic conductivity (k),
perimeter of cake (C) and cake thickness (t...) are not independent

variables. The coefficient of permeability depends on the particle size
distribution, particle shape, and soil structure that develops in the cake
and viscosity of water (Craig, 1997). As discussed in Chapter 2, the
slurry velocity can affect filter cake thickness and make up (particle
size distribution). High slurry velocity causes more fine grained
particles to enter cake structure and lower slurry velocity results in
coarse particles being deposited to make up the cake. Therefore, the

coefficient of hydraulic conductivity can be expressed as:

k:f(vs’luw’dcake) 3.4
k: coefficient of hydraulic conductivity; m/s

v: slurry velocity; m/s
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Lw: Viscosity of filtrate water; N-s /m?

deake: particle size within cake structure; m

The perimeter of filter cake is geometrically related to the thickness of

filter cake and filter pipe diameter. The expression is shown below:
sz(tcake’Dpipe) 3.5

C: perimeter of cake; m
teake: thickness of cake; m

Dyipe: filter pipe inner diameter; m

The feed slurry velocity is an important factor that affects filter cake
thickness. Generally, higher feed velocity leads to higher shear forces
at the slurry-cake boundary and reduces cake thickness (Hwang and
Hong, 2006; Lu et al.,, 1993; Yan et al., 2003). Ripperger and
Altmann’s (2002) observed that an increase in transmembrane
pressure results a linear increase in cake thickness. Other factors that
affect cake thickness are particle size distribution in tailings and pipe
diameter. Therefore, the expression for the filter cake thickness is
given as:

tcake :f(VS,dS,Dpipe,AP) 36

teake: thickness of cake; m
vs: slurry velocity; m/s

d,: Sauter mean diameter; m
Dyipe: filter pipe diameter; m

2
AP: transmembrane pressure; N/m
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The Sauter mean diameter (ds) is used to represent the particle size
distribution in tailings slurry. According to Altmann and Ripperger
(1997), the Sauter mean diameter of the particles deposited within the
cake was used to calculate the filter cake resistance. The Sauter mean
diameter 1s the particle diameter which has the same specific surface
as all the particles in the original system (Richardson et al., 2002). The

calculation of Sauter mean diameter is determined as:

J - 2P, _ ptp,t.tp, 1 37

: Z(?}_(Z+§j+...+§”j_z(?j

n n n

d,: Sauter mean diameter; m
pn: mass fraction of different particle size; %

d,: particle size in tailings slurry; m

As described in equation 3.7, the Sauter mean diameter considers both
particle size and the distribution of different particle size. Generally,
the tailings slurry with more coarse particles and fewer fine particles
has a larger Sauter mean diameter. Therefore, the Sauter mean
diameter (d;) is introduced to represent the particle size distribution in

tailings slurry.

When equation 3.6 is substituted into equation 3.5, t.u.. can be
eliminated and after combining similar variables, equation 3.5 can be
expressed as:

C=f(,d D

pipe?

AP) 3.8
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Substitution of equation 3.4, 3.6 and 3.8 into equation 3.3 and
rearranging the terms result in:

J=f,D,es by, A d s AP Y, TT) 3.9

cake®
J: steady state filtrate flux rate; m’/m>s
vs: slurry velocity; m/s
Dyipe: filter pipe diameter; m
1L, viscosity of filtrate water; N-s/m”
d,: Sauter mean diameter; m
deake: particle size within cake structure; m
AP: transmembrane pressure; Pa (N/m?)

vw: unit weight of water; kN/m’

As discussed in section 2.6.4, both filter pipe pore/slot size and
porosity of filter pipe affect the measured filtrate flux rate. Therefore,
a new parameter D, 1s introduced and a normalized filtrate flux rate
(J/np) 1s used to replace the original filtrate flux rate in equation 3.9 to
represent the effect of filter pipe pore/slot size and porosity of the

filter pipe respectively.

The variable d .. (particle size within cake structure) in equation 3.9
is related to the slurry velocity (vs) and particle size distribution of
feed tailings, which is the Sauter mean diameter (ds), which have been
discussed in section 2.6.1 and 2.6.2. Therefore, the variable d .. can

be replaced by v, and d; in equation 3.9.

As discussed in section 2.5.8, the porous pipe resistance to filtrate
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water also affects filtrate flux rate. The presence of bitumen and fines
in the slurry can increase pipe resistance significantly. Therefore, the
filter pipe resistance is also introduced into equation 3.9. According to
Ripperger and Altmann (2002), the total layer resistance can be
calculated as:
R.+R,= AP 3.10
H,J

R.: filter cake resistance to water, 1/m

R,: filter pipe resistance to water, 1/m

AP: transmembrane pressure; Pa (N/m?)

1L, viscosity of filtrate water; N-s/m>

J: steady state filtrate flux rate; m’/m>s

Since no cake was formed during the pure water tests introduced in
section 2.5.1 (Figure 3.1), R. is assumed 0 and the pure water filtrate
flux rate (Jy) is used to replace the steady state filtrate flux rate (J) in

equation 3.11. R, 1s then calculated as 1.38 X 10"> m™ for porous pipe

and 0 m™' for slotted pipe.

The slurry solids content is not included in equation 3.9 since based
on the discussion in section 2.6.3, the slurry solids content does not
affect filtrate flux rate. It is therefore reasonable to leave it out of

equation 3.9.

After these modifications, the revised equation is then written as:
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J
—=f 0. D,es D e s AP, AR 7T,y ,) 3.11

n,

J: steady state filtrate flux rate; m’/m>s

n,: porosity of the porous pipe; dimensionless
vs: slurry velocity; m/s

Dyore: pipe pore/slot size; m

Dyipe: filter pipe diameter; m

1L, viscosity of filtrate water; N-s/m”

AP: transmembrane pressure; Pa (N/m?)

ds: Sauter mean diameter; m

R,: porous filter pipe resistance to water, 1/m

Yw: unit weight of water; kN/m’

This equation includes all parameters introduced in section 2.3, which
are the important parameters controlling the performance of cross
flow filtration in porous pipe. In equation 3.11, the effect of slurry
velocity, transmembrane pressure and slurry particle size distribution
are directly represented. Filter pipe properties are represented by the
pipe diameter, pipe resistance, pore/slot size and porosity. Temperature

is represented by the viscosity of filtrate water.

Slurry velocity (vy), filter pipe diameter (D,;,.) and viscosity of filtrate
water (u,) are chosen as repeating variables since these variables
include all basic dimensions introduced in section 3.3. The equation is

then written as:

96



J AP-D . D d 7, D’

_ pipe pore G ) pipe
= f( , ,——,R D, .mw ) 312

n v u,-v. D

pipe pipe M,V
Another option is to use filter pipe pore/slot size (D,,.) to replace
filter pipe diameter (D,;.) as the repeating variable. Therefore the

equation can be written as:

AP-D D. 4 .D?
L S( ==, D””’e ,——.R, ‘Dpore,ﬂ,—y Py 313
Y /IW-VS

pore pore :uw ’ vs

n,-v

Equation 3.12 and equation 3.13 provide information from two
aspects. Equation 3.12 provides observation about the effect of the
filter pipe pore/slot size (Dpore) 0n the relationship between filtrate flux
rate and other parameters, while equation 3.13 provides the effect of
filter pipe diameter (D,pe) on the relationship between filtrate flux rate

and other parameters.

3.4 Dimensional Analysis Results

Figure 3.2 shows the filtrate flux rate values of all cross flow filtration
tests discussed in Chapter 2. Since the test operations did not fully
achieve steady-state, the quasi-steady state filtrate flux rate
approaches a constant value during each test and was used for analysis.
The quasi-steady state of most tests was achieved after one hour of
operation. For those tests with only one hour operation (Test 7 and
Test 9), the quasi-steady state was achieved after half hour (Figure
3.2). Therefore an average value after half hour was used in these two
tests. In Test 4 and Test 10, since the feed velocity was not available,

an estimated value of 2m/s for both tests is used in this dimensional
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analysis. All dimensional analysis parameters are shown in Table 3.1

and Table 3.2.

Figure 3.3 and Figure 3.4 show the dimensional analysis results based
on equation 3.12 and 3.13 respectively. The name “cylinder porous T1
(15% FC)” shows the feed tank type (cylinder), filter pipe type
(porous), tailings type (T1: Tailing 1) and fines content (15% FC:

15wt% fines content).

The boundary condition in determining the best fitted curve for the
tests using Tailing 1 (“cylinder porous T1 (15% FC)”, “cone porous
T1 (15% FC)” and “cylinder slotted T1 (15% FC)”) is that the curve
goes through the origin. Based on the observation from each test, no
filtrate flow was obtained after the feed pump was turned off and
transmembrane pressure was released. In preparation for the high
pressure tests discussed in Chapter 2, even when the porous pipe was
full of tailings, no filtrate flow was obtained until pressure was applied.
Therefore, the power function curve is selected as the best fitted curve
for “cylinder porous T1 (15% FC)” and “cone porous T1 (15% FC)”
tests and the equations and R” values are shown in the figures. Since
there are only two data points for “cylinder slotted T1 (15% FC)”, a
straight line going though the origin is selected and shown in each

figure.

3.5 Dimensional Analysis Discussion
As shown in both figures, if all independent variables are fixed except
the transmembrane pressure (AP), the filtrate flux rate increases with
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pressure and the increasing rate decreases as the pressure increases.
This observation is consistent with the discussion in section 2.6.6 that
the presence of an optimal transmembrane pressure producing the
highest filtrate flux rate is possible. With larger Sauter mean diameter,
higher filtrate flux rate is obtained under the same operation
conditions. It seems the filtrate flux rate using slotted pipe (larger
pore/slot size) is more sensitive to the Sauter mean diameter, i.e.

particle size distribution of tailings slurry.

The two solid lines, “cylinder porous T1 (15% FC)” and “cone porous
T1 (15% FC)”, have similar trends (slope). This indicates the decrease
in filtrate flux rate using the cylinder feed tank is mainly due to the
presence of bitumen froth that enters the filter pipe since all other

conditions between these two sets of tests remain the same.

In Figure 3.3, the slope of “cylinder slotted T1 (15% FC)” is steeper
than the slope of “cylinder porous T1 (15% FC)”. This probably
means that, if the filter pipe diameter and porosity are the same, the
increase in filtrate flux rate with transmembrane pressure is faster with
the larger pore/slot size (larger Dyore/Dpipe Value). Since there are only
two tests for the “cylinder slotted T1 (15% FC)” condition, it requires
additional tests using the slotted pipe or porous pipe with larger pores

to verify this observation.

The scale in Figure 3.4 is too large to clearly show the variation in the
data for the “cylinder porous T1 (15% FC)” and “cone porous T1
(15% FC)” tests so an enlarged figure of the dashed area in Figure 3.4
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is presented in Figure 3.5. As shown in Figure 3.5, for the same
porosity and pore/slot size, a larger diameter filter pipe (larger
Dyipe/Dpore value) generates greater filtrate flux rate for the same
transmembrane pressures. According to Yan et al. (2003), a larger
diameter filter pipe is expected to increase the available filtrate area
under the same shear rate, resulting in higher filtrate flux rate for the
same transmembrane pressure. Tests using larger diameter porous pipe

(same pore size and porosity) to verify this observation are needed.

3.6 Conclusion and Future Work

A dimensional analysis is presented. The dimensionless equations
were derived from the Darcy’s law and then modified using cross flow
filtration theory. The Sauter mean diameter is introduced in this
dimensional analysis to represent the particle size distribution within
the tailings. The ultimate equation (equation 3.11) includes the effect

of the important parameters in cross flow filtration.

The filtrate flux rate data from tests using Tailing 1 are analyzed and
power function equations proves the best fit to the tests data and

boundary condition (no filtrate flow under zero pressure situation).

Based on the dimensional analysis, an increase in transmembrane
pressure leads to higher filtrate flux rate but the increasing rate
decreases at high pressures. This indicates the presence of an optimal
pressure that provides the greatest filtrate flux rate. Tailings with
larger Sauter mean diameter provides higher filtrate flux rate under the
same operation conditions.
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Another observation is that, the filter pipe with a larger pore/slot size
has a faster filtrate flux increasing rate with pressure. Larger diameter
filter pipe have higher filtrate flux rate even under the same pressure

level.

From the above discussion, cross flow filtration tests with larger
diameter and pore/slot size filter pipes are needed to demonstrate the
effect of filter pipe properties to enhance the dimensional analysis and

improve its application for different mine tailings.
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4 CONCLUSION

The purpose of this research was to investigate the application of cross
flow filtration for dewatering oil sands total tailings. Cross flow
filtration may provide an alternative method to prevent segregation
and the filtrate water released can be reused directly thus returning
heated water to the extraction circuit and reducing energy usage.
Laboratory tests were conducted to investigate the dewatering
capacity of cross flow filtration of total tailings. Results from the
laboratory experiments were then used in a dimensional analysis to
establish the relationships between measured parameters and to assist
and guide future experiments. The following sections summarized the
conclusions and recommendations for future research based on this

program.

4.1 Laboratory Experiment Results

The purpose of laboratory experiments was to investigate the
feasibility of cross flow filtration to dewater oil sands total tailings
and to evaluate the influence of different parameters on filtrate quality
and quantity. A brief conclusion of laboratory tests is given in this

section and the detail conclusion is referred to section 2.7.

High quality filtrate water (<0.5wt% solids content) can be generated

from all tests carried out under different operating conditions.

Higher slurry velocity and coarser tailings slurry result in greater
filtrate flux rate. Increasing velocity from 0.89m/s to 1.08m/s and

from 1.08m/s to over 2m/s result in improvements of 0.0012L/s'm”
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and 0.0006L/s'm” respectively. Tailings with coarse particle size
distribution generate higher filtrate flux rate (0.003-0.005L/s'm”) than
tailings with fine particle size distribution (0.0024-0.0035L/s-m’).

It is expected that a better filtrate flux rate can be obtained using the
following procedure. At the beginning of cross flow filtration
operation a low velocity is applied to allow a coarse cake structure to
develop. After the stable cake has formed, the slurry velocity is
increased to reduce cake thickness and improve filtrate flux rate. This
procedure would minimize the fines formation in cake structure

allowing an optimal filtrate flux rate from the pipe.

The presence of bitumen in filter pipe reduces filtrate area and filtrate
flux rate (AJ=0.001-0.0035L/s'm”). A pre-treatment to prevent the
bitumen froth entering the filter pipe is required to achieve better

filtrate flux rate.

Filter pipes with higher porosity give higher filtrate flux rate.
Although larger filter pipe pore/slot size requires longer time to
initially generate clean filtrate water, it is expected that with the same
porosity, larger pore/slot size can provide higher filtrate flux rate
(0.018-0.023L/s'm* for slotted pipe; (0.007-0.01L/s'm> for porous
pipe). Another advantage of larger pore/slot size is the low pipe
resistance associated with the clogging of bitumen and fines during

cross flow filtration operation.
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The performance of cross flow filtration is less sensitive to the tailings
slurry solids concentration. A higher transmembrane pressure may be

required under high solids content situation.

There is an optimal transmembrane pressure providing the highest
filtrate flux rate. The coarser cake structure undergoes less compaction

under higher pressure.

4.2 Dimensional Analysis Results

A dimensional analysis utilizing experiment results was conducted in
this research. The dimensionless equations are derived from Darcy’s
law and include all important parameters in cross flow filtration. The
dimensional analysis shows that the increase of filtrate flux rate
becomes smaller under high transmembrane pressure situation and this
observation indicates the presence of optimal pressure value in cross
flow filtration. The dimensional analysis also shows that the increase
of filter pipe size may lead to higher filtrate flux rate even under the
same transmembrane pressure situation. With the increase of filter
pipe pore/slot size, the increasing rate of filtrate flux rate with

transmembrane pressure becomes faster.

4.3 Recommendations for Future Work

4.3.1 Future Work on Cross Flow Filtration

Cross flow filtration tests using slotted filter pipe need to be carried
out to improve the dimensional analysis. Tests using different
pore/slot size with similar porosity, e.g. the same porous pipe with
larger pore size, are needed to observe the effect of filter pipe pore/slot
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size on filtrate flux rate. Larger filter pipe size tests are needed to
observe the size effect on filtrate flux rate. Tests using longer filter
pipes are also needed to further confirm that increasing slurry solids

content has little effect on filtrate flux rate.

4.3.2 Future Work on Membrane Cleaning

Although slurry velocity could limit the cake thickness in cross flow
filtration, the internal clogging of fines within cake structure and filter
membrane is a problem. Eventually the filtrate flux rate may become
uneconomically low and membrane cleaning needs to be performed
(Murkes and Carlsson, 1988). The objective of membrane cleaning is
trying to obtain the maximum restored filtrate flux rate with the
minimum consumption of wash liquid and chemicals. Moreover, the
washing frequency, duration and sequence need to be taken into

concern (Murkes and Carlsson, 1988).

One effective cleaning method is backflushing with pure water or
filtrate liquid. Backflushing involves reversal of the filtrate flow by
applying pressure on the filter membrane from the permeate side. The
applied pressure should be higher than the feed pressure in order to lift
the cake off the membrane and then cross flow slurry could sweep the
deposition away. Internal clogging within membrane pores may also
be partially or completely removed during backflushing (Kuberkar
and Davis, 2001). Therefore, a cross flow filtration system including
the application of backflushing or other cleaning methods is required

for future work, especially for long time operation.
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APPENDIX A: DEWATER VOLUME CALCULATION

A.1 Dewater Volume Calculation

As introduced in Chapter 1, to achieve a nonsegregating tailings using
a dewatering method and without changing fines content, a solids
content about 70wt% needs to be obtained. This is illustrated in Figure
A.1 by plotting a straight line (dotted line) from total tailings stream

region down to the nonsegregating region.

The calculation for the water volume that needs to be removed from
the total tailings stream is shown below:
mass of solid: M, =s, xM, Al

M
S

*-M A2

S

mass of water: M, =M -M, =

Ms: mass of solids; kg
M total mass of tailings; kg
M,,: mass of water; kg

Sw. solid content of total tailings slurry by weight; %

Since no solids loss during the dewatering process, the assumption
that Mg will not change during dewatering is acceptable. Using

solids specific gravity G,=2.65 and initial tailing solid content

Sw=55wWt%, the water mass before and after dewatering are shown
below represented by M:

Water mass before dewatering: M =0.82M, A3

w(before)

Water mass after dewatering: M =0.43M, A4

w(after)
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The calculation illustrates that the dewatering work needs to remove
about 50wt% of water from total tailings stream, 33% of the original
tailings volume, to make nonsegregrating tailings, which is consistent

with Beier and Sego’s (2008) assumption.

A.2 References:
Beier, N., Sego, D. 2008. Dewatering of oil sands tailings using cross
flow filtration. Proceedings of the 61st Canadian Geotechnical

Conference, Edmonton AB.
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A.3 Figures and Tables

Pond M FT
Extraction Tailings ( )
Tailings

(Total Tailings) ev

&
Increasing Tailings &

Solid Content

Beach DeWater Ilfhg Ot =
Tailings -
100 T T A
Sand © 10 20 30 40 S0 60 70 80 Q0 100 Fines

Fines Content (%)

Figure A.1 Dewatering purpose to achieve nonsegregating condition (modified

after Azam and Scott, 2005 and Beier and Sego, 2008)
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APPENDIX C: DEPOSITION VELOCITY

C.1 Introduction

The prediction model of deposition velocity, which was established
by Durand and Condolios and described in the Colorado School of
Mines book in 1963, was introduced by Shook et al. (2002). This
prediction method considers the tailings slurry with broad size
distributions as a bimodal mixture, in which fine particles are part
of the carrier fluid and coarse particles are settling particles. The

deposition velocity (v.) is predicted using the equation below:

v, =F,[9D,.(S, - 1) C.1

v.: deposition velocity; m/s

Dyipe: pipe diameter; m

S: density ratio (solid/fluid); dimensionless
F: Froude number; dimensionless

g: gravitational acceleration; m/s”

The Froude number (F) introduced in this equation is given from
the Archimedes number (Ar), which is a function of the particle
and carrier fluid properties. The equation of Archimedes number

(Ar) is:

Ar — (4/3)gd ;pcfz(psolid - Per) Co
M

A,: Archimedes number; dimensionless

d,: particle diameter; m

pei: density of carrier fluid (including fines); kg/m’

Psotia: density of solid particles; kg/m’

Ler: viscosity of carrier fluid (including fines); N-s/m”
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The piecewise correlation between the Archimedes number (Ar)
and the Froude number (F) is shown below:
540 < Ar F =1.78Ar*""
160 < Ar <540 F =1.19Ar"* C.J3
80<Ar<160 F =0.197Ar"*
F: Froude number; dimensionless

A,: Archimedes number; dimensionless

For particles with Archimedes number (Ar) less than 80, the
correlation of Wilson and Judge is used. The approximate upper

limit and lower limit of A for use of this correlation is from

1-10°~0.001.

F =+/2[2.0+0.3log,, A]
A=d,/D,C,

C4

F: Froude number; dimensionless
Cp: the drag coefficient; dimensionless
Dyipe: pipe diameter; m

d,: particle diameter; m

The correlation between drag coefficient (Cp) and Archimedes
number (Ar) is shown below:

24 < Ar <80 C, =80.9Ar**"
Ar <24 C,=576Ar"

C.5

For broad size distributions slurry, a correlation between deposition
velocity with density and viscosity of the complete slurry is needed.

Unfortunately, no investigation of those relationships was reported
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and for oil sand total tailings, experimental tests were required for

pipeline design (Shook et al., 2002).

C.2 Sample Calculation

A detailed deposition velocity sample calculation procedure is in
this section based on Shook et al. (2002). In this calculation,
tailings slurry solids content is 55wt% and 15wt% of solids are
fines (<45um). The particle size used in this calculation is dgy of
Tailing 1, which is 280um. The deposition velocity calculation
results for other particle size and solid content are shown in Table

C.1 and Table C.2.

C.2.1 Conversion between Solids Content by Weight to Solid
Content by Volume

First, tailings slurry solids content by weight has to be converted to

solids content by volume and the conversion equation is shown

below:

S

S, = W C.6
s, +G,(1-5s,)

sw: solid content of total tailings slurry by weight; %
sy: solid content of total tailings slurry by volume; %
Gs: specific gravity of solids (both sands and fines);

dimensionless

The tailings stream solids content by volume is then calculated as:

55%

5, = =31.56% C.7
55% +2.65(1— 55%)
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C.2.2 Calculation of Carrier Fluid Viscosity
The fines content of total tailings slurry by volume is calculated as:
f,=s,xf,=4.734% C.8
f,: fines content of total tailings slurry by volume; %
f: fines content of total solids by weight; %

sy: solid content of total tailings slurry by volume; %

Since the specific gravity (G;) of sands and fines used in this
calculation are both 2.65, the fines content of total solids by weight
(fw) 1s equal to the fines content of total solids by volume (f,).
Therefore the fines concentration in the carried fluid, which is
(fines + water) mixture, is:

1 =6.47% C9

f o —_ v
v( fines+water) fv + (1 _ SV)
fy(fines+water): fInes content of carried fluid by volume; %

f,: fines content of total tailings slurry by volume; %

sy: solid content of total tailings slurry by volume; %

According to Shook et al. (2002), the intrinsic viscosity of the fines
in water is 30. Then the relative viscosity of the (fines + water)
mixture 1s:

M, =1+30x6.47% =2.94 C.10

L relative viscosity; dimensionless

Since the operation temperature for oil sands total tailings pipeline
transportation is always high, the viscosity of water used in this
calculation is chosen as the viscosity at 50°C, which is 0.000549

N-s/m”. Then the carried fluid viscosity is calculated as:
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fy = 11 % 41, =2.94x0.000549 = 0.00162N -s/m* C.11

Wer: viscosity of carried fluid; N-s/m”
W relative viscosity; dimensionless

1L, viscosity of water at 50°C; N-s/m”

C.2.3 Calculation of Deposition Velocity

The first step is to calculate Archimedes number (A;) using
equation C.2. The density of carried fluid, which is the (fines +
water) mixture, is calculated using:

~ [CE ineswater) X Psotia) + (1= 8,) X Pyier )]

- (o tineswatery T (1—8,))

_ [(6.46% % 2650) + ((1—31.56%) x 1000)]
(6.46% + (1-31.56%)

=1142.53kg /m’

pcf

C.12

pei: density of carried fluid; kg/m’

Psotia: density of solids (including sand and fines); kg/m’
Pwater: density of water; kg/m’

fy(fines+water): fines content of carried fluid by volume; %

sy: solid content by volume; %

Therefore, the Archimedes number (A,) is calculated as:

Ar — (4/3)gd ;pcf (Psolia = Pet)
2
lucf
(4/3)x9.81x (0.28x10%)* x 11423 % (2650 - 1142.3)

5 C.13
0.00162

=189.67
A,: Archimedes number; dimensionless
d,: particle diameter; m

per: density of carrier fluid (including fines); kg/m’
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Psoiia: density of solid particles; kg/m’
ler: viscosity of carrier fluid (including fines); N-s/m”

g: gravitational acceleration; m/s”

From equation C.3, when 160<Ar<540, the Froude number (F) is

calculated as:

F=1.19Ar"" =1.19x189.67 “**=1.507 C.14
F: Froude number; dimensionless

A,: Archimedes number; dimensionless

Then the deposition velocity is obtained from equation C.1 as:
Vc = F\/gDpipe(Ss - 1) = F\/gDpipe((psolid /pcf ) - 1)

=1.507 x/9.81x 42x10° x ((2650/1142.53) =1) C.15
=1.11m/s

v.: deposition velocity; m/s

Dyipe: pipe diameter; m

S: density ratio (solid/fluid); dimensionless

Psolid: density of solid particles; kg/m3

pe: density of carrier fluid (including fines); kg/m’
F: Froude number; dimensionless

g: gravitational acceleration; m/s’

C.3 References:

Shook, C.A., Gillies, R.G, and Sanders, R.S. 2002. Pipeline
hydrotransport with applications in the oil sand industry. SRC Pipe
Flow Technology Center, Saskatoon, SK.
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APPENDIX D: REYNOLDS NUMBER CALCULATION

D.1 Introduction

According to Shook et al., (2002) the Reynolds number is defined

as:

_ D pipeVs s
Hq

Re D.1

Re: Reynolds number; dimensionless
Dyipe: pipe diameter; m

v slurry velocity; m/s

ps: slurry density; kg/m’

ug: slurry viscosity; N-s/m”

D.2 Sample Calculation

A sample Reynolds number calculation is shown this section. A
typical cross flow filtration operation with porous pipe is used in
this calculation (tailings slurry solid content is 55wt%; vs=1m/s;
Dyipe=42mm). The Reynolds number calculation results for other

operation conditions are shown in Table D.1 and D.2.

D.2.1 Slurry Density Calculation
The conversion equation from tailings slurry solids content by
weight to solids content by volume is shown below:

S 55%

s, = w - =31.56% D.2
s, +G,(1—5s,)  55%+2.65(1—55%)

sw: solid content of total tailings slurry by weight; %
sy: solid content of total tailings slurry by volume; %
G,: specific gravity of solids (both sands and fines);

dimensionless
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The tailings slurry density is then calculated as:
Ps =[(8, % G) + ((1 = 8,))]X Pyager

=[(31.56% % 2.65) +(1-31.56%)]x1000 D.3
=1520.80kg /m’

ps: density of tailings slurry; kg/m’

Pwater: density of water; kg/m3

sy: solid content of total tailings slurry by volume; %

Gs: specific gravity of solids (both sands and fines);

dimensionless

D.2.2 Slurry Viscosity Calculation
The relative viscosity of slurry based on solids volume fraction can
then be found from Figure D.1 and for the slurry in this calculation
the relative viscosity is 3.2. Since the operation temperature in oil
sands total tailings pipeline transportation is always high, the
viscosity of water used in this calculation is chosen as the viscosity
at 50°C, which is 0.000549 N-s/m°. Then the tailings slurry
viscosity is calculated as:
U, = gt x p1, =3.2x0.000549 =0.00176N -s/m? D.4
i, viscosity of tailings slurry; N-s/m”
L, relative viscosity; dimensionless

1L, viscosity of water at 50°C; N-s/m”

D.2.3 Calculation of Reynolds Number

Reynolds number is calculated using equation D.1:

 DypeVeps  0.042x1x1520.80
1, 0.00176

Re =36358 D.5
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According to Wasp et al. (1997), the critical value of Re for pipes is
usually taken as 2300 to 2800. As shown in Table D.1 and Table
D.2, the values of Reynolds number are always larger than 2800
and it seems the tailings slurry remains turbulent even under high

solids content situation (70wt%).

D.3 References:
Wasp, E.J., Kenny, J.P., and Gandhi, R.L. 1977. Solid-liquid flow

slurry pipeline transportation. Trans Tech Publications, Clausthal,

Germany.
Shook, C.A., Gillies, R.G, and Sanders, R.S. 2002. Pipeline

hydrotransport with applications in the oil sand industry. SRC Pipe
Flow Technology Center, Saskatoon, SK.
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D.4 Figures and Tables
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Figure D.1 Reduced relative viscosity versus volume fraction solids
(Wasp et al., 1977)
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Table D.1 Re for different pipe size and solids content (v=1m/s)

Solids Content (wt%)

v=1m/s
55 60 65 70
Pipe Diameter (m) Re
0.042 36358 | 31315 | 21068 | 15067
0.051 (2 inch) 43976 | 37876 | 25482 | 18224
0.102 (4 inch) 87952 | 75752 | 50965 | 36449
0.203 (8 inch) 175903 | 151504 | 101929 | 72898
0.305 (12 inch) 263855 | 227256 | 152894 | 109346

Table D.2 Re for different pipe size and solids content (v=3m/s)

Solids Content (wt%)

v=3m/s
55 60 65 70
Pipe Diameter (m) Re
0.042 109074 | 93945 | 63204 | 45202
0.051 (2 inch) 131928 | 113628 | 76447 | 54673
0.102 (4 inch) 263855 | 227256 | 152894 | 109346
0.203 (8 inch) 527710 | 454512 | 305787 | 218693
0.305 (12 inch) 791566 | 681769 | 458681 | 328039
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