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Abstract

The increasing level of system complexity in the current competitive market implies

that efficient asset management is of paramount importance, particularly for systems

with costly downtime and failure. Timely detection of faults and failures through

an efficient reliability and health management framework allows for appropriate

maintenance actions to be scheduled proactively to avoid catastrophic failures and

minimize unnecessary maintenance actions. This thesis employs a general stochastic

process - the Nonhomogeneous Continuous-Time Hidden Semi-Markov Process - to

model a condition-monitored degradation process with hidden states. This thesis

also proposes an unsupervised learning process, which can be used to estimate the

characteristic parameters of the degradation and observation processes. It then

develops dynamic diagnostic and prognostic measures for online health monitoring.

Finally, it introduces a condition-based replacement policy that can be used as

an online tool to determine when to replace a degraded device under condition

monitoring.
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Chapter 1

Introduction

1.1 Background and Motivation

The increasing level of system complexity in the current competitive market im-

plies that efficient asset management is of paramount importance, particularly for

systems with costly downtime and failure. It is reported in [2] that 15-40 % of

manufacturing costs across many industries are attributable to maintenance. Par-

ticularly in capital and energy-intensive industries such as petroleum, the economic

loss of downtime and failure is huge. Because of the huge cost of maintenance, the

need for a low-cost health monitoring system and integrated predictive maintenance

framework has increased significantly over the years. Timely detection of faults and

failures through an efficient reliability framework allows for scheduling appropriate

maintenance actions to avoid catastrophic failures, such as the 2010 Gulf of Mexico

oil spill [1, 3] (see Figure 1.1).

Reliability, which is the ability of a system to successfully operate on a satis-

factory level of operation or performance, has always been an important aspect of

efficient management of engineering assets. In the current competitive market, relia-

bility analysis is playing a significant role on equipment life cycle cost minimization.

Reliability analysis includes broad range of aspects from optimal design of complex

systems to development of integrated maintenance strategies. Reliability analysis

of mechanical devices has been studied extensively over the past decades and as a

result a considerable amount of research results has been published. Many of the

theoretical aspects of reliability, such as optimal design of systems, important di-

agnostic and prognostic measure calculation, and optimal maintenance strategies,

have been implemented in commercial software packages (such as Weibull ++ for

life data analysis [4], EXAKT for condition-based maintenance [5], etc.), which are
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Figure 1.1: The Gulf of Mexico oil spill in 2010 [1]

currently used in various industries and businesses. For systems with expensive

downtime and failure costs, an efficient reliability framework not only can signifi-

cantly decrease the overall operation and maintenance costs, but also can prevent

catastrophic and unexpected failures and minimize safety issues.

Because most mechanical devices operate under some sort of stress, load, static,

and dynamic forces, they tend to deteriorate or degrade over time. In real-world

systems, this gradual deterioration process eventually causes systems to become

unable to operate at their desired level of performance, reliability, and availability.

For mechanical devices, the overall health status can deteriorate over time due to

one or multiple degradation processes. When a degradation indicator or factor,

exceeds a certain threshold, then the device is considered to have failed. Finding

the structure of the degradation process and developing cost-effective maintenance

strategies are the topics of numerous research works in the reliability domain.
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1.2 Multistate Degradation Analysis

In conventional reliability models, at any time point, equipment or systems are

assumed to be in either of two possible health states, which are referred to as working

state and failure state. This type of binary reliability analysis has been studied

for many years and hundreds of high quality journal papers and monographs have

been published accordingly. A comprehensive review of models for reliability and

availability analysis of such systems can be found in [6]. Although, binary reliability

analysis has constructed most of the fundamental theories in the reliability domain,

it is subject to practical shortcomings that reveal the need for a more general and

advanced type of reliability analysis called multistate reliability analysis.

Recent research studies and reported practical experiences have verified that

most mechanical devices have more than two health states and conditions, in which

they have not only different operational performances and outputs, but also differ-

ent physical properties. Therefore, binary degradation models cannot fully capture

the real degradation behavior of most mechanical systems. Over time, a device with

multistate health states performs at different intermediate health states between

working perfectly and complete failure. It is to be noted that the advantage of con-

sidering multistate modeling is that binary modeling can always be considered as

the simplest case of multistate modeling. Therefore, results on multistate modeling

can be easily applied to binary modeling. Researchers have investigated multistate

modeling and developed mathematical models to evaluate the reliability and avail-

ability of many systems under multistate degradation. A comprehensive literature

review of multistate reliability modeling can be found in [7].

The multistate deterioration process can be divided into two categories as: (1)

continuous-state space [8] and (2) discrete-state space [9]. In a continuous-state

degradation process, the overall degradation process is modeled as a continuous

variable. The device is considered failed when this degradation process exceeds a

predefined threshold. The major difficulty in implementing continuous-state relia-

bility analysis is its mathematical complexity [10]. This challenge is the motivation

for multistate reliability analysis in the discrete-state space, in which the overall

status of the degradation process is divided into discrete levels with certain prop-

erties ranging from perfect functioning to complete failure. It should be pointed

out that when the number of states is very large, then discrete-state space and

3



continuous-state space become equivalent to each other.

Another classification of multistate degradation can be done with respect to

the time domain considered for the degradation process. From this viewpoint, the

multistate degradation process can evolve according to a (1) discrete-time process

or (2) a continuous-time process. In a discrete-time degradation process, transitions

are allowed only at discrete points while in a continuous-time degradation process,

transitions are possible at any time point. The continuous-time degradation process

is more compatible with mechanical devices, where degradation transitions evolve

in a continuous time domain, that is, the degradation transitions can happen at

any time point. This thesis focuses only on multistate degradation processes with

discrete-state space and continuous-time domain.

1.3 Condition Monitoring of the Degradation Process

Monitoring the equipment behaviour while it is operating is a key step in imple-

menting any reliability and maintenance framework. Most maintenance decisions

are made based on the trend of the degradation process over a certain period of

time. Due to the complexity of degradation processes and other practical limi-

tations, such as the cost and the time required for inspection, the health status

(degradation level) of most mechanical devices is not directly or continuously ob-

servable. In such cases, the degradation states may be directly observable only at

limited points referred to as inspection points [11], totally unobservable [12], and/or

indirectly observable through certain methods, such as condition monitoring [13].

The latter is also called degradation process with incomplete information [14] or

partially-observed degradation process.

For three reasons, the degradation process with incomplete information has re-

ceived much attention over the past years. First, in many practical cases, due to the

huge cost of visual inspection and technical issues, obtaining the actual health status

of the system while in operation mode is not possible. Second, for many degradation

processes, no single or multiple observable degradation indicators having a direct

and definite relationship with the actual health state can be found. Finally, with

the advancement of sensor technology, it is very likely that single or multiple indica-

tors with indirect relationships with the actual level of degradation can be used for

health monitoring. Therefore, instead of costly and time-consuming inspections, the

health status can be indirectly monitored without having to terminate the operation

4



of the device. The process of monitoring certain aspects of health conditions in a

device with the purpose of identifying the development of a failure is referred to as

condition monitoring (CM).

Using condition monitoring data, certain indicators extracted from multiple sen-

sors that have stochastic relationships with the actual degradation states of the

system can be employed for diagnostic and prognostic purposes. This stochastic

relationship reflects the non-deterministic relationship between the condition moni-

toring features and degradation levels, which can be represented by certain random

variables. With condition monitoring, at each observation point, we can monitor

directly or indirectly some important features (indicators) extracted from a single

or multiple sensors that present at least partial information regarding the actual

degradation process of the equipment. The process of extracting useful information

from raw condition monitoring data is referred to as feature extraction. Each feature

or alternatively called indicator is expected to represent specific characteristic infor-

mation regarding the degradation and observation processes. These features can be

directly obtained from measurements of multiple sensors (like vibration data, tem-

perature, and pressure) or can be the result of a feature combination or a feature

fusion procedure (such as principal component analysis (PCA)) that can transform

a set of features to a single feature with more useful information. Based on the

physical characteristics of the equipment under consideration and its degradation

mechanism, different types of features can be calculated.

The indirect relationship between condition monitoring indicators extracted from

multiple sensors and actual health states of mechanical devices motivates one to use

condition monitoring techniques for degradation assessment and maintenance de-

cision making. Condition monitoring is an efficient way to track the health state

(condition) of the equipment, when it is not directly observable. Condition moni-

toring has been widely used in the literature for reliability analysis of devices under

multistate degradation. Based on the above discussion, multistate degradation mod-

els with partially observable states involve two types of stochastic processes, namely,

the degradation process and the observation process. The degradation process refers

to the characteristics of the degradation transitions between different levels of health

states and the observation process refers to the stochastic relationship between the

degradation process and the condition monitoring indicators.

This PhD thesis focuses only on devices under multistate degradation processes
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with partially (indirectly) observable states, which is an appropriate representative

of the overall degradation mechanism of many mechanical devices. Many appli-

cations of devices with degradation and observation processes are reported in the

literature, such as in [15] for a hydraulic pump with four levels of health states and

in [16] for a gearbox with five degradation states, both under vibration monitoring.

1.4 Structure Modeling and Parameter Estimation

In order to develop diagnostic and prognostic models for condition-monitored devices

under multistate degradation with partially observable states, stochastic models can

be employed to formulate the associated degradation and observation processes. In

real-world systems, applying diagnostic and prognostic models requires determin-

ing the structure of the degradation and observation processes and estimating the

characteristic parameters of the associated stochastic models from real-time data.

Therefore, the structure determination and model selection techniques for the asso-

ciated degradation and observation processes and parameter estimation models to

estimate the corresponding characteristic parameters of the selected stochastic mod-

els are of high interest in diagnostic and prognostic analysis of mechanical devices

under condition monitoring.

The process of structure modeling determines the configuration of the degrada-

tion and observation processes and the process of parameter estimation determines

the set of characteristic parameters that characterize those selected stochastic pro-

cesses. These characteristic parameters may vary, depending on the types (statistical

form) of the degradation and observation processes employed for different devices.

Model selection and parameter estimation play key roles in developing a prognostic

and health management framework for mechanical systems. Failure to appropriately

define the structure of the failure and degradation mechanisms and inaccurate esti-

mation of the associated characteristic parameters may result in inaccurate residual

life estimation, leading to either unnecessary maintenance actions or catastrophic

failures. Although numerous models and algorithms have been developed for model

selection and parameter estimation, this area of research deals with some impor-

tant challenges as will be described in Section 1.7. This thesis aims to provide

maintenance decision makers a tool that can assist them to select and train a rea-

sonable mathematical model for degradation and observation processes associated

with different types of systems under gradual degradation.
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1.5 Diagnostics and Prognostics

Diagnostics and prognostics are known as two important aspects of condition-based

maintenance (CBM). Diagnostics refers to activities that are done when a fault

or degradation occurs. Fault detection, fault isolation, and fault identification are

three main elements of fault diagnosis. Fault detection is a task to identify an

abnormal condition in a monitored system, fault isolation is a task to identify the

location of the faulty element, and fault identification is a task to identify the nature

of the detected fault [17]. When condition monitoring is employed, degradation

diagnosis becomes an online process that aims to monitor and detect abnormality

in a system. Finding the current health status and the degradation level of the device

using condition monitoring data is one of the key activities involved in degradation

diagnosis. On the other hand, degradation prognosis refers to activities that help

predict future behaviour of the degradation process. Examples are estimating the

remaining useful life, its confidence limits, and the probability of a failure within a

time interval in the future. It is desired that the result of degradation diagnosis and

prognosis ultimately assists maintenance decision making.

Numerous research papers have been published on machinery diagnostics and

prognostics. A review on diagnostic and prognostic methods using condition moni-

toring can be found in [18, 19, 20]. In the domain of reliability and maintenance, it

is very common to extract certain so-called reliability measures, which can directly

represent certain aspects of the degradation process or the observation process. Re-

liability measures are sometimes referred to as performance measures. Finding accu-

rate reliability measures, such as hazard rate and remaining useful life (RUL), plays

an important role in minimizing the overall maintenance cost of systems. Therefore,

it is important to investigate how condition monitoring data can be used to generate

important reliability measures in order to conduct reliability evaluation of a device

under a multistate degradation process with unobservable states.

As will be discussed in Chapter 5, reliability measures can be classified into static

and dynamic measures. Static reliability measures are independent of the actual

degradation process while the device is operating. For example mean time to failure

is an important reliability measure that is usually calculated by using some historical

knowledge about the degradation process. However, dynamic reliability measures

are calculated using some information on the actual degradation process while the
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device is in operation mode. For example, conditional remaining useful life is a

dynamic reliability measure, which is calculated based on the available information

extracted from the degradation process. This thesis focuses on important dynamic

reliability measures conditional to the history of the observation process, which can

be used for online degradation diagnosis and prognosis.

As will be discussed in Chapter 5, reliability measures can be either diagnostic

reliability measures or prognostic reliability measures. The objective of diagnostic

reliability measures is to provide some information on the current health status of

the device, while prognostic reliability measures aim to provide information on the

future health status of the device. Although both diagnostic and prognostic reliabil-

ity measures are important, over the past years, there has been a significant increase

in research work regarding the prognostic reliability evaluation of mechanical sys-

tems. The main challenges of implementing machine prognostics are degradation

assessment and remaining useful life prediction [21]. A comprehensive literature

review of recent research work in this area and advantages and disadvantages of

available models can be found in [22]. In addition, the strengths and weaknesses of

current prognostic models and summary on how each can be applied to engineering

prognostics have been discussed in [23].

1.6 Maintenance Decision Making Using Condition Mon-

itoring Data

Conventional maintenance decision making is based on either corrective mainte-

nance actions or preventive maintenance actions. The corrective maintenance is a

set of activities that are performed only after a failure occurs. Corrective main-

tenance includes repair, restoration or replacement of components to restore the

system to a working state (condition). Preventive maintenance or alternatively

called schedule-based maintenance is a set of maintenance actions, which are done

on some predefined intervals irrespective of the condition of the device. Periodic oil

changes in a car, even though a significant portion of oil’s life is still remaining is

an example of a schedule-based maintenance [24].

The shortcomings of corrective and preventive maintenance strategies, such as

independence to the actual level of degradation, unnecessary maintenance actions,

and unexpected failures, have increased the need for another type of maintenance

strategies referred to as condition-based maintenance (CBM). The concept of CBM
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was first introduced in late 1940s by the Rio Grande Railway Company and was

initially called predictive maintenance [24]. CBM deals with the current condition

of the device, which is derived from a real-time assessment of different aspects of

the device′s condition obtained from embedded sensors or particular measurements.

Condition-based maintenance (CBM) provides maintenance decision support infor-

mation based on the data obtained from condition monitoring.

The ultimate task in a condition-based maintenance framework is to provide

decision support information that can facilitate decision makers to determine, in a

timely and efficient way, when to replace or maintain a degraded device. Employ-

ing condition monitoring data for dynamic maintenance decision making depends

on the quality of the condition monitoring data, the structure of the maintenance

decision rule, the dynamic characteristics of health state evolution, as well as the

maintenance costs [25]. Efficient maintenance decision making very much depends

on the selected structure of the degradation and observation processes, the accuracy

of the unknown parameters, and the effectiveness of important performance mea-

sures. This reveals the need for an integrated framework, which takes into account

all important aspects of condition-based maintenance. This thesis will develop a

dynamic condition-based maintenance model, which can employ online condition

monitoring data to determine when to replace a degraded device, which is subject

to a multistate degradation process with unobservable states.

1.7 Research Scope and Objectives

This thesis aims to provide maintenance decision makers a comprehensive tool that

can facilitate online health monitoring and timely and precise maintenance decision

making for a degraded device under condition monitoring. The focus of this thesis is

on devices that are subject to multistate degradation processes and are considered

as good as new after replacement. This includes the vast majority of mechanical

devices used in industries where a device is replaced at failure or a time point

before failure. The result of this thesis can also be applied to repairable mechanical

devices for which the repair process can bring the health status to as good as new.

Condition monitoring information extracted from multiple sensors will be used to

estimate the parameters of the model and then diagnostic and prognostic measures

for the purpose of health state recognition will be developed.

As discussed earlier, condition-based maintenance has been applied extensively
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in machinery diagnostics and prognostics, however, the need for an integrated

condition-based maintenance framework for devices under multistate degradation

processes and unobservable states that can address practical limitations of reported

models is still a challenging topic. Surprisingly, very limited research work has been

devoted to multistate degradation processes with unobservable states. In this thesis,

a condition-based maintenance framework is proposed in the sense that the main

steps that need to be done for health monitoring of a device under degradation, are

covered. The proposed CBM framework in this thesis includes three major phases,

which are (1) modeling, (2) training, and (3) implementation. A schematic view of

this framework, which presents the interaction among the important steps of the

CBM, is shown in Figure 1.2. Modeling includes steps that contribute to the de-

velopment of the mathematical model for a multistate degradation structure with

unobservable states. Training includes steps that need to be done to characterize

the structure of the multistate degradation model to be used for health monitoring.

Implementation includes steps that are related to the actual online diagnostic and

prognostic monitoring of the device as well as maintenance decision making.

Several research topics are defined, in the sense that the challenges in the three

phases of modeling, training, and implementation of the proposed condition-based

maintenance framework are addressed. Each topic, which relates directly to a phase

in the proposed CBM framework, is thoroughly investigated in a separate chapter of

this thesis, as described in Section 1.8. The following research topics are specifically

investigated in this thesis:

I. Modeling Phase (will be discussed in Chapter 3)

• Developing a general mathematical framework for the degradation and

observation processes associated with a condition-monitored device under

multistate degradation processes with unobservable states.

II. Training Phase (will be discussed in Chapter 4)

• Developing a framework for training a multistate degradation structure

with unobservable states including a general model selection and a pa-

rameter estimation method using condition monitoring data

III. Implementation Phase (will be discussed in Chapters 5 and 6)
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Figure 1.2: The proposed framework for condition-based maintenance

• Developing several important dynamic diagnostic and prognostic mea-

sures, which can be used for online health monitoring of a device under

multistate degradation using condition monitoring data

• Developing a dynamic condition-based model, which can employ online

condition monitoring data for maintenance decision making

It is expected that the results of this thesis will advance the state of the art

for practical diagnostic management of mechanical systems. The main application

of this thesis is on the operation management of condition-monitored machinery in

capital and energy-intensive oil, gas, and wind industries, which deal with energy

resources where (1) the actual degradation status is not directly observable, and

(2) increasing the system reliability is a top priority due to the high costs of plant

downtime and failure. The proposed CBM framework aims to make significant

contributions to such industries around the world by providing decision-making

tools for online health monitoring of assets to prevent unexpected failures, reduce

the operation and maintenance costs, and therefore make them more competitive in

their respective markets.

11



1.8 Thesis Organization

This thesis is composed of 8 chapters. Chapters are defined in the sense that (1)

the identified limitations of available work in the literature are covered and (2) each

chapter has definite deliverables contributing to the domain of reliability analysis

of degrading systems under condition monitoring. The list of chapters and main

contents of each chapter are as follows:

• Chapter 1 presents a brief introduction to the challenging topics in multi-

state degradation modeling and condition-based maintenance using condition

monitoring data and illustrates the structure and outline of this thesis.

• Chapter 2 reviews relevant work in multistate degradation modeling, parame-

ter estimation, diagnostics and prognostics, and maintenance decision making,

and highlights the limitations of reported models and the contributions to be

made in this thesis. Several research topics are then defined based on these

limitations.

• Chapter 3, which deals with the modeling phase of the proposed CBM frame-

work given in Figure 1.2, provides fundamentals of a general and flexible

stochastic process called nonhomogeneous continuous-time hidden semi-Markov

process, which can be used for modeling a multistate degradation structure

with unobservable states. Also, the assumptions made throughout the paper

are clearly described in this chapter. This chapter is the fundamental chapter

of this thesis and its results are directly used in the rest of the thesis. Some

of the results of this chapter are published in [26].

• Chapter 4, which deals with the model training phase of the proposed CBM

framework given in Figure 1.2, introduces a CBM training approach, which

can be used to determine the structure of the degradation and observation pro-

cesses associated with a condition-monitored device under multistate degra-

dation. In other words, how to utilize historical condition monitoring data

for training a multistate structure is discussed in this chapter. The result of

this chapter gives a trained stochastic model that can be used for degradation

diagnosis and prognosis and maintenance decision making. The results of this

chapter are published in [9, 26].
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• Chapter 5 introduces the definition and mathematical derivations of important

diagnostic and prognostic measures, which can employ condition monitoring

data for online health monitoring of a device under gradual multistate degra-

dation. Some of the results of this chapter are reported in [27].

• Chapter 6 presents a cost-effective and dynamic condition-based maintenance

model, which can provide decision support information on when to replace a

degraded device. Chapters 5 and 6 deal with the implementation phase of the

proposed CBM framework given in Figure 1.2.

• In Chapter 7, the application of the proposed CBM framework on a bench-

mark prognostic database is presented. The proposed multistate structure is

first employed to model the degradation process of turbofan engines and then

diagnostic and prognostic measures are calculated for online health monitor-

ing. Finally, the proposed condition-based maintenance model is employed to

determine when to replace a degraded engine.

• Chapter 8 summarizes the contributions made throughout the thesis and dis-

cusses the results obtained in each chapter. It finally introduces the possible

directions for moving forward in future work.
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Chapter 2

Literature Review

This chapter is devoted to reviewing available research works on reliability analysis

and maintenance decision making for devices under gradual degradation using the

concept of multistate modeling. This chapter is organized as follows: Section 2.1

reviews current work on multistate degradation models including multistate degra-

dation models with observable states and with unobservable states. Section 2.2

reviews available work on model selection and parameter estimation for multistate

degradation models with unobservable states. Section 2.3 reviews work on diag-

nostic and prognostic health monitoring of multistate degradation models. Section

2.4 reviews condition-based maintenance models available for multistate degrada-

tion processes. Finally in Section 2.5, the literature review is summarized, the main

limitations of the available methods are listed, and contributions made in this thesis

are highlighted.

2.1 Multistate Degradation

As most mechanical devices operate under some sort of stress, load, and static

and dynamic forces, they tend to deteriorate or degrade over time. In real-world

systems, this gradual deterioration process eventually causes the systems to be un-

able to operate at their desired level of performance, reliability, and/or availability.

Therefore, the overall health status of most mechanical systems gradually deterio-

rates over time. When a degradation indicator or a degradation factor, which reflects

the level of degradation, exceeds a certain threshold, then the device is considered

to be failed. Finding the structure of the degradation process associated with a

certain device and developing cost-effective maintenance strategies are the topics of

numerous research works in the reliability domain.
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In conventional reliability analyses, systems are often assumed to be in either

of two possible health states, namely, the working state and the failure state. The

probability distribution of the Time To Failure (TTF) plays the key role in binary

reliability modeling. A comprehensive literature review on the reliability of such

binary systems has been conducted in [6]. Numerous reliability and maintenance

models have been developed for these binary systems [28, 29, 30, 31]. However,

most mechanical devices operating under a stress or a load condition deteriorate

or degrade over time. These devices may perform at several intermediate health

states ranging between working perfectly and complete failure [9]. Each state level

may reflect certain operational performance, efficiency, and physical property of the

device.

Compared to the binary degradation process, the multistate degradation pro-

cess is a more realistic representative of a gradual degradation process. It is to

be noted that the advantage of considering multistate degradation modeling is that

binary degradation modeling can always be considered as the simplest case of multi-

state modeling. Therefore, results on multistate degradation modeling can be easily

applied to binary degradation modeling. Researchers have investigated multistate

degradation modeling and developed mathematical models to evaluate the reliabil-

ity and availability of systems under multistate degradation. For example in [32],

it is assumed that a friction drilling device has five levels of degradation based on

the size of flank wear referred to as sharp, normal wear, micro fracture, macro wear,

and breakage. A comprehensive literature review and fundamentals on multistate

reliability modeling can be found in [7, 33].

Multistate degradation models can be categorized into certain types from three

different aspects. In the following, major types of multistate models used in the

literature for degradation modeling are briefly reviewed.

2.1.1 Types of Multistate Degradation Models

Multistate degradation processes can be divided into several categories with respect

to (1) levels of degradation, (2) time domain of the degradation process, and (3)

observability of the degradation process. With respect to the levels of degrada-

tion, the multistate deterioration process can be divided into two categories as: (1)

continuous-state space [8] and (2) discrete-state space [9]. In a continuous-state

space degradation process, the overall degradation process is considered to be a
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continuous variable. The device is considered failed when this degradation process

exceeds a predefined threshold. The major difficulty in implementing continuous-

state reliability analysis is its mathematical complexity [10]. This challenge is the

motivation for multistate reliability analysis in discrete-state space, in which the

overall status of the degradation process is divided into discrete levels with certain

properties ranging from perfect functioning to complete failure. This complies with

most real cases where discrete levels of health states are considered for reliability

analysis of a device. It should be pointed out that when the number of states

approaches infinity, then discrete-state space and continuous-state space become

equivalent to each other.

Another possible classification of multistate degradation models can be done

with respect to the time domain considered for the degradation process. From

this viewpoint, the multistate degradation process can evolve according to a (1)

discrete-time stochastic process or (2) a continuous-time stochastic process. The

discrete time can be used when one is interested in the number of cycles in a system

or the number of times (hours, days, etc.) that a particular event occurs [34].

Although modeling and calculus in the discrete time domain are less expensive than

continuous time domain, a continuous-time degradation process is compatible with

more mechanical devices, where degradation transitions evolve in a continuous time

domain, that is, transitions can occur at any time point.

Monitoring the equipment behaviour while it is operating is a key step in im-

plementing reliability and maintenance frameworks. Most maintenance decisions

are made based on the trend of the degradation process over a certain period of

time. Usually, due to the complexity of degradation processes and other practical

limitations, such as the cost and the time required for inspection, the health status

(degradation level) of most mechanical devices is not directly or continuously observ-

able. With respect to the possibility of observing the actual level of a degradation

process while the device is operating, multistate degradation processes may be di-

vided into four main types as: (1) continuously and directly observable, (2) directly

observable only at limited points referred to as inspection points [11, 35, 36, 37], (3)

totally unobservable [12], and (4) indirectly observable through certain methods,

such as condition monitoring [13, 38, 39, 40]. The indirectly observed degrada-

tion process is also called degradation process with incomplete information [14] or

partially-observed degradation process [41].
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Due to the following three reasons, a degradation process with incomplete in-

formation has received more attention than others over the past years. First, in

many practical cases, due to the huge cost of visual inspection and technical issues,

obtaining the actual health status of the system while in operation is not possible.

Second, for many degradation processes, no single or multiple observable degrada-

tion indicators having a direct and definite relationship with the actual health state

can be found. Finally, with the advancement of sensor technology, it is very likely

that a single or multiple indicators having an indirect relationship with the actual

level of degradation can be employed for health monitoring. The process of monitor-

ing certain aspects of health conditions in a device with the purpose of identifying

the development of a failure is referred to as condition monitoring.

This thesis focuses only on multistate degradation processes with discrete-state

space and continuous-time domain, and unobservable degradation process where

states are only indirectly observable through condition monitoring. Such types of

devices comply with many practical cases. Based on the above discussion, multistate

degradation models with partially observable states involve two types of stochastic

processes, namely, the degradation process and the observation process. The degra-

dation process, which is a discrete-space continuous-time stochastic process, refers

to the characteristics of the degradation transitions between different levels of health

states and the observation process refers to the stochastic relationship between the

degradation process and the condition monitoring indicators. In the following two

subsections, available types of degradation and observation processes and their ap-

plications in multistate degradation modeling are reviewed.

2.1.2 Degradation Process in Multistate Degradation Models

As discussed earlier, the multistate degradation process deals with the characteris-

tics of the degradation transitions between different levels of health states. In other

words, how fast the device is deteriorating over time is defined based on this degra-

dation process. When a stochastic process is employed to represent this degradation

process, the future development of the degradation process is governed based on a

random process. Therefore, the multistate degradation process can be defined as a

continuous-time stochastic process X(t) with a finite state space E = {1, . . . , N},

where X(t) represent the state occupied at time t. With respect to the dependency

of degradation transitions to the history of the degradation process, the multistate
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degradation process may be divided into two major types of stochastic processes,

namely, Markovian degradation process and non-Markovian degradation process.

In a multistate degradation process with a Markovian structure, a degradation

transition between two states depends only on the current states involved in the

transition, that is, the degradation process is independent of the history of the pro-

cess. However, in a multistate degradation process with a non-Markovian structure,

the above-mentioned assumption is relaxed, that is, the degradation process may

depend also on other factors. It is known that inference under Markovian structures

is much simpler than non-Markovian structures. As will be reviewed later in this

chapter, most of the literature on multistate degradation has focused on cases with

the simple Markovian structure. The Markov model is clearly the most popular one,

as it assumes that the sojourn time at each state is exponentially distributed [42].

Discrete-time and continuous time multistate degradation models with Markovian

structures are reviewed later in this subsection.

Different types of non-Markovian structures are considered in the literature for

multistate degradation modeling. One of the most commonly used non-Markovian

structures in the literature to represent the multistate degradation process is the

semi-Markovian structure in which the one-step transition between two states fol-

lows a Markovian structure and the sojourn time at each state follows an arbitrary

distribution [43]. Another example of non-Markovian degradation models is the mul-

tistate regression model, where degradation transition may also depend on a covari-

ate vector Z, possibly time-dependent [44]. Proportional hazard model (PHM) with

multistate structure is one of the most typical forms of multistate regression models

[41]. Later in this subsection, discrete-time and continuous-time multistate degra-

dation structures in the literature with semi-Markovian structures as well as the

proportional hazard model as the most common types of a non-Markovian structure

are reviewed. In addition, the main characteristics as well as the major limitations

of each structure will also be briefly discussed.

It should be pointed out here that in the reliability literature, the keyword hidden

is commonly used to represent an unobservable or indirectly observable stochastic

process (see details in Section 2.1.3). For example, a multistate degradation process

with indirectly observable healths states evolving according to a Markovian structure

is usually referred to as a multistate process with a hidden Markovian structure.

Markov and semi-Markov models with partially observable states (hidden states)
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are alternatively called hidden Markov models (HMM) and hidden semi-Markov

models (HSMM), respectively. HMM and HSMM are well-studied methods and

have been successfully applied in many areas such as speech recognition [45], health

care [46], software reliability [47], and condition monitoring [48]. Review on models

that are used to represent a hidden degradation process with an observation process

is discussed in Section 2.1.3.

In a multistate degradation process, the degradation transition may depend on

certain factors, such as (a) the two states involved in the transition (the actual level

of degradation), (b) the time that the device reached the current state, (c) the time

already spent (sojourn time) at the current state, (d) the total age of the device

(sum of b and c), or (e) any other covariate that may or may not depend on the

above factors. With respect to the above factors, multistate degradation models

reported in the literature can be classified into five major categories: (1) discrete-

time Markovian structure, (2) continuous-time Markovian structure, (3) discrete-

time semi-Markovian structure, and (4) continuous-time semi-Markovian structure,

and (5) proportional hazard model. Each of the above-mentioned categories are

described below.

In a multistate degradation process with discrete-time Markovian structure, re-

ferred to as a discrete-time Markov process (DTMP) [49], after a fixed time inter-

val (△) or so-called step, the device transits from its current health state i to a

degraded state j with a fixed probability of Pi,j. Based on this assumption, the

probability of degradation depends only on the states involved in the transition and

is affected neither by the total age of the equipment nor the time duration the de-

vice has spent at the current state. This means that the probability of transition

from state i to state j at time t during the next interval is always Pi,j , that is the

ignorance of aging. This results in a geometric sojourn time distribution for state

i as Pr(Di = d) = (1 −
∑

j 6=i

Pi,j)
d−1(

∑

j 6=i

Pi,j), where Di is the sojourn time at state

i (d = 1△, 2△, ...). Examples of the application of the discrete-time Markovian

degradation can be found in [49, 50, 51, 52, 53]. For DTMP, the fixed transition

probabilities and the geometric sojourn time distribution limit the use of this type

of model in real deteriorating systems [54, 55, 56]. In other words, the fact that the

probability of a transition to a degraded state increases as the device ages cannot

be reflected by DTMP.

In a multistate degradation process with continuous-time Markovian structure,
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referred to as a continuous-time Markov process (CTMP) [57], the device can con-

tinuously (not necessarily at discrete time points) degrade from its current state

i to a lower state j with a constant time-homogeneous (time-independent) tran-

sition rate λi,j. Based on this assumption, the sojourn time distribution at state

i follows an exponential distribution as fi(d) = (
∑

j 6=i

λi,j) exp(−(
∑

j 6=i

λi,j)d), d ≥ 0.

In a Markovian degradation structure, the transition between two states at time t

depends only on the two states involved and is independent of the history of the

process before time t (memoryless property). Examples of the application of the

continuous-time Markovian degradation can be found in [57, 58, 59, 60, 61]. For

CTMP, the constant transition rates (independent of the age of the device) and the

exponential sojourn time distribution limit the use of this model in practical cases.

To overcome the above-described limitations of multistate degradation mod-

els with Markovian structures, researchers have considered semi-Markov structures,

which take into account the history of the process and consider arbitrary sojourn

time distributions at each state. With respect to the dependency of transitions to the

states involved, the time that the device reached the current state, the time spent at

the current state, and the total age of the device, the semi-Markov process can be in

one of the four main forms, namely, discrete-time and continuous-time aging Marko-

vian process (DTAMP and CTAMP), homogeneous discrete-time and continuous-

time semi-Markov process (HDTSMP and HCTSMP), explicit-duration discrete-

time and continuous-time semi-Markov process (EDDTSMP and EDCTSMP), and

nonhomogeneous discrete-time and continuous-time semi-Markov process (NHDTSMP

and NHCTSMP). In the following, the main characteristics of each of the above

semi-Markov structures are briefly reviewed and their applications in multistate

degradation modeling are described.

In multistate degradation with a discrete-time aging Markovian structure as

reported in [56, 62, 63], the device degrades from any current state i to a degraded

state j according to a transition probability, which changes with the total age of

the device considering an aging factor. Chen and Wu [56] considered a fixed aging

factor for a discrete-time Markov model in a way that the transition probabilities are

updated after each fixed time interval. Peng and Dong [15] considered three types

of aging factors for updating the probability transition matrix. With such aging

factors, the probability of transition to a degraded state is increased after each

observation interval △. They developed estimation methods to find these aging
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factors. Another example of discrete-time aging Markovian degradation models can

be found in [63], where a time-dependent transition probability matrix is used to

describe the deteriorating mechanism of a production system. In [55, 62], a modified

version of an aging Markovian process with explicit sojourn time distribution is

introduced, where an aging factor discounts the probabilities of staying at the current

state while increasing the probabilities of transitions to less healthy states. Although

DTAMP aims to address the limitation of Markovian structures to some extent,

finding an aging factor that can reasonably discount (over time) the probability of

staying at each state and the independence of transition distributions to the age of

the device at each state (sojourn time) and the total age at the same time are the

main limitations of using DTAMP in multistate degradation modeling.

In multistate degradation with a continuous-time aging Markovian structure as

reported in [32], the degradation between two states depends on the states involved

in the transition and the total age of the device. Also, the degradation transition

can happen at any time point (continuous-time stochastic process). This type of

transition is also referred to as nonhomogeneous continuous-time Markov process

(NHCTMP). The term nonhomogeneous refers to the dependency of the transition

rate on the age of the device, that is, transition rate changes with the age of the

device. Although this structure is more reasonable than a continuous-time Markov

process for degradation modeling, the assumption of independency of transition

distributions to the time that the device reached the last state (sojourn time) and

the age of the device at each state is the main limitation of using NHCTMP in

multistate degradation modeling [32, 64, 65]. Despite its flexible structure useful for

degradation modeling, it is used only in few reported research studies on degradation

modeling.

In multistate degradation models with an explicit-duration semi-Markov struc-

ture as reported in [54, 66] for EDDTSMP and in [67] for EDCTSMP, the device

stays at its current state i following an arbitrary (but explicitly defined) distribu-

tion and then transits to a degraded state j with a constant probability of pi,j. The

terms discrete and continuous refer to the time-dependent sojourn time distribution

at each state. For both EDDTSMP and EDCTSMP, the fixed transition probabili-

ties (independent of the age of the device) limits the use of these models in practical

cases [15, 55, 62]. Furthermore, finding an explicit type of sojourn time distribution

for each state is not always a straightforward process.
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In multistate degradation with a homogeneous semi-Markov structure as re-

ported in [34, 68] for HDTSMP and in [7, 9, 69, 70] for HCTSMP, the device

degrades according to a time-dependent transition rate (or transition probability

for HDTSMP), which changes with the time spent at the current state. The term

homogeneous here refers to the fact that the associated degradation process from

state i to state j starts only at the time point the equipment reaches state i, that

is, it is independent of the total age of the device (it depends on the sojourn time

at state i). This type of transition rate has also been used in [71, 72]. Based on

this structure, the sojourn time distribution at each state follows an arbitrary distri-

bution. Although, compared to Markovian degradation, HDTSMP and HCTSMP

comply with more realistic cases by taking the age of the device at each state into

consideration, they are not applicable when the degradation process depends not

only on the sojourn time at each state but also on the total age of the device.

In multistate degradation using conventional proportional hazard models, the

degradation transition to the failure states (failure rate or hazard rate) is defined as

a function of the total age of the device represented by a baseline hazard function

(such as Weibull hazard rate) and a covariate process Z, which is multiplicatively

related to the hazard rate. The covariates can be internal covariates, which are

related to the actual degradation process, or external covariates, which are not

related to the degradation process (such as environmental factors). As a result, this

covariate process can also affect the time to failure. For example, in [41, 73, 74],

a proportional hazard model was considered for the failure transition in a device

with multiple health conditions where the covariate vector was defined based on

the current state of the device. The degradation transitions between states were

modeled with DTMP leading to fixed transition probabilities. The main limitation

of using this type of proportional hazard models for multistate degradation modeling

is that the probability of transition from state i to a degraded state j is independent

of the age of the device, that is, it is constant Pi,j. Another limitation of this type of

proportional hazard model used in reliability modeling is that hazard rate is defined

in a continuous domain (through a hazard rate function), that is, the failure can

happen at any time point. However, the intermediate transitions between degrading

states (the states of the covariate process) are defined by a discrete-time Markov

chain, which means transitions are allowed only at discrete time points.

The use of any of the above-reviewed stochastic models for multistate degrada-
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tion modeling is subject to two common limitations. First, all degradation transi-

tions should follow an identical structure, that is, degradation transition between

states should have an identical statistical form. This is rarely the case as a degrada-

tion transition between health states may follow different structures. For example,

for a four-state device, the transition rate from state 1 to state 2 might be a constant

value (independent of the age of the device), but the transition rate from state 1 to

state 4 might be age-dependent. Second, each degradation transition may depend

only on some (not all) of the following factors, namely, the two states involved in

transition (the actual level of degradation), the time point that the device reached

the current state, the time spent at the current state, the total age of the device, or

any other covariates. For example, for a four-state device, the degradation transition

between state 2 and 3 at time t may depend on the time spent at state 2, the total

age of the device, and the operational condition of the device at time t (Z(t)). In

order to provide a more general and flexible degradation structure that can include

more practical cases, the above limitations need to be relaxed, in the sense that:

(1) degradation transitions between states in a single device can follow non-identical

structures and (2) transitions between states can depend on any combination of the

above-described factors, that is, a degradation transition rate as well as the overall

degradation process may be affected by any of the above-mentioned factors. For

example, for a single device, the overall degradation process may depend on the

total age of the device as well as the time spent at each state [75].

It is interesting to note that the only stochastic process that can directly ad-

dress the above-mentioned limitations is the nonhomogeneous semi-Markov struc-

ture. Surprisingly, very limited amount of research work has been devoted to multi-

state degradation modeling using either nonhomogeneous discrete-time semi-Markov

process (NHDTSMP) or nonhomogeneous continuous-time semi-Markov process

(NHCTSMP). Due to the flexibility, generality, and more practical applications

of this structure, it is considered as the structure of the multistate degradation

model in this thesis. In addition, as degradation transitions naturally evolve in the

continuous-time domain and as the discrete-time case can be obtained from the

continuous one, by considering counting measure for discrete time points [76], it is

assumed in this thesis that the multistate degradation process follows a nonhomo-

geneous continuous-time semi-Markov process (NHCTSMP) evolving in a discrete-

state space. To be able to describe transition rates in a more general form, we
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denote the transition rate between state i and j as λi,j(s, t) , where t is the sojourn

time at state i and s is the time point that the equipment entered state i. With

the above definition of transition rates, the overall degradation process can change

with the level of degradation (states involved in transitions), the time spent at each

state, the total age of the device, or any other dependent covariate (Z(t)). This

general stochastic process covers the previously discussed stochastic processes used

for degradation modeling (in continuous-time domain). The mathematical structure

of NHCTSMP and its application in multistate degradation modeling are discussed

in more details in Chapter 3.

It is important to note that if we consider the observation process, which

is a stochastic process reflecting indirectly the unobservable degradation process,

the term hidden can be used, so that above-described degradation models can

be referred to as discrete-time hidden Markov process (DTHMP), continuous-

time hidden Markov process (CTHMP), discrete-time hidden aging Markovian pro-

cess (DTHAMP), continuous-time hidden aging Markovian process (CTHAMP)

or alternatively called nonhomogeneous continuous-time hidden Markov process

(NHCTHMP), explicit-duration discrete-time hidden semi-Markov process (ED-

DTHSMP), explicit-duration continuous-time hidden semi-Markov process (ED-

DTHSMP), homogeneous discrete-time hidden semi-Markov process (HDTHSMP),

and homogeneous continuous-time hidden semi-Markov process (HCTHSMP), re-

spectively. In the next section, the observation process and its role in indirectly

reflecting the hidden degradation process are discussed. In Table 2.1, the references

in which multistate degradation modeling is employed are reported.

Table 2.1: References for multistate degradation

Structure Degradation Modeling

DTMP [49, 50, 51, 52, 53, 77]
CTMP [57, 58, 59, 60, 61, 78]
DTAMP [56, 62, 63]
CTAMP (NHCTMP) [32, 64, 65]
EDDTSMP [54, 66]
EDCTSMP [16, 67]
HDTSMP [34, 68, 79]
HCTSMP [7, 9, 32, 69, 70]
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2.1.3 Observation Process for Multistate Degradation Models with
Unobservable States

As discussed earlier, this thesis focuses only on multistate degradation processes

with discrete-state space, continuous-time domain, and unobservable degradation

process where states are only indirectly and partially observable through condition

monitoring. This type of degradation process is referred to as a hidden process.

Condition monitoring techniques include a wide range of applications from analysis

of engine oil to vibration monitoring. The most common approach for data acquisi-

tion in real applications of condition monitoring frameworks is that the observations

are taken at discrete, not necessarily equidistant time epochs, while the measure-

ments extracted at observation points are in a continuous range [80]. The output of

this condition monitoring framework is referred to as the observation process.

As discussed earlier, the observation process is generally not perfect due to the

existence of noise and the nature of the observation process, that is, it does not

directly reveal the actual degradation level of the device under operation. In other

words, it is impossible to reveal the actual degradation state of the device just

from the extracted condition monitoring data. This means that different condition

monitoring indicator values may exist at the same degradation state (one-to-some

relationship). Also, a certain observation value may be observed at different levels

of health states (some-to-one relationship). That is why the hidden degradation

process is also referred to as a partially observable degradation process through

the observation process. Therefore, the relationship between the collected condition

monitoring information (observation process) and the degradation level (degradation

process) is some-to-some. This thesis assumes that the observation process has

a stochastic relationship with the actual health status of the device (degradation

process), that is, it can be used to indirectly monitor the degradation process. More

details on the characteristic of this stochastic relationship are given in Chapter 3.

In a condition monitoring framework, the observation process may be able to

indirectly reflect the health status of a device through monitoring a single or mul-

tiple indicators. These indicators or alternatively called features can be calculated

from raw condition monitoring data extracted from single or multiple sensors. One

of the primary objectives of condition monitoring is to find a stochastic relationship

(some-to-some) between health states (degradation process) and the output of the

observation process. With respect to the statistical form of the stochastic process
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used to represent the relationship between the degradation and observation pro-

cesses, two types of observation processes may exist: (1) observation process with

parametric distribution and (2) observation process with nonparametric distribu-

tion. In a parametric distribution, the relationship between actual health states

(degradation process) and condition monitoring data (observation process) is rep-

resented by a well-known parametric distribution (such as multivariate Gaussian

mixture distribution). In the case of multivariate Gaussian distribution, the obser-

vation process is assumed to be a random vector with the following distribution:

Pr(Yt = y|Zt = i) =
M
∑

k=1

Wi,kN (y, µi,k,
∑

i,k

), (2.1)

where Yt and Zt are respectively the output of the degradation and observation

processes at time t, M is the number of Gaussian mixture, Wi,k is the weight of the

kth mixture at state i, and µi,k and
∑

i,k

are the mean and covariance matrix of the

kth mixture at state i, respectively. The relationship between the degradation and

observation processes is fully defined if the parameters of each Gaussian distribution

are known. Examples can be found in [81, 82, 83, 84, 85].

On the other hand, in the case of nonparametric distribution, the relationship

between the degradation and observation processes is represented in a nonparamet-

ric discrete form through a matrix called observation probability matrix (OPM). In

other words, the observation process is assumed to take only certain discrete val-

ues and therefore a simple nonparametric probability mass function can be used to

represent the relationship between each state and possible discrete outputs of the

observation process. Here, observation probability matrix represents, in a nonpara-

metric discrete form, the statistical relationship between the actual health state of

the device and the condition monitoring data. The number of rows in this matrix

is equal to the number of health states, and the number of columns is equal to the

number of possible values of a condition monitoring feature. Each row of the obser-

vation probability matrix represents the distribution of the observation process at

a certain level of health states. Many examples of such type of distribution are re-

ported in [15, 54, 55, 73, 74, 86, 87]. More details regarding this type of observation

process are discussed in Chapter 3.

The main challenge of considering a parametric distribution for the stochastic re-

lationship between the degradation and observation processes is the complexities in
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finding a known parametric distribution that appropriately represents this relation-

ship. On the other hand, the nonparametric representation of condition monitoring

data entails the challenge of how to define discrete levels of outputs and how to su-

perimpose original feature values to these discrete levels. In the literature, dimension

reduction methods such as Vector Quantization (VQ) techniques are employed to

convert original observation values to discrete groups or clusters [88]. The remaining

challenge is how to evaluate possible ways to map a continuous or discrete distribu-

tion to a discrete distribution with a limited number of distinct values (symbols),

which can efficiently represent the original observation distributions without losing

much information. Also, for both parametric and non-parametric cases, finding the

best set of condition monitoring features as the representative of the observation

process is very challenging.

It can be concluded that finding an efficient way to select the best condition

monitoring feature among possible features, determining the parametric form of

the distribution to be used to represent the stochastic relationship between the

degradation and observation processes, and determining the number of possible

outputs to represent the observation process (in a nonparametric form) are the

main challenges of available models used to represent this relationship. In this

thesis, similar to many other work in the domain of condition monitoring, it is

assumed that the relationship between the degradation and observation processes

is represented in a nonparametric discrete form through an observation probability

matrix. This nonparametric representation of the relationship between degradation

and observation processes can reduce modeling bias by considering no specific model

structure. In addition, it is often more useful when limited information is available

or flexibility about the observation process is required. As will be discussed in

Chapter 4, several methods such as clustering can be used to investigate a reasonable

number of discrete points to be used to represent the observation process. However,

developing an exact method to find the optimal value for the number of discrete

outputs of the observation process is out of the scope of this thesis.

2.2 Structure Modeling and Parameter Estimation

The primary step before modeling degradation and observation processes associated

with a device is to determine the structure of the multistate model. Structure deter-

mination or alternatively called model selection involves two steps, configuration ( or
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topology) determination and parameter estimation. The purpose of the configura-

tion selection step is to determine a reasonable topology for the associated multistate

model with unobservable states. The purpose of the parameter estimation is to find

a reasonable set of parameters for the selected topology using historical observation

data. Configuration determination and parameter estimation are the primary steps

before using multistate degradation models for diagnostics and prognostics.

The main elements that characterize a multistate topology are the number of

states (N), transition diagram (Ω), transition types (ξ), statistical structure of tran-

sition rates (λ), condition monitoring feature (I), and the number of clusters to be

used for feature representation (V ). Therefore, the multistate topology can be de-

noted as ζ = {N,Ω, ξ, λ, I, V } . The detailed description of these elements will be

illustrated later in Chapter 3. With regards to the parameter estimation step, pa-

rameters to be estimated are the ones that characterize the degradation process (Γ)

and observation process (B ). Therefore, θ = {Γ, B}. These two sets of parameters

will be further illustrated in this section.

Among the above two steps, the step of parameter estimation has received more

attention in the domain of multistate modeling. There are three possible reasons

for this: (1) finding a reasonable multistate topology usually requires large amount

of data (6 elements need to be defined), (2) comparing possible topology alterna-

tives is very time-consuming (due to the large number of alternatives), and (3) there

is usually some prior knowledge on the elements of the multistate topology (such

as historical information from similar devices). Due to the above reasons, most

available research works have assumed that the topology of the multistate structure

is known and they just focused on parameter estimation methods to estimate the

unknown parameters of the selected topology. For example in [73], the number of

states (N), transition diagram (Ω), transition types (ξ), statistical structure of tran-

sition rates (λ), condition monitoring feature (I), and the number of clusters to be

used for final feature representation (V ) are assumed to be known and only finding

characteristic parameters for degradation and observation processes needs to be in-

vestigated. In real-world applications, finding an appropriate multistate topology,

which can reasonably represent the actual degradation and observation processes,

is very challenging. To avoid unnecessary maintenance actions and prevent catas-

trophic failures, it is crucial to understand the elements of the multistate structure

and find a reasonable multistate model, which can be trusted to be used for online
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health monitoring.

As mentioned earlier, the literature on multistate topology selection is still at

its infancy. There are very limited reported work that this challenge is addressed.

An example can be found in [89], where the reasonable number of states for the

hidden Markov model is studied. That is why the literature review in the following

subsection is limited to the research works on parameter estimation of multistate

degradation models. Later in Chapter 3, the elements of the multistate topology

are clearly defined, and then in Chapter 4, a simple framework is proposed, which

can be used to estimate the unknown parameters of a known multistate topology. It

should be pointed out here that finding the best topology for the multistate model

(the 1st step of model selection) is out of the scope of this thesis.

2.2.1 Parameter Estimation

In order to develop diagnostic and prognostic models for devices under degradation

with partially observable states, stochastic models can be used to model the associ-

ated degradation and observation processes. Since in practical problems, applying

diagnostic and prognostic models requires estimating the characteristic parameters

of the associated stochastic models from real-time data, parameter estimation mod-

els and algorithms are of high interest in diagnostic and prognostic analyses of

mechanical devices. It should be pointed out here that the parameter estimation

step is done only after the topology of the multistate model is fully defined. The

two sets of parameters of interest considered in parameter estimation of multistate

degradation models with partially observable states are: (1) the set of parameters

characterizing the degradation process and (2) the set of parameters characterizing

the observation process.

These two sets of characteristic parameters and their elements may vary, de-

pending on the topology selected for modeling the multistate degradation process.

The procedure of parameter estimation for multistate degradation structures with

unobservable states is usually an unsupervised estimation process, where the direct

information on the degradation process is not available. However, if it is possible to

obtain the actual degradation levels continuously or at some discrete points (such as

inspection points, major shut downs, or overhaul times), then supervised estimation

techniques may be employed. Laboratory experiments [15], simulation [90], and

accelerated run-to-failure experiments [91] are helpful approaches that can provide
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run-to-failure data required in a supervised estimation method for a device with

unobservable states. Such strategies are out of the scope of this thesis.

In this thesis, the focus is on the unsupervised estimation method, in which

the actual degradation data is not available and instead only indirect information

obtained from the observation process can be used for estimation. Several research

works have considered the problem of parameter estimation for multistate struc-

tures with unobservable states. It should be pointed out here that most reported

parameter estimation work in the domain of multistate modeling have employed

the techniques used in the literature for training hidden Markov and hidden semi-

Markov models as given in [92]. For example, the Expectation-Maximization (EM)

technique, which is widely used in the training of hidden Markov (HMM) and hidden

semi-Markov models (HSMM) has been also employed in the parameter estimation

of multistate degradation models. Examples can be found in [93, 94].

Table 2.2 summarizes the references available on parameter estimation for dif-

ferent types of multistate structures. It can be observed from this table that

there are less work available on parameter estimation for semi-Markovian multi-

state structures. In addition, there is no reported work on parameter estimation

of homogeneous and nonhomogeneous continuous-time hidden semi-Markov degra-

dation models. As NHCTHSMP is a more reasonable and flexible structure for

degradation and observation process modeling, there is a need for developing an un-

supervised parameter estimation method for estimating the parameters associated

with a NHCTHSMP, which can use available historical condition monitoring data

for parameter estimation. Such a parameter estimation procedure will be reported

in Chapter 4 of this thesis.

Table 2.2: Summary of research work on parameter estimation

Structure Parameter Estimation

DTHMM [92, 95, 96, 97, 98, 99]
CTHMM [57, 58, 80, 100]
DTAMP [56, 62, 63]
CTAMP (NHCTMP) -
EDDTHSMM [54, 66, 101, 102, 103]
EDCTHSMM [104]
HDTHSMM [34]
HCTHSMM -
NHCTHSMM -
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2.3 Diagnostics and Prognostics for Multistate Struc-

tures

With the development of advanced sensor technology over recent years, condition

monitoring techniques have received a significant amount of attention. The ulti-

mate goal of condition monitoring techniques is to explore the relationship between

the actual level of degradation (degradation process) and the extracted condition

monitoring data (observation process), which can finally enable decision makers to

find the most efficient and cost-effective maintenance action, e.g. whether or not to

replace a device at a certain condition.

Generally, the observed condition monitoring data can be used for two purposes:

(1) diagnostic health monitoring and (2) prognostic health monitoring. Diagnosis

and prognosis are known as the two important aspects of condition-based mainte-

nance (CBM) [17]. Diagnosis refers to activities that are performed while the device

is operating and the degradation process is evolving. The purpose of diagnostic

health monitoring is to provide affirmative information on the current heath status

(actual level of degradation) of the device before it fails. On the other hand, prog-

nostics refers to activities, which help to predict future fault propagations or failures.

The purpose of prognostic health monitoring is to predict the future trend of the

fault propagation and degradation process in the sense that timely and cost-effective

maintenance actions can be performed. There are many published research works

available on machinery diagnostics and prognostics. A review on diagnostic and

prognostic methods using condition monitoring data can be found in [18, 19, 20].

In real-world systems, diagnostic and prognostic health monitoring is done

through monitoring several dynamic reliability measures reflecting certain aspects

of the degradation process. These dynamic performance measures are calculated

using the condition monitoring data extracted from the observation process. Here,

dynamic means that the measure is calculated over time given the most updated

profile of the condition monitoring data. Therefore, dynamic diagnostic perfor-

mance measures employ all condition monitoring data up to the current time to

provide information on the current actual level of degradation (health states) while

dynamic prognostic reliability measures employ such data to provide information on

the future stochastic behavior of the device with respect to degradation and failure.

Although the theory of multistate modeling has been widely used in the literature
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for reliability analysis, its application for diagnostic and prognostic health monitor-

ing of condition-monitored devices with an unobservable degradation process is still

at its infancy and needs to be further investigated. In the following, relevant re-

search studies where multistate degradation process is employed for diagnostic and

prognostic health monitoring are reviewed.

2.3.1 Diagnostic Health Monitoring for Multistate Devices

Using condition monitoring data for diagnostic health monitoring has been reported

frequently in the literature. The most commonly used measure for this purpose is the

current degradation level of the device (state level), which can be calculated using

methods such as Viterbi [92]. The Viterbi algorithm is a dynamic programming

algorithm for finding the most likely sequence of states from a sequence of observed

data. In [60], several measures, such as the probability that the system will be found

in a functioning state at time t, expectation of performance output at time t, and

time to reach the failure state for a multistate Markovian degradation process are

proposed. Shu et al. [70] developed dynamic performance measures for machine tools

with multistate degradation processes in the sense that the total experience of the

manufacturer over the target life of the tool is employed to calculate performance

measures. In [50], HMM and neural network methods are used to estimate the

current level of tool wear as a diagnostic measure. Tobon-Mejia et al. [105] used a

mixture of Gaussian hidden Markov model for failure diagnostics and prognostics.

They estimated the asset’s current health state, its remaining useful life, and the

associated confidence degree using condition monitoring data.

Our review concludes that most available research studies are subject to at least

one of the following three shortcomings. First, many reported studies such as [106]

consider only important reliability measures calculation for Markovian structure.

This means that important reliability measures applicable for non-Markovian degra-

dation structures need to be developed. Second, traditional reliability research stud-

ies are limited to calculating the static reliability measures, such as unconditional

reliability function, that is, the dynamic behavior of the degradation process is ig-

nored ([60]). Finally, many reported research studies assumed that the degradation

process is directly observable ([107]). As a result, a practical and efficient approach

for diagnostic health monitoring of devices under unobservable degradation and con-

dition monitoring through developing dynamic reliability measures obtainable from
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condition monitoring data needs to be developed. In other words, important dy-

namic performance measures, which have the ability to reflect the dynamic behavior

of the degradation process, need to be developed for a multistate degradation pro-

cess under NHCTHSMP. Using efficient diagnostic performance measures enables

maintenance decision making to detect the degradation progression and therefore,

the failure of system could be prevented. That is why diagnostic measures can play

important roles in the life cycle cost minimization of devices under gradual degrada-

tion. In Chapter 5, the mathematical derivations for important diagnostic measures,

such as the conditional state probability, average degradation level, its associated

confidence interval, and hazard rate are introduced for a degradation process under

NHCTHSMP.

2.3.2 Prognostic Health Monitoring for Multistate Devices

Accurate estimation of prognostic reliability measures, such as reliability and re-

maining useful life (RUL), is playing an important role in minimizing the overall

maintenance cost of systems. Prognostic reliability measures can help maintenance

decision makers to determine the time to initiate maintenance setup and the time

to replace a degraded device and therefore can decrease unnecessary maintenance

actions and unexpected failures. As the ultimate goal of estimating prognostic per-

formance measures, such as remaining useful life, is to prevent failures, they are of

significant interest to maintenance decision makers. Over the past years, there has

been a significant increase on methodologies regarding prognostic reliability evalu-

ation of mechanical systems. A comprehensive literature review of recent research

work in this area and advantage and disadvantage of several available models can

be found in [22]. In addition, the strengths and weaknesses of the main prognostic

models and summary on how each can be applied to engineering prognostics have

been discussed in [23].

The idea of using condition monitoring data to predict future behaviour of a

device has been investigated widely in the literature. Ghasemi et al. [74] considered

a proportional hazard model to estimate the remaining useful life for a discrete

multistate system with specific state transitions where a transition was possible

from all levels of health states to the failure state. Dong and He [108] introduced

diagnostic and prognostic analysis of an explicit duration discrete-time hidden semi-

Markov degradation process and developed a modified forward-backward and a re-
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estimation method to estimate the unknown parameters of the model. For the

estimation of the sojourn time (the probability of duration at each state), they

considered a discrete-time nonparametric distribution.

The main limitation of current studies in prognostic analysis in the multistate

domain is the lack of mathematical derivations for important condition-based (dy-

namic) prognostic measures that (1) can be calculated from real-time condition

monitoring data (observation process) and (2) provide useful information to main-

tenance decision makers that can help determine whether or not to initiate main-

tenance setup or whether or not to replace a degraded device. Such prognostic

measures have not been developed for a degradation process evolving according to

NHCTHSMP. In Chapter 5, the mathematical derivations for well-known dynamic

prognostic reliability measures, such as conditional reliability, conditional remain-

ing useful life, and warning levels are developed for a degradation process under

NHCTHSMP.

2.4 Maintenance Decision Making

Conventional reliability and maintenance frameworks rarely consider the actual

health status of the device while operating in decision making. They are usually

either a corrective maintenance framework or a time-based preventive maintenance

framework [109]. In corrective maintenance of non-repairable systems, a device is

replaced only after failure. In a time-based preventive maintenance, a predefined

time threshold, irrespective to the actual degradation process, is considered to de-

termine when to replace a device. With the development of sensor technologies and

condition monitoring techniques, advanced reliability studies have focused more on

the development of methodologies and frameworks that can somehow employ actual

information regarding the degradation process for efficient online health monitoring

of systems under gradual degradation. It has been proved that better maintenance

actions can be made if actual health status (degradation status) of the device over

time is employed for maintenance decision making [110]. This type of maintenance

decision making is also referred to as condition-based maintenance (CBM). By tak-

ing maintenance actions only when there is an evidence of abnormal behaviors of a

physical asset, CBM can also avoid unnecessary maintenance actions [17].

The concept of condition-based maintenance has been applied extensively in the

domain of reliability and maintenance. Comprehensive reviews of reported mod-
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els on machine condition-based maintenance can be found in [17, 20, 111, 112, 113].

There are also reported research works on the application of unobservable multistate

degradation structures for condition-based maintenance decision making. Makis and

Jiang [114] developed an optimal replacement strategy for a multistate system con-

sidering continuous-time hidden Markov model with known exponential transition

rates. The cost of maintenance in their work was assumed to depend on the state

of the system. Maillart [115] introduced a heuristic solution for a condition-based

maintenance optimization problem. They considered three choices for the types of

maintenance, which are do nothing, replace, and collect observations. The objective

function in that work was to minimize the long run unit average cost of the system,

where failure state is observable. The simple discrete-time hidden Markov model is

considered in [116] for a multistate system. The observation probability matrix was

assumed to follow a binomial distribution. They investigated replacement policy

(replace or do nothing) and introduced an approximation method for their work.

The objective was to minimize the total cost of the system.

Chen and Wu [56] developed a dynamic maintenance policy (preventive main-

tenance or do nothing) where the objective function was to minimize maintenance

and downtime costs for a system under a discrete semi-Markov structure with ag-

ing Markovian deterioration. Rosenfield [117] developed an optimal maintenance

policy (repair, no action, and inspection) for a multistate system under a special

discrete-time Markov structure with incomplete information. A replacement policy

and control limits for a multistate system were considered in [118] where a dynamic

programming model for the optimization problem was proposed.

Ivy and Pollock [119] analyzed an optimal maintenance policy for a multistate

system with deteriorating states and considered a silent failure where the system

can continue working in the failure state. It was assumed that the effect of imperfect

maintenance depends on the state of the system. They used the concept of partially

observed Markov decision process for their analysis. Transitions from states to

states were assumed to follow a geometric distribution. Tomasevicz and Asgarpoor

[120] developed a method for optimal preventive maintenance of a multistate system

under repair. They used continuous-time Markov structure for their system.

There are also published case studies where condition-based maintenance was

applied and associated results were presented. Byon and Ding [121] examined op-

timal repair strategies for wind turbines operated under stochastic weather con-
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ditions. Their objective was to derive an optimal preventive maintenance policy

that minimizes the expected average cost over an infinite horizon using informa-

tion obtained from multiple sensors. A case study on a helicopter gearbox based

on HMM is presented in [122]. They proposed a method for parameter estimation

and condition-based maintenance. In [41], a condition-based replacement policy

for a system under degradation was developed and then a dynamic programming

approach was employed to solve the problem.

It should be pointed out here that the above review excludes other types of main-

tenance management frameworks, such as reliability centered maintenance (RCM)

and risk-based maintenance (RBM). Interested readers may refer to [123, 124]. As

reviewed in this subsection, the concept of condition-based maintenance has been

applied widely in theory and application. However, there is no reported work on de-

veloping CBM techniques applicable in unobservable multistate degradation model

evolving according to a NHCTHSMP. Also, a method that can determine the opti-

mal time of maintenance setup initiation needs to be developed.

2.5 Concluding Remarks

Based on the conducted literature review, important shortcomings and challenges

of available research studies for multistate degradation modeling with unobservable

states are summarized in this section. These challenges are classified into four dif-

ferent categories. For each category, the contribution made in this thesis to address

a particular challenge is discussed.

Challenge I) Current stochastic models used for multistate degradation modeling

have the limitation that transitions between states do not depend simultaneously

on the states involved in transitions, the time spent at the current state, the total

age of the device, and other covariates that depend on these factors. Therefore,

there is a need for a more general stochastic process model to be used for multistate

degradation modeling that can address the above-mentioned shortcoming. This gen-

eral stochastic process, referred to as the nonhomogeneous continuous-time hidden

semi-Markov process (NHCTHSMP), is employed throughout this thesis to represent

degradation and observation processes of condition-monitored devices. Using such

a general and flexible structure, the overall degradation process may depend on the

actual level of degradation, the time spent at each state, the total age of the device,

and any other covariate dependent on the aforementioned factors. Also, degrada-
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tion transitions between states will have the flexibility to follow different structures.

The fundamental properties of a NHCTHSMP will be described in Chapter 3 of this

thesis. In addition, how this flexible structure can be used to model the degrada-

tion and observation processes associated with a condition-monitored device will be

demonstrated.

Challenge II) The problem of employing historical condition monitoring data for

the purpose of model selection and parameter estimation procedure has not been

studied for a multistate degradation model with unobservable states evolving ac-

cording to NHCTHSMP. Such procedures can provide maintenance decision makers

a guideline on how to model a condition-monitored degradation process with a mul-

tistate structure using historical data. In Chapter 4 of this thesis, a framework that

can employ condition monitoring data for training a multistate degradation struc-

ture with unobservable states will be proposed.

Challenge III) Although there are several diagnostic and prognostic methods avail-

able for devices with multiple health states, to the best of our knowledge, efficient

dynamic diagnostic and prognostic health monitoring measures that can use con-

dition monitoring data for monitoring a multistate degradation process evolving

according to NHCTHSMP do not exist. Such performance measures can enable

maintenance decision makers to be able to continuously monitor the degradation

process. In Chapter 5 of this thesis, the mathematical formula for important dy-

namic diagnostic and prognostic performance measures are introduced, which can

employ online condition monitoring data to provide useful information on the actual

level as well as the future behaviour of the degradation process.

Challenge IV) A dynamic condition-based replacement model, which can employ

online condition monitoring data to determine when to initiate maintenance setup

and when to replace a degraded device, needs to be investigated. Unlike artificial

neural networks or data-driven classification methods with the black box modeling

structure, multistate degradation models based on a NHCTHSMP can be used as

a reasonable tool to determine the optimum time to replace a degraded device. In

Chapter 6 of this thesis, a dynamic replacement policy is introduced, which can

employ condition monitoring data for online maintenance decision making.

In Chapter 7, a case study on turbofan engines are analyzed and finally the

conclusion of this thesis and directions for future work are reported in Chapter 8.

It is expected that the result of this thesis will advance the state of the art in the
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practical health management of mechanical systems. The structure of this thesis

is designed in the sense that each of the above challenges is addressed through a

particular research topic. Chapter 3 is devoted to address challenge I, which is

multistate degradation modeling using NHCTHSMP. In Chapter 4, challenge II is

investigated. Chapter 5 investigates important dynamic diagnostic and prognostic

measures for health monitoring a degradation process and attempts to address chal-

lenge III. In Chapter 6, challenge IV is investigated and a dynamic condition-based

model is proposed, which can employ condition monitoring data to determine when

to replace a degraded device.
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Chapter 3

Multistate Degradation
Modeling Using NHCTHSMP

3.1 Introduction

This chapter reviews the basic structure of a general stochastic process, namely, the

nonhomogeneous continuous-time semi-Markov process (NHCTSMP) and then illus-

trates how this stochastic process can be used for multistate degradation modeling

when states are hidden (not directly observable). In addition, the main elements

of a NHCTHSMP are illustrated in details. The fundamental properties of the

NHCTHSMP described in this chapter will be directly used in the remainder of this

thesis. This chapter is organized as follows. Section 3.2 illustrates the assumptions

made in this thesis for the device under study, the degradation, and the observation

processes. The elements of a NHCTHSMP are described in Section 3.3. The mathe-

matical structure of the NHCTHSMP is described in Section 3.4. The fundamental

describers of the degradation process are illustrated in Section 3.5. Some important

characteristic measures of NHCTHSMP are defined in Section 3.6. Some of the

materials of this chapter are published in [26].

3.2 Assumptions

The main assumptions made in this thesis for the device under study and the degra-

dation and observation processes are described in this subsection. For the complete

list of notation used in this thesis, see Notation List. These assumptions also set

the scope of this thesis with regards to practical applications. It should be pointed

out here that the term device used throughout this thesis can refer to: (1) a sin-

gle element (component) of a mechanical system, such as an impeller in a pump
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Figure 3.1: Three types of transitions

or a gear in a planetary gearbox, or (2) a piece of equipment with multiple ele-

ments (components), such as a pump or a compressor, for which only the overall

degradation process is under study (not the individual degradation processes of each

component).

I. The device has N known possible discrete levels of degradation states ranging

from the perfect functioning state (state 1) to the complete failure state (state

N). Each health state may reflect a certain level of damage, operational

performance, efficiency, and/or physical properties.

II. Except the failure state, which is assumed to be self-announcing, the state of

the device is only indirectly observable through the observation process.

III. At any level of health states, the device can degrade according to three types

of transitions, which are: (I) transition to the neighbor state (progressive

degradation or soft degradation), (II) transition to the failure state (sudden

degradation or hard failure), and (III) transition to any intermediate states

(multi-step degradation). Therefore, at each state, the device is subject to

multiple competing deterioration processes. See Figure 3.1 for the schematic

view of these three types of transitions for a device with N states.

IV. Transition rate functions are used as the main describer of the degradation

process. Each degradation transition can follow an arbitrary distribution.

Degradation transitions between two states may depend on the states involved

in the transitions (level of degradation), the time spent at the current state,

the total age of the device, or any combination of these factors. In addition,

transitions can depend on any covariate that depends on the above elements.

As will be shown in Section 3.2, the degradation transitions are represented

40



by transition rate functions using the general formula given in Eq. (3.3).

NHCTSMP structure is used to model the degradation process.

V. The device is under condition monitoring. The condition monitoring process

(observation process) does not directly reflect the actual level of degradation.

A single condition monitoring indicator is used for health monitoring. This

single indicator can be the output of a feature fusion (feature combination)

process, which transforms a set of indicators to a single indicator. This indi-

cator is calculated at certain discrete points referred to as observation points

(condition monitoring points).

VI. The time between two observation points is small enough, so that at most one

transition may occur in the interval between two observation points.

VII. The condition monitoring indicator can take one of the m possible outcomes

denoted by v1 ,v2 ,...,vm.

VIII. The condition monitoring indicator (observation process) is stochastically re-

lated to the actual levels of degradation (degradation process). This rela-

tionship is represented by a nonparametric discrete probability distribution

referred to as the observation probability distribution (B) with discrete values

(v1, v2, ..., vm). In a general form, the probability that vk is observed when the

device is in states j is defined as bj(k) = Pr(Yt = vk|Zt = j),∀t, 1 ≤ k ≤ m.

IX. The device is not repairable (transitions are left-to-right only) and it is as

good as new after a failure replacement. This assumption is also applicable

for devices for which the repair is costlier than replacement.

It should be pointed out that the above-described assumptions are the common

assumptions made throughout this thesis. Additional assumptions for each chapter

will be provided when needed.

3.3 Elements of a Multistate Structure

The primary step to use a multistate degradation process for diagnostics and prog-

nostics is to determine a reasonable and efficient structure for the associated multi-

state model and subsequently find the best set of characteristic parameters for the

unknown elements of the selected structure. Therefore, the elements under which
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the degradation and the observation processes associated with the device are char-

acterized need to be clearly defined. These elements are also referred to as the

configuration elements from which the structure of the degradation and observation

processes is characterized. For notational convenience, the multistate structure is

divided into different sub-elements, which are the multistate topology (ζ) and the

set of characteristic parameters associated with the multistate topology (θ). The el-

ements in the multistate topology describe the structure of the multistate model and

the set of characteristic parameters characterize the stochastic processes associated

with the degradation and the observation processes for a given topology.

In Chapter 4, a parameter estimation method is proposed, which can be used

to estimate the characteristic parameters of a known topology. Then, a simple enu-

merative approach used in this thesis to find a reasonable configuration (topology)

is introduced. In the following, the main elements of the multistate topology are

described.

3.3.1 The Overall Number of Health States (N)

This element represents the number of discrete levels of degradation for a device

under study. This value can be determined with respect to the actual levels of

degradation that the device may experience while operating. In other words, it

should reflect the evolution of the degradation process over time. Most available

studies have assumed that this value is known. For example in [32], it is assumed

that a friction drilling device has only five levels of degradation referred to as: sharp,

normal wear, micro fracture, macro wear, and breakage. There are also reported

work that N is treated as a decision variable [89]. The number of states is the

most important elements of a multistate topology as it affects all other elements

of the structure. Generally, the size of the multistate structure and the complexity

associated with finding important measures are greatly affected by this element.

Failure to determine a reasonable value for N may result in misrepresentation of

the degradation process, which may lead to unnecessary maintenance actions and

catastrophic failures. The two extreme cases for N are N = 2 (binary-state levels)

and N = ∞ (continuous-state levels).
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3.3.2 Transition Diagram (Connectivity between States (Ω))

This element defines the relationship (connectivity) between degradation states. As

noted in the assumptions, the device is not repairable, that is, transitions are left-

to-right only. This means that transitions are possible only to a degraded state

(see Figure 3.1). These left-to-right transitions reflect the possible failure trends

associated with the device. Typically, two main types of failures are considered in

reliability modeling referred to as soft failure and hard failure. Soft failure occurs

when the degradation process passes through all levels of health states before failure.

Soft failure is the result of soft degradation (see Type I transition in Figure 3.1),

that is, the device degrades only one-step to its neighbor state and transitions are

always to the neighbor state (one-step progressive transition). Therefore, under soft

failure, the device continuously degrades until it reaches a certain threshold, referred

to as the failure state. Under such a failure, all states are visited before failure. For

example, fatigue crack growth [125], which can be measured by crack length, is a

common type of soft failure.

On the other hand, hard failure is defined as the event that the device suddenly

stops performing its intended function [126]. In hard failure, the device does not

pass through all degradation states. For example, hard failures can be the result

of instantaneous stress from a shock process [127]. Under such a failure, direct

transition to the failure state is possible from any intermediate state (see Type II

transition in Figure 3.1). The most general type of degradation is the case where

transition to any degraded state is possible. For example the device may transit

from state 1 to state 4 without visiting states 2 and 3. It is worth mentioning that

when the device has only soft and hard failures with Markovian transition rates, a

well-known distribution called Coxian distribution [128] can be used to model the

degradation process. In can be concluded that three possible types of transition may

exist: (I) transition to the neighbor state, (II) transition to the failure state, and

(III) transition to an intermediate state between the current state and the failure

state. For any state i, these connections are denoted by FSi, which is the set of

states directly accessible from state i. See Figure 3.1 for a schematic view of these

three types of transition for a N -state device.
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3.3.3 Types of the Transitions (ξ)

Transition type refers to the dependency of degradation transitions to the actual

level of degradation (states involved in transition), time that states are reached,

sojourn time at each state, total age of the device, or any other covariate (depen-

dent to the above factors). The main possible types of transitions considered in this

thesis are Markovian transition (Type I), and non-Markovian transition, which may

include aging Markovian degradation (Type II), explicit-duration semi-Markovian

degradation (Type III), homogenous semi-Markov degradation (Type IV), and non-

homogeneous semi-Markovian degradation (Type V). Each of the above types has

certain distinguished statistical properties. The main stochastic properties of each

of the above transition types are described in Section 2.1.1.

3.3.4 Statistical Form of Transition Rate Functions (λ)

This refers to the statistical form of transition rate functions, which characterizes

the selected transition type. In this thesis, transition rates are treated at the fun-

damental describer of the degradation process. The detailed relationship between

transition rates and the degradation process is given later in this chapter. Sev-

eral explicit types of distributions have been used in the literature to represent

transition rates. The most commonly used distributions are exponential, Gamma,

Weibull, and Gaussian distribution. For example, when the structure of the mul-

tistate degradation process is a homogenous semi-Markov process (Type IV) and

Weibull distribution is used to characterize each transition rate, then the transition

rate between state i and j is represented as: λi,j(t) = (βi,j/αi,j) × (t/αi,j)
βi,j−1,

where t is the sojourn time at state i and αi,j and βi,j are characteristic elements of

the Weibull distribution. It should be pointed out here that for Markovian transi-

tions, transition rates are constant values, that is, transition type directly determines

the statistical form of transition rates.

3.3.5 Condition Monitoring Feature Used for Health Monitoring
(I)

In the multistate structure considered in this thesis, the final output of the ob-

servation process is assumed to be a single indicator having indirect information

regarding the actual health status of the device. Here, the notation I is used to

denote the selected feature for health monitoring. This indicator (feature) does not
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necessarily have a monotonic trend with the damage level; however, it is expected to

have a stochastic relationship with the actual level of health states. The stochastic

relationship between the health states and the selected condition monitoring indi-

cator is shown by a nonparametric discrete probability distribution referred to as

the observation probability distribution. This observation probability distribution

is represented by an observation probability matrix (OPM). See assumption (VIII)

on Section 3.2 for more details on each element of this matrix.

In real-world applications, finding such a single indicator having a stochastic

relationship with the actual health levels is challenging. Usually, a set of measure-

ments obtained from multiple sensors is available. Feature fusion techniques aim

to combine different feature vectors in the sense that different characteristics of

the pattern can be reflected [129]. Finding the best feature may require develop-

ing a feature selection process, which itself may need feature fusion (combination)

techniques. Investigating such scenarios is out of the scope of this thesis.

3.3.6 The Condition Monitoring (CM) Indicator Space
(V = {v1, v2, ..., vm})

As discussed earlier, in this thesis, the final CM feature is represented in a nonpara-

metric discrete form. In other words, the set of original observation values needs to

be converted to several discrete levels. The element V reflects the possible outputs

of the observation process with respect to the selected condition monitoring indi-

cator. The integer m reflects how the selected condition monitoring indicator I is

finally represented (number of possible outputs of the observation process). Differ-

ent methods, such as vector quantization and clustering can be used to determine

this value [130]. The key point here is that this number should be selected in an

effective way, so that the distribution of the condition monitoring indicator is re-

alistically represented without having to lose important information regarding the

observation process. It should be pointed out here that finding an effective way to

convert original observation values to discrete levels is out of the scope of this paper,

that is, the condition monitoring indicator space is assumed to be known.

Once the above-described elements are determined, the structures of the multi-

state degradation process and its associated observation process are fully known.
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3.4 Modeling Degradation and Observation Processes

Using NHCTHSMP

This section summarizes the fundamental of the nonhomogeneous continuous-time

hidden semi-Markov process and its application in multistate degradation modeling.

As discussed earlier, a NHCTHSMP deals with two types of processes, which are

referred to as the degradation process and the observation process. The degradation

process is considered to evolve according to a continuous-time stochastic process with

finite state space (E). It can be then represented by a couple (Xn,Tn), where Xn is

the true unknown state of the device at the nth transition and Tn is the time (age

of the device) at the nth transition.

In homogeneous Markov renewal process (HMRP), the inter-arrival times be-

tween two states are assumed to be i.i.d. random variables with an arbitrary

distribution while in a nonhomogeneous Markov renewal process (NHMRP), the

inter-arrival times between two states are independent random variables with an

arbitrary distribution, not necessarily following an identical distribution. The clas-

sical Markov renewal model described in [131, 132, 133, 134] has a powerful and

flexible mathematical structure, which can be employed for multistate degradation

modeling. The most general and fundamental describer of a semi-Markov process

is the kernel function, which completely describes the stochastic behavior of a semi-

Markov process [7]. The process (X,T ) is called a nonhomogeneous Markov renewal

process, if its function has the following property [135]:

Qi,j(s, t) = Pr(Xn+1 = j, Tn+1 ≤ t|Xn = i, Tn = s, (Xc, Tc), 0 ≤ c < n) =

Pr(Xn+1 = j, Tn+1 ≤ t|Xn = i, Tn = s),∀(i, j) ∈ E, (3.1)

where Xn and Tn are respectively the state and the time at the nth transition and E

is the state space. Now, the degradation process at time t denoted by Zt (t ≥ 0) can

be defined, where Zt = XNt and Nt = sup{n : Tn ≤ t} . Here, Nt is the transition

number at which the last state before time t is reached. This degradation process

follows the nonhomogeneous continuous-time semi-Markov process.

Now, let V = {v1, v2, ..., vm} be the observation space with m possible values

and let us also define the random variable Un : Ω → V , where Un is the output of

the observation process at the nth observation point. The relationship between the
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degradation process and the observation process can be defined as follows:

Pr(Un = vj |(Uc,X
0
c ), 0 ≤ c < n,X0

n) = Pr(Un = vj |X
0
n = i) = bi(j),

∀i ∈ E, 1 ≤ j ≤ M, (3.2)

where X0
n is the state of the device at the nth observation point and bi(j) is an

elements of the observation probability matrix (B), which denotes the probability

of observing the jth value of the CM indicator when the device is in state i. Let

us define Yt (Yt ∈ V, t > 0) as the output of the observation process at time t

and T 0
n as the corresponding time of the nth observation point. Then, we have

Yt = UN1
t
, N1

t = sup{n : T 0
n ≤ t}, where N1

t is the number of observation points

before time t and T 0
n is the time of the nth observation point. Also, let Zt = XNt ,

where Nt = sup{n : Tn ≤ t} . Given that Zt follows a nonhomogeneous continuous-

time semi-Markov process, the (Z, Y ) process is a non-homogeneous continuous-time

hidden semi-Markov process (NHCTHSMP). This NHCTHSMP will be used in the

remaining sections of this thesis as the basic tool for multistate degradation and

observation modeling, which includes both degradation and observation processes.

As discussed earlier, the process (Z) is the hidden degradation process which is

indirectly observable through the observation process (Y ). In Chapter 4, details on

how to estimate the characteristic parameters of these two stochastic processes will

be provided.

3.5 Fundamental Describers of the NHCTHSMP

The idea of using transition rate functions in modeling transitions between states

in a semi-Markov process has been employed in research work such as [134, 136]. In

this section, a general definition for the degradation transition rate is introduced,

which has the flexibility to cover most of the previously studied transition rates in

the literature. In this thesis, transition rate functions are treated as the fundamen-

tal describer of the degradation transition between states. Then, the relationship

between the transition rate function and the kernel function as the other fundamen-

tal describer of the degradation process is defined. The stochastic behavior of the

degradation process can be fully defined if transition rates between states or the

associated kernel functions are known.

As mentioned in Chapter 2, transitions between two states (in continuous do-

main) can depend on the states involved in transitions, the time spent at each state,
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the time that the last state is reached, the total age of the device, or any combi-

nation of these factors. The main purpose here is to generalize the definition of

the transition rate in the sense that for a single piece of device, different types of

transitions could exist (see Section 3.3.3 for different types of transitions). For the

stochastic process associated with the transition between state i and state j, given

that the device is in state i at time u, the instantaneous probability rate that it tran-

sits to state j in an infinitesimal time interval (u, u + du) is expressed as λi,j(s, u),

where λi,j denotes the transition rate of the process at time u. The following general

definition can be used as the transition rate function at time u between state i and

state j, given that the device reached state i at time s:

λi,j(s, u) = lim
du→0

Pr{{u ≤ Tn+1 − Tn ≤ u+ du}, {Xn+1 = j}|{u ≤ Tn+1 − Tn}, {Xn = i}, {Tn = s}}

du
.

(3.3)

The above general definition for transition rate has the flexibility to cover the other

four main types of transitions described earlier. In the following, Eq. (3.3) is

simplified for transition Types I-IV.

Type I - CTMP: As discussed earlier, this type of transition is represented by a

constant transition rates λi,j, (i, j) ∈ E. Therefore,

λi,j(s, u) = λi,j, (i, j) ∈ E, (s, u) ∈ [0,∞). (3.4)

Eq. (3.4) verifies that transitions are independent of the sojourn time at the current

state and the process time (the total age of the equipment).

Type II - CTAMP: As discussed earlier, this type of transition can be represented

by a time-dependent transition rate λi,j(t), (i, j) ∈ E. Therefore,

λi,j(s, u) = λi,j(s+ u), (i, j) ∈ E, (s, u) ∈ [0,∞). (3.5)

Eq. (3.5) verifies that this type of transition deals with those that depend on the

two states involved in transitions and the total age of the device.

Type III - EDCTSMP: As discussed earlier, this type of transition can be rep-

resented by a time-dependent transition rate λi(t), i ∈ E, and one-step transition

probabilities pi,j, (i, j) ∈ E. Therefore,

λi,j(s, u) = pi,jλi(u), (i, j) ∈ E, (s, u) ∈ [0,∞). (3.6)
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Eq. (3.6) verifies that transitions depend on the two state involved in transition and

the time spent at the current state.

Type IV - HCTSMP: As discussed earlier, this type of transition can be repre-

sented by a time-dependent transition rate λi,j(u), (i, j) ∈ E. Therefore,

λi,j(s, u) = λi,j(u), (i, j) ∈ E, (s, u) ∈ [0,∞). (3.7)

Eq. (3.7) verifies that transitions are independent of the time that the equipment

enters state i. This type of transition deals with those that depend on the two

states involved in transitions and the time spent on the last state (the sojourn time

at the last state). This means that transitions are not affected by the total age of

the equipment. In other words, the degradation process from state i to state j is

initiated only when the equipment reaches state i .

The relationship between the kernel function (Eq. (3.1)) as a describer of the

degradation process and the transition rate functions can now be defined as follows:

Qi,j(s, t) = Pr(Xn+1 = j, Tn+1 ≤ t|Xn = i, Tn = s) =
∫ t−s

o

λi,j(s, u) exp

(

−

∫ u

0

∑

z

λi,z(s, x)dx

)

du,∀(i, j) ∈ E, (s, t) ∈ [0,∞). (3.8)

3.6 Important Characteristic Measures

In this section, important characteristic measures reflecting the stochastic behav-

ior of the degradation process are reviewed. These characteristic measures are very

useful to determine the type of transition between states [26]. These important mea-

sures are used in the remainder of this thesis to calculate diagnostic and prognostic

measures (see Chapter 5). The original definitions of these measures are given in

[135]. Here, these measures are described in terms of transition rate functions.

The first measure is the embedded transition probability matrix ( P (s) =

[pi,j(s)]), which provides the one step transition probabilities of the nonhomoge-

neous embedded Markov chain (EMC). An EMC is a discrete-time Markov chain or

a jump process, which is the result of considering a Markov process only at the mo-

ments upon which the state of the system changes. The (i,j) element of this one-step

transition probability matrix represents the conditional probability of transitioning
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from state i into state j, given that that state i is reached at time s.

pi,j(s) = Pr(Xn+1 = j|Xn = i, Tn = s) = lim
t→∞

Qi,j(s, t) =
∫ ∞

o

λi,j(s, u) exp(−

∫ u

0

∑

z

λi,z(s, x)dx)du, (i, j) ∈ E, s ∈ [0,∞). (3.9)

Now, given that state i is reached at time s, the probability of the state subsequently

occupied can be calculated from Eq. (3.9). In other words, pi,j(s) shows the one-step

probability of transition between state i and state j. It is worth mentioning that

pi,j(s) is independent of s, only if the degradation transition between states i and j

does not depend on the time that state i is reached. For example, for a multistate

degradation under CTMP, we have pi,j(s) =
λi,j
∑

j

λi,j
for all (i, j) ∈ E, and s ≥ 0.

The second measure is the sojourn time at state i, given that state i is reached

at time s, which is a random variable with the following cumulative distribution

function (CDF):

Hi(s, t) = Pr(Tn+1 − Tn ≤ t|Xn = i, Tn = s) =
∑

j∈E

Qi,j(s, t+ s) =

1− exp(−

∫ t

0

∑

z 6=i

λi,z(s, x)dx), i ∈ E, (s, t) ∈ [0,∞). (3.10)

The above measure can be used to find the expected sojourn time distribution at

each state. The third measure is the conditional sojourn time distribution given

that the state subsequently occupied is state j and state i is reached at time s. This

random variable has the following CDF:

Gi,j(s, t) = Pr(Tn+1 − Tn ≤ t|Xn = i,Xn+1 = j, Tn = s) =
{

Qi,j(s, s + t)/pi,j(s), if pi,j(s) 6= 0
1, if pi,j(s) = 0

, (i, j) ∈ E, (s, t) ∈ [0,∞). (3.11)

Eq. (3.11) verifies that the kernel function can be found if pi,j(s) and Gi,j(s, t)

are defined over their domains. This means that it is also possible to describe the

stochastic behavior of a degradation transition when both the associated embedded

transition probability matrix and the conditional sojourn time distributions are

known. The following shows how transition rate functions can be calculated from

the above-described characteristic measures as:

λi,j(s, t) = Q′
i,j(s, s+ t)/(1 −Hi(s, t)) =

(G′
i,j(s, t)× pi,j(s))/(1 −Hi(s, t)), pi,j(s) > 0, (i, j) ∈ E, (s, t) ∈ [0,∞), (3.12)
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where Q′
i,j(s, s+ t) =

∂Qi,j(s, s+ t)

∂t
and G′

i,j(s, s+ t) =
∂Gi,j(s, s+ t)

∂t
.

3.7 Summary

This chapter reviews the basic structure of a general stochastic process, namely, the

nonhomogeneous continuous-time semi-Markov process (NHCTSMP) and then illus-

trates how this stochastic process can be used for multistate degradation modeling

when states are not directly observable or alternatively called hidden. In addition,

the main elements of a NHCTHSMP are illustrated in details. The fundamental

properties of the NHCTHSMP described in this chapter will be directly used in the

remainder of this thesis.
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Chapter 4

Multistate Structure and
Parameter Estimation

4.1 Introduction

The primary step to use the multistate degradation process and the correspond-

ing observation process described in Chapter 3 for diagnostics, prognostics, and

maintenance decision making is to determine a suitable structure for the associated

multistate model and subsequently find the best set of characteristic parameters for

the selected structure. Therefore, structure determination or alternatively called

model selection involves two steps, which are (1) configuration (topology) selection

and (2) parameter estimation. The purpose of the configuration selection step is to

determine a reasonable topology for the associated multistate model with unobserv-

able states. The main elements that determine a multistate topology are the number

of states (N), transition diagram (Ω), transition types (ξ), statistical structure of

transition rates (λ), condition monitoring feature (I), and the number of clusters

to be used for final feature representation (V ). Therefore, the multistate topology

can be denoted as ζ = {N,Ω, ξ, λ, I, V }. The detailed description of these elements

is given in Section 3.3. With regards to the parameter estimation step, parameters

to be estimated (θ) are the ones that characterize the degradation process (Γ) and

the observation process (B ). Therefore, θ = {Γ, B} . These two sets of parameters

are further illustrated in this section. The purpose of parameter estimation is to

find the estimated values of the set of parameters for the selected topology using

historical data. A complete multistate model M is defined if ζ and θ are known as

M = (ζ, θ).

Although our main focus of this chapter is on the parameter estimation for a se-
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lected topology, the configuration (topology) selection process is also discussed. This

chapter is organized as follows. First, a parameter estimation method is proposed

in Section 4.2, which can employ condition monitoring data to train a multistate

model with a known structure. Then, a simple enumerative approach, which can be

used to find a structure for the multistate model is presented in Section 4.3. Finally,

in Section 4.4, a simulation-based numerical example is employed to demonstrate

the correctness and application of the proposed estimation method. The result of

this chapter is published in [9, 26].

4.2 Parameter Estimation

As discussed earlier, for a multistate structure considered in this thesis, two sets

of parameters need to be estimated in the parameter estimation phase. Depend-

ing on the type of available historical condition monitoring information, estimation

methods can be classified into supervised estimation methods and unsupervised es-

timation methods. The data required for estimation in a supervised estimation

method includes trajectories of both the degradation and observation processes. To

reveal the actual health states of a device over time (degradation process), an in-

spection process can be implemented. During the inspection time, the system is

usually shut down or suspended, and depending on the type of the device being

inspected, methods, such as visual inspection and measurement, can be used for

health state identification. Examples of such an inspection policy are reported in

[78] for periodic inspection and in [137] for continuous inspection.

Directly observing the health states may be too costly and technically compli-

cated, and because of that, unsupervised estimation methods need to be developed

for devices with unobservable states. In an unsupervised estimation method, the

data required for estimation are only the observation process. The parameter esti-

mation process described in this thesis is an unsupervised estimation method, which

employs only the observation process for parameter estimation. It should be pointed

out that the assumption here is that the configuration (topology) of the multistate

model is known. For example, the number of degradation states, transition dia-

gram, transition types, condition monitoring indicator, and its definition domain

are known.

The first group of unknown parameters to be estimated (Γ ) deals with pa-

rameters that characterize the distributions of transition rates between states. In
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other words, these parameters characterize the degradation process. It should be

noted again that the assumption here is that the structures of the degradation and

observation processes are known. Depending on the distribution of transition rate

functions between states, the number of unknown parameters for each transition

can vary. For example, if a Weibull distribution is used to represent a homogeneous

semi-Markov transition between two states, two parameters (shape and scale) need

to be estimated for this particular transition.

The second group of parameters to be estimated (B) represents the stochastic

relationship between the health state of the equipment and the observation process.

In this thesis, this relationship is represented in a nonparametric and discrete form

by a matrix called the observation probability matrix (OPM). The entries of this

matrix are the unknown parameters of the model. This matrix has N (number of

states) rows and m columns (number of observation process output). The entry in

the ith row and the jth column of this matrix represents the probability that the

jth condition monitoring indicator is observed when the device is in state i.

Let us assume that there are K independent sequences of condition monitoring

observations available to be used for parameter estimation. This set of data is

referred to as the training set. Each sequence of the observation process includes

temporal condition monitoring indicator values, which were extracted while the

device was operating. The kth sequence of the observation process (denoted by

O(k)) has dk observation points, which are recorded at time t
(k)
1 , t

(k)
2 , ..., t

(k)
dk

. We

also denote O(k)
p as the condition monitoring indicator value at the pth CM point

(time t(k)p ) of the kth sequence of the observation process. The unobservable (hidden)

state of the device at the pth monitoring point for the kth unobservable sequence of

states (Qk) is denoted by Qk
p.

The maximum likelihood method (MLE) is used for parameter estimation, so

that the estimation problem is formulated in a form of an optimization problem.

In the corresponding maximum likelihood optimization problem, the product of the

probability of these K observation sequences (joint likelihood of observations) is to

be maximized:

L =
K
∏

k=1

Pr(O(k)|θ)
L′=log(L)

⇒ L′ = log(
K
∏

k=1

Pr(O(k)|θ)) =
K
∑

k=1

log(Pr(O(k)|θ)), (4.1)

which yields θ∗ = argmax
θ

(

K
∑

k=1

log(Pr(O(k)|θ))

)

. The remainder of this chapter
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introduces the mathematical steps that need to be done to evaluate Eq. (4.1). In

order to solve this equation, the Baum’s auxiliary function [92] can be employed,

under which the value of the likelihood function can be iteratively improved starting

from an initial solution. The Baum’s auxiliary function for multiple sequences of

observations can be expressed as:

ω(θold, θ) =

K
∑

k=1

∑

Q(k)

log(Pr(O(k), Q(k)|θ))× Pr(Q(k)|O(k), θold), (4.2)

where Q(k) is an arbitrary sequence of states with a same length as O(k). It has

been shown that maximizing ω(θold, θ) leads to increasing the likelihood function

as (θnew = arg max
θ

[ω(θold, θ)]) ⇒ Pr(O|θnew) ≥ Pr(O|θold)) [92]. Now, instead of

directly optimizing Eq. (4.1), by considering an initial estimate for θ as θold = θ0,

the joint likelihood function can be iteratively improved by maximizing Eq. (4.2).

Then, a stopping criterion can be defined to terminate the iteration procedure, if

there is no improvement in the maximum likelihood function. Now, the relationship

between θ and Eq.(4.2) should be clearly defined. As will be shown below, Eq. (4.2)

can be simplified in terms of θ. Since Pr(O(k), Q(k)|θ) = Pr(Q(k)|θ)×Pr(O(k)|Q(k), θ)

and Pr(O(k)|Q(k), θ) =

dk
∏

t=1

b
q
(k)
t

(O
(k)
t ), and Pr(Q(k)|O(k), θ) =

Pr(Q(k), O(k)|θ)

Pr(O(k)|θ)
, we

have:

ω(θold, θ) =
K
∑

k=1





∑

Q(k)

log(Pr(Q(k)|θ))× Pr(Q(k)|O(k), θold)



+

K
∑

k=1





∑

Q(k)

dk
∑

t=1

log(b
q
(k)
t

(O
(k)
t ))× Pr(Q(k)|O(k), θold)



 , (4.3)

where q
(k)
t is the hidden state at the tth observation point of the k observation

sequence. Eq. (4.3) can be divided into two parts as ω(θold, θ) = ω1(θold, θ) +

ω2(θold, θ) in a way that the first term depends only on the elements of Γ and the

second term depends only on the elements of B from θ = (Γ, B). This will enable

us to independently estimate these two sets of unknown parameters at each step of

the likelihood improvement. To simplify Eq. (4.3), it will be first shown how to

calculate Pr(Q(k)|θ), which is the probability of a random sequence Q(k).

Let Qn be an arbitrary sequence of states between the (n-1)th and the nth

transitions in Q(k). We can characterize Qn based on four elements, which are the

time at the (n−1)th transition (Tn−1), the time at the nth transition (Tn), the state
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at the (n− 1)th transition (Xn−1), and the state at the nth transition (Xn). Thus,

the following relationship holds true between Q(k) and Qn:

Pr(Q(k)|θ) =

n
Q(k)
∏

n=1

Pr(Xn, Tn|Xn−1, Tn−1, θ) =

n
Q(k)
∏

n=1

Pr(Qn|Qn−1, θ), (4.4)

where nQ(k) is the number of state transitions in Q(k). Now, ω1(θold, θ) can be

expressed as:

ω1(θold, θ) =

K
∑

k=1





∑

Q(k)

log(Pr(Q(k)|θ))× Pr(Q(k)|O(k), θold)



 =

Pr(Q(k)|θ)=

n
Q(k)
∏

n=1
Pr(Qn|Qn−1,θ)

→

K
∑

k=1

∑

Q(k)





n
Q(k)
∑

n=1

(log(Pr(Qn|Qn−1, θ)))×

n
Q(k)
∏

n=1

Pr(Qn|Qn−1, O
(k), θold)



 =

K
∑

k=1

∑

Q(k)





n
Q(k)
∑

n=1



log(Pr(Qn|Qn−1, θ))×

n
Q(k)
∏

m=1

Pr(Qm|Qm−1, O
(k), θold)







 =

K
∑

k=1

∑

Q(k)

n
Q(k)
∑

n=1

(log(Pr(Qn|Qn−1, θ))× Pr(Qn|Qn−1, O
(k), θold)×

n
Q(k)
∏

m=1,m6=n

Pr(Qm|Qm−1, O
(k), θold). (4.5)

Then we have:

ω1,1(θold, θ) =

K
∑

k=1

Pr(O(k)|θold)
−1×

N
∑

i=1

N
∑

j=1,j 6=i

dk−1
∑

t=0

dk−t
∑

d=1

(

log(Q
(k)
t+d−1 = i,Q

(k)
t+d = j|Q

(k)
t−1 6= i,Q

(k)
t = i, θ)×

Pr(Q
(k)
t+d−1 = i,Q

(k)
t+d = j,Q

(k)
t−1 6= i,Q

(k)
t = i, O(k)|θold)

)

. (4.6)

Now, we can rewrite Eq. (4.6) in an equivalent form (from optimization perspective)

as follows:

ω1,1(θold, θ) =

K
∑

k=1

Pr(O(k)|θold)
−1×

N
∑

i=1

N
∑

j=1,j 6=i

dk−1
∑

a=0

dk−a
∑

d=1

log(ε(k)a (i, j, d|θ))×κ(k)a (i, j, d,O(k)|θold),

(4.7)
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where

ε(k)a (i, j, d|θ) = Pr(Xn = j, t
(k)
a+d−1 < Tn ≤ t

(k)
a+d|Xn−1 = i, t

(k)
a−1 < Tn−1 ≤ t(k)a |θ),

(4.8)

and

κ(k)a (i, j, d,O(k)|θold) =

Pr(Xn = j, t
(k)
a+d−1 < Tn ≤ t

(k)
a+d,Xn−1 = i, t

(k)
a−1 < Tn−1 ≤ t(k)a , O(k)|θold). (4.9)

In order to simplify the above results, all transitions out of state r can be considered

as a group and therefore ωr
1,1(θold, θ) can be constructed as follows:

ωr
1,1(θold, θ) =

K
∑

k=1

Pr(O(k)|θold)
−1×

N
∑

j=1

dk−1
∑

a=0

dk−a
∑

d=1

log(ε(k)a (r, j, d|θ)) × κ(k)a (r, j, d,O(k)|θold), 1 ≤ r ≤ N − 1. (4.10)

It is important to note that each ωr
1,1(θold, θ) contains only transitions out of state

r and Eq. (4.10) depends only on the elements of the degradation process (Γ ) and

is not affected by the elements of the observation process (B). The relationship

between the elements of Eq. (4.10) and Γ is described later in this section. Now,

the second term of Eq. (4.3), which involves only the elements of B can be expressed

as:

ω2,1(θold, θ) =

K
∑

k=1

Pr(O(k)|θold)
−1×





N
∑

j=1

dk
∑

t=1

Pr(Q
(k)
t = j,O(k)|θold)× log(b

q
(k)
t

(O
(k)
t ))



 , (4.11)

where

m
∑

j=1

bi(j) = 1, i ∈ E. Eq. (4.11) can be maximized by adding the La-

grange multiplier ϑ(
m
∑

j=1

bi(j) − 1), i ∈ E , and setting the associated derivative

of ω3(θold, θ) = ω2,1(θold, θ) + ϑ(

m
∑

j=1

bi(j) − 1), i ∈ E with respect to each bi(ω) and

ϑ equal to zero. Thus, we set
∂

∂bi(ω)
ω3(θold, θ) = 0 and

∂

∂ϑ
ω3(θold, θ) = 0, which

yields to:
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bi(ω) =

K
∑

k=1

(

Pr(O(k)|θold)
−1 ×

dk
∑

t=1
Pr(Q

(k)
t = i, O(k)|θold)× δ

O
(k)
t ,ω

)

K
∑

k=1

(

Pr(O(k)|θold)−1 ×
dk
∑

t=1
Pr(Q

(k)
t = i, O(k)|θold)

) =

K
∑

k=1

(

Pr(O(k)|θold)
−1 ×

dk
∑

t=1
γt(i, O

(k)|θ)× δ
O

(k)
t ,ω

)

K
∑

k=1

(

Pr(O(k)|θold)−1 ×
dk
∑

t=1
γt(i, O(k)|θ)

) , (4.12)

where δ
O

(k)
t ,ω

is equal to 1 when the tth observation value of O(k) is equal to vω, and

0 otherwise. Now, at each step of the stepwise optimization problem, all entries of

the observation probability matrix B can be directly estimated using Eq. (4.12).

To be able to optimize Eq. (4.10) and use Eq. (4.12) to find θnew, the concept of

Expectation-Maximization (EM) [94] can be used. EM algorithm is a well-studied

iterative method for finding maximum likelihood estimates of statistical models

when the corresponding likelihood equation cannot be solved directly.

4.2.1 The Summary of the Parameter Estimation

The summary of all steps in the Expectation-Maximization method for the un-

supervised estimation procedure in order to find the unknown parameters of a

NHCTHSMP associated with the multistate device is illustrated in Algorithm 1.

Algorithm 1 : Summary of the Estimation Procedure

Step 1: Set initial estimates for Γ and B and let θold = (Γ0, B0).

Step 2: Use re-estimation formula given in Eq. (4.12) and update Bnew.

Step 3: Optimize all N -1 equations in the form of Eq. (4.10) to find Γnew (param-

eters of transition rate distributions). Update θ as θnew = (Γnew, Bnew).

Step 4: Find the average log-likelihood function using Eq. (4.1) as
L′

K
. If

L′
(new) − L′

(old)

K
≤ ǫ, terminate the algorithm and output θ∗ = θnew , otherwise

set θold = θnew, and go back to step 2. Here, ǫ is the stoping threshold for the

iteration process.

Finding the expected value of the likelihood function is the expectation step (E-

step) and finding the parameters that maximize Eq. (4.3) is the maximization step
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(M-step). It is expected that after each iteration of the above algorithm, the value

of log-likelihood function increases. It is important to note that the EM algorithm

cannot guarantee the global maximum value. To perform the above steps, the

expressions of all elements used in Eqs. (4.1), (4.10), and (4.12) should be defined

in terms of θ. For notational convenience, we show how to calculate each of these

elements for a single observation sequence O with l observation points and constant

observation interval ∆. However the results can be simply extended to sequences of

observations with variable observation intervals and lifetimes.

4.2.2 Steps to Calculate Pr(O|θ)

The term Pr(O|θ), which is the probability of a single observation sequence (O =

O1, O2, ..., Ol), can be efficiently calculated by modifying the forward-backward pro-

cedure given in [92]. Here, Oi is the output of the observation process at time ti

corresponding to the ith observation point. The first forward variable is defined

as: αt(i, O|θ) = Pr(O1, O2, ..., Ot, Qt = i|θ), which is the joint probability of be-

ing at state i at the tth observation point and observing the partial sequence of

O1, O2, ..., Ot. The second forward variable is ut(i, O|θ) = Pr(O1, O2, ..., Ot, Qt−1 6=

i,Qt = i|θ), the joint probability of reaching state i for the first time at the tth

observation point and observing the partial sequence of O1, O2, ...Ot. All αt(i, O|θ)s

and ut(i, O|θ)s can be approximated iteratively using the two steps, namely, Initial-

ization and Induction steps. In the Initialization step, the values of specific forward

variables are determined and in the Induction step, remaining forward variables are

iteratively calculated based on the previously calculated forward variables. These

steps are based on the assumptions that the device is in state 1 at time zero and

the condition monitoring observation interval is small enough, so that at most one

transition may occur in each interval.

In order to perform these two steps, the element Gi−j(t, t+ d, d0|θ), which is the

conditional probability of a transition from state i (at the tth observation point)

to state j (at time (t + d)th observation point), given that state i is observed at

the (t − d0)th observation point and stayed there for d0 ×∆ units of time, should

be defined. It should be pointed out here that when state j is not immediately

reachable from state i, then Gi−j(t, t+ d, d0|θ) = 0. The element G can be defined
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as follows:

Gi−j(t, t+ d, d0|θ) =

Pr(Qt+1, ..., Qt+d−1 = i,Qt+d = j|Q1, ..., Qt−d0−1 6= i,Qt−d0 , ..., Qt = i, θ). (4.13)

The element G can also be expressed in terms of kernel function (Q). For 1 ≤ i 6=
j ≤ N ; we have:

Gi−j(t, t+ d, d0|θ) =

Pr (Xn+1 = j, (t+ d− 1)∆ < Tn+1 ≤ (t+ d)∆|

Xn = i, (t− d0 − 1)∆ < Tn ≤ (t− d0)∆, t∆ ≤ Tn+1, θ) =

Pr (Xn+1 = j, (t+ d− 1)∆ < Tn+1 ≤ (t+ d)∆|Xn = i, (t− d0 − 1)∆ < Tn ≤ (t− d0)∆, θ)

Pr(t∆ ≤ Tn+1|Xn = i, (t− d0 − 1)∆ < Tn ≤ (t− d0)∆, θ)

≈
Qi,j((t− d0)∆, (t+ d)∆)−Qi,j((t− d0)∆, (t+ d− 1)∆)

1−Hi((t− d0)∆, d0∆)
,

0 ≤ t ≤ l, 0 ≤ d ≤ l − t, 0 ≤ d0 ≤ t, (4.14)

and for 1 ≤ i = j ≤ N , we have:

Gi−j(t, t+ d, d0|θ) =

Pr((t+ d)∆ ≤ Tn−1|Xn = i, (t− d0 − 1)∆ < Tn ≤ (t− d0)∆, t∆ ≤ Tn+1, θ) =

Pr((t+ d)∆ ≤ Tn+1|Xn = i, (t− d0 − 1)∆ < Tn ≤ (t− d0)∆, θ)

Pr(t∆ ≤ Tn+1|Xn = i, (t− d0 − 1)∆ < Tn ≤ (t− d0)∆, θ)
≈

1−Hi((t− d0)∆, (d0 + d)∆)

1−Hi((t− d0)∆, d0∆)
, 0 ≤ t ≤ l, 0 ≤ d ≤ l − t, 0 ≤ d0 ≤ t. (4.15)

The details of the two steps of Initialization and Induction are shown in Algo-

rithm 2. Now, consider a backward variable βd
t (i, O|θ), which is the conditional prob-

ability of future observations (Ot+1, ..., Ol), given that state i is observed, (d− 1)∆

units earlier than the current time (t). This backward variable can be defined as:

βd
t (i, O|θ) = Pr(Ot+1, ..., Ol|Q1, ..., Qt−d 6= i,Qt−d+1, ..., Qt = i, θ). (4.20)

Similar to forward variables, we can start from an Initialization step and proceed

with the Induction step to find all possible βd
t (i, O)s. The detailed steps of the back-

ward procedure are given in Algorithm 3. In both Algorithms 2-3, the termination

step can be used to obtain Pr(O, θ).

4.2.3 Steps to Calculate εt(i, j, d|θ) and κa(r, j, d, O
(k)|θold)

The term κt(i, j, d,O
(k)|θold) is the joint probability of reaching state i at the tth

observation interval, observing state j at the (t + d)th observation point and ob-

serving the full sequence of observations O1, ..., Ol and εt(i, j, d|θ) is the probability
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Algorithm 2 : Forward Procedure to Find Pr(O, θ)

I) Initialization step:























u0(1, O|θ) = 1
ut(1, O|θ) = 0 1 ≤ t ≤ l
u0(i, O|θ) = 0 2 ≤ i ≤ N
u1(i, O|θ) = G1−i(0, 1, 0|θ) × bi(O1) 2 ≤ i ≤ N
α1(i, O|θ) = G1−i(0, 1, 0|θ) × bi(O1) 1 ≤ i ≤ N

. (4.16)

II) Induction step:

ut(i, O|θ) =
∑

j

t−1
∑

z=0

uz(j,O|θ) ×Gj−i(z, t, 0|θ) ×
t−1
∏

w=z+1

bj(Ow) ×bi(Ot),

2 ≤ i ≤ N, 2 ≤ t ≤ l, (4.17)

αt(i, O|θ) =
t
∑

z=0

(

uz(i, O|θ)×Gi−i(z, t, 0|θ) ×
t
∏

w=z+1

bi(Ow)

)

,

1 ≤ i ≤ N, 2 ≤ t ≤ l. (4.18)

After the last forward variables (α1(1, O|θ), ..., αl(N,O|θ)) are calculated from Eq.

(4.18), the following termination step can be employed to compute the joint proba-

bility of observation sequence O, as:

III) Termination step:

Pr(O, θ) =

N
∑

i=1

αl(i, O). (4.19)

of transition from state i to state j at the (t+ d)th observation interval, given that

state i is observed at the tth observation point. After α, u, and β are calculated,

these two measures can be calculated as follows:

εt(i, j, d|θ) = Gi−j(t, t + d, 0|θ), (i, j) ∈ E, 1 ≤ t ≤ l, l ≤ d ≤ (l − t), (4.24)

κt(i, j, d,O|θold) =

ut(i, O|θold)×Gi−j(t, t+ d, 0|θold)× β1
t+d(j,O|θold)×

t+d−1
∏

w=t+1

bi(Ow)× bj(Ot+d),

1 ≤ t ≤ l, l ≤ d ≤ (l − t). (4.25)
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Algorithm 3 : Backward Procedure to Find Pr(O, θ)

I) Initialization step:

{

βl+1
l (1, O|θ) = 1

βd
l (i, O|θ) = 1, 1 ≤ i ≤ N, 1 ≤ d ≤ l

. (4.21)

II) Induction step:

βd
t (i, O|θ) = Gi−i(t, t+ 1, d− 1|θ)× βd+1

t+1 (i, O|θ)× bi(Ot+1)+
∑

j

Gi−j(t, t+ 1, d− 1|θ)× β1
t+1(j,O|θ)× bj(Ot+1)

1 ≤ i ≤ N, 1 ≤ t ≤ l − 1, 1 ≤ d ≤ t. (4.22)

After the backward variables β1
1(1, O|θ), ..., β1

1 (N,O|θ) are calculated from Eq.

(4.22), we can use the following Termination step to estimate the probability of

observation sequence O. It should be noted that both Eq. (4.19) and Eq. (4.23)

can be used to estimate Pr(O|θ).

III) Termination step:

Pr(O|θ) = G1−1(0, 1, 0|θ) × β2
1(1, O|θ)× b1(O1)

+

N
∑

j 6=1

G1−j(0, 1, 0|θ) × β1
1(j,O|θ)× bj(O1). (4.23)

4.2.4 Steps to find γt(i, O|θ)

The term γt(i, O|θ) is the joint probability of being at state i at time t and observing

the full sequence of observations O1, O2, ..., Ol as:

γt(i, O|θ) = Pr(Qt = i, O|θ) =
t
∑

v=0

uv(i, O|θ)×Gi−i(v, t, 0|θ)× βt−v+1
t (i, O|θ)×

t
∏

w=v+1

bi(Ow), i ∈ E, 1 ≤ t ≤ l, (4.26)

where

N
∑

i=1

γt(i, O|θ) = Pr(O|θ). Now that all elements of the optimization problem

are defined, the described iterative algorithm (see Section 4.2.1) can be used to

estimate the unknown characteristic parameters of the model.
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4.3 Model Selection

So far, the main assumption made in this thesis is that the structure (topology) of

the multistate model is known. In this section, a simple hierarchical and enumera-

tive approach is presented, which can be used to find a reasonable structure for the

degradation and observation processes associated with the device under study. As

discussed earlier, the model selection involves two steps: (1) configuration selection

and (2) parameter estimation. The objective of the configuration selection process

is to find a reasonable structure for the degradation and the observation processes

associated with a device under study so that the actual degradation process and its

associated condition-monitored observation process are reasonably represented by

the selected multistate topology. As discussed earlier, most studies in the domain

of multistate degradation modeling have assumed that the configuration of the mul-

tistate model is known and only unknown characteristic parameters of the selected

model (Γ, B) need to be estimated.

To my knowledge, there are three reasons that explain why configuration se-

lection is rarely considered in the literature: (1) the number of possible topology

alternatives for the multistate structure can theoretically be very large (all possible

combinations of ζ = {N,Ω, ξ, λ, I, V }), which makes the model selection process

possibly very time consuming , (2) efficient training of such type of topology with 6

aforementioned elements requires large training, validation, and testing data, which

are usually not available in real-world problems, and (3) available knowledge in-

cluding historical information, engineering and field experiences, and available in-

formation from similar devices may facilitate determining some of these elements

without performing model selection. In this section, a simple hierarchical frame-

work is presented, which can be used to determine a structure for the multistate

degradation process with unobservable states when multiple alternatives exist. It

should be pointed out here that this framework is only useful when there are limited

topology candidates to be compared and there is no guarantee that the result of this

framework provides an optimal topology. Investigating such an optimal topology is

out of the scope of this thesis.

The main purpose of model selection is to find a model among several alternatives

that can better represent actual degradation and observation processes associated

with a device under study. Different types of model selection criteria are used
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in the literature for model selection problems when more than one alternative exist

[138]. Among those methods, the maximum likelihood criterion has been widely used

due to its simplicity and good convergence properties [139]. Maximum likelihood

model selection usually gives higher probability values as the number of parameters

increases and may be subject to overfitting [140]. Overfitting means the model

describes the training set better, but get worse on other instances of the same

phenomenon. The main limitation of the maximum likelihood criterion for model

selection is that it does not penalize the large number of parameters in the model.

A very common approach to deal with this issue is to use Bayesian Information

Criterion (BIC) for model selection. In BIC, there is a penalty term for penalizing a

large number of parameters and complex models. This type of criteria is desirable as

it aims to select the simplest model that best fits data [140]. In the next subsection,

the enumerative model selection framework using BIC is presented.

4.3.1 An Enumerative Approach for Multistate Model Selection

In this section, a simple enumerative approach is presented, which can be used to

compare several model alternatives. As described earlier, a multistate model (M) is

fully defined if its topology (ζ) and the associated parameters of that topology (θ) are

known. Let M1,M2, ...,Mh be h known model candidates for a multistate structure.

Also, let ζi, and θi be the topology and the set of parameters associated with the ith

model candidate, respectively. Let O denote the set of condition monitoring data

(O(1), O(2), ..., O(k)) available for comparing these model alternatives and q
(i)
dk

denote

the degradation state observed at the last observation point of O(i). The Bayesian

model selection aims to select the model among possible alternatives (M1,M2, ...)

that has the highest value for the evidence probability (Pr(X|M)), where X is the

information available from K samples (X = O(1), q
(1)
d1

, O(2), q
(2)
d2

, ..., O(K), q
(K)
dk

). The

Bayesian information criterion for the ith model can be defined as [139]:

BIC(Mi) = log Pr(X|ζi, θ̂i)− α
Hi

2
log(K), (4.27)

where θ̂i is the maximum likelihood estimate of θi , Hi is the number of parameters

in the ith model, K is the number of training samples, and α is the regularization

parameter, which takes into account that estimates are not accurate (it is the weight

of the penalty term). BIC has been widely and successfully applied for model

selection. Now, among several model structures, the one with the highest BIC can
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be regarded as the best model. Here, the evidence likelihood of the ith model can

be calculated as:

Pr(X|ζi, θ̂i) =
K
∏

k=1

Pr(O(k), Q(k)|ζi, θ̂i) =
K
∏

k=1

Pr(O
(k)
1 , O

(k)
2 , ..., O

(k)
dk

, q
(k)
dk

|ζi, θ̂i) =

K
∏

k=1

αdk(i, O|ζi, θ̂i). (4.28)

As discussed in Section 3.3, the configuration of the ith model (ζi) involves 6 ele-

ments, which are the number of states, transition diagram, transition types, tran-

sition rate distributions, CM feature, and number of clusters used for feature rep-

resentation. Considering limited number of possible options for each of the above

elements, one can construct the likelihood function and estimate the unknown pa-

rameters based on all available combinations of the above elements. Then, Eqs.

(4.27) and (4.28) can be used to find the best model among all possible alternatives.

As in practical cases, a large number of options are possible for each of the above

elements, the total number of model alternatives may become extremely large, mak-

ing the above model selection approach computationally expensive or sometimes

infeasible. For example, having only 5 options for each element is equivalent to

15, 625(56) different model alternatives, for which the parameter estimation proce-

dure needs to be applied. Therefore, applying the above model selection criterion

to compare model alternatives in real-world problems may be computationally very

expensive.

An alternative approach can be used in the sense that the model selection or

structural determination is divided into three phases. After data collection and con-

dition monitoring feature extraction, using engineering judgments and other histori-

cal knowledge on the degradation and observation processes associated with the de-

vice under study, some elements of the configuration are pre-determined (phase I in

Figure 4.1). For example, historical information or engineering judgement may ver-

ify that the overall degradation of the device can be represented by 4 states and the

transition rate distribution follows the Weibull distribution. In such a circumstance,

all model alternatives will have 4 levels of health states (N=4) with Weibull-based

transition rates. This step can significantly lower the number of model alternatives.

The remaining elements (those that are not pre-defined in phase I) now construct

the set of possible topology alternatives, denoted by topology 1, ..., topology h. Each

topology represents one unique multistate configuration. In phase II, the parameter
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estimation method can be applied for each possible model alternative to estimate the

characteristic parameters (the parameter estimation procedure is repeated h times).

The output of Phase II is h trained models with known configuration elements and

estimated characteristic parameters (trained model 1, ..., trained model h). Then,

in phase III, using a model selection criterion, the trained models are compared and

the one, which best satisfies the selection criterion is selected as the best possible

model alternative. Now, the multistate model for reliability analysis of the device

is fully defined. With such a strategy, the number of model alternatives decreases,

making the configuration selection process less time-consuming and more feasible to

implement. The summary of the described approach for model selection is shown

in Figure 4.1.

As shown in Figure 4.1, after data collection and feature calculation, depending

on the information available on the elements of the model structure, some elements

of the model structure are determined in phase I. Depending on the information

available for the elements of the multistate structure, the number of alternatives

varies. The outputs of Phase I are h configuration (topology) alternatives denoted by

ζ1, ζ2, ..., ζh. A common example of a topology alternative is a multistate structure

with unknown number of states. For example, topology alternatives can be 2-

states, 3-states,..., and h + 1-states topologies. After the topology candidates are

determined, the characteristic parameters of the alternatives are estimated in Phase

II (model training) by employing the approach given in Section 4.2. The output of

phase II is h trained models (M1,M2, ...,Mh) with known structure (ζ1, ζ2, ..., ζh)

and estimated characteristic parameters (θ̂1, θ̂2, ..., θ̂h). In phase III, using a model

selection criterion, all model alternatives are compared and the best model structure

is selected. It should be pointed out that for the final model comparison (phase III),

an independent validation data set may be used to minimize overfitting. In Chapter

7, the above-discussed framework is employed on a case study for model selection

when multiple alternatives exist.

4.4 Numerical Example

In this section, simulation-based numerical experiments are used to illustrate how

the proposed parameter estimation procedure presented in Section 4.2 can be em-

ployed to estimate the characteristic parameters of a degradation process from his-

torical data. Also, discussions on its correctness and accuracy are provided.
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Figure 4.1: Model selection framework for multistate degradation modeling
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Figure 4.2: Transition diagram of a device with 4 levels of health states

4.4.1 Example Description

A piece of mechanical equipment with a known multistate topology is considered.

The elements of the associated multistate topology are described below. It is

assumed that the equipment is operating under four levels of health conditions

(N = 4), namely, normal condition, slight damage, medium damage, and failure.

States are ordered from 1 to 4, where state 1 refers to the normal condition and

state 4 refers to the failure state. The equipment may pass through all degradation

states before failure. However, due to the existence of random shocks, it can also fail

directly from any state. Therefore, at each state, 2 types of transitions are possible:

(I) transition to the one-step degraded state (immediate neighbor state), and (II)

transition to the failure state. The transition diagram (Ω) of this equipment, which

presents the connectivity between states, is shown in Figure 4.2.

It is assumed that transitions from state i (1 ≤ i ≤ 3) to the immediate neighbor

state depend on the two states involved in the transition and the sojourn time spent

at state i. It is also assumed that the transition from state i (1 ≤ i ≤ 2) to

state 4 depends on on the two states involved in the transition and the total age

of the device. Therefore, the multistate structure (ξ) follows a nonhomogeneous

continuous-time semi-Markov process (see Section 3.4). For transition distributions

(λ), the Weibull distribution is used, which is the most commonly used distribution

to represent degradation [141]. The final distributions of transition rate functions

are as follows:

λi,j(s, t) =

{

(βi,j/αi,j)× (t/αi,j)
(βi,j−1), (i, j) ∈ [(1, 2), (2, 3), (3, 4)],

(βi,j/αi,j)× ((s+ t)/αi,j)
(βi,j−1), (i, j) ∈ [(1, 4), (2, 4)]

.

(4.29)

The parameters of the transition rate distribution are as follows:

α =





0 15 0 21
0 0 12 28
0 0 0 7



, and β =





0 8 0 3
0 0 6 12
0 0 0 4



, where the elements in the ith row
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and jth column of the scale (α) and shape (β) matrices are the characteristic pa-

rameters of the Weibull distribution associated with the degradation transition from

state i to state j. Now that the structure of the degradation process is fully defined,

the structure of the observation process should be determined. All states are only

indirectly observable through condition monitoring except the failure state (which

is self-announcing). A single condition monitoring indicator referred to as I is mon-

itored periodically (∆=1), while the equipment is operating. In other words, every

one unit of time, the value of the observation process is recorded for further analysis.

This temporal sequence of indicator values is referred to as the observation process.

It is assumed that the CM indicator has 8 possible discrete outcomes (M = 8), which

are denoted by V = {1, 2, ..., 8}. The stochastic relationship between the degrada-

tion process and the observation process is represented by a nonparametric discrete

distribution referred to as the observation probability matrix (B). Therefore, the

observation probability matrix B has 4 rows (N = 4) and 8 columns (M = 8), where

the element in the ith row and jth column of this matrix represents the probability

that the output of the observation process is j when the device is in state i. The

elements of this matrix are shown below:

B=





0.45 0.35 0.15 0.05 0 0 0 0
0.05 0.10 0.30 0.35 0.10 0.05 0.05 0
0 0 0.05 0.05 0.20 0.25 0.45 0



.

Considering the above information on the elements of the multistate topology (ζ =

{N,Ω, ξ, λ, V, I}) and its associated characteristic parameters (θ = {Γ, B}), the

structure of the multistate model (M = {ζ, θ}) is now fully defined.

4.4.2 Random Sequence Generation

The stochastic behavior of the multistate equipment with degradation states under

the non-homogeneous continuous-time hidden semi-Markov structure is simulated

by the Monte Carlo simulation method and corresponding observation process and

degradation process are generated. Then, simulated observation sequences are used

as the input for the estimation procedure. The results of the estimation procedure

will then be compared with the actual parameters, which were originally used to

generate the observation sequences. In this subsection, the procedure under which

degradation and observation processes are simulated, is described.

The simulation process explained here generates multiple sequences of degra-

dation states and their corresponding observation values based on the multistate
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structure defined in Section 4.4.1. For each simulated sequence of data, the state of

the device and the condition monitoring indicator values are extracted over time.

The output of the simulation consists of multiple temporal sequences of observa-

tions with known states, which are generated according to the successive visited

states. It should be noted here that only observation process is used as the input

for parameter estimation. Since throughout this thesis, transition rate function is

considered as the fundamental describer of the degradation process, a simple tech-

nique to generate random sequences based on a NHCTHSMP in terms of transition

rate functions is introduced.

A random temporal sequence involves both the degradation process (succes-

sive sequence of visited states and the time of each transition) and the observation

process (successive observed condition monitoring indicators) from time zero up

to the failure point. In order to do this, the couple (Xn, Tn) is first generated

for 1 ≤ n ≤ nf , where nf is the transition number at which the failure occurs

(nf = {n|Xn = N}). Then, based on the generated sequence of states (Xn), the

corresponding observation values Um(1 ≤ m ≤ dk), where dk is the number of obser-

vation points, are generated. The simulation process, which is based on the inverse

transform technique, is described below. Let a be a uniform random variable in

the range [0, 1]. If b = F−1(a), then b is a random variable with CDF , F . It is

possible to define the cumulative hazard function between state i and j based on

the corresponding transition rate function as:

Λi,j(s, t) =

∫ t

0
λi,j(s, u)du. (4.30)

Now, based on the inverse transform technique, we can generate random number

T s
i,j for the time to transition from state i to state j, given that state i is reached

at time s. Let a be a uniform random number from U [0, 1], then a random number

from F can be generated as:

1− Fi,j(s, t) =

exp(−Λi,j(s, t)) → Λi,j(s, t) = − log(1− a) → T s
i,j = Λ−1

i,j (s,− log(1− a)). (4.31)

The summary of all steps used to generate a random sequence (Xn, Tn) is shown

in Algorithm 4. A sample sequence of the degradation process is shown in Figure

4.3. In this sample, which corresponds to the life of a single piece of equipment,

there are three transitions as X1 = 2, X2 = 3, and X3 = 4 with corresponding
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Algorithm 4 : Random Generation of Degradation Process

Step 1. Let X0 = 1, T0 = 0, and c = 0 and move on to step 2.

Step 2: Let i = Xc. For each j ∈ FSi, generate a separate random number T s
i,j

denoted by from Eq. (4.31), given that s = Tc.

Step 3: Let c = c + 1 and find the state and the time of the next transition as

Xc = arg min
j∈FSi

{T s
i,j}, where Xc takes the j value that has the smallest T s

i,j. This

step is based on the fact that the next transition is realized according to the event

that occurs first in a competition among all possible transitions out of state i.

Step 4: If Xc = N , terminate the algorithm and output (X,T ), otherwise move

back to Step 2.

transition times T1 = 15, T2 = 28, and T3 = 38. Algorithm 5 shows how to generate

Uj (1 ≤ j ≤ d), which is the corresponding values of the observation process with

length d associated with (Xn, Tn). Now, based on the predetermined observation

Algorithm 5 : Random Generation of Observation Process

Step 1: Let j=0 and go to step 2.

Step 2: Set j = j + 1. Sample a random number a from U [0, 1]. The process Uj

equals vf , if

f−1
∑

z=1

bX0
j
(z) < a ≤

f
∑

z=1

bX0
j
(z), 1 ≤ f ≤ m, where X0

j is the state of the

device at the jth observation point.

Step 3: If X0
j = N , terminate the algorithm and output (U), otherwise move back

to Step 2

interval ∆, the value of condition monitoring indicator at each observation point

can be simulated. A sample sequence of the observation process is shown in Figure

4.3. In this sample, which corresponds to the life of a single piece of equipment, the

outputs of the observation process for a single device, which takes values from 1-8,

are shown. It can be seen from this figure that as the device ages over time, its level of

degradation increases. Also, the CM output varies with time and indirectly reflects

the deterioration process. The output of the above-described simulation process isK

independent sequences of observation process denoted by O = {O(1), O(2), ..., O(K)},

which can be used as the input for parameter estimation.
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Figure 4.3: Sample realization of the degradation and observation processes

4.4.3 Parameter Estimation

After the procedure explained in Section 4.4.2 is employed to generate several in-

dependent sequences of degradation and observation processes, the simulated se-

quences of the observation process can be employed as the input for parameter

estimation. In other words, it can assumed that the characteristic parameters of

the multistate structure (θ) are not known and only several sequences of observa-

tion process are available to be used for parameter estimation. The results of the

estimation procedure will then be compared with the true parameter values, which

were originally used to simulate the observation sequences. To evaluate the effect of

available training data on the results, five different values for the number of histor-

ical observations are considered (K = 20,K = 40,K = 80,K = 160, and K = 320).

In addition, to reach more consistent results, for each case of K, the parameter esti-

mation method is applied 50 times, that is 50 different sets of data are simulated for

each case of K. We used Matlab 2011 on a stand-alone PC with CPU 2.3 GHz and

16 GB of RAM for all numerical experiments. The fminsearch function in Matlab

is used for optimization purposes in the estimation procedure.

As discussed in Section 4.2, the proposed parameter estimation process required

initial estimates for all unknown parameters. For the transition distributions, the

initial value of 40 is assumed for all scale parameters and the initial value of 1 is

assumed for all shape parameters. Also for the observation transition matrix, the

initial value of (1/(M − 1)) is assumed for all entries except those in the last row
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and the last column, which are related to the observable failure state. Therefore,

entry (4, 8) of matrix B is 1. The threshold of 0.005 is considered as the stopping

criteria for the average log-likelihood function improvement. To be able to evaluate

the correctness of the estimates for each case of K and also to confirm the improve-

ment in estimation error after each step of the proposed estimation procedure, a

well-known measure called mean squared error (MSE) is used, which measures the

difference between the estimated values and the actual values as:

MSE(θ, θ̂) =

n
∑

i=1

((θi − θ̂i)
2/n), (4.32)

where θi and θ̂i are, respectively the actual and the estimated values of the ith

parameters and n is the number of unknown parameters. As there are 5 possible

transitions for the device, there are 5 unknown shape parameters and 5 unknown

scale parameters associated with the degradation process. Also, as there are 4

states and 8 possible outcomes for the condition monitoring indicator, there are 21

((4 − 1) × (8 − 1)) unknown parameters associated with the observation process.

Because the ranges of the scale parameters, shape parameters, and entries of the

observation probability matrix are different with each other, we separately calculate

MSE for each of these parameters set. The results of the numerical experiments are

shown in Section 4.4.4.

4.4.4 Results

In this section, the results of the numerical experiments are described from three

aspects: (I) Log-likelihood improvement after each iteration or the ability of the

estimation procedure to improve likelihood value over iterations, (II) Estimation

results, which show the accuracy of the estimation results (mean, standard devia-

tion, and mean squared error (MSE)), and (III) CPU time results, which show how

long the estimation procedure may take to provide estimation results.

I) Log-likelihood Improvement

As discussed earlier, it is expected that the proposed iterative estimation method

improves log-likelihood function after each iteration of the algorithm. The result of

implementing the parameter estimation method using simulated data verifies the

ability of the proposed estimation method to increase the log-likelihood function

after each iteration. In Figure 4.4, the average log-likelihood value from iteration

to iteration of the estimation procedure calculated using 80 simulated sequences
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of the observation process is presented. It can be seen in this figure that, the

likelihood function improves at a much faster rate in the first few iterations,

and then its improvement gets slower. Similar observations have been seen for

K = 20, 40, 80, 160, and 320.
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Figure 4.4: Log-likelihood improvement versus iteration number for K = 80

II) Estimation Results

Table 4.1 presents the true values of each characteristic parameter used for

simulation, the average, the standard deviation (STD), and the mean squared error

(MSE) for the estimated parameters for all cases of K based on 50 independent

sets of simulated data. It can be verified from Table 4.1 that the averages of

the estimated values are reasonably close to the true values, particularly when a

larger number of life histories (K) are employed for estimation. In other words,

as expected, the mean estimated values approach the true values as K increases.

Moreover, that the MSE values for the estimated parameters converge to zero

as K increases is also verified. As the estimation results for the elements of the

observation probability matrix are very close to one another, the detailed results

are not shown here. The average MSE values of all three sets of parameters (α, β,

and B) are shown in Figures 4.5 and 4.6 for each case of K. The consistent trends

in Figures 4.5 and 4.6 verify that MSE converges to zero as the number of available

life histories for estimation (K) increases. In summary, it can be concluded that

the estimated values with an acceptable level of accuracy are found, in particular

for a sufficient training sample. It is worth mentioning that by tightening the

stopping criteria, we may get better estimates in a longer CPU time.
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Table 4.1: Estimation results for 50 estimation runs

Parameters α1,2 α1,4 α2,3 α2,4 α3,4 β1,2 β1,4 β2,3 β2,4 β3,4

True Values 15 21 12 28 7 8 3 6 12 4
K=20 15.16 22.72 11.69 28.24 7.26 8.72 3.35 6.68 16.08 4.35
K=40 15.05 21.60 11.92 28.09 7.05 8.02 3.28 6.20 14.44 4.20

Mean K=80 14.98 21.08 11.94 28.01 7.08 8.15 3.16 5.72 12.88 4.05
K=160 15.04 21.09 11.88 27.96 7.14 8.00 3.03 5.81 12.30 4.00
K=320 15.08 21.19 11.90 27.91 7.15 7.99 2.99 5.83 12.23 4.00
K=20 0.70 5.51 0.98 4.44 1.15 2.71 1.17 2.60 7.32 1.30
K=40 0.42 3.95 0.52 1.34 0.52 1.26 0.94 1.64 4.73 0.95

STD K=80 0.24 1.99 0.45 0.73 0.38 0.95 0.61 1.07 2.13 0.62
K=160 0.23 1.46 0.27 0.52 0.28 0.75 0.43 0.86 1.73 0.47
K=320 0.15 0.93 0.22 0.31 0.21 0.44 0.33 0.60 0.93 0.38
K=20 0.50 32.67 1.04 19.41 1.36 7.70 1.47 7.08 69.20 1.77
K=40 0.17 15.65 0.27 1.76 0.26 1.56 0.93 2.68 27.84 0.92

MSE K=80 0.06 3.89 0.20 0.52 0.14 0.90 0.39 1.19 5.20 0.38
K=160 0.05 2.09 0.09 0.26 0.10 0.55 0.19 0.76 3.03 0.22
K=320 0.03 0.88 0.06 0.10 0.06 0.19 0.11 0.39 0.90 0.14
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Figure 4.5: Average MSE (based on 50 runs) for α and β

III) CPU time

As expected, the estimation procedure took relatively longer when a larger number

of observations (K) were employed. Figure 4.7 shows the average CPU time for

different levels of K considering 50 independent estimation runs. Each point in

this figure shows how long it took on average to use K independent sequences of

observation process for parameter estimation. In all cases, the final estimates are

achieved in less than 5 hours of CPU time. As in practical application of this

unsupervised estimation method, the estimation procedure is an offline course of

action, the proposed estimation model is reasonable in terms of CPU time. It

should also note that CPU time is very sensitive to the structure of the multistate

model and maximum life of the device, as both can highly affect the size of the

likelihood function and therefore increase the CPU time needed for parameter

estimation.
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Figure 4.6: Average MSE (based on 50 runs) for B
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Figure 4.7: CPU time evaluation

4.5 Summary

The primary step to use a stochastic process for modeling the degradation and

observation processes associated with a device under study is to find a reasonable

structure that can represent the stochastic behaviour of these processes. The result

of this chapter can be used to estimate the characteristic parameters of a known

multistate model by employing historical condition monitoring data. After the mul-

tistate model is trained, it can be used for diagnostics and prognostics (see Chapters

6 and 7). The method proposed in this chapter for parameter estimation can uti-

lize available condition monitoring data to train a nonhomogeneous continuous-time

hidden semi-Markov process that can be used to represent the degradation and ob-

servation processes associated with a device under condition monitoring. In Chapter
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7, this parameter estimation method is used on turbofan engine data sets to estimate

the characteristic parameters of associated multistate structures. Although a simple

enumerative framework is presented to find a reasonable multistate structure among

available model structures, developing a more efficient approach for model selection

is an important direction for future research. In the remainder of this thesis, how

to use a trained multistate process for diagnostics and prognostics and maintenance

decision making is discussed.

77



Chapter 5

Key Diagnostics and
Prognostics Measures

5.1 Introduction

One of the main objectives of condition monitoring is to provide useful information

on the current and future health status of a device under operation. Generally, this

type of information is reported by some important characteristic and performance

measures, which are easy to understand and directly or indirectly represent some

important aspects of the degradation and observation processes associated with the

device under study. These important measures should be defined in a way that they

can finally be used for maintenance decision making.

Performance measures can be categorized into different classes from several view-

points. From the calculation point of view and the data required for calculating a

measure, these measures can be static or dynamic. Static means that the measures

are computed without using any information on the actual operation of the device.

Static measures are usually calculated based on some historical information or prior

knowledge on the degradation process. Therefore, static measures are constant for

different devices of the same type, that is, measures are independent of the actual

operating condition, which may result in several degradation and observation pat-

terns. A well-known example of static measure is the mean time to failure (MTTF)

that is calculated independent of the actual operation of the device.

As in reality, stochastic properties of the degradation and observation processes

result in different degradation and observation patterns, it is more reasonable to

employ information available on the actual operation of the device for performance

measure calculation. These types of measures are referred to as dynamic measures,
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that is, they change over the age of the device and also reflect the dynamic behavior

of the degradation and observation processes. It should be pointed out that under

condition monitoring, these measures can be conditional on the condition monitoring

data, that is, all historical condition monitoring data (up to the current time point)

extracted at previous observation points are used for calculation. Examples are

conditional mean remaining useful life, which is calculated from the profile of the

observation process extracted at previous condition monitoring points (condition

monitoring data).

From the application point of view, performance measures can be divided into

diagnostic measures, which deal with the current health status of the device, and

prognostic measures, which deal with the future health status of the device. In this

chapter, dynamic diagnostic and prognostic measures are introduced for a multistate

structure evolving according to a NHCTHSMP. This chapter is organized as follows:

Sections 5.2 and 5.3 respectively present the definition and mathematical expressions

of diagnostic and prognostic measures. In Section 5.4, numerical examples are used

to demonstrate how these measures can be used for online diagnosis and prognosis.

Finally in Section 5.5, the conclusions obtained from the results of this chapter are

discussed. The results of this chapter are reported in [27].

5.2 Diagnostic Measures

As discussed earlier, the objective of developing diagnostic measures is to provide

useful information on the current health status of the device. In this section, im-

portant dynamic diagnostic measures are presented, which employ condition mon-

itoring data to reflect certain aspects of the current degradation level of a device

under study. For each measure, the definition, application, and its mathematical

expression are illustrated in details. While the definitions of some of these mea-

sures are derived from the literature, this is the first time that such measures are

discussed for a multistate degradation process with hidden states, which evolves

according to a NHCTHSMP. It should be pointed out here that the common as-

sumption throughout this chapter is that the structure of the multistate model (M)

is already known.
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5.2.1 Conditional State Probability

This measure provides the probability of being in a certain state at the current point

of time, given the profile of condition monitoring data. We use ωt(i|O,M) to denote

the probability that the device is at the degradation state i at time t, given that the

multistate model (M) is known and the sequence of O1, O2, ..., Ot is observed. This

measure can be calculated as follows:

ωt(i|O,M) = Pr(Qt = i|O1, O2, ..., Ot,M) =

Pr(Qt = i, O1, O2, ..., Ot|M)

Pr(O1, O2, ..., Ot|M)
=

αt(i, O|M)
N
∑

i=1
αt(i, O|M)

, (5.1)

where Qt is the state of the device at the tth observation point, αt(i, O|M) is the

forward variable, denoting the joint probability of being in state i at the tth ob-

servation point and observing sequence O1, O2, ..., Ot. Details on how to calculate

αt(i, O|M) are given in Section 4.2.2. The conditional state probability presents the

probability of being at each degradation level, given the condition monitoring data.

This measure can be further employed to find the average degradation level and its

confidence interval. It is clear that
N
∑

i=1

ωt(i|O,M) = 1,∀t > 0.

5.2.2 Average Degradation Level (ADL)

Finding a monotonic degradation index, which reflects the damage development, has

always been a challenging topic in real-world condition monitoring frameworks [142].

There are two main reasons for the importance of such measures [143]. First, an

oscillating measure cannot reflect the damage development trends perfectly. Second,

the damage usually shows accelerated growth with the running time, that is, the

degradation speed increases with time. Therefore, a feature with monotonic trend

can better represent the degradation process. There are reported studies on finding

a feature having a monotonic relationship with the actual health status of the device,

such as [113, 144]. However, feature selection and feature fusion techniques are not

always successful at finding such features that could also have a reasonable physical

meaning.

As in this thesis, the device is assumed to be nonrepairable, its health status

never improves over time, that is, the degradation level either stays at the same

level or degrades with time. Therefore, a reasonable measure to monitor the overall
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health status of the device is the estimated average of the degradation process, which

is equivalent to the average degradation states, given the condition monitoring data.

At any time point t, given the condition monitoring data, the average degradation

level (ADL) can be calculated as follows:

ADL(t|O,M) =

N
∑

i=1

i× ωt(i|O, t). (5.2)

Similar to the average degradation level, the most likely state (MLS) at time t can

also be estimated as MLS(t|O,M) = arg max
i

ωt(i|O,M).

5.2.3 Conditional Hazard Rate

Hazard rate is one of the most important and commonly used performance measures

used in reliability analysis of mechanical systems. Generally, hazard rate at time t

is referred to as the rate of failure during the next instant of time, given no failure

before time t. Hazard rate also equals to the negative of the derivative of ln(R(t)).

It should be pointed out here that for the multistate degradation structure under

study in this thesis, the hazard rate function is not explicitly defined and therefore

it needs to be calculated from the known transition rates between states. When

condition monitoring data are available, the instantaneous conditional hazard rate

at time t calculated at time tp (time of the pth condition monitoring point) can be

defined as follows:

h(t|O1, O2, ..., Op, L > tp,M) =

lim
∆t→0

R(t|O1, O2, ..., Op, L > tp,M)−R(t+∆t|O1, O2, ..., Op, L > tp,M)

∆t×R(t|O1, O2, ..., Op, L > tp,M)
, (5.3)

whereR(t|O1, O2, ..., Op, L > tp,M) is the conditional reliability of the device at time

t, given that the device has not failed up to time tp and the sequence O1, O2, ..., Op

is observed. Details on how to calculate this measure can be found in Section 5.3.2.

It can be seen from the formula given in Eq. (5.3) that the hazard rate is the

instantaneous rate of failure for the survivor at time t during the next instant of

time.

A discrete form of hazard rate can be calculated from the probability of failure

within the next observation interval. Given that the device has not failed at time tp

and the sequence O1, O2, ..., Op is observed, the conditional hazard rate for the next
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observation cycle can be calculated as:

h′(tp|O1, O2, ..., Op, L > tp,M) =
1−R(tp+1|O1, O2, ..., Op, L > tp,M)

(tp+1 − tp)
, (5.4)

where 1−R(tp+1|O1, O2, ..., Op, L > tp,M) is the probability that the device fails

before the next condition monitoring point. It should be noted that Eq. (5.4) be-

comes equivalent to the instantaneous conditional hazard rate at time tp (Eq. (5.3))

if the observation interval is small enough. In this thesis, Eq. (5.4) is referred to as

the conditional hazard rare, but readers should note that it is not the instantaneous

hazard rate. The detailed definition and mathematical expression for reliability

function are given in Section 5.3.2. The next possible derivation of hazard rate

is the average conditional hazard rate over the next observation interval, which is

defined as:

AFR(tp|O1, O2, ..., Op, L > tp,M) =

tp+1
∫

tp

h(t|O1, O2, ..., Op, L > tp,M)

(tp+1 − tp)
=

ln R(tp|O1, O2, ..., Op, L > tp,M)− ln R(tp+1|O1, O2, ..., Op, L > tp,M)

(tp+1 − tp)
=

− ln R(tp+1|O1, O2, ..., Op, L > tp,M)

(tp+1 − tp)
. (5.5)

As the overall health status of the device under study cannot improve over time, it

is expected that the above measures, which reflect the dynamic characteristic of the

degradation process, has a non-decreasing trend with the age of the device. However,

as it is conditional on the history of condition monitoring data, noisy measurements

can result in a non-monotonic trend. It should be pointed out here that hazard

rate can also be considered as a prognostic measure, as it provides information on

the future instances of time. In this thesis, hazard rate is treated as a dynamic

diagnostic measure.

5.3 Prognostic Measures

Although important diagnostic measures can provide useful information on the cur-

rent health status of the device, prognostic measures are more attractive to mainte-

nance decision makers as they provide information on the future health status of a

device, which can be used for maintenance decision making. Recent research trend

also verifies the relative importance of prognostic measures compared to diagnostic

measures. This subsection is devoted to important prognostic measures, which (1)
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are calculated from available condition monitoring data and (2) provide information

on the future health status (degradation level) of the device.

5.3.1 Conditional Future State Probability

This measure is very similar to the one given in Section 5.2.1 for the conditional state

probability except that the probability of the state of interest at a future time point

is investigated. In other words, conditional on the profile of condition monitoring

data, it tries to predict the probability of being in states 1,...,N at a time point in

future. This measure can be defined as the probability that the device is at state

i at a future time point t, given that it has not failed up to time tp (t > tp) and

the condition monitoring sequence O1, O2, ..., Op is observed. With this predictive

measure, we can also estimate the most likely degradation pattern from the current

time point until a time point in future. This measure can mathematically be defined

as:

υt(i|O1, O2, ..., Op, L > tp,M) = Pr(Zt = i|O1, O2, ..., Op, L > tp,M) =

Pr(Zt = i, O1, O2, ..., Op, L > tp|M)

Pr(O1, O2, ..., Op, L > tp|M)
=

Pr(Zt = i, O1, O2, ..., Op, L > tp|M)
N
∑

j=1,j 6=N

αtp(j,O|M)

. (5.6)

The term Pr(Zt = i, O1, O2, ..., Op, L > tp|M) is equivalent to
N−1
∑

j=1

Pr(Zt = i, O1, O2, ..., Op, Qp = j, L > tp|M), where:

Pr(Zt = i, O1, O2, ..., Op, Qp = j, L > tp|M) =
p
∑

z=0

uz(j,O|M) ×

p
∏

w=z+1

bj(Ow)× Pr(Zt = i,Qp = j|Qz−1 6= j,Qz = j,M), (5.7)

where uz(j,O|M) is the joint probability of observing the sequence of O1, O2, .., Oz

and being at state j at the zth observation point for the first time (see Section 4.4.3)

and bi(j) is the probability that the jth observation value is observed while the state

of the device is i (an element of the observation probability matrix B). The final and

the most difficult step is to find Pr(Zt = i,Qp = j|Qz−1 6= j,Qz = j,M), which is the

probability of being in states i and j at times t and tp, respectively, given that state

j was observed for the first time at the zth observation point (Qz−1 6= j,Qz = j).
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This measure can be computed based on the following steps:

Pr(Zt = i,Qp = j|Qz−1 6= j,Qz = j,M) ≃

∑

k

∫ t

tp

Q̇j,k(tz, τ |M) × Pr(Zt = i|Zτ = k, Zτ− 6= k,M)dτ, (5.8)

where Q̇j,k(tz, τ |M) is the probability of transition from state j to state k at time

τ given that state j is reached at time tz. It should be pointed out here that it is

assumed that the observation intervals are small enough, so that transition times

can be approximated by the endpoints of observation intervals.

The term Pr(Zt = i|Zτ = k, Zτ− 6= k,M) is the probability of being in state i

at time t, given that state k is reached at time τ . This term is the solution of the

following systems of equations:

φi,j(s, t|M) = Pr(Zt = j|Zs = i, Zs− 6= i,M) =

(1−Hi(s, t− s|M))δi,j +
∑

l

∫ t

s

Q̇i,l(s, τ |M)× φl,j(τ, t|M)dτ, (5.9)

where δi,j is the Kronecker delta. Directly solving the above equation is very compli-

cated and instead approximation methods such as discretization can be employed.

More details on how to approximately solve Eq. (5.9) by discretization can be found

in [135, 145]. After the solution of Eq. (5.9) is found, Eqs. (5.6)-(5.8) can be used

to obtain υt(i|O1, O2, ..., Op, L > tp,M).

5.3.2 Reliability Function

One of the most important prognostic measures is the conditional reliability func-

tion, which represents the probability that the device continues operation beyond

a time point t (L > t) that is greater than the current time point tp, given that

the device has not failed yet (L > tp) and the sequence O1, O2, ..., Op is observed.

This important measure is the fundamental element of the dynamic replacement

model given in Chapter 6. Most prognostic measures are calculated based on this

important measure. The conditional reliability function can be defined as:

R(t|O1, O2, ..., Op, L > tp,M) = Pr(L > t|O1, O2, ..., Op, L > tp,M) =

Pr(L > t,O1, O2, ..., Op, L > tp|M)

Pr(O1, O2, ..., Op, L > tp|M)
=

N
∑

j=1,j 6=N

Pr(L > t,O1, O2, ..., Op, Qp = j|M)

N
∑

j=1,j 6=N

Pr(O1, O2, ..., Op, Qp = j|M)

,

(5.10)
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where L is the total age of the device,

N
∑

j=1,j 6=N

Pr(O1, O2, ..., Op, Qp = j|M) =

N
∑

j=1,j 6=N

αtP (j,O|M) and

Pr(L > t,O1, O2, ..., Op, Qp = j|M) =
p
∑

z=0

uz(j,O|M) ×

p
∏

w=z+1

bj(Ow)× Pr(L > t,Qp = j|Qz−1 6= j,Qz = j,M). (5.11)

The remaining step is to find Pr(L > t,Qp = j|Qz−1 6= j,Qz = j,M), which is the

joint probability of being in state j at at time tp and the reliability of the device

at time t, given that state j is reached at the zth CM point (unconditional to the

condition monitoring information). This measure can be calculated as:

Pr(L > t,Qp = j|Qz−1 6= j,Qz = j,M) ≈

(1−Hj(tz, t− tz|M)) +
∑

k 6=N

∫ t

tp

Q̇j,k(tz, τ |M) ×R(t|k, τ,M)dτ, (5.12)

where R(t|i, s,M) = Pr(L > t|Xn = i, Tn = s,M) is the solution of the following

system of equations:

R(t|i, s,M) = (1−Hi(s, t− s|M)) +
∑

j 6=N

∫ t

s

Q̇i,j(s, τ |M)×R(t|j, τ,M)dτ. (5.13)

Eq. (5.13) can be solved by either directly solving the discretized system of evolution

equation or by backward recursive method as reported in [146]. In this backward

approach, R(t|i, s,M) is first calculated at all possible points for state N−1 through

R(t|i, s,M) = 1−HN−1(s, t− s) (see Eq. (3.10)). Then, it is recursively calculated

for states N − 2, N − 3, ..., and 1, respectively. Another equivalent approach to

calculate the conditional reliability function is from Eq. (5.6) as:

R(t|O1, O2, ..., Op, L > tp,M) =
∑

i 6=N

υt(i|O1, O2, ..., Op, L > tp,M). (5.14)

The above relationship simply means that the conditional reliability at time t is the

conditional probability of not being in the failure state N at time t. In this thesis,

backward recursive is used to estimate the reliability function (with discretization

step of 1). Therefore, all results calculated based on the conditional reliability

function are subject to discretization error.
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5.3.3 Remaining Useful Life Distribution

Remaining useful life (RUL), also called remaining service life, residual life or rem-

nant life, refers to the time left before observing a failure given the current machine

age and condition, and the operation profile [17]. It is defined as the conditional

random variable RULt = (L− t|L > t, ϑ(t)), where L denotes the random variable

of failure time (age of the device), t is the current age, and ϑ(t) is the past con-

dition profile up to the current time t. Remaining useful life (RUL) is one of the

most important measures used in online health monitoring of devices under gradual

degradation. RUL provides maintenance decision makers a useful tool by quantify-

ing how much time is left until the failure point. When condition monitoring data

are used to calculate RUL, it is called the conditional (or alternatively called dy-

namic) remaining useful life. The distribution of remaining useful life can be found

from the conditional reliability function given in Eq. (5.10). The cumulative distri-

bution function (CDF) of remaining useful life at time t, given that the device has

not failed yet and condition monitoring data up to time tp, can be calculated as:

Pr(RULtp ≤ t|O1, O2, ..., Op,M) = 1−R(t+ tp|O1, O2, ..., Op, L > tp,M). (5.15)

Based on the above cumulative distribution function (CDF) of the remaining useful

life, the probability density function of the remaining life can be calculated. In real-

world prognostics, the average of the remaining useful life, referred to as the mean

remaining life or mean residual life (MRL), is used to represent the estimated time

to failure at each point of time. The MRL at time tp (time of the pth observation

point) can be directly calculated from Eq. (5.10) as:

MRL(tp|O1, O2, ..., Op, L > tp,M) =

∫ ∞

0
R(tp + x|O1, O2, ..., Op, L > tp,M)dx.

(5.16)

Using Eq. (5.15), the corresponding conditional percentile confidence interval (or

alternatively called prediction interval of percentile interval) for the remaining life

can be calculated at any time point. The lower bound (LB) and the upper bound

(UB) for the (1 − α)% percentile interval are respectively the α/2 and 1 − α/2

percentiles of the remaining useful life distribution. The percentile confidence in-

terval for the remaining useful life provides a better picture of the actual remaining

useful life as it provides the possible range for the remaining life at a certain level

of confidence. The variance of the remaining useful life at time tp denoted by
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(V ar(tp|O1, O2, ..., Op,M)) is another important property of the remaining useful

life. Thus, variance can be calculated as follows:

V ar(tp|O1, O2, ..., Op, L > tp,M) =

E((L− tp)
2|O1, O2, ..., Op, L > tp,M)− (MRL(tp|O1, O2, ..., Op, L > tp,M))2 =

2

∞
∫

0

xR(tp + x|O1, O2, ..., Op, L > tp,M)dx−MRL(tp|O1, O2, ..., Op, L > tp,M)2.

(5.17)

5.3.4 Warning Levels

Implementing maintenance actions usually requires maintenance setup activities.

As maintenance setup times may be costly and time-consuming, it is crucial for

maintenance decision makers to consider a maintenance lead time for maintenance

decision making. For example, if the maintenance lead time for replacing a gearbox

is 30 days, the maintenance decision maker may initiate maintenance setup at least

30 days before the expected time of failure to avoid downtime. Therefore, main-

tenance decision making for systems with maintenance setup times involves two

important decisions: (1) when to initiate maintenance setup and (2) when to stop

the operation of a degraded device for replacement. The objective is to make sure

that maintenance setup is completed when the device is ready to be replaced.

Most previous measures introduced in this thesis provide information on the time

of failure, which may only be useful to determine when to replace a degraded device.

To consider maintenance setup time, warning levels can be defined in a way that the

importance of performing necessary maintenance actions is categorized into several

risk levels. Defining several warning levels helps maintenance decision makers to

understand how their production is likely to stop according to either an unexpected

failure or maintenance lead time. Let us assume that there are W warning levels

for the device under study. For each warning level i, the probability range of failure

within the next d units are denoted as (pi1, p
i
2). The warning levels are defined as

follows:

Definition: The device is considered to be at the ith warning level at time t, if the

probability that the device fails in the next d units of time is greater than pi1 and less

than pi2, where p
i
1 and pi2 are the ith warning level thresholds defined by maintenance

decision makers, and d is the maintenance setup time. Now, the warning level of
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the device at time tp (time of the pth observation point) is as:

WL(tp|O1, O2, ..., Op,M) =
W
∑

i=1

i× Ipi1≤Pr(L<tp+d|O1,O2,...,Op,L>tp,M)<pi2
, (5.18)

where IA is the indicator function, which is equal to 1 when A is true.

Depending on the value of Pr(L < tp + d|O1, O2, ..., Op, L > tp,M), the warning

level can get any integer value between 1 and W . For example, a maintenance

team may define three levels of warning as normal, risky, and very risky with the

associated probability threshold of [0,50%), [50%,75%) and [75%,100%]. Now, if

at time t, the conditional probability of failure within the next d time units is

between [75%,100%], then the device is considered to be in the 3rd warning level at

time t. This means that in terms of the ability of the maintenance team to finish

maintenance setup before the device fails, the current warning level of the device is

very risky. A decision making tool that can employ condition monitoring data to

determine when to initiate maintenance setup needs to be developed in future work.

5.4 Numerical Example

In this section, simulation-based numerical experiments are used to evaluate the

correctness of the main diagnostic and prognostic measures given in this chapter

and demonstrate their applications in online monitoring of deteriorating systems.

The results are reported separately for diagnostic and prognostic measures.

5.4.1 Example Description

The results presented in this chapter is based on 100 samples simulated for a fleet

of devices of the same type. Each device starts with a different degree of initial

unknown wear and manufacturing variation, which is considered to be normal, i.e.,

it is not considered a fault condition. The device is operating normally at the start

of each time series, and develops a fault at a point during the series. The fault

grows in magnitude until the system failure. It is assumed that the device can have

5 different levels of health states, referred to as: (1) normal condition, (2) slightly

damaged, (3) medium damaged, (4) severely damaged, and (5) failure. Each record

in a run-to-failure trajectory, which corresponds to a given operation cycle, has

the output of the observation process. Here, operation cycle refers to one unit of

operation time. All failures occur due to either a gradual degradation or a random

failure directly from an intermediate state.
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A single indicator is monitored periodically at the end of each cycle (∆=1),

while the equipment is operating. This means that the time between two obser-

vation points is equivalent to one operation cycle. The temporal sequence of in-

dicator values is referred to as the observation process. The stochastic behavior

of the multistate equipment with degradation states under the non-homogeneous

continuous-time hidden semi-Markov assumptions is simulated by the Monte Carlo

simulation method and corresponding observation process and degradation process

are generated. It is assumed that the CM indicator has 10 possible discrete outcomes

(M = 10). Therefore, the observation probability matrix B has 5 rows (N = 5) and

10 columns (m = 10). For transition distributions, the Weibull distribution, which

is the most commonly used distribution to represent degradation [141], is used. It is

assumed that the transition to the neighbor degraded state depends on the level of

degradation and the time spent at each state, while the transition to the failure state

depends on the level of degradation and the total age of the device. The transition

from state 4 to state 5 also depends on the level of degradation, the time spent at

state 4, and the total age of the device. The mathematical formula for transition

rate between states is as follows:

λi,j(s, t) =



















(βi,j/αi,j)× (t/αi,j)
(βi,j−1), (i, j) ∈ [(1, 2), (2, 3), (3, 4)],

(βi,j/αi,j)× ((s + t)/αi,j)
(βi,j−1), (i, j) ∈ [(1, 5), (2, 5), (3, 5)],

(β4,5/α4,5)× (t/α4,5)
(β4,5−1)+

(β2
4,5/α

2
4,5)× ((s+ t)/α2

4,5)
(β2

4,5−1), (i, j) = (4, 5)

.

(5.19)

The parameters used in Eq. (5.19) and the elements of the observation probability

matrix (B) are as follows:

α =









0 15 0 0 75
0 0 20 0 70
0 0 0 15 70
0 0 0 0 15









, β =









0 3 0 0 3
0 0 4 0 6
0 0 0 5 10
0 0 0 0 8









,α2
4,5 = 65, β2

4,5 = 14,

B =













0.55 0.30 0.10 0.05 0 0 0 0 0 0
0.05 0.15 0.35 0.25 0.10 0.05 0.05 0 0 0
0 0 0.05 0.05 0.40 0.35 0.15 0 0 0
0 0 0 0 0.05 0.15 0.45 0.25 0.05 0.05
0 0 0 0 0 0 0 0.1 0.3 0.6













.

In Figure 5.1, a sample realization of the observation process and its correspond-

ing degradation process obtained from simulation are shown. This figure represents

the stochastic behavior of one of the 100 simulated samples. It can be seen from
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this figure that as the device ages over time, it′s level of degradation increases. Also,

the CM output varies with time and indirectly reflects the deterioration process.
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Figure 5.1: Sample realization of the degradation and observation processes

5.4.2 Diagnostic Results

In this subsection, the correctness of the main diagnostic measures provided for the

degradation level are evaluated through the 100 simulated samples. First, the most

likely state (MLS) at each observation point estimated from condition monitoring

data is treated as the diagnosed (estimated) level of degradation. The result is

then compared with the actual level of degradation. The classification accuracy or

the degradation detection accuracy (%) is defined as the percentage of time-points

at which the diagnosed level of degradation using MLS equals the actual level of

degradation. Let dk be the number of observation points for the kth simulated

sample and t
(k)
i is the corresponding time point of the ith observation point. The

degradation detection accuracy for sample k can now be calculated as:

Degradation Detection Accuracy (k) = 100 ×

dk
∑

i=1
I
MLS(t

(k)
i |O(k),M)=Q

(k)
i

dk
. (5.20)

The classification accuracy for the 100 samples shown in Figure 5.2, verifies that

overall, the most likely state calculated using the most updated condition moni-

toring data (see Eq. (5.1)) can provide reasonable estimates for the actual level

of degradation. In other words, this measure can be used for online degradation

diagnosis of a deteriorating device using condition monitoring data.
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Figure 5.2: Degradation detection accuracy (%) using MLS

In addition to the most likely state, the estimated average degradation level

(ADL) as shown in Eq. (5.2) can also be used to represent the actual degradation

process. The main difference between the MLS and ADL is that the former gives an

integer value corresponding to the most likely state while the latter gives the average

state level, which can get any value between 1 and N . In Figure 5.3, the mean

squared error of estimating the actual degradation level with the average degradation

level for each sample is presented. The MSE of the degradation detection accuracy

for the k sample can be fined as:

MSE of ADL(k) =

dk
∑

i=1
(ADL(t

(k)
i |O(k),M)−Q

(k)
i )2

dk
. (5.21)

It can be observed from Figure 5.3 that estimation results based on average degra-

dation level is also very close to the actual degradation level for almost all samples

and can be used as an effective tool for online degradation diagnosis of deteriorating

devices.

As described earlier, the introduced dynamic diagnostic measures are expected

to have a non-decreasing trend with the age of the device. To visually demonstrate

the monotonicity of the proposed dynamic measures, the results for the conditional

hazard rate (Eq. (5.4)) and average degradation level are shown for samples 1-4.

For the average degradation level (Figure 5.5), the actual degradation level is also

shown. It can be seen from Figures 5.4-5.5 that overall, these two measures have

non-decreasing trends over the life of the device, that is, their absolute values do

not decrease (they either increase or stay the same) with the age of the device.
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Figure 5.3: Degradation detection accuracy (MSE) using ADL

Such measures with a rough monotonic trend are of high interests for maintenance

decision makers and can be used as an online tool to identify the current health

status of mechanical devices under degradation and condition monitoring.
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Figure 5.4: Conditional hazard rate for samples 1-4

5.4.3 Prognostic Results

As discussed earlier in this chapter, the objective of prognostic measures is to

provide some information on the future levels of degradation associated with the

device under study. The main measures being investigated in this section are

the residual life and warning level. In this subsection, the effectiveness of using
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Figure 5.5: Average degradation level-actual degradation level for samples 1-4

mean remaining life as a measure to estimate the actual remaining life is pre-

sented. To enable the comparison of the prognostics results for all 100 samples,

multiple prediction points were considered at different stages (in terms of % of life-

time). The mean remaining life was estimated at 10 different points equivalent to

50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and 95% of the real lifetime of each

sample. Therefore, for each sample, mean remaining life is calculated 10 times at

different stages of life. The estimated MRL values are then compared to the actual

remaining life. For each sample, the relative error is used to measure the error

of estimation as Relative Error (RE) =
|Estimated MRL - Actual Remaining Life|

Total Life
.

Table 5.1 presents the average and the standard deviation of the relative error for

100 samples.

It can be seen from Table 5.1 that overall, the estimated mean residual lives are

reasonably close to the actual remaining life and therefore can be used as an online

measure to estimate the remaining life of the device. It can also be verified from

Table 5.1 that the estimation results get closer the true values as the device ages,

i.e., MRL is a better estimate for remaining useful life when the device is older.

In Figure 5.6, the estimated mean total life (current time + estimated mean
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Table 5.1: Prognostic results at different points (in terms of % of lifetime)

% of Lifetime 50 55 60 65 70 75 80 85 90 95

Mean of RE (%) 6.80 6.36 5.94 5.55 5.12 5.20 5.08 4.83 4.12 3.40

STD of RE (%) 5.64 5.48 5.21 4.25 4.12 4.10 3.92 3.74 3.60 3.47

residual life), its 95% percentile confidence interval, and the actual total life for

the 100 samples made at time points equivalent to 80% lifetimes are presented.

The results are shown in an increasing order of total lifetime. It can be seen from

this figure that in most cases the estimated total life (80% lifetime + estimated

mean residual life) is relatively close to the actual total life. Also in almost all

cases, the actual life falls within the provided confidence intervals. The coverage

rate (percentage of covering the true values of the parameter in repeated sampling)

calculated for the 100 samples is 95%. Similar results were observed for mean

residual estimation and its associated prediction interval calculated at other time

points (% of lifetime).
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Figure 5.6: Estimated total life and its confidence interval for 100 samples
(calculated at 80% total life of each sample)

To demonstrate how conditional mean residual life can be used as an online

tool for remaining useful life estimation, in Figure 5.7, the results for 4 samples are

reported. As shown in this figure, (1) the mean residual life is a reasonable estimate

for the remaining useful life, (2) mean residual life gets closer to the actual value as

the device ages, (3) the true values lies within the 95% percentile interval (in almost
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all cases), and (4) percentile interval gets narrower as the device ages.
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Figure 5.7: RUL analysis for samples 1-4

The final prognostic measure studied here is the warning level. Warning levels

correspond to the condition of the device in terms of being able to survive until

the maintenance setup is completed. Assume that the maintenance initiation setup

time is 10 cycles, and the probability intervals associated with the four levels of

warning are defined as [0%, 50%), [50%, 75%), [75%, 90%), and [90%, 100%]. For

example, the device is considered to be in the warning level 1, if the probability of

failure within the next 10 cycles is less than 50%. In Figure 5.8, the probability

of failure within the next 10 cycles and the associated probabilities for the warning

levels (dash lines) are shown for sample No. 1. Four different areas (warning levels)

are observable in this figure, where each area represents one warning level. Such

results can be generated and employed as an online tool to determine the levels of

risk associated with being able to survive until the maintenance initiation setup is

completed.

5.5 Summary

One of the most commonly used tools for degradation diagnostics and prognostics

for mechanical systems is to track their health status using some important per-
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Figure 5.8: Failure probability within the next 10 cycles - sample No.1

formance measures. A performance measure for a condition-monitored device is

considered dynamic if available condition monitoring data is employed for calculat-

ing that measure. Two types of dynamic performance measures can be employed for

degradation analysis of deteriorating systems referred to as (1) diagnostic measures

and (2) prognostic measures. In this chapter, the formulas for some important dy-

namic measures are introduced. Each measure is defined to reflect a certain aspect

of the degradation process so that it can be employed as an online tool for diagnos-

tics and prognostics. Finally, the application of some of these measures was shown

through numerical examples. In the next chapter, some of these measures are used

to determine the optimal strategy for the replacement, that is, when to replace a

degraded device.
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Chapter 6

Condition-Based Replacement
Model

6.1 Introduction

In previous chapters, a model for a multistate degradation process (Chapter 3), an

unsupervised estimation method to characterize the parameters of the degradation

and observation processes (Chapter 4), and important diagnostic and prognostic

measures for online health monitoring (Chapter 5) are introduced. In this chap-

ter, using the results given in previous chapters, a maintenance model is developed,

which can employ dynamic information on the current health status of the device for

decision making. Maintenance activities are the set of actions during the life cycle

of a system (or a device), which intend to keep it in working condition as much as

possible. Condition-based maintenance is a type of preventive maintenance, which

is based on monitoring a parameter of the condition of a device through methods

such as direct measurement, inspection, and condition monitoring. The ultimate ob-

jective of condition monitoring is to be able to provide some useful information that

can be used for maintenance decision making in order to avoid unnecessary main-

tenance actions and prevent catastrophic and costly failures. Maintenance decision

making in the presence of condition monitoring data involves finding the answer for

the key question, that is, when (under what condition) to replace a degraded de-

vice. When the device is under condition monitoring, decision makers can utilize the

most updated information on the degradation and observation processes obtained

through condition monitoring indicators for decision making.

A replacement policy that utilizes some information on the actual degradation

and observation processes is a dynamic condition-based replacement policy, that is,
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the dynamic behavior of the degradation process can affect maintenance decisions.

In this thesis, it is assumed that the replacement policy is a block replacement policy

where the maintenance decision points are exactly the condition monitoring points.

In other words, at each condition monitoring point and after observing the most

updated condition monitoring data, the decision on whether to replace a degraded

device or wait until the next observation point is made. As a result of a block

replacement policy, the device is finally replaced at failure (failure replacement)

or at a certain monitoring point (preventive replacement), whichever occurs first.

Therefore, this type of replacement policy is a condition-based replacement policy,

in which the history of the observation process until the decision-making points are

used for decision making and the maintenance actions depend on the condition of the

device. It should be pointed out here that replacement can be a physical replacement

or a full repair (overhaul), such that the device becomes as good as new after the

repair. As very similar kinds of condition-based replacement policies have been

discussed in the literature as in [41, 114, 147], this chapter aims to modify available

results so that a condition-based replacement model for a device under multistate

degradation and condition monitoring can be developed. Some of the notation used

in this chapter is adopted from [41, 147].

This chapter presents the mathematical framework for a dynamic replacement

policy for a device with multistate health levels and unobservable states, where

the degradation process follows a NHCTHSMP. The concepts used in solving a

semi-Markov decision process (SMDP) are employed to solve this problem. The

multistate model discussed in Chapter 3 with a known structure and characteristic

parameters as described in Chapter 4 are used as the inputs of this chapter. Also,

some important prognostic measures such as conditional reliability function are used

to develop the replacement model.

This chapter is organized as follows. In Section 6.2, the assumptions and ele-

ments of the cost-effective replacement policy are introduced. The mathematical

details for the proposed replacement policy in a control-limit form are described in

Section 6.3. A simulation-based numerical example is used in Section 6.4 to show

how such dynamic replacement policy can be used for maintenance decision making.

Also, the effectiveness of the proposed structure is demonstrated. Finally, Section

6.5 summarizes the results of this chapter.
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6.2 Assumptions of the Maintenance Model

The objective of the proposed replacement policy is to minimize the expected long-

run average unit cost of the device, which depends on the long-run average cost and

the long-run average duration of a replacement cycle. Therefore, it is important to

identify the elements that affect the cost and duration of a replacement cycle. Here,

replacement cycle refers to the interval between two replacement points. It should

be pointed out here that the assumption made for the degradation and observation

processes associated with the device are the same as those described in Section

3.2. The detailed assumptions for the cost elements of the replacement model are

described below.

• The device operates until it fails or replaced, whichever occurs first.

• Maintenance decisions are made only at certain discrete points, which are

equivalent to the condition monitoring observation points. These points are

referred to as maintenance decision making points hereafter. The results pre-

sented in this chapter are based on the assumption that the intervals between

two decision points are constant (∆), however, results can be converted to the

case with nonidentical maintenance decision intervals. Also, it is assumed that

the time between two observation points is short enough, so that at most one

degradation transition can occur.

• There are two possible maintenance decisions (actions) at each decision point:

(1) replace the device immediately, and (2) do nothing, that is, wait until the

next decision point. The set of possible maintenance actions is denoted by

A = {1, 0}, where 1 means preventive replacement (or replace immediately)

and 0 means do nothing, that is, wait until the next decision epoch.

• The replacement of the device (whether it is a failure replacement or a pre-

ventive replacement) costs cr and takes tr units of time. In other words, cr

and tr are the cost and time of a replacement, respectively.

• There is additional cost and time for a failure replacement denoted by cf and

tf , respectively. As a result, the total cost and time of a failure replacement

are cr + cf and tr + tf , respectively.

• The system downtime is also subject to unit downtime cost of cd. Therefore,
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the downtime cost of a preventive replacement is cd × tr and the downtime

cost of a failure replacement is cd × (tr + tf ). Therefore, the total cost per

unit-time of preventive replacement and failure replacement are respectively

(cr + cd × tr)/tr, and (cr + cf + cd × (tr + tf ))/(tr + tf ).

• It is assumed that the cost of extracting condition monitoring data over time

is zero.

• The condition of the device at time tp (pth decision point), which is denoted

by ϑtp , includes two types of known information, (1) the sequence of observed

condition monitoring data until time point tp (Y tp = O1, O2, ..., Op) and the

overall health status of the device (Ψtp = 1, that is the device is still operating

at time tp and Ψtp = 0, that is the device is failed at time tp). Therefore

ϑtp = {Y tp ,Ψtp}. The set of all possible conditions for the device is denoted

by S, for which we have ϑt ∈ S,∀t > 0. As it is assumed that the failure state

is self-announcing, that is, the overall health status of the device (Ψ) is known

over time. This means that the condition of the device is known over time.

6.3 Condition-Based Replacement Model

This section presents the structure of the condition-based replacement policy for a

device with multistate health conditions, which is under condition monitoring.

6.3.1 Elements of the Condition-Based Replacement Model

The condition-based maintenance model considered in this chapter determines the

best maintenance actions at certain discrete points, referred to as maintenance de-

cision points, which are equivalent to condition monitoring observation points. The

objective of this condition-based maintenance policy is to minimize the long-run

average unit cost of the device considering replacement cost, failure cost, and down-

time cost. The condition-based replacement policy problem is formulated through a

semi-Markov decision process (SMDP) [148], which has been used in the literature

to find the solution of dynamic maintenance problems. Some applications of SMDP

in maintenance modeling can be found in [149, 150]. Markov and semi-Markov deci-

sion models are powerful tools for analyzing stochastic sequential decision processes

with infinite horizons [148]. The main elements of the proposed condition-based

replacement policy are as follows:
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I. A = {1, 0}: The set of maintenance decision actions, where 1 means preventive

replacement (PR) and 0 means do nothing (DN).

II. ϑt = {Y t,Ψt}: The condition of the device at time t, which includes Y as the

set of observed condition monitoring data from time zero to time t and Ψ as the

overall health level of the device. The condition of the device is known over time.

III. S: The set of possible conditions for the device (Ψt ∈ S,∀t).

IV. γ: A condition-based replacement policy, which determines which maintenance

action to choose at each decision point depending on the condition of the device.

In other words, a replacement policy (γ : S → A) is a decision policy as a rule for

replacement, which depends only on the condition of the device (ϑ). For any given

condition, the replacement policy should choose a single action from A.

V. D(ϑ, γ): The output (maintenance action) of replacement policy γ when the

condition of the device is ϑ. As there are only two possible maintenance actions,

then (1) D(ϑ, γ) = 0, refers to do nothing and (2) D(ϑ, γ) = 1, refers to immediate

replacement.

In the decision process with the above elements, the cost incurred until the next

interval and the time until the next decision point depend on the condition of the

device and the maintenance action chosen in that condition. Different replacement

policies yield different maintenance actions and costs. The objective here is to find

the condition-based replacement policy γ∗ that minimizes the long-run average cost

per unit time of the device. The long-run average cost per unit time is the total

long-run cost of a replacement policy (cost of replacement plus cost of failure plus

cost of downtime) divided by the total long-run cycle time of a replacement policy

(time required for replacement plus additional time of failure plus operation time).

It will be shown later that the approach used in this thesis is similar to [41, 114, 147],

in the sense that the replacement policy γ belongs to a class of control-limit policy

in which the device is replaced when the failure risk (as a control index) exceeds a

threshold value defined by policy γ. This control-limit policy will be illustrated in

the remainder of this section.

Under policy γ, the expected time and cost from time t to the completion of the

replacement cycle (beginning of the next operation cycle), given the condition ϑt,

can be computed from the following equations in terms of each possible maintenance
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actions:

Tt(ϑ
t, γ) =























tr, ifD(ϑt, γ) = 1
∫ ∆

0
R(t+ τ |ϑt)dτ + (tr + tf )×

(

1−R(t+∆|ϑt)
)

+
∑

ϑt+∆ 6=F

Pr(ϑt+∆|ϑt)× Tt+∆(ϑ
t+∆, γ), ifD(ϑt, γ) = 0

, (6.1)

Ct(ϑ
t, γ) =














cr + cd × tr, ifD(ϑt, γ) = 1
(

cr + cf + cd × (tr + tf ))×
(

1−R(t+∆|ϑt
))

+
∑

ϑT+∆ 6=F

Pr(ϑt+∆|ϑt)× Ct+∆(ϑ
t+∆, γ), ifD(ϑt, γ) = 0

, (6.2)

where ∆ is the time between two maintenance decision points (observation interval),

R(x|ϑt) is the conditional reliability of the device at time x , given the condition

of the device at time t as ϑt, (1 − R(t + ∆|ϑt)) is the conditional probability of

failure within the time interval (t, t+∆), given the condition ϑt,

∫ ∆

0
R(t+ τ |ϑt)dτ

is the mean operation time within the next maintenance decision interval (t, t +

∆), Pr(ϑt+∆|ϑt) is the probability of observing condition ϑt+∆ at time t+∆, given

condition ϑt at time t, and F is any condition at which the device is failed.

Eq. (6.1) simply states that at time t, if the maintenance action based on policy

γ is to replace a degraded device, then the remaining time to the start of the next

replacement cycle is just tr, which is the time required for replacement. However, if

the maintenance action at time t based on policy γ is to wait until the next decision

point (do nothing), then the remaining time to the start of the next replacement

cycle is the sum of the expected time to replacement if the device fails within the

next decision making interval and the expected time to replacement if the device

does not fail within the next decision making interval. Similarly, the cost before

the start of the next replacement cycle can be defined based on the two possible

maintenance options as shown in Eq. (6.2). As the only option at the point of an

unexpected failure is immediate replacement, then we have: D(ϑt, γ) = 1, if Zt = N

(or Ψt = 0).

The above equations will be used in the remainder of this section to find the

optimal replacement policy. In the following sections, the structure of the cost func-

tion, replacement policy, and the solution procedure to find the optimal replacement

policy are illustrated.
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6.3.2 Cost Function

As stated earlier, the final objective of the replacement policy is to minimize the

expected long-run average cost per unit time of the device. According to the renewal

theory, the cost function can be represented as:

g(γ) =
E(C0(ϑ

0, γ))

E(T0(ϑ0, γ))
, (6.3)

where g(γ) is the average cost per unit time for the policy γ and ϑ0 is the condi-

tion of the device at time 0, that is, the device is at its perfect functioning state

and no condition monitoring data have been recorded yet. Here, E(T0(ϑ
0, γ)) and

E(C0(ϑ
0, γ)) are the expected time and cost of a replacement cycle, respectively.

Now let γ∗ be the optimal condition-based replacement policy and g∗ be the corre-

sponding optimal long-run average cost per unit time of the device. Then we have:

g∗ = min
γ

E(C0(ϑ
0, γ))

E(T0(ϑt, γ))
=

E(C0(ϑ
0, γ∗))

E(T0(ϑt, γ∗))
. (6.4)

As stated earlier, the cost of a preventive replacement is cr+cd×tr and the additional

cost of a failure replacement is cf + cd × tf . Therefore, the expected cost of a

replacement cycle is cr + cd × tr + (cf + cd × tf ) × E(Pr(L ≤ Tγ)), where L is the

total life of the device, Tγ is the replacement time determined by policy γ, and

E(Pr(L ≤ Tγ)) is the expected probability of a failure replacement in a replacement

cycle. Also, as the time required for a preventive replacement is tr and the time

required for a failure replacement is tr + tf , the expected sum of replacement time

and failure time in a replacement cycle is tr+ tf ×E(Pr(L ≤ γ)). It should be noted

that the expected length of the replacement cycle is the sum of replacement time,

failure time, and operation time. Therefore, the expected length of a replacement

interval is tr+tf×E(Pr(L ≤ Tγ))+E(min(L, Tγ)), where Tγ is the replacement time

based on policy γ and E(min(L, Tγ)) is the expected operation time of an operation

cycle based on policy γ. Based on the above discussion and according to the theory

of renewal reward process [151], the long-run average cost per unit time for policy

γ is as follow:

g(γ) =
cr + cd × tr + (cf + cd × tf )× E(Pr(L ≤ Tγ))

E(min(L, Tγ)) + tr + tf × E(Pr(L ≤ Tγ))
. (6.5)

In the next subsection, the structure of the replacement policy as a control-limit

policy and steps to be implemented to estimate the cost function and its elements

under a known policy γ are illustrated.
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6.3.3 Structure of the Replacement Policy

In this subsection, the structure of the dynamic replacement policy for a condition-

monitored device is reviewed. It will be shown that this replacement model is from

the family of the infinite horizon decision process with average cost function, which

can be solved through a well-known method used in dynamic programming, referred

to as policy iteration method [149, 150]. As noted earlier, a replacement policy is

a mapping function from ϑ ∈ S (condition of the device) to a ∈ A (maintenance

actions). Let V (ϑ, γ) be the relative average cost associated with policy γ in infinite

horizon, given that the condition of the device is ϑ. The corresponding policy

iteration algorithm can be implemented in a general form as follows [150]:

Algorithm 6 : Policy Iteration Algorithm For a Replacement Policy

Step 1. Initialization: start with a stationary policy (γ0) and set γ = γ0.

Step 2. Value Determination: consider V (ϑ, γ) and g(γ) as unknowns. Find the

solution of these unknowns using the following system of linear equations for each

ϑ ∈ S.

V (ϑ, γ) =

r(ϑ,D(ϑ, γ)) − g(γ)× y(ϑ,D(ϑ, γ)) +
∑

ϑ′∈S

Pr(ϑ, ϑ′,D(ϑ, γ)) × V (ϑ′, γ), ∀ϑ ∈ S,

(6.6)

where V (ϑ, γ) is the relative expected cost-to-go of replacement policy (γ) in in-

finite horizon when the initial condition is ϑ, r(ϑ,D(ϑ, γ)) is the immediate cost

of replacement policy γ when the condition of the device is ϑ, y(ϑ,D(ϑ, γ)) is the

expected transition time of the replacement policy (expected time to the next de-

cision point) γ when the condition of the device is ϑ, and Pr(ϑ, ϑ′,D(ϑ, γ)) is the

probability that the replacement policy γ transfers the condition of the device from

ϑ to ϑ′.

Step 3. Policy Improvement: For each ϑ ∈ S, determine the action a′ that yields:

argmin
a′

{r(ϑ, a′)− g(γ) × y(ϑ, a′) +
∑

ϑ′∈S

Pr(ϑ, ϑ′, a′)× V (ϑ′, γ)}, ∀ϑ ∈ S (6.7)

Step 4. Iteration: the resulting optimum actions for each condition ϑ ∈ S obtained
from Eq. (6.7), yields the new stationary policy γ′. If γ and γ′ are identical (or if
g(γ) = g(γ′)), then γ is optimal. Otherwise, set γ = γ′ and move back to step 2.
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It is expected that the policy iteration algorithm converges after a finite number

of iterations [148]. Directly applying the above policy iteration for solving the

condition-based replacement problem is subject to a challenge. The challenge is that

the number of possible conditions for the device (ϑ ∈ S) can be extremely large.

This makes the total number of possible policies beyond any practical bound. If the

condition monitoring data can take any of the m possible outputs and the maximum

possible number of condition monitoring points is Lmax (depending on the maximum

total life of the device), then the maximum number of possible conditions is

Lmax
∑

i=1

mi.

For example, if the maximum possible failure time is 100, the maintenance decision

interval is 1, and there are 8 possible condition monitoring outputs, the number of

possible conditions for a device over time is
100
∑

i=1

8i = 2.33×1090. This makes directly

applying the above policy iteration algorithm infeasible in real-world applications.

Therefore, it is desirable to find the optimal policy without having to analyze every

possible combinations of conditions and maintenance actions [149].

To be able to apply the policy iteration technique, we can modify its steps in

the sense that the condition-based replacement policy becomes a condition-based

control-limit replacement policy. As a result, a control index dependent on the con-

dition of the device can be used to determine whether or not to replace a degraded

device. Such control index is used in many papers as in [41, 147]. Such replacement

policy is described in details in the remainder of this chapter. As only two mainte-

nance decision actions are possible at each decision point (do nothing or immediate

replacement), the policy improvement step can be redefined in the sense that by

comparing the expected cost of each of these two possible actions, the action with

lower cost can be determined. Now, let us define the policy improvement system

of equations at time t for condition ϑt considering the two possible actions. The

policy improvement system of equations can be constructed based on the following

optimality equation:

V (ϑt, γ) = min

{

V 1(ϑt, γ), D(ϑt, γ) = 1

V 2(ϑt, γ), D(ϑt, γ) = 0
, (6.8)

where V 1(ϑt, γ) is the relative average cost of replacement policy γ if the mainte-

nance decision is immediate replacement and V 2(ϑt, γ) is the relative average cost

of replacement policy γ if the maintenance decision is do nothing (or wait until the

next inspection point). Using Eq. (6.7), V 1(ϑt, γ) and V 2(ϑt, γ) can be calculated
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as:

V 1(ϑt, γ) = cr + cd × tr − g(γ) × tr + V (ϑ0, γ), (6.9)

and

V 2(ϑt, γ) =
[

cr + cf + cd(tr + tf ) + V (ϑ0, γ)
] [

1−R(t+∆|ϑt)
]

−
g(γ)

(

τt(t+∆|ϑt) + (tr + tf )(1 −R(t+∆|ϑt))
)

+




∑

ϑt+∆ 6=F

Pr(ϑt, ϑt+∆, 0)× V (ϑt+∆, γ)





. (6.10)

The notation τt(t + ∆|ϑt) in Eq. (6.10) is the mean operation time in the interval

(t, t+∆) given ϑt, which can be expressed as follows:

τt(t+∆|ϑt) =

∫ ∆

0
R(t+ τ |ϑt)dτ. (6.11)

Now, for any policy γ, it is possible to perform the policy improvement step by

comparing the cost of two possible options (V 1(ϑt, γ) and V 2(ϑt, γ)), given the

condition of the system (ϑt) and the replacement policy (γ). Then, the best decision

between the two possible options can be determined for any condition ϑ and any

policy γ. According to Eq. (6.9) and Eq. (6.10), if V 2(ϑt, γ) < cr + cd × tr +

V (ϑ0, γ) − g(γ) × tr, then V (ϑt, γ) = V 2(ϑt, γ), that is, the optimal maintenance

action at time t under policy γ is do-nothing (D(ϑt, γ) = 0) and if V 2(ϑt, g) >

cr + cd× tr +V (ϑ0, g)− g(γ)× tr ≥ 0, then V (ϑt, γ) = V 1(ϑt, γ), that is the optimal

action is immediate replacement (D(ϑt, γ) = 1). As shown in Appendix 1, the

condition-based replacement policy can be presented as a control-limit replacement

policy, which is summarized as follows:







CI(ϑt) ≥ g(γ) → D(ϑt, γ) = 1
Ψt = 0 → D(ϑt, γ) = 1
CI(ϑt) < g(γ) → D(ϑt, γ) = 0

, (6.12)

where:

CI(ϑt) =

{

[cf + cd × (tf )]
[

1−R(t+∆|ϑt)
]

τ(t+∆|ϑt) + tf [1−R(t+∆|ϑt)]
+

̟(ϑt, γ)

τ(t+∆|ϑt) + tf [1−R(t+∆|ϑt)]
.

(6.13)

The above replacement policy is a stationary policy (with respect to the condition

of the device), which assigns to each condition a fixed maintenance action. The

term CI(ϑt) is a control index that can be calculated at each maintenance decision

point t, given the condition of the device (ϑt). Now, for any given policy γ and

its corresponding cost g(γ), the decision on replacing a degraded device can be
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determined using Eq. (6.12). This equation also verifies that the replacement policy

can be defined according to its cost. The final replacement time based on policy γ

can now be expressed as:

Tγ = min
{

L, t = j∆ ≥ 0;CI(ϑt) ≥ g(γ)
}

. (6.14)

Now that the structure of the replacement policy in a control-limit form is deter-

mined for each policy γ, the next step is to perform the value determination step.

It can be seen that the only required unknown in Eq. (6.6) that needs to be found

at each step of the policy iteration algorithm is g(γ), which is the average cost of a

new policy. Therefore, the next steps are to find (1) the expected long-run average

cost per unit time of the device in a replacement cycle for policy γ (g(γ)), and (2)

the elements used in Eqs. (6.12)-(6.13) to determine when to replace a degraded

device. Following the steps given in the policy iteration algorithm, an initial policy

can be used as a start point to iteratively find the optimal replacement policy. The

challenging step is the value determination step, which deals with evaluating a pol-

icy and estimating the two elements E(Pr(L ≤ Tγ)) and E(min(L, Tγ)), which are

respectively the expected probability of failure replacement in a replacement cycle

and the expected operation time of a replacement cycle (expected operation time)

under policy γ (Eq. (6.5)). In this thesis, a Monte-Carlo simulation method and an

analytical approach (Appendix A) are given to estimate these two elements. The

mathematical details on how to obtain the replacement policy shown in Eq. (6.12)

are given in Appendix A.

6.3.4 Summary of the Replacement Policy

The replacement policy presented in the previous section has two phases, which are

training phase and implementation phase. In the training phase, the structure of

the optimal replacement policy and its associated cost are determined. In the imple-

mentation phase, using condition monitoring data, the trained control-limit-based

replacement policy is used for final maintenance decision making. The summary of

steps for each phase is illustrated as follows:

I. Training Steps to Develop a Replacement Policy: The steps needed to

train the proposed replacement policy are given in Algorithm 7.

The result of the above training steps is a series of replacement policies and their

associated costs, which should converge to the optimal replacement policy. Now
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Algorithm 7 : Training Steps to Develop a Replacement Policy

Step 1. Set k = 0; select an arbitrary replacement policy (γ0) and its associated cost

(g(γ0)). Remember, a replacement policy is defined with its associated cost (see Eq.

(6.12)). One possible initial policy is to consider Do Nothing for all conditions. The

cost of this policy is
cr + cd × tr + (cf + cd × tf )

E(L) + tr + tf
.

Step 2. Find E(Pr(L ≤ Tγ)) and E(min(L, Tγ)) from the Monte-Carlo simulation

method or from the approach given in Appendix A using E(Pr(L < Tγ |L > 0, ϑ0)),

E(min(L, Tγ)|L > 0, ϑ0). In the associated Monte-Carlo simulation, random tempo-

ral degradation processes and their associated observation processes are generated.

Then, control-limit replacement policy (Eq. (6.12)) is applied on each simulated

run-to-failure data to determine when to replace the degraded device. The term

E(Pr(L ≤ Tγ)) is the percentage of times that the device failed before the re-

placement policy could determine the replacement time (percentage of failure re-

placement) and E(min(L, Tγ)) is the average of the operation cycle considering the

replacement time of each sample based on the current policy. It is clear that a larger

number of simulation runs and simulated samples can improve the correctness of

estimation results. The elements used in Eq. (6.13) are calculated according to the

results shown in Appendix A.

Step 3. Set k = k + 1 and find g(γk) using Eq. (6.5). Here, g(γk) is the cost

associated after applying the kth policy γ.

Step 4. If g(γk) = g(γk−1), then γk is the optimal replacement policy (γ∗ = γk).

Otherwise, move back to step 2.

that the optimal condition-based replacement policy (γ∗) and its associated cost

(g(γ∗)) are known, Eq. (6.12) can be used as an online tool to determine whether

or not to replace a degraded device at a certain condition. In the implementation

phase, the result of replacement policy on each sample is determined. The summary

of the implementation phase is as follows:

II. Implementation Steps: The steps needed to implement the proposed replace-

ment policy as an online tool for maintenance decision making is given in Algorithm

8. It should be pointed out here that the device is always replaced in the case of

an unexpected failure. Then, steps 1-3 need to be repeated to find the replacement

time of the new device.
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Algorithm 8 : Implementation Steps for Replacement Policy

Step 1: Set p = 0. The maintenance decision at this point (time zero) is do nothing.

Step 2: Set p = p + 1. At the pth condition monitoring observation point (pth

maintenance decision making point), collect the condition monitoring indicator value

and determine the condition of the device (ϑtp).

Step 3: Calculate CI(ϑtp) from Eq. (6.13). If CI ≥ g(γ∗), then replace the device

immediately, otherwise do nothing, that is, wait until the next condition monitoring

point and move back to step 2. Also, replace the device when it fails.

6.3.5 Alternative Cost Function

In the replacement policy discussed in Section 6.3.4, the objective was to minimize

the expected long-run average cost per unit of time of a replacement cycle. Some-

times, the maintenance decision makers are interested in minimizing the long-run

average cost of an operation cycle. In this case, the cost function based on policy γ

is as follows:

g(γ) =
cr + cf × E(Pr(L ≤ Tγ))

E(min(L, Tγ))
. (6.15)

Here, the cost of failure includes additional failure cost and downtime cost. The

new replacement policy can be obtained by (1) modifying the new cost of failure

replacement so that it also includes downtime cost and (2) set tr, tf , and cd, to zero.

This type of cost structure has been used in some articles, such as [41, 147].

6.3.6 Inspection Data with Missing Points

As mentioned earlier, the results of this chapter are also applicable for devices under

non-periodic observation intervals, where the intervals between observation points

are not equal. Therefore, condition monitoring data with missing points can be

considered a special case of a non-periodic maintenance decision making.

6.3.7 Reducing the Effect of Outliers

Condition monitoring data in real-world systems are usually subject to noise due

to errors of measurement or the nature of the condition monitoring data. Such

noisy data may result in wrong maintenance decisions. For example, a single noisy

observation at a condition monitoring point may reflect that the device is very likely

to be in a highly-damaged health state, while it is actually still in a normal state.

This kind of outlier may result in a non-monotonic hazard function over time that
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can affect the calculation of the control-limit policy. For example, a noisy data may

result in a high value of CI(ϑt) and therefore unnecessary maintenance action. One

possible approach to deal with noisy data is to check the control-limit more than

once. For example, the replacement policy can be changed to a n-points decision

making rule as follows:







CI(ϑt−i×∆) ≥ g(γ), 0 ≤ i ≤ (n− 1) → D(ϑt, γ) = 1
Ψt = 0 → D(ϑt, γ) = 1
Otherwise, → D(ϑt, γ) = 0

. (6.16)

In the above equation, the control-limit is checked at n consecutive points and the

device is replaced only if the control index of all n points is higher than the control-

limit. It is obvious that applying the above policy is subject to the risk of missing

a failure when the degradation process is very close to the end of the life of the

device and is evolving very fast. In Appendix A, an alternative approach to deal

with non-monotonic hazard function is discussed.

6.3.8 Time-Based Preventive Replacement Policy

One of the most commonly used replacement policies in the literature and real-world

problems is the time-based (age-based) preventive maintenance (TBM) policy under

which the device is replaced at a priori-known time T̺ or at a failure, whichever

occurs first. This constant replacement T̺ is determined regardless of the actual

degradation process associated with a device. The optimal replacement time is the

time for which the following long-run average cost per unit time is minimized:

T ∗
̺ = min



















L, arg min
T̺

cr + cd × tr + (cf + cd × tf )× (1−R(T̺|ϑ
0))

T̺
∫

0

R(x|ϑ0)dx+ tr + tf × (1−R(T̺|ϑ0))



















, (6.17)

where R(x|ϑ0) is the unconditional reliability function at time x (dependent only

on the initial condition of the device, which is being in the working perfectly state).

The solution for the optimal replacement time can be found by direct optimization

or search methods. This type of replacement policy is useful to be compared with

condition-based replacement policy in order to find out whether or not the condition-

based replacement policy is worth implementing.
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6.4 Numerical Example

In this section, simulation-based numerical experiments are used to demonstrate (1)

how the proposed condition-based replacement model can be used for maintenance

decision making and (2) how effective the proposed condition-based replacement

model is with respect to the option of Do Nothing. The structure of the numerical

example is the same as the one used in Chapter 5. A device with 5 levels of health

states with a degradation process evolving according to a NHCTHSMP is considered.

The cost of replacement (cr) is assumed to be $100, 000 and the time required

for replacement (tr) is assumed to be 1 cycle. There is also an additional cost

of failure (cf ), which is equal to $300, 000. Also, there is a downtime cost for

each unit of downtime (cd), which is $30, 000. The additional time required for

failure replacement (tf ) is assumed to be 2 cycles. Later, in this section, by varying

cf/cr, the effect of the cost of failure on the condition-based replacement model is

demonstrated.

In order to be able to apply the condition-based replacement policy, the structure

of the control-limit index and the optimal cost of replacement policy need to be

determined (Training Step). First, the steps listed in Section 6.3.4 are implemented

to find γ∗ and its associated cost g(γ∗). Then, the results of applying optimal

replacement policy on 100 random trajectories of independent run-to-failure data

are presented. Each device is replaced at failure or a preventive replacement time

determined by the replacement policy, whichever occurs first. To find out how

effective the CBM policy is, its associated cost is compared with the case that no

replacement policy exists, that is the device is always replaced at failure. It should

be noted that in theory, the unit cost of the system considering no maintenance

should be
cr + cf + cd × (tr + tf )

E(L) + tr + tf
, where E(L) is the expected operation time to

failure for the device.

Table 6.1 presents the results for the training phase of the condition-based main-

tenance policy, at which the structure of the condition-based replacement policy is

determined. As shown in Table 6.1, the investigation for the optimal replacement

policy is started from an arbitrary policy (γ0), then steps summarized in Section

6.3.4 are iteratively applied until the replacement policy converges to the optimal

replacement policy. As noted earlier, a good choice for initial replacement policy is

to consider the do nothing (DN) policy, which has a unit cost of 8213.6. Results
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show that the optimal replacement policy has an average unit cost of ($2921.6). In

addition, applying the proposed condition-based replacement policy will result in

an average replacement cycle of 48.7.

Table 6.1: Search for the optimal replacement policy

Policy No. (k) g(γk) E(min(L < Tγk)) E(Pr(L < Tγk)) g(γk+1)

0 8213.6 51.06 8.1% 3047.7

1 3047.7 48.77 4.5% 2932

2 2932 48.72 4.3% 2920.9

3 2920.9 48.7 4.3% 2921.6

4 2921.6 48.7 4.3% 2921.6

Therefore, the following control-limit based replacement policy can be used for

replacement decision making at any time point t.

D(ϑt, γ∗) =







1, if CI(ϑt) ≥ 2921.6
0, if CI(ϑt) < 2921.6
1, if Ψt = 0

. (6.18)

Now, that the structure of the replacement policy is determined, it can be used

for maintenance decision making. The result of applying the proposed replacement

policy on 100 random trajectories of independent run-to-failure data is shown in

Figure 6.1. For each sample, the actual failure time and the proposed replacement

time based on the optimal replacement policy are shown. It can be observed from

Figure 6.1 that for 97 samples, the device is replaced at a replacement time suggested

by the optimal replacement policy (replacement time < failure time) and for 3

samples the device is replaced at an unexpected failure. Finally, in Table 6.2, the

result of applying the condition-based replacement model (CBM) is compared with

the case with no maintenance (DN). It can be observed from this table that applying

the proposed condition-based replacement model results in cost reduction of 65.64%.

Table 6.2: Effectiveness of CBM

Type Average Unit Cost Average Replacement Time

DN 8168 56.99

CBM 2806.3 49.11

Cost Reduction (%) 65.64%

To demonstrate how the control-limit policy can be actually used for mainte-

nance decision making, two samples are selected in the sense that for the first one

(Figure 6.2.a), the replacement policy suggested to replace a degraded device before
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Figure 6.1: CBM replacement time - actual failure time

the actual failure time and for the second one (Figure 6.2.b) the actual failure oc-

curred before the replacement policy could prevent it. Also, it can be observed that

for the second case, the control index was very close to the threshold at the failure

point. This observation (inability of the CBM model to predict failure) is very com-

mon as the optimal replacement policy cannot always predict failures before they

occur. The key point here is that the maintenance policy can minimize the average

unit cost over a long period of time.
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Figure 6.2: Implementation of replacement policy on two samples

To analyze the effect of cost of failure on the results of the maintenance policy,

the replacement policy was applied for several combinations of cf/cr (other elements
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are zero). Results are shown in Table. 6.3. For each case of cf/cr, the actual costs

of the condition-based maintenance policy and no maintenance policy (DN) for 100

samples are shown. It can be verified from the results that CBM results in lower

maintenance cost than the no maintenance policy (replace at failure) for all cases.

In addition, it can be observed that the condition-based replacement policy is more

effective when the cost of failure gets larger, that is, the cost reduction is larger.

The final measure investigated here is the average replacement time (ART). It can

be observed from this table that the average replacement time of the replacement

policy decreases when the failure cost is larger.

Table 6.3: Results of CBM for different combinations of cf/cr

cf/cr ART Cost of CBM Cost of DN Cost Reduction (%)

0 57.0 1755 1755 0.0%

0.25 54.2 1927 2193 12.2%

0.5 52.7 1993 2632 24.3%

1 51.1 2074 3509 40.9%

2 49.8 2131 5264 59.5%

3 49.0 2226 7019 68.3%

4 48.4 2316 8774 73.6%

5 48.0 2293 10528 78.2%

6 47.7 2348 12283 80.9%

7 47.3 2262 14038 83.9%

8 47.1 2291 15792 85.5%

9 46.9 2324 17547 86.8%

10 46.7 2356 19302 87.8%

6.5 Summary

In this chapter, a condition-based replacement model is proposed, which can be used

as an online tool to determine when to replace a degraded device. The input for

this CBM framework is just the condition monitoring data. It turns out that the

condition-based maintenance model is from the control-limit family in the sense that

a function of the conditional reliability is calculated over time as the control index

and then it is compared to a pre-defined warning level (threshold) to check whether

or not the device needs to be replaced. The effectiveness of the CBM framework for

replacement decision making was demonstrated through simulation-based numerical

examples. In Chapter 7, the application of this condition-based replacement policy

on maintenance decision making for turbofan engines is demonstrated.
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Chapter 7

Case Study

In Chapter 3, the structure of a flexible stochastic process and its application for

multistate degradation process are discussed. A parameter estimation method to

estimate the characteristic parameters of a known multistate structure is developed

in Chapter 4. In Chapter 5, important diagnostic and prognostic measures for a

multistate structure under the NHCTHSMP are discussed. Finally in Chapter 6,

a condition-based replacement model is introduced, which can employ condition

monitoring data for maintenance decision making. Simulation-based numerical ex-

periments are used for illustration purposes at the end of each chapter.

To demonstrate the application of all of the results of this thesis on diagnostic and

prognostic health monitoring of mechanical systems, a single case study on turbofan

engines extracted from NASA Prognostic Data Repository [90] is considered. This

well-known collection of publicly available data sets focuses on prognostic data sets,

which can be used for the development of prognostic algorithms. The data sets in

this repository have sufficient number of samples, which can be used as training,

validation, and testing sets. Most data sets in this repository include temporal

sequences of condition monitoring data, which are recorded over time from a normal

state until a so-called failure point.

In Section 7.1, the structure of the turbofan degradation data set used in this

thesis is described. In Section 7.2, the structure of the multistate structure to be

used to model the degradation process and its associated observation process is

determined using the results obtained in Chapter 4. In Sections 7.3 and 7.4, im-

portant diagnostic and prognostic measures introduced in Chapter 5 are calculated

for several engines and their effectiveness is discussed. Finally in Section 7.5, a

condition-based replacement policy obtained from the results given in Chapter 6 is
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developed for replacement decision making of turbofan engines and its effectiveness

is evaluated. The advantage of the condition-based maintenance model over the no

maintenance case and the conventional age-based replacement model is discussed in

Section 7.5.2. Also the advantage of using multistate modeling over binary modeling

is discussed in Section 7.5.3. Section 7.5.4 discusses the relative effectiveness of the

replacement policy with respect to an ideal replacement policy. The summary of

this chapter is given in Section 7.6.

7.1 Data Description

The data set given in [90] consists of multivariate time series signals that are col-

lected from turbofan engine dynamic simulation process. The engine run-to-failure

simulation was carried out using C-MAPSS (Commercial Modular Aero-Propulsion

System Simulation), a well-known simulation program for transient operation of

modern commercial turbofan engines, which allows input variations of health re-

lated parameters. This type of engine represents a modern dual-spool, high-bypass

ratio turbofan engine that has been the focus of many controls and diagnostic-

s/health management studies over the past few years [152]. A comprehensive logic

structure is developed in a manner similar to that used in real engine controllers

such that integrator-windup problems are avoided and the controller and regulators

perform as intended over the full range of flight conditions and power levels.

Hundred engines’ run-to-failure time series trajectories are considered in this

thesis (data set FD001), which can be considered to be from a fleet of engines of the

same type. In this chapter, this data set is divided to three data sets as follows: (1)

60 engines are considered for training, (2) 20 engines are considered for validation,

and (3) 20 engines are considered for testing. Each engine starts with different

degrees of initial unknown wear and manufacturing variation, which is considered

to be normal, i.e., it is not considered a fault condition. The engine is operating

normally at the start of each time series, and develops a fault at some point during

the series. The fault grows in magnitude until the system failure. Each record in

a run-to-failure trajectories, which corresponds to a given operation cycle, is a 24-

element vector, consists of three values for the operational settings and 21 values for

engine performance measurements, which are contaminated with noise. All failures

are caused by HPC (High-Pressure Compressor) degradation. For more details on

the engine run-to-failure simulation and the structure of the data used in this thesis,
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interested readers may refer to [90]. In Figure 7.1, 4 different sensor measurements

for Engine No.1 are presented.
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Figure 7.1: Sample condition monitoring feature values for Engine No.1

It can be seen from Figure 7.1 that these features have non-identical but sensi-

tive trends over the age of the device. From the data set, it can also be observed

that there are features that vary very little, or fluctuate very much over time, that

is, no observable trend over time can be found. In Figure 7.2, 4 different perfor-

mance measurements of such type for Engine No. 8 are presented. More detailed

investigation on the data set also verifies that different degradation patterns result

in vastly different lifetimes. In Figure 7.3, the total lifetime for each engine is pre-

sented. It can be seen from this figure that lifetime varies from 128 cycles to 362

cycles (mean=206.3 cycles, standard deviation=46.34 cycles, median = 199 cycles).

It should be pointed out that in the calculation of likelihood function, important

measures, and replacement policy, each three cycles are considered as one time unit

for computational convenience. The results are then superimposed to original cycle

values. Therefore, the final results presented in this chapter are reported according

to the original cycle numbers, but are still subject to the discretization error.
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Figure 7.2: Sample condition monitoring feature values for Engine No. 8

7.2 Multistate Structure

As discussed in Chapter 4, the first step of using a multistate degradation pro-

cess for diagnostics and prognostics is to determine a reasonable structure for the

multistate model in the sense that the stochastic behavior of the degradation and

observation processes can be represented. Structure determination or alternatively

called model selection for any type of device involves two steps, which are (1) con-

figuration (topology) selection and (2) parameter estimation. The purpose of the

configuration selection step is to determine a reasonable topology for the associ-

ated multistate model with indirectly observable states. The main elements that

determine a multistate topology with indirectly observable states are the number of

states (N), transition diagram (Ω), transition types (ξ), transition rate’s statistical

structure (λ), condition monitoring feature (I), and the number of clusters to be

used for final feature representation (V ). Therefore, the multistate topology can be

denoted by ζ = {N,Ω, ξ, λ, I, V }. The detailed description of these elements is illus-

trated in Section 3.3. With regards to the parameter estimation step, parameters

to be estimated (θ) are the ones that characterize the degradation process (Γ) and

the observation process (B ).
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Figure 7.3: Actual life times of 100 engines

In this chapter, the steps defined in Section 4.1 are employed to find the structure

of the multistate model. First, in phase I, the elements of {Ω, ξ, λ, I, V } are pre-

determined. Here, the number of degradation states (N) is considered as the only

topology elements that is unknown and needs to be found. Therefore, multistate

model alternatives have similar multistate structure elements ({Ω, ξ, λ, I, V }) with

different number of states. For each model alternative, parameter estimation using

training data set is performed to determine the characteristic parameters of the

associated structure. Then the model selection criterion (Eq. (4.27)) is used to

determine the best structure among possible candidates. The effectiveness of the

selected structure is further investigated through diagnostic and prognostic measures

and the condition-based replacement model. It should be pointed out that the

final multistate structure used in this chapter is not necessarily the best possible

multistate structure for the case study. Developing a more effective model selection

is an interesting direction for future work. In the following, the steps used in this

thesis to determine {Ω, ξ, λ, I, V } are described.

I: Transition Diagram or Connectivity Between States (Ω): This element

defines the relationship (connectivity) between degradation states. To cover soft

failures (such as a wear process) and hard failures (such as shock process), a pro-
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gressive one-step left-to-right multistate structure is considered where transitions

are allowed either to the neighbor state or to the failure state. It is interesting to

note that the results of the parameter estimation show that it is very unlike that

the device has a hard failure. Figure 7.4 shows N -states left-to-right progressive

multistate structure as an example of a possible structure.

Figure 7.4: N-states left-to-right progressive multistate structure

II. Transition Types ( ξ): As stated in Section 1, the nonhomogeneous semi-

Markov structure is very flexible to be used for degradation transition modeling

as it covers many other structures, such as Markov, homogeneous semi-Markov,

and explicit-duration Markov processes. It is assumed that the transitions to the

neighbor state depend on the level of degradation and the time spent at each state,

while the transitions to the failure state depend on the level of degradation and the

total age of the device. The structures of these transition rates are given in Eq.

(7.1).

III. Transition Rate Distribution (λ): For the distribution of transition rates,

the power law process in the form of Weibull-based hazard function is selected,

which is the most widely used distributions for degradation modeling [141]. The

final statistical form of transition rate function is as follows:

λi,j(s, t) =















βi,j
αi,j

(
t

αi,j
)βi,j−1, 1 ≤ i < N, j = j + 1

βi,j
αi,j

(
s + t

αi,j
)βi,j−1, 1 ≤ i < N − 1, j = N

. (7.1)

IV: Condition Monitoring Feature ( I): In the multistate structure considered

in this thesis, the final output of the observation process is assumed to be a sin-

gle indicator having indirect information regarding the actual health status of the

device. Here, the notation I is used to denote the selected feature for health mon-

itoring. For this case study, there are more than one condition monitoring feature

available to be used as the representative of the observation process. One possible

approach to combine all these features is to use a feature fusion (combination) tech-
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nique. Among all feature fusion techniques, Principal Component Analysis (PCA)

is one of the most widely feature reduction method used in condition monitoring

[82, 153, 154, 155]. PCA is known to be efficient in compressing information and

eliminating correlations between variables. PCA transforms linearly a set of obser-

vations to another set of linearly uncorrelated observations known as the principal

component. The first principal component accounts for the largest variability in the

data and therefore includes more useful information than other principal compo-

nents. In this chapter, the first principal component (FPC) of the set of candidate

features is used as the representative of the observation process. After observing

the trend of the FPC for all engines, it is found that it roughly has a non-decreasing

trend over time. Figure 7.5 presents the first principal component values for Engine

No. 1 over time.
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Figure 7.5: FPC for Engine No. 1

V:Feature Dimension (V ): As discussed earlier in this thesis, the final CM

feature should be represented in a nonparametric discrete form. In other words, the

set of original observation values needs to be converted to several discrete levels.

Among numerous techniques used in the literature to convert the value of a feature

in a continuous domain to a discrete domain without having information about

its relationship with the actual state levels, unsupervised k -means clustering has

been successfully applied in the domain of condition monitoring [83, 156]. The key

challenge of using k -means clustering for dimension reduction is to find the optimal
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values for k, which represents the number of discrete levels for the CM indicators

(m), in the sense that the original stochastic behaviour of the observation process

keeps as unchanged as possible.

Different types of criteria are used in the literature for this purpose. The dis-

cussion on the best method to be used for clustering is beyond the scope of this

thesis. The objective here is to convert original feature values to discrete levels in

the sense that the distribution of the feature (stochastic behaviour) does not change

very much. Generally, if a very small number of clusters are selected, the feature

cannot be a reasonable representative of the degradation process, i.e. it does not

vary much with the age of the device. Therefore, it is important for the number of

clusters to be reasonably large to better reflect the degradation process. However,

considering a very large number of clusters not only may result in misrepresentation

of the original data, but also is computationally expensive. As in this case study, the

selected feature represents a degradation process, it is reasonable to have a feature

with a monotonic trend over the age of the device. To evaluate the variability of

a monotonic trend, the well-known nonparametric score called Mann-Kendall [157]

can be modified in the sense that weights are considered according to the distance

between two points. Now, for the sequence of condition monitoring indicators ex-

tracted from time zero to the failure time, this index can be calculated as:

M −Km =

K
∑

k=1

dk
∑

i=1

dk
∑

j=1,j>i

(t
(k)
j − t

(k)
i )× sgn(O

(k)
j −O

(k)
i ), (7.2)

where sgn(x) =







−1 ifx < 0
0 ifx = 0
1 ifx > 0

, m is the number of clusters, K is the number

of samples, t
(k)
i is the time of the ith observation point for the kth sample and O

(k)
i

is the output of the observation process at time t
(k)
i for the kth sample. Now, the

best value for m is selected in the sense that increasing it does not change very much

the monotonicity index given in Eq. (7.2).

Figure 7.6 presents the change in the monotonicity index by increasing the num-

ber of clusters. It can be seen that monotonicity stays almost unchanged for m≥22.

Therefore, the number of possible CM outcomes is selected as 22 (m=22). Figure 7.7

presents the final CM outputs for Engine No. 1 when m=22. These superimposed

discretized values are considered as the input for parameter estimation. It should be

pointed out here there is no guarantee that this index can find the optimal number
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of possible CM outputs.

0 5 10 15 20 25
3.5

4

4.5

5

5.5

6

6.5

7
x 10

7

Number of Clusters (m)

M
−

K
m

Figure 7.6: Change in the monotonicity index versus the number of clusters

7.2.1 Final Multistate Model Using BIC

Now that the elements of {Ω, ξ, λ, I, V } are defined, possible model alternatives can

be considered as structures with exactly same elements of {Ω, ξ, λ, I, V } and different

values of N (number of states). To determine the value of N (number of states),

as shown in Figure 4.1 for model selection, first the parameter estimation method

(see Chapter 4) is used to train all model alternatives considering different values

for N . Then, the BIC measure introduced in Eq. (4.27) is calculated for each

structure candidate to determine the reasonable values of N. Figure 7.8 presents

the BIC for different model alternatives with different values of N. It should be

pointed out that to avoid over-fitting, an independent validation data set composed

of 20 engines (engines No. 61-80) is used. It can be observed from this figure

that N=7 has the highest value among other alternatives. It should be noted that

as the decreasing trend for BIC is observed for N > 7, the training procedure

is performed only up to N=10. It is important to note that other methods can

also be used to compare different model alternatives. Finding the best possible

structure among several candidates is out of the scope of this work. Later in this

chapter, the advantage of this structure over other candidate structures are also

discussed through the cost of the corresponding maintenance models. Now that the
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Figure 7.7: First principal component for Engine No. 1 and the discretized values

structure of the multistate model is known, it can be used as a tool for diagnostic

and prognostic health monitoring as well as maintenance decision making.

7.3 Health Monitoring Using Diagnostic Measures

In this section, the average degradation level (ADL) is selected as a diagnostic

measure for health monitoring of the 20 Engines (Engines No. 91-100) in the testing

data set. Results shown in Figure 7.9 verify that, overall, this measure roughly

has a non-decreasing trend over time. This condition monitoring measure, which is

sensitive to the level of damage over time, can directly reflect the level of degradation

and therefore can be used as an online tool for degradation monitoring. The results

shown in this figure for all 20 engines indirectly supports that the selected multistate

structure is a reasonable representative of the degradation process. In addition, as

shown in Figure 7.9, this degradation measures can represent different degradation

patterns, from rapid degradation as occurred for Engine No. 93 as well as slow

degradation as occurred for Engine No. 92.
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Figure 7.8: Bayesian Information Criterion (BIC) - the number of states (N)

7.4 Prognostic Measures

The measure of interest calculated in this section for prognostic engine monitoring

is the mean of the remaining life and its associated percentile confidence interval

(95%). For Engines No. 97-100 in the testing data set, the MRL with the actual

remaining life and the 95% percentile confidence interval are shown in Figure 7.10

(estimation starts at cycle 1). It can be seen from this figure that overall the

estimated mean residual life is far from the actual residual life, but it gets closer

to the actual remaining life particularly for larger ages of the device (close to the

failure point). This makes sense as over time, more condition monitoring data are

employed for estimation. Also, as the devices ages, the percentile interval for the

remaining life becomes narrower, that is, the prediction uncertainty decreases. Such

figure can be used as an online tool for estimating the remaining useful life.

In Tables 7.1 and 7.2, the estimated mean failure time (MFT) and the 95%

percentile confidence interval for the total life ([LB,UB]) are calculated for Engines

No. 81-100 at different points in terms of the percentage of the lifetime. As can be

seen in these tables, estimation points are at 70%, 75%, 80%, 85%, 90%, and 95%

of the lifetime of each engine. It should be pointed out that the estimated total life

is the estimated residual life plus the time point at which the estimation is made.

Also, for each engine the actual failure time (AFT) is reported. The following can

be observed from Tables 7.1 and 7.2.
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Figure 7.9: Average degradation level (ADL) for condition monitoring

• Overall, the mean failure time provides reasonable estimates for the actual

failure time, particularly for larger ages of the engines.

• Estimated mean failure times get closer to the actual failure time as the device

ages.

• The provided percentile intervals cover the actual failure times in almost all

cases, particularly at larger ages.

• The percentile intervals are getting narrower as the device ages.

• In more cases, the estimated failure time is lower than the actual failure time.

This is generally better than the case in which the estimated failure time is

higher than the actual failure time. The reason is that overestimating the

failure time may result in unexpected (or catastrophic) failures.
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Figure 7.10: Remaining useful life estimation for Engines No. 97-100

7.5 Condition-based Maintenance

In this section, the condition-based replacement policy introduced in Chapter 6 is

applied on the turbofan engine testing data set to find out how effective it is to find

out when to replace a degraded engine. This section is composed of four subsections.

First, the structure of the control-limit replacement policy is determined. Then, how

the proposed condition-based replacement model can be used for replacement deci-

sion making for Engines No. 81-100 is shown. The effectiveness of the maintenance

model is evaluated through comparison with the Do-Nothing policy (DN) and aged-

based replacement policy (TBM) under different levels of cf/cr. The effectiveness

of the multistate structure compared to the binary case is also demonstrated. Fi-

nally, comments on the possible improvement of the condition-based model and its

effectiveness compared to an ideal replacement policy are provided.
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7.5.1 Development of the Replacement Policy

In order to be able to apply the condition-based replacement policy, the structure

of the control-limit index and the optimal cost of replacement policy need to be

determined (training step). First, the steps listed in Section 6.3.4 are implemented

to find γ∗ and its associated cost g(γ∗). Then, the results of applying the replacement

policy on 20 engines in the testing data set are presented. Each device is replaced at

failure or at a preventive replacement time determined by the replacement policy,

whichever occurs first. To find out how effective the CBM policy is, its associated

cost is compared with the case that no replacement policy exists, that is the device

is always replaced at failure. The cost of replacement (cr) is assumed to be $100,000

and the additional cost of failure replacement is assumed to be $300,000. All other

elements are considered to be zero.

Table 7.3 presents the result for the training phase of the condition-based main-

tenance policy, at which the structure of the condition-based replacement policy is

determined. As shown in Table 7.3, the investigation for the optimal replacement

policy is started from an arbitrary policy (γ0), then steps summarized in Section

6.3.4 are iteratively applied until the replacement policy converges to the optimal

replacement policy. As noted earlier, a good choice for initial replacement policy

is to consider the do nothing policy, which has a cost of g(γ0) = $2039. Also, the

optimal replacement policy has an average cost of $523.2. In other words, in theory

applying the proposed condition-based replacement policy will result in a long-run

average unit cost of $523.2. The expected operation time in each cycle based on

this policy is 191.13. Results also verify that the probability of failure replacement

is theoretically zero.

Now that the structure of the replacement policy is determined, it can be used as

an online tool to determine the replacement time of degraded engines. The engine

is replaced at the suggested replacement time or the failure, whichever occurs first.

Figure 7.11 shows how the developed replacement policy can be used for engines No.

81 and 83. Whenever the condition-based control index exceeds the limit, the device

needs to be replaced. It can be seen from this figure that the suggested replacement

time is lower than the actual failure time for both engines.

To evaluate the effectiveness of the replacement model, the associated cost of

implementing it on the 20 engines in the testing data set is presented. Figure 7.12
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Figure 7.11: Two examples of the control-limit policy

shows the effective replacement time versus the actual failure time for engines No.

81-100. Results in this figure verifies that (1) the replacement times are lower than

the failure time (that is all replacements are preventive replacement) and (2) the

replacement times are reasonably close to the actual failure times.
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Figure 7.12: Suggested replacement time - actual failure time

To analyze the effect of cost of failure on the results of the maintenance policy, the

replacement policy was applied considering several combinations of cf/cr. Results

are shown in Table. 7.4. For each case of cf/cr, the actual costs of the condition-
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based maintenance policy (CBM) and no maintenance policy (DN) and the average

replacement time (ART) for the 20 engines in the testing data set are shown. It can

be verified from the results in this table that CBM results in lower maintenance cost

than the no maintenance policy (replace at failure) for all cases except for the case

where the cost of failure replacement is zero. In addition, it can be observed that

the condition-based replacement policy is more effective when the cost of failure

gets larger, that is, the cost reduction is larger. Also, on average, when the cost of

failure is larger, the device is replaced at an earlier point.

7.5.2 Comparison between Condition-based Replacement Model
and Time-Based Replacement Model

As discussed in Section 6.3.8, one of the most commonly used replacement policies in

the literature and real-world problems is the time-based preventive maintenance pol-

icy under which the device is replaced at a known time T̺ or at a failure, whichever

occurs first. This constant time T̺ is determined regardless of the actual degradation

process associated with a device. The advantage of using a time-based replacement

policy (TBM) is that it does not need any information on the actual degradation

process, therefore, no need for the condition monitoring framework. A reasonable

way to demonstrate the effectiveness of a condition monitoring system is to com-

pare its cost saving with the one from an age-based replacement policy. If the cost

saving is high enough so that it can cover the cost of implementing a condition-

monitoring system, then it can be considered as an effective tool for replacement

decision making.

In Table 7.5, the average replacement times as well as the average unit cost

for both CBM and TBM considering Engines No. 81-100 are shown. Results in

this table verify that (1) the cost of condition-based maintenance is lower than the

cost of time-based maintenance, (2) the condition-based maintenance can result in

higher cost reduction for larger failure costs, and (3) the time-based replacement

times (ART2) are earlier (in almost all cases) than the condition-based replacement

times (ART1), that is TBM is more conservative than CBM and can result in more

unnecessary (early) maintenance actions.
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7.5.3 Comparison between Multistate Structures and Binary struc-
tures

In this subsection, the effectiveness of the multistate structure compared to the

binary structure is evaluated. In Table 7.6, the average replacement time for the

CBM and TBM, the unit cost of CBM, TBM, and Do-Nothing, and the cost reduc-

tion of using CBM compared to (1) TBM and (2)do-nothing for multistate struc-

ture with different levels of N are shown. ART1 and ART2 are respectively the

average operation times associated with the CBM and TBM. To obtain more con-

sistent results, the experiment is repeated for 10 different combinations of cf/cr

(1 ≤ cf/cr ≤ 10). Results in Table 7.6 are the average of these 10 cases. From

the result in this table, it can be verified that (1) CBM and TBM with multistate

structures have lower cost than the binary structure, (2) the cost of the CBM model

with seven states (N=7) is the lowest among all other multistate structures, (3)

condition-based maintenance performs better than the aged-based maintenance and

do-nothing maintenance strategy, (4) the average replacement time of the multistate

structure is higher than the one in TBM, and (5) the average replacement times in

multistate structures are higher than binary structure. These results can justify the

use of multistate structure for degradation modeling.

7.5.4 Comparison between CBM and an Ideal Replacement Policy
(IRP)

From the cost point of view, an ideal block replacement policy is a policy under

which the device is replaced at the observation point right before the actual failure

time. Based on such a policy, not only unnecessary maintenance actions are avoided,

but also catastrophic and unexpected failure are prevented. It should be pointed

out that such a policy is only ideal when the maintenance setup time is negligible.

Although achieving such a replacement policy may be impossible in real-world prob-

lems, calculating the cost of such a policy can provide maintenance decision making

another tool to evaluate the effectiveness of a condition-based replacement policy.

Figure 7.13 shows the relative difference (%) between the cost of the condition-based

replacement policy (CBRP) and an ideal replacement policy (IRP) applied on En-

gines No. 81-100. The results shown is based on the average of 10 levels of cf/cr

(1 ≤ cf/cr ≤ 10). It can be observed from this figure that (1) overall, multistate

structures can result in lower maintenance cost compared to a binary structure and
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(2) the difference between the cost of the proposed replacement policy and an ideal

replacement policy is reasonably low for N > 5 (less than 10%) and approximately

7.7 % for N = 7. This 7.7 % is the maximum possible cost improvement from any

replacement policy compared to the one proposed in this thesis.
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Figure 7.13: Comparison between CBRP and an IRP

7.6 Summary

In this chapter, the application of the proposed multistate modeling on diagnos-

tic and prognostic health monitoring and maintenance decision making is shown

through a case study on turbofan engine data set from the NASA prognostic Data

Repository. The initial elements of a multistate structure are defined and then dif-

ferent model alternatives are compared with a model selection criterion to find the

optimal structure of the multistate process. Diagnostic and prognostic measures

are then calculated for online health monitoring of the device. Finally, a condition-

based replacement model is developed, which can be used to determine when to

replace a degraded engine. Results obtained in this chapter can verify that using

a multistate degradation process for modeling the actual degradation process can

result in significant cost reduction and can prevent catastrophic and costly failures.

Also, the relative effectiveness of the CBM compared to the TBM and the rela-

tive effectiveness of using multistate structure compared to the binary structure are

132



shown. The results applied on condition monitoring of turbofan engines can ver-

ify that multistate structures are very effective in modeling the degradation process

and developing online diagnostic and prognostic health monitoring of systems under

gradual degradation and condition monitoring.
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Table 7.1: Prognostic results for engines No. 81-90

Engine # Measure
Estimation Point (in terms of %) Lifetime

AFT
70% 75% 80% 85% 90% 95%

81
LB 197.4 202.6 207.8 214.0 217.0 228.4

240MFT 222.2 225.5 224.5 227.7 224.3 231.7
UB 255.4 256.0 247.7 246.5 237.5 241.5

82
LB 220.8 230.2 222.3 227.1 211.0 207.1

214MFT 282.8 290.3 266.8 270.4 227.3 218.8
UB 366.0 366.0 330.8 333.1 248.7 238.1

83
LB 274.1 279.9 281.9 276.4 280.3 282.0

293MFT 327.8 330.7 322.6 299.5 296.2 292.3
UB 366.0 366.0 366.0 330.6 317.0 307.5

84
LB 208.0 215.7 224.6 237.2 241.4 255.4

267MFT 226.8 230.6 237.3 249.2 249.7 258.5
UB 250.8 250.7 254.9 265.4 263.5 268.0

85
LB 169.0 170.4 171.6 177.8 183.9 181.8

188MFT 208.0 194.7 193.2 193.9 197.7 190.9
UB 266.0 228.0 223.6 214.9 216.6 204.9

86
LB 222.2 235.5 236.0 245.9 253.0 264.3

278MFT 243.8 255.7 250.7 258.6 260.4 266.9
UB 272.9 282.5 270.8 276.2 274.2 277.1

87
LB 154.8 158.9 159.8 163.8 165.3 171.6

178MFT 180.7 181.4 176.6 178.0 175.2 177.4
UB 219.4 211.3 200.0 197.4 189.6 190.3

88
LB 191.6 204.5 199.3 207.3 206.4 203.0

213MFT 235.6 246.6 222.9 229.0 221.1 212.3
UB 299.4 307.3 254.5 258.3 241.1 226.7

89
LB 202.2 195.2 202.5 205.2 207.7 207.9

217MFT 248.0 220.8 229.4 225.0 222.4 216.1
UB 313.5 257.1 274.3 252.9 242.3 230.3

90
LB 172.5 166.6 160.8 150.0 153.0 150.7

154MFT 234.7 212.4 199.5 166.8 167.6 161.2
UB 318.5 278.2 262.8 189.7 187.5 176.1
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Table 7.2: Prognostic results for engines No. 91-100

Engine# Measure
Estimation Point (in terms of %) Lifetime

AFT
70% 75% 80% 85% 90% 95%

91
LB 111.1 115.5 118.1 116.6 123.7 129.3

135MFT 127.2 129.8 131.8 126.3 129.7 132.0
UB 148.2 149.3 150.5 140.7 142.1 142.7

92
LB 286.1 301.9 301.3 306.0 315.7 325.8

341MFT 324.8 337.1 324.0 321.0 328.7 334.9
UB 366.0 366.0 354.7 341.2 346.5 348.9

93
LB 157.2 163.0 155.3 154.4 152.5 149.4

155MFT 202.1 206.5 180.5 177.3 167.8 159.1
UB 266.1 268.8 214.8 209.1 188.2 173.6

94
LB 206.1 213.2 218.8 230.3 236.8 246.5

258MFT 226.8 231.5 233.9 243.1 249.1 251.8
UB 254.5 256.4 254.6 260.8 266.2 264.9

95
LB 256.3 260.8 261.9 269.3 269.1 271.8

283MFT 310.0 304.0 297.0 291.3 283.4 280.9
UB 366.0 366.0 356.7 320.8 302.8 294.9

96
LB 276.3 280.5 295.7 298.0 305.0 318.7

336MFT 315.5 305.7 316.1 312.1 315.0 325.1
UB 366.0 344.8 343.2 331.8 330.2 338.4

97
LB 211.6 218.8 211.7 217.6 201.0 197.7

202MFT 271.1 277.4 258.2 261.3 221.5 207.5
UB 353.0 358.6 324.7 324.5 253.4 221.8

98
LB 164.0 160.9 157.0 161.0 156.1 151.1

156MFT 222.0 205.1 185.1 184.2 171.8 161.7
UB 303.3 268.5 226.3 215.2 192.5 176.5

99
LB 179.0 170.3 175.9 175.1 174.1 178.2

185MFT 225.7 195.2 198.0 192.1 185.4 185.9
UB 292.8 230.4 227.6 215.7 202.2 199.3

100
LB 183.5 177.5 182.5 180.8 184.9 192.8

200MFT 223.9 200.8 204.7 196.4 199.6 199.2
UB 281.9 232.0 234.7 217.0 219.1 212.2

Table 7.3: Search for control-limit replacement policy

Policy No. (k) g(γk) E(min(L < Tγk)) E(Pr(L < Tγk)) g(γk+1)

0 2039 188.37 0% 530.9

1 530.9 190.95 0% 523.7

2 523.7 191.13 0% 523.2

3 523.2 191.13 0% 523.2
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Table 7.4: CBM for different combinations of cf/cr for engines No. 81-100

cf/cr ART Cost of CBM Cost of DN Cost Reduction (%)

0 224.7 445.1 445.1 0

0.25 220.5 459.6 556.4 18.7

0.5 216.9 461 667.7 30.9

1 212.9 469.8 890.3 47.2

2 208.7 479.3 1335.4 64.4

3 207.3 482.4 1780.5 72.9

4 206.4 484.5 2225.7 78.2

5 205.7 486.2 2670.8 81.8

6 205.4 487 3116.0 82.4

7 205.4 487 3561.1 86.3

8 205.2 487.3 4006.2 87.8

9 204.9 488 4451.4 89.0

10 204.8 488.4 4896.5 90

Table 7.5: Comparison between CBM and TBM

cf/cr ART1 ART2

Cost of
CBM

Cost of
TBM

Cost Reduction
(%)

0 224.7 224.7 445.1 445.1 0

0.25 220.7 224.7 459.8 556.4 18.7

0.5 216.9 199.9 461 650.5 29.1

1 212.9 156.0 469.8 775.2 39.4

2 208.7 126.0 479.3 793.7 39.6

3 207.3 114.0 482.4 877.2 45

4 206.4 105.0 484.5 952.4 49.12

5 205.7 102.0 486.2 980.4 50.4

6 205.4 99.0 487 1010.1 51.8

7 205.4 96.0 487 1041.7 53.2

8 205.2 93.0 487.3 1075.3 54.7

9 204.9 90.0 488 1111.1 56.1

10 204.8 90.0 488.4 1111.1 56

Table 7.6: Comparison between multistate and binary structures

N ART1 ART2

Cost of
CBM

Cost of
TBM

Cost of
DN

Cost Reduction
1(%)

Cost Reduction
2(%)

2 131.4 126.3 804.7 835.0 2893.4 4.1 66.0

3 168.2 102.6 615.3 1082.1 2893.4 42.6 74.5

4 191.3 99.9 524.4 1065.6 2893.4 49.7 77.0

5 199.9 102.6 500.6 1022.8 2893.4 50.2 77.6

6 203.9 103.8 490.5 1010.5 2893.4 50.6 77.9

7 206.6 107.1 484.0 972.8 2893.4 49.5 78.2

8 205.5 128.7 489.2 819.0 2893.4 40.1 78.0

9 203.8 125.7 491.1 828.5 2893.4 40.6 78.1

10 206.2 136.5 490.0 786.1 2893.4 37.4 77.8
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Chapter 8

Summary and Future Work

This chapter summarizes the contributions on using a multistate stochastic model

for degradation analysis and describes some problems that remain to be further

addressed, and suggests directions for future work.

8.1 Summary of Contributions

This thesis aims to provide maintenance decision makers a tool that can utilize

condition monitoring data to facilitate online degradation and health monitoring

and effective maintenance decision making for devices under continuous degradation.

The contribution made in this thesis is summarized in four categories as described

in the next four subsections.

8.1.1 Multistate Degradation Modeling Using NHCTHSMP

As most mechanical devices operate under some sort of stress, load, and static

and dynamic forces, they tend to deteriorate or degrade over time. In real-world

systems, this gradual deterioration process eventually causes the systems to be un-

able to operate at their desired level of performance, reliability, and/or availability.

Therefore, the overall health status of most mechanical systems gradually deteri-

orates over time. In conventional reliability analyses, systems are often assumed

to be in either of two possible health states, namely, the working state and the

failure state. However, most mechanical devices operating under a stress or a load

condition deteriorate or degrade over time and may perform at several intermediate

health states ranging between working perfectly to complete failure. Each state

level may reflect certain operational performance, efficiency, and physical property

of the device. Multistate degradation models provide more realistic representation
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of mechanical systems.

Multistate stochastic models are very common tools in degradation and fail-

ure analysis. In this thesis, the structure of a general multistate stochastic process

called nonhomogeneous continuous-time semi-Markov process and its application

in degradation modeling are discussed. Also, how to combine this structure with

an observation process indirectly reflecting the degradation process is illustrated.

As a result, the mathematical framework for the degradation and observation pro-

cesses associated with a condition-monitored device under multistate degradation

processes with unobservable states is developed. Due to its flexible structure, it can

be used as an effective tool to simultaneously formulate degradation and observation

processes of devices under condition monitoring where health states are not directly

observable. This structure can cover many of the previously used structures for

degradation modeling such as Markov and semi-Markov processes.

8.1.2 Training a Multistate Structure with Condition Monitoring
Data

The primary step to use a stochastic process for modeling the degradation and

observation processes associated with a device under condition monitoring is to find a

reasonable structure that can represent the degradation process. Directly observing

the health states may be too costly and technically complicated, and because of that,

unsupervised estimation methods need to be developed for devices with unobservable

states. In an unsupervised estimation method, the data required for estimation is

only the observation process. In this thesis, the main elements of the multistate

structure to be used for modeling the degradation and observation processes are

first illustrated. Then, an unsupervised parameter estimation method is introduced,

which can employ historical condition monitoring data for training a multistate

degradation structure with unobservable states. This parameter estimation method

can estimate the parameters that describe the stochastic behaviour of degradation

transition between states as well as the elements of the observation probability

matrix, which characterize the relationship between the degradation process and

the observation process.
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8.1.3 Diagnostic and Prognostic Measures for Online Degradation
Monitoring

The ultimate objective of condition monitoring is to provide useful information on

the current and future health status of a device under operation. Generally, this

type of information is reported by some important characteristic and performance

measure, which are easy to understand and directly or indirectly represent some

important aspects of the degradation and observation processes associated with the

device under study. These important measures are defined in the sense that they can

finally be used for maintenance decision making. As in reality, stochastic properties

of the degradation and observation processes result in different degradation and

observation patterns, it is more reasonable to employ information available on the

actual operation of the device for performance measures calculation. These types

of measures are referred to as dynamic measures, that is, they change over the age

of the device and therefore reflect the dynamic behavior of the degradation and

observation processes. In this thesis, the mathematical formulas for some important

dynamic measures of NHCTHSMP are introduced. Each measure is defined to

reflect a certain aspect of the degradation process so that it can be employed as

online tool for diagnostics and prognostics.

8.1.4 Condition-based Replacement Model

Maintenance activities are the set of actions during the life cycle of a system (or a

device), which intend to keep it in working condition as much as possible. Condition-

based maintenance is a type of preventive maintenance, which is based on monitoring

a parameter of the condition of a device through methods such as direct measure-

ment, inspection, and condition monitoring. The ultimate objective of condition

monitoring is to enable providing some useful information that can be used for

maintenance decision making in order to avoid unnecessary maintenance actions

and prevent catastrophic and costly failures.

Maintenance decision making in the presence of condition monitoring data in-

volves finding the answer for the key question, that is, when (under what condition)

to replace a degraded device. When the device is under condition monitoring, de-

cision makers can utilize the most updated information on the degradation and

observation processes obtained through condition monitoring indicators for decision

making. In this thesis, the mathematical framework for a dynamic replacement
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policy for a device with multistate health levels and unobservable states, where the

degradation process follows a NHCTHSMP is introduced. Such framework can be

used as an online tool that can employ condition monitoring data to determine

when to replace a degraded device. It is shown in this thesis that employing con-

dition monitoring data for maintenance decision making can actually result in the

reduction of maintenance cost. Also by employing the most updated information on

the degradation process, it can prevent unnecessary maintenance actions and catas-

trophic failures. In addition, it is shown that condition-based maintenance can be

more effective when the stochastic behaviour of the degradation process is modeled

through a multistate degradation process with hidden states indirectly observable

through condition monitoring.

8.2 Problems to be Further Addressed and Future
Work

Although the structure of this thesis is defined in the sense that important challenges

and limitations of current models in stochastic degradation modeling of devices

with multistate structures are covered, there are still some problems that need to be

further addressed. Also, the proposed models have some new challenges, which need

to be further described. For each challenge, topics for future work are discussed.

8.2.1 Computational Complexity and Estimation Error

The complexity of applying the unsupervised estimation problem presented in this

thesis is sensitive to the number of states and transitions, the structure of the

transition rate functions, the number of data histories used for parameter estimation,

and the level of discretization used to convert continuous time points to discrete

time points (the discretization step considered throughout this thesis is 1). The

computational time required for training a single multistate structure can be very

long depending on the above factors. Also, the proposed estimation method does not

guarantee the global optimal solution for the parameters of the model. The above

challenges verify that there is a need for developing efficient methods that can (1)

work better when the size of the problem is large, and (2) minimize estimation

error. A possible topic for future research would be to analytically investigate the

convergence rate for the parameter estimation method, which has not been discussed

in this thesis. Another shortcoming of the models introduced in Chapters 4-6 is
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the discretization error occurring when calculating some of the required measures.

Developing more efficient approaches to be able to minimize the discretization error

is another topic for future research.

8.2.2 Finding the Structure of the CM Feature

The assumption made throughout this thesis is that the condition monitoring in-

dicator and its stochastic structure are known. However, such information is not

always easy to obtain in real-world problems. Therefore, it is important to inves-

tigate an efficient approach, which can be used to select the best feature as the

representative of the observation process, which has a stochastic relationship with

the actual degradation levels.

8.2.3 Condition-based Maintenance for Systems with More Than
One Device

The condition-based framework in this thesis is applicable to a single device under

gradual degradation. However, in many real cases, the decision makers have to make

maintenance decisions for a system with more than one device. In such cases, the

failure of one device may affect the degradation pattern of other devices. Also, the

replacement cost and failure cost of each device may also be affected by the degrada-

tion pattern of other devices in the system. Therefore, it is extremely important to

develop a framework, which can utilize condition monitoring information obtained

from multiple sensors for maintenance decision making for the whole system, not

just one element of the system. Therefore, developing such frameworks that are

efficient at handling real-world systems, where the degradation of a component is

affected not only by its own failure modes, but also by other components in the sys-

tem, is crucial. Another topic for future research work is to develop a more efficient

(from the computational point of view) condition-based replacement policies that

are optimal for any type of hazard functions (e.g. non-monotonic hazard functions).

8.2.4 Efficient Model Selection

Using a stochastic process for maintenance decision making requires efficient train-

ing of the selected process to be used for degradation modeling. In this thesis, a

simple enumerative approach is proposed, which can be used to compare several

multistate model alternatives. This approach is subject to several challenges. The

first challenge is that the number of model alternatives can theoretically be very
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large, which can make the model selection process very time-consuming or even in-

feasible. The other challenge is that it can only be used to compare different options,

that is, there is no guarantee that the final selected structure is optimal. Another

challenge is that applying such model selection framework requires a large amount

of training and validation data, which are not always available in practical cases.

Therefore, it is important to develop efficient model selection techniques that can

overcome the above challenges.
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Appendix A

In this appendix, the steps needed to find the control-limit replacement policy are

illustrated. These steps are very similar to the steps given in [41, 158] to find the

control-limit replacement policy except that (1) the reliability function is directly

conditional on the history of observed condition monitoring data, (2) the downtime

cost and the cost and time of failure replacement and preventive replacement are

also considered. While the focus of this thesis is on devices with non-decreasing

hazard functions, an approximate approach to deal with the non-monotonic hazard

functions is also provided. It should be noted that analytical evaluation of this

approach is out of the scope of this thesis. Due to its computational complexities,

a more efficient approach to deal with cases with a general form of hazard function

(e.g. non-monotonic hazard rates) needs to be investigated in future work.

In order to compare the two maintenance options for policy γ at time t at each

iteration of the policy improvement step, the difference between the associated value

functions can be calculated as follows:

V 2(ϑt, γ) − V 1(ϑt, γ) =
[

cr + cf + cd × (tr + tf ) + V (ϑ0, γ)
] [

1−R(t+∆|ϑt)
]

−

g(γ)
(

τt(t+∆|ϑt) + (tr + tf )(1−R(t+∆|ϑt))
)

+





∑

ϑt+∆ 6=F

Pr(ϑt, ϑt+∆, 0) × V (ϑt+∆, γ)



 −
[

cr + cd × tr − g(γ) × tr + V (ϑ0, γ)
]

=

(cf + cd × tf )(1−R(t+∆|ϑt))− g(γ)
(

τt(t+∆|ϑt) + tf × (1−R(t+∆|ϑt))
)

+




∑

ϑt+∆ 6=F

Pr(ϑt, ϑt+∆, 0) × V (ϑt+∆, γ) − V 1(ϑt+∆, γ)×R(t+∆|ϑt)



 . (A.1)
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For notational convenience, let ̟(ϑt, γ) be:

̟(ϑt, γ) =




∑

ϑt+∆ 6=F

Pr(ϑt, ϑt+∆, 0) × V (ϑt+∆, γ)− V 1(ϑt+∆, γ)×R(t+∆|ϑt)



. (A.2)

It is obvious that if ̟(ϑt, γ) + (cf + cd × tf )(1−R(t+∆|ϑt))− g(γ)(τt(t+∆|ϑt) +

tf × (1 − R(t + ∆|ϑt)) ≥ 0, then V 2(ϑ, γ) ≥ V 1(ϑ, γ) and therefore the optimal

decision at time t under policy γ is to replace immediately. On the other hand, if

̟(ϑt, γt)+(cf+cd×tf )(1−R(t+∆|ϑt))−g(γ)(τt(t+∆|ϑt)+tf×(1−R(t+∆|ϑt)) < 0,

then V 2(ϑ, γ) < V 1(ϑ, γ) and the optimal decision at time t under policy γ is do

nothing. As a result, the following replacement rule at time t can be defined:







CI(ϑt) ≥ g(γ) → D(ϑt, γ) = 1
Ψt = 0 → D(ϑt, γ) = 1
CI(ϑt) < g(γ) → D(ϑt, γ) = 0

, (A.3)

where

CI(ϑt) =

[cf + cd × (tf )]
[

1−R(t+∆|ϑt)
]

τ(t+∆|ϑt) + tf [1−R(t+∆|ϑt)]
+

̟(ϑt, γ)

τ(t+∆|ϑt) + tf [1−R(t+∆|ϑt)]
. (A.4)

The term CI(ϑt) is the control index which can be calculated at time t based on

the condition of the device. The first term on the left side of CI(ϑt) can be simply

calculated by finding the conditional reliability function as given in Eq. (5.10) and

the expected conditional operation time in the interval (t, t + ∆). The remaining

part of calculating this control index is to evaluate ̟(ϑt, γ).

It is obvious that for any policy γ, V (ϑt+∆, γ) ≤ V 1(ϑt+∆, γ) (V (ϑt+∆, γ) =

min{V 1(ϑt+∆, γ), V 2(ϑt+∆, γ)}). Therefore, we have

Pr(ϑt, ϑt+∆, 0)×V (ϑt+∆, γ)−Pr(ϑt, ϑt+∆, 0)×V 1(ϑt+∆, γ) ≤ 0. Now, as it is known

that
∑

ϑt+∆ 6=F

Pr(ϑt, ϑt+∆, 0) = R(t+∆|ϑt), then:





∑

ϑt+∆ 6=F

Pr(ϑt, ϑt+∆, 0) × V (ϑt+∆, γ)− V 1(ϑt+∆, γ)×R(t+∆|ϑt)



 ≤ 0, which

means ̟(ϑt, γ) ≤ 0. Based on the above property, several scenarios can be con-

sidered for CI(ϑt). It is clear that when
[cf + cd × (tf )]

[

1−R(t+∆|ϑt)
]

τ(t+∆|ϑt) + tf [1−R(t+∆|ϑt)]
< g(γ),

then CI(ϑt) < g(γ), which means → D(ϑt, γ) = 0, that is, the optimal decision is do
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nothing. It can also be shown from the results in [159] that when the hazard function

is non-decreasing (which is usually the case for devices under gradual degradation

and no repair), if
[cf + cd × (tf )]

[

1−R(t+∆|ϑt)
]

τ(t+∆|ϑt) + tf [1−R(t+∆|ϑt)]
≥ g(γ), then CI(ϑt) ≥ g and

therefore D(ϑt, λ) = 1 and V (ϑt, γ) = V 1(ϑt, γ), that is the optimal decision at

time t is to replacement immediately. Under such a condition, the calculation of the

̟(ϑt, γ) is unnecessary. Therefore, the control index can be simplified to:

CI(ϑt) =
[cf + cd × (tf )]

[

1−R(t+∆|ϑt)
]

τ(t+∆|ϑt) + tf [1−R(t+∆|ϑt)]
. (A.5)

In a general form of hazard function (e.g. when it does not have a monotonic trend),

̟(ϑt, γ) should be evaluated for maintenance decision making. It is important to

note that if V (ϑt+∆, γ) = V 1(ϑt+∆, γ) for all ϑt+∆ ∈ S, that is, if the cost of replace

immediately is less than the cost of do nothing at time (t + ∆) for all possible

conditions (ϑt + ∆), then ̟(ϑt, γ) = 0. However, if V (ϑt+∆, γ) = V 2(ϑt+∆, γ) for

any ϑt+∆ ∈ S, then ̟(ϑt, γ) can be less than zero. The remainder of this appendix

deals with cases where
[cf + cd × (tf )]

[

1−R(t+∆|ϑt)
]

τ(t+∆|ϑt) + tf [1−R(t+∆|ϑt)]
≥ g(γ), but CI(ϑt) is still

less than g(γ). Ignoring ̟(ϑt, γ) in such cases may result in early replacement. As

stated in [147], it is very hard to find a practical decision rule, which is optimal

in a general case of hazard function (e.g. non-monotonic hazard function). Two

possible approaches can be employed to deal with non-monotonic hazard functions.

If the hazard function of the device over time is expected to be non-decreasing,

but noisy data may lead to a non-monotonic hazard function, then the multiple

points control policy discussed in Section 6.3.7 can be used as an option to decrease

unnecessary maintenance actions. However, if the hazard function of the device

can theoretically be non-monotonic, then ̟(ϑt, γ) needs to be carefully evaluated

to avoid unnecessary maintenance actions. In the remainder of this appendix, an

approach to deal with such cases is given.

At time t, the expected value of V (ϑt+∆, γ), given that the device survives the

next observation interval, can be calculated as:

E(V (ϑt+∆, γ)) =







∑

ϑt+∆ 6=F

Pr(ϑt, ϑt+∆, 0)× V (ϑt+∆, γ)

R(t+∆|ϑt)






. (A.6)

From the above equation and the definition of ̟(ϑt, γ), we have:

̟(ϑt, γ) = R(t+∆|ϑt)×
(

E(V (ϑt+∆, γ))− V 1(ϑt+∆, γ)
)

. (A.7)
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Now, let E(Pr(L < Tγ |L > t + ∆, ϑt)) be the expected probability of a failure

replacement, given that the device has not failed up to time (t+∆) and condition ϑt

is known. Also, let E(min(L, Tγ)|L > t+∆, ϑt) be the expected time to replacement,

given that the device has not failed up to time (t +∆) and condition ϑt is known.

Now, we have:

E(V (ϑt+∆, γ)) − V 1(ϑt+∆, γ) =

min{0, (cf + cd × tf )× E(Pr(L < Tγ |L > t+∆, ϑt))−

g(γ)×
(

E(min(L, Tγ)|L > t+∆, ϑt) + tf × E(Pr(L < Tγ |L > t+∆, ϑt))
)

}. (A.8)

Eq. (A-8) presents the expected cost-saving of do nothing with respect to replace

immediately, given that the device has not failed up to time (t+∆) and condition ϑt

is known. The last remaining steps to find̟(ϑt, γ) are to estimate E(Pr(L < Tγ |L >

t+∆, ϑt)) and E(min(L, Tγ)|L > t+∆, ϑt). Let us define a(ϑt, γ) as the time point

where the value of control index will be equal to the average cost of replacement

policy γ, given that the current condition of the device is ϑt. The time point a(ϑt, γ)

can be estimated by solving the equation CI(x|ϑt) = g(γ), where CI(x|ϑt) is the

expected value of the control index at time x, given that the current condition of

the device is ϑt, the cost of the policy γ is g(γ), and the device has survived until

time point x. The element CI(x|ϑt) can be calculated using Eq. (A.4) by adding

the condition of L > x to R(x+∆|ϑt), τ(x+∆|ϑt), and ̟(ϑt, γ). The final step is

to estimate E(Pr(L < Tγ |L > t+∆, ϑt)) and E(min(L, Tγ)|L > t+∆, ϑt).

Let k be such an integer, that (k − 1)∆ ≤ a(ϑt, γ) < k∆. Now, similar to

the backward recursion approach given in [159], E(Pr(L < Tγ |L > t, ϑt)) and

E(min(L, Tγ)|L > t, ϑt) can be obtained by the following equations:

E
(

Pr(L < Tγ |L > t, ϑt)
)

=






















0 t ≥ k∆
1−R(a(ϑt, γ)|ϑt) t = (k − 1)∆
(1−R(t+∆|ϑt))+
∑

ϑt+∆ 6=F

Pr(ϑt, ϑt+∆, 0) ×E(Pr(L < Tγ |L > t+∆, ϑt+∆)) t < (k − 1)∆

,

(A.9)
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E
(

min(L, Tγ)|L > t, ϑt
)

=


























































0 t ≥ k∆
a(ϑt,γ)
∫

t

R(τ |ϑt)dτ t = (k − 1)∆

∆
∫

0

R(t+ τ |ϑt)dτ+

∑

ϑt+∆ 6=F

Pr(ϑϑt,t+∆, 0)× E(min(L, Tγ)|L > t+∆, ϑt+∆) t < (k − 1)∆

.

(A.10)

Unfortunately, directly solving Eqs. (A.9)-(A.10) is computationally very expensive

because it requires enumerating over all possible combinations of future conditions.

In the above equations,
∑

ϑt+∆

Pr(ϑt, ϑt+∆, 0) × E(Pr(L < Tγ |L > t + ∆, ϑt+∆)) can

be estimated by R(t+∆|ϑt)× E(Pr(L < Tγ |L > t+∆, ϑt)) and
∑

ϑt+∆

Pr(ϑt+∆, ϑt, 0) ×E(min(L, Tγ)|L > t+∆, ϑt+∆) can be estimated by

R(t+∆|ϑt)× E(min(L, Tγ)|L > t+∆, ϑt). Now, for any t ≤ x, we have:

E
(

Pr(L < Tγ |L > x, ϑt)
)

=














0 x ≥ k∆
1−R(a(ϑt, γ)|ϑt, L > x) x = (k − 1)∆
(1−R(x+∆|ϑt, L > x))+
R(x+∆|ϑt, L > x)× E(Pr(L < Tγ |L > x+∆, ϑt)) x < (k − 1)∆

, (A.11)

E
(

min(L, Tγ)|L > x, ϑt
)

=


















































0 x ≥ k∆
a(ϑt,γ)
∫

t

R(τ |ϑt, L > x)dτ x = (k − 1)∆

∆
∫

0

R(x+ τ |ϑt, L > x)dτ+

R(x+∆|ϑt, L > x)× E(min(L, Tγ)|L > x+∆, ϑt) x < (k − 1)∆

. (A.12)

Now, Eqs. (A.11)-(A.12) can be recursively (backward) employed to estimate

E(Pr(L < Tγ |L > t, ϑt)), E(Pr(L < Tγ |L > t + ∆, ϑt)), E(min(L, Tγ)|L > t, ϑt),

and E(min(L, Tγ)|L > t+∆, ϑt) for t ≥ 0. Applying the above described approach

to deal with non-monotonic hazard function is subject to the error of estimation.
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Therefore, a more efficient method which can deal with non-monotonic hazard func-

tions needs to be developed in future work.
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