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This thesis is dedicated to my family



Abstract

In this thesis, the author developed an Adaptive Fuzzy Network (AFN) with supervised
and reinforcement learning mechanisms. The AFN was applied to the adaptive finite state
control of the computer simulated swing phase of paraplegic locomotion. The swinging
leg was modeled as a compound pendulum with electrically stimulated quadriceps and a
powered hip brace.

It was found that the supervised learning controller was able to mimic a previously
optimized open-loop controller after approximately ten training trials and could use sensor
feedback to cope with slight parameter variations which caused the open-loop controller to
fail. The reinforcement learning controller was able to learn a similar optimal control strat-
egy using only evaluative reinforcements and could re-adapt to new models with significant
parameter variations within tens of trials after previously learned control strategy failed.
Starting from no experience, the reinforcement learning controller required hundreds of tri-
als to succeed. However, incorporating a priori knowledge greatly accelerated the learning

process, which is important for clinical implementation.



Preface

This thesis is the outcome of two-year graduate study and research from 1993 to 1995 in the
Department of Biomedical Engineering at the University of Alberta. Part of the research
was carried out at the Rehabilitation Research Center of Glenrose Rehabilitation Hospital
and at the Alberta Microelectric Center. The following is a brief outline of the thesis:

Chapter 1 is an introduction to biological motor control systems, the role of the
spinal cord in motor control, Spinal Cord Injury (SCI), and the Functional Neuromuscular
Stimulation (FNS) technique.

Chapter 2 is a literature review of adaptive nonlinear control in general and control
strategies for FNS in particular. Based on this review, my initial hypothesis for this thesis
was proposed.

Chapter 3 describes the methods, including the computer model of the swinging leg
used in the computer simulation, and the adaptive fuzzy network. Section 3.1 describes the
computer model of the FNS-induced motion of the swinging leg; Section 3.2 describes the
adaptive fuzzy logic system, in which fuzzy set theory was introduced, and the Adaptive
Fuzzy Network (AFN) was developed. The supervised learning algorithm for the AFN
was formulated using the mean squares error as optimal object function and a gradient
algorithm for updating internal parameters. A test of the AFN’s ability to approximate
a function was verified using a nonlinear function; Reinforcement learning is introduced,
including the REINFORCE and the TD algorithms, as well as the relationship between
Reinforcement Learning and Dynamic Programming. This is followed by the formulation
of the specific reinforcement learning algorithm for the AFN.

Chapter 4 represents the results of computer simulations demonstrating the adaptive
control of the FNS swinging leg. The simulations include supervised learning, reinforcement

learning, and a combination of both techniques.



Chapter 5 is the discussion of results, and the conclusions.
Chapter 6 is suggestions for further work.
In the Appendixes, Details of swinging leg model are given.
The thesis was prepared with IXTEX typesetting software and GNU Emacs editor on Sun

workstations. 1

Feng Wang
December, 1995

Edmonton, Alberta, Canada

1To meet the required thesis format of graduate school, BTpXdocument style macro thesis.sty designed
by Randal Peters (1992) and Fahiem Bacchus (1987) is used. Figures are either directly exported from
MATLAB simulation software or scanned from references using HP ScanlJet, and then processed by XFIG,
XPAINT and XV, CorelDRAW software. Thanks to Free Software Foundation and other software developers

for providing these excellent softwares.
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Chapter 1

Introduction

1.1 Human Motor Control and the Spinal Cord

Walking is an important movement in human daily life. The biological motor control system
is a sophisticated, hierarchical and distributed system [Ste80, Pro93, Ito84, BSB93, KFS87,
Alb81, Bro75, BRM93]. The nervous system falls into two major divisions, the central
and the peripheral. The central nervous system (CNS) includes the brain (cerebrum and
cerebellum) and the spinal cord (Fig. 1.2B). The spinal cord is an extension of the brain
and also consists of white matter that is bundles of nerve fibres, and grey matter which
contains the nerve cell bodies and endings where the synapses take place (Fig.1.1B). The
spinal cord lies within the spinal canal, which is formed posteriorly by the vertebral bodies
and anteriorly by the neural arches of the vertebrae (Fig.1.1(A)). The vertebrae are divided
into four groups—from top to bottom- cervical, thoracic, lumbar and sacral. Abbreviated
names are commonly used, e.g., T4 refers to the fourth thoracic vertebra. Different spinal
nerve groups control different muscle groups, as indicated in Fig. 1.2.

In this hierarchical neural motor control system, sensory signals and motor commands
pass between sensory organs, muscles, spinal cord, cerebellum, sensory cortex, and motor
cortex. The cerebral motor cortex (situated in the gyrus immediately anterior to the
central fissure of Rolando) provides high-level motor planning and control. The cerebellum
is the middle level motor learniag and cortrol center [Mar69, A1b81, Ito84] which performs
sub-consciously. The spinal cord is the low level control center where many preset motor
programs such as the stretch reflex and Central Pattern Generator exist.

The upper motor neurons arise in several different areas of the brain (but mostly in

1
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Figure 1.1: Sectional view of spinal vertebrae and cord. (A)Spinal cord lies inside three
meninges and vertebral canal. (B)Diagram showing afferent and efferent fibers, interneu-
rons, H-sharped area of gray matter, and reflex arc inside the cord. (from [Bro735])

Muscle

the motor cortex), pass down the descending tracts of the spinal cord, and cross over to
the other side before exiting the spinal roots. Within the grey matter of the anterior
horn, the upper motor neurons synapse with the lower motor neurons, as well as with a
large number of inter carry many different types of sensory information like the familiar
sensations of touch, temperature, pain and vibration, as well as “proprioceptive” signals
used in feedback control of limbs. These signals include the positions of the joints and the
tension in the muscles and ligaments.

Figure 1.3 shows descending motor tract and ascending sensory tract passing between
motor cortex, sensory cortex, thalamus, spinal cord, muscles, and sensory nerves. Figure

1.1(B) shows the afferent, efferent neurons, and reflex arc inside spinal cord.

1.2 Spinal Cord Injury

If the spinal cord is damaged by accident or disease, the result can be a wide variety of
motor disabilities depending on the lesion level and the degree of injury. The abbreviation
SCI (Spinal Cord Injury, or Spinal Cord Injured) refers to various spinal injuries or those
people whose spinal cords are injured.

People with spinal injuries at the level of the cervical spine are ‘quadriplegic’, since both
the arms and legs are affected. If the lesion is above C4, the diaphragm is also affected,

making breathing difficult or impossible, and the chance of survival poor. At the lower
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cervical levels, some arm and hand functions are preserved. If the spinal cord is damaged
in the thoracic or lumbar regions, only the legs are affected and the individual is said to be
“paraplegic”. Paraplegics with lesions in the middle to low thoracic range (T5-T12) have
full upper limb function and a degree of control of the trunk musculature ( important for
posture and gait), depending on the lesion level. It is these paraplegics that are suitable
for the restoration of standing and walking with present electrical stimulation technologies.
The spinal cord terminates at the S1 vertebral level, below this level there are only lower
motor neurons. Injury at or below S1 level will thus result in damage of these lower motor
neurons, leading to degeneration and denervation of muscle. Denervated muscle cannot be
excited by electrical stimulation sufficient to produce functional movement.

According to the degree of injury, SCI can also be classified as "complete SCI” with a
complete loss of sensory or motor functions below the level of lesion; or "incomplete SCI”
with different degree of preserved sensory or motor functions below the level of lesion.

It is estimated that in U.S.A. alone, there are 238,000 SCI people and 11,000 new
ones per year [Erg85] and most SCI are young males (Fig. 1.4). In addition, there are
millions of partly or wholly immobilized individuals, including about 2.5 million affected
by stroke and 1.8 million by head injuries [Kob94]. Rehabilitation technology now enables
SCI individuals to live a normal life-span, and care costs exceed 1 million $US for each
SCI individual. Advances have been made in various approaches to enhance locomotor
recovery after SCI, including pharmacotherapy and electrical stimulation [BR94]. Spinal
cord regeneration (partially or fully) may provide the ultimate cure for SCI, but for now it
is a distant hope [Faw92]. On the other hand, currently available rehabilitation techniques
such as wheelchairs, mechanical bracing, and electrical stimulation can already provide SCI
individuals with limited mobility, physical and psychological rehabilitation. It is argued
[BR94] that a combination of the various approaches will provide an optimal base for

functional locomotor recovery after SCI.

1.3 Function Neuromuscular Stimulation

Although SCI individuals can not voluntarily control their muscles, the motor units (motor
neuron with controlled muscles) are still intact, and only the supra-spinal connection to the

brain is damaged. The FES (Functional Electrical Stimulation) technique can be used to
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Figure 1.4: SCI statistical figure. Majority of SCI individuals are (A) voung (61.1-% is aged
16-30). and (B) males (82%). (GIF picture from [CPN94])

stimulate the neuromuscular system to assist locomotion in individuals with SCI. FES has
been applied to restore movement. hearing. vision. cardiac pacemaking and bladder control
[LoeR9. HHEE]. Here the term FNS (Functional Neuromuscular Stimulation) will be used
to emphasize the application to the neuromuscular systems to assist functional movement.

EXNS is based on the excitability of human nerves and muscle fibres [Ste&0]. Under the
influence of an external electrical field generated by cathode (negative) and anode (positive)
electrodes (Fig. 1.3). the excitation of nerve and muscle is induced by ionic transport
across cell tissue membranes. as described by the Huxleyv and Hodgkin Equations [Ste&0].
Beneath the active (cathode) electrode. positive ions (mostly sodium and some potassium)
are attracted while negative ions (principally chloride) are simultaneously repelled onto
the nerve membrane. This results in the depolarization of the nerve membrane which
has positive potential outside and negative potential inside at resting state. An anode
or indifferent electrode is required to form a close circuit for the ionic current. When
externally induced depolarization reaches a threshold, spontaneous depolarization occurs
and an all-or-none "action potential” is generated in the nerve.

The forces generated by muscles are regulated by the firing rate of action potentials
in each motor unit, and the recruitment of motor units within the motor neuron pool
according to their cell body size. The “Size Principle™ [Ste80] states that: if a stimulus
is applied directly on the nerve fibre membrane, then the larger diameter fibre requires
a higher threshold for initiating action potentials. This is because the membrane area
is proportional to fibre diameter, thus a stronger stimulus is required to stimulate larger
membrane area. In the normal intact neuromuscular system, the synaptic electric current

that excites fibres is applied directly on membranes, and thus will follow the size principle.
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Figure 1.3: Nerve fiber under external electrical field. Negative electrode (active electrode)
attracts positive ions from the membrane and causes depolarization (scan from [BBBW&§1]).

This will allow smaller fibres to be manipulated at lower force levels. while large fibres will
be available to produce large forces if necessary by applying strong stimulus. However.
if stimulus is not applied directly on the membranes. but applied externally between two
distant electrodes, the threshold of external stimulus for initiating an action potentials will
vary inversely with the fibre diameter. This is because the increased membrane area of the
larger fibre will receive a larger amount of current from the external electrical field. The
increase in received charge due to the larger fibre diameter outweighs the requirement for a
larger current to initiate action potentials for larger fibre diameter due to the Size Principle.
This results in an inverse relationship between fibre size and threshold of externally applied
stimulus. This unnatural “inverse size principle” prevents the fine manipulation of FNS-
induced muscle force, since larger motor units are excited first. Zhou et al. [ZBS&7T
proposed a strategy to overcome the inverse size principle in FNS by using supra-maximal
amplitude high frequency blocking stimuli with normal FNS stimuli.

There are two basic methods to regulate muscle force by external stimulation: One is
recruitment modulation which varies the number of activated motor units. Pulse width
modulation is preferred to amplitude modulation because less charge is transferred per
stimulus for any given force. which reduces risk of electrode corrosion and tissue damage.
In addition, pulsewidth modulation is straightforward to implement electronically. The

other method is frequency modulation in which the stimulus frequency is modulated to

-



change axonal firing rate. It was found [CLPC91] that a combination of pulse width and
frequency modulation in FNS improved control performance, in particular a better transient
performance than that obtained using pulsewidth modulation alone.

It is also possible to selectively excite different kinds of muscle fibres with different
membrane time constants by selecting external stimulus duration and amplitude. From a
simple RC membrane model. it is known that the chronaxie value (Fig.1.6) is proportional
to membrane time constant. Larger time constant membranes require more charging ions
to reach a threshold potential to trigger action potentials. Therefore. for a fixed stimulus
amplitude, a certain stimulus duration will activate some muscle fibres. but not activate
others with longer membrane time constants. The relationship between amplitude and
duration of threshold stimulus for externally excited muscle is called “Lapicque strength-
duration curve” [BBBWE1]. which reflects the excitability of the muscle (Fig. 1.6). This
strength-duration curve has a shape similar to the hyperbolic function y=1/(x-a)+b. where
a and b are constants. For real nerves and muscles. these parameters may be considered
to be constants for short pulses [BBBW&1]. The important concepts in this hyperbolic
“strength-duration curve™ are that stimuli of short duration require a non-linearly increas-
ing intensity in order to excite the tissue and that stimuli of extremely short duration will
not cause depolarization except with intensities impractically high for clinical purposes.
Conversely, a point is reached with the weak stimulus of a low level current at which no
response occurs regardless of the length of time the current is applied. The magnitude
of current just sufficient to cause excitation of a particular fibre is called “rheobase™. It
has become customary to measure the length of time required for threshold stimulus at a
amplitude which is twice that of the rheobase, and to report this value as “chronaxie™. Dif-
ferent kinds of nerves and muscle fibres have different characteristic Lapicque curves, e.g.,
a nerve has a Lapicque curve close to the axes due to its high excitability, while denervated
muscle fibre has a Lapicque curve further away from the axes due to its low excitability.
For nerves and muscle fibres with the same membrane time constant, selective stimulation
using stimulus duration and amplitude will not work. The size principle could be applied
to recruit nerves with same membrane time constant but different axon size.

In NS terminology, the "motor point™ is an important concept. A motor point is not

a particular anatomical structure or physiological organ like the motor unit, but is rather
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Figure 1.6: Strength-duration curve of threshold stimuli to nerves and muscles. The left
curve represents highly excitable nerve. and the right curve describes the low excitable den-
ervated muscle. Two important points also shown are. rheobase, the minimum amplitude
to excite the tissue. and chronaxie. the duration of a stimulus at twice rheobasic amplitude
must be applied to excite the tissue (scan from [BBBW&1}).

a point on skin surface where an electrical stimulus can produce significant contraction of
a particular muscle or muscle group. Usually it is a point on the skin where the motor
nerves to a particular muscle pass superficially. or a point where an underlying muscle can
be selectively stimulated. Various motor points maps and practical electrode placements
have been described [BBBWW&1]. One important motor point is situated over the common
peroneal nerve on the lower extremity where stimulation can illicit a flexor reflex that
involves both the hip and knee joints. This is useful for initiating the swing phase of gait
using surface electrodes [GHN193].

Although the application of electricity to treat neuromuscular diseases has a centuries
long history [BBBW&1], Liberson’s work [LHSD61] is widely considered to be the beginning
of modern FNS technology. In this landmark work, Liberson and his colleagues applied
electrical stimulation to the peroneal nerve to dorsiflex the foot in order to overcome foot
drop during the swing phase of hemiplegic gait. The electrical stimulation was synchronized
to the gait cycle using a heel-switch attached under subject’s foot.

Around 1962, a group of researchers at Case Western Reserve University led by James B.



Reswick began extensive studies on the application of FNS technology to assist functional
movements of the SCI. For more than 30 vears. the Cleveland FNS research group. including
researchers at CWRU and Cleveland Veterans Affairs Medical Center. has been the most
active FNS research group [CKM™&&. Chi92, Kob94].

In 1962. the first svmposium of “Advances in external control of human extremi-
ties(ECHE)™ was held in Yugoslavia. during which Dr. Rajko Tomovic. one of pioneer-
ing researchers in FNS and rehabilitation robotics. made introductory remarks on human
extremities control. James Reswick. and Norbert Wiener were also invitees in that first
svmposium [Res90]. This international ECHE symposium has been held every three years
since then and has documented progress in FNS [Pop90].

Recently. a commercial FNS system. Parastep© Svstem. was developed and marketed
by Sigmedics Inc., Northbrook. IL. USA [KAM®*93]. It had been undergoing the first
FDA-approved FNS clinical trials at 20 sites with over 100 subjects (mostly complete SCI
subjects) since the late 1980°s. The Parastep© svstem is a 6-channel. microprocessor-
controlled device using surface electrodes in which the quadriceps and hip muscles were
stimulated to extend the knees and hips for standing. The peroneal nerves were stimulated
to illicit flexion reflexes for stepping. In this system. no bracing was used and an adapted
walker was used to provide body weight support and for mounting the manual control
switches. The functional purpose of the Parastep© svstem is upright mobility—including
moving through doorways and up a one-step curb-as an alternative. but not a substitute.
for a wheelchair. The participants in the clinical trials could purchase the system at cost
(57,000 - $10.000).

In April 1994. the Parastep© system, initially developed by D. Graupe and associates at
the University of Illinois, became the first and the only FNS walking system to obtain FDA
approval for unbraced ambulation by complete paraplegics [GK93]. The system is presently
in use by over 300 people worldwide. This is a significant development since prior to
this, FDA labelling requirements restricted FES/FNS only to the following uses: retarding
or reversing atrophy; increasing muscle blood flow; muscle reeducation; maintaining or
increasing range of motion; inhibiting spasticity; and preventing venous thrombosis in
post-surgical patients. The new FDA approval for unbraced FNS ambulation means that

FNS technology has finally achieved some clinically recognized “functional™ benefits rather
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than being a purely therapeutic modality.

Currently. the wheel-chair remains the most efficient and convenient way for paraplegics
to achieve mobility. and its potential has been well exploited. However. FNS is a promis-
ing and challenging methodology which could greatly improve the quality of life through
physical/psychological rehabilitation [GFAD93] and workplace mobility[KAM*93] for para-
plegics provided some key technical problems are overcome. Many improvements are re-
quired before FNS can become as mature as say the cardiac pacemaker. Currently. there
are approximately a dozen FNS research groups around the world. in the U.S.A.. Canada.
U.K.. Japan. Netherlands. and Slovenia. and Yugoslavia. Some typical FNS research top-
ics are: FNS control strategies [CKMT&R. Chi92. Pro93]: computer simulation studies
[KZ89. YZ90]: FNS electrode technology (surface. percutaneous and wireless implanted
electrodes) [LZST91. SSLT92]: application of different sensors [CCNH86. And95]. includ-
ing strain-gauge flexible goniometers [KAP*95]. force sensing resistors [ABPK&9. And95].
accelerometers [VEV'B93. And95]. natural sensory nerve signals (ENG) [PSJ*93]. EMG
signals[GK95]. sensor signal telemetry [FC93. And95]: hybrid FNS systems incorporating
active or passive mechanical braces [ABB*8&. PTS&9. KAM™*93, DH90. Dur92]: multi-
channel computerized FNS systems [EWG*91. GP91. IVP94. BFK&9]. which usually con-
sist of a portable stimulator based on microprocessor and an experimental control host
based on personal computer or mini computer: methods of selective nerve stimulation
(ZBS&7. CLPC91] and therapeutic effects of FNS [SRZG93. GFAD93] to overcome the
chronic secondary problems caused by reduced muscle activity after SCI, such as disuse
atrophy of muscle. bone demineralization. impaired circulation leading to abnormal throm-
bus formation and decubitus ulcers, increased incidence of hypertension and heart disease,
and a general decrease in cardiopulmonary function.

The future of FNS and other neural prostheses appears to be optimistic, according to
G.E. Loeb [Loe&9]: "Neural prosthetics today is at a level of development comparable to
cardiology 25 years ago. when pacemakers were novel and primitive, ECG interpretation
was largely subjective and empirical, and artificial hearts were a dream. The nervous
system is certainly more complicated than the heart, but our technology is now vastly
more sophisticated and more rapidly delivered. The next 23 yvears will be seminal for

applied neurosciences.”
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Maybe. this new emerging technology should be coined as “neuroengineering”. rather

than the awkward “applied neurosciences™.



Chapter 2

Literature Review

After decades of extensive research and clinical evaluation. FNS has been demonstrated to
be feasible in assisting paraplegic subjects to stand and walk [LHSD61. TM66. BBBWS&I,
HHE&S&, Loe89, ABPKE&9, Pop90. YZ90, Chi92, KAM™93, BR94., KM94, GK95]. However.
there are several limitations to the daily-use of FNS. including: the rapid onset of muscle
fatigue induced by electrical stimulation. limited ability to modulate the force of muscular
contraction, high energy consumption due to excessive effort of the upper body. limited
selection of sensors, limited human-machine interface. and the difficulties in controlling
highly non-linear, time-varying. and high degree-of-freedom neuromuscular systems. Poor
control results in unnatural. jerky and inefficient FNS gaits in terms of metabolic energy
consumption. speed and endurance [KSM*91. Mar91. Kob94, KM94]. Improved control is

therefore essential to improve the practicality of future FNS systems.

2.1 General Review of Adaptive Nonlinear Control

The neuromuscular system is non-linear (e.g. muscle recruitment curve). time-varing (e.g.
muscle fatigue and potentiation). and subject to external disturbances (e.g. load change
in hand grasping control or the unpredictable voluntary movement of upper body in leg
walking control). Before discussing FNS control strategies, it may be helpful to review
adaptive nonlinear control strategies in general in order to get a broad view of the available
tools.

If the plant is linear and time-invariant, then standard linear system feedback control

(e.g. PID. LQR) methods may suffice [Veg90. Kir70]. If the plant is time-varyving but
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linear. then conventional linear adaptive controllers [AW3] such as the Self Tuning Reg-
ulator [HB&1] using recursive parameter identification algorithms. or the Model Reference
Adaptive Controller [NM80] using Lyapunov stability techniques. are applicable.

Although for non-linear and time-invariant systems, there are no well-established sys-
tematic theories similar to those in linear systems, there are some practical nonlinear control
methods [SL91]. For example, gain scheduling [JJ93] can synthesize a piecewise controller
using different feedback gains for different operating points. Sliding mode controllers have
excellent robustness properties to nonlinear model parametric uncertainty [Slof4]. A non-
linear feedforward compensator can be designed to cancel nonlinearity. Various linearization
methods could also be used. such as perturbation linearization about an operating point
[KZ29. HLL91]: feedback linearization (or exact linearization) [Isi%3]. Isidori [Isi&3] argued
that after 1980s. differential geometry had proven to be as successful to the study of non-
linear systems as the Laplace transform and complex functions theory were in the 1950s to
the study of single input single output linear systems or linear algebra in the 1960s was to
the study of multivariable linear systems.

However, in general. for non-linear and time-varying systems, it remains very difficult
to synthesize stable adaptive nonlinear controllers that can perform satisfactorily. Conven-
tional non-linear control and adaptive control have been combined to synthesize adaptive
nonlinear controllers such as the adaptive sliding mode controller [SC86] or the self tun-
ing regulator with nonlinear compensation [dKSG94]. Since 1990. significant progress has
been made in the use of artificial neural networks (ANYN) [Frag89, MSW90b, WS92, NP90.
LN93. HSZG92, Son93, ZHD*94, SS94a]. fuzzy logic controllers (FLC) [Lee90, Men93],
and neuro-fuzzy systems [Men95, JS95, Bru93]. Although the early investigations into the
application of ANN and FL control were mostly conducted on an ad hoc or trial and error

basis, recent work has now established a rigorous theoretical foundation with systematic

design methods.

2.1.1 Adaptive Nonlinear Control Using Neural Networks

It has been proven that ANNs are universal nonlinear function approximators [ZHD+94,
Son93, HSZG92, SS94a, SS92b]. Theoretically, ANNs can be used as nonlinear system

identifiers and controllers [NP90]. The important issue now is how to design learning
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or adaptation rules that guarantee stability and convergence for adaptive nonlinear ANN
controllers.

If there is a explicit teacher to provide the desired control signals, then supervised
learning methods such as Least Mean Squares (L)MS). Recursive Least Squares (RLS). or
BackPropagation (BP) [Mam92] can be used to adjust parameters. However, in many
real control problems, such explicit teaching signals are not available or very expensive to
obtain. For example. in human motor learning tasks such as playing golf, a teacher can
demonstrate the desired movement trajectory. but cannot directly show the desired motor
commands or muscle activities to the student. Therefore. converting the trajectory tracking
error to a motor control error is an essential and difficult task.

To obtain a motor control error from the trajectory error, the backpropagation algorithm
could be used if the Jacobian matrix (partial derivatives of system output with respect to
system inputs) of the controlled plant is known. However, in practice, the Jacobian matrix
of a plant is usually unknown or time-varying. Therefore, learning or adaptive met hods are
required to learn the unknown Jacobian or adapt to a time-varying Jacobian.

Psaltis et al. [PSY&7] proposed several learning schemes for neural controllers. His
"generalized learning™ scheme used different control inputs to the plant and observations
of the actual plant outputs. An ANN used the actual plant trajectories as input and the
control inputs to plant as desired ANN outputs. After the ANN learning phase was com-
pleted. it will have acquired the inverse dynamics of the plant. Then the ANN used the
desired trajectory as input. and its output signals controlled the plant so as to follow the
desired trajectory. The problem with this generalized learning scheme was that a large
general operating range had to be learned by the ANN to avoid degrading its performance
about any particular operating point. It is impossible to teach an ANN while it is in ac-
tual use, thus restricting the Iearmng to be off- hne Another drawback to this scheme is
that the plant yt;f‘be 1n\ert1ble. a. condmon which is not always satisfied in practice,
for example, a redundantly controlled plant whose degrees of freedom of the motor com-
mands exceed the degrees of freedom of the state variables, such as the primate limb. In
such a redundantly controlled plant, many sets of motor commands correspond to a single
movement, and a unique invertible relationship between the desired trajectory and motor

commands does not exist. Even if the plant is invertible, the inverse control scheme may
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not be acceptable. for example. the direct inverse of a non-minimum phase system is not
stable. Psaltis "specialized learning™ solved some of the problems of generalized learning
by serially inserting the ANN controller between the desired trajectory and the plant. The
ANN had the desired trajectory as input and learned the control signals required to keep
the plant on the desired trajectory. This scheme was an example of on-line learning whilst
actually performing a control task. and could learn within the operating region of interest.
In order to derive the control error to train the ANN. the trajectory error was propagated
back through the plant using an estimated Jacobian at particular operating points. This
was called "backprépagation through the plant™. However. the drawback was that the Ja-
cobian could only be estimated by input perturbation or comparing changes with previous
iterations. As reported in [MKIQ?]. any subtle distortions in the gradient estimation might
cause the controller to fail, especially for highly nonlinear control tasks. It was suggested
that a combination of generalized learning with specialized learning might obtain a better
result.

Nguyen and Widrow [NW090] used two ANNSs for nonlinear control. One ANN was first
trained as an emulator to identify the plant’s dynamics. using the plant’s inputs as input
data and the ;ﬁn;s actual trajectory as the ANN's teacher signals. After the emulator
training was completed. another ANN was used as a controller to subsequently control
the ANN emulator. Since the internal structure of the ANN emulator was known. the
trajectory error of the emulator could be back-propagated through the emulator to obtain
a motor control error for the ANN controller. After this two-phase learning was completed.
the ANN controller could then be used alone to control the actual plant. This controller
was successfully applied to the control of truck guidance system. However, this is an off-line
learning scheme and can not be used as an on-line adaptive controller expected to cope with
any time-varying plant dynamics. Another problem, as in Psaltis’ generalized learning. was
that the ANN emulator had to be trained about a wide range of operating points to truly
identify the plant’s dynamics. Otherwise, even if the ANN controller could control ANN
emulator correctly, it may fail to control the real plant. Any practical ANN will have only a
limited ability to approximate nonlinear functions. Therefore an ANN-based controller can
not be expected to have a fine performance in any particular operating area if the training is

done in other, perhaps irrelevant, operating area. Jacobs and Jordan [JJ93] have proposed
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a modular ANN for learning piecewise control strategies such as non-linear gain scheduling
control. They also demonstrated that the control performance of such modular ANN's was
indeed superior to that of a single ANN controller.

Jordan et al. [JJ90] also proposed backpropagation through a forward model learning
method. in which an ANN emulator and a ANN controller were used on-line. The ANN
controller used the desired trajectory as input. and its output was sent to both the con-
trolled plant and the ANN emulator. The plant’s actual trajectory was sent to the ANN
emulator as the teacher signal. The error between actual plant trajectory and the desired
trajectory was propagated back through the ANN emulator to obtain a control error signal
for the ANN controller. As the learning progressed, the ANN emulator acquired the plant’s
dynamics. whilst the ANN controller learned a control law that kept the plant on the de-
sired trajectory. This forward-inverse model was an on-line learning scheme and could be
focused on special operating points of interest. However, it was reported that [MM92] the
controller’s performance was sensitive to the accuracy of the forward model, depending on
the degree of nonlinearity in the control task. In highly nonlinear situations. subtle distor-
tions in the gradient predicted by an inaccurate forward model could cause the controller
to fail. Therefore. the success of backpropagation through the forward model method may
be highly task-dependent.

Cui and colleagues[CS93] used a simplified Jacobian matrix of the plant. consisting of
only the signs of the partial derivatives in order to to calculate the control error from
the trajectory error. This scheme only worked for a class of ‘monotone-responded" plants
whose Jacobians were either positive or negative. Yuh [Yuh94] also proposed a variant
of the M.LT. rule in which a constant approximation to the plant Jacobian was used to
train a ANN controller for an underwater robotic vehicle. However in practice, many
plant Jacobians change magnitudes and signs at different operating points and, for some
complex systems, it is difficult to determine even the signs of the Jacobians. Therefore, the
applicability of these learning controllers using simplified plant Jacobians is limited.

Based on neural circuits in the cerebellum, especially transcortical somatosensory feed-
back loop, Kawato [KFS&7] proposed a controller using a neural network combined with
a PID feedback controller. The PID output was used as the training error signal for the

neural network. The PID controller actually playved the role of a linear approximator of



the inverse dynamics of plant and converted the trajectory error into a motor control error.
As learning progressed. the neural network minimized the output of the PID controller
whilst increasing its own control output. and thus gradually acquired the inverse dynam-
ics of plant. The control performance improved as the nonlinear dvnamics were gradually
compensated for by neural network. thereafter the linear PID controller only needed to
correct a small residual tracking error. This ANN controller was successfully applied to
robot control [KFS87. KUIS&E]. and also provided clues about the biological cont1-'01 of eve
movements [KG92]. Later. based on the Lyapunov method, it was proven [Kaw90. NM93]
that this feedback-error-learning rule was actually a stable adaptation rule. Therefore. this
learning scheme is not only biologically plausible. but also theoretically sound.

Gomi and Kawato [GK90] extended the original Kawato model to two new models. the
Inverse Dynamics Model Learning (IDML) and the Nonlinear Regulator Learning (NRL).
and proved global stability using the Lyapunov technique. The difference between IDML
and Kawato's original model is that IDML used the actual trajectory as input to the ANN,
while original model used the desired trajectory as input tothe ANN. An additional stochas-
tic disturbance was also added to the control signal to satisfy the persistent excitation
condition. A computer simulation showed that both the ANN parameter estimation and
trajectory tracking were stable and convergent. As in Kawato’s original model. the ANN

in the IDML also gradually acquired the inverse dynamics of plant as learning progressed.

The difference between the NRL and Kawato’s original model is that NRL used trajectory

error feedback. in addition to the desired trajectory. as inputs to the ANN. Hence the
ANNXN used in NRL executed adaptive feedback control as well as adaptive nonlinear inverse
dynamics compensation, whilst the ANN in the original model only acted as a feedforward
nonlinear compensator. Since these two new models used the actual trajectory and/or the
desired trajectory as inputs to the ANN’s, they were called "closed-loop™ feedback-error-
learning, and the original model was called "open-loop™ feedback-error-learning because
only the desired trajectory was used as input to ANN, Although a PID feedback controller
was used in all three models, it merely converted trajectory error into motor control error
as a linear approximation of the inverse dynamics of the nonlinear plant. The linear PID
controller itself was not able to control a nonlinear plant. That is why even though there

was a closed-loop PID component in Kawato's original model, it was still called "open-loop”
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control, whilst “closed-loop™ referred to a nonlinear feedback loop and not the linear PID
feedback loop. However. the PID component did provide the major control signal during
the initial learning phase and provided the training error signal for the ANN component
for stable weight adjustment. thus guaranteeing global trajectory stability and convergence.
The PID component also defined an inverse reference model that the complete dvnamic
syvstem would ultimately follow after the training was converged.

The above three different feedback-error-learning models were used to explain different
biological motor control tasks in four regions of cerebellum [GK90, KG91]. It was suggested
that: Kawato'soriginal "open-loop™ feedforward controller was suitable for adaptive control
of voluntary motor tasks such as hand trajectory following. during which the feedforward
nonlinear controller could provide motor commands rapidly and without feedback delays.
The "closed-loop™ IDML model also suggested for posture control since the controlled plant
was inherently unstable and nonlinear feedback control is desirable. Computer simulations
[GK90] of the inverted pendulum, the simplest model of trunk and legs. suggested that the
IDML scheme might be appropriate for posture control. The NRL “closed-loop™ model was
also shown to be appropriate for the control of locomotion, during which desired rhythmical
movement pattern was time varying and usually high speed, thus feedforward control is nec-
essary to excuse fast and smooth movement. Meanwhile, the controlled plant in locomotion
was also inherently unstable. thus nonlinear feedback control was also essential. Therefore,
adaptive control of locomotion required both nonlinear feedforward and nonlinear feedback
control. which were both included in the NRL model.

Miller et al. [M{HGK90] also proposed a similar combination of a neural network with a
PID controller. The neural network used was the Albus’ Cerebellar Model Arithmetic
Computer (CMAC) [Alb&1, MGK90] based on the neural structure of the cerebellum
[Mar69, Alb&1]. Again, the training error signal was the output of a PID module. In
contrast to Kawato’s on-line training method, a two-phase training method was adopted
in Miller's approach. In the response (recall) phase. the input to the CMAC was the de-
sired trajectory and the output of the CMAC was then combined with PID output. At
the end of each control cycle. a training (update) phase was executed. The observed tra-
jectory during the previous response phase was used as input to CMAC, and the actual

control (sum of CMAC and PID outputs) during the previous response phase was used
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as the desired control signal to update the CMAC parameters. Thus Kawato's approach
involved a continuous on-line learning, whilst Miller's approach used a response-training
cvcle. Because of this intermittent response-training cyvcle. the whole system is not a con-
tinuous dynamic system, and Lyapunov stability analysis can not be applied to Miller’s
svstem. Although there is no theoretical guarantee. Miller's method is expected to vield
similar results as Kawato’s approach. This has been demonstrated by numerous successful
robot control experiments conducted by Miller. The CMAC model was also applied to
the control of a biped walking robot[Mil94]. Kraft and colleagues [KC90] compared this
CMAC-based controller with two conventional adaptive controllers. namely the STR and
the MRAC. They found that the CMAC approach had more tolerance of noise. performed
well for both linear and nonlinear systems, and could be implemented more efficiently for
large-scale systems. In Kraft's study. the desired trajectory rather than actual trajectory.
was used as input to the CMAC during the training phase.

Nordgren [NM93] used the Lyapunov method. in a similar way to its use in the MRAC
design, to derive a globally asymptoticaliy stable (GAS) adaptation law for a single-layer
neural network (adaptive linear combiner) controller combined with a PD feedback com-
ponent. It was found that the GAS law shared similarities with Kawato's feedback-error-
learning law, but had a faster convergence rate due to the use of an individual learning rate
for each adjustable weight. Parameter convergence was not achieved if the persistent ex-
citation condition of the input was not satisfied. although trajectory tracking convergence
was guaranteed.

Sanner and Slotine [SS92b, S592a. SS94a] have extensively studied the use of gaussian
radial networks for nonlinear compensation and feedback linearization. Here. the con-
troller was a combination of PD feedback, an adaptive gaussian network and a robust
sliding component. A stable weight adjustment law for gaussian network was synthesized
using Lyapunov theory. Deadzones were introduced into the network's adaptation mech-
anism and used together with the robust sliding controller to keep the plant state within
a bounded nominal operating range for which the network was designed. When the plant
state moved outside the nominal range due to the approximation error, the robust sliding
controller would force the state back into the nominal range, whereupon the gaussian net-

work was able to adaptively approximate the plant nonlinearity. As with the Nordgren’s
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model. trajectory tracking convergence was guaranteed. but parameter convergence relied
conditionally on the persistent excitation condition in the feedback error signal. Because
inputs to the ANN were feedback error signals that could not be selected. parameter con-
vergence can not be guaranteed. However in Nordgren's model, the input to the ANN was
the desired trajectory that could be selected to satisfy the persistent excitation condition
that guaranteed convergence of the parameter estimation. Another difference is that in
the Nordgren’s model. the robust sliding component was not needed because the ANN was
used as a feedforward compensator for the inverse dyvnamics. Thus inputs (the desired
trajectory) to the ANN could never leave the bounded set in state space for which it was
designed. Robustness and convergence of adaptation in Nordgren's model relied upon a
persistent excitation of the inputs. whilst in Shanner’s model. robustness relied on a sliding
component. Levin and Narendra [LN93] also reported a simple example in which a ANN
was used to adaptively learn the feedback linearization.

Zbikowski and Hunt et al. of NACT (Neural Adaptive Control Technology) research
group presented an extensive review of neural adaptive control [ZHD%¥94]. A number of
fundamental control and system theories were reviewed to provide a theoretical basis for the
analysis and design of adaptive neural control. The ANN method was analvzed from the
perspectives of system identification. function approximation. stability theory. nonlinear
controls (including the differential geometric approach. i.e. feedback linearization and the
sliding mode approach). and adaptive control theory.

Summary: In summary. it appears that one biologically plausible and theoretically solid
motor control model may be the combination of CAIAC model with the Kawato on-line train-
ing method. The cerebellum is widely believed to be control center for motor control learning
and adaptation [Ito84]. The Marr-Albus cerebellum model (CMAC) is an adjustable pattern
classifier based on the neural structure of the cerebellum and has been shown to be an univer-
sal nonlinear approzimator. Unlike the backpropagation rule for multi-layer sigmoid neural
network which may get stuck in a local minima, the CMAC's LAS-like adaptation rule is
guaranteed to converge to a global minima, due to its quadratic error surface. In addition,
the CMAC’s learning rate, because of its local nature, is much faster than backpropagation
[Mar69, Alb81, MGR90]. The CMAC is a static associative memory model and does not

solve the issue of how to obtain the motor training signal. On the other hand. Kavato's
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feedback-error-learning scheme is a dynamic motor learning and control process that is based
on various somato-sensory feedback to cerebellum and is guaranteed. by Lyapunov theory.
to be a globally asymptotically stable adaptation law for dynamic systems. Therefore. a
combination of the static CMAC model with a dynamic feedback-error-learning law should
be good adaptive learning motor control strategy. This is a good example of how engineering
can learn from biological systems, as well as provide mathematical explanation of working
mechanisms of biological systems.

Werbos of NSF and Pellionisz of NASA [WP92, PJW92] suggested a cerebellar neu-
rocontroller project involving NFS. NASA and NIH to develop an adaptive and reliable
flight control systems, based on the adaptive sensorimotor control systems in cerebellum.
for an airplane which is able to reach earth orbit (NASP, National Aerospace Plane) and
will be essential for large-scale economical hurman activities in the space. From the per-
spective of neurosciences, this multidisciplinary collaboration would be “leading us towards
an eract link betuween well-defined mathematical operations and specific sites in the brain
- something which. when consolidated. would truly constitute a Newtonian revolution in

neuroscience "[WP32].

2.1.2 Reinforcement Learning as Direct Adaptive Optimal Control

Most current artificial learning systems are supervised learning systems which learn under
the tutelage of a knowledgeable ‘teacher” that is able to provide a set of required training
input-output examples. Learning under these conditions is limited, particularly. when it is
impossible to obtain this kind of rich training information. Reinforcement learning refers
to learning without an explicit teacher, by actively interacting with the environment and
receiving appropriate reinforcements (both reward and penalty). It is based on the common
sense idea that if an action is followed by a satisfactory performance, then the tendency to
reproduce that action is strengthened; alternatively if an action leads to an unsatisfactory
performance, then that tendency is weakened, i.e. only satisfactory actions are reinforced.
Reinforcement learning is a learning mechanism rooted in biological learning systems, while
having a rigorous mathematical basis and a potential for engineering applications.
Reinforcement learning has its origin in the study of animal learning, in which qualitative

models were used explain the learning behavior of animals and humans. The Rescorla-
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Wagner model [RW72] of classical Pavlovian conditioning is one such model. Meanwhile.
in the engineering field. Mendel and Fu [MF70]. and Narendra [NT74] et al. proposed
quantitative reinforcement learning algorithms for stochastic learning automata, statistical
pattern recognition. stochastic approximation and optimization. During this early stage.
most of the reinforcement learning models were “nonassociative™. i.e. there were no inputs
to the learning system except for reinforcement signals.

Later. “associative reinforcement learning™ was emphasized. in which the learning sys-
tems try to associate input patterns with output signals according to reinforcement feed-
back. Klopf [Klo71] proposed a hypothesis that neurons implemented a strategy for at-
tempting to maximize the frequency of occurrence of one type of input signal and minimize
the frequency of occurrence of another. Accordingly. neurons could be conditioned in an
operant or instrumental manner. where certain types of inputs acted as reward stimuli
whilst others acted as punish stimuli. A neuron learns how to attain certain types of re-
ward stimuli and avoided other punish stimuli by adjusting its synaptic weight according
to the feedback consequences of its discharges.

Klopf's “greedy neuron™ hypothesis inspired the well-known neuron-like ASE/ACE con-
troller of Barto. Sutton. and Anderson [BSA&3]. This single-layer linear-combinator-like
neural controller consisted of two elements: an Adaptive Search Element (ASE), which was
a direct computational realization of Klopf's neuron model. searched for optimal control
outputs according to the input patterns. The output of the ASE was added with a random
variable to determine a stochastic binary control signal. The stochastic control signal was
biased by the deterministic ASE output. which gradually moved toward the optimal control
as learning progressed; an Adaptive Critic Element (ACE) calculated a secondary internal
reinforcement based on input patterns and feedback reinforcement from environment, and
used it to condition weights in the ASE. The input space was encoded using the BOXES
system proposed by Michie and Chambers [MC72]. To cope with delayed reinforcement,
decaying eligibility traces were used in both the ASE and ACE, and a temporal credit
assignment algorithm was also used in ACE. The eligibility trace in ASE was proposed by
Klopf to represent the decaying strength of a pairing of a nonzero input signal with the fir-
ing of the neuron. The eligibility trace in ACE was similar to the “local demon™ in Michie’s

BOXES system. The ACE used an Adaptive Heuristic Critic (AHC) [Sut&4. Sut8&§] rule
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to calculate the secondary internal reinforcement from delayed or infrequently-occurring
reinforcements. The AHC was a temporal credit assignment algorithm similar to Hollands
“bucket brigade™ used in Genetic Algorithm “classifier system™ [BGH&9]. Both borrowed
the same key idea from checker-playing program written by Samuel [Sam59] - in that the
steps of a multi-step sequence should be evaluated and adjusted according to their im-
mediate on near-immediate successors, rather than on the final outcome. ASE/ACE was
successfully applied to the difficult task of learning the control of an unstable car-pole
system with only a failure signal as reinforcement.

The ASE/ACE model marked the beginning of the new stage of associative rein-
forcement learning. It was mathematically formalized in [BAS3] as a pattern-recognizing
stochastic learning automata. and was generalized to the Associative Reward Penalty
(Ar-p) algorithm. In addition, some convergence properties were proven.

The BOXES scheme used in ASE/ACE for input space partitioning required careful
arrangement to give fine discriminations among some critical states and coarse generaliza-
tion among others, so as to achieve good learning control performance without excessive
memory requirements. To cope with this drawback. Anderson [And&9] used multi-laver
neural networks as the ASE and ACE in order to approximate the nonlinear evaluation
and control functions. Neural networks are universal function approximators and can be
used to eliminate the requirement for manual partitioning of the input space since neural
networks can learn by themselves to make the right partitioning. It was demonstrated that
a multi-layer neural network was able to learn to balance the inverted pendulum. while a
single-layer neural network failed without the BOXES input encoding. In the same simula-
tion, it was also shown that ASE/ACE model learned much faster than Michie’s BOXES.
However, multi-layer neural networks required thonsands of trials to succeed, while orig-
inal ASE/ACE controller with BOXES input encoding succeeded in less than 100 trials.
One reason for this hugh difference in learning rate could be that manual adjustment work
in the BOXES encoding was now automated in multi-layer neural networks and certainly
required extra learning trials. Another reason could be the well-known slow learning rate
of multi-layer neural network using backpropagation. A third reason could be that the
eligibility traces were not used in Anderson’s multi-layer neural networks (only AHC was

used). This would also slow down the learning rate in a delayed reinforcement learning
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task.

After early mostly empirical development. some rigorous mathematical results have
emerged for reinforcement learning since the late 1980s and early 1990s.

Sutton [Sut8§] introduced a class of Temporal Difference (TD) methods to solve the
multi-step prediction problem. The TD method formalized the previous poorly understood
methods such as AHC, Holland's bucket brigade, and Samuel’s checker player program.
Convergence and optimality, for special cases. was proven (The proof was extended -to
the general case with stronger results by Dayan [DS94]). The TD method became one of
the fundamental theorems of reinforcement learning which usually deal with delayed and
infrequently-occurring reinforcement signals. TD method was further extended to vector
predictions, and combined with backpropagation to implement in multi-laver neural net-
works with eligibility traces for every adjustable weights [Sut&7, BS92]. The implementation
in [Sut&7. BS92] was more complete than that in Anderson’s model [And&9].

The TD method could be used for the multi-step prediction of reinforcement signals in
reinforcement learning. However. it did not address the issue of how to train the controller
using this more informative secondary reinforcement signals. Williams® REINFORCE al-
gorithms [Wil&7. Wil92] provided a general class of associative reinforcement learning al-
gorithms for connectionist networks containing stochastic units allowing them to make
weight adjustments along the gradient of the expected reinforcement. Interestingly. the
REINFORCE algorithms perform the statistical gradient following without explicitly com-
puting gradient estimates or even storing information in preparation for computing the
such estimates. The REINFORCE algorithms could also be used with both immediate-
reinforcement tasks and in limited forms of delayed-reinforcement tasks. When combined
with TD methods, they could be applied to general delayed-reinforcement tasks. When
applying REINFORCE algorithms to multiparameter stochastic units such as a Gaussian
unit. one would obtain reinforcement learning controllers with real-valued continuous con-
trol outputs. Previously, reinforcement learning controllers (e.g. [BSA&3, And89]) were
limited to binary control outputs. It was pointed out that certain algorithms, studied
elsewhere, were special cases of the REINFORCE algorithms, including Barto's associa-
tive reward-inaction Ap_; algorithm (a variant of the associative reward-penalty Ag_p

algorithm) [BA85]. Narendra's linear reward-inaction (Lgr_j) stochastic learning automa-



ton [NT74]. Gullapalli's stochastic real-valued (SRV') unit [Gul90] for a real-valued con-
troller. Since REINFORCE is a class of statistical gradient following algorithms. it could
be integrated with backpropagation. Williams theorem is another important theorem for
reinforcement learning.

Watkins [WD92] has proposed a kind of reinforcement learning called Q-learning. Q-
learning uses a real value function Q to represent the performance evaluation of state-action
pairs. Unlike evaluation functions in other common reinforcement learning models which
only used state variables. the Q-value function was defined on state-action pairs. Therefore.
Q-learning is a more complete learning model than other reinforcement learning models like
the ASE/ACE. and is becoming the most prominent reinforcement learning algorithm.

Recently, Barto and Sutton et al. [BSW90] showed that the TD methods used in rein-
forcement learning (RL) for evaluation prediction and optimal policy learning were closely
related to stochastic Dynamic Programming (DP) [Bel57]. TD methods solved sequential
Markovian decision making tasks by using temporal differences similar to the idea of the
“greedy policy™ used in “Bellman Optimality Equation™ of DP. Reinforcement learning
is an on-line, Monte Carlo version of DP in the sense that the probability distributions
usually required by DP are sampled rather than known in RL (i.e. trv an action and see
a particular consequence rather than knowing the probability distribution of the conse-
quences). In general. RL differs from DP in the fundamental way that a model of the
world’s dynamics is not required. Therefore. RL is a kind of Real-Time Dynamical Pro-
gramming (RTDP) [BBS93]. by which an embedded system could improve its performance
with experience. Bradtke [Bra93] designed a Linear Quadratic Regulator (LQR) using
a reinforcement learning algorithm to demonstrate that DP-based reinforcement learning
could be applied to traditional control problems with continuous state and action spaces.

Werbos proposed two types of reinforcement learning. One was based on the backprop-
agation of utility, including backpropagation through time [Wer90, Wer92b] to maximize a
utility function; another type was the Adaptive Critic, or Approximate Dynamic Program-
ming [Wer92a], in which a secondary utility function J was approximated by an adaptive
critic network. Any control strategy that maximized the secondary utility function J in
the short term would also maximize the sum of primary utility function U over all future

times. The adaptive critic network thus performed a continuous and differentiable map-
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ping between the control space and the evaluation space. and backpropagated the primary
utility U into a secondary utility J through the critic network. In this sense. it might be
called as backpropagation through critic.

As pointed out by Sutton. Barto. and Williams [SBW92]. reinforcement learning is
direct adaptive optimal control. RL is adaptive since it can learn the control law and adapt
to a changing system: RL is optimal since it can approximate (statistically in Williams"
REINFORCE or deterministically in Werbos® Adaptive Critic) the optimal control strategy
using real-time Dynamic Programming: RL is direct since it does not need a system model
to determine the optimal control. Most well-known adaptive control methods [AW93].
including STR [HB&1] and MRAC [NMS&0]. are associated with tracking and regulation
problems. in which prior knowledge of a reference trajectory or set points are known.
But for many problems, the determination of a reference trajectory is an important part
— if not the most important part — of the overall control system design. For example.
trajectory planning is a key and difficult problem in robot navigation tasks. This kind of
trajectory planning or formatting tasks could usually be solved by optimal control principles
[KUIS&], Kaw90, KG92, LFC94. HLL91, LN93, YZ90]. However, these optimal control
problems used to be solved in an off-line manner using tools such as Dynamic Programming.
and usually required expensive computing power. sometimes at the level of supercomputer
[LEC94. YZ90]. Now reinforcement learning provides an approach to do the optimal control
in an on-line. direct. incremental manner, requiring less on-line computing power.

The most recent development in reinforcement learning has been the use of function
approximation and generalization to scale up RL to large systems.

Thrun [Thr93] pointed out that inaccurate function approximation would lead to a
systematic overestimation of reinforcement value function. When overestimation exceeded
certain bounds, reinforcement learning was expected to fail. Simulations using some of the
most popular function approximators, including multi-layer neural networks with linear.
sigmoidal, or radial basis functions, supported the theoretical findings.

On the other hand, Singh and Yeh [SY93] presented a result which guaranteed that small
errors in the approximation of value function cannot produce arbitrarily bad performance
when actions were selected greedily. An upper bound on performance loss was derived.

Williams and Baird [WB93] also gave similar but tighter performance bounds of reinforce-



ment learning based on imperfect value functions. These theoretical results provided a
theoretical justification for using function approximators in reinforcement learning.

Successful computer simulations by Sutton [Sut95] using CMAC as function approx-
imators supported the above theoretical results. It was argued that the use of sparse-
coarse-coded function approximators such as CMAC, instead of using global functional
approximators such as sigmoidal multi-layer networks, was the kev for success. To avoid
the “curse of dimensionality™, an effective method was to ignore some dimensions in some
partitioning, i.e. to use hyperplanar slices instead of grid boxes. Another method was
“hashing™ - a consistent random collapsing of a large state space into a much smaller set.
Hashing reduced the memory requirements by large factors with little loss of performance.
This was possible because high resolution was needed only in a small fraction of the state
space. Hashing reduced the curse of dimensionality in the sense that memory requirements
needed not be exponential in the number of dimensions, but needed merely match the real
demands of the task.

There are some practical research topics such as using more efficient eligibility traces
[SS96]. or using more efficient exploration methods such as directed exploration instead of
a undirected random search {Thr92]. Another very active research area is to incorporate
fuzzy logic into reinforcement learning to provide a good jump start for reinforcement
learning and shorten overall learning time (This will be reviewed in the next section).
All these practical methods aim at speeding up reinforcement learning which is usually
quite inefficient, compared to other learning schemes [Hin&9]. This is certainly due to the
lack of informative teaching signals, rather than the drawback of reinforcement learning
method. When a knowledgeable teacher is available to provide explicit training patterns,
then supervised learning should be used. When a knowledgeable teacher is not available
and autonomous ability is needed, reinforcement learning provides the solution. In some
situations, reinforcement learning is more stableAand efficient than supervised learning
[MM92].

Researchers have applied reinforcement learning to various real world problems, in-
cluding path-finding for autonomous mobil robot [Thr93]; gait synthesis for biped robot
[SZ92]; collision-free trajectory planning for multi-linked robot manipulator [TP92], in

which CMAC-based controllers were trained using REINFORCE and TD algorithms; and
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an assembly robot able to do peg-in-hole insertion [GFB94]. Houk. Barto and Berthier et
al. [MSW90a. BSB93] recently proposed a controller based on biclogical Adjustable Pat-
tern Generator (APG) model trained by reinforcement learning algorithm. The controller
successfully controlled a simple two DOF simulated limb via reinforcement learning. One
of the long term ob jectives of this research is to produce a competent controller for complex
dynamic limbs. Sofge and White [SW92] applied the Werbos™ Adaptive Critic methods to
learning the optimal control of composite processing. The adaptive critic network was im-
plemented with a modified CMAC which was differentiable in order to backpropagate the
utility function U to secondary utility function J. This adaptive critic network was found
to have rapid convergence due to local learning paradigms of CMAC. Vector reinforcement
signals were also used to represent different optimal criteria. The reinforcement learning
controller was able to solve the difficult (resisting to other methods) optimization control
of composite materials used in NASP [WP92]. These fruitful applications of neural control
led to a handbook of intelligent control [W592].

Reinforcement learning is attracting increasing attention in computer science and con-
trol engineering because it can be used by autonomous svstems to learn from their past
experiences instead of from knowledgeable teachers. and it is attracting attention in com-

putational neuroscience because it is consonant with biological principles.

2.1.3 Adaptive Nonlinear Control Using Fuzzy Logic Systems

The past few years have witnessed a rapid growth in the number and variety of applications
of fuzzy logic. The applications range from consumer products such as cameras. washing
machines, and microwave ovens to industrial process control, medical instrumentation.
decision-support systems, and portfolio selection. Some giant companies such as Siemens
[HP94] and General Electric [BBC+95] are very active in exploration of the industrial
applications for fuzzy logic technologies.

Fuzzy logic was introduced by Dr. Lotfi Zadeh [YOTNS&7] at the University of Califor-
nia/Berkeley in the 1960’s as a means to model the uncertainty of natural language. It is
a superset of conventional (Boolean) logic that has been extended to handle the concept
of partial truth - truth values between "completely true” and "completely false™. In June

1995. Zadeh was awarded the IEEE Medal of Honor - the highest honor given by the IEEE
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- for “pioneering development of fuzzy logic and its many diverse applications.”[Per93] This
medal from IEEE put Dr. Zadeh on the same honorable rank as other IEEE medallists
including Richard Bellman. Rudolph Kalman, and Karl Astrom. as well put fuzzy logic
on the same important position as dynamic programming [Bel57]. Kalman optimal filter
theory. and linear adaptive control theory [AW93].

Since the landmark paper of Zadeh in 1965 [Zad63]. fuzzy logic control has emerged as
the most active and fruitful areas for research in the application of fuzzy set theory.

In 1974. Mamdani [Mam74] reported his seminal work of applying fuzzy logic ideas
to design control systems. The controller was similar to a PD controller, using feedback
error and change of error as controller inputs. but the implementation was in the form
of production rules. rather than numerical equations. Therefore. rigorous mathematical
equations modeling the controlled plant were not required.

In 1979. Procyk and Mamdani [PM79] further proposed fuzzy Self-Organizing Con-
troller (SOC) which was a generalization of simple fuzzy logic controller. SOC incorporated
Mamdani’s basic PD-like fuzzy logic controller. but added another high level fuzzy logic
rule modifier which measured the performance of the basic fuzzy logic controller. Control
rules of basic fuzzy logic controller were modified according to its performance. based on
the fuzzy rules of a high level modifier. The SOC was applied to a wide range of nonlinear
and multivariable systems and its robustness was demonstrated.

Tanscheit et al. [TS88] successfully applied the SOC to the control of a highly nonlinear
Jointed robot arm. It was found that the SOC had a performance slightly superior to that
of a PID controller when noise was present and the process had time varing coefficients as
well as pronounced nonlinear characteristics.

The above mentioned PID-like fuzzy logic control is somewhat similar to conventional
numerical control, although implemented in different ways. There is another type of fuzzy
logic control in which heuristic control rules from experienced human operators are used.
For large scale industrial processes such as the control of cement kiln, it is difficult or ex-
pensive to build a mathematical model. On the other hand, experienced human operators
can successfully control such systems using heuristic rules based on their experiences which
include a qualitative model of the influence of control variables on the system. Such expe-

riences are usually expressed in vague terms such as: “if the coal-feed rate is increased. the
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kiln drive load and the temperature in the smoke chamber will increase™. Fuzzy logic is an
excellent tool to transfer such human linguistic experiences into computer algorithms and
to improve control performance. Larsen [Lar&1] reported the application of such expert-
syvstem-like fuzzy logic controller to two rotary cement kiln control projects. This was one
of the first successful test runs on a full scale industrial process in the late 1970s.

C.C. Lee [Lee90] provided a comprehensive survey on the development of fuzzy logic
control before the 1990s.

Recently. fuzzy logic control has advanced very rapidly. One source for this rapid ad-
vance is the availability of inexpensive yet powerful microcomputers. which make it easy
to incorporate fuzzy logic algorithms in embedded controllers. Compared with the con-
ventional numerical controller design method. the fuzzy logic rule-based design approach
could drastically reduce the development time and cost [BBC*95], with usually excellent
control performance [CCM91. Sch92]. Another reason for the advance of fuzzy logic control
is the establishment of rigorous mathematical properties such as universal function approx-
imation and global stability. These theoretical advances parallel those in neural networks.
and there is now a trend to combine both techniques to produce neuro-fuzzy systems. In
March 1995 issue of “Proceedings of the IEEE™, there was a special issue on fuzzy logic
with engineering applications, including a tutorial of fuzzy logic systems from engineering
perspective [Men95]. and a comprehensive survey on neuro-fuzzy systems [JS95].

Based on the theories similar to those used in neural networks. it has been proven
[W92c. WMI2b. Men93, Cas95. BH93] that fuzzy logic systems are universal function
approximators. Therefore. fuzzy logic systems can be used as universal nonlinear system
identifiers and controllers. This is the theoretical basis that explains why fuzzy logic con-
trollers, if designed correctly, are able to achieve excellent control performance for nonlinear
systems.

However. the design of fuzzy logic controllers remains a nontrivial task. This used to
rely purely on human experiences. as the above-mentioned PID-like or expert-system-like
fuzzy logic controllers. This is what fuzzy logic was originally designed for, i.e. to trans-
late human linguistic experiences into mathematical sets that could be used in computer
algorithms. There are many methods available from “knowledge engineering™ [Cro&§|,

especially on how to acquire knowledge from human experts. Even though knowledge ac-
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quisition and knowledge representation in fuzzy logic svstems are not exactly the same as
those in traditional expert systems. there are still many similarities.

In some cases. however. human experiences may not be available. but huge amount of
experimental data are available. In other cases. human experiences can be further clarified
by extracting useful information hidden in the huge amount of data that are hard for human
to analyse. In these situations. learning fuzzy logic svstems are essential. Combination of
neural network and fuzzy logic results in so called neuro-fuzzy systems [JS93] which are able
to incorporate human experiences as well as learn from examples. For adaptive or learning
fuzzy logic controllers. the central problem is. similar to neural network controllers. how to
design learning algorithms. There are two learning tasks for fuzzy logic controllers, namely.
structure learning which determines rule number and structure. and parameter learning
which updates parameters of rules.

For parameter learning. backpropagation is widely adopted [WM92a, LL91, Jan92].
Jang [Jan93] proposed a combination of backpropagation and Least Squares Estimation
to reduce the dimensions of the search space in the gradient backpropagation method.
with the restriction to linear consequence fuzzy membership functions. Wang proposed
several learning algorithms for both structure and parameter learning. including direct rule
generation from input/output data pairs [W>M92¢]. and orthogonal least squares [W192b]
to select significant fuzzy rules. C. Lin et al. [LL91] used a Sel{-Organizing-Map (SOM)
[KohS8] to design fuzzy rules. Tani et al. [TST92] used Quinlan’s ID3 algorithm [QuiS6]. a
decision tree machine learning algorithm. to design fuzzy rules. Jang [Jan94] proposed the
use of CART (classification and regression tree). another decision tree machine learning
algorithm similar to ID3, for structure determination of fuzzy rules. and the parameter
learning was carried out by the backpropagation or least squares algorithms. The use of a
decision tree learning algorithm generated a tree partition of the input space by selecting
most informative inputs, thus relieved the problem of the “curse of dimensionality™ (number
of rules increases exponentially with number of inputs) associated with the commonly used
grid partitioning schemes.

These learning algorithms basically are static pattern classifier type learning algorithms
which do not take into account the dynamics of controller and controlled plant.

Jang [Jan92] used temporal backpropagation (or backpropagation through time), a



training scheme proposed by Werbos [Wer90] for long term prediction and optimization. to
train neuro-fuzzy controller for dynamical systems.

Chung et al. [CO93] proposed a model reference fuzzy logic control in which the refer-
ence model generated a desired trajectory. and a performance index based on the difference
between the reference and plant output was minimized using gradient M.L.T. rule. This
reference model replaced the high-level rule modifier in SOC [PM79] to provide the perfor-
mance index. However. as with the neural network control situation. in which the Jacobian
matrix of the plant was not known. trajectory error was converted into a control error in
order to train the controller. Chung only proposed a simplified MIT learning algorithm
for a class of simple SISO systems. Nie [NL93] also proposed a similar model reference
approach for learning fuzzy logic control.

Stability of fuzzy logic control systems have also been studied. It was pointed out
[HP94] that most fuzzy logic controllers for nonlinear 2nd order systems designed with a
two-dimensional phase plane using tracking error and change of error are actually sliding
mode controllers which are robust to parameter fluctuations and disturbances. Similar
robust control design methods could also be applied to higher order systems. Jang [JS95]
also pointed out that certain kinds of fuzzy logic controllers were actually nonlinear gain
scheduling controllers that switched between several sets of feedback gains.

Langari et al. [LT90a] used direct Lyapunov method to determine sufficient conditions
for global stability of a class of fuzzy logic control systems using feedback error and change
of error as inputs. They also briefly reviewed the historical context of stability analvsis of
fuzzy logic control systems. However, in Langari's approach, the mathematical model of
the plant must be known in order to design a stable fuzzy logic controller.

For unknown plants, Wang [\Wan92, Wan93, Wan94b] proposed an adaptive fuzzy logic
control, using Lyapunov synthesis approach similar to Sanner’s approach for the adaptive
gaussian network control discussed earlier. The controller consisted of adaptive nonlinear
and supervisory components. A slightly different method from Sanner’s approach to syn-
thesize Lyapunov-stable adaptation law was taken, replacing the deadzone with assumed
prior bounds on the maximum magnitudes of the adjustable output weights of the FLC,
and projecting these weight estimates away from the bounds in order to maintain robust

adaptation. The supervisory controller would only work when the system state hit the
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boundary of the constraint set to force the state back within the constraint set where the
adaptive component was able to approximate a nonlinear control law. The supervisory
controller played the same role as sliding mode controller in Sanner’s adaptive gaussian
network controller. Wang further proposed a hierarchical system [Wan94a] for intelligent
control using the dual roles of fuzzy logic. both as symbolic rule-based system and as nu-
merical nonlinear approximator. Fuzzy logic systems could be implemented at all control
levels. from high level planning. middle level supervision. to low level servo control. This
unified the mathematical tools used for all levels.

Inspired by the work on adaptive gaussian network control of Sanner [SS92b]. Su
[SS9b] proposed a very similar stable adaptive fuzzy logic control using Lyapunov synthe-
sis method. The controller comprised linear feedback. sliding mode (to guarantee global
stability). and an adaptive fuzzy logic component (to approximate nonlinear control func-
tion).

It was shown [JS93. BH93] that under some minor restrictions. the functional behavior
of radial basis function networks (RBFN, or gaussian function networks) and fuzzy logic
systems are actually equivalent. This functional equivalence enabled many results from
RBFXN to be applied to fuzzy logic systems. For example. Sanner and Slotine [SS92b.
SS592a, S594a] have extensively studied gaussian networks for adaptive nonlinear control,
including universal function approximation. adaptation law satisfving Lyaponuv stability,
learning of gaussian function centers and norm weights. “curse of dimensionality™ problem.
Poggio [PG90] also has extensive studies about RBF. including its function approximation.
backpropagation learning algorithm for adjusting output weights as well as function centers
and norm weights. All these results coming from studies of RBFN could be directly or
indirectly applied to fuzzy logic systems. Indeed, many researchers have already done so,
proposing various Fuzzy Radial Basis Function Networks [NL93] or Fuzzy Membership
Function Based Neural Networks [IK94]. Stable adaptive fuzzy logic control proposed by
Su [$594b] was directly inspired from Sanner's work on stable adaptive gaussian network
control [S592b]. Stable adaptive fuzzy logic control proposed by Wang [Wan93, Wan94b]
was directly inspired from work on stable nonlinear neural network control [PI91], and
was also similar to Sanner’s adaptive gaussian network control. Orthogonal Least squares

learning for determining fuzzy system structure proposed by Wang [W192b] was also based
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on the similar algorithm for RBFN [CCG91].

It appears that early work in fuzzy logic control systems using pure fuzzy logic. as
reviewed in [Lee90]. has been gradually replaced by very active research in adaptive neuro-
fuzzy systems. The following are some excellent works in this new field: Bruske [Bru93]
gave a broad and in-depth review on various neuro-fuzzy systems. and proposed a new Neu-
ral Fuzzy Decision System: Wang [WM92c, WM92b., Wan92, WM92a. Wan93. Wan94b.
Wan94a] reported extensive and in-depth studies of neuro-fuzzy systems. including the
advantages of using neuro-fuzzy systems. universal approximation. rule extraction from
examples. backpropagation. orthogonal least squares learning for structure determination.
stable adaptive control using Lyapunov svnthesis. hierarchical systems. Part of Wang's
work was reviewed in [Men95]: Jang [Jan92. Jan93. JS93. Jan94] proposed a flexible AF-
NIS (Adaptive Network Based Fuzzy Inference Systems) model which could deal with plants
that could be represented in a piecewise-differentiable format. such as difference equations.
fuzzy models. and neural networks. AFNIS and other neuro-fuzzy models were reviewed
in [JS95]. along with static pattern classifier type learning algorithms such as backpropa-
gation(BP). Least Squares Estimation (LSE). and a combination of BP and LSE. as well
as dynamic learning algorithms such as the direct mimicking of another working controller.
inverse control. specialized learning. backpropagation through time. sliding mode control
for feedback linearizable nonlinear systems. and nonlinear gain scheduling control. Jang
was one of developers of MATLAB fuzzy logic toolbox [Mat95] which includes the AFNIS
architecture.

The above adaptive fuzzy systems are mostly supervised learning systems. Recently.
incorporating fuzzy logic with reinforcement learning has become an active research area.
Fuzzy logic combined with expert knowledge could provide a good start point and reduce
the learning time of the usually slow reinforcement learning process, while reinforcement
learning could fine tune fuzzy logic systems without explicit teachers.

Lee and Berenji [LB&9] were the first to apply reinforcement learning to fuzzy logic
systems. Single-layer neural networks from Barto’s model [BSA&3] were used to train
a fuzzy logic controller. The problem was that the fuzzy logic controller was coupled
with another external neural network controller and could not operate independently as a

stand-alone controller. In a new Approximate Reasoning based Intelligent Control (ERIC)



architecture [HB2b]. Berenji replaced the single laver neural networks with Anderson’s
model using multi-laver neural networks [And&9]. The fuzzy logic controller was modified
by adjustable parameters inserted between the fuzzifier. rules and the defuzzifier. These
parameters could be viewed as a neural network tightly coupled with the fuzzy logic system.
Another neural network served as an evaluation network to calculate internal reinforcement.
The same reinforcement learning algorithms as that used in Anderson’s model were also
used to train two neural networks. As the learning progressed. the fuzzy logic controller
was tuned using adjustable external parameters. The problem with the ARIC was still that
the fuzzy logic controller was tightly coupled with an external neural network and was not
a stand-alone system even after the learning was completed. Other problems were due to
the drawbacks of Anderson’s model. e.g. the control outputs were only binary signals, and
not eligibility traces were used to cope with delayed reinforcement.

Berenji extended the ARIC to a GARIC (Generalized ARIC) architecture [Ber92]. in
which the fuzzy logic system functioned as an independent controller with adjustable inter-
nal parameters. instead of the external parameters used in the ARIC. This fuzzy controller
was called an Action Selection Network (ASN). Another standard multi-layer neural net-
work was used as an Action Evaluation Network (AEN) and backpropagation was used
to adjust the internal parameters of these networks. A Stochastic Action Modifier similar
to Gullapalli's SRV unit was used for real-valued continuous outputs. The fuzzy system
in GARIC could work as a stand-alone controller once the learning was completed. The
problem was that no eligibility traces were used, and there seemed to be a mistake in the
formulated learning algorithm. The estimation of partial derivative of evaluation value with
respect to the control action (equation (16) in [Ber92] ) was not necessary in a reinforcement
learning. since it was already statistically approximated by reinforcement learning itself,
as shown by Williams [Wil&7, Wil92]. Also, many fuzzy operators used in the GARIC
scheme seemed to be unnecessarily complex. ARIC and GARIC were successfully applied
to the computer simulated attitude control of the space shuttle [BLJ*93]. The adaptive
fuzzy controller had similar fuel consumption efficiency as the conventional controller, with
additional advantage of being able to automatically learn the control law and adapt to new
requirements. In [Ber93]. Berenji further replaced the multi-layer neural network used as

AEN in GARIC with another fuzzy logic system. By using adaptive fuzzy systems and
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incorporating prior knowledge in both AEN and ASN, learning speed was gained substan-
tially. and a uniform integration of reinforcement learning and fuzzy logic was achieved.

Chen et al. [CLH92] proposed a self-learning fuzzy controller very similar Barto's
ASE/ACE model [BSAS&3]. The difference was that the BOXES partitioning used for
input encoding in the original ASE/ACE model was replaced with fuzzy partitioning. A
simplified fuzzy controller with fuzzy singletons as outputs was used as the ASE controller.
The Condition part of fuzzy system was fixed, whilst the output fuzzy singletons were ad-
justed by the reinforcement learning algorithm. This fuzzy controller was able to learn how
to control the classic cart-pole system and a number of other unstable nonlinear plants.
A similar system was also proposed by Boem et al. [BC93] for a collision avoidance goal-
seeking navigation control system for use with a mobile robot. The drawback of this system
was that the control action network and the performance evaluation network shared the
same fuzzy input partitioning. Because the evaluation function and the action function
may require different resolutions for the input space partitioning, it would be better to use
two different fuzzy systems for the action and evaluation functions respectively. as Berenji
did with the modified GARIC model.

Lin and Lee used two neural-network-based fuzzy logic controllers (NN-FLC) proposed
in [LL91] to construct a reinforcement NN-FLC (RNN-FLC) [LL94]. One NN-FLC per-
formed as a fuzzy controller, while the other one acted as a fuzzy performance predicator.
A stochastic unit was used to generated continuous control outputs. The basic idea was
similar to that in Berenji’s GARIC system. only the neuro-fuzzy subsystems used for the
action and evaluation functions were different. Another new feature of RNN-FLC was
that it was able to modify its rule structure as well as the parameters of the membership
functions.

Lee and Takagi [LT93] proposed the use of Genetic Algorithms for optimizing fuzzy sys-
tems. Genetic Algorithms [BGHS89] apply the ideas from natural genetic evolution to opti-
mization problems in the engineering field. Elements with a good performance will survive
and become stronger, while elements with poor performance will gradually be eliminated.
Genetic Algorithms could also be considered as a kind of reinforcement learning algorithms
in the sense that good performer will be reinforced. However. unlike the commonly used

reinforcement learning algorithms, the complex encoding/decoding schemes used in Ge-



netic Algorithms make it difficult to incorporate Genetic Algorithms with connectionist
neural networks. Genetic algorithms have been most successfully used in rule-based Clas-
sifier Systems [BGH&9] where a finite set of rules can be optimized. It is very natural to
apply Genetic Algorithms to the optimization of fuzzy logic rule-based systems. for both
structure and parameter optimizations [LT93. HM95].

Summary: Adaptive nonlinear control has been a challenging topic in control engineer-
ing. Emerging techniques from the developments in neural networks, fuz:zy logic systems,
Genetic Algorithms, and reinforcement learning provide new and promising approaches to
the control of compler. non-linear, time-varying systems. Combining these adaptive nonlin-
ear elements with control systems under the established principles of conventional adaptive

nonlinear control theory is a promising approach.

2.2 Critical Review of FINS Control Systems

Having reviewed adaptive nonlinear control strategies in general, now control systems for

Functional Neuromuscular Stimulation (FNS) will be reviewed in particular.

2.2.1 Hybrid FNS System

The hybrid assistive system was first suggested in 1972 by three leaders in the field of
control. FNS and robotics: Tomovic. Vukobratovic and Vodovnik [TVV72]. Since then it
has been demonstrated that hybrid systems have certain advantages over systems in which
FNS or bracing technology is used separately. Mechanical braces can reduce the degrees
of freedom by restricting the motion of anatomical joints or by allowing motion only in a
certain axis and thus simplify the FNS control problem. Under certain conditions, braces
can stabilize the biomechanical system and reduce the required muscle activity, and thus
delay the onset of FNS-induced muscle fatigue. Bracing can compensate for insufficient
muscle force due to denervation [YZ90]. External mechanical components can be used for
mounting sensors and actuators. Braces with externally powered actuators can provide
external torques to further reduce the requirement for muscle action and thus compensate
for weak muscles. Walking aids such as crutches or rolling walkers are usually used to
maintain balance during FNS walking.

Popovic and Tomovic et al. [PTS89] introduced a hybrid assistive system (HAS) witha



combination of FNS and Self-Fitting-Modular-Orthosis (SFMO). The SEMO was an active
mechanical brace with powered actuators to provide external torques on joints. The main
features of SFMO included: a partially active. unilateral and lightweight external skeleton:
the self-adjusting of brace to the body through telescopic elements: a soft interface: a
modular design allowing independent application to any of six joints: cvbernetic actuator
units able to control both stiffness (free-locked) and motion (flexion-extension) of joints. It
was found in experimental work that energy expenditure in paraplegic walking with HAS
was lower than those with FNS and SFMO used alone: The gait efficiency as indicated by
walking speed was the highest when HAS was used: The HAS also was found to reduce
the force load on the upper extremities. They asserted that HAS was a new step in the
development of neuroprostheses for locomotion and manipulation.

Solomonow [KAM™93] reported a Louisiana State University reciprocating gait orthosis
(LSTU-RGO) powered with FNS to provide a simple form of paraplegic locomotion. including
standing up. standing and balancing. simultaneous swing-phase and contralateral push-off
of the legs. LSU-RGO was a passive HKAFO (hip-knee-ankle-foot orthosis). The hip
joints were connected to each other with two cables which prevented simultaneous flexion
of both hips and consequent collapse. and provided force transmission from one hip to the
contralateral one to make reciprocal gaits. The reciprocal mechanism could be disengaged
to allow simultaneous hip flexions for sitting. The RGO allows stable. upright balance at
minimum metabolic energy cost. while FNS provides power for locomotion and releases the
upper extremities and trunks muscles from bearing all the burden of movements. thereby
reducing the energy expenditure per unit body mass. This hybrid system has been fitted
to over 5000 patients worldwide on a custom-made basis. with a USS 12.000 average cost
for hardware and training. Efforts are being made to form a manufacturing facility and to
obtain FDA approval for commercial distribution.

Andrews et al. [ABBT&S], KAM™93] introduced a rigid ankle-foot brace able to pro-
vide stability, without FNS activation of muscles. for 'C’ standing postures. Stability was
maintained as long as ground reaction vector remained anterior to the knee joint axis.
Only when ground reaction vector passed through or behind the knee axis, quadriceps were
stimulated to extend the knee and prevent buckling. Since the floor reaction vectors are

mainly oriented ahead of the knee joint during the stance phase of walking and standing,
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especially after 'C’ standing postures were properly adopted by FNS subjects. this Floor
Reaction Orthosis (FRO) reduced the duty cvcle of activation of the extensors to a few
percent. thus reducing muscle fatigue during prolonged upright activity. This FRO could
either be used alone for FNS standing and walking. or used as a part in a 2-part modular
hybrid FNS system including another lightweight hip/trunk reciprocating Orthosis (RO)
with powered hip joint actuators and hip linking mechanism. The hip/trunk brace provided
better stability in standing and walking than using FRO alone. and computer-controlled
hip joint actuators provided greater controllability on biomechanical system.

Durfee et al. [DH90. Dur92] have designed a Controlled-Brake Orthosis (CBO) for
regulating FNS-aided gait. The CBO was a long-legged brace with controllable friction
brakes at the hip and knee joints. FNS activated muscles were used as unregulated power.
and controllable brakes were used to regulate this raw power to achieve an acceptable leg
trajectory.

Summary: From review of above typical hybrid FNS systems, one important question
emerges, i.e. how to design FNS systems with the best effect/effort ratio. It appeared that
SFMOQO proposed by Popovic €t al. was a compler system with many attractive features.
However, a compler system is usually difficult to operate, either for the human opcrators,
or for the controlling computers. LSU-RGO with FNS reported by Solomonou was a reliable
hybrid system. mainly due to the stability provided by LSU-RGO. However, LSU-RGO was
a long HKAFO which braced all sir joints and feet. and thus could become a heary burden
in subject’s daily living. Modular hybrid FNS system proposed by Andrews et al. modu-
larized the LSU-RGO, and thus partially overcame some drawbacks of LSU-RGO such as
encumbrance, while provided the similar stability. CBO proposed by Durfee et al. was quite
novel in that the brace was used to brake the leg movement, rather than to provide stability
or power for leg movement as in other passive or active braces. One possible drawback of
CBO was that muscles had to be activated to large levels, even to their mazimums, in order
to provide sufficient raw power to be regulated by brakes. If there was no enough raw power,
the brakes would not help. These typical hybrid FNS systems show that longer bracing will
provide better stability, and power brace will provide better controllability. However, if im-
provement in effect is small compared to the effort required to operate the erternal elements,

the final effect/effort will actually decrease. A modular design is necessary to provide the
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best effect/effort ratios for different cases.

2.2.2 Hierarchical FNS Control System

Hierarchical and distributed control have been adopted by some FNS researchers [CKMTE&S.
Chi92, ABPK&9]. Here the control problem is decomposed into a set of sub-control tasks.
Conceptually (and somewhat arbitrarily), the FNS controller can be divided into three
levels: the command processor. the coordination level controller and the actuétor level
[CKM*8&8]. The command processor translates SCI subject’s commands (e.g. sit. stand.
walk) into desired biomechanical outputs. The coordination level controller decomposes the
complex movement instructions into stimulation patterns of individual muscle groups and
coordinates the actions of actuator level controllers. A the actuator level. controllers gen-
erate stimulation signals to individual groups of muscles to achieve desired motions. Simi-
lar hierarchical and distributed structures can also be found in the natural motion control
in vertebrates [Ito&4, HKB93, MSW9(a] albus81,kawato87,barto93.berthier93,prochazka93,
and it is a natural and effective way to deal with high DOF control problems in neuromus-
cular systems. There is, however, no very clear line between these three FNS control levels.
One type of control technique, such as rule-based control. could be used in all levels. And
in some simple FNS systems. there could be only one level controller which takes care of all
control tasks. In FNS field, various control strategies have been proposed and are reviewed
in the following sections. These include open-loop controllers, conventional closed-loop con-
trollers (e.g. PID, STR, MRAC, LQR), to nonconventional closed-loop control strategies

such as rule-based control. neural network control. and fuzzy logic control.

Open-loop FNS Controller

Open-loop FNS controllers usually can not maintain satisfactory performance all the time.
However, their effect/effort ratios, defined as functional or therapeutic effect obtained by
using FNS with respect to the effort required to operate the FNS system, are not low. Thisis
partially due to the fact that open-loop controllers do not require feedback sensors and thus
avoid the tedious procedure of sensor mounting, cabling and calibration. Another reason
is that open-loop controllers do not need complex calculation, thus reduce the requirement

for fast real-time computing power. Indeed, most FNS stimulators (e.g. those reported in



[KAM™93]) today operate without sensory feedback. The only command input is usually
manual switches from the users.

McNeal et al. [MNMTE&9] used an open-loop quadriceps FNS stimulator to control the
freely-swing knee angle to follow a specific trajectory. An iterative trial-an-error procedure
is used to manually adjust the sequences and amplitudes of stimulations. In four paraplegic
subjects, it was found that on average 12.6+2.9 iterations were required to approximate the
required trajectory, with final error of 2.1£0.7 degrees. Repeated responses were extremelyv
consistent: the average difference between successive trials was less than 1 degree in 81%
of the trials: stimulation sequences achieved accurate matches of the desired trajectory on
subsequent days when adjusted by a simple gain factor; stimulus modulation envelopes
for all four subjects were similar in sharp (although varied in amplitude) indicating that
the iterative process can be shortened by starting with an averaged modulation envelope.
However. there was a progressive degradation in the response when the stimulation sequence
was repeated every 3 seconds for 30 trials. demonstrating the limitation of the open-loop
control.

In Cleveland, Ohio, U.S.A.. Marsolais and Kobetic et al. have developed a portable
and laboratory-based 4&-channel CVAMC-CWRU system [CKM*8S8, Kob94. K)M94] for
FXNS walking controlled by preprogrammed stimulation sequences. The stimulation pat-
terns were derived from trial-and-error experimentation. starting with known muscle EMG
patterns observed during normal gait. and fine-tuned stimulus timing and amplitude man-
ually using qualitative visual observations and quantitative evaluation of FNS gait with
a motion analysis system [KSM*91, Mar91]. The users manually operated a hand switch
to initiate the preset stimulation sequences for different states of paraplegic gait. based on
his own visual, auditory and somatosensory feedback. When the subject began to slow
down due to muscle fatigue. another stimulation pattern with higher muscle activation
level was activated to regain the original speed. This system demonstrated the feasibility
of FNS paraplegic walking. However. it was found that automatic detection of incipient
gait events such as heel strike would be necessary to provide for timely activation of mus-
cles in order to reduce undesired delays, improve gait quality and reduce metabolic energy
expenditure. Such gait event detection would also enable use of sensor information for next

step (cycle-to-cycle) adjustment of trajectory based on experiences gained by experts with
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preprogrammed stimulation. Researchers at Cleveland Center are now working toward a
next-generation. closed-loop FNS walking system with cycle-to-cycle fuzzy logic controller
to make adjustments at each succeeding step.

Yamaguchi and Zajac [YZ90] designed an open-loop FNS controller to restore unassisted
natural gait in a 3-D. & DOF computer model of a paraplegic. They used a computationally
intensive Dynamical Programming process with trial-and-error adjustment to find subop-
timal stimulation patterns for at least seven muscle-groups in each leg. An ankle-foot
orthosis was found to be especially useful. as it helped to stabilize the stance leg and sim-
plified the task of controlling the foot during swing. Although this computer simulation
did demonstrate the possibility for unsupported FNS paraplegic gait. it was only limited
to undisturbed. level gait and did not take into account muscle fatigue.

In additional to the above empirical trial-and-error or dynamical programming proce-
dure. there are other, more theoretical. methods utilizing neuromuscular models to design
non-linear open-loop controllers.

Hausdorff and Durfee [HD91] designed an open-loop freely-swing knee joint position
controller in able-bodied subjects using quadriceps and hamstrings. By inverting the non-
linear static muscle recruitment curve, linear muscle dvnamics. a non-linear feedforward
compensator was formulated. The model parameters were identified by a series of off-line
experiments. This compensator worked well for open-loop isometric control of torque for
short periods, especially if the dependence of torque on position was accounted for. How-
ever. for non-isometric position control. its performance was poor, due to the inaccurate
muscle dynamic model under nonisometric conditions. The authors suggested that closed-
loop control might be essential for functional restoration of gait.

Veltink et al. [VCCeB92] also tested a similar open-loop nonlinear compensator in cat
limb joint control experiments. The controller compensated for the nonlinear muscle re-
cruitment curve and a three-factor (muscle activation dynamics, angle-torque relationship,
and angular velocity-torque relationship) non-linear muscle dynamics. The performance
of the compensator appeared to be strongly dependent on modeling errors and could be
improved by combining with PID feedback controller.

In an attempt to automate the synthesis of a stimulus map for open-loop upper-

extremity FNS prostheses, Kilgore and Peckham [KP93] developed a method they called
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External Moment Grasp Synthesis Map (EMGSP). which described the interaction between
the active moments generated by electrical stimulation. the passive joint moments. and the
resulting total joint moment and angle. The EMGSP was used to automate the develop-
ment of stimulus maps for three paralyzed subjects. and the EMGSP generated grasp had
lower errors than the grasp patterns developed using a rule-based qualitative method. It
was found that the time dependent recruitment variations. such as fatigue, were a primary
source of errors.

Based on a neurobiological model of vertebrate motor control network. Abbas [AC92.
AT93] designed an adaptive feedforward FNS controller, comprising a set of coupled unit
pattern generators (PG, could be simplified to a look-up table) for generating a cyclic
pattern of activity. and a pattern shaper (PS) to adaptively filter the PG signals using
a heterosynaptic Hebbian-type learning algorithm. This feedforward controller is supple-
mented by a PD feedback controller at the training phase, and the PD controller output
decreased as the training progressed and could be totally disabled after training was com-
pleted. This feedforward control supplemented by simple PID feedback control is similar to
Kawato's "feedback-error-learning™ method [KFS87] based on a cerebellum network, which
had been applied to robot control systems. (The difference is that Abbas used error directly
while Kawato used PID output as training signal). Abbas evaluated his adaptive feedfor-
ward FNS controller using a computer model and the quadriceps of SCI individuals during
a tracking task. The control system was demonstrated to provide automated customization
for a given musculoskeletal system as well as on-line adaptation to account for changes in
musculoskeletal system, such as fatigue. However, this neural network controller is not a
complete open-loop system, because it required feedback error in order to learn during the
training phase. After training, the feedforward control could work independently. however,
if on-line adaptation to parameter changes was required, then feedback error was also nec-
essary. Sankai [San95] proposed a similar adaptive pattern generator FNS controller using
recurrent neural network trained by Genetic Algorithm.

Summary: Open-loop FN'S controllers are easy to implement and do not need ertra sen-
sor mounting and cabling. They are widely used in most current FNS systems. However,
some forms of closed-loop control may improve control performance. For FNS controllers

using preset stimulation patterns, sensory feedback would provide necessary gait event infor-
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mation for better timing to trigger preset stimulation patterns in order to avoid unnecessary
muscle activation. For nonlinear feedforward compensators. ertra feedback control would
correct the modelling inaccuracy. Finally. to cope with time-varying properties such as
muscle fatigue and potentiation, and internal or erternal disturbances such as change of

load. closed-loop control is necessary.

Numerical Closed-loop FNS Controller

The simplest numerical closed-loop controller is the standard PID (proportional-integral-
derivative) controller. Since the early 1980s, Cleveland research group has studied the
PID control for FNS in animal using single muscles. in human upper extremities and
lower extremities [CKM*8&8, Chi92]. Usually a co-stimulation mapping function was used
for controlling two antagonist muscles and compensating nonlinear muscle recruitment
properties [Chi92]. It was found [CKM*&S] that PID feedback controllers performed well
in maintaining stance stability for short durations (5-10 minutes) in the presence of external
disturbances, and feedback control of hip and trunk provided the subject with an increased
ability to free his hands while standing. However, stable stance duration was limited by
fatigue of muscles, which increased input-output deadbands and resulted in oscillations in
some cases.

Recently. Franken and Veltink et al. [FV'93] has proposed a cycle-to-cycle PID control
strategy to cope with slowly-varyving parameters such as muscle fatigue. PID controller was
not designed to correct instantaneous trajectory tracking error. but rather to compensate
for slowly-varying muscle properties by computing parameterized stimulations on the basis
of gait in previous cycles. It was questioned if instantaneous control of system trajectory
was possible or even essential for the lower extremity FNS system. This is certainly a
good question. and it might suggest that conventional numerical tracking control might
not be suitable for the complex FNS systems with poor controllability. Kobetic et al.
[Kob94. KM84] recently proposed the modification of FNS stimulation based on the control
performance of previous gait cycle.

A common method to deal with time-varying dynamics is adaptive control. Allin and
Inbar [AI&6] designed a third-order model reference adaptive controller for tracking control

of upper limb. Their results suggested that the adaptive controller performed at least as



well as, and generally better than a third-order feedforward controller in terms of tracking
error and disturbance resistance. The feedforward controller required a lengthy a priori
off-line identification procedure each time it was used. In contrast, the adaptive controller
could identify parameters on-line within a few seconds with a consequent improvement
in performance. The benefits of MRAC included the ease of setting up controller and
continuous adaptation, and hence its great practicality.

While results from Allin and Inbar were encouraging, results from Cleveland group us-
ing adaptive controllers were not very positive. Bernotas. Crago. and Chizeck [BCC&7]
designed a STR type adaptive controller using recursive least squares parameter estima-
tion. The controller was evaluated in an animal muscle. It was found that the controller
effectively tracked the required commands. However, the performance of this adaptive con-
troller showed only a minor difference with that of a pole-zero fixed parameter controller.
The problems with this adaptive controller included instability due to measurement noise
and reduced effectiveness caused by the absence of a persistent excitation in constant com-
mands and saturated controller outputs. These difficulties of adaptive controller. and the
remarkable robustness of a simple fixed parameter controller, suggested that adaptive con-
trollers might be best used in conjunction with a supervisory controller to guarantee safety.
Lan, Crago and Chizeck [LCC91] further compared the performance of a similar second-
order STR adaptive controller and two first-order fixed parameter controllers (one using
pulse-width modulation. the other using both pulse-width and stimulus-period modula-
tion). The comparison was carried out on an animal muscle preparation for different tasks.
It was found that the simplest PW controller demonstrated robust control for all tasks:
The PW/SP controller performed significantly better than PW under transition situations.
However, the adaptive controller did not perform significantly better than the simple PW
controller. It was argued that abrupt changes such as external loading transitions limited
the performance of adaptive controller.

To cope with the nonlinearities of the neuromuscular system, perturbation linearization
or nonlinear feedforward compensator could be used. Successful results using perturbation
linearization were reported by Khang [KZ89] and He [HLL91] in computer simulations.
This kind of perturbation methods are limited to standing postural control.

Lan [LCC90] proposed a general perturbation control strategy to decompose a nonlin-
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ear system into a "nonlinear nominal system”™ compensated by a non-linear feedforward
compensator and a “perturbed linear system™ controlled by a linear feedback controller.

Veltink et al. [VCCeB92] compared the performances of a nonlinear feedforward com-
pensator. a PID feedback controller. and a PID feedback with nonlinear feedforward com-
pensator for joint angle tracking control in an animal muscle. It was found that the per-
formance of using feedforward nonlinear compensator depended strongly on the accuracy
of the model. '

del Re et al. [dKSG94] designed a self-tuning PID controller with a nonlinear compen-
sator to deal with nonlinear and time-varying muscle dynamics. Experimental results for
the control of the freely swing knee joints of able bodied persons demonstrated the effective-
ness of this controller. A good correct approximation for the nonlinear muscle recruitment
characteristic curve was shown to be necessary for stable control. In addition, special treat-
ments such as an adaptation switching mechanism and a linear forgetting algorithm were
also important for reliable control.

Summary: Conventional numerical control, from simple PID, linear adaptive MRAC
and STR, to compler self-tuning linear adaptive control with nonlinear compensator have
been applied to FNS systems. PID controllers with nonlinear co-stimulation mapping pro-
vided robust control, but only for short periods. The results of linear adaptive controllers in
FNS from two independent research groups were mized, with both positive and no-so-positive
conclusions. This suggests that neuromuscular systems are compler nonlinear systems. and
that conventional linear adaptive controllers may not always work well in FNS control. The
results of PID feedback control with feedforward compensator suggests that the accuracy of
the nonlinear function approrimation is important for improving control performance. If
a nonlinear model is not accurate, the use of nonlinear compensator would not improve,
and may even degrade, the performance of a simple linear PID controller. In conventional
numerical control field, accurate nonlinear function approrimation is difficult to obtain, and
depends on the accuracy of both structural identification and parameter estimation. On the
other hand, as reviewed in early sections, non-conventional neural networks and fuzzy logic
systems have been proven to be universal nonlinear function approrimators having excellent
learning capacity. Thus, incorporating neural networks and fuzzy logic systems as adap-

tive nonlinear elements in numerical control systems is a promising approach for nonlinear



adaptive control in general. in particular for the control of FNS systems.

Lan. Feng and Crago [LFC94] proposed a feedforward artificial neural network with out-
put recurrent loop and input time delay for FNS control of quadriplegic arm. The optimal
movement and corresponding muscle activation patterns were derived from the equilibrium
point hypothesis of natural single joint movements and numerically solved using a nonlinear
programming software which required computation power at the supercomputer level. The
ANN was able to learn the inverse dynamic relationship for the optimal movement and gen-
eralize the learned optimal control to a class of scaled movements. and had the advantage
of high speed computation (due to its parallel structure) which was critical for real-time
implementation. The trained ANN open-loop controller could control the nonlinear mus-
cle/joint model sufficiently well so as to reproduce a range of scaled optimal movements. It
was also shown that the ANN controller’s ability to extrapolate was speed-limited and that
the ANN-produced movements might deviate from the optimal movements. particularly at
the termination of the movements. due to various sources of errors. They recommended an
additional on-line adaptation algorithm or feedback controller to assist in refining muscle
stimulation for practical applications. and suggested the combination of an open-loop ANN
pattern generator and a closed-loop controller in a perturbation controller [LCC90].

Teixeira and Chizeck et al. [TJS*91, Chi92] used an ANN to model the inverse dynamics
of a nonlinear neuromuscular system for use in a feedback linearizing controller. They
successfully applied the method proposed by Loparo [LT90b] to the control of FNS using

a computer muscle model.

Finite State Closed-loop FNS Controller

Conventional numerical control has been quite successful in process control and robotics.
However, the difficulties in its application to FNS suggest that the control of biological
systems may need a totally different approach. There is neurobiological evidence to sug-
gest that numerical error driven servo-controllers do exist in biological systems. e.g. stretch
reflex [Ste80] and posture control [HLL91]. Numerical control methods could be applied
to the quantitative analysis of such feedback loops. However, there is other evidence to
suggest that biological motor control systems adopt distributed, non-numerical, pattern-

driven control strategies [TM66, Pro93, MSW90a, HKB93, BSB93, Alb&1, Bee90. BRM193].



One difference between centralized and distributed control syvstems is that distributed sys-
tems allow “graceful degradation™ [PJW92] of performance in the situations of hardware
or software failures. while such failures could have fatal consequences in centralized sys-
tems. A “graceful degradation™ would provide more realistic and valid safety guarantee
than the classical safety techniques relying on high quality components. Under “graceful
degradation”. reliable control is guaranteed with low quality sensory information. Indeed.
most sensory information in biological systems are not high quality, compared to those in
artificial systems such as robots. In FNS systems. the situations are similar. For exam-
ple. only a limited selection of sensors are practical for FNS systems [CCNH&6. And93].
Even traditional goniometers. widely used in robots, are not practical for daily usage in
ENS. considering the mechanical encumbrance and tedious calibration and cabling. TUsu-
ally some convenient. compact, reliable. easy-to-install sensors such as pressure sensing
resistors (FSR)[ABPK&9. And93]. radio goniometer [And93]. inclinometer. accelerometer
[VFVB93. VBK*93, And95] are used in FNS. These sensory signals are not directly re-
lated to the system dynamics modelled by differential equations using angular variables.
but rather are coarse. sometimes nonlinear, information reflecting the current states of the
syvstems. It is almost impossible to design conventional numerical controllers using this
sensory information.

Finite state control is a feedback control strategy without using explicit dynamic models.
Finite state controllers make control decisions based on the pattern-matching in sensory
feedback. rather than calculating control signals from tracking errors based on dynamic
models. Pattern-driven finite state control may seem too simple from control engineering
point of view, yet. there are evidences of such motor control programs existing in spinal
cord, cerebellum, and motor cortex of intact animals, such as as “Central Pattern Generator
(CPG)” [SteR0, Pro93, Ito&4] and "Adjustable Pattern Generator (APG)” [BSB93, HKB93,
MSWW90a] which are preset motor programs triggered by particular sensory patterns. It is
interesting to note that gait analysis [VD0O92] also reflected the finite state nature of human
gaits, e.g. human gait is divided into two main phases (swing and stance) with eight main
events (toe-off, acceleration. midswing, deceleration, heel strike, foot-flat, midstance, heel-
off ).

Based on a neurobiological model, Berthier et al. [BSB93] designed an Adjustable Pat-
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tern Generator neural network controller which successfully controlled a simple two degrees
of freedom simulated limb. Beer et al. [Bee90] also used a biologically-based motor pat-
tern generator to successfully control an “artificial cockroach™. Srinivasan et al. [SGIV92]
demonstrated that a sequential artificial neural network was capable of learning periodic
movement trajectories with generalization and fault tolerance abilities and suggested its
use as bipedal movement pattern generator in legged robots and rehabilitation engineering.

Donner [Don8&7] designed a finite state controller for a real legged robot. Albus [Alb&1]
demonstrated that his CMAC model could become a finite-state automaton. or produc-
tion rule system, if the trajectory information is directly fed back to the controller. This
“stimulus-response chaining” type CMAC's have been applied to the control of robot ma-
nipulators [Alb&1. HLG90]. Since the mid 1980s. the “behaviour-based robot™ has become
an active research topic (Bro&6]. Behavior-based robots differ from traditional robots in
that there is a direct mapping from sensors to actuators for each task-oriented behavior.
while there are many layers (perception, modelling.planning.task execution, motor control)
from sensors to actuators in traditional robot. Complex behavior can be decomposed into
simpler component behaviors and designed accordingly. Recently, Mahadevan et al. [MC92]
used reinforcement learning algorithms for the automatic programming of behavior-based
robots, and suggested that converting a complex task into a simpler set of special-purpose
reactive sub-tasks would speed up learning. In fact, reinforcement learning is based on finite
state models and provides a natural approach for developing adaptive learning finite state
control. As pointed out by Sutton [SBIW92]. reinforcement learning is a direct adaptive
optimal control that learns optimal control actions based on input state patterns without
going through the traditional two-step trajectory planning/tracking scheme.

In FNS and rehabilitation robotics, Tomovic and McGhee [TM66] firstly proposed fi-
nite state approach for the control of bioengineering systems in the 1960s. Later. Artificial
Reflex (AR) control was proposed by Tomovic [Tom&4, PTS89], and further developed into
Adaptive Reflex [TPT8&7] and Rule-Based Control [PTS89. ABPK89]. Actually. Liberson's
first FNS system for foot-drop correction was also a finite state controller. Finite state con-
trollers have been used in prolonged FNS standing with [ABPK8&9, KAM™93] and without
foot bracing [MVBZ92]: standing up [MVB92]; reciprocal gaits [ABPK&9, CKM*88]; and

swing-through gaits [Hel92].



A recent and interesting development is the application of machine learning algorithms
to the automatic design of finite state or rule based FNS controllers [KA&S. ABPKS9.
KAMS9, KARI. Hel92. HVR*93. Kos95, KAP*95]. The application of Quinlan’s [Quis6]
ID3 type inductive machine learning to FNS control was firstly reported by Kirkwood and
Andrews et al. [KA&&. ABPK&9]. Since then. inductive learning algorithms have been used
to automatically derive FNS control rules from working examples [KA89, Hel92. Kos95.
KAP*95]. to automatically detect normal gait events [KAME&9]. and to reconstruct muscle
activation patterns from kinematic data in normal gaits [HVR+93]. A disadvantage of ID3
type inductive learning is that it is an off-line mode of learning. Kostov et al. compared
inductive learning (IL) algorithm with another supervised learning algorithm. Adaptive
Logic Network (ALN) for the automatic design of rule-based FES control. The results
suggest that the IL learned faster than the ALN, while both performed the test rapidly.
An advantage of the ALN over this IL was that ALN's could be incrementally trained with
new data without losing previously collected knowledge. The advantages of the IL over the
ALN were that the IL produced human comprehensible decision trees and that the relative
importance of each sensory contribution could be quantified. The last feature is important
to relax the “curse of dimensionality™ problem when machine learning is to be scaled up to
large systems.

To cope with uncertainty in the training data and noise in sensor signals, Heller [Hel92]
incorporated fuzzy logic weighting into inductive learning algorithms. It was found that
fuzzy weighting improved classification accuracy and allowed the induction of more robust
rule-sets. Ng and Chizeck [NC93] used fuzzy logic to predict FNS gait events in the presence
of sensor noise. The fuzzy detector was intended for on-line estimation of FNS gait phrases.
as part of a closed-loop controller for improved paraplegic locomotion [Kob94, KM94].
Popovic [Pop93] proposed a neural network with special class of fuzzy logic elements called
“preferential neurons™ for automatic synthesis of finite state control rules. The preferential
neurons were used to estimate the relevance of each of the sensory inputs to the recognition
of patterns defined as finite states.

Neural networks could also be used for finite state control. Although neural networks
can not be expressed as explicit IF/THEN rules, they can still be used to generate state-

action mappings. Note that finite state control is not equal to rule-based control. Rather,



finite state is an abstract mathematical model. which can be realized by production rule
svstems. neural networks. look-up tables. and other mapping functions.

Kostov et al. [KSAT92. Kos95. KAP*95] has applied Adaptive Logic Net(ALN). a
kind of neural network using boolean trees, for automatic generation of finite state FNS
controllers. It was found that ALN was able to clone the control skills from skilled subjects
or therapist, and more interestingly. able to provide an early prediction of stimulation
events. up to two seconds in advance.

Heller et al. [HVR*93] used multi-layer neural network (NN) and inductive learning
(IL) to reconstruct muscle activities during normal gaits. It was found that NN was able to
reconstruct the continuous muscle activation patterns of both muscles from one network.
whereas two separate rule sets were needed for the rule-based IL. It appears that NN s had
better function approximation capacity than rule-based IL. However. the disadvantage of
NN was that the control rules generated by NN were implicit within the network structure
and weight parameters and not easily comprehended.

Summary: Finite state control is a flexible control strategy which does not need a explicit
dynamic models of the controlled plants. Finite state control could be implemented using
production rule systems, neural networks, or fuzzy logic systems. Control strategies could be
adaptively learned from human erperts or from training data using symbolic or connectionist
machine learning techniques. Finite state control could be applied to all three level conirol
form command level. coordination level, to low actuator level. Production rule systems or
fuzzy logic systems have advantages of using erplicit rules, thus, are easy to incorporate
expert knowledge into control rule bases. and if rules are learned from eramples, they are
comprehensible. However, inductive learning algorithms used in rule-based systems are
off-line, batch-mode learning algorithms that are not suitable for on-line adaptive control.
Neural networks have the advantage of excellent function approrimation ability and could be
trained on-line and incrementally. The disadvantage of neural networks is the difficulty for
human to understand the learned control rules, and to incorporate prior ezpert knowledge.
A combination of neural network and fuzzy logic rule-based systems will take the advantages

from both sides to overcome the disadvantages of both sides.



Command Level FNS Controller

Top level decisions (such as sit. stand. walk) are made by FNS user. The user’s commands
may be passed down to FNS controller and the information about current states of FNS
svstems should also be fed back to the FNS user. Thus there is a man-machine interface
between user and FNS controller. A practical FES system should have a natural man-
machine interface. Some criteria for the design of FNS man-machine interface have been
proposed [MP90]:

(1) provide reliable logical command signals that the user can consistently produce.
These commands are used to turn on or off the FNS system. select from a set of movement
patterns, etc. The classification accuracy should be high. Some crucial commands should
have 100% accurate rate.

(2) provide repeatable proportional command signals that do not drift or change over
time. These commands are used to control values of continuous parameters like position.
velocity, forces. etc.

(3) not interfere with other activities of the user.

(4) provide adequate communication rate.

(5) provide sensory feedback to user.

(6) easy for user to learn to control this new interface.

(7) provide a natural extension to the user’s intact motor system.

(&) provide subconscious control. receiving little attention from the user.

In low level SCI (paraplegia). hand switches are usually used in FNS to restore locomo-
tion. Hand switches have high reliability, which is important to user's safety in locomotion.
Actually. hand switches meet almost all the above listed criteria except perhaps (&). How-
ever, in high level SCI (quadriplegic) who have impaired upper limb motor functions. even
hand switches can’t be used. Automatic command level FNS controller is more necessary
in upper limb FNS systems for individuals with severe motor deficits. However, even for
paraplegics able to use hand switches, to reduce the amount of mental attention to operate
the FNS systems is still important.

Various command sources have been explored as automatic intention detectors, in-
cluding shoulder movement [MP90], head movement, myoelectrical (EMG) signals [GK95],

voice control. electrooculography (EOG) [JH90]. direct neuronal recording from motor cor-



tex [HY92], sensorimotor EEG rhythm [WW)M94].

Physiologically. voluntary motor control signals originate in the motor cortex. There-
fore, direct use of electrical signals from the brain as FNS command sources is a very
attractive idea. Wolpaw et al. [W)\194] have used multichannel EEG as brain-computer
communication tools for severe movement disorders. Specific sensorimotor mu rhythm (&-
12Hz) was determined by fast Fourier transform and used to control vertical and horizontal
cursor movements on the computer screen. Of course, moving cursor around on a screen is
much simpler than controlling FNS system. The brain itself is a complex system with bil-
lions of neurons. more complex than neuromuscular systems. Coupling these two complex
systems with each other won’t be a simple task.

Recently. Graupe [GK95] reported the use of ART neural networks in an FDA-approved
FNS ambulation system in which above-lesion surface EMG signals were used as user
command sources. The EMG was preprocessed using an autoregressive (AR) parametric
model. The AR parameters were classified using an on-line unsupervised learning ART
neural networks. The EMG signals from paralyzed muscles were used as muscle fatigue
index to modify stimulation strength.

Del Boca et al. [BP94] reported a similar application of EMG signals to FNS control.
EMG signal features were first extracted by a Fourier analysis, then clustered using a
fuzzy c-means algorithm. Data from unsupervised learning technique were presented to a
multilayer perceptron type neural network to produce stimulus control signals. A digital
signal processor was used for real-time operation. A highly accurate discrimination rate
was achieved.

Summary: Basically, command level controllers are pattern classifiers. Many bioelec-
trical signals, including EEG and EMG, are stochastic signals. Various statistical signal
processing/pattern recognition algorithms [Mam92, WS85, ZW90], from conventional lin-
ear signal processing techniques such as the Ralman Filter to nonlinear neural networks
and neuro-fuzzy systems, could be used for signal enhancement, feature ertraction and clus-
tering. Fourier transform, parametric modelling could be used for pre-processing and fea-
ture eztraction. Unsupervised learning algorithms such as Kohonen's Self-Organizing-Aap

[Koh88] or above mentioned ART are particularly useful for automatic clustering and clas-

sifying.



2.3 Hypothesis and Objectives of the Thesis

2.3.1 Genesis

This thesis is inspired by the pioneering researches in the Bioengineering Unit at the Uni-
versity of Strathclyde, U.K.. led by Dr. Brian Andrews. Researchers in Bioengineering
Unit have applied artificial intelligence techniques to the control of neuromuscular pros-
theses for many years [KA8%, ABPK&9, KAMS9, KA&9, Hel92, HVR*93]. Due to my
research interests in biomedical engineering and adaptive signal processing [ZW90]. it has
been an enjoyable experience for me to further this challenging and stimulating work under
supervision of Dr. Andrews.

Kirkwood and Andrews et al. [KA8, ABPK89] firstly reported the application of
Quinlan’s ID3 type inductive machine learning to FNS control. Kirkwood [KAMS&9, KA89]
further developed a new inductive learning software, DISCIPLE, based on the idea of
partitioning attribute space by maximizing information gain. Heller [Hel92. HVR*93]
improved Kirkwood’s algorithm and incorporated fuzzy weighting into a new inductive
learning software EMPIRIC running on IBM-compatible PC.

At the Research Center (then Rehabilitation Technology Department) of Glenrose Re-
habilitation Hospital (Edmonton, Canada), a real-time experimental FNS system based on
IBM PC running OS/2 operation systems was developed by Jerry Penner [Pen92]. A finite
state machine software module was incorporated in the FNS experimental control software.
The EMPIRIC inductive learning was to be embedded into the finite state machine. but
has not yet been implemented. I took over this project in early 1993. Besides the many
problems with the then immature OS/2, another big problem was that the inductive learn-
ing was an off-line batch learning algorithm. How to obtain on-line incremental learning
became one of our objectives.

Meanwhile, in the Biomedical Engineering Department ( then Applied Sciences in
Medicine) at the University of Alberta, Jeroen Bielen [Bie93] developed a computer model
to verify the feasibility of a hybrid FNS system with power hip brace.

My first attempt, to improve the inductive learning, was to fuzzify the rule base gen-
erated by EMPIRIC algorithm, similar to that used in [TST92]). Then, optimization

algorithms, including those conventional optimization algorithms available on MATLAB
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and Genetic Algorithms [BGH&9]. were used to adjust parameters of fuzzy membership
functions[Ath93, LT93]. This idea was tested on Jeroen's computer model. However. it
was found that the parameter space was too big because there were usually many param-
eters in a fuzzy rule base. Direct optimization in the parameter space was found to be
too costly, and a gradient descent method, taking advantage of known structure of fuzzy
systems to reduce search space, was found to be more efficient [NHW92].

Around the same time, the intelligent control field [WS92], using artificial neural net-
works and fuzzy logic systems for adaptive nonlinear control had grown very rapidly since
the early '90s. I have been very interested in the research of Berenji at NASA. U.S.A.
[LB&9. Ber92. HB2b, BLJ*93, Ber93]. in which reinforcement learning algorithms were
combined with fuzzy logic to design adaptive learning controllers which could improve
control performance by interaction with the environment.

It seemed to me, however, that Berenji's fuzzy systems were too complex. A simpli-
fied Fuzzy Neural Network (FNN) proposed by Shibata et al.[SFK+92] using differential
Gaussian membership functions made it easier to incorporate various learning algorithms
in contrast to traditional fuzzy logic systems using triangular membership functions.

Influenced by these ideas. the author developed a new Adaptive Fuzzy Network (AFN)
incorporating reinforcement learning algorithms and supervised learning algorithms. and

applied it to the control of FNS. Our preliminary result was reported in [WA94].

2.3.2 Initial Hypothesis

The finite state model provides a flexible framework for the control of complex neural
prostheses. Neuro-fuzzy systems that combine artificial neural networks and fuzzy logic,
can be used to implement finite state controllers which have the capacity to incorporate
a priori knowledge from human experts, fine-tuning control rules, as well as learning from
examples.

Reinforcement learning control is a direct adaptive optimal control strategy [SBW92]
that can be applied to automate the design of finite state neural prosthetic controllers
without knowledgeable teachers. Incorporating a priori knowledge into the fuzzy rule base
will speed up reinforcement learning. Reinforcement learning provides fine-tuning of hand-

crafted rules from human experts or automatic customization of previously learned control



rules from similar models.

2.3.3 Thesis Objectives

The following objectives were set:

(1) Through literature review. assess the potential of neural networks. fuzzy systems.
and symbolic rule-based systems for adaptive nonlinear control and finite state control. and
the application to control of FNS neural prostheses.

(2) Develop an adaptive fuzzy network by incorporating fuzzy logic and neural network:
formulate the supervised learning and reinforcement learning algorithms for the proposed
adaptive network: identify the important issues for practical application. such as suitable
network structure. learning rate, function approximation and efficient exploration in rein-
forcement learning.

(3) Demonstrate the feasibility of applying reinforcement learning to control of a neural
prosthetic system in a computer model of the swinging leg. Determine the rate of learning
and assess methods to speed up reinforcement learning by incorporating a priori knowledge.

(4) Using the computer model. compare the performance of supervised learning and re-
inforcement learning control against open loop control in the events of time varyving changes

due to muscle fatigue and significant changes in model parameters reflecting different SCI

subjects.



Chapter 3

Methods

This chapter describes the methods used in the computer simulation study. Section 3.1 de-
scribes the computer model of a paralyzed human leg in the swing phase of gait driven by an
active hybrid prosthesis. Section 3.2 describes the Adaptive Fuzzy Network incorporating

supervised and reinforcement learning mechanisms.

3.1 Biomechanical Model of the Paralyzed Swinging Leg
with a Hybrid Neural Prosthesis

3.1.1 A Modular Hybrid Prosthesis

Hybrid neural prostheses incorporating FNS and mechanical bracing have potential advan-
tages over FNS or brace used alone. Modular systems can be customized for individual SCI
persons for the best effect /effort ratio. The modular hybrid system modeled in this thesis
for assisting paraplegic locomotion is shown in Fig.3.1. The Floor Reaction Orthosis (FRO)
provides stability during prolonged standing or the stance phase of gait without FNS acti-
vation of muscles, provided the ground reaction vector remains anterior to the knee joint
axis. and thereby reduce the muscle fatigue. FRO could also compensate for foot drop
during the swing phase [YZ90]. The proposed powered hip brace (PHB) will supply the
torque on the hip joint to initiate forward swing phase and also provides trunk stability-
FNS is used to activate quadriceps to extend the knee during standing. the stance and
the terminal swing phase of gait. Crutches or other walking aids may be used to provide
balance and upper-body support.

In the FNS systems which use surface electrodes [ABB*88, ABPK&9. KSAT92. Kos93.

38



Figure 3.1: A modular hybrid prosthesis with quadriceps FNS. Floor Reaction Orthosis
(FRO), and powered hip brace (PHB). Crutch provides upper body support.

KAP*93]. the flexion reflex was commonly used to flex both the hip and knee joints to
initiate a forward swing. The disadvantage of using the flexion reflex is poor controllability.
including large variations in response. habituation and time delay [GHN+93]. Ar externally
powered hip brace may improve the controllability of hip flexion. This actuator also has
to cause sufficient knee flexion via the inertia of the lower leg to clear the foot during the
swing phase. A certain amount of acceleration of the thigh is required. thus a minimum
hip torque is necessary.

The feasibility of this powered hybrid system was suggested by Jeroen Bielen [Bie93]
in a computer simulation study. It was found that for a person with &0kg body mass.
the required hip torque was typically 25Nm for a duration of 0.25 seconds. resulting in
TW average power supply for a typical paraplegic reciprocal gait (2 seconds/cycle). One
drawback of this system is that hip torque is used to flex the knee via inertial effect. It was
found [Bie93] that increase of the damping in the knee drastically increased the minimum
hip torque requirement. Using hamstrings muscle for knee flexion could reduce the power

consumption of the hip actuator.
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Figure 3.2: Block diagram of the swinging leg model, including a passive leg dynamics
modeled as a compound pendulum. and a active muscle model (grouped by the dashed-line

block).

3.1.2 Computer Model of the Swinging Leg

Only the swing phase of gait in the sagittal plane is investigated in this computer simula-
tion. The swinging leg model can be divided into two major parts (Fig.3.2): One part is
the passive leg dynamical system. representing the dvnamic behavior of the leg modeled as
a compound pendulum. The other part contains active components. including a nonlinear
quadriceps muscle recruitment curve, three-factor (activation/angle/angular-velocity de-
pendency) quadriceps muscle model [VCCeB92] with first order dynamics, and gain factors
for both knee and hip torque. Two scalar gain factors, as a simple simulation of muscle
fatigue and potentiation, are cascaded between the active torques and the passive leg dy-
namic system. The two control inputs are hip torque and quadriceps FNS pulsewidth. and
the state outputs of the model are hip and knee angle and angular velocities. Hip torque
from the powered hip brace is multiplied by a gain factor and then applied directly to
the leg dynamic equation. The quadriceps FNS pulsewidth is transferred to a normalized
activation by the nonlinear recruitment curve. The quadriceps muscle activation generates
a knee torque which is multiplied by a gain factor and then applied to knee joint.

Three criteria for a successful swing phase are proposed: foot clearance, a certain hip
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angle range ( <=0.7 rad. ) to get a reasonable and safe step-length. and knee extension
(-0.1rad.< knee angle <0.1rad.) at the end of swing phase to prepare for body weight
transfer.

The model was implemented using MATLAB software. The differential equations were
solved numerically with a 2nd/3rd order Runger-Kutta method. Initial condition of the
dynamical system was adopted from the GAITLAB [V'D092] data. For details of the model.
see Appendix A.

In this swinging leg model. there are two control signals (hip torque and quadriceps FNS
stimulation). four state signals (hip and knee angular signals). and three control objectives.

With this model as testbed. various learning control strategies were investigated.

3.1.3 Optimization of an Open-loop Controller for the Swinging Leg

In a previous simulation study [Bie93]. an open-loop controller was designed by optimizing
parameterized control signals. The quadriceps stimulation was a simple rectangular wave
with adjustable on/off timing. The hip torque was a exponential function with adjustable
amplitude and on/off timing. The object function to be minimized was:

3
E(z)=)_wi-(filz)~t;)? (3.1)

i=1

where #; was one of the target values of above-mentioned three control objectives. f;(z)
was one of the actual control objectives obtained with control parameter set x. and u;
was a weighting factor to emphasize certain object parameters (foot clearance is more
important than some deviation from the desired maximum hip angle). The SINIPLEX
algorithm available in MATLAB was used to optimize the control parameters. One set
of the optimized control signals for a model with 55kg body mass and 1.65m body height
is shown in Fig.3.3 The swinging leg trajectory controlled by the optimized open-loop
controller is shown in Fig.3.4.

As will be shown later, the performance of the open-loop controller will deteriorate or
even totally fail under the situations of parameter variations simulating fatigue. potenti-
ation. and external disturbance. Closed-loop control is should provide improved perfor-

mance.
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Figure 3.3: Optimized open-loop controller for the swinging leg. Two control signals are
hip torque and quadriceps stimulation.
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Figure 3.1: The swinging leg trajectory controlled by the optimized open-loop controller



3.2 The Adaptive Fuzzy Network (AFN)

In a narrow sense. fuzzy logic is an extension of Boolean logic. Fuzzy set theory is a theory
which relates to classes of objects with unsharp boundaries in which membership is a matter
of degree.

In a broader sense. fuzzy logic is a kind of so-called soft computing algorithm which
includes neural network and fuzzy logic and their combination (neuro-fuzzy). Unlike tradi-
tional hard computing. soft computing is aimed at an accommodation with the pervasive
imprecision of the real world. The guiding principle of soft computing is: Exploit the toler-
ance for imprecision. uncertainty, and partial truth to achieve tractability. robustness. and
low solution cost.

Artificial neural networks can be viewed as the hardware realization of fuzzy logic. just
as the digital computer is the hardware realization of Boolean logic. Viewing from fuzzy
logic side. such neuro-fuzzy systems play a particularly important role in the induction
of rules from observations and the fine-tuning of the existing rules through training. The
combination of neural network and fuzzy logic is not surprising if one realizes that fuzzy
logic mimics the imprecise reasoning ability (software) of the human. while neural networks
mimic the hardware of the human brain. The imprecise reasoning ability of human is
the computing result of the human neural network. Indeed. Poggio [PG90] pointed out
that Gaussian network. a functional equivalence [JS93] of fuzzy logic system. has similar
“receptive field” to that of neurons in the brain.

In section 3.2.1, the author describes fuzzy logic in a narrow sense (fuzzy set) to intro-
duce basic concept and terminology. Emphasis is put on the understanding of fuzzy set
theory, rather than rigorous mathematical definition. In section 3.2.2. the author will in-
troduce Adaptive Fuzzy Network (AFN), a broad sense fuzzy logic system which combines
fuzzy logic and neural network. In section 3.2.3 and 3.2.4, supervised and reinforcement

learning algorithms for AFN will be formulated.

3.2.1 Introduction to Fuzzy Set Theory

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle

the concept of partial truth. It was meant to model the uncertainty of natural language.
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Zazdeh says that rather than regarding fuzzy theory as a single theory. we should regard the
process of “fuzzification™ as a methodology to generalize any specific theory from a crisp
(discrete) to a continuous (fuzzy) form ( “extension principle” [YOTN&7. Lar§1]). Thus
recently researchers have also introduced “fuzzy calculus™. “fuzzy differential equations”.

and so on [Lar81l. YOTNS&7].

Fuzzy Subset

Just as there is a strong relationship between Boolean logic and the concept of a subset.
there is a similar strong relationship between fuzzy logic and fuzzy subset theory.
In classical set theory. a subset U of a set S can be defined as a mapping from the

elements of set S to the elements of the set 0. 1.
u: s --> {0, 1}

This mapping may be represented as a set of ordered pairs. with exactly one ordered pair
present for each element of S. The first element of the ordered pair is an element of the set
S. and the second element is an element of the set 0, 1. The value zero is used to represent
non-membership. and the value one is used to represent membership.

Take a example. Let’s talk about people and “tallness™. In this case the set S (the
universe of discourse) is the set of people. Let’s define a Boolean subset TALL, which will

answer the question "Is person x tall?”. The Boolean subset TALL is defined as:

tall(x)={o0, if height(x) <= 6ft.,
1, if height(x) > 6ft. }

From this definition, we can get ordered pairs like:
{(4.00),(6.0 0) ,..., (6.0 1), (7.0 1)}
The truth or falsity of the statement

x is in U

is determined by finding the ordered pair whose first element is x. The statement is true

if the second element of the ordered pair is 1, and the statement is false if it is 0. If Joe's
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height is 7 ft., then the statement "Joe is tall’ is true since in the above TALL subset. we
can find ordered pair (7.0 1).

Similarly, a fuzzy subset F of a set S can be defined as a set of ordered pairs. each with the
first element from S. and the second element from the interval [0.1]. with exactly one ordered
pair present for each element of S. This defines a mapping between elements of the set S
and values in the interval [0.1]. The value zero is used to represent none membership. and
values in between are used to represent intermediate DEGREES OF MEMBERSHIP. The
set S is referred to as the UNIVERSE OF DISCOURSE for the fuzzy subset F. Frequently.
the mapping is described as a function. the MEMBERSHIP FUNCTION of F. The degree
to which the statement

x is in F
is true is determined by finding the ordered pair whose first element is x. The DEGREE
OF TRUTH of the statement is the second element of the ordered pair.

Let’s define a fuzzy subset TALL, which will answer the question "to what degree is
person x tall?”. Zadeh describes TALL as a LINGUISTIC VARIABLE. which represents
our cognitive category of "tallness”. To each person in the universe of discourse. we have
to assign a degree of membership in the fuzzy subset TALL. The easiest way to do this is

with a membership function based on the person’s height.

tall(x)={o0, if height(x) < 5ft.,
(height(x)-5ft.)/2ft., if 5ft.<= height(x) <=7ft.,
1, if height(x) > 7ft. }

Given this definition, here are some example order pairs:

Height degree of tallness
3 2" 0.00
5> 5" 0.21
5 9" 0.38
5’ 10" 0.42
6’ 1" 0.54

72 1.00
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Expressions like "A is X™ can be interpreted as degrees of truth. If Joe's height is 5°97.
then the degree of truth of statement "Joe is TALL™ = 0.38.
The area under which membership function has nonzero value is called SCPPORT SET.
If support set is only one single value. this fuzzy subset is called FUZZY SINGLETONXN.
Fuzzy singleton only supports a single real value (SUPPORTING POINT). Its membership

function is 1 in its supporting point and 0 otherwise.

Logic Operations

The standard definitions of logic operations in fuzzy logic are:

truth (NOT x) 1.0 - truth (x)

truth (x AND y) = minimum (truth(x), truth(y))

maximum (truth(x), truth(y))

truth (x OR y)

The above AND, OR operations are calculated by minimum and maximum, respectively.
There are other variations of the AND and OR operations. such as following product and

sum:

truth (x AND y) = product (truth(x), truth(y))

truth (x OR y) sum (truth(x), truth(y))

Note that if you place just the values zero and one into these definitions, vou get the
same truth tables as you would expect from conventional Boolean logic. This is known as
the EXTENSION PRINCIPLE. which states that the classical results of Boolean logic are
recovered from fuzzy logic operations when all fuzzy membership grades are restricted to
the traditional set 0, 1. This effectively establishes fuzzy subsets and logic as a true gener-
alization of classical set theory and logic. In fact, by this reasoning all crisp (traditional)
subsets ARE fuzzy subsets of this very special type; and there is no conflict between fuzzy
and crisp methods.

An example — assume the same definition of TALL as above, and in addition, assume

that we have a fuzzy subset OLD defined by the membership function:

old (x) = {0, if age(x) <18 yr.
(age(x)-18yr.)/42yr., if 18 yr.<= age(x) <=60yr.
1, if age(x) >60 yr. }



If Joe's age is 27 vears, then the degree of truth of statement “Joe is OLD™ = 0.21. Using
the previous calculation about Joe’s TALL. we can compute the degree of truth of the

following statement:
a = Joe is TALL and Joe is OLD
using minimum as AND fuzzy logic operation. and get

truth( (0.38) AND (0.21) ) = minimum (0.38, 0.21) = 0.21

Fuzzy Rule

Another basic concept in FL. which plays a central role in most of its applications. is that
of a fuzzy if-then rule or. simply. fuzzy rule. The fuzzy rules are usually of a form similar

to the following:
if x is LOW and y is HIGH then z is MEDIUM

where x and y are input variables. z is an output variable, LOW is a fuzzy subset defined
on x, HIGH is a fuzzy subset defined on y. and MEDIUM is a fuzzy subset defined on z.
The antecedent (the rule’s premise) describes to what degree the rule applies. while the
conclusion (the rule’s consequent) assigns a fuzzy subset to each of one or more output
variables. The set of rules in a fuzzy expert system is known as the fuzzy rulebase or

knowledge base.

Fuzzy System

A fuzzy system is an expert system that uses a collection of fuzzy membership functions
and fuzzy rulebase to reason about data. The general inference process proceeds in three
or four steps. In the following. the inference process of the fuzzy system will be explained,
along with a simple example used for intuitive understanding.

Assume that the variables x, v. and z all take on values in the interval [0,10]. and that

the following membership functions and rules are defined for all three variables:

1-(t/ 10)
t / 10

low(t)

high(t)



In addition to above membership functions. there is following rulebase:

rule 1: if x is low and y is low then =z is high

(or) rule 2: if x is high and y is high then z is low

Suppose the actual sampled inputs are x=3.2. v=3.1. The whole fuzzy reascning proceeds
as following:
1. FUZZIFICATION: The membership functions defined on the input variables are

applied to the actual input values. to determine the degree of truth for each rule premise.

fuzzification of input variable x: low(x)=0.68, high(x)=0.32,

fuzzification of input variable y: low(y)=0.69, high(y)=0.31.

2. FUZZY RULE EVALUATION (INFERENCE): The truth value for the premise

of each rule is computed by applying fuzzy logic operations to the rule's premise. The truth
value for a rule’s premise is referred to as its FIRING STRENGTH of the rule. If a rule’s
premise has a nonzero firing strength, then the rule is said to FIRE. The firing strength
is applied to the conclusion part of each rule. The i"uzzy operator in the rule’s premise
parts is usually AND. If AND is calculated by minimum operation, then it is called “MIN
inference™. If fuzzy AND operator is calculated by product operation. then it is called
“PRODUCT inference™.

In our simple example. if “PRODUCT inference” is adopted. then:

0.47

low(x) AND low(y) = 0.68 x 0.69

rule 1’s firing strength
0.0992

rule 2's firing strength = high(x) AND high(y) 0.32 x 0.31

In the rulebase, each rule's consequent part associates one entire fuzzy subset to each
output variable. However, if the fuzzy subset for the output variable is a fuzzy singleton,

then single supporting value is associated.

rule 1’s consequent part associates subset °‘high’’ to output z

rule 2’s consequent part associates subset ‘‘low’’ to output z

Now, the rule premise’s firing strength is used to clipped off (multiply) membership function

associated with the output to assign a new fuzzy subset to each output variable. Assume

“PRODUCT inference”,then:



rule 1 assigns new subset (0.47°‘high’’) to z

rule 2 assigns new subset (0.0992°‘low’’) to z

The membership functions of the new fuzzy subsets are calculated by multiplying the old

membership functions with rule’s firing strengths. as follows:

0.0992 (1 - (t / 10))
0.47 ( £t / 10 )

MF of subset (0.0992¢¢low’’) = 0.0992 x low(t)

MF of subset (0.47°‘high’’) = 0.47 x high(t)

3. COMPOSITION: All of the fuzzy subsets assigned to each output variable

are combined together to form a single fuzzy subset for each output variable. Composition
solves the conflict between simultaneously firing rules. The logic relationship between fuzzy
rules is OR. although usually not explicitly indicated in the fuzzy rule base. The fuzzy
OR operator could be calculated by either maximum or sum operation. resulting in two
COMPOSITION RULES: MAX composition and SUM composition. In MAX composition,
the combined output fuzzy subset is constructed by taking the pointwise maximum over
all of the fuzzy subsets assigned to the output variable by the inference rule. In SUM
composition, the combined output fuzzy subset is constructed by taking the pointwise sum
over all of the fuzzy subsets assigned to the output variable by the inference rule. Note
that this can result in truth values greater than one! For this reason. SUM composition is
only used when it will be followed by a defuzzification method. such as the CENTROID
method. that does not have a problem with this odd case. Otherwise SUM composition
can be combined with normalization and is therefore a general purpose method again.
Step 2 and 3 can be combined as one inference procedure. Term "MIN-MAX inference”
means the combination of MAX composition and MIN inference. Term “PRODUCT-
SUM inference” means the combination of SUM composition and PRODUCT inference.
Term “PRODUCT-SUM-NORMALIZATION inference” means the combination of SUM-
NORMALIZATION composition and PRODUCT inference. The use of term “inference”
is quite confused. Sometimes it refers to only step 2 (rule evaluation). sometimes refers
to both step 2 and step 3 (rule evaluation and composition). This confusion could be
cleared by adding an adjective before inference, e.g. “PRODUCT inference” only means

step 2 rule evaluation using PRODUCT, while “PRODUCT-SUM inference” means both
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rule evaluation and composition. Another new term for this inference procedure is AP-
PROXIMATION REASONING.

Enough for new terms now. Let’s check our simple example for composition: fuzzy
subsets (0.47high™) and (0.0992"low™) assigned to the output z by rule 1 and rule 2 are
combined to form a single new subset. [(0.47~high™)OR(0.0992"low")]. whose membership
function is determined by combining the membership functions of subset (0.47~high™) with
subset (0.0992%low™).

4. DEFUZZIFICATION: Usually it is necessary to convert the composed output

fuzzy subset to a crisp number. There are many defuzzification methods [Lee90. JS95,
Men95]. The most common technique is the CENTROID method. The crisp value of the
output variable is computed by finding the variable value of the center of gravity of the
membership function for the new composed fuzzy subset in step 3.

In our example, the composed output fuzzy subset [(0.47~high™)OR(0.0992low™)] has
a complex membership function. It is not difficult to calculate it by following above steps.
But for simple illustration purpose. assume the composed output subset. defined on output

variables z. has following triangular membership function:

MF(z) = { =z/10, if0<z<5
i- (z/ 10), if 5 <z < 10}

Then the output of defuzzification is the centroid of the function MF(z) on z={0 10]. which
is 5. This real value z=3 is the decision made by the fuzzy logic system in response to the
input pattern (x=3.2, y=3.1). This concludes the introduction of fuzzy logic system with
simple example.

A fuzzy logic system can be implemented by hardware or software. A widely adopted
block diagram is shown in Fig.3.5.

As we can see in the above procedure, a fuzzy logic system projects a numerical input
pattern into fuzzy domain by fuzzification, then reasons about these input projections in
the fuzzy domain using fuzzy rulebase and fuzzy inference methods. Finally, the composed
new fuzzy subset by composition procedure becomes the abstraction of the numerical input
pattern in the fuzzy domain. This models what happens in human perception-abstraction
process. The basic concept in the fuzzy system is linguistic variable, that is. a variable

whose values are words rather than numbers. In effect, much of fuzzy logic may be viewed
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Figure 3.5: Fuzzy logic system with four basic components: rule base (including member-
ship functions). and inference engine (input fuzzifier. fuzzy inference. and output defuzzi-

fier).

as a methodology for computing with words rather than numbers. A word is an abstracted
projection of a particular numerical input pattern in fuzzy domain (equal to human abstrac-
tive concept domain). Words are inherently less precise but more abstractive than numbers.
Computing with words exploits the tolerance for imprecision. and abstraction for detail. As
this fuzzy model is close to human reasoning method. it usually lowers the cost of solution
when human knowledge is available. High practicality including easy to understand. simple
to implement (with many microcontrollers. fuzzy V'LSI chips, and fuzzy software develop-
ment tools available), and inexpensive to develop {Wan93]. have been ma jor reasons for the
early success of fuzzy logic in consumer products. As fuzzy logic is rapidly applied to more
advanced systems, more theoretical results. under the framework of adaptive nonlinear con-

trol and neural network. have emerged [Wan93, ZHD*94. HP94, BBC*95. Men95. J595].



3.2.2 The Adaptive Fuzzy Network (AFN)

We have introduced the basic elements of the fuzzy logic system. In the following sub-
sections. the author will describe the Adaptive Fuzzy Network (AFN). an adaptive fuzzy
logic system implemented as a layered neural network. This subsection will introduce the

syvstem structure. The learning mechanisms will be discussed in another subsection.

Rule Base of the AFN

The rule base of an AFN is shown as follows:

(SW1) IF zyisA;1 ... and z;is Ay ... and z,is Ap,; THEN visu,
(SW2) IF zyisA;2 ... and =z;isA;2 ... and =z,is A, THEN vis us
(SW%) IF ryisAix ... and z;isA;g ... and r,is Apx THEN vy is ug
(SWn) IF z1isAim ... and z;is Aym ... and Z,is Apm THEN vis wm

Every rule has similar structure. The k-th rule has all inputs (z; is i-th input, i = L..n)
in its antecedent part and only one output (y) in the consequent. Hence the AFN is
a multiple inputs single output (MISO) system. Fuzzy linguistic variables (Ai. i=1...n)
are defined using a generalized Gaussian membership function (Eq.3.2, Fig.3.6) for every
input variable z; (i = 1...n). The generalized Gaussian function is obtained by adding a

slope/shape parameter a in the power term of the regular Gaussian function. as follows:

1

[(, — )2]“:}:
2
€ blk

Air(zi) = (3.2)
In actual applications, the fuzzy variables Ajt could be linguistic terms like LARGE,
MEDIUM., SMALL. Different rules can share the same linguistic variables. Therefore,
the number of linguistic variables defined for one input z; is not necessarily equal to the
number of the rules (m). By optionally using the ignore kevword IG to replace one partic-
ular fuzzy variable A in the k-th rule, the corresponding input variable z; will be ignored
in the k-th rule and thus not be used in the reasoning procedure of that particular rule.
This provides the flexible selection of different inputs for different rules. One whole rule
can also be optionally disabled by selecting a software switch (S1%. k = 1...m) in the rule

base to test the effect of that particular rule. The output fuzzy linguistic variables assigned
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Figure 3.6: Generalized Gaussian membership function used in AFN (parameter ¢ deter-
mines the center. b determines base width. parameter a determines slope/shape).See Eq.
3.2 for analytical form. Two Gaussian membership functions (dashed line and solid line)
are shown here with two sets of parameters specified. The effect of slope/shape parameter
'a’ is clearly shown. The mapping from z— > € (dotted line) illustrates the fuzzification of

a input x to the fitness e.

to the only output y are fuzzy singletons, i.e. a single value wy (k = 1...m). One fuzzy
singleton is assigned for each rule. hence the number of output singletons is equal to the
number of the rules.

Once the rule-base and membership functions are defined, the structure of the AFN is
defined. However, the parameters of the Gaussian membership function can be adjusted.
The inference engine of the AFN consists of three parts: fuzzifier, fuzzy inference, and com-
position. Since the output fuzzy variables are singletons. there is no need for defuzzification.

An output scaling procedure is added after fuzzy inference.

(1) Input Fuzzification in the AFN

Fuzzification determines to what degree (fitness) a particular input z; belongs to a fuzzy

linguistic variable Ai. In the AFN, fuzzification is done by Eq.3.3. Also see Fig.3.6 for a



graphical illustration of the fuzzification.

1
pik = Aie(Ti) = ———= =% (3.3)
e

(2) Rule Evaluation in the AFN

In the AFN, only the fuzzy logic AND operation is used for rule evaluation. The fuzzy
AND is calculated by the "product™ operation. Thus. the k-th rule’s firing strength ay is
the product of all fitness p;; in the rule’s antecedent part. as in the following:

ar = [] nix (3.4)

=1
(3) Output Composition in the AFN

The output of fuzzy inference is the composition of all rules’ consequent parts. In the AFN,
“SUM-NORMALIZATION™ is used for composition. The composed output fuzzy subset
is the normalized average of all output fuzzy variables wi. weighted by each rule’s firing

strength ag:

g Z;\'nzl W Of -

s = == (3.3)
Zk:l 23

In the AFN, output fuzzy variables are singletons, thus the result of the composition is a

real value, rather than a fuzzy subset. Therefore. no defuzzification is needed in AFN.

(4) Output Squashing and Scaling

This layer scales the output of fuzzy inference subsystem into the domain range of output
signal.
Squashing: Squash the output of fuzzy inference to [0 1] using nonlinear sigmoid func-

tion:
1
1 + e-s/s.ugmo:d

(3.6)

-
~

where $,;gmoi¢ determines the nonlinearity of the sigmoid function.
Scaling: Scale squashed output from [0 1] to domain range [ycenter — y—'—‘;‘ﬁi,ycemer +
Yran e],
e
¥y =(2~0.5) Yrange + Ycenter (3.7)
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Figure 3.7: Topological structure of Adaptive Fuzzy Net (AFN). The AFNa was imple-
mented as a three layer fuzzy inference system without output squashing/scaling layer.

This neuro-fuzzy system. called Adaptive Fuzzy Network (AFN). defines a mapping
between input r; and output y. Its transfer function is determined by all the adjustable
parameters @, bik, Cik. wk. fixed parameters Ssigmoid, Yrange, Ycenter, and the rule base. The
AFN system is an universal non-linear function approximator [WM92c, WM92b, Men95,
Cas95, BH93]. The whole AFN network architecture is shown in Fig.3.7.

The AFN without output squashing/scaling layer is a simple fuzzy inference system,
and is called AFNa for type-a AFN. The fuzzy inference sub-system (AFNa) used in the
above AFN differs from commonly used fuzzy logic system as follows:

(*) use differentiable generalized gaussian function as membership function instead

of triangular or trapeze membership function.

Ut



(*) use PRODUCT-SUM-NORMALIZATION fuzzy inference instead of MIN-MAX
fuzzy inference, i.e. use product operation as fuzzy AND. and sum operation as fuzzy OR.

(*) use fuzzy singleton (scalar value) instead of fuzzy subsets for output variables.

(*) output fuzzy variables are singletons. the defuzzification in regular fuzzy system
is not needed.

These modifications make the AFN a differentiable system. while preserving the main
advantages of fuzzy logic. such as generalization (interpolation/extrapolation) and graceful
degradation by using membership functions. especially in the antecedent part which parti-
tions the input space. Differentiability of the AFN allows the use of a gradient algorithm
to adjust the internal parameters.

The AFN was inspired by Shibata’s Fuzzy Neural Net [SFK+92]. with the modification
of gaussian membership function to include adjustable slope/shape parameter, the use of
SUM-NORMALIZATION composition instead of only SUM composition. and an additional
output squashing/scaling layer.

The generalization of Gaussian function allows the adjustment of the shape of member-
ship function in addition to the center and the width. The Generalized Gaussian function
can approximate both triangular and trapezoid function, while regular Gaussian func-
tion can only approximate the triangular function (Fig.3.6). Using generalized Gaussian
function can reduce the number of membership functions when trapeze-like functions are
necessary.

The use of normalization in the composition procedure was suggested in the computer
simulations. Originally, only sum operation was used for composition as in Shibata’s FNN
[SEKT92]. It was found in the simulation that the actual plant state might move outside the
state space covered by the rule base. In such situations, the firing strengths a4 (k=1...m) of
all rules were very small. If only sum operation was used (no normalization term zﬁ;—: in
Eq.3.5), then the system output was very small, even zero. Worse yet, the learning system
would not adapt its rule base to cover these out-of-range states. In the learning algorithms
formulated later (Eq.3.16), it could be found that the learning rate was proportional to
the firing strengths ax. If no normalization (Z—il—ok) was used, small ax would virtually
stop the learning. If normalization was used, there were always some relative large firing

strengths being enhanced by the normalization. Therefore. output would not become zero,



and learning would not stop. Normalization procedure playved the role of enhancing filter.
particularly when signals were all small.

The author also added the squashing/scaling procedures after fuzzy inference. In simu-
lation study. this scaling procedure proved to be important in that it will limit the output
to the bounded domain range. This is particularly important for stochastic reinforcement
learning because it reduces the search space. Actually. in reinforcement learning controller
using AFN, the stochastic search unit is inserted between the fuzzy inference sub-system
(AFNa) and the output scaling layer (Fig.3.12).

In the next two subsections, the author will formulate the learning algorithms for AFN.
Learning is usually the optimization of an object function J. By adjusting parameters
w/a/b/c to achieve J— > optimum. Two tyvpes of learning algorithms. supervised and

reinforcement learning. will be incorporated in the AFN.
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3.2.3 Supervised Learning Algorithm for AFN

Supervised learning is the most commonly used learning algorithm. It requires a teacher
to provide the desired signals. The learning controller learns to match the required signal.
The difference between actual signal and desired signal is propagated back to the AFN to
modify the internal parameters (Fig.3.8).

CONTROLLER

Optimized Open-loop Controller

S scrios N7 | @; 1 PLANT

X STATEFEEDBACK

Figure 3.8: Diagram of Supervised Learning Controller. Optimized open-loop controller is
used as teacher to provide desired control y_.d. The ACTION NET (using AFN) maps the
state feedback (X) to control y. Error between y.d and y is backpropagated to ACTION
NET to modify the internal parameters of AFN.

Gradient Learning Rules

Formulated here is a supervised learning algorithm for the AFN.

In supervised learning. the object function is total squared error to be minimized:
N
J = 1/2-k21(yd(k) ~ y(k))? (3.8)
where y(k)q is desired output, y(k) is actual output of AFN, and N is number of sample
points.
Parameters P (including parameters a/b/c of input membership functions and param-

eters w of output singletons) satisfv

CpJ =0 (3.9)

is the optimal solution P,p.
There is not a closed-form analytic solution of P,,¢ because of the non-linear sigmoid

function and the gaussian function. Numerical methods are needed to solve P,,. The



gradient algorithm is an optimization algorithm that adjusts the parameters P along the
direction of gradient of J with respect to the parameter P in parameter space to minimize

object function:

AP=71-VpJ (3.10)

where 7 is a learning rate constant.

To calculate V' pJ. the chain rule for differentiation is applied:

Vet = 3y 3s 3P (3.11)
Calculation of g—‘;:
aJ 1
7:5-‘2-(yd(k)—y(k))-(—1)=—6 {3.12)

where 6§ = yg(k) — y(&) is instantaneous error at time k.
In output squashing/scaling layer. there are no adjustable parameters. The error is

backpropagated through this layer through multiplication by %. From eq(3.6.3.7):

Oy _ Yramge = (W52 4 5) (5 - Ligpmacd) (3.13)

Os Ssigmoid
In the composition layer. supposing parameters a.b.c of input membership functions are
fixed, the Gaussian membership functions map the input space [z;|i = number of inputs]
into the rule firing strength space [ax|k = number of rules). This layer can therefore be

viewed as a normalized linear combinator with rule firing strengths ax as inputs.

2=y Wk Ok
s= ==L % % 3.14
ST an (314
Hence:
Os 2k (3.15)

au-"k Zl'nzl ar
Since the object is to minimize J, the learning rate is multiplied by a negative fac-

tor (gradient descent), resulting in the following learning rule for the consequence part

parameter w:

dy Os dy ak
Y, = . ¢ — . ——— w.é._._— 3-
Ak =T G B - B T (3.16)

where 7. is learning rate; § is error defined in eq.3.12 and %% is defined in eq.3.13



In the input fuzzification layer. the learning rules for the premise part parameters a.b.c

are:
dy Os
Acp =7 -6 == A7
Cik Py (3.17)
dy 0Os
Ab; = LH5. == 18
k=T s Db (3.18)
dy Oy
A ik = Tq- 6 . —_—— 3. 9
Gik =T ds daii (3.19)
where 7,/;/. are learning rates. é is error. ds is defined in eq.(3.13).
The formulas for ﬁ(eq.&?? 3.21 3.20) are:
Os ds Jdayp aj I; — Cik Ti =~ Cik o (2 —1)
= . —(uL — 9. cag - ((B—5 :
aclk aak aC;L (U,L S) Z;Zl:l ax b?k a;k (( bik (3 20)
aS 35 aOk Q. (Ii — C{k)2 Z;— Cik o (ak—1)
= . = ‘.— S8) 2. caig ((———— 21
Os ds Oay _or — Cik (g Otk i — Cik .9
= . =(uwr — In((—/——— .23
Gar = Bar G = (k=) g (S (R (PR (3.22)

Remarks on the Gradient Learning Rules

1. Equation (3.16) means the correction of output singleton u' is proportional to the er-
ror é and the normalized firing strength ﬁ This is an instantaneous steepest gradient
algorithm similar to the Widrow's LMS algorithm for linear combinator [WS8&5, Mam92].
Statistically, this reduces the mean squares error (Eq.3.8). Normalization enhances the
learning when all firing strengths are small. and also introduces a kind of competition
learning mechanism into weight adjustment.

2. Adjustment of center parameter c¢;., Eq.(3.20), moves centers toward the data
point z; by a amount proportional to (z; —¢;t). Statistically, function centers are clustered
towards the majority of the data. However, the adjustment also depends on the error
term 6 in Eq.(3.17), which means the clustering also depends on the output error, not just
purely depends on the input data statistical property like Kohonen's SOM[Koh88]. Hence

adjustment of centers using gradient is similar to task-dependent clustering[PG90].

&0



3. Adjustment of width parameter b;; decreases the distance ||z; — c;|| in Eq.(3.21)
between data point and the function center, subject to the output error é in Eq.(3.18).
Hence. it is similar to task-dependent dimensionality reduction[PG90].

4. Adjustment of slope/shape parameter a;; increases the slope when data point
z; is within the receptive field of the function (/n(( £ﬁ¢)2) < 0 in Eq.3.22) to narrow the
receptive field, and decreases the slope to widen the receptive when data point is outside
the receptive field, subject to the output error term 6 in Eq.(3.19).

5. Term (wy — s) in Eq.(3.22)(3.21)(3.20) introduces a kind of competition learning
mechanism into the adjustment of parameters. Parameters in rules with above average
outputs (wx —s > 0 ) (s is average output. Eq.(3.5) are adjusted in one direction. while
those in rules with below average outputs are adjusted in the opposite direction. This
enhances the difference between above/below average rules. This enhancement in learning
is a result of using normalization in the fuzzy inference.

More remarks about parameter adjustment in Gaussian tvpe networks could be found

in [PG90].

Layer-wise Learning Rates

The learning rate constants 7. 7,. 7. 7. should be selected properly in order to speed up
and assure the convergence of the gradient algorithm. The algorithm adjusts the param-
eters along the gradient of error surface (Eq.3.10). Since the shape of the error surface
is determined by the %. it has different steep rates along different parameter axis. The
step size should be proportional to the norm of the gradient to get the fastest conver-
gence. Following simple example will demonstrate the importance of proper learning rate
for convergence:

Consider a quadratic error surface J = 1000 - w? + w2. The minima is J=0 at point
(w1 = 0,w; = 0). The partial derivatives are % = 2000 - w; and {% = 2 - w,. Suppose
initially (w; = 1,w; = 1). At this initial point, the parameter adjustments using gradient
gives 6wy = 7 -2000 and éwz = 7 -2. Learning rate r should be smaller than 1/2000 so
that éw; < 1 in order to guarantee the convergence from point (1,1) to minima (0,0). But
with this learning rates, §w, < 1/1000, which is very slow. In a multi-laver neural network.

there are lots of parameter u;, and the gTJ_ will vary considerably, depending on the loca-



tion of parameters (output layer. hidden layver. input layer). But the learning rate should
be small enough for ALL those w; to guarantee the convergence and even stability of the
gradient algorithm. This will slow down the learning. as demonstrated in the above only

two parameters system. The solution is to use individual learning rate for every parameter
87
Su

w;. An individualized learning rate with =, = 75 - would give a constant step

size. With batch training and a suitable learning rate 7p. this method would approach

the minimum and then wander around in the vicinity of the minimum without converging.
8s
Sur,

(B
gation [PFA*94]. Other adaptive learning rate schemes. like Quickprop. RPROP,. steepest

Another similar choiceis ; =19+ J - which was used in Adaptive Backpropa-

descent with line-search. or any of the other more sophisticated methods in the numerical
optimization literatures could be used. Basically. training of neural networks is an applica-
tion of numerical optimization techniques. Other more efficient (thus more computationally
complex) optimizations such as Marquardt algorithm [HM94]. Least Squares [Jan93] could
also be used. In above simple example, using individual learnings 7 = 1/2000 and 72 = 1/2
would get fast learning. It is not practical to assign individual learning rate for every pa-
rameter in the network. But it is possible to assign individual learning rates for different
layers. Within the same layer, % should be almost the same.

For the AFN. following laver-wise learning rates are formulated by using unit-analysis.
i.e. the units of the learning rates should be invariant to the change of units of input and

output signals.

Yran Ssrgmord

For output singletons w;, a factor ¥:4metda i5 555ioned to compensate for the term 2222
ge

in %f (Eq.3.13). Another factor ymlnge is to compensate for output error é in Eq.(3.16) which
has unit of yrange- A third factor yYsigmoida - 10 was to scale the unit of éuy to its domain

range Ysigmoida- Combining all these factors leads to the following normalized learning rate

for output singleton layer:

N Tw *Ysigmoida ° (ysigmoida : 10) (3 23)

Tw =

yr?ange
Noted that the same factors are not combined or canceled for clearly showing the original

factors.

Similar unit analysis can be carried out to obtain the following normalized learning

82



rates: .
7 = ’_C"rrz-ange )l ysigmozida J:‘(ysigmoida -10) (3.24)
yrange
7 = Tb'l'gange ) ysigmc;ida ,V(ysigmoida -10) (3.25)
Yrange
7:a - Ta'ysigmoida,'z(ysigmoida ° 10) (326)
yrange

Bruske[Bru93] also proposed layer-wise learning rates in a neural fuzzy svstem. but the
approach was heuristic rather than based on the above unit-analysis.

Although the above gradient algorithm has been widely used in neural networks. its
global convergence is not guaranteed due to nonlinearity. Backpropagation-like gradient
algorithms are generalizations of Widrow’s LMS algorithm which has been very successful
in the adaptive linear filter/optimal control field. Widrow's L)MS algorithm. the Recur-
sive Least Square algorithms, and the Kalman Filter can all be related to the recursive
approaches to the Wiener-Hoff optimal solution in linear stochastic systems. Analytical
algorithm performances such as convergence, efficiency, biasness can be obtained for linear
systems. According to the analytical result, we can also select suitable learning parameters.
For example, learning rates should be selected to be smaller than maximal trace of input
variables to guarantee the convergence. Although we can still use similar algorithms for the
nonlinear systems. there are generally not analvtical results to guarantee the performance
of algorithm. The only ‘universal” solutions to the non-linear system problem seems to be

numerical computer simulations.

Test of AFN for Nonlinear Function Approximation

The AFN with gradient supervised learning algorithm was first tested in a nonlinear func-
tion approximation problem, as shown in the following figures. It is clear that AFN
is able to approximate non-linear function. The learning rates in this example were

Tw = 1,7, = 0.1, = 0.1,7. = 0.1.
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Figure 3.9: Non-linear function approximation (before training). Output singletons ("+’
in the second row) were all initialized to -2000. The output of AFN (solid line in the first
row) was near zero across the input range [-1000. 5000]. while the required signal was the
nonlinear function (dashed lines in the first row). '+ " and o’ symbols in the first and second
rows were sampled data points. The third row was the input fuzzy membership functions.
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Figure 3.10: Non-linear function approximation (after training). The output fuzzy sin-
gletons (the second row) and the input fuzzy membership functions (the third row) were
changed. As the result, the output of AFN (solid line in the first row) closely matched the
required non-linear function (dashed lines in the first row).
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3.2.4 Reinforcement Learning Algorithm for AFN

Reinforcement Learning is a new family of machine learning algorithms. It does not require
explicit teacher signals. Only a binary failure signal is needed. In reinforcement learning.
an agent and its training environment interact in the following manner: The agent receives
a time-varying vector of inputs from the environment and sends a time-varying vector of
outputs to the environment. In addition, it receives a time-varying scalar signal. called
reinforcement. from the environment. The object of learning is for the network to try to
maximize some function of this reinforcement signal. such as the expectation of its value on
the upcoming time step or the expectation of some integral of its value over all future time.
The computation of reinforcement by the environment can be anything appropriate for a
particular problem and is assumed to be unknown to the learning system. In general. it is
some function, stochastic or deterministic. of input patterns produced by the environment
and output patterns received from the network. The basic idea of reinforcement learning
is to establish a sensor-action mapping to maximize a performance index.

This reinforcement learning is contrasted to the supervised learning in which the network
receives a time-varying vector signal indicating desired output from the environment. rather
than the scalar reinforcement signal. and the learning object is for the network’s output to
match the desired output. The distinction is that the feedback provided to the network is

instructive in supervised learning and evaluative in reinforcement learning.

Williams®> REINFORCE Algorithm

There are several reinforcement learning algorithms, such as Barto’s Adaptive Critic Ele-
ment /Associative Search Element (ACE/ASE) [BSAR&3], Sutton’s Adaptive Heuristic Critic
(AHC) [Sut8&4], Watkins’ Q learning algorithm [WD92], Williams’ REINFORCE algorithm
[Wil87] [Wil92]. and Barto’s Real-Time Dynamic Programming (RTDP) [BBS93]. Most
reinforcement learning algorithms deal with discrete action problems. However, many con-
trol problems require continuous control signals. Gullapalli [Gul90] proposed the Stochastic
Real-Valued (SRV) unit to learn functions with continuous outputs using a connectionist
network. Williams’ REINFORCE algorithm is a more general learning algorithm that
can handle both discrete action and continuous action problems. In this thesis. Williams’

REINFORCE algorithm is used.
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The weight updating rule of REINFORCE algorithm is:
Auw = a{r — ble (3.27)

where a is learning rate factor. r is reinforcement. b is reinforcement baseline. e = %T"‘? is
characteristic eligibility of w. g(€.w.z) = Pr[y = £jw.z] is the probability mass function
(or probability density function for continuous-valued units) determining the value of y as
a function of the weights w and inputs z.

The name REINFORCE is an acronym for “REward Increment = Nonnegative fac-
tor x Offset Reinforcement x Characteristic Eligibility ™. which describes the form of the
algorithm.

The following theorem is the mathematical foundation of REINFORCE algorithm:

Theorem (Williams) : For any REINFORCE algorithm. the inner product of
E[AW|W] and V. E[r|W7] is nonnegative. Furthermore. if @ > 0 for all individual weights.
then this inner product is zero only when V,E[r|HH] = 0. Also. if a is independent of
individual weights. then E[AW|H'] = oV, E[r|1T].

This theorem states that the average update vector in weight space (E[AW’[H]) lies in
the direction for which reinforcement performance is increasing. A proof of this theorem
can be found in ref.[Wil92]. Therefore. the REINFORCE algorithm is a stochastic gradient
algorithm which climbs the gradient in stochastic sense.

While the mathematical theorem seems quite sophisticated, the intuitive understanding

of the REINFORCE algorithm is very straight-forward. Take gaussian random search unit

as example:
—(y—p)2 /252
9(y.p.0)= G (y=)?/2 (3.28)
The characteristic eligibility of u is:
din -
8;1g = y(ﬂ" (3.29)
And characteristic eligibility of o is:
dlng _ (y—p)? -0
90 = pc (3.30)

Hence, the parameter update rules are:

Ay:a#(r—bu)g% (3.31)

on



2 22
o —of (3.32)

Ao = a,(r - by)
This REINFORCE gaussian search unit behaves in the following way: If a randomly-
sampled value y leads to a higher reinforcement than reinforcement baseline. (r — b, is
positive), then the mean parameter p is moved toward v (i.e. if ¥y > u then u is increased.
if y < p then u is decreased). Similarly. if a randomly-sampled value y leads to a lower
reinforcement than reinforcement baseline (r — b, is negative), then y is moved away from
v (i.e. if y > p then p is decreased, if y < u then p is increased). In this way, the
mean parameter g is moved toward the maximum reinforcement point. The update of
standard deviation parameter o is as follow: If a randomly-sampled value v leads to a
higher reinforcement than baseline, then o will decrease if |y — | < o and increase if
|ly — u] > o. There is corresponding behavior in the opposite direction if the randomly-
sampled value leads to a lower reinforcement than baseline. This search unit thus narrows
the search around g if a better point is found close to the mean or a worse point is found
far from the mean; while broadening the search around u if a worse point is found close to
the mean or a better point is found far from the mean. This allows the convergence of the
search when maximum point is found.
In Gullapalli's Stochastic Real Value (SRV) unit [Gul90]. the mean value is updated
in a similar way as in the REINFORCE algorithm, while the standard deviation is a
monotonically-decreasing. nonnegative function of reinforcement signal, o(t) = s(r(t)).
This means the search scale is wide when the performance is unsatisfactory and a stochastic
search will converge (standard deviation o — Q) after satisfactory performance is achieved.
According to this Willlams theorem, there seems to be a possible problem in the
reinforcement learning algorithm in Berenji’s GARIC model [HB2b]. Berenji et al. used
numerical estimation of the partial derivative g—; along with the REINFORCE-type algo-
rithm. But as analysed in the Williams Theorem, the REINFORCE algorithm itself
already computes the gradient V, E[r|i¥] stochastically. There is no need for estimating

gradient from reinforcement r to output y if a REINFORCE-type algorithm is employed.

Temporal Difference (TD) Algorithm

In reinforcement learning or supervised learning tasks, if the evaluation or teacher signal

is not available at every step but rather is given after multiple steps, the ordinary rein-



forcement learning or supervised learning algorithms can not be emploved. Another case is
when not only the immediate short-term payvoff should be considered as in REINFORCE
algorithm, but also the long-term cumulative payoff should be considered and is more im-
portant. In these situations. new learning mechanisms other than the simple REINFORCE
algorithm or gradient algorithm should be incorporated. Sutton [Sut&4] [Sut&§] proposed
the Temporal Differences (TD) algorithm for delaved multi-step prediction and long-term
cumulative payoff prediction. While conventional prediction-learning algorithms assign
credit using the difference between predictions and actual outcomes. the TD algorithms
assign credit using the difference between temporally successive predictions.

Consider a multi-step prediction problem where prediction accuracy is not revealed
at once but after multiple steps. although partial information relevant to the prediction
accuracy could be revealed at each step. Examples of this multi-step prediction problem
are: The outcome (win/loss/draw) of chess game is not revealed until the game is over,
although partial information relevant to the win/loss/draw could be revealed at every move;
The cumulative reinforcement return over a certain period is not revealed until the final
step is finished, although reinforcement at every step is available. Let the states of such
a multi-step prediction problem represented by a series of real-valued vectors, z,. After
a sequence of m states, z,,z3.....T,,. a real-valued scalar outcome z occurs. For each
state-outcome sequence, I1,Z32,...,ZTm. 2. the learner produces a corresponding prediction
sequence Py. P, .... Pn,. Each P, is an estimate of z based on its state z,. Prediction P, is a
function of the state vectors r, and a vector of modifiable weights w and can be explicitly
denoted as P(z,.w). All learning algorithms are expressed as rules for updating the weight
w. For every step. t, an increment to w, denoted as A", is determined. After a complete
sequence, w is changed by the sum of all the sequence’s increments:

m
w— v+ A (3.33)
t=1

As discussed in previous sections, the gradient-like supervised-learning algorithm for
weight updating is:

Auwy =7(z — PV Py (3.34)

where 7 is learning rate, and V. P, is gradient of P, with respect to w. For the special linear

case where P, is a linear function of z; and w,i.e. P, = wTz, = Y iw(i)ze(i), VP = 24 is
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achieved. and equation (3.34) reduces to the well-known Widrow-Hoff LMS rule [WSs5]:
AlL‘t = T(z - 'U.’Tl't)l’t (335)

For the above supervised-learning approach. all the Auy in equation (3.33) depend on
z. and hence can not be computed until the end of the sequence when final outcome. z.
becomes available. Therefore. the weight updating equation (3.33) can not be calculated
incrementally.

On the other hand. the TD learning algorithm computes the weight updating incre-
mentally by replacing the error : — P, as a sum of changes in successive predictions as
follow:

=P =) (Pet1— Py) (3.36)

k=t
d .
where Pp41 < . by definition.

Then. equations (3.33) and (3.34) can be combined and re-written as:
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And the weight updating for each step t is:
t
Awy = 7(Pp1 — P) D VuPi (3.38)
k=1

Unlike 3.34, this equation can be computed incrementally, since each Aw; depends only
on successive prediction Pry1. P and the sum of all past gradient V. P, which are all avail-
able at time t+1. The algorithm given by (3.38) is referred to as TD(1) algorithm. It is
clear that the TD(1) algorithm produces the same per-sequence weight update as the gra-
dient supervised-learning algorithm, since equation (3.37) is simply the result of replacing
z — P, with Pyy — P, and re-arranging the sum operations. Although the computational
procedures are not the same, as one is batch type and another is incremental type, the final

result remains the same as far as the total weight changes are concerned.
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The significance of TD(1) algorithms is that they use differences between successive
predictions rather than the overall error between predictions and final outcome as in
supervised-learning algorithm. A more general TD(A) family of learning algorithms can

be formulated by generalizing the TD(1) algorithm as follow:

t
Auwr=7(Ppr — P)Y_ATIYLP (3.39)
k=1

where 0 < A < 1 is exponential decay factor. This assigns greater “eligibilities” for more
recent predictions in the weight updating Auy. The value of the sum in (3.39) is called
eligibility trace [BSA&3] [Sut&7] for weight w at time t:
t
€= MNP (3.40)
k=1

The eligibility trace combines both “structural credit assignment™ (using gradient ¥, Py)
and “temporal credit assignment” (using weighted sum of past gradients) into one term.

The weight updating rule (3.39) can then be re-written as [Sut&7] {BS92]:
Au't = T(Pg.(..l - Pg )Et (341)

This means: at each time step t. a TD error (P41 — P;) is combined with eligibility of the
weight €, to determine the weight changes.
When A = 1, TD(A) reduces to TD(1) in which all the past predictions contribute

equally to the weight updating. For A = 0. equation (3.39) reduces to:
Au‘, = T(Pt+l - Pg)vat (342)

The learning at each step is driven only by two recent predictions and the recent gradient
VP

There are eligibility weighting methods other than the exponential decay given above
(e.g.[5S596]). An important advantage to the exponential form is that it can be computed
recursively using only current information and previous e;:

t4+1
€41 = z /\t+1—wiPk
k=1

t
= VuPr+ ) AFIFT, B
k=1
= v'u.'Pt-i-l + /\Et (3.43)
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So far. TD algorithms have been presented as multi-step prediction methods. To apply
TD to a reinforcement learning task. one only needs to define the outcome of multi-step

prediction as discounted sum of future reinforcement (cumulative reinforcement) at time t:

oo

3= Z * ek (3.44)
k=0

where 0 < 7 < 1is the exponential discount rate determining the extent to which short-term
and long-term reinforcements are concerned. For a perfectly accurate prediction:
> o
. = ~k — - ~k — - s
Po=z= Z ) Terk+1 = Teg1 + ;Z 7 Tttk+2 = Tee1 + 7 P (3.43)
k=0 k=0
Therefore for inaccurate predictions, the mismatch or TD error is the difference between

the two sides of the equation:
€41 = (Te41 + 7 Piv+1 — P) (3.46)

Replacing the TD error term ( P,y — P;) in the pure TD algorithm (equation 3.39) with the
above TD error for cumulative reinforcement. the following TD algorithm for cumulative
reinforcement prediction is achieved:
t
Awy = 7(res + 1P = P) D ATFULP (3.47)
k=1

In the form of eligibility trace. this is:
Au‘t = T(Tt+1 + ‘7Pt+1 - P,)et (348)

where ¢, is eligibility trace defined in (3.40) and can be computed recursively as in equation
(3.43).

The above TD algorithm predicts the delayed reinforcement or cumulative reinforcement
by using the eligibility trace ¢, = (3°4_; A*"*V, P¢) and the TD error (res1 + 1Py — P).
The factor y determines how the reinforcement is weighted according to its recency, while

the factor A determines how fast the eligibility decays according to its recency.

REINFORCE, TD and Dynamic Programming

Having introduced the REINFORCE algorithm for immediate reinforcement learning tasks

and the TD algorithm for delayed (or cumulative) reinforcement prediction. REINFORCE
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and TD can be combined to solve the delayed reinforcement learning tasks. These delaved
reinforcement learning tasks can be viewed as sequential decision tasks in which an action
selected at a given time will influence future actions and the final outcome. and both short-
term and long-term consequences of decisions have to be considered. These sequential
decision tasks can be formulated in terms of stochastic dynamical systems whose behaviours
(could be probabilistic) unfold over time under a decision-maker’s actions. The objective
is to find an action strategy to maximize final outcome or cumulative long-term payoff over
time. A discount factor 5 can be used to weight payoffs according to their recency. The
value of discount factor adjusts the degree to which long-term payoffs should be accounted
for. The agent (or learning controller) uses a rule (or control strategy) called policy = to
select actions depending on its state x. A policy’s return is the weighted sum of the payoffs
r if the policy 7 is used to select all the actions. When system is stochastic. the objective

will be the ezpected return:
Er[z ‘)’th+1] (3.19)
=0

where 0 < v < 1.
The evaluation function 1'7(z), a function of state x. is the expected return of the policy

7 starting from state x:
o

V7(z) = Ez[D_4'retalzo = (3.50)

t=0
A policy maximizing the expected return for all possible initial states x is called an

optimal policy ==. Because the optimality of policies depends on the discount factor 5.
it should be more precisely referred to as 7-optimal policies. In cases where pavoffs are
zero everywhere unless goal states (positive payoffs) or penalty states(negative payoffs) are
reached, selecting actions to maximize expected return is equal to selecting actions to bring
system to the goal states in the fewest steps, while avoiding penalty states.

If the accurate model of the decision task is available, Dynamic Programming (DP,
[Bel57], [Kir70}, [Ros83]) methods can be used to compute the evaluations of states, and
to find an optimal policy. Having an accurate model of the decision task means knowing
the payoff expectations, R(z,a), and state-transition probabilities, P.y(a), for all states x
and y and all actions a. Here, R(z,a) and Pry(a) are defined as foliow:

Letting z, denote the system state at time step t, if the agent using policy =, then the
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action it takes at step t is ¢; = 7(z;). The system state changes according to probability:
P.y(a) == Problri+1 = ylz, = r.a, = d] (3.51)

And the pavoff expectation
R(z¢.a;) = E[ri11]|z¢. a4 (3.52)

is the expectation of payoff received by the agent at time step t+1 if the action a, = =(z)
is taken at time step t while system is in state z,.

It is straightforward to show (e.g. [Ros&3], [BSW90]) that evaluation function 177 (3.50)

satisfies the following condition for each state x:
V7(z) = R(z.7(2))+ 7 Y Pry(7(z))V7(y) (3.53)
yeX
where X is the finite set of states x. Equation (3.53) is one of the principle equations of
dynamic programming [Bel57], upon which methods for computing the evaluation function
for a given policy are based.

Now we discuss how to find a optimal policy to maximize the evaluation. If the optimal
evaluation function, 1'", is known, it is relatively easy to determine an optimal policy. =~.
by defining it to select an action that maximizes Eq. ( 3.53) for each state x. The following
equation. known as Bellman Optimality Equation. is used to compute the optimal evaluation

function:

V*(2) = max[R(z.a) +1 Y_ Pry(a)1™(y)] (3.54)
acA yEX

where A is the finite set of actions a. This means: The only policies that are greedy with
respect to their own evaluation value functions are optimal policies.

The above stochastic dynamic programming method is only applicable when an accurate
model of the system is known. In the absence of such a complete model, adaptive methods
which can learn the underlying model have to be used. There are generally two approaches
for adaptive methods: One method is model-based approach which constructs a model
of decision task in the form of estimates of the state-transition probabilities and payoff
expectations while interacting with the system. Once an accurate model is estimated,
dynamic programming methods as mentioned above can be applied to find an optimal

policy. The second approach is a direct approach which, instead of learning a model of
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the decision task. adjusts the policy directly while receiving payoffs of performing various
actions.

Reinforcement learning methods incorporating TD algorithm is a direct and incremental
approach for learning the evaluation function 1"7(x) in equation (3.50) and for finding an
optimal policy to maximize evaluation 17=.

In previous sections. we have already presented the TD algorithm (eq.3.47) for learning
the cumulative reinforcement (eq.3.44). This TD procedure is closely related to lghe learn-
ing of evaluation function 1"7(z) in stochastic dynamic programming. Let us denote the
estimation of evaluation function V" as ¥". From one principle DP equation (3.53). the true
evaluation function 17 satisfies:

VP(ze) = R(ze.m(2¢)) +1 D Proy(m(z )7 (y) (3.55)
yeXxX

and the error between true value 1~ and its estimation ¥~ is:

V7(ze) = Vi(z) = [R(ze. 7(2) + 7 % Proy(m(z))V7(0)] - Vilz)  (3.56)

yeX

If it were possible to adjust the weights to reduce this error. the new estimation would
gradually approximates the true evaluation function. However. the payoff expectations
R(z;.7(x¢)) and state-transition probabilities P ,(7(z,)) are unknown. To overcome this
problem. instantaneous values and estimations available during on-line learning are used
to replace these unknown quantities. First. substitute the pavoff actually received at time
t+1, which is r¢41. for the expected value of this payoff, R(z,,#(z;)). Now. substitute
the current evaluation estimation of the state actually reached, which is f}(zH.l). for the
expectation of the evaluation over all the reachable states. Lyex Proy(7(z))V7(y). Then.

the error given by eq. (3.56) can be approximated by:
[ress + 7Ve(zen] = Vlze) (3.57)

which is the TD erroritself as defined in equation (3.46). The different notations shouldn’t
cause confusion. The P in equation (3.46) is for general prediction, while V in equation
(3.57) is for specific prediction of the evaluation function 1".

Therefore, the TD procedure is simply a learning method using instantaneous values

and estimations available during on-line learning to replace unknown expectations and



transition probabilities. For this reason. TD reinforcement learning can be called 2 Monte-
Carlo simulation (stochastic sampling instead of a priori enumerating) of DP algorithm.
It should be noted that the substitution of expectations with instantaneous values and
estimations does not necessarily guarantee unbiased results.

Having obtained the TD method to approximate evaluation function. next is how to
learn a optimal policy to maximize the evaluation. For correspondence to the evaluation
function. the policy = is also called action function which maps state input x into action
a (a; = 7(z;)). The action function is, like an evaluation function. given by some param-
eterized model with adjustable weights w. By selecting specific values for the weights. a
specific action function is determined. Therefore, the learning of an optimal action function
becomes the updating of the weights of action function to maximize evaluation function.
By combining the REINFORCE algorithm with the TD algorithm. we get the following
weight updating rules for action function:

t
.dlng; .
Awy = 7(rep1 + 7 P01 — Pr) Z /\t_k% (3.38)
k=1 u

where % is characteristic eligibility at time k, as defined in REIN FORCE algorithm (eq.

3.27). and the sum of past characteristic eligibilities

i f\"k%—nj‘; (3.59)
k=1

can be called the characteristic eligibility trace . which is a combination of characteristic

eligibility(eq.3.27) and eligibility trace(eq.3.40). The characteristic eligibility trace (3.59)

can be computed using recursive equation similar to Eq.(3.43).

This learning algorithm for an optimal action function is a generalized REINFORCE
algorithm (eq. 3.27) which incorporates the TD(\) procedure (eq.3.39). It uses TD error
(re41 + 7 Pi+1 — Pi) as offset reinforcement (r-b), and uses a cumulative characteristic
eligibility trace instead of one-step characteristic eligibility. If TD factor A=0, it will reduce
to the immediate REINFORCE algorithm(eq. 3.27). The reason for choosing TD error
(re41 + 7 Pe+1 — Pt) as offset reinforcement (r-b) is as follow:

For cumulative reinforcement or evaluation function defined in eq. 3.44 and 3.50, the

reinforcement term r in REINFORCE algorithm should be:

0 oS
k = -~ ~ k — -
Tt = Z TPkt = Terr £ D Y etk = e + 7 Pt (3.60)
k=0 k=0
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If P, is chosen as reinforcement baseline. the offset reinforcement (r-b} will be exactly
TD error. From Williams Theorem for the REINFORCE algorithm. we know that
the above generalized REINFORCE with the TD procedure will maximize the cumulative
reinforcement or evaluation function V.

In addition to the viewpoint from REINFORCE theorem as stochastic gradient algo-
rithm, TD error used in the learning of optimal action function can also be related to
stochastic dyvnamic programming. just like TD error in the learning of evaluation func-
tion is related to stochastic DP. From another principle DP equation. Bellman Optimality
Equation (3.54). we know that:

Vi(z) = max[R(z.a) +17 D _ Pry(a)V"(y)] (3.61)
yeX

Therefore, if we knew the payoff expectations R(r;.a), transition possibilities Pr,, for
current state z; and all possible next states ¥ under all possible actions a, then we could
use the current evaluation function estimation 1} to select the desired optimal action a,pt

that maximizes the following term:
R(ze.a)+7 Y Pry(a)Vily) (3.62)

yeX

The weights of action function could then be updated by supervised-learning algorithm
using the error between optimal action and actual output of action function (aept — at).
Unfortunately. payoff expectations and transition probabilities are not known, thus we
can not get the desired optimal action a,p;. Like in the learning of evaluation function,
available instantaneous values and estimations at time t can be used to replace those
unknown quantities, i.e. 7¢4; for R(z,,a), and Vi(z,4;) for 2ovex P ,(a)Vi(y). After these

substitutions, the term (3.62) becomes:
res1 + Vi@ (3.63)

which is actually the (cumulative) reinforcement return as result of action a, in the state z,
(see 3.60). This is not necessarily the maximum reinforcement since the action a; may not
be the optimal action. To determine the performance of the action a;, we need to compare
the reinforcement return of this action with respect to average reinforcement return of all

actions performed in this state. A reinforcement error factor can be formed by subtracting



the expected value (or estimation of expected value) of the reinforcement return for all
actions performed in this state. from the actual reinforcement return obtained for the given
action a;. Using this reinforcement error factor. a learning rule can reward actions leading
to better-than-average performance while penalize actions leading to worse-than-average
performance.

Conveniently, there is an estimation for this expected (average) value of reinforcement
return for all actions performed in that state r,. This is the estimation of evaluation
function at state r,. i.e. Vi(z,). To see why Vi(z,) can serve this purpose. consider what
happens to the TD error [ry41 + ‘;f}(ztﬂ] — Vi(ze) (equation 3.37): As the TD algorithm
(3.39) adjusts the weights to approximate the evaluation function. the TD error will tend
to zero. therefore V;(z,) should approach the expected value of riy1 + 4 f}(:cH_l ).

Consequently. the reinforcement error factor can be formed by subtracting this esti-
mation of expected (average) reinforcement return Vj(z;). from the actual reinforcement

return obtained for the given action a,. which is r,4; + 5 Vi(z¢41). The result is TD error:
[resr + 3 Te(e1)] = Vi)

From above discussion. TD error serves as same error term in the learning of evalua-
tion and learning of optimal action function. although it is interpreted differently. More
detailed discussion about reinforcement learning and dynamic programming can be found

in [BSW90].

Remarks on Eligibility Traces

There are two mechanisms. TD error (r¢41 + 7 Py1 — Pr) (Eq.(3.46(3.57)) and eligibility
traces, used in reinforcement learning to cope with delays in either reinforcement signal
or control system, or both of them. Eligibility traces include one for evaluation function
(Eq.(3.40)) and another characteristic eligibility trace (Eq.(3.59)) for action function.

For evaluation function learning. combining this two mechanisms leads to T D()) error

(Eq.(3.39)):

t
TD(A) = (res1 +7Pe1 = P) D ATFTL P
k=1

For action function learning. combining this two mechanisms and the characteristic eligi-



bility of REINFORCE leads to T D (A) error with characteristic eligibility (Eq.3.38):

t

ITDA(A)= (reg1 + 5 Pegr — Pt)z AT
k=1

¥ 9lngi
duw

It should be noted that if only reinforcement signal is delayed. then using TD error
(res1+ 7 Pry1 — P;) should already suffice. However. if the agent (learning controller) itself
has a delay inside (from control input to trajectory output). then eligibility trace should
also be used in action function learning.

A simple example will demonstrate the situation of delay in the action but not in the
evaluation. Suppose a dynamical system has a time delay of 3 steps. When there is an input
at time k. the system only receives this input at time (k+3) and changes its dvnamics. If the
agent emits a large positive action a(k) at time k, and receive a large positive reinforcement
r(k+1) at time k+1. then using the immediate reinforcement leaning algorithm, the weight
adjustment should be éu = a(k) - r(k + 1). hence the parameter w should be changed in
positive direction. But the problem is that the positive reinforcement r(k+1) at time (k+1)
has nothing to do with the action a(k) at k. it is actually the result of action a(k—2) at time
(k-2). A simple solution could be the use of past action to pair with current reinforcement.
ie. du =a(k—2)-r(k+1). This scheme needs the a priori knowledge of the delay.

A general approach is. as discussed above. the use of a characteristic eligibility trace
(Eq.3.59) to hold the eligibility of previous action a(k — 2) up to the time step k. But the
standard exponentially-decaying eligibility trace gives more eligibility to the most recent
action a(k).a(k — 1) which have nothing to do with reinforcement at k r(k + 1). This is
certainly a problem. Conceptually. the eligibility trace should have the same shape as the
true temporal structure of the credit assignment. In this simple example case. the first two
terms in the eligibility traces should be zero. The standard decaying trace reflects the crude
idea that the more recently something has occurred the more credit it should be given. If
one has better knowledge, then it is natural to build that into the shape of the trace. For
example, Klopf's DR model used an inverted-U shaped eligibility kernel, roughly to match
animal learning data on the effect of the inter-stimulus interval. Besides the difficulty to
obtain these a priori knowledge, if a eligibility kernel other than exponentially decaying
trace is used, the recursive algorithm (Eq.3.43) can not be used to calculate the eligibility

trace. This recursive algorithm is important for on-line implementation.
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In system identification/control field[Evk7+4]. there is also time-delay problems. There
are several techniques to solve it. One approach is the use of off-line identification methods
to identifv the time-delay at first. Then use this delay in the further system identification.
In reinforcement learning. there is no similar off-line identification method to identify the
time-delay of the control svstem.

Another method used in system identification to cope with delay is the use of a high
order system model to cover the possible time delay. For example, if time delay is 3 steps
but not known in advance to the designer. a high 6-order svstem. y(k) = al-z(k—-1)+a2-
z(k~2)...4 ab6-r(k—6), could be used to cover the unknown 3-step time delay. Parameters
al — 6 could then be identified. It will turn out that parameters al.a2. a3 are actually very
small because there is no correlation between output v(k) and input x(k-1). x(k-2). x(k-3)
due to the delay. So even if the exact time delay is unknown, it is still possible to use a high
order system to cover the unknown time delay. In reinforcement learning. high-order means
large decaying constant A in Eq.(3.59)(3.40). Therefore, if there is a unknown time delay
between system input and output. a reinforcement learning controller can use a “high-order’

system with large decaying constant A to cover the possible time delay in control system.

Reinforcement Learning Algorithm for the AFN

The FNS swing leg control problem can be formulated in terms of a delayed reinforcement
learning task. The controller receives time-varyving vectors of input sensor signals (hip and
knee angle information) from the swing leg model. The controller sends a vector of output
control signals (hip torque and quadriceps stimulation) to the swing leg model based on the
sensor inputs. Then the controller receives feedbacked reinforcements (e.g. toe collision,
hip angle exceeding maximum value, etc) indicating whether the control is successful or
not. These reinforcements are evaluative rather than instructive and are not available all
the time.

The adaptive fuzzy logic controller for the FNS swing based on reinforcement learning
consists of two major blocks (fig. 3.12):

One major block is the Evaluation Net (EN) which maps state feedback X to TD error 7.
The function approximator used in Evaluation Net is an AFN (fig.3.7). The AFN receives

state feedback X and outputs the prediction of evaluation function v. This prediction. v,
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Figure 3.12: Reinforcement Learning Controller.

is combined with delayed reinforcement feedback. r. (also called primary reinforcement) to
compute the TD error 7 (also called secondary reinforcement) according to equation 3.46 or
3.57. The TD error 7 is used by TD(A) algorithm (eq. 3.47 or 3.48) to modify the weights
of AFN (indicated in fig. 3.12 by dash-line). The detailed learning rules for different layver
AFN parameters can be obtained by computing gradient ¥ ,. P in eq.(3.47) from equations
(3.13.3.15.3.22.3.21.3.20). For following formulas. time index t is labeled as superscript and
parameter index (i.k) is labeled as subscript.

For output composition layer parameters wi. the weight update rule is:
Awt = m(r'F 4 90t~ eh)el . (3.64)
where 7 is learning rate, €, is eligibility trace (eq. 3.40) of weight wy at time t:

t
e =D ANV, u (3.65)
=1

el is computed recursively (3.43) as follow:

t+1 t
Gt:,};c = /\wewk + vwk Vi1
al’t+1 ds
= Apel + — 3.66
whwk Js Bwk ( )
. . . As - - Bueay s
where Ay, is TD decaying factor, &jk is computed as eq.3.13, and ':.3‘:’ is computed as eq.

3.13 by using v¢4+1 to replace y.



Similarly, for the input fuzzification layer parameters a;i.bx. cix. the weight update

rules are:
Adfy = o (Pt £ ptHD l’t)ffu'k (3.67)
€ar = Aafhi + Vo, i
3v¢+1 ds
= Aq€l .68
a€aik + ds Oai (3.6%)
Ably = n(r' T+ et — vhefy (3.69)
€ = Av€hi + Vo, et
3vt+1 ds
= A t_- s o il -
b€aik T Os Obix (3.70)
Ack = re(r' 4 vt - v')etik (3.71)
e;‘;cl = ’\Ce::ik + vz:;k"*'t-(»l
3L't+1 ds
= /\ t-_ —_— .'-
c€eik T s acik (3 (2)

where a‘sz, 5%. Bi.sk are computed as eq. 3.22. 3.21,3.20.

The other major block in the adaptive controller is the Action Net (abbreviated as AN)

which maps the state feedback X to control signal y. There are two Action Nets: one for
hip torque control: another for quadriceps stimulation control. For simplicity, only one
action network is shown in fig. 3.12. The function approximator used in the Action Net
is a type-a AFN without an output squashing/scaling layer (AFNa. fig.3.7). The AFNa
receives state feedback X and outputs recommended action, s. This recommended action.
s. is feed-forwarded into Stochastic Search Unit (SSU) to produce stochastic action f. The
action f is further squashed and scaled (equation 3.6, 3.7) to generate the final control
signal y. The Action Net can be viewed as a normal AFN with a SSU inserted between the
ANFa and output squashing/scaling layer. The Stochastic Search Unit (SSU), as its name
suggests, serves as search mechanism by introducing controllable random noise into control

signal. The output of SSU is a normally distributed random variable:
f~¥(s.0) (3.73)

where the mean value is the recommended action s from the AFNa. and the standard

deviation ¢ is a monotonically decreasing. nonnegative function of evaluation prediction v
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from EN. The control signal is therefore a random variable with mean value recommended
by the AFNa and a standard deviation determined by reinforcement evaluation. The actual
form of the standard deviation function, especially its scale and rate of decrease. should
take the units and range of variation of the output variable into account. In this study.

following function is adopted (figure 3.13):
o = maz(0.(1 - €77)) - Omar (3.74)

where 0,,,r determines the maximum value and o, determines the decaying rate of ex-
ponential function. The random search scale is large when evaluation is large negative
(high penalty) and small when evaluation is small negative (low penalty). When evalua-
tion becomes positive (reward). the standard deviation becomes zero. Then, the random
search will be terminated and the learning of the Action Net will also be terminated. The
stochastic learning controller will converge into a deterministic controller. The choice of
evaluation prediction v as the input to the deviation function is different to that in [HB2b]
and is similar to that in [Gul90]. Berenji et al. [HB2b] chose TD error 7 as input to the
standard deviation function which means the search is large when 7 is low (the last action
is a bad move) and the search is small when 7 is high (the last action is a good move).
But in the computer simulations. it was found that better results were achieved when the
search scale was related to the current evaluation (v) instead of performance of last action
(7). When current evaluation is unsatisfactory (v is low). the search scale should be large
to find possible good actions to escape the unsatisfactory situation. But the performance
of last action could be pretty high (7 is high) even if evaluation v is low. Therefore. random
search scale should be linked to the evaluation v rather than TD error 7.

The learning algorithm for AFNa in Action Net is the REINFORCE+TD(A) algorithm
(eq. 3.58) using the TD error 7 from Evaluation Net (indicated in fig. 3.12 by dash-line).
The detailed learning rules for different layer AFNa parameters can be obtained by com-
puting the gradient Q—Ifﬁl’i in eq. (3.38) from equation (3.31)(3.13)(3.15)(3.22)(3.21)(3.20)

For output composition layer parameters wy, the weight update rule is:
Awl = 7, (P 4yt el (3.73)

where 1, is learning rate, ! , is characteristic eligibility trace (eq. 3.59) of weight w; at
=] wk =1 Y q g

103



Standard Devaton Functon of SSU

10000

§ 8

8.8

\ :

1

i

Starxtnrd Dovinlion of Gausalon Noisn

&

\x
4
A
\

8

t
. 4

05 e 0.5 1 1.5

Predcaton of Evaiuaton (V)

[ I S

X
[y
L
wn

'
-
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time t:

t t t-19lngs -
€u_,k=lz:)\ m (3!6)
=1

€', is computed recursively (3.43) as following:

dlng
t+1 t t+1
€ = Ap€ypt+ —/——
wk wtwk 8wk
= A€l +aln!]t+1 Js
whwk ds Ouy
Jte1 —s Os
= Ap€lp + 40— (3.77)
W 3 Omar QWi
where A, is the TD decaying factor, aé:jk is computed as eq.3.15, and 3’%:: is a minor

modification of the REINFORCE eq.(3.31) by using (3 - 0/mqr) instead of (¢2) in the de-
nominator. The reason for the minor modification is if o2 is used, the weight change factor

2 is small. This is not desired since small ¢ means

&‘;‘2;3 could be quite large even when o
high evaluation value v (eq.3.74.fig.3.13) and good performance. The weight change should
be small when the performance is already good. If 3: 0, is used, the weight change factor
%j:n—: will be small when o is small (because f;;; — s will be small while o, is constant)
and weight change factor will be large when o is large. This is desired. The weight change
factor é—ﬁ‘&m’—;:’ can be called the normalized noise[Gul90] or normalized perturbation[HB2b)]

in the sense that it is gaussian noise f;+; — s normalized by its (maximum) standard de-
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viation. Using constant 3 in the normalization denominator is due to the fact that the
possibility of value f,4; — s lies within [£3 - o] is 95%.

Similarly for input fuzzification layer parameters a;.b;t. c;r. the weight update rules

are:
Al = (P 4 et el (3.7%)
dln
t-l_'-l — /\ t ] ge+1
€aik a€air T+ da;p
fee1 ~s Os T
= Aa t'- T
Cai 3 Cmar aatk (3 ‘9)
Abjy = mo(rt*h et = ey (3.50)
a{ngt-(»-l
6;?1.1 = /\befnk : bk
—s 0Os
= el fre1 = s .
Paik T 3 omar Db -5
Ache = me(rHh £ et — el (3.82)
aIngt-H
62?;:1 = ’\cect:ik + aCiL
—s Os
= ety 4 L1 =S 08 (3.53)

where % aifk. a’a_cf; are computed as eq. 3.22. 3.21.3.20.

From the above detailed learning rules for AFN parameters. we can further understand
that reinforcement learning is a kind of stochastic optimization method which searches for
the optimum by following gradient in stochastic sense. It can be used in a non-associative
reinforcement learning task which directly adjusts the control parameters. More important
is that it can be used with the Back Propagation algorithm in an associative reinforcement
learning task. The REINFORCE error term (éfa:n-*—::?) is back-propagated for internal net
parameter modification using a known gradient. This is not to be confused with the direct
optimization search in internal net parameter space. The former takes the advantage of
knowing net structure and propagating the optimization of control signal back to internal
net (structural credit assignment) using gradient and, hence, is more efficient than direct

searching in internal net parameter space without using the knowledge of known net struc-

ture. Usually, internal net parameter space is much larger than output control space. For
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example. in our FNS swing model. only two controls are to be optimized. while the AFN
may have hundreds of net parameters (a.b.c w parameters of membership function for each
rule and each input). Therefore. a direct search in net parameter space will be much slower
than the above combination of optimization in output control space using REINFORCE
algorithm and back propagation in internal net. Direct optimization in internal net pa-
rameter space using standard optimization algorithms (such as simplex. Gaussian-Newton
provided by MATLAB Optimization Toolbox) have been used. The result is exactly as
discussed above.

From this analysis of combination of reinforcement learning and backpropagation-type
gradient algorithm. it seems possible to use other non-linear optimization algorithms in
control output space with Back Propagation algorithm in internal net space. The advan-
tage of stochastic optimization like Reinforcement Learning is. that, it is more likely to
escape from local minimums (due to its randomness) than the deterministic optimizations
(especially deterministic gradient algorithms). Therefore, stochastic optimization is more
likely to find a global minimum. with the possible cost of slow search speed. However. in
the AFN situation. our expert knowledge may be good enough to pre-structure the AFN
near the global minimum. Thus deterministic gradient or other heuristic search algorithms
could be sufficient to converge to minimum (also global minimum). with possible advantage
of fast convergence. This may be worth further study. Some basic requirements are: faster
convergence than stochastic gradient following. computationally inexpensive(suitable for
real time on-line implementation). incremental modification so that it can be combined
with back propagation algorithm, ability to cope with non-differential case because the
objective function J with respect to control output signal may be very complex, and is
very likely non-continuous and non-differentiable. This may exclude some deterministic
gradient-based algorithms like BEGS, DFP, Steepest Gradient, and Least Square, etc. Al-
though the AFN is a differentiable net (.c%% exists thus BP gradient is applicable in net
space), we do not know if S—; exists. If 2—;~ does not exist, using deterministic gradient-
based algorithms may cause a singular matrix problem. However, stochastic gradient-like

algorithms such as reinforcement learning algorithms do not have this singular problem.
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Chapter 4

Results

4.1 Supervised Learning Controller for FNS Swing

4.1.1 Simulation Parameters

Two separated supervised learning AFN contrellers are used. one for hip torque control.
another for quadriceps stimulation control. Previously optimized open-loop controller (see
Fig.3.3) serves as teacher to provide the desired control signals.

The controller inputs are hip angle and knee angle. The input range is [-0.45 rad. 0.72
rad] for hip angle, and [-1.53rad. 0.19rad] for knee angle. Although there are more variables.
such as hip/knee angular velocity. available as controller inputs. it was found that using
more inputs did not always help. More inputs means more dimensionality. and the “curse
of dimensionality™ will cause exponentially increasing rule numbers. For a given number of
rules. low number of inputs will allow fine partition of state space. In [WA94]. we used four
input variables (hip/knee angle and angular velocity). But the result was not good, only
foot-clearance was achieved in reinforcement learning after 200 training trials. Using only
two inputs resulted in better results. The reason is explained as follows: The more inputs
are used, the more information is available for the control purpose and thus the better the
control performance could be. On the other hand, the more inputs are used, the larger
the search space is. Therefore, there is a tradeoff between the search space and the control
performance. If the number of inputs is too small, the controller will not have sufficient
sensor information to control the system. But if the number of inputs is too large, the
controller will not be able to find the optimal control strategy in the large search space.
In the model studied here, it was found that using two inputs resulted in the best results.
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Five fuzzy variables (VSmall. Small. Medium. Large. VLarge) are assigned to every input.
resulting in a total of 23 (5x3) fuzzy control rules. and thus 23 output fuzzy singleton (one
output fuzzy singleton per rule) for each controller. Qutput range is [0Nm. 24Nm] for
the hip torque controller. and [Ou-sec, 240u-sec] for the quadriceps stimulation controller.
Output of controllers (output fuzzy singletons) are initialized to near zero (1.1Nm for hip
torque, and 21 u-sec for quadriceps stimulation).

Membership functions of five input fuzzy variables. 25 output fuzzy singletons. and 25
control rules are shown in figure 4.1 and 4.2. The 25 fuzzy rules ‘fuzzily’ partition the

two-dimensional input space (figure 1.3).
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(B) Membership functions of input fuzzy variables.

Rule Nol: If hip-angle is \'Small and knee-angle is VVSmall Then Hip Torque is 1.1 Nm

Rule No.25: If hip-angle is VLarge and knee-angle is VLarge Then Hip Torque is 1.1 Nm
{C) Fuzzy control rules in text form (other rules which are not shown here have similar rule form).

Figure 4.1: Fuzzy rule base for hip torque controller(before training).
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(C) Fuzzy control rules in text form (other rules which are not shown here have similar rule form).

Figure 4.2: Fuzzy rule base for quadriceps stimulation controller(before training).
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4.1.2 Results

After 15 trials. the outputs of supervised learning AFN controller were almost the same
as the optimized open-loop controller (figure 4.4). This learning controller can successfully
control the leg to finish one swing phase (figure 4.5).

From the learning curves of the supervised learning controllers (figure 4.6). it learned
very rapidly in the first 3 trials, then just further fine-tuned.

The fuzzy control rule bases after supervised learning are shown in figure 4.7 and 4.8.
The input fuzzy membership function did not change significantly. as the learning rates
(Tab/c) for theses parameters (a;; b;j ¢;;) are quite small (0.01). But the output fuzzy
singletons changed very significantly.

The three dimensional control surfaces synthesized from fuzzy control rules are shown
in figure 4.9. The line trajectories on the surfaces are actual trajectories under control of
the learning controller.

Figure 4.10 shows the firing pattern of control rules along the trajectory. From beginning
to end of swing phase. fuzzy control rules fire sequentially as the trajectory visits the

different portions of state space.
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Figure 4.4: Controller outputs after supervised learning ( The teacher signals are also shown
with dashed lines).
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{B) Membership functions of input fuzzy variables.

No.7: If HipAngle is Small and KneeAngle is Small Then Hip Torque is 14 Nm
No.8: If HipAngle is Medium and KneeAngle is Small Then Hip Torque is 16 Nm
No.9: If HipAngle is Large and KneeAngle is Small Then Hip Torque is 14 Nm
No.10: If HipAngle is V' Large and KneeAngle is Small Then Hip Torque is 3 Nm
No.12: If HipAngle is Small and KneeAngle is Medium Then Hip Torque is 4 Nm
No.13: If HipAngle is Medium and KneeAngle is Medium Then Hip Torque is 5 Nm

(C) Fuzzy control rules in text form

(other rules which are not shown here do not changed much in the learning and remain similar to their

initialized form in Fig.4.1C ).

Figure 4.7: Fuzzy rule base for hip torque controller(after supervised learning).
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(B) Membership functions of input fuzzy variables.

Rule No.10: If HipAngle is VLarge and KneeAngle is Small Then Quad Stim. is 210 u-sec.
Rule No.15: If HipAngle is VLarge and KneeAngle is Medium Then Quad Stim. is 320 u-sec.
Rule No.20: If HipAngle is V'Large and KneeAngle is Large Ther Quad Stim. is 320 u-sec.
Rule No.23: If HipAngle is Medium and KneeAngle is V0Large Then Quad Stim. is 320 u-sec.
Rule No.24: If HipAngle is Large and KneeAngle is VLarge Then Quad Stim. is 310 u-sec.
Rule No.15: If HipAngle is VLarge and KneeAngle is VLarge Then Quad Stim. is 310 u-sec.
(C) Fuzzy control rules in text form
(other rules which are not shown here do not changed much in the learning and remain similar to their
initialized form in Fig.4.2C ).

Figure 4.&: Fuzzy rule base for quadriceps stimulation controller(after supervised learning).
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If the supervised learning controller can only mimic the optimized open-loop controller.
then why use it? The reason is that the supervised learning controller is a closed-loop
controller. Hopefully. it will be able to generalize the control rules learned from normal
trajectories to other trajectories that open-loop controller does not teach it. Thus. it can
handle the situation when there are parameter variations. while the open-loop controller is

not able to cope. as described in the next section.



4.1.3 Adaptability to Parameter Variations

(1) Muscle Fatigue

To simulate the muscle fatigue which is a fundamental problem in FNS control system.
we change hip torque gain from 1.00 to 0.86 (a change of 14quadriceps muscle gain remains
1.00. The supervised learning closed-loop controller used more hip torque to avoid toe
collision in the initial swing phase and successfully finished swing phase (figure 4.114).

In contrast, the open-loop controller failed (figure 4.11B) by using the same control as
in the normal gain situation. The toe hits the ground due to insufficient hip torque caused

by low gain.
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Figure 4.11: Adaptability of supervised learning controller to low gain (muscle fatigue).
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(2) Muscle Potentiation

To simulate the muscle potentiation. hip torque gain was changed to 1.70. and quadri-
ceps muscle gain to 1.70. The supervised learning closed-loop controller used less hip torque
to avoid exceeding maximum hip angle (figure 4.12(A)). The higher quadriceps muscle gain
did not cause problems because of the saturation of the muscle recruitment curve.

Open-loop controller failed (figure 4.12(B)) by using the same control as in the normal
situation. The hip angle exceeded the maximum angle due to high hip torque caused by

high gain.

120



Hip Torque

)

Ui

o

Y

\\\\\\\\x\s\\\ Wi

,/r,'- /V)////////

Hip(- -} and Knee(-) angles

1 es- — T T T . -
§ 0" - -
<.05- -

-1 -\ -
400~ -
: ; 0 o.1 0.2 03 04 05 06 07 [oF:] 09 1
= - - Foot Cleararce
0 Q1 02 03 04 05 06 07 08 08§ 1 0 Q.1 a2 Q3 04 05 06 07 08 09 1
Tume (s] Time [s]

(A)Closed-loop supervised learning controller succeeded (The control signals for normal gain are also shown

with dashed lines).

Hip Torque IEEERRIES
s, :" IR 1
t .
20~ - /
: Hip{- ~) and Knee{-) angles
0 01 02 03 04 05 06 07 08 0.9 1 05 - ’/’ ‘
T o :
Cuadnceps FNS Strmulaton (Pulse-Wicth) = 95~ - . -
‘mv — N \ -
é i 0 0.1 02 03 04 05 06 [+A4 08 09 1
anol- = Foot Cleararce
g
= |
i
100~ - -
| g i
0 01 02 03 04 0s 06 07 08 09 1 [+} 0.1 02 03 04 oS 06 07 cs8 09 1
Tune s] Tire {s]

(B)Open-loop controller failed (The hip angle maximum (0.7) is indicated by dash-dot line).

Figure 4.12: Adaptability of supervised learning controller to high gain (muscle potentia-

tion).

121



122
(3) Light Body Mass
The body mass was changed to 45kg. and body height to 1.50m.
The supervised learning closed-loop controller used less hip torque to avoid exceeding
maximum hip angle (figure 4.13(A)).

The open-loop controller failed (figure 4.13(B)). The hip angle exceeded the maximum

hip angle (0.7 rad) due to smaller leg mass.
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(4) Heavy Body Mass
Body mass was changed to 60 kg. and body height to 1.70m.
The supervised learning controller used more hip torque to avoid the toe collision in the
initial swing phase (figure 4.14(A)).
The open-loop controller failed by using the same control as in the normal situation

(figure 1.14(B)). The toe hit the ground due to insufficient hip torque to flex the larger leg

mass.
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Conclusion: The supervised learning controller can rapidly learn the optimal control
rules from the optimized open-loop controller in approximately 10 trials (Fig.4.6). Further-
more, by using the closed-loop sensor feedback. it can generalize learned control rules to
the new models with different gain and body mass/height (e.g. Fig.4.11). Therefore. the
closed-loop supervised learning controller is an improvement to the optimized open-loop
controller.

However, when the situation is beyond the ability of closed-loop supervised learning
controller. it can no longer handle it. For example, if gain change is too large. or new
model’s mass is very different from the original one. then the supervised learning controller
will also fail (see section 4.3). In this case. it needs a new teacher to teach it new control
rules. If there is no new teacher, this supervised learning controller will not work. In the
next section, the reinforcement learning controller without teacher is able to handle this

situation.
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4.2 Reinforcement Learning Controller for FNS Swing

4.2.1 Simulation Parameters

Parameters for the hip torque controller and quadriceps stimulation controller are the same
as in supervised learning. i.e. two inputs are hip angle and knee angle. five fuzzy variables
for each input. and a total of 25 rules and output fuzzy singletons for each controller (figure
4.1 and 4.2). All controller outputs are initialized to near zero (Fig.4.2).

The TD decaying factors are A=0.5 for hip torque controller, and a larger A=0.9 for
quadriceps stimulation controller, considering long delay of muscle response, and A=0.5 for
evaluation net.

The fuzzy rule base (membership functions of nine input fuzzy variables, &1 output
fuzzy singletons, and fuzzy rules in graphic form) for the Evaluation Net is shown in figure
4.15. The outputs are initialized to zero. The Evaluation Net (EN) has 81 rules, i.e. 9
fuzzy variables for each input. Assigning more rules for the EN is due to the consideration
that an accurate prediction of reinforcement is crucial for judging the right actions.

Figure 4.16 shows the fuzzy partitioning of input space by the evaluation net. The area
bounded by line HA=0.7 and line FC=0 is the safe area (foot clearance larger than zero.
and hip angle smaller than 0.7 rad), while any trajectory out of this area means failure
(either toe collision. or hip angle exceeds maximum value, or knee angle is larger than
0.1 rad at the heel contact). The dark bar indicates the goal area (knee angle=[-.10rad
0.1rad]) in this two dimensional state space. The controller must learn to control the leg to
‘travel’, beginning from start point, through the state space without collisions (toe collision
or maximum hip angle violation). and finally reach the goal area. This control problem is
quite similar to the control of mobile robots for collision-free navigation or the control of a

robot manipulator for collision-free path planning.
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4.2.2 Results

This section will show how the reinforcement learning controller learns from reinforcement
feedback to avoid penalty and seek reward. A typical reinforcement learning process is
shown in figures 4.17 to 4.21.

Stage 0: Initial state

Since both hip torque and quadriceps stimulation controllers are initialized to near
zero (Fig.4.17A. Fig.4.17B). there is no sufficient hip torque to flex the hip and knee
(figure.4.17(C)). After a few steps, the toe will hit the ground in the initial swing phase
(figure.4.17(D) ). The Evaluation Net is initialized to zero, so there is no prediction of
reinforcement (figure.4.17(E)). and thus no stochastic search (figure.4.17(F)). In figures
4.17(A)YB)(E)(F). the trajectories are also shown on the 3D surfaces, with "+ svymbols

indicate the sampled points.
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Figure 4.17: Reinforcement learning stage 0.
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Stage 1: Learn to avoid toe collision in the initial swing phase

A negative reinforcement penalty signal (-1) is fed back to the controller every time the
toe hits the ground. Gradually, the Evaluation Net will build up the internal reinforcement
prediction function to predict the toe collision area in the input state space (figure 4.18(E)).
Stochastic Search Unit (figure 4.18(F)) will introduce the stochastic noise into the control
system in collision areas for searching optimal control actions. Those control actions moving
the leg from collision areas will be rewarded by the Evaluation Net. and those actions
moving the leg toward collision areas will be punished by the Evaluation Net. Gradually.
the action controllers will learn, under the prediction of Evaluation Net. to increase hip
torque (figure 4.1&(A)) and decrease quadriceps stimulation (figure 4.18(B)) in the initial
swing phase.

After around 40 trials. the controller successfully avoided toe collision (figure 4.18(D))
by activating hip torque and deactivating quadriceps stimulation in the initial swing (figure

1.18(Q)).
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Figure 4.18: Reinforcement learning stage 1.

132



% Hip Torque \ \\\\\\\\ \\\\\\\\
o - s & ML

—_— | T o ST sc---=-== S~ P
6 01 02 03 04 05 06 07 08 G8 1 05- T N N -
— ' _’/

T O -
Quadrioeps FNS Stimuaton (Puise-Widthi =-05- /\__ -
0~ - T g ) .
i ¢ 01 02 03 04 05 06 07 08 09 1

.gm' - Foot Cleanance
+ 200~ - 008- -
277 _C0s- -
100- - _E..O.O4f -
! i 002~ -
o‘ 0-.-,_._ D I D R L . -
0 01 02 ©3 04 05 06 07 08 08 6 01 02 03 04 05 06 07 08 08 1

Tirme (s) Time (s}

(C) Outputs of controllers (D) Stick figures. angle trajectory, and foot clearance

Renforcemert Predcaton Function Stochaste Sesrch Und

A N k)
T g 000 0.18 ! — ' 00 018
' R 1y R 57 -0.38 019 R - 1 3 R 057 0% 0.19 ¢
HpArg (DTSN gy rss 085 076 03 Hoag (DTS gy s 085 076
Kree Ang. Kree Arg.
(E) 3D surface of Evaluation Net (F) 3D surface of Stochastic Search Unit

Figure 4.1&8(cont’d): Reinforcement learning stage 1.

133



Stage 2: Learn to avoid maximum hip angle

The hip torque is continuously increasing because it moves the leg away from the toe
collision area. This will gradually lead to the maximum hip angle violation after hip torque
is increased too much. Then a negative reinforcement penalty signal (-1) is fed back. Two
negative peaks in the lower portion in figure 4.19(E) reflect the hip angle maximum violation
situation. The Stochastic Search Unit (figure 4.19(F)) will introduce stochastic noise in the
hip angle maximum areas for searching optimal control actions. The result is to decrease
hip torque. Gradually. the hip torque will reach a balance point so that it is large enough
to avoid toe collision. but not too large to avoid exceeding the maximum hip angle. Then.
learning will proceed into another stage.
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Figure 4.19: Reinforcement learning stage 2.
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Stage 3: Learn to extend knee at the end of swing phase

The hip torque increase has been limited. and the small hip torque (1.1Nm. initialization
value) after 0.3 seconds has been further decreased to zero (figure 4.20(C)). No more hip
angle maximum violations will happen. The controller can control the leg to avoid both
toe collision and hip angle maximum violation in the initial swing phase and enter terminal
swing phase. Since there is not enough quadriceps stimulation to extend the knee at
terminal swing phase. knee angle will be larger than the acceptable value [-0.1rad 0.lrad].
A negative reinforcement penalty signal. proportional to the knee angle at heel contact.
will be fed back. The negative areas in the low-right portion in figure 4.20 (E) shows this
situation. Then. the quadriceps stimulation is improved (figure 4.20B) to decrease the
negative penalty. thus decrease the knee angle at the heel contact. Since there is a long
delay from electrical stimulation to muscle activation. this stage of learning takes nearly

one hundred trials.
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Figure 4.20: Reinforcement learning stage 3.
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Stage 4: Convergence of reinforcement learning

Finally. the quadriceps stimulation has been increased enough (figure 4.21(B) ). and
thus, knee angle at the heel contact has been reduced to acceptable range. Then. a positive
reinforcement reward signal (41) was fed back. The positive peak in the middle-right
portion of figure(4.21E) indicates the final goal area for the swing leg. Now. optimal hip
torque and quadriceps controllers have been learned (figure 4.21(A)(B) ). After several
successful trials. the positive reinforcement signal was propagated back along this collision-
free trajectory. Thus, there was no more stochastic search along this trajectory (figure

4.21(F)). The stochastic controller then converged into a deterministic controller.
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Figure 4.21: Reinforcement learning stage 4.
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Membership functions of input fuzzy variables and output fuzzy singletons after re-

inforcement learning are shown in figure 4.22. 4.23.and4.24. for the Evaluation Net. hip

torque controller. and quadriceps stimulation controllers. respectively.

Figure 4.25 is a contour plot of the learned Evaluation Net. Comparing this figure with
figure 4.16, it is obvious that the Evaluation Net does predict the penalty and reward area

quit accurately. It is accurate enough to guide the action controllers to find optimal control

rules to avoid penalty and seek reward.

Conciusion: The reinforcement learning controller can learn. based on penalty/reward
reinforcement signals. and without explicit teacher signals. to avoid toe collision at the

initial swing phase. avoid maximum hip angle. and extend the knee at the terminal swing

phase.
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Figure 4.22: Fuzzy rule base of evaluation net(after reinforcement learning).
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25 RULES (after training)
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25 RULES(after training)
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4.2.3 Adaptability to Parameter Variations

Similar to the closed-loop supervised learning controller. the reinforcement learning con-
troller can also handle model parameter variations within a certain range by using the
sensor feedback with learned control rules. The simulation results are very similar to figure
4.11 to 4.14. But more interesting. the reinforcement learning controller is able to re-adapt

(or fine-tune ) its learned control rules if these control rules fail. as described in the next

section.
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4.2.4 Using Previous Learning Experience in New Model

(1) Muscle Fatigue

Hip torque gain was changed to 0.60. and quadriceps muscle gain remained 1.00.

Even with closed-loop sensor feedback. the controller failed. The toe hit the ground
(figure 4.26A) due to very low gain. The reinforcement learning controller re-adapted by
learning the new penalty area for the Evaluation Net, reactivating the Stochastic Search
Unit in the new penalty area. and searching for new optimal control rules. This time.
since there were previously learned control rules (figure 4.21(A)(B)) and the Evaluation
Net (figure 4.21(E)) as the start point, learning took fewer trials than learning without
experience. The old learned control rules only needed to be fine-tuned to fit the new
situation. After 20 trials. a new controller with higher hip torque at the initial swing
phase was learned (figure 4.26B) and converged to ( stochastic search noise was zero along

the trajectory). Under control of this new controller, successful swing is achieved (figure
4.26C).
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(A)Closed-loop reinforcement learning controller failed with learned control rules. The control signals for

normal gain are also shown with dashed lines.

Figure 4.26: Fine-tuning of learned controller for very low gain (muscle fatigue).
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147
(2) Muscle Potentiation
Hip torque gain was changed to 1.30. and quadriceps muscle gain was changed to 1.30.
The closed-loop controller failed with the old rules (figure 4.27A). It even attempted to
use less hip torque, but still failed due to very high gain. The controller re-adapted (figure

4.27(B)). and succeeded with new control surfaces(figure 4.27(C)).
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Figure 4.27: Fine tuning of learned controller for very high gain (muscle potentiation).
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(3) Light body mass

Body mass was changed to 45kg. and body height to 1.50m. The controller failed with

old control rules (figure 4.28A). It re-adapted (figure 4.28B) and succeeded with new control
rules(figure 4.28(C)).
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Figure 4.28: Fine-tuning of learned controller for very light body mass
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(4) Heavy Body Mass
Body mass was changed to 75kg. and body height 1.70m. The controller failed with

learned control rules(figure 4.29A). It readapted (figure 4.29B). and succeeded with new

control rules(figure 4.29C).
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Figure 4.29: Fine-tuning of learned controller for very heavy body mass.
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4.3 Combining Supervised Learning with Reinforcement

Learning

It is possible to combine supervised learning and reinforcement learning algorithms. Su-
pervised learning is very fast to learn a general control rule base from a typical subject.
Then reinforcement learning can be used to fine-tune (or customize) the general control
rules for different subjects. If there are hand-crafted control rules available from human
experts. then they can also be used as a starting point. and reinforcement learning can be
used to fine tune the control rules for different subjects.

Figure 4.30 demonstrates this possibility. The control rules from supervised learning
(figure 4.7 4.8 4.9 work fine with the original model. But for a new model with hip torque
gain = 1.80 (a change of 80% ). and quadriceps muscle gain = 1.80 (a change of 80% ). the
old learned controller will fail (figure 4.30A). even though this closed-loop controller did
try to use less hip torque. The reinforcement learning algorithm is used to fine-tune the
supervised-learned control rules and arrive at new control surfaces (figure 4.30B). With
the new control rules, swing phase is successful (figure 4.30C). Note that the total learning
takes approximately 30 trials, including less than 10 trials (Fig.4.6) for supervised learn-
ing to learn optimal control rules from the teacher for a general model. and 20 trials for
reinforcement learning to fine-tune the old control rules for a new model.

Note that supervised learning did not generate evaluation functions. only action func-
tions were learned. Yet it still reduced the training trials for reinforcement learning by

placing control systems near the optimal points.
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Figure 4.30: Fine-tuning of supervised learning control rules by reinforcement learning
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Chapter 5

Discussion and Conclusions

Choosing control strategies is the first step in the design of controllers for Functional Neu-
romuscular Stimulation. Through extensive literature review, it is argued that finite state
control is more suitable than conventional numerical control for Functional Neuromuscular
Stimulation prostheses with many practical sensors (e.g. accelerometer. inclinometer. force
sensing resistor) providing sensory signals not clearly related to the plant dynamics. Neuro-
fuzzy systems that combine rule-based fuzzy systems with neural networks have advantages
over individual systems used separately. and offer flexible frameworks to implement adap-
tive finite state control. Through literature review in Chapter 2. the thesis objective No.1
(section 2.3.3) has been achieved.

Based on the review of previous work. an Adaptive Fuzzy Network (AFN) was developed
as a neuro-fuzzy system with supervised learning and reinforcement learning mechanisms.
Generalized Gaussian function with three adjustable parameters (center, width, and slope)
was used as differentiable membership functions in the input fuzzifier. and fuzzy singletons
were used as the consequent parts of fuzzy rules. A product-sum-normalization infer-
ence was adopted. This normalization procedure was important in adapting fuzzy rules
when plant state moves outside the state space covered by the fuzzy rule base. A squash-
ing/scaling layer after fuzzy inference subsystem was useful to limit the control outputs to
a bounded domain range, and reduce the search space for reinforcement learning.

A backpropagation-like gradient supervised learning algorithm was formulated for the
differentiable AFN to modify the internal network parameters. It was observed that using
individual learning rates for different parameters was essential for the gradient learning
to converge quickly.The layered learning rates for AFN were derived using unit-analysis
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method. The adaptive function approximation ability of the AFN was demonstrated in a
nonlinear function test. The function approximation and generalization capacity of AFN
was essential for scaling up learning controllers to real world problems. such as the control
of neural prostheses.

For reinforcement learning. two AFN were emploved. the Evaluation Network and Ac-
tion Network respectively, and a Stochastic Search Unit was inserted between the fuzzy
inference subsystem and the output squashing/scaling layer in the Action Network for ac-
tive exploration. The relationships between Temporal Difference (TD(A)) method. stochas-
tic gradient following REINFORCE algorithm, and stochastic Dynamic Programming are
clearly analyzed from different perspectives. A reinforcement learning algorithm integrat-
ing TD(X) method and stochastic gradient following REINFORCE was formulated for the
AFN. The use of large decaying constant in the eligibility traces to cope with unknown
time delay in control system is analyzed. It is also pointed out that using the evalua-
tion of previous state instead of the evaluation of previous action [HB2b] to determine the
stochastic search scope led to better exploration, and consequently resulted in faster overall
convergence of reinforcement learning.

The thesis objective No.2 has been achieved by the development of AFN with supervised
and reinforcement learning mechanisms.

The AFN was successfully applied to the finite state control of a hybrid neural prosthe-
sis with power hip brace and quadriceps muscle stimulation. The plant was a swinging leg
simulated by a compound pendulum and a three-factor (activation/angle/angular-velocity
dependence) quadriceps muscle model with neural time-delay and nonlinear recruitment
curve. The control inputs to the plant were hip torque supplied by power hip brace and
functional electrical stimulatjon delivered to activate quadriceps muscle. The sensory feed-
back signals were hip angle and knee angle. The three optimal control objectives for
successful swing phase were: foot clearance. a certain hip angle range. and knee extension
at the end of swing phase. An open-loop controller was obtained by parameterizing control
inputs and using SIMPLEX algorithm to optimize the control parameters to satisfy all the
three swing phase objectives.

Through computer simulations, it was found that supervised learning AFN controller

rapidly mimicked the optimal control strategy from the previously optimized open-loop
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controller in approximately 10-20 training trials. Furthermore. the learning controller was
able to generalize the mimicked control strategy to cope with slight parameter variations.
while open-loop controller failed. This was attributed to the use of closed-loop sensor
feedback and generalization capability of AFN. and demonstrated the advantages of closed-
loop finite state control over open-loop control. Although the optimal control strategy was
mimicked from open-loop controller., supervised learning controller was able to generalize
between similar situations and actions.

Reinforcement learning AFN controller was able to synthesize a similar optimal control
strategy in approximately 100-200 training trials. The controller learned the optimal control
strategy through stochastic dynamic programming by using evaluative reinforcements from
environment, rather than mimicking the instructive teaching signals through supervised
learning from the instructive teacher. The reinforcements were delayed evaluative signals,
i.e. scalar signals indicating whether swing was successful or failure according to three
swing phase objectives. Reinforcement learning controller was also able to generalize the
learned control strategy to cope with slight parameter variations.

The convergence to a optimal control strategy in reinforcement learning was slower
than that in supervised learning by approximately an order of magnitude in this particular
case. The difference in the convergence rate was due to the different quality of teaching
signals, which was instructive and immediate in supervised learning, but only evaluative
and delayed in reinforcement learning. When instructive teaching signals are available,
supervised learning should be used. But reinforcement learning provides a solution when
such knowledgeable teachers are not available.

Furthermore, it was demonstrated that using a control rule base previously learned
(via supervised or reinforcement learning) from one model as starting point, reinforcement
learning controller could learn a new optimal control strategy for another new model with
different parameters in approximately tens of training trials (mostly in 10-20 trials). Incor-
porating a priori knowledge significantly (mostly by an order of magnitude) reduced the
training trials for reinforcement learning controller. This combined reinforcement learning
with a priori knowledge or supervised learning experience method is, thus, proposed for

further clinical trial.

Thus. thesis objectives No.3 2nd No.4 have been achieved through computer simulation
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study. Supervised learning and reinforcement learning could be used with previous learn-
ing experience from similar models or hand-crafted rules from human experts. Adaptive
Fuzzy Network (AFN) provides an unified structure to incorporate all these complementary
elements. To the author’s knowledge. this is the first demonstration of feasibility of such

techniques in neural prosthetic control.
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Chapter 6

Suggestion for Future Work

Current work could be extended by further algorithmic development and by applying sim-
ulation results to real-time systems.

Further algorithmic development could include structure determination and utilizing
more informative reinforcement signals.

Adaptive Fuzzy Network could be enhanced by incorporating inductive machine learning
(e.g. EMPIRIC) for structure determination [TST92, Jan94]. Hyperplanar partitioning
of the attribute space by decision trees could relax “curse of dimensionality™, a problem
commonly associated with fuzzy systems using grid partitioning. This topic could also be
further developed into fuzzy system identification technique, like the conventional system
identification [Eyk74] in numerical control field. Recently. ID3 has been extended to the
continuous ID3 (CID3) [CL92] which performs the partitioning of attribute space using
continuous hyperplanes instead of those perpendicular to the attribute axes. CID3 has been
used for optimal architecture generation of neural networks. One weakness of ID3 type
algorithms is that they are supervised learning algorithms requiring instructive training
examples. The Genetic Algorithms [BGH89] belong to reinforcement learning family using
performance index for optimization and have been used for both structure and parameter
optimization of fuzzy systems [LT93, HM93]. The problem with Genetic Algorithms is
that they are difficult to be incorporated with connectionist neural network due to their
complex encoding/decoding schemes and not utilizing known network structure to reduce
search space. Other unsupervised learning or clustering algorithms such as Kohonen’s SOM
[Koh8&8] could also be used for fuzzy rule extraction.

Utilizing more informative reinforcement signals could speed up reinforcement learn-
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ing. One possible informative reinforcement signals are reference trajectories. Reference
trajectory following algorithm has been used in [Yuh94. CS93. CO93] for training of neural
networks or fuzzy system. In conventional adaptive control. there is also Model Reference
Adaptive Control (MRAC). At early stage. it is just simple MIT heuristic rule (known as
the MIT-rule in adaptive control literature). In adaptive fuzzy logic control. there are simi-
lar Model Reference Adaptive Fuzzy Logic Controller (MRAFLQC), as reviewed in literature
review chapter. But MRAC and MRAFLC are rather complex algorithm using Lyapunov
method. MIT heuristic rule is simple. yet, could have very good results in some particular
situations if designed properly using expert knowledge. Some preliminary simulations done
in the swinging leg model (not reported in this thesis) showed very encouraging result. The

heuristic MIT rule used following éu as controller training error:
bu=4kl-(ya—y)+k2-(vqg—7) (6.1)

where y4. vq4 were desired angle and angular velocity. y. v were actual angle and angular
velocity, and k1,k2 were two constants properly decided by considering the ratios between
control signals and trajectory signals. Hip and knee joint controllers only took care of the
hip and knee joint, respectively. The learning controller using this training error learned
all the three swing phase objectives. This result suggested that simple heuristic MIT rule
(Eq.6.1) worked quite well. at least for the swing leg model. Actually Eq.6.1 is just the
output of a simple PD controller. If we combined the outputs of this PD controller and AFN
controller, we actually get the Kawato's feedback-error-learning system [KFS&7. KUISSS,
Kaw90, GK90. KG91. KG92], as reviewed in literature review chapter.

Simulation results in this thesis could be applied to real-time svstems for prolonged
standing control and swing phase control.

A simple application is prolonged paraplegic standing using Floor Reaction Ortho-
sis(FRO) and quadriceps stimulation. As reviewed early, Modular hybrid proposed by
Andrews et al. [ABB¥88, ABPK&9, KAM™93] using FRO to provide stability, without
ENS activation of muscles, for 'C’ standing postures. Stability is maintained so long as
the ground reaction vector remains anterior to the knee joint axis. When ground reaction
vector pass through or behind the knee axis, quadriceps muscles are stimulated to pre-
vent knee buckling. The knee buckling controller is a simple on/off finite state controller

[ABB*88, ABPK89, MVBZ92]. One problem with this on/off controller is that a strong
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quadriceps stimulation is usually delivered to activate a hyperextension of knee joint. While
this assures the safety, it could be harmful to the knee joint if hyperextension is activated
frequently. Furthermore. from two-dimensional phase-plane analysis of knee-buckling and
recovery process. it is shown that at the end of recovery phase. the knee angular velocity is
not near zero. The angular velocity is abruptly forced to the zero when knee joint reaches
its limited position. This may cause some impact on the knee joint. An ideal buckling re-
covery should be a gentle process with angular velocity gradually decreases to zero as knee
angle approaches its limit position. This could be automatically learned by a reinforcement
learning controller. Two optimal objectives in this knee-buckling control are: knee angle
remains smaller than a certain threshold. and knee angular velocity is near zero when knee
angle reaches its limit position. When knee angle exceeds the threshold, the on/off con-
troller is triggered to assure the subject’s safety, and a penalty reinforcement signal is sent
to reinforcement learning controller. Gradually, reinforcement learning controller should
be able to learn to increase quadriceps stimulation to prevent knee buckle. Another rein-
forcement signal is proportional to the knee angular velocity at the end of recovery phase.
Reinforcement learning controller should be able to decrease quadriceps stimulation in ad-
vance to prevent high angular velocity at the end of recovery phase. Then, we can get a
controller with better performance than simple on/off controller. which could prevent knee
buckling and high recovery angular velocity. It is also possible to use supervised learning
first to learn the control surface from simple on/off controller, and then using reinforcement
learning controller to fine-tune the learned rules. It is also straightforward to hand-craft
the on/off control rules directly. Goniometers. force sensing resistors [ABB*Sg, ABPK&9].
and accelerometers [VFVB93. VBK ¥93] could be used as feedback sensors for knee stability
detection. But goniometers should be used at least in training phase to detect the knee
angle and angular velocity. After training, goniometer could be unmounted.

Another real-time application could be the parameterized swing phase control, like that
proposed by Franken and Veltink et al.[FV95]. Franken's parameterized swing used the
similar swing phase objectives as our simulated swing. The difference is that they used
hip flexor for hip flexion and hamstrings for knee flexion, while only powered hip brace
was used in our simulated swinging leg to flex both hip and knee. Since the power hip

brace modeled in our computer simulation is not available yet, Franken's approach is more
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realistic. Another alternative is to use flexion reflex [GHN*93] for hip and knee flexion.
A similar stand-swing supporting frame with adjustable bicycle saddle was also set up in
the Research Center at Glenrose Hospital. A reinforcement learning controller for swing
phase control could be tested on this experimental setup. It should be emphasized that
although joint angular signals were used in our computer simulations. other sensors such as
accelerometers and inclinometers could also be used in the finite state control. No rigorous
dynamic model was required for using this finite state controller. Finite state control based
on pattern recognition requires richness in sensor information in order to make the right
actions. while conventional numerical control based on dynamic model requires accuracy in
sensor information in order to calculate the control signals from tracking error to robustly
drive the system dynamics. In biological motor systems. information richness is easily guar-
anteed, but accuracy is not very high. In FNS systems. information richness is not easily
guaranteed. considering the practical limitation on number of sensors mounted on human
subjects. However, accuracy is more difficult to obtain. considering the limited choice of
practical sensors and difficulties in sensor mounting. cabling and calibration. It is recom-
mended that joint angular signals (from goniometers) could be used in the training phase
as reference trajectories to train the reinforcement learning controller. Reference joint an-
gular trajectories could be adopted from GAITLAB data [VDO92]. Signals form practical
sensors. including accelerometers and inclinometers, are used as actual state feedback to
the controller. while signals from goniometers are used only as informative reinforcement
signals. Simple MIT rule Eq.6.1 could be used to train the reinforcement learning con-
troller. Once training is completed, mechanical goniometers that are not very convenient
and enduring can be unmounted. Only practical sensors remain to provide state feedback
for the finite state controller. Recent reports [VFVB93, VBK+93, And95] suggested that
accelerometers could provide rich information for gait event discrimination.

A real-time PC-based experimental control system and a mechanical supporting frame
had been developed in Research Center at Glenrose. Real-time performance of the finite

state learning controllers should be evaluated in the laboratory using human SCI subjects.
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Appendix A

Dynamic Equations of the

Swinging Leg Model

The biomechanical model of the swinging leg used in this study was adopted from [Bie93].
It was improved in this study by adding a nonlinear muscle recruitment curve. Also. hip
torque is assumed to be controllable at any moment, rather than a parameterized waveform
function. Two scalar gain factors were added for simu>lating muscle fatigue and potential.

The passive dynamics of the leg was modeled as a freely swinging compound pendulum
with two degrees of freedom (hip and knee joints in the sagittal plane) and adequate
damping and elasticity in the joints (Fig.A.1). The ankle joint is assumed to be fixed at
90 degrees by the floor reaction orthosis. No standing leg is considered. The hip was in a
fixed position. because simulations showed that the influence of one inch hip motion on the
dynamics of the leg was negligible, yvet including hip motion demanded extra differential
equations.

The compound pendulum has certain masses and inertia according to the limb mass of
the person. There is a linear damping to account for friction in the joints, and a global
elasticity representing muscles and ligaments. The global elasticities of ligaments are de-
scribed with exponential functions. The global elasticity of the muscles is simplified into a

linear relation. The torque on the joints due to the elasticity is:
Mg, = kpe~F2(01=6) _ poo—ke(6i462) 4 ks(8; — 63)

1=1,2 (knee, hip) 6, ;3 = offset constants k, s = shape/slope factors

The complete equation (A.1) . describing the dynamics behavior of the whole leg can
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be written as:

o(t) = J™YM ~ Go(t) — Do(t) — E — g) (A.1)

where:
on(t Hip Angle
o(t) = Joint angle vector = a(t) = p Ang
ok(t) Knee Angle

. . Jjmiy jmye
J = I'nertia matriz = Jm

Jma1 jmop

M, Hip Torque provided by powered brace

M = Input torque vector =
M, Knee Torque provided by quadriceps

.- . . r T12
G = Coriolis and centripetal force matriz = gyrin 9y

gyra1 gyra2

Dy Damping in hip joint
D = Damping vector = = ping
Dy Damping in knee joint
. Ey Torque caused by elasticity around hip joint
E = Elasticityvector = =
E; Torque caused by elasticity around knee joint
gk Gravitational force in hip joint

g = Gravitational forcevector = =
g Gravitational force in knee joint

For more details of the dynamic equations. please consult the technical report [Bie93].

The initial conditions of the dynamic system are adopted from GAITLAB data: Hip
angular velocity is 1 rad./sec. knee angular velocity is -1.7 rad./sec. hip angle is -.12 rad.,
and knee angle is -0.7 rad. body mass=35m, and body height=1.65kg.

The active quadriceps muscle is modeled as a three factor nonlinear dynamic model
with time delay and nonlinear recruitment curve (Fig.A.2). The three-factor muscle model
[VCCeB92] includes activation dependency , angle dependency, and angular velocity de-
pendency. Input is FNS pulsewidth, which is transferred into normalized activation Sq by
nonlinear recruitment curve. The recruitment curve has three typical regions: deadzone,
high-slope, and saturation {[DM8&9], and is modeled by a sigmoid function.

The following MATLAB program is used to calculate biomechanical parameters from the
body mass m0 and body height 10. See Fig.(A.1) and Eq.(A.1) for labels. The parameters

of quadriceps muscles are also given in what follows.
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Figure A.1: The leg is modeled as a compound pendulum with mass. damping and elastic-

ities on the joints.
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Figure A.2: Quadriceps muscle model: (A) Nonlinear sigmoid recruitment curve, the input
is FNS pulsewidth. the output is normalized muscle activation; (B) Three factor muscle
dvnamic model. Sq is the input normalized muscle activation; Dq is the time delay; Mmx
is the maximum torque; Mk is the output torque applied on knee joint. Mmx/(rs + 1)isa
first-order linear activation dynamics; A(6y) is the angle dependency; V() is the angular
velocity dependency.
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A AN SN AN YN YA A A A YA AR A AN AN A AR AN AN A

% Approximates model constants for normal person

% Input: Body mass=m0 [kg], height=10 [m]

Y A Yy SN YN YA AN AA AR AN AN AR A AN A

% Mass and inertia parameters

Y A A A S A A AN NN SN A AN YA AN AN SN AN

% upper/lower leg mass (kg) , gravity (m/s~2):

ml = .1*m0; m2 = .061*m0; g = 9.81;

% Geometry (m), Inertia (kgm~2):

111 = -.433%.245%10; 112 = ,567%.245%10;

121z = -.606%.246%10; 122z = .136%10; 12x = -.009%10;
hlx=-.25%.152*10-.01; flx=.75%.152%10+.01;
Iyyl=mi#*(.323%(112-111))"2;Iyy2=m2*(.416%.246%10)"2;
% Elasticity parameters (no scaling formulas known):
kih = 8.7; k2h = 1.3; k3h = 2.6; k4h = 5.8; kSh = .0;
phih = 1.92; ph2h = -.52; ph3h = 0;

4 '!! no valid data on kSh and ph3h !! :

kik = 10.5; k2k = 11.8; k3k = 3.1; k4k = 5.9; kSk = 3.0;
phik = .1; ph2k = -1.92; ph3k = -1.5;

% Damping

Damph=1.06; Dampk=.16;

Y Y Yy Ay Y Y YN S A A A YA YA YN A AN AN AN AR SRR AN AN A YA A

% Quadriceps muscles parameters

A A AN AN AN AN YA Y NS AN SN SN A AN AN A

% Maximum torque, depending on the body mass
Mmx=(m0-55)*0. 10+15;

 Parameters for angle dependency

phimx=-.87; k6=1.5; k7=.2; phioff=-1.3;

% Parameters for angular velocity dependency

velmx = ~12; k8 = .35;

% Time constants for the muscle activation dynamics
tau3don=.15; tau3of=.05;

% neural delay constant [second]

dtime=.06;

% quadriceps muscle recruitment curve: parameters for sigmoid function
quad_sa=30; quad._sc=150;quad_yr=1;quad._yc=0.5;
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