University of Alberta

AN APPLICATION LAYER BANDWIDTH ESTIMATION ALGORITHM

by

Yinzhe Yu

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2002

(L |

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell

“ copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the

thesis nor substantial extracts from it

may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

385, rue Wellington
Ottawa ON K1A ON4

Your file Votre rélérence

Our fle Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation. '

0-612-81506.4

- Canada

University of Alberta

Library Release Form

Name of Author: Yinzhe Yu

Title of Thesis: An Application Layer Bandwidth Estimation Algorithm

Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form
whatever without the author’s prior written permission.

Yinzhe Yu

Department of Computing Science
133 Athabasca Hall

University of Alberta

Edmonton, AB

Canada, T6G 2E8

Date: ,§ ot 1 ﬁ? Cwwe L

&

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitted An Application Layer
Bandwidth Estimation Algorithm submitted by Yinzhe Yu in partial fulfillment of the
requirements for the degree of Master of Science.

Dr. Ehaf Elmallah

Dr. Wayne Grover

Datwj&mz» \N{j 106 T

Abstract

A network-aware application provides QoS to end-users without relying on service
guarantees from the underlying networks. This kind of application actively monitors the
performance variation of the network and adjusts resource demand accordingly. A
critical issue for such an application is the accurate estimation of the available bandwidth.
We propose a new bandwidth estimation algorithm for multimedia delivery network-
aware applications. The main QoS parameter is the time limit for delivery of a media
object. The algorithm uses the first fraction of the time limit to do bandwidth sampling
and then uses this knowledge to estimate future bandwidth. The algorithm has two
salient features. First, based on a t-distribution statistical model, it makes a controlled
conservative estimation of the available bandwidth. This estimation preserves the time
limit parameter with a confidence level. Second, the algorithm dynamically
approximates the optimal amount of bandwidth sampling. It thereby maximizes the
media object being transmitted within the time limit. Simulation results as well as
experiments on real networks are presented to demonstrate the effectiveness of the

algorithm.

To my parents.

Acknowledgement

1 would like to thank my supervisor, Dr. Anup Basu, for his support, advice and
encouragement throughout this research. I would also like to thank my defense
committee; Dr. Wayne Grover and Dr. Ehab Elmallah, for their truly valuable comments
and critiques to my thesis, and Dr. Duane Szafron, for chairing my defense committee. 1
am also grateful to all the members of the Vision and Multimedia Communications Lab,
Dr. Minghong Pi, Dr. Mark Fiala, Yixin Pan, Irene Cheng, and Matthew Bates, for their
ideas and friendships. Thanks also go to Edith Drummond, Sunrose Ko, Sandi Sands and
Carol Smith for their helpful administrative assistance during my stay in the Computing
Science Department of University of Alberta. Finally, I am greatly indebted to my
family. Without their inspirations, moral supports and all the sacrifices they have made,

1 could never have achieved this.

Contents

1. Introduction 1
I.1 The Quest for Qualityof Service 1
1.2 ResourceReservation.............. ... i iiiiieann. 2
1.3 Network-aware Application i, 3
1.4 Bandwidth Estimation Problem 4
1.5 ThesisObjective oottt 6
1.6 Thesis Organizationot 7
2. Background and Related Works 8
2.1 TCP CongestionControl i 8
22 TCPCongestionAvoidance 12
23 TCPforWirelessoou i 14
24 RelatedResearches oo 15
2.5 ContribUHONS . .ottt e 18
3. Single Server Bandwidth Estimation 20
3.1 The Problem and Assumptionst 20
3.2 N AHOMS - oot e ittt e e 21
33 The Algorithm 22
4. Simulation of Single Server Algorithm 28
4.1 Overview of Simulation Experiments 29
42 Moving AverageMethodl 31
43 ExperimentResults 33
5. Multi-server Bandwidth Estimation 43
5.1 Simple Extension of the Algorithm 44
5.2 Refinement of Multi-server Algorithm 47
53 Simulation OVerviewt 50

54 ExperimentResults 52

6. Experiments on Real Networks

6.1 Implementation of the Algorithm

6.2 Experimentson Campus Networks

6.3 Experiments on the Internet
6.4 Time Slice Choice
6.5 Experiments on Networks witha Wireless Link

7. Conclusions and Directions for Future Research

Bibliography

Appendix 1

Appendix 2

Experimental Data

t-distribution Table

58
59
61
65
66
69
72

75

81

97

List of Tables

2.1
5.1
6.1
6.2
6.3
6.4
6.5

Features supported in major TCP implementations 14
V values on K channels with K ¢ values oo .. 49
Experimental results for the campus network 62
Average actual transmission time for the fixed sampling method 63
Experimental results onthe Internet il 66
Comparison of different time slice sizeso, 67

Experimental results on the Internet with a wireless link 70

List of Figures

1.1
2.1
22
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1
5.2
53
5.4
5.5
5.6
6.1
6.2
6.3
6.4
6.5
6.6

Network-aware Application Architecture, 5
An example of congestion window dynamics in TCP connection............ 10
Fast retransmit based on duplicate ACKSo i 11
Screen Capture of Simulatoratwork o oo 29
Screen Capture of Simulator using “Moving Average” method32
Real Transmission Time for Fix Sampling, alpha 0.95, 500 total slices 34
Real Transmission Time comparison, alpha 0.95, 500 total slices 35
Real Transmission Time for Fix Sampling, alpha 0.95, 100 total slices 38
Real Transmission Time comparison, alpha 0.95, 100 total slices 39

Number of runs failing to finish within time limit, alpha 0.95, 100 total slices. .41
Number of runs failing to finish within time limit, alpha 0.95, 500 total slices. .42

Network environment of multi-server multimedia delivery application 43
Screen Capture of Multi-server Bandwidth Estimation Simulator 50
Comparison of transmitted object size for two algorithms, 100 total slices 53
Comparison of transmitted object size for two algorithms, 500 total slices 54
Number of runs failing to finish within time limit, multi-server 56
Number of runs using one channel for real transmission 57
Screen capture of the Clientprogram 60
Experimental setuponcampusnetwork o ol 62
Comparison of actual transmissiontimes 64
Experimental setup on the Internet through broadband connection.......... 65
Screen Capture of three experimentst iian.. 68

Experimental setup on the Internet witha wirelesslink 69

Chapter 1

Introduction

1.1 The Quest for “Quality of Service”

Since its inception 40 years ago, the Internet has evolved from a few leased lines
connecting half a dozen large computers to millions of inter-connected networks
supporting all kinds of computing devices. Accordingly, the applications running on it
have evolved from character-based programs to all kinds of multimedia applications. In
the future, perhaps five years from now, the Internet is expected to connect various
mobile devices like cell phones and personal data assistants (PDAs) with much more
sophisticated features than exist today. Theses devices are expected to receive various
information including that from emails, news, stock quotes, and online games. Much of
this information will take the form of multimedia objects like images, sound, videos, and
3D graphic objects. These envisioned applications will create new challenges in the

design of future Internet protocols, across all the levels of the protocol stack.

In terms of the network layer, the Internet was originally designed to offer only one level
of service, the "best effort", to all its service users. In such an environment, all data
packets put into the Internet have the same priority; the networks do not provide any
guarantee on when a packet will be delivered or even whether a packet will be delivered
at all. However, as new applications continue to emerge, requirements for the quality of
data delivery become more diversified for different kinds of applications. Some
applications may need guaranteed delivery for every bit of data in transmission, while

others may focus much more on the average speed of the delivery; some applications are

sensitive mainly to the bandwidth the network is able to sustain, while others are equally
sensitive to bandwidth, delay and jitter. The quest for solutions to these problems has
been an active research area for the past decade, under terms like “Quality of Service”

(QoS) and “Differential Services” [Miloucheva, 1995], [Vogel, 1995].

1.2 Resource Reservation

One solution to these problems that has currently attracted a lot of attention is the
Resource Reservation Protocol (RSVP) and the “Integrated Services” it proposes [Zhang,
1993], [Braden, 1997]. The Internet envisioned by Integrated Services will provide a
number of service classes other than the “best effort”. The examples of such classes
include guaranteed service and controlled load service. For guaranteed service packets,
the Integrated Services provider makes sure the delay of the packets will be within a
specified time limit; for controlled load service packets, the Integrated Service provider
emulates a lightly loaded network in delivering them, even though the actual network

may be heavily loaded'. More service classes are under consideration and proposal.

To provide these services, substantial changes need to be made to hosts and routers.
Apart from telling the network where the packet is intended to go, the hosts must also
inform the network of the quality of service they expect for all the ensuing packets going
to the same destination, which is called flow specification. Then, each router on the path
from the sender to the receiver must determine whether it has enough resources (link
capacity, buffer, etc.) to satisfy the flow. This process is called admission control.
Based on admission control criteria, the router will either reject the request by sending an
error message to the flow initiator, or commit the resources and maintain some internal
states for the new flow. Finally, when packets of different flows arrive, routers need to

meet the agreed-upon flow requirements by doing packet scheduling among all the

! The controlled-load service provides no firm quantitative guarantees as guaranteed service does. When a flow is
accepted for controlled-load service, the router makes a commitment to provide a service equivalent to that seen by the
“best effort” flow on a light-load network. Therefore, a controlled-load service flow does not noticeably deteriorate as
the real network load increases. A good introduction to the implementation methods of both service modes is [White,
1997].

packets.

1.3 Network-aware Application

Although the resource reservation method provides a graceful solution to QoS, it has
been suffering from slow acceptance and deployment for two reasons. Firstly, since
RSVP requires the replacement (at least the upgrade of software) of a significant portion
of the routers currently running the Internet, the cost is high. Secondly, since RSVP
maintains states and schedules packets on the basis of each flow, it places a much heavier
computation burden on routers. How to address these issues is still under research

[Black, 1998] [Grossman, 2002].

One alternative approach that has generated a lot of interests in QoS-based multimedia
delivery application is the network-aware application [Bolliger, 1998], [Bolliger, 1999]
and [Wang, 1999]. These applications do not rely on the underlying network to provide
guaranteed quality and are built on the old “best effort” service model of the Internet. As
a result, they try to provide a trade-off between QoS parameters. For example, in
interactive multimedia applications like tele-education [Maly, 1997], application

designers may choose to trade image/video resolution for response time.

Instead of reserving a specific bandwidth before transmission, network-aware
applications actively monitor the performance variation of the network and attempt to
adjust their resource demands in response. For example, a server needing to deliver a
certain multimedia object to a client adapts the volume of data (in turn, the quality of the
multimedia object®) to be transmitted to the client, given different network bandwidth
availability. If the available bandwidth is low, the application reduces the size of the
object and thus reduces demands on the network; and if the bandwidth is high, the

application increases its demand to fully utilize the additional resources. In such a

2 In the real world, different applications may have different interpretations of what constitutes the “high quality” of a
multimedia object. In this thesis, we will always asswne quality correlates to the size of the object. Larger objects are
assumed to have higher quality.

method, the application can guarantee the delivery of an object to its client with a

meaningful QoS parameter like a user-specified time limit.

Several prototype systems have demonstrated this idea. In [Cheng, 2001], the author
presented a Tele-Learning system that delivers multimedia course materials (mainly still
images) to students over the Internet. The system allows the users to specify several QoS
parameters. The first one is time limit, which allows the user to specify the time the
transmission is expected to finish. The user can also set a target resolution and quality
(the quality represents the quantization factor of JPEG image compression), as well as a
set of criteria on how to trade off between resolution and quality in case the target cannot
be met given the condition of the network. The server will adapt the resolution and
quality of the requested image to provide the best image to the user while trying to

restrict transmission time to within the time limait.

1.4 Bandwidth Estimation Problem

Generally speaking, to deliver a user-requested multimedia object adaptively, the
network-aware application needs to go through three phases. Firstly, the server needs to
monitor the current network condition and estimate the available bandwidth in the brief
future period during which requested object will be transmitted. Secondly, given the
user-specified time limit and estimated bandwidth, the server calculates the volume of
data the network is able to handle and then adapts the object to that size. For instance, if
the object is a JPEG image, the application can adapt it in terms of the image resolution
and the JPEG quantization factor to produce a tailored JPEG image with the target size.
In the third phase, the tailored object is transmitted to a user. Figure 1.1 is an illustration

of the architecture of such a network-aware application, taken from [Bollinger, 1998].

apptication layer
7

i i
i]
I monitor & reasct (P, prepare (0,0 1ansmit {Prgng) !
b Coonttorsot bandwidih wanstorm avaitatis | !
B |- ottty § b | by objent warsin o . Sl o5 5 4
dehuwst objeot to cHant

Qastity eadundion or hesgigiped ¥ Aty]
§ ARpEBSION 5 ||
i i

Froadbamok,
From mavanrk

objact dellvery
acrogs aetwork

Figure 1.1, Network-aware Application Architecture

Obviously, the bandwidth monitoring and estimation are of critical importance to this
strategy. Only an accurate estimation of the available bandwidth allows the user request
to be met. In several previous studies, bandwidth-monitoring modules were
implemented in different ways. In [Bolliger 1998], where the purpose of the application
was to send a group of images (90 JPEG images in its experiment) from the server to the
client, the author used the bandwidth achieved from one image to estimate the bandwidth
for the next. The method is clever since in that way, all the data transmitted are real
application data; there is no overhead for bandwidth monitoring. However, not many
applications will be like the one described by the author, which had a large group of

objects to be sent at one time. Therefore, more general methods are needed.

In [Cheng, 2001}, the author used a different method to perform network monitoring and
estimation. Since the Tele-Learning system described was intended to provide course
materials interactively to students as they browsed the course content, it was expected
that significant idle time would pass by between two consecutive media delivery requests.
The bandwidth estimation method used in that system was to have the server maintain a
session for each client currently active and send testing packets periodically (e.g., every
15 seconds) to the client. The client then calculates the available bandwidth based on the
time needed to transmit the testing packet. In this way, each connection maintains a

history of bandwidth samples. When a media delivery request is made to the server, the

server estimates the available bandwidth of the future period by using some sort of
average of the history of the bandwidth samples. This method suffers from several
problems. Since the method uses a relatively long history of the bandwidth to predict the
future bandwidth, the estimation result is not very accurate. As the approach assumes the
availability of the history of the bandwidth information, the applicability of the method is
again restricted to those applications for which a long session is maintained, as in a Tele-
Learn system. An even more serious problem is that periodically sending random bits
along the network for bandwidth testing purposes when no real data transmission is
actually required can be a significant waste of the total bandwidth of networks because it

interferes with the traffic of other users running a congestion control protocol.

1.5 Thesis Objective

The subject of this thesis is the design of a new method of bandwidth estimation for
network-aware applications. Given a multimedia object to be transmitted and a user-
specified time limit, an application will use the first fraction of the time limit to do
bandwidth testing. Based on the average and the variance of the bandwidth samples
measured during the bandwidth testing period, this method gives an estimation of the
available bandwidth, guaranteeing that the transmission of an object will finish within the
time limit by a specific confidence level (e.g., 95%). Compared to the methods
discussed above, the new method obtains the most up-to-date bandwidth information; the
entire traffic including both bandwidth testing and real object transmission is bounded by
a user-specified time limit so that bandwidth testing will not occur when no actual

transmission is required; and the method has wide applicability.

A challenge in designing this kind of method was how to balance the time for bandwidth
testing and the time for data transmission. Since the bandwidth testing involves sending
random bits along the path to the client in order to obtain knowledge of the available
bandwidth, the time set aside for it is pure overhead. Using too much time for bandwidth

testing obviously decreases the amount of time available for real transmission. This

prevents the sender from sending an object of the largest size within the time limit. On
the other hand, using too little time for bandwidth testing yields less reliable knowledge
of the available bandwidth, and thus poses a risk of exceeding the time limit. If we want
to keep the same confidence level for finishing transmission within the time limit, a more
aggressive under-estimation of the bandwidth is needed, but such an estimation also
prevents us from achieving our goal of sending an object of largest size within the time

limit. Thus, an optimal trade-off strategy is required.

To meet the challenge, a statistical model was used to quantify the advantages and
disadvantages of bandwidth estimation spending. The new method used this model to
determine the proportion of the time limit for bandwidth testing that would yield the
largest size of the transmitted object. We will show that the bandwidth testing time

chosen by our method is a good approximation of the optimal amount.

1.6 Thesis Organization

In Chapter 2, we will first closely examine of the mechanisms of TCP congestion
avoidance and controlling, which are the underlying source for bandwidth fluctuation in
terms of the application layer. We also compare our method with those of related
research and emphasize the contribution of this thesis. In Chapter 3, we present the
mathematical model of bandwidth testing for the simple condition (where only one
server exists to serve the client) and give an algorithm to determine the amount of
bandwidth testing. Chapter 4 presents the simulation results for the algorithm. In
Chapter 5, we extend the model to the condition of a multi-server environment and
present the simulation results for the extended algorithm. In Chapter 6, we report the

experimental results for real networks. Finally, we draw our conclusions in Chapter 7.

Chapter 2

Background and Related Works

In this chapter, we will take a close look at the bandwidth estimation problem. We will
first explain some internal design issues of the TCP protocol, especially the congestion
avoidance and control mechanisms, which are the main reason for the difficulty of
bandwidth estimation. Then we will survey the related research in bandwidth modeling

and estimation and emphasize the main contribution of this thesis.

2.1 TCP Congestion Control

Transmission Control Protocol (TCP) [Postel, 1981] [Braden, 1989] is one of the two
most widely used protocols (together with IP) in today’s Internet. It provides a
guaranteed and in-order data stream delivery service on top of the unreliable service of IP.
In order for each packet sent out by the sender to be received properly, several factors
must be in place. Firstly, the receiver must have enough buffers to store the arrived data
yet to pass to higher layer. The TCP protocol achieves this by having the receiver
piggyback an advertise window on its ACK messages. The advertise window tells the
sender how much buffer area is available on the receiver side; thus, the sender should
never send out unacknowledged data larger than the advertised window size. Secondly,
even if the receiver has enough buffers, the routers on the path may not be able to keep
up with the speed at which the sender inserts data into the connection. In that case, we
say congestion has occurred, and the router begins to drop packets. One design goal of
the TCP protocol is to find out and sustain the largest bandwidth on a connection with

minimum congestion.

In order to control the congestion, the TCP protocol introduces a parameter called the
congestion window. The sender will never have outstanding data larger than the
advertised window size and the congestion window. When a new connection 1s
established, the congestion window is set to the maximum segment size (MSS, a TCP
option negotiated between sender and receiver) of the connection, so that the sender can
send out only one packet before the acknowledgement (ACK) is received. Each time an
ACK is received on time, the sender increases the congestion window by one MSS. This
algorithm is called slow start [Jacobson, 1988]. Ironically, it is not slow at all. Actually,
when operating in the slow start mode, the congestion window grows exponentially to
the number of the round trip time (RTT). Suppose at the beginning of the connection the
speed at which the sender injects data into the network is much less than the path can
handle, every packet will be acknowledged quickly and properly. Therefore, in the first
RTT, one packet is sent; in the second, two packets are sent; in the third RTT it is four,
and so on. After a few RTTs, the sender will exceed the maximum load the network is
able to handle, so a timeout (due to the drop of packets) will happen. At that point, a
new slow start process begins (from one packet per RTT), but this time, the sender will
not continue the slow start process until another timeout happens. Actually, the TCP
protocol also maintains a third parameter called a Congestion Threshold. It is initially set
to be 64K. Once a timeout happens, the Congestion Threshold is set to half of the
congestion window at that time, so when a new round of slow start occurs, the slow start
will finish when the congestion window reaches the congestion threshold. After that
threshold has been reached, the congestion window grows linearly instead of
exponentially (to the RTT) by adding a fraction of the MSS for each ACK. Figure 2
(taken from [Tanenbaum, 1996]) shows the change of the congestion windows size in a

typical TCP connection.

10

ke Trweshod
;
i‘:

&Q i o e o o P

Conpestion wintow flobyles)

S T TS AN U DU U DUNN T AU YUUN O O LU

& 8 10 12 4 16 18 2 22
Teansmission number

Figure 2.1, An example of congestion window dynamics in a TCP connection

The mechanisms of slow start and congestion window dynamics first appeared in
[Jacobson, 1988]. The other two widely implemented congestion control schemes of the
TCP protocol are fast retransmit and fast recovery. As the congestion control
mechanism uses the timeout as the indicator of the loss of packets, and the timeout is
usually set to be several times larger than the RTT (in order to avoid a false timeout), it
usually takes a relatively long time before the sender realizes that a packet is lost and
retransmits it. “Fast retransmit” was designed to address the problem. When using fast
retransmit, every time a data packet arrives at the receiver side, the receiver responds
with an ACK® (acknowledging the last in-order packet), even if that sequence number

has already been acknowledged. (This happens when one packet is lost on the way, so

3 The TCP protocol uses cumulative acknowledgements. The sequence number in an ACK is the next octet that the
receiver expects. There arc several reasons for this design choice. Firstly, with cumulative ACKs, lost
acknowledgements do not necessarily force retransmission. Secondly, compared with a mechanism with NAK,
cumulative ACK does not require the receiver to maintain timers. All the decisions about timeout and retransmission
are made at the sender side. This is important. As the sender-and receiver are separated by the Internet, different
packets can take different paths, so the sender is in the better position to make the decision on when to timeout packets.

24

11

all the ensuing packets that arrive will ACK the packet before the lost one). In that case,
the sender will receive several duplicate ACKs for the same sequence number. This
event is a strong indicator that a packet (the one immediately after the last acknowledged)
is lost. TCP will retransmit that packet after three duplicate ACKs have been observed at
the sender. Figure 2.2 (taken from [Peterson, 2000]) illustrates fast retransmit based on
duplicate ACKs.

Packet #1

Packet #2
= ACK #1

Packet#3\x
> ACK #2
Packet #4 ,
> ACK #2
Packet #5 <

Packet #6
» o> ACK #2

> ACK #2

Retransmit
Packet #3

1 ACK #6

Figure 2.2, Fast retransmit based on duplicate ACKs

A technique related to fast retransmit is fast recovery. When the fast retransmit
mechanism signals congestion, rather than shrink the congestion window size all the way
back to that of one packet and run a slow start, the fast recovery mechanism uses the
ensuing duplicate ACKs to clock the sending of new packets until the retransmitted
packet is acknowledged. In other words, since the receiver can generate a duplicate ACK
only when a packet has arrived (i.e., when the packet has left the network and is no
longer consuming network resources), the sender can safely inject a new packet into the
network without worrying that it will create more congestion. The fast recovery

terminates when the sender receives the ACK for the retransmitted packet. The sender

12

then sets the congestion window to the congestion threshold and moves on. [Stevens,
1997} and [Allman, 1999] summarized the four schemes we have discussed so far, which

are now part of the requirements for all the TCP implementations.

Over the last decade, many new congestion control mechanisms have been proposed.
[Hoe, 1996] proposed changes to the fast retransmit scheme to enable it to quickly
recover from multiple packet losses during the slow start period. [Mathis, 1996] added
“Selective Acknowledgement” as an option of the TCP protocol. This mechanism also
helps addressing the problem of slow recovery from multiple packet losses. [Lin, 1998]
proposed a modification to the sender behavior during the fast recovery period,
improving both the throughput of individual TCP connection and the fairness among the

TCP connections sharing network links.

2.2 TCP Congestion Avoidance

All the mechanisms we discussed in Section 2.1 are based on congestion control. They
generally try to inject more and more traffic (quickly or slowly) into the connection until
congestion is sensed (by timeout or duplicate ACKs), and then back off quickly to
alleviate the situation. Other mechanisms have been proposed to avoid congestion from
happening in the first place. [Ramakrishnan, 1990] and [Floyd, 1993] proposed putting
additional functionality into the routers to assist the sender to anticipate congestions.
[Brakmo, 1995] introduced TCP Vegas, a new congestion avoidance mechanism
working purely in the end nodes. So far, TCP Vegas has received most supports of these

new schemes.

The basic idea of TCP Vegas is as follows. As the sender expands the congestion
window gradually, it also monitors the actually achieved throughput in the connection. If
the congestion window grows constantly, while the throughput begins to flatten, then
bandwidth limitation of the connection has been reached. Although congestion may not
have happened yet (no timeout has occurred), excessive packets are queuing up in the

buffer of the intermediate routers. If the sender continues to pump more packets into the

13

connection during each RTT, congestion will eventually occur. TCP Vegas tries to
maintain the right amount of extra data in the network. The author argued that with too
much extra data, the delay will increase, and congestion will occur; on the other hand,
with too little extra data, the mechanism cannot respond rapidly to the transient increases

in the available bandwidth.

TCP Vegas maintains two parameters in order to measure the “extra data”. First, it sets
ExpectedRate = CongestionWindow / BaseRTT, where BaseRTT is the minimum of
all the round trip time measured on the connection (usually the first RTT). Second, it
maintains the parameter ActualRate = DataSent / SampleRTT, where DataSent and
sampleRTT are derived from observing one “distinguished packet”. The sampleRTT is
the time between when the distinguished packet is sent and when its acknowledgement
arrives. DataSent is the number of bytes sent out at the sender during that period. TCP

Vegas also defines two thresholds @ and £ (a < f), roughly corresponding to having
too little and too much extra data in the network. During each RTT, it compares Diff =
ExpectedRate - ActualRate to e and £ . If Diff <a, it increases the congestion
window linearly during the next RTT; if Diff > £, it decreases the congestion window

linearly during the next RTT; otherwise, it leaves the congestion window unchanged.
The details on how to determine « and /3 can be found in [Brakmo, 1995]. By avoiding
congestion in first place, TCP Vegas was reported to have achieved between 40% to 70%
better throughput than TCP Reno, which is the most widely used TCP implementation
(distributed with BSD Unix) [Brakmo, 1995]. We will next summarize the features

supported in three major implementations of the TCP protocol®.

4 TCP Tahoe, also known as the BSD Network Release 1.0 (BNR1), was implemented by Jacobson, with the
mechanisms described in [Jacobson, 1988]. It was released with the BSD UNIX version 4.3. TCP Reno, also know as
the BSD Network Release 2.0 (BNR2), includes all the mechanisms described in [Stevens, 1997]. As the most widely
used TCP implementation today, TCP Reno is the current de facto Internet standard.

14

TCP Tahoe TCP Reno TCP Vegas
Slow start Yes Yes Yes
Additive Increase
/Multiplicative Yes Yes Yes
Decrease
Fast Retransmit Yes Yes Yes
Fast Recovery No Yes Yes
Delayed ACK No Yes Yes
Congestion
Detegétion/Avoidance No No Yes

Table 2.1, Features supported in major TCP implementations

2.3 TCP for wireless

In recent years, as wireless network applications began to take off, the TCP protocol has
been facing the challenge of a heterogeneous wired/wireless network environment.
Researchers have pointed out several shortcomings of TCP’s behavior in such an
environment [Tsaoussidis, 2002]. Firstly, the TCP protocol usually assumes that all
packet losses are caused by congestion, which is generally true in the wired network
world. Therefore, when the TCP sender senses a packet loss, it always backs off and
reduces the sending rate. However, in a wireless world, transient packet losses due to
corrupted data are very common. Mislabeling these transient losses as “congestion”
greatly reduces the throughput of the TCP protocol over wireless links. Secondly, the
traditional TCP protocol does not control the tradeoff between performance measure
(like throughput) and energy consumption. When a wireless link is experiencing burst
errors (e.g., during handoffs and fading channels), the traditional TCP usually expends

much energy in wasteful retransmission effort.

Many studies have been performed to improve the situation, including [Balakrishnan,
1995], [Balakrishnan, 1997}, [Haas, 1997], [Ramakrishnan, 1999], [Parsa, 1999] and
[Tsaoussidis, 2000]. [Balakrishnan, 1997] proposed that an Explicit Congestion
Notification (ECN) be added to the IP protocol. The TCP protocol can be changed to

15

trigger congestion control only after getting an ECN from an intermediate router.
[Tsaoussidis, 2000] proposed a mechanism called “TCP-probing” to address the energy-
saving problem. In TCP-probing, when a data segment is detected as lost, the sender,
instead of re-transmitting the lost packet again and again, initiates a “probe cycle”,
during which data transmission is suspended and only probe segments (headers without
payloads) are sent. A lost probe segment or its acknowledgement re-initiates the “probe
cycle”, suspending data transmission for the duration of the error (due to fading channel
or handoff). As a probe segment is short and only one probe segment is in transit at any
time, energy is saved during the probing-cycle. Once one probe segment makes the

round trip, the data transmission resumes.

2.4 Related Research

The discussion above has shown that the TCP protocol, particularly its congestion
control/avoidance mechanism, is complex and fluid. The main purpose of these
mechanisms is to achieve the maximum available bandwidth for individual TCP flows
with minimal the congestion, and to maintain fairness among all TCP flows. The
effective bandwidth realized on a TCP connection is affected not only by the network
traffics, the processing power and buffer size of routers, but also by the specific

mechanisms implemented on the host computers.

We will now describe some related research in modeling and estimating the throughput
of the TCP protocol. Studies of TCP bandwidth modeling fall into two categories. In the
first category, the authors try to model the TCP throughput in the context of the entire
network. [Lakshman, 1997] first modeled the network as a system with one single
bottleneck link (with a specific capacity and a FIFO buffer of a specific size). This
model assumed a constant number of connections sharing the bottleneck link and
modeled all delays other than the service time and queuing at the bottleneck into a single
“propagation delay”. The author modeled the cyclical evolution of the TCP congestion
window (as implemented in TCP Tahoe and Reno) and used Markovian analysis to

develop a closed-form expression for the throughput of the TCP connections. [Kumar,

16

1998] used a similar system model and parameters, but modeled more versions of TCP
mechanisms, like TCP-NewReno and TCP-Vegas. [Casetti, 2000] extended the previous
two models by adding a new layer of model to mimic the application-level behavior,
such as the ON-OFF activity of a web server responding to clients” request. During an
OFF period, the application is assumed to be idle; during an ON period, the application is
sending data over a TCP connection. This model represents the time spent in each state

as a random variable with negative exponential distribution.

The common goal of these studies that adopts a system perspective is to understand the
aggregate performance of the TCP connections and the impact of different schemes on
the TCP throughput. For example, [Lakshman, 1997] concluded that for multiple
connections sharing a bottleneck link, the TCP protocol is generally unfair to connections
with higher round-trip delays. [Kumar, 1998] compared the throughput performance of
different TCP implementations in a local network environment with a lossy wireless link.
However, the throughput models described in these studies are not applicable to network-
aware applications, because these models are built on parameters of the network systems
like bottleneck capacity, router buffer size, and the number of concurrent TCP
connections. This information is not available to a host running network-aware

applications.

The second class of research tries to model the TCP throughput from the perspective of
the TCP sender. [Jacobson, 1988] first proposed to model the available bandwidth with
TCP’s congestion window cwnd and round trip time r#£. The rationale behind this
method is that when there are no packet losses, a TCP sender sends out a window of
packets with size cwnd for each round trip time. Therefore, the product of the average
cwnd and average rtt is an approximation of the TCP throughput. However, the method
does not include the TCP behavior when there are packet losses. When packet losses
happen, TCP’s sending rate is no longer governed by the congestion window.
Depending on whether packet losses are recovered by timeout or fast retransmit, this
recovering period can be shorter or longer. However, by ignoring this factor, Jacobson’s

method is able to provide only a rough approximation. Another problem associated with

17

this method is that the product of cwnd and r#t measures the sender’s throughput, instead
of how much data is received by receiver. In the context of an application, obviously the

later makes more sense.

[Mathis, 1997] attempted to use network level metrics to model the TCP throughput.
The metrics used by this model include the packet loss rate p, the round-trip time r#¢, and
the packet size mss. Like the model of [Jacobson, 1988], it does not model timeout
periods. It models the TCP congestion window with a cyclical dynamics, with each
cycle ending at a packet loss. The probability of packet loss is modeled as a constant p.
The main advantage of this method is that it uses network level metrics; therefore, its
methodology could be extended to model other non-TCP protocols like reliable multicast.
However, it shares the problem of [Jacobson, 1988] since it does not model the period in

which the sending rate is not controlled by the congestion window.

[Padhye, 1998] extended [Mathis, 1997] by modeling timeout periods. In addition to the
metrics used in [Mathis, 1997], Padhye added the number of timeouts and the average
duration of timeouts into his model. By adding TCP level metrics like timeout, Padhye’s
model lost the generality of using only network level metrics. However, this model’s
accuracy was expected to be better than the previous two. [Bolliger, 1999] analyzed the
accuracy of all these three models by using large-scale real network traces. For each
trace (transfer of 1MB data among 35 hosts across Europe and North American), the
author computed the predicted bandwidth according to the three models and compared it
to the real bandwidth achieved. Padhye’s model was reported as the most accurate,
especially when timeout events occurred during the transfer. The other two models over-

estimated the actual bandwidth.

However, gaps still need to be filled before these models can be applied to the bandwidth
estimation in a real application. Firstly, all these models are based on a theoretical
analysis. For example, both Mathis’s and Padhye’s models assume a TCP connection
has existed for a time . They give an estimation of the steady state throughput of that

TCP connection based on the metrics observed in this TCP connection in time ¢

18

However, these models do not answer the question of how long the ¢ should be in order
to get a relatively accurate estimation or of how long the estimation is valid. For this
reason, no clearly defined application programming interfaces (APIs) based on these
models exist to date. Secondly, as all these models use the knowledge of the TCP
congestion control and avoidance mechanisms, the models depend on specific
implementations of the TCP protocols. For example, both Mathis’s and Padhye’s models
are built on the packet loss rate p because they all assume a Reno-style congestion
window dynamics, in which the TCP sender generally approaches the bandwidth limit of
the network and backs off when light congestion occurs (as signalled by packet losses).
However, in a TCP Vegas implementation, since the sender tries to avoid congestion in
the first place, it is very likely that no packet loss occurs during the entire life of a TCP
Vegas connection. In such cases, neither of the two models is applicable. Therefore,
bandwidth estimation models based on transport or network layers need continuous
changes or at least re-evaluations as new mechanisms are proposed and added to TCP
implementations. Finally, all the models we have described operate on the TCP sender.
The throughput modeled represents how much data are sent out instead of how much
data are received by the receiver, even though the amount of data received is more

relevant to a real application.

2.5 Contributions

For this thesis, we did not try to create a general model of the TCP throughput like those
in the previous models discussed above. Instead, we create a ready-to-use bandwidth
estimation algorithm for network-aware applications. The algorithm works completely
in the application layer and mainly on the receiver side. It assumes that one or more
sender(s) and one receiver want to make a single transmission of a media object within a
specified time limit. Our algorithm slices the entire time limit period and uses the first
fraction of these slices for bandwidth testing. It makes an estimation for the entire time
limit based on the statistical characteristics of the bandwidth samples. Although the
algorithm does not have access to the internal metrics of the transport and network layers,

it is able to confidently make a relatively accurate estimation of the available bandwidth

19

in the time limit period. Moreover, unlike the previous methods, which have trouble 1n
dealing with specific TCP implementations (e.g., TCP Vegas), we expect the algorithm
to work for all the implementations of the TCP protocol, since it is independent of the
TCP’s internal metrics. Throughout our design, the algorithm has been kept simple
enough to be implemented in a wide range of devices with limited computation power.
We believe the algorithm we will describe will directly benefit the development of

network-aware applications.

20

Chapter 3

Single Server Bandwidth Estimation

3.1 The Problem and Assumptions

In this chapter, we will develop an application layer bandwidth estimation algorithm for
network-aware applications. We assume that one server and one client need to make a
one-time transmission of a multimedia object (from server to client). No previous
bandwidth information is available for the connection between the server and client. The
user on the client side has specified a time limit 7 for the transmission. Neither
exceeding the time limit 7" nor under-utilizing the time T is desirable. The first fraction
t of T will be used for bandwidth testing to obtain the bandwidth estimation B for the
future period T —¢. The server will then adapt the multimedia object to be exactly of the

size (T —¢)- B and then transmit it to the client.

Over-estimation of available bandwidth will yield a target object size larger than the
network can handle and therefore, will make the transmission exceed the time limit. On
the other hand, under-estimation will under-utilize the time limit and therefore, deliver an
object that could have had better quality (we assume an object with larger size always
has better quality). Our problem is how to determine the appropriate ¢ and use the
bandwidth testing information obtained in ¢ to make the bandwidth estimation so that to
deliver as much data as possible to the client within the time limit by a probability

(confidence level) of « .

21

To simplify the model, we ignore the time needed for the adaptation of a media object,
since objects can be stored with multiple resolution levels or be dynamically adapted in a

short time, given a fast processor.

We will use time slices of equal length to do the bandwidth testing. Suppose each time

slice has length ?,, we then have T/¢, time slices. Each time slice has a bandwidth

C.
value x; = —t—’ (i=1,2..T/t,), where C, is the count of bytes received during the i™ time

5

slice. These bandwidth values can be viewed as random variables. We obtain the

bandwidth value of the first ¢/¢, slices and then use the mean and variance of these

samples to estimate the average of the 7'/¢_ population.

3.2 Notations

We first define the following variables, which we will use in our discussion.
DEFINITION 3.1: Basic Notation

e 7 is the time limit for the multimedia object transmission specified by a user.

t is the time used for bandwidth testing.

e 1, is the length of each time slice used for obtaining bandwidth samples.

T) .)) . .
e N=—, N is the number of time slices in period 7, which generates our
t

§

bandwidth population, X,, X, ,..., X, .

e n=-—, n is the number of time slices in period t, which generates our bandwidth
t

5

samples, x|, X, ,..., X

2X
__N

nt

e U , 4 is the average of the N bandwidth population, the average

available bandwidth we are trying to estimate.

22

Z (xi - lLl)z

e o= i——]-v———— ,o” is the variance of the N bandwidth population.
S
e x=-"— xisthe average of the n bandwidth samplesx,, x,,..., x,
n
2 (x,. ~x
o s’ = ”—————1———, s is the variance of the n bandwidth samples.
n —

In the context of a network-aware application, ?, is a system parameter (we will discuss

the choice of f, in Chapter 6). Since 7 is set by user, N = I can therefore be viewed as
t

§

a fixed number. Our bandwidth estimation algorithm has two tasks: to determine #, the

number of samples to take; and, given n, &, x , s7, to estimate 1.
3.3 The Algorithm

In statistical practice, x is usually used as an estimation of g . Actually, given n, N, x

and s?, the random variable 12 has a probability distribution centred at x. If we assume

that the random variable x (the true bandwidth available in any time slice) is a normal

variable (i.e., it follows the normal distribution), then according to statistical theory,

d= —————H—:]\)]C——— (3.1) is a continuous random variable following the “Student’s t-
s -n
Jn VN-1

Distribution” with degree of freedom »n (number of samples) [Harnett, 1982]. > We use

the character d instead of ¢ to specify the t-Distribution random variable to avoid

confusion with the time ¢, which we have already defined.

We point out that the assumption of normality of x is a rough approximation of real

3 Mathematically, the random variable d is defined as a standardized normal variable z divided by the square root of an

independently distributed chi-square variable, which has been divided by its degree of freedom. d=z/ X *In.

23

world bandwidth®. As well, we further assume that during the entire time limit period,
the bandwidth random variable is stationary; therefore, the first fraction of the samples 18
a good representative of the entire population. This assumption is partially justified by
recent findings of [Balakrishnan, 1997B] and [Bolliger, 1999]. For example, Bolliger
compared the throughput of the first 50% of the time period of a TCP connection to that
of the second half. He found that in 80% of connections, the difference was within a
factor of 1.5, and in 90% of the connections, the difference was within a factor of 2.
Moreover, when building our model, we ignored the correlation between successive
samples, mainly to simplify our model and our algorithm so that they could be used in
network-aware applications in a real-time style. We will check the validity of the

algorithm developed for this model in our real network experiments (Chapter 6).

Thus, given n, N, x , s*, and t-distribution, we have the probability distribution of x .

,u=;c+d-s N-n

Jr U N-1

This means that when we take » bandwidth samples, we can expect the average

(3.2)

bandwidth within period 7 to be a random variable with a probability distribution
following Equation (3.2).

With the distribution of 2, we can infer the « confidence interval for u as follows,

T d Ky N-—-n

¢ < 3.3
@) T VN1 u (3.3)

Equation (3.3) states that the value of y is greater or equal to ;*d(w) %]\]\[]—T
p ‘\j -

with a probability ofa . With this observation, we define the bandwidth estimation as

follows:

6 Fortunately, the t-distribution is known to be “robust”, which means that the assumption of normality of x can be

relaxed as long as n is relatively large.

24

DEFINITION 3.2: Safe Bandwidth Estimation
) N-—n

VN

According to our discussion above, we have a confidence of « that the actual bandwidth

We define 1, = x— diyn to be a safe estimation of the future bandwidth.

will be higher. [

We have mentioned that y is a random variable centred atx. From Definition 3.2, we

can see that in order to provide a confidence level that will conform to the time limit, we
actually have to under-estimate the bandwidth. This under-estimation has its cost; if we

use 4, as the future bandwidth estimation to determine the target size of the media

object, the actual transmission will most likely under-utilize the remaining time 7-z. It

can be shown that the under-utilized time is on the average (I’ -t)_(ﬂest '(T"t)j ,
Y7

or (T - t)(l - E—‘é‘—] . Therefore, we define the under-utilized time 7 as follows.
7

DEFINITION 3.3: Under-utilized Time

N-—-n
N-1

Aiamy -

A(T—n-t,) . It determines the average

« (5

f<n)=[x-ie—w~)(rmt)=

under-utilization time with the safe estimation. [

Given the definitions above, we are ready to determine how much bandwidth testing to

perform in order to maximize the data delivered to a user while conforming to the time
limit requirement by confidence levelr . We first prove an important property of T (n)

n Theorem 3.1.

Theorem 3.1: Forn < —z—N , T (n)’ <0, T (n)" > 0. This means when n is relatively

small compared to N, T (n) decreases as n grows, and the rate of its decrease

diminishes.

25

Proof: We write 7 (n) as follows:

J s |N-n
_ () T AT
Flo)=— A YN () Noren,)

T :;_‘/N-_—l'd(am)' "
=c- f(n)-g(n)-hln)

Since we view T'(1) as a function of n, we will view s and x part of the constant ¢. We

denotef(n)zd(a‘"), g(n) = ~]\£~—l, h(n)=(T —n-t,).
n

Therefore g(n), = N
2-n*- —]X—l
n
and g(l’l)" _ N(3N "‘41’!) .
4.,14.(_]!._1) E_l
n n

For n <%N, g(n), <0, and g(n)" >0.

We also have h(n)' =—t, <0, and h(n)" =0

Thus, if we denote /(n) = g(n)- h(n), then for n <§-N ,
i(n) = g(n) -hn)+ g(n)- hn) <0
1) =) -hln)+2-2n) -Hn) +gln)-Hn) >0

Next, we need to show that the same properties hold for fin)=d,, . As f(n) is a
(a,n)

function with a complex representation, a strict mathematical proof is beyond the scope
of this thesis. Here we use a numerical hypothesis to serve the purpose. For every «

values we will use in this thesis, we calculate value d,) for n=1...500, and verify that

a,n

d(a,n)<d(a,n-x) and d(a7n)—d(a,n_1)>d()—d(a,n_z) (Part of the d(a’n) values are

an-1

presented in Appendix 2). Therefore, we have similar results for f(rn) on f (n)’ <0,

1

and f(n) >0.

26

Therefore, for n < %N, f(n)’ = f(n), A(n)+ f(n)-l(n)' <0,

Fn) = () Un)+2- f(n) -i(n) + f(n)-1(n) >0.0
A direct result of Theorem 3.1 is a property of the expected object size V(n) We first

give the definition.

Definition 3.4: Expected Object Size:
V(n)=pu,, -(N-n)t,. It is simply our estimated available bandwidth times the
remaining time within the time limit. This is the object size the client will request from

the server if we take n samples for bandwidth testing. O

Theorem 3.1 means that 7'(n) decreases as n grows, and that the rate of the decrease
diminishes when n is relatively small compared to N. The implication is that as we take
more bandwidth samples, we can estimate the future bandwidth more accurately with the
same confidence level « , thus reducing the cost of time under-utilization. We denote
T.-T

a1~ tnl

As shown by Theorem 3.1, AT’n

the benefit of each new sample as AZN",, =

decreases as n grows. On the other hand, the cost of each new sample is a constant ¢_,
the time slice. Therefore, our expected object size will first increase as we take more

bandwidth samples (since at first Afn >t), but the increasing rate of V(n) diminishes
(because as AT“" decreases, AYN“,, —t, diminishes). Then after passing a threshold, V(n)
begins to decrease (since now AYN",, <t,), and the decreasing rate of ¥(n) grows with n

(because as AT, decreases, ¢, — AT, increases with n). Therefore, to maximize the target

object size, we can determine the optimal value n by comparing V(n) with V(n-1) each
time a new bandwidth sample is obtained. As long as V(n)>V(n-1), we should continue
bandwidth testing. The pseudocode in Algorithm 3.1 illustrates the method. The
algorithm uses our safe bandwidth estimation to calculate V() in each time slice. The

process of bandwidth testing continues until the ¥(n) value begins to drop.

Algorithm 3.1: Single Server Bandwidth Estimation

Obtain samples X, X,, X;;
Calculate V(1) and V(2);
n«2;

while (V(n)>V(n-1)) {

n«n+l;
Obtain sample X,/

Calculate V(n); |}

return- M, ;]

27

28

Chapter 4

Simulation of Single Server Algorithm

In Chapter 3, we described an algorithm for bandwidth testing and estimation in a single
server environment. This algorithm has two main features. First, given a number of
bandwidth samples collected, the algorithm uses an under-estimation quantified by t-
distribution to serve as the future bandwidth estimation. Second, the algorithm calculates
the expected object size in each time slice. Since statistically this expected object size
has a single maximum value, the algorithm uses a drop in the expected object size as the

termination condition to stop bandwidth testing and start object transmission.

In this chapter, we use simulation to verify the effectiveness of the algorithm. We focus
on two things: first, on how well the under-estimation satisfies the user specified time
limit confidence level; and second, as the algorithm dynamically determines how many
samples should be used for bandwidth testing, we want to see how the number of
samples it chooses will approximate the optimal. Because too many testing samples
waste a significant portion of the time limit and leave little time for real transmission,
while too few testing samples will make an under-estimation too aggressive, the optimal
amount of bandwidth testing should finally yield the largest portion of the time limit that
can be used for real data transmission. To measure how well the algorithm approximates
the optimality, we will compare it against a straightforward approach — using a fixed
number of bandwidth testing samples. We will choose a series of different fixed
numbers, use them to perform bandwidth testing, and compare the real transmission time

yielded in this way to the real transmission time yielded by our algorithm.

29

In our simulation, we model the bandwidth in each time slice as a normal random
variable with stationary mean and variance over the entire time limit period. Bandwidth
samples are treated as completely independent random variables, with zero correlations

between successive samples.

4.1 Overview of Simulation Experiments

We now describe our simulator. Figure 4.1 is a typical screen capture of the simulator at
work?. Tt has a user interface to allow the experimenter to set the parameters of
experiments. First, the experimenter can choose the statistical characteristics of the
channel. He or she sets the mean and standard deviation of the bandwidth samples
through two text-boxes in the bottom right area (labelled “Mu” and “Sigma”) of the
simulator. Second, the experimenter can choose the number of time slices. In a real
application, the user will set a time limit for media delivery. The total number of time
slices is the time limit divided by the time of each time slice. ~ For instance, if we
simulate that the end user has chosen to transmit an object within 25 seconds, and the
system has designated each sampling time slice to be 0.05 seconds, then the total number
of time slices is 500. The total time slice is set in the “Parameter” menu. Finally, the

experimenter can set the confidence level o for the time limit in the “Parameter” menu

as well.

Figure 4.1, Screen capture of simulator in work

"'We actually implemented one simulator that can be used for both single-server and multi-server experiments.
Therefore the title bar of the window in Figure 4.1 shows “Muiti-server Bandwidth Monitor Simulation™. In this
chapter, we will set the number of servers to one.

30

After setting the parameters, the experimenter pushes the “Start Simulation” button on
the top right corner of the window to begin a simulated run. The simulator simulates the
operation of the 500 time slices in two phases, as in a real application. Phase One is the
network-testing phase. In each slice, the simulator generates a random number (using a
normal distribution generator with the mean and standard deviation specified by the
experimenter). This random number simulates the bandwidth observed in the real world

for this slice. Then it calculates the combined V value as defined in Chapter 3

(Vin)=pu,, - (N-n)-t, 2(;—01((1,”) Tsn: %i?)'(N—'n)-ts). It uses a slightly

modified version of Algorithm 3.1 (see next section) to determine whether the bandwidth

testing should continue or not.

When the bandwidth testing is finished, the simulator enters Phase Two, the real
transmission, using the last V(n) as the target object size. We will assume the server will
tailor the object and begin to send an object of the target size immediately. The simulator
continues to generate random numbers for the channel to simulate the real transmission.
In each time slice, the simulator decreases the size of the remaining object on the channel
and checks whether it reaches zero. When the remaining object size does reach zero, the
real transmission on that channel is finished. If the object size fails to drop to equal to or
below zero at the end of the total time slices number, this run of simulation has failed to

deliver the object within the user-specified time limit.

When a run of simulation finishes, the simulator reports several results. First, it reports
whether this run has succeeded in delivering the object within the time limit. Second, the
simulator stored the bandwidth numbers in all the slices. After the run is finished, the
simulator recalculates the V(n) values for all the time slices (n=1...500, in the example
we discussed), and plots it in a graph, like the red curve over the black background in
Figure 4.1. It also draws a red vertical line at the place where V(n) is largest over all
slices, and a light red line at the place where our algorithm finished bandwidth testing
and began real transmission. As the example in Figure 4.1 shows, the simulator models

the bandwidth of slices as normal random number with a mean of 10.0 and a standard

31

deviation of 2.0. The V(n) value is maximum when n=23, and the algorithm finishes

bandwidth testing at n=36.

4.2 Moving Average Method

Up to now, we have omitted an important detail in the implementation of the algorithm.

As we discussed in Chapter 3, “statistically” (i.e. if we view x and s as constant), the V(n)
value has only one maximum. It continues to grow until the maximum is met and begins
to drop all the way after that. Based on this factor, we can stop bandwidth testing and

declare that we have found the largest V(n) once we observe a drop in its value.

However, when taking the random effects of x and s into consideration, ¥{n) no longer
has one single local maximum. As shown in Figure 4.1, although the general trend of
V(n) is to grow to a maximum rapidly and drop gradually, the curve is more or less
serrated. (The larger the standard deviation of bandwidth random variable, the more
serrated it is.) Therefore, if we simply stop bandwidth testing when we observe one

decrease in V(n), the method will yield a weaker estimation of target object size.

We tried a couple of methods to address the problem. The method used in the experiment
shown in Figure 4.1 can be called the “continuous decrease method”. Instead of stopping
bandwidth testing after observing one decrease in V(n), this method requires a number of
continuous decreases (actually four in the case of Figure 4.1) in V(n) before stopping

bandwidth testing. The rationale behind this method is that if we observe several

continuous decreases in V(n), we are more sure that the random effects of x and s have
been dominated by the other parts of the formula of V(n). Therefore, we can judge that
V(n) has already entered the downward slope, and the bandwidth testing should stop.

The problem with the “continuous decrease method” is that it often detects the downward
slope of V(n) too late. As shown in Figure 4.1, the curve of ¥(n) has the largest value at
n=23 and enters the downward slope at that point. However, only at n=36 when four

continuous decreases of V(n) were observed.

32

The method we finally adopted is slightly different from the ‘“continuous decrease
method”. We call it the “moving average method”. It keeps a moving average of the
last four V(n) values, and compares the “moving average” of the current slice with the
previous one. The average of the several past V(n) values helps to smooth out the
serrated effects of V(n). The bandwidth testing stops when a threshold number of

continuous decreases (of the moving average) have been observed. The method uses two

levels of thresholds®. When s/x < 0.3 , the threshold is set to 3; otherwise, the threshold
is set to 5. This is because when the standard deviation of the bandwidth is large, false
local maximums often occur before the actual maximum of V(n). Making the threshold
relatively large helps to eliminate them from being accepted as the real maximum.
Figure 4.2 shows the result of using the “moving average method” on the same curve of
V(n) values as in Figure 4.1 (We used the same random seeds to generate the bandwidth
values). As we can see, the maximum V(n) value is reached at n=23, and the “moving
average” method finishes bandwidth testing at n=26, a result significantly better than that
achieved by the “continuous decrease” method, which finishes at n=36. This method is
therefore a good heuristic for obtaining the approximation of the optimal bandwidth

sampling number.

Figure 4.2, Screen Capture of Simulator using the “Moving Average” method.

Finally, before presenting the experimental results, we will discuss the issue of efficient

implementation. Because the calculation of d(,, values is time-consuming and

¥ The levels and the values of thresholds were determined by trial and error in our experiments.

33

repetitive, we chose to pre-compute them and store them in a multi-dimension array for
quick reference. Instead of letting the experimenter set an arbitrary value of e« , the

simulator allows only three choices in a value, 0.95, 0.90, and 0.75. The d, , values

were calculated by using the algorithm (which uses continued fraction representation of
the t-function) described in [Press, 1993]. We then verified our results with the t-

distribution critical value table in [Zwillinger, 1996] for those values available in it.

4.3 Experimental Results

In the experiments, we first show how well the algorithm approximates the optimal
amount of bandwidth testing. As we discussed, a gauge to measure the optimality is the
amount of time for real data transmission. We will compare the algorithm against a
straightforward method we call “fixed sampling”. In Figure 4.3, we present the
performance of a fixed sampling method. In that method, the simulator will first take a
fixed number of bandwidth samples, calculate ¥(n) based on them and use the remaining
time slices for real transmission. Figure 4.3 plots the number of time slices used for real
data transmission (out of 500 total time slices, for & = 0.95) for four different numbers
of fixed sample sizes (10, 20, 30, 40). The horizontal axis of the graph is the standard
deviation of the bandwidth random variable; the vertical axis of the graph is the average
real transmission time slice. The mean of the bandwidth random variables is always set
at 100.0, while the standard deviations are from the set {2.5, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 55, 60}. Each data point is the average of 200 runs, excluding those runs that did
not finish the transmission within the time limit’. The details of the data plotted in

Figure 4.3 are presented in Appendix 1, Dataset 1.

® Those runs that did not finish within the time limit are excluded because they could distort the meaning of the actual
transmission time. Usually, the larger the actual transmission time, the better is the algorithm. However, if the actual
transmission time is so large that it exceeds the time limit, the time is not desirable.

34

Real Transmission Litilziation (500 slice, Fix Sampling)

500 ? f
Sarpla Sie 10 - 2
. Sample 8kze 20 - =
481 ¢ T Sarmple Size 30 e s
HT Sample Bize 40 -
40 .
i
£ 440 f .
=
= T S e
g 420 - Ty MR
= B .
=
g 40 ¢
2
E
g 3an i
2]
-
B 360 |
'l
340 . .
e
am t T
300 : . : i)
g 1a 20 33 44 &0 a0

&tandad Daviation of Bandwidth Sample

Figure 4.3, Real Transmission Time for the Fixed Sampling Method (alpha=.95, 500 total slices)

Figure 4.3 shows that different numbers of sample sizes perform well at different
bandwidth variance regions. A small sample size like 10 outperforms others in low
variances (when standard deviation equals to or is less than 10), but lags behind
considerably when variances are large (e.g., when the standard deviation equals 60).
This result coincides with our expectation. A small sample size performs well with a
small variance because in this case, a small number of bandwidth samples are enough to
serve the purpose of bandwidth estimation. Taking more bandwidth samples is just a
waste of time slices. On the other hand, when the variance is large, a small number of
samples do not contain enough knowledge of the channel to provide an accurate
estimation. Therefore, to provide the same confidence level, the under-estimation
margin must be very high. This hurts the real transmission time as well. The
performance of a large sample size like 40 is exactly the reverse of that of a small sample

size like 10.

35

Next, we compare the performance of our algorithm using moving average method with
the performance shown in Figure 4.3 achieved by the fixed sampling method. We will
call our new algorithm the “dynamic sampling” algorithm. The comparisons are
presented in Figure 4.4 (a)(b)(c)(d), which compares our algorithm with the fixed
sampling of 10/20/30/40 samples, respectively. The data points of the fixed sampling are
the same as those in Figure 4.3, and the data points for our algorithm are the same across
Figure 4.4 (a)(b)(c)(d). We run the dynamic sampling algorithm in three groups of
experiments, 200 runs each group. For each group, we average the number of slices used
for real transmission, excluding those runs that did not finish within the time limit. The
results in Figure 4.4 are the average of the three groups. The details of these data are

presented in Appendix 1, Dataset 2.

Real Transmission Utliziation {500 slics, Dynamic Sampling vs. Fix 10)
500 1

Fix Sample Size 10 - -5 -
& Dynamic Sampling -~ - -
430 i~ T, o

430 & %g"%ﬁ. “
440 ¥ m-sa. .
420

T R L.

380 | E

Feal Transmissian Slica Number
e
=
o
Y

240 + T .

300 i ' !
ad 10 20 30 40 5Q &

Stardad Deviation of Bandwidth Gampls

Figure 4.4(a), Real Transmission Time comparison{alpha=.95, 500 total slices, Dynamic v. Fix Sample 10)

500

482

Real Tmnsmiszion Uiliziation {500 slics, Dynamiz Sampling vs. Fic 203

36

Fix Bample Ske 20 -
Brynamic Sampling

o

T e]
£
o
=
8 .
= 0
o
a2
[
£
E 420 ¥ KN .
ul R
- R
g 400 b % e n
. ~ ""-mu_
-)
38 - "
“o.._
Bm i i b4 1 Q
1 20 20 43 50 &
Standard Daviatian of Bandwidth Bample
Figure 4.4(b), Real Transmission Time comparison (alpha=.95, 500 total slices, Dynamic v. Fix Sample
20)
Real Tansmission Litiliziation {500 slice, Dynamic Sampling ws. Fix 30)
530 :
' l ’ Fix Bampls Size 30 - 5 -
Diynamic Sampling -4 -
480 ¢
E b %
E 480 | A N .
= -
3
&
= g
2 490 | -
X -
£ e,
& oy
T oam b 4
7 .
[‘*\.W
T
Vi
- , 1 ,)
[} 1a 20 20 40 50 80

Etandard Daeviation of Bandwidth Sampla

Figure 4.4(c), Real Transmission Time comparison (alpha=.95, 500 total slices, Dynamic v. Fix Sample

30)

37

Real Trmnzmission Utliziation (500 slics, Dynamic Bampling »s. Fiz 40
4650 - t

Fix Sample Ske 40

b Diynamic Samplin %
480 + - ¥ ping a

4@ .
4% | el T .
440 + el .

430 b Tl

Real Transmissian Slice Humbar
&

410 | ",

4mn = “i&._
T, e

BED b i i i {
a 10 24 x4 440 50 &l
Standad Devistion of Bandwidth Sarple

Figure 4.4(d), Real Transmission Time comparison (alpha=.95, 500 total slices, Dynamic v. Fix Sample
40)

As shown in Figure 4.4, the dynamic sampling algorithm almost achieves results that
resemble a contouring curve consisting of the best parts of the curves for each fixed
sample size. For example, it achieves similar good results as fixed sample 10 when
variance is low and similar good results as fixed sample 40 when variance is high. On
the other hand, it beats fixed sample 10 up to 20% under large variance and beats fixed

sample of 40 more than 5% when variance is small.

Under this set of experiments, the difference between the dynamic sampling algorithm
and the fixed sampling algorithm with a sample size of 20/30 is not very significant.
This founding indicates that the best sample size for fixed sampling should be
somewhere between 20 and 30. However, this conclusion does not mean that a fixed
sampling algorithm with a carefully chosen sample size can be used as a substitute for
our dynamic algorithm, because the best sample size is determined by many parameters,

like the total number of time slices and the confidence level & .

To demonstrate this effect, we present the results from another set of experiments. The
parameters of this experiment are almost the same as before:a = 0.95 ; the bandwidth
averages are set at 100.0, and the standard deviations are from {2.5, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60}. However, this time, the total time slice is 100, and we change the
sample size for the fixed sampling method to 5, 10, 15, and 20. The results are shown in
Figure 4.5 and Figure 4.6 (a)(b)(c)(d). The details of the data are presented in Appendix
1, Dataset 3 and 4.

Feal Transmission Lhiliziation {100 slice, Fix Sampling)

g5 ¥ 1 K] LIPS
&, Bamle Skad - o
E, Sampla Siza 10 - »
Ll ES Sample Sizeils e]
e Sampls Sie 20
BS | e, TR |
e
g 80F el |
£
Z 75 .
G 70 b]
=
2 ’
g e . S
E . i e "~
o 50 o
i
e 55 = o
50 | T -
45 b e
k!
40 i 1 i % ¢
Q 10 2 30 440 &0 L

Standad Daviation of Bandwidth Sampls

Figure 4.5, Real Transmission Time for Fix Sampling Method (alpha=.95, 100 total slices)

Raal Trans mission Utiliz mtion {Cynamic Bampling vs. Fix §)

G5 ¥ T

N ‘ * FixGample Sie 5
e, Diynamic Sampling - &
90 H Y Fine .
85 h
o

5 80 b :

£ 5

E ,

= 75| .

Lg 70 - e » o R 1

2 £ R

¥ g5 T

E ‘-.“"R BT §

% 5df

= B

'@ ' ‘

e 55 B,)
EQ Tee *
45 | v o
40 ‘ . : ' '

0 10 2 a0 40 50 a0

Standaid Deviation of Bardwidth Sample

Figure 4.6(a), Real Transmission Time (Dynamic v. Fix Sample of 5. For alpha=.95, 100 total slices,)

Beal Tansmizsion Wiliziation | Dynamic Sampling vs. Fix 1)

a5 ; “
‘ ‘ ! Fix Sarrple Sie 10 - -0
A Ciynamic Bampling -~ &
g0 -
B, £

;5 aﬁ - -
£
=
=
2 i
@ SG =
=
=
o 5

_r £ =3 2 |
£
8
i
3ol .

T .,
&0 i 4 3 P : e
a i 20 30 4 50 (24}

Standard Deviation of Bandwidth Bample

Figure 4.6(b), Real Transmission Time (Dynamic v. Fix Sample of 10. For alpha=.95, 100 total slices)

Bsal Tmansmission Dtilizition {Dynamic Sampling ws. Fix 151

a5 |
‘ ; Fix Sample Bis 15 - o -
#, Dynamic Sampling -+ -
20 | |
D85l s |
g . *u
5 T oo
S 80k |
: gy
i .
m ;
,/g-) T
&
g
ﬂ
-
? 7oL m
3 R
et TN
85 b
60 ‘ (s , !
4] 10 > a . : m

Standad Deviation of Bandw idth Bampla

Figure 4.6(c), Real Transmission Time (Dynamic v. Fix Sample of 15. For alpha=.95, 100 total slices,)

Real Tiansmisskon Wiliziation {Dynamic Sampling vs. Fix 20}

gs ' j d . i .
Fix uanplzaémm I
&A’“ Dynamic Sampling - &
-

@0 b |
_g 85 - 1
= ’,‘E
= .
b |
& 80 a -
1= ey
g B
g 75 v |

T, .
g ” =) e,
: -
¥ sk m &
o m o g B
T 'u”i :":gi,w .
B
<] 1 g ! ; N
a 1a b] 30 40 0 =

Standand Deviation of Bandwidth Sample

Figure 4.6(d), Real Transmission Time (Dynamic v. Fix Sample of 20. For alpha=.95, 100 total slices,)

41

The results presented in Figures 4.5 and 4.6 follow the general trends of those in Figures
4.3 and 4.4, except for two important differences. First, as the total number of time slices
decreases from 500 to 100, the relative importance of each slice increases. Therefore, the
difference between a small fixed sample number and a large fixed sample number is
much more significant in the low variances region. The dynamic sampling algorithm
outperforms the fixed sampling of 20 samples by more than 15% when the standard
deviation is 2.5. This result is significantly larger than that obtained when 500 total
slices are used. Second, as the total number of time slice drops from 500 to 100, the best
sample size is now between 10 and 15, much smaller than the best sample size of the 500

slices case (20-30), but not linearly.

Now that we have demonstrated the strength of the dynamic sampling algorithm in
approximating the optimal amount of bandwidth sampling, we will show how well the
algorithm provides the confidence level of the user-specified time limit. As we
explained before, for the results presented in Figures 4.3-4.6, we discarded those runs
that failed to finish within the time limit. Now, in Figures 4.7 and 4.8, we report how
many of these runs there were. The details of the data are presented in Appendix 1,

Datasets 5 and 6.

Time Limit Confidene Level Result (100 stices)

D0 g ST —_— o

Dynamic
Sampling

A Fix
Sampling

Number of Overtime
Run (out of 200)
et
o

5 10 15 20
Number of Fix Samples

Figure 4.7, Number of runs that failed to finish within the time limit (out of 200). Total Slice is 100,
Alpha=0.95. The results are the average of all the bandwidth standard deviations in {2.5, 5, 10, 15, 20, 25,
30, 35, 40, 45, 50, 53,60}

42

| Time Limit Confidence Level Result (500 slices)
14 ”“‘“ : R
o 1
E = 12 {3 Dynamic]|
£ < 10 | Sampli
[T mpim
5 :’3 8 P gy!t
S 3 a
;20 Fix !
N 4 Sampling
z" 25 L
0
10 20 30 40
Number of Fix Samples

Figure 4.8, Number of runs that failed to finish within the time limit (out of 200). Total Slice is 500,
Alpha=0.95. The results are the average of all the bandwidth standard deviations in {2.5, 5, 10, 15, 20, 25,
30, 35, 40, 45, 50, 55, 60}

As shown in Figure 4.7, when the total slice is 100, the percentage of runs that failed to
finish on time ranges from 6% to 8%, and the dynamic algorithm generates about 7% of
failure runs. When the total slice is 500, the percentage ranges from 4% to 6%, and the
dynamic algorithm generates 6% of failure runs. These results mean the confidence
level is preserved within a reasonable range for a = 0.95 nominally. Therefore, the
estimation of the bandwidth based on t-distribution performs well in preserving the

confidence level of the user-specified time limit.

43

Chapter 5

Multi-Server Bandwidth Estimation

In this chapter, we will extend the bandwidth estimation algorithm to a multi-server
environment. In such an environment, several servers are hosting the same set of
contents. A client is connected to all the servers via the Internet. We assume the client
maintains a session with each of the servers, so that it can create TCP connections and
receive data from the servers anytime it wishes. Figure 5.1 illustrates such an

environment.

oy
g
Gri®

Client

Content Storage

Content Storage

Content Storage Server

Figure 5.1, Network environment of a multi-server multimedia delivery application.

When the user selects a media object to be delivered and a time limit T, the client will
first use a fraction of T (denoted f) to perform the bandwidth testing on all the channels.
The bandwidth testing follows the same sliced time method. In each time slice, the client
will get a bandwidth sample on each channel. Based on the bandwidth samples collected,
the client can make the available bandwidth estimation on all the channels. When
bandwidth testing finishes, the client requests a strip of the object from each of the

servers. The size of the strips is the product of the bandwidth estimation and the

44

remaining time (7-f), which will be proportional to the relative bandwidth estimation on
the channels. The transmission is successful only if all strips of the object finish

transmission within the time limit 7.

5.1 Simple Extension of the Algorithm

Suppose we have K channels '° available. As defined in Chapter 3,

V(”)= Hes '(N - fl) t, = (; =y ;—[S—;J]]\\[[:Y] (N ~n)-ts is the expected object size

that will be delivered based on n bandwidth samples collected so far on any of these

channels. We use Vi(”)=[55i —d,) ”3"—‘]]\\[[—Y]-(N—n)-ts to represent the V(n)
7 -

value on the i/ channel (;=/..K), and represent the combined value of ¥,(r) over all

K

channels ¥ (n)= ZK(n). As we discussed in Chapter 3, statistically, each V,(r) has a

i=l
single maximum value. Before it reaches its maximum, it grows as n grows with a
decreasing growth rate; after reaching its maximum, it decreases when n grows, with an

increasing decrease rate'!. We first prove a new theorem about ¥(n).

Theorem 5.1, If we view V(n) as a function of », then 1) v (n) < 0; ii) there exists 71,

V’(n)>0 for n<n, V’(n)<0 for n>1n.

Proof: We use induction on the number K. First we prove the theorem for K=2.
We have V,(x)>0, Vl’(x)> 0 for x<x,, ¥, (x)<0 for x>x,, and V,"(x)< 0.

V,(x)>0, Vzr(x)>0 for x <x,, Vzl(x)<() for x> x,, and Vzn(x)<0.

' Throughout this chapter, we will assume the independence of all the channels, so that when we use several channels
at the same time, each channel will have the same bandwidth as when that channel is used alone. This assumption is
true in real world when the bottleneck of the network resides in the intermediate routers instead of the host. If the
bottle-neck is in the host itself, then the whole idea of using multiple servers will not be attractive because it will not
help in gaining more bandwidth.

"' Or, mathematically speaking,)V, (1)< 0, ii) there exists 71, Vi'(n) >0 forn<n,, v, '(n)< 0 for n>n,.

45

x, and x,are the x values that yield the maximum value for ¥;(x) and ¥,(x). Without
loss of generality, we assume x, <x,.

V(x)=V(x)+V,(x),s0 V(x)>0

V"(x)=V(x)+V;(x), s0 V'(x)< 0.

V'(x)=V/(x)+V,(x). We must show that there exist x; so that V’(x)> 0 for x <x;,
7' (x)<0 for x> x, .

First, for x < x,, we have v, (x)>0 and v, (x)> 0, therefore ¥ (x)>0; for x > x,, we
have VI, (x)<0 and Vz'(x) <0, therefore V’(x) <0.

In the range x, < x <x,, we have V/(x,)=0, ¥;(x) <0 for x, <x<x,, and V]"(x) <0.

We also have V;(x)>0 for x, <x <x,, V;}(x,)=0, and V2" (x)<o0.
Therefore V'(x,)=¥(x,)+¥,(x,)> 0, V'(x,)=V(x,)+ V)(x,) <0, and
V(x)=rAx)+V(x)<0.

]
Since V (x) is a monotonic decreasing function in the given range, there must exist a

single value x; so that V’(x) > 0 for x < x, and v (x) <0 for x> x,.

We therefore have proved the theorem for K=2.

Assume we have proved that the theorem holds for K=m-1, then the combination of the
m-1 channels has the same property as specified. The process of proving the
combination of m channels is exactly the same as K=2, viewing the first m-/ channel as a

single channel. This completes the proof. [

Theorem 5.1 basically means that we can design a similar algorithm as was used in the
single-sever environment to approximate the optimal amount of bandwidth testing by

checking whether the combined ¥(n) value has reached its maximum. However, a new

problem occurs in a multi-server environment, which is how to determine the value of «,
fori=1..K. ¢, is the confidence level we will use on channel i when calculating £, ;

(which in turn determines V, (n)). As we assume the independence of all the channels,

46

K
we should have a = Hai , where & is the user-specified confidence level for the time

i=]

limit. Our problem is that given the n samples taken on each of the K channels, we must

i=1 -

determine o, for i=1..K, to maximize V(n):il/i(n):i(fi ‘d(ai,n)'j\/-'é——- N—n) (or to
i=l n

K
minimize Zd(a_ n) " Si)
e~

It is quite obvious that finding the optimal solution to the problem in real time is out of

the question. Even the calculation of the d, ,, value in real time, given arbitrary o,

value, will be too time-consuming to be performed for each time slice, let alone for

finding the optimal assignment of ¢,. In this chapter, we will use a simple heuristic,

which is to set the same ¢, values on all the channels. Therefore,c; = a%< for i=1.K.
For example, when K=2 and «=0.90, we will set &, and a, around 0.95 (more
precisely, o, =a, =0.9487). The intuition behind this choice is that it minimize
Ay td,y for o -o=a . For example when =090 |,
diossn) +dosss) = 6.314+6314<d g1,y + gy = 3.397+31.821 < d(gaq.) +dp05,) ~3.078+636.619 .

Therefore, when the variances on the channels do not vary too much, this heuristic is a

K
good choice in making Zd(al_’") -s, small. Another important merit of this heuristic is

i=1

that all the d(,) values we need for the algorithm can be pre-calculated, eliminating the

need to calculate d,) inreal time.

Based on this discussion, we have created the following simple extension of Algorithm

3.1 for determining the optimal amount of bandwidth testing.

47

Algorithm 5.1: Multi-server Bandwidth Estimation (version 1)

1
o, (——(ZA , for i=1..K;

K
Obtain samples X;, X, on each channel and calculate V(l)% ZV,(I),

i=1
K
Obtain sample X, on each channel and calculate V{2)<« > V(2);
3 i
=1

n (——2;
while (V(n)>V{n-1)) {

nen+l;

Obtain a new sample on each channel;

K
Calculate V(n) “«— Z v, (n) ;

i=1

}

return f_, on each channel; [

5.2 Refinement of Multi-server Algorithm

Unfortunately, Algorithm 5.1 does not perform well when the sample standard errors on
channels vary greatly. Algorithm 5.1 assumes that the & values on all the channels are
the same. When it has K channels available, it always performs transmission on all the
channels. However, in some cases (especially when the standard errors on channels vary
a great deal), if we assume all channels use the same « value, we may end up better off if
we drop some of the channels in order to maximize the combined V(n) value'?. Consider
a simple example. Suppose we have only two channels, and the user wants to transmit
an object within the time limit 7 at a confidence level of @ =0.90. If we use two
channels, & will be about 0.95 on each channel; if we use either of the two channels

alone, o will be 0.90. Now suppose connection #1 has a much larger estimated

" This sounds'like a paradox: in order to maximize the expected object size, we end up better off using only some of
the channels instead of all of them. The reason is our simplification that all the channels are using the same ¢, values.

K
In fact, if we allow arbitrary o values (as longas o =), then there will always be a set of o values that will
i 838 ¢ a; ;
=l

maximize the expected object size by using all the channels.

48

bandwidth than connection #2 so that the difference between V, by using o = 0.90 and

a =0.95 18 larger than v, using a =095 (recall that

V=u, .(T-t)z[;—t(a’n) -jg__; ’]]Vv—_r;]-(N—n)-ts); in this case, we may be better

off dropping connection #2 and using connection #1 for real transmission, with

a=0.90."

To accommodate the possibility of dropping channels during the bandwidth estimation,
we propose the following method to refine the algorithm. Suppose we have K channels
available. In each time slice when a new sample is obtained on each channel, the

algorithm calculates K ¥ values by using K different o (&, , &, ... @) for each

connection, where &, is the @ value if i channels are finally used for real transmission

(the other K-i channels are dropped). We have¢, :a% , where a is the confidence

level specified by end user. Therefore, we will have a total of K* ¥ values in each time
slice, as shown in Table 5.1 below. Each row of the table belongs to one channel, and the
K values of the same row represent how much volume will be transmitted when the K
different « values are used. From this definition of the table values, it is obvious that
the maximum value of column one of the table is the maximum » we can obtain if we
use only one channel; the sum of the maximum two values of column two is the
maximum V we can obtain if we use two channels; the sum of the maximum three values
of column three is the maximum ¥ we can obtain if we use three channels; finally, the
sum of all the K values of column K is the ¥ we can obtain if we use all the K channels.
Therefore, by picking the largest of these K options, we can obtain the maximum V that
can be obtained by using any subset of the K channels. As each new sample is obtained,
we can go through this procedure to find out the maximum V(n) and the channels that we

should use to achieve that ¥(n) (the rows that constitute the option we choose).

' Actually, in a real implementation, there are several strategies to make use of these “dropped” channels. One
strategy, suggested by W. Grover, is to use them to transmit the last portions of the strips allocated to the “admitted”
channels. In this way, the transmitted portions on “dropped” channels can serve as contingency backup in case the
“admitted” channels do not finish within the time limit. Another strategy is to allocate strips of the expected object to
all the channels including the “dropped” ones. However, when calculating the strip sizes, use acx value close to 1.0
(E.g. a = 0.999) for the “dropped” channels.

na) | na) | nis) Vi(ay)
nia) | nia,) | @) V,(ay)
na) | v@,) |7a) v, (g)
VK (dl) VK ("%2) VK (aAB) VK (&K)

49

Table 5.1, V values on K channels with K & values. Each row of the table represents K V values
Jor one channel. Please note that compared to the notation in Algorithm 5.1, we omit the time
slice number as a parameter of the V value but introduce the new parameter a,.

Based on this discussion, we present a refined version of our algorithm that

accommodates dropping channel(s).

Algorithm 5.2: Multi-server Bandwidth Estimation (refined version)
Calculate @, = a%for ie {1,2,...K};

Obtain sample X, X, on each channel;

Calculate Vi(l,d'j) for i€ {1,2,...K},6’i’j € {dl,dz,...&K };

V, = GetMax(l) ;

I”l(—l;

while (TRUE) {

né<n+l;

Obtain sample X,,;, on each channel;

Calculate Vl(n,dj) for [€ {1,2,...K},§Cj € {0?],&2,...&]{};
vV, = GetMax(n);

if (V, <V,) break;
}

return [on each channel that constitutes part of Vn; 8]

The function GetMax(n) takes the variable n as input and works on a two dimensional

50

array V. (n,a j)(for i, j = 1..K, as illustrated in Table 5.1). It first sorts each column of

the table, then picks the largest value from column 1, the largest two values from column
2 and adds them together, and so on, and finally adds all the values in column K. It
returns the largest of the K sums. Moreover, we can have GetMax(n) to set a vector
(implemented as a global variable) of K indicators, indicating whether row i is part of the
largest sum. This vector shows which channels are dropped and which channels are

admitted.

5.3 Simulation Overview

Now we present the simulation result for our multi-server bandwidth estimation
algorithm. As in Chapter 4, we try to find out how well the algorithm approximates the
optimal amount of bandwidth testing and how well it preserves the confidence level of
the user-specified time limit. Moreover, for the multi-server algorithm, we will study
how effective the algorithm is in handling the drop of the connections to maximize the

transmitted object size.

Figﬁfé 5.2, Screen Cabtﬁre of Multi-server Bandwidth Estimation Simulator. |

51

Figure 5.2 is a screen capture of our multi-server simulator. The experimenter can
change the number of channels through the “Site” menu. The user-specified confidence
level « and total time slice number N are set through the “Parameter” menu. In Figure
5.2, we have chosen two channels and & =0.95. There are two panels in the middle of
the window, each with text fields (labelled “Mu” and “Sigma”) on the right for the
experimenter to enter the mean and standard deviation of the channel’s bandwidth

population.

The simulator simulates a real application in two phases. Phase One is the bandwidth
testing. In each slice, the simulator generates a random number by using a normal
distribution generator with the mean and standard deviation specified by the
experimenter for each channel. As we discussed, we assume the independence of the
channels; therefore, the random numbers are independently generated for each channel.
These random numbers simulate the bandwidth observed in the current time slice on each
channel. Then the simulator calculates the combined V7 values and uses Algorithm 5.2 to
determine whether the bandwidth testing should continue or not. When the bandwidth
testing is finished, the simulator determines which channels will be used (admitted) for
real transmission and what the strip sizes will be in each of them

(V.(n)=p,,, - (N=n)-1,). In Phase Two, the real transmission is simulated. The

simulator continues to generate random numbers in the admitted channels to simulate the
real transmission. In each time slice, the simulator decreases the remaining object strip
size in each admitted channel and checks whether it has reached zero. When the
remaining object strip size does reach zero in a channel, the real transmission on that
channel is finished. The entire object is transmitted to the client within the given time

limit only if all admitted channels finish transmitting their strips on time.

As in Chapter 4, we make a small amendment to Algorithm 5.2 by using 3/5 (determined
by variance) continuous decreases in the moving average of the past four V' values as the
termination condition of the bandwidth testing. We also limit the maximum number of

channels to five. With that simplification, all & values relevant are those for which

a'e {0.75,0.90,0.95} for i=1..5. We then pre-compute these d, ,) values and arrange

52

thern in an array by using the same method discussed in Chapter 4.

After a run is finished, the simulator displays the V' value curve on the graph of the

channel panels. For each channel, K curves are drawn, one for each &, value (ie., if i

channels are used for real transmission). In the case shown in Figure 5.2, the red curve
represents V values if one channel is finally used; therefore, it uses &, = 0.95 to calculate
V; the yellow curve represents ¥ values if two channels will be used in real transmission;
thus, it uses @, = 0.9747 to calculate V. Finally, the lowest component of the window in

Figure 5.2 shows the graph of the combined ¥V values at each time slice. The red curve
represents the maximum combined ¥V values when one (the largest) channel is used, and
the yellow curve represents the combined ¥ values of both channels. In this case, we can
see that using both channels outperforms using only one of them, as the yellow curve is

almost always above the red one.

5.4 Simulation Results

We first show how well the algorithm approximates the optimality in the amount of
bandwidth testing. In this set of experiments, we use the size of the successfully
transmitted object as a gauge in measuring the optimality of the sample size'”. We
compare our dynamic sampling algorithm with the algorithm that uses a fixed number of
samples for the bandwidth testing. Simulation is performed in a setting of two channels.
Channel #1 has a mean bandwidth of 100Kbps and channel #2 10Kbps. In order to
measure the effectiveness of the algorithms under different network characteristics, we
vary the variances on both channels. For channel #1, we vary the standard deviation
from the set {2.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}(Kbps), and choose the
standard deviations of channel #2 from {0.25,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5, 5.0,

5.5, 6.0}(Kbps). For each combination of channel characteristics, we run 1000 times.

 Recall that in Chapter 4, we used the real transmission time as the gauge to measure the merit of sample size. In this
chapter we change to the transmitted object size, because when several channels are each delivering a strip of the
object, the real transmission time on each channel can be different. The transmitted object size is a more uniform
gauge in this case.

53

We exclude those runs that exceed the time limit and average the remaining on the real

transmitted object size. We test two total time slice numbers, 100 and 500.

The results of the tests are presented in Figure 5.3 (a), (b), (c) and Figure 5.4(a), (b), (c).
Figure 5.3 shows the results for 100 time slices, and Figure 5.4 shows the results for 500
time slices. As both algorithms’ performances differed significantly under different
variances, we present each case in three graphs. The performance under small variances
(where sigma is less than 15% of mu) is shown in (a); the performance under large
variances (where sigma is larger than 35% of mu) is shown in (b); and the overall
performance is shown in (¢). The details of the data for Figure 5.3 and 5.4 are presented

in Appendix 1, Datasets 9 and 10.

Meving Avg vs. Fixed Sample (smali variance)

10000 oo
2500 / ‘ | BMoving
8 : Average
“ Method
3
g
(@]
@
5
E B Fixed
Sample
Method
8 12 1 16 LR 2
of Fixed Samples

Figure 5.3(a): Comparison of the average size of the transmitted object for two algorithms (on 100 total
slices). Averaged over all small variances (sigma<0.15*%mu) in 1000 runs.

Moving Avg vs. Fix Sample (large variance)

B Moving
Average
Method

Bl Fixed
Sample
Method

Media Object Size

of Fixed Samples

Figure 5.3(b): Comparison of the average size of the transmitted object size for two algorithms (on 100
total slices). Averaged over all large variances (sigma>0.35%mu) in 1000 runs.

54

Meving Avg vs. Fix Sample (all variance)

8200 g
B Moving
Average
Method

8000 |
7800 §
7600 §
7460 .
B Fixed

Sample |
Method

Media Object Size

7200 &

7000 %

of Fixed Samples

Figure 5.3(c): Comparison of the average size of the transmitted object size for two algorithms (on 100
total slices). Averaged over all variances in 1000 runs.

Moeving Avg. vs. Fix Sample (Small Variance)

52000
51500
51000
50500
50000
49500
49000
48500
48000

B Moving
Average
Method

Media Object Size

11 14 17 20 23 26 29 32 35

of Fixed Sample

Figure 5.4(a): Comparison of the average size of the transmitted object size for two algorithms (on 500
total slices). Averaged over all small variances (sigma<0.15*mu) in 1000 runs.

Meving Avg. vs. Fix Sample (Large Variance)

Moving
Average
Merhod

i Fixed
Sample
Methed

Media Object Size

i1 14 17 200 .23 26 2% 32 35

of Fixed Sample

Figure 5.4(b): Comparison of the average size of the transmitted object size for two algorithms (on 500
total slices). Averaged over all large variances (sigma>0.35*mu) in 1000 runs.

55

Moving Avg v. Fix Sample (all variances)

6500 g

1 46000

2 B Moving
= 45500
6 Average
B 45000 Method
=
2 44500
B 4s000 Fixed
= Sample
’ 43500 Method
i
!

43000
N ¥ 200 23 2% 29 32 35

of Fixed Sample |

Figure 5.4(c): Comparison of the average size of the transmitted object size for two algorithms (on 500
total slices). Averaged over all variances in 1000 runs.

We have two observations concerning the above results. Firstly, the performance of the
fixed sampling algorithm depends on the number of samples used, yet the optimal
number of the sample varies under different total slice numbers and o values. However,
by using the dynamic sampling algorithm, we can always achieve results similar to those

obtained by using the fixed sampling algorithm with the best sample size.

Secondly, the performance gain by using the dynamic sampling algorithm instead of the
fixed sampling algorithm comes from different sources. For instance, the dynamic
algorithm outperforms the fixed sampling algorithm by up to 17% in small variances on
100 time slices, but only by 4% in small variances for 500 time slices, because for small
variances, the worst performing fixed sampling algorithms are those using a relatively
large number of fixed samples. These additional samples constitute a much larger
portion of the total time in 100 total time slices than in 500 total time slices. Conversely,
in the large variance case, our algorithm outperforms fixed sampling by up to 8% over
100 time slices and up to 15% over 500 time slices. That is because this difference
occurs when a small number of fixed samples are used, which cause aggressive under-
estimation of the bandwidth in the algorithms. This factor has more of an effect when
there are more remaining time slices for real transmission, 500 total time slices in this

case.

56

Another important factor we are interested in is how well the algorithms provide the
confidence level that real transmission will be finished within time limit. In Figure 5.5,
we present the results for the total time slice of 100. The details of the data plotted in

Figure 5.5 are presented in Appendix 1, Dataset 11.

User Confidence Result

60 proememrns sy S S——

50 ‘ N‘;;W:w,‘ Lo

Average

40 Method

30 §

of Overtime run

20 ¢ Fix Sample
Size

10 Method

0 12 14 16 18 20 22
of Fix Samples

Figure 5.5: The number of runs out of 1000 that failed to finish the transmission within the time limit (100

total slices).

The graph shows the number of runs out of 1000 that failed to finish the real
transmission within the time limit (averaged over all variances on both channels) for both
the dynamic algorithm and the fixed sampling method. Recall that we have set o =0.95.
We can see that the dynamic algorithm has around 95% of the runs finishing transmission
within the time limit. The results for the fixed sampling algorithm with different
numbers of samples vary slightly within the 94.5-96.5% range. Thus, both methods

deliver the confidence level of the user-specified time limit very well.

Finally, we present data to show how often the dynamic algorithm really drops channels.
In the previous discussions, we pointed out that when two channels with large variances
have a relatively large difference in their average bandwidths, it may be better to drop the
channel with the smaller bandwidth. We performed experiments on two channels with
average bandwidths of 100kbps (Channel #1) and 10kbps (Channel #2), respectively. We

counted how many times in 1000 runs our algorithm ended up using only one channel for

57

real transmission. The total time slices in use were 100. As before, the experiments were
conducted over all the variances specified in the previous experiments, and the results are

shown in Figure 5.6. The details of the data are presented in Appendix 1, Dataset 12.

Channel Usage (Drop Rate)
350 ¢ s e s | Average

= ;| ofall

g variance

%" on

2% Channel

£ 3 Z

o=

= 2 3 Variance

5 © =

g 0.6(mu)

Z, on
Channel
#2

Variance of Channel #1

Figure 5.6: This graph shows how many times in 1000 runs our algorithm uses only one channel for real
transmissions. The x-axis is the variance of Channel #1. The dark-colored bar shows the number for the
case of variance equals 6.0 on Channel #2, while the light-colored bar shows the average number for

variances belonging to {0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0}.

As the graph indicates, the percentage of runs using only one channel reaches as high as
30% when variance is high in both channels. This result justifies our efforts in
developing the refined algorithm to determine which channels to admit and which ones

to drop.

58

Chapter 6

Experiments on Real Networks

Up to now, the experiments we have discussed are all based on simulations. In this
chapter, we describe an implementation of the algorithm and the experimental results in
the real network environment. We have several goals in doing experiments on real

networks.

Firstly, since the algorithm draws bandwidth samples from the first fraction of the time
limit, it has been assumed that these samples will be the unbiased representatives of the
entire population (the mean and variance of the bandwidth random variable are
stationary). However, this assumption is only an approximation of the real scenario. The
first group of samples are actually quite special, not only because they are from the
period when the TCP protocol tries to figure out the available bandwidth on the network
(as we discussed in Chapter 2), but also because the available bandwidth may be affected
by other traffic on the network if the total time limit is relatively long. Therefore, we
want to find out whether this assumption is valid in the real network. The positive results
we will present relating to this issue only partially justify the assumption. The results do
show that in several cases (the three cases we will describe), the assumption is acceptable.

However, they cannot be readily generalized to all applications.

Secondly, practical issues still must be addressed once our algorithm can be applied to
real applications. One important question is how to determine the proper length of each
time slice. In the simulation experiments we described, the unit of time was one time
slice, and we did not mention how long each time slice actually was. When determining
the time slice in a real network environment, several factors must be taken into

consideration. Although the TCP protocol provides the upper layer protocols a service as

59

if the data were transmitted in a stream, they are actually delivered in packets. Therefore,
if the time slice is too small, the observed bandwidth samples will fluctuate a great deal
and exaggerate the variance of the bandwidth. Also, as each time slice introduces some
computation overhead in calculating bandwidth sample statistics, an excessively small
time slice will enlarge such overhead. On the other hand, if the time slice is set too large,
the cost of each sample grows, which also hurts the accurate estimation of the bandwidth.

We aim to understand these effects better by performing experiments in real networks.

Finally, we want to check the computation cost of the algorithm to determine whether the
algorithm is simple enough to be applied in real-time bandwidth estimation for network-
aware applications. To keep the project’s scope within a reasonable range, we have

restricted the experiments in real networks to a single-server environment.

6.1 Implementation of the Algorithm

Our implementation of the algorithm consists of two programs, a server and a client. The
server is a background process on the server host. It listens to a certain TCP port number
on the server machine and waits for connection requests from clients. The client is a
Java Applet embedded in an HTML page. It includes a user interface that allows the user
to specify parameters for an object transmission. There are three parameters: the “Time
Limit” is the user specified time for object transmission; the “Confidence Goal” is the
confidence level associated with the time limit; the “Time Slice” is the time used for each
bandwidth sample. Figure 6.1 is a screen capture of the client program, showing the GUI

for user parameter setting.

60

ve Hapdwidth Honitoring

Poer zet Time Limit: i) Sowple Time §13
£/T=9.02% . ,
==18. B7H5RIVIMGLIT5 .
. 11Z68kuat BE: 137 3"801263%34‘155»;1 Trer 1
otuat ﬁc-m: Time: 8,174 Botent Read byte: 1126258

Baiweicite of Bibesta : . me “\'*-.‘
Yekio] Baadnidil Sonites in . =
2001 2002

Confrdencs Goal i

5%

Transfer Tima Limit

10 sec.

Sample Tims Slice

Figure 6.1, Screen capture of the Client program

When the experimenter sets the parameters and presses the “Go” button, the following

steps are executed:

1. The client creates a TCP socket connection to the server program by connecting to the
port on the server host to which the server program is listening. Then it sends a TEST
command to the server. The server responds by sending a stream of random bytes to the

client via the connection.

2. The client receives the testing stream on its side and at the same time counts the bytes
received. For every time slice, the client divides the number of bytes received in this

time slice to determine the bandwidth. This is a new bandwidth sample x, .

3. The client calculates x, s*, s, and ¥(n) as defined in Chapter 3. We use the

“moving average” method described in Chapter 4 as the termination condition. When

61

there are two/three (depending on s/ X) consecutive drops in the average of the past four

V values, proceed to Step 4; otherwise, go to Step 2.

4. The client tears down the testing connection, makes a new connection®’ to the server

and sends a TRANSMIT command to the server, along with the target object size, which

equals (T —1)- 4,,,
5. The server sends a byte stream of length (7' —1)- ,,, to the client.

6. The client receives the byte stream (which represents the object), records the finish
time, calculates the statistics about this transmission and updates them on the right-hand

region of the applet, as shown 1n Figure 6.1.

To minimize the computation of the statistics when each new sample is obtained, part of
them can be pre-computed and stored in a static array. We organize the component
d (an) N-n

Jn VN-1

dimensions. Moreover, the computation s° can be performed using the fast computation
P P p

into a multi-dimensional array of constants, with (a.,n) representing two

1

n—1

-2 : o : .
form s* = (Z x} —nx) . Therefore, if we maintain the intermediate values

2 . - e .
Zx,. and in , the computation costs of x and s are minimized.
n n

6.2 Experiments on Campus Network

We first performed experiments on the University of Alberta campus network. The hosts

15 In order to determine the maximum available bandwidth between client and server, the server will keep pumping
random bytes to the first TCP connection (TEST) as quickly as possible. As a result, the first connection is still filled
with random bytes in its buffer when bandwidth sampling is finished. Therefore, we choose to tear it down (the server
socket will catch an exception and discard the random bytes) and make a new connection for real object transmission.
We assume that the bandwidth of a TCP connection is determined by the path between client and server; therefore, the
estimation made on the first connection can be applied to the new one.

62

and network setting are shown in Figure 6.2. Both the server and the client run Red Hat
Linux 6 and the client uses Netscape Communicator 4.0 as browser. The experiment

results are presented in Table 6.1 e

Campus Network

eva133.cs.ualberta.ca ipiatik.cs.ualberta.ca
(129.128.4.181) (129.128.25.208)

Figure 6.2, Experiment set up on campus network

Confidence Goal 95% 75%
Average No. Of Sample 14.6 8.7
Sample Average (kbps) 141.2 140.6
Sample Standard Error (kbps) 7.71 8.65
Estimation (kbps) 137.8 138.5
Actual Bandwidth Average (kbps) 141.0 140.8
Actual Object size (Byte) 1337328 | 1360624
Actual Transmission Time (s) 9.49 9.67
Actual Total Time (s) 9.80 9.85
Total No. of Exception in 100 runs 4 20

Table 6.1, Experiment results on the campus network, with a Time Limit of 10s, Time Slice of

0.02s. Results are for two different confidence goals o =0.95/0.75.
The results are based on experiments with the parameters of a “Time Limit” = 10
seconds, a “Time Slice” = 0.02 second, and a “Confidence Goal” = 95% and 75%. For

each parameter setting, we perform the transmission 100 times and report the averages.

Table 6.1 reveals that when « =0.95, it takes 14.6 samples (on average) out of 500 for

'* Experiments reported in this section (Table 6.1 and Table 6.2) were performed in normal office hours on weekdays
in November 2001. Transmission requests were issued from the client every 30 seconds to avoid excessive network
burden.

bandwidth testing. 4% of the transmissions exceed the time limit; 94.8% of the entire
time limit is used for actual object transmission. The results for o = 0.75 are similar,
except that it takes fewer testing samples and gives a less aggressive under-estimation on
the available bandwidth. This feature, in turn results in more transmissions exceeding
the time limit (20%) but a higher utilization of the time limit for actual object

transmission (96.6%).

The campus network is a network environment where server and client are very close in
network topology. Therefore, the path between the server and the client is extremely
stable. The round trip time (RTT, obtained by the “ping” utility of Linux) between two
computers is in the order of several milliseconds; the sample standard error is only
around 6% of the sample average, as shown in Table 6.1. In this network setup, the
results of the experiments are extremely good. The actual bandwidth average of the
entire time limit is very close to the sample average, verifying our assumption that the
bandwidth samples can serve as good representatives of the bandwidth of the entire time

limit. The confidence level of the user-specified time limit is also preserved very well.

To demonstrate the strength of the algorithm to approximate the optimal amount of
bandwidth samples, we will next present the comparison of our algorithm and the fixed
sampling method. As mentioned in our simulation experiments, the fixed sampling
method uses the same formula to estimate available bandwidth (based on t-distribution),
except that it always uses a fixed number of bandwidth samples. Table 6.2 shows the
actual data transmission time achieved with the fixed sampling method. The parameters

used in the experiments of Table 6.2 are the same as those in the experiments of Table 6.1.

Sﬁple 3| 4 6 8 10 | 12 | 14| 16| 18] 20| 22| 24

0.75 9371 956 | 9.62 9.66 9.65 9.64 9.62 9.60 9.57 9.54 9.52 9.50

0.95 8.13 | 8.91 9.20 9.40 9.44 9.45 9.46 945 9.43 9.4] 9.38 9.36

Table 6.2, Average actual transmission time for the fixed sampling method (each figure is the
average of 100 runs)

64

To compare it with our algorithm, which determines the sample number dynamically, we
plot the results of the fixed sampling method along with the results of our dynamic

algorithm in Figure 6.3.

Actual Transmission Time at Different Fix Sample Number

"5 alpha G-
___________ #mmmmamm e m——m— e = — - —— —— —— .70 @lpha
9E - T - ae e S, 9.49 -

88 |- ;]

Actual Transmission Time (8]

88 | :
B4 |- -

B2 - { -

g ¢ 1 4 i
] 5 10 15 20 25

Mumbser of Sample

Figure 6.3, Comparison of actual transmission time.

The horizontal axis of Figure 6.3 is the number of fixed samples used in the “fixed
sampling method”. The vertical axis is the (average) actual object transmission time.
Apart from the two curves representing the actual transmission time of the fixed
sampling method with @ =0.75 and @ =0.95, we also draw two horizontal dotted lines
at y=9.67 and y=9.49, which are the actual transmission time achieved by our “dynamic
sampling method” at & =0.75 and a =0.95 , respectively (see Table 6.1). We can
clearly see that our algorithm approximates the optimal amount of samples much better

and therefore achieves the best actual object transmission time.

65

6.3 Experiments on the Internet

In the second experimental environment setting, the server is the same computer as in the
campus network experiments. It is located in the Vision and Multimedia
Communication Lab of the Computing Science department at the University of Alberta.
The client is a home PC connected to the Internet via a local broadband ISP with ADSL
modem. Figure 6.4 is the detailed network diagram. A trace route result shows that there

are 11 hops between the client and the server. The client runs Microsoft Windows 2000

Professional and Netscape Navigator 4.0.

University
campus networks

university edge router

Client — home PC Sever — ipidik.cs.uabertaca
Figure 6.4, Experiment set-up on Internet through broadband connection

We present the experiment results in Table 6.3. 17 We set the “Time Limit” parameter to
10 seconds, the “Time Slice” parameter to 0.05 seconds, and the “Confidence Goal”
parameter to 95% and 75%. We performed transmissions 100 times for both 95% and

75% confidence levels and report the averages.

17 All the experiments described in sections 6.3, 6.4 and 6.5 were performed in normal office hours on weekdays in
March 2002. Transmission requests were issued from the client every 30 seconds to avoid excessive network burden.

66

Confidence Goal 95% 75%
Average No. Of Sample 14.0 8.4
Sample Average (kbps) 156.0 152.9
Sample Standard Error (kbps) 24.34 28.93
Estimation (kbps) 144.8 145.7
Actual Bandwidth Average (kbps) 156.4 156.4
Actual Object size (Byte) 1344991 1394117
Actual Transmission Time (s) 8.60 8.92
Actual Total Time (s) 9.61 9.69
Total No. of Exception in 100 runs 3 16

Table 6.3, Experiment results on the Internet, with a Time Limit of 10s and a Time Slice of 0.05. Results
are for two different confidence goals.

The results in Table 6.3 follow a similar pattern to those in Table 6.1. One obvious
difference is that this time, the sample standard error is significantly larger (up to about
20% of the sample average). Therefore, the algorithm makes a more conservative
estimation of the future bandwidth, and, in turn, yields a lower actual transmission time.
In spite of this difference, 86-89% of the time limit is used for real data transmission, and
the time limit confidence level is well preserved. The 14.0/8.4 sample numbers used for
bandwidth testing are almost same as those in Table 6.1. However, this time it 1s 14.0/8.4
out of 200 total slices, as each time slice is 0.05 second in this experiment. Because the
bandwidth on the Internet shows more variance than on the campus network, a larger

portion of the time limit is devoted to bandwidth testing.

6.4 Time Slice Choice

In the experiments discussed in the previous two sections, we have chosen two different
time slices, 0.02 second for the campus network and 0.05 second for the home Internet
connection. How to choose a suitable time slice size is an interesting question. When

the time slice is small, the benefit is that the cost of each sample is small, and the

67

problem is that the sample standard error will be large, which force the algorithm to
make a more conservative estimation. A large time slice has exactly the reverse
problems and benefits. Our experience is that a reasonable slice size is within the range
of 0.01-0.5 seconds. Different network characteristics have different optimal slice sizes
within that range. As we will demonstrate in the experiment described in Table 6.4, the
differences in the results obtained by using different slice sizes within the reasonable

range are relatively small.

In this experiment, we ran the transmissions in the home Internet connection with three
different time slices: 0.02 second, 0.05 second, and 0.1 second. The time limit was 10
seconds and confidence goal was set at 95%. We ran the transmission 100 times and
report the average in Table 6.4. Figure 6.5 shows examples of the bandwidth sample

curves drawn by our client program.

Time Slice Size (s) 0.02 0.05 0.10
Total Time Slices Number 500 200 100
Average No. Of Sample 25.5 14.0 9.0
Sample Average (kbps) 153.8 156.0 154.7
Sample Standard Error (kbps) 47.43 24.34 20.12
Estimation (kbps) 136.4 144.8 1433
Actual Bandwidth Average (kbps) 156.3 156.4 155.4
Actual Object size (Byte) 1290585 1344991 1299929
Actual Transmission Time (s) 8.26 8.60 8.34
Actual Total Time (s) 9.06 9.61 9.51

Table 6.4, Comparison of different time slice sizes.

68

Figure 6.5, Screen Capture of three experiments (0.02s time slice on the left, 0.05s at the center
and 0.10s on the right)

We can make several interesting observations from these experiment results. First, as the
time slice size becomes larger, the sample standard error becomes smaller, and so does
the number of samples the algorithm takes for bandwidth testing. However, even when
the number of samples goes down, the time actually spent on bandwidth testing goes up
(from around 5% to 7% to 9%) since the time slice is larger for each sample. Second, the
under-estimation margin is determined not only by the sample standard error, but also by
the number of samples. We will compare the under-estimation margin of a 0.05s time
slice and a 0.10s time slice. Although the sample standard error of the 0.10s slice is
smaller than that of 0.05s slice (20.12 vs. 24.34), its under-estimation margin is larger:
for 0.05, it is 156.0-144.8=11.2; for 0.10, it is 154.7-143.3=11.4, because the under-

estimation margin (d, ,) %]]\\;_};) is determined not only by s, but also by n. The
" \} -

0.05s time slice has an advantage because it takes 14 samples, while the 0.10s time slices
takes only 9. Therefore, the 0.10s time slice loses to 0.05s time slice because it uses a
larger portion of time limit for bandwidth testing and makes larger under-estimation
margin. On the other side, when we comparing 0.02s and 0.05s, the 0.02s time slice uses
a smaller portion for bandwidth testing, but suffers a huge under-estimation margin

because of its huge sample standard error.

With these observations, we can see that there are several dynamics going on when the
time slice changes. Often one dynamic offsets another. Our experiments results show

that when the time slices are within a reasonable range, the difference in performance is

69

relatively small. For example, in Table 6.4, the average transmitted object sizes yielded

by 0.02s and 0.10s time slice are only about 3-4% under that of the 0.05s time slice.

6.5 Experiments on Network with Wireless Link

Our last experiment setting is similar to that described in Section 6.3, except that we add

a wireless link on the last hop of the path. The network topology is like that in Figure 6.6.

Server ~ ipiatik.cs.uaberta.ca

A

Clientlaptop

Figure 6.6, Experiment set-up on Internet with a wireless link

As shown in Figure 6.6, the settings are almost identical to those in Figure 6.4 except that
on the client side, a new laptop PC now serves as the client. The dashed line between the
“Home PC” and “Client laptop” indicates that a wireless link is used to connect the two.
The laptop is equipped with Intel Pentium MMX 233Mhz CPU, 64MB RAM and is
running the Window 98 operating system. Both the home PC and laptop are installed
with a US Robotics Wireless Access card conforming to the 802.11b standard, with a
maximum specified throughput of 11Mbps. The two 802.11b cards operate in the “Ad-
Hoc” mode. No dedicated Access Point (a.k.a. base station) is present. The IP addresses

assigned to the two wireless cards start with 192.168., so that they are internal addresses

70

invisible from the outside Internet. The Home PC acts as the http proxy of the client

laptop.

Although the current 802.11b wireless technology has become mature and reliable, there
are special challenges to our algorithm related to the wireless link. The experiments
setting we created will be the typical network architecture in future wireless application:
wireless devices connected to the Internet with an unreliable wireless link as the last hop.

Therefore, how our algorithm performs in such environment is especially interesting.

As the performance of the wireless link is extremely sensitive to the distance between the
hosts and the existing radio interference, we performed the experiments at two distances
of the link. In first experiment, we set the laptop close to the home PC (around 10 feet).
Then in second experiment, we tried to find out the largest distance in which the two
computers can detect each other (around 100 feet in a building with walls and other
obstacles) and set the distance to that. We set the time limit to 10 seconds, the time slice
to 0.10 second, and the confidence level to 95% and ran the transmission 100 times m

each experiment. The results are presented in Table 6.5.

Wireless link distance (feet) 10 100
Total Time Slices Number 100 100
Average No. Of Sample 10.0 11.1
Sample Average (kbps) 1559 124.5
Sample Standard Error (kbps) 26.3 39.7
Estimation (kbps) 141.6 101.4
Actual Bandwidth Average (kbps) 162.3 124.0
Actual Object size (Byte) 1259704 896529
Actual Transmission Time (s) 7.77 7.29
Actual Total Time (s) 6.01 8.64
Total No. of Exception in 100 runs 2 11

Table 6.5, Experiment results on the Internet with a wireless link

71

Table 6.5 reveals that the results for a distance of 10 feet (column 2 of Table 6.5) are
similar to those in which no wireless link exists (column 3 of Table 6.4). The average
bandwidth is similar; the confidence level is well preserved. The sample standard error
is relatively larger with the presence of a wireless link, but the algorithm adjusts itself

well to accommodate it.

On the other hand, the results for a distance of 100 feet show a new pattern. The average
bandwidth achieved is significantly smaller than the bandwidth achieved before; the
sample standard error is significantly larger; and most importantly, the confidence level
is not preserved very well. As we investigated the details of the 100 runs, we developed
a better understanding of the problem. Among the 11 runs that failed to finish in time, 6
of them finished after 13 seconds, which was very rare in previous experiments. We
believe that the cause was the transient loss of the connection (blackout) of the wireless
link. Therefore, with the presence of a wireless link, especially when the distance is on
the verge of the specification distance, the unpredictable nature of the wireless link
invalidates, to a degree, our assumption that “bandwidth samples are unbiased
representatives of the whole population”. However, we still consider 11% of exception
runs an acceptable result under extreme conditions. In most application cases, the client
is most likely to be somewhere between 10 feet and 100 feet — i.e., between “very close”

and the “maximum distance in the specification”.

Finally, we point out that our implementation of the algorithm ran smoothly on a
relatively old model of laptop computer (with Intel Pentium MMX 233MHz CPU and
64MB RAM). Moreover, we have implemented the client program as a Java applet
running within the web browser. The system overhead associated with the Java virtual
machine is expected to be higher than most real network-aware applications using native
languages in development. We are therefore very confident that our algorithm is simple
enough to be integrated into network-aware applications running on a variety of

hardware, including handheld devices with limited computing power.

72

Chapter 7

Conclusions and Directions for Future

Research

In this thesis, we have presented a bandwidth estimation algorithm for network-aware
multimedia delivery application. The algorithm 1s suitable for the interactive
transmission of relatively large multimedia objects in both single server and multiple
server network environments. The main target QoS parameter is a user-specified time
limit for transmission of the object. The algorithm uses the first fraction of the time limit
to do bandwidth sampling and then uses this knowledge to make an estimation of the
future available bandwidth. We designed of the algorithm with two goals. First, we
wanted to provide a guarantee on the time limit QoS parameter to a certain confidence
level. This confidence level was achieved by making an estimation of the future
bandwidth on the basis of a t-distribution statistical model. It enables the algorithm to
make an accurate conservative estimation to preserve the user-specified time limit.
Second, we aimed to approximate the optimal amount of bandwidth sampling in order to
maximize the transmitted object size. This result was achieved by monitoring the V(n)
values we have defined and fine tuning the termination conditions of bandwidth testing.
Our simulation results and experiments in real networks both confirm that both of our

goals were well achieved.

Unlike related works we have discussed, which mainly focus on building a general

model of the TCP throughput using transport and network layer metrics, our algorithm

73

aims to solve the bandwidth estimation problem in real applications. The algorithm
works completely in the application layer and mainly on the receiver side. It measures
the throughput of the TCP connection in turns of the actually received object size. Since
it does not make use of specific transport and network layer metrics, it is expected to

work with all versions of TCP implementations.

During our building of the bandwidth model, we made several assumptions about the
TCP bandwidth samples. We assumed that bandwidth samples follow a normal
distribution; the bandwidth random variable is stationary during the entire period of time
lime; and we ignored the potential auto-correlations of the bandwidth samples. Our
experiment results in real networks show that despite these simplifications, our algorithm
works accurately enough to meet our goal of providing a meaningful confidence level in
preserving the time limit. Our implementation of the algorithm in the real network
environments also demonstrates the simplicity of our algorithm. We believe the
computation cost of the algorithm is low enough to be implemented in real-time on a

wide range of devices with relatively limited computation power.

Several future studies are feasible. Firstly, as the main purpose of this research is to
facilitate the development of network-aware applications, we would like to create a
clearly defined API for the bandwidth estimation module in these applications and build
an implementation ready to use for application programmers. We plan to use the Java
language to define a set of interfaces, including the methods needed for the bandwidth
estimation module in both the client and the server, and to implement them in Java

classes.

Secondly, one component of the algorithm that we are particularly not very satistied with
is the multi-server extension. As we have discussed in Chapter 5, when we are using
multiple channels, an important question is how to determine the confidence level for
each of them. Our current method is to set all the confidence levels to be the same and
then use an algorithm to “drop” some of them. This method is a very rough

approximation of the optimal strategy, which should allocate confidence levels according

74

to the relative variance on all the channels. We plan to look into the issue and find better

strategies for approximating the optimal result.

Finally, given a reliable bandwidth estimation scheme, another important issue in
network-aware application development is fast and accurate transcoding algorithms of
media objects. After determining the target size of the object, the server(s) need the
transcoding algorithm to tailor the requested object to the target size accurately and
quickly. The media object can be still images, audio/video clips, or 3D graphic objects.
For still images, the popular JPEG image compression algorithm is notorious for its poor
control of the compressed image size. The pew image standard JPEG2000
[Christopoulos, 2000] has more support for the scalability of image coding. We plan to
look into the issue of how to apply these new techniques in network-aware application

design.

75

Bibliography

[Allman, 1999] M. Allman, V. Paxson, W. Stevens. TCP Congestion Control.
Request for comment 2581, April 1999.

[Balakrishnan, 1995] H. Balakrishnan, S. Seshan et al. Improving TCP/IP performance
over wireless networks. In Proceedings of the 1% ACM

International Conference on Mobile Computing and Networking
(Mobicom), November 1995.

[Balakrishnan, 1997] H. Balakrishnan, V. Padmanabhan et al. A Comparison of
mechanisms for improving TCP performance over wirelss links.

ACM/IEEE Transactions on Networking, Volume 5, No. 6,

December 1997.
[Balakrishnan, 1997B] H. Balakrishnan, M. Stemm et al. Analyzing stability in
wide-area network performance. In Proceeding of ACM

SIGMETRICS ’97, pages 2-13, June 1997.

[Blake, 199§] S. Blake, D. Black et al. An Architecture for Differentiated Services,
Request for comment 2475, December 1998.

[Bolliger, 1998] J. Bolliger and T. Gross. A Framework-based Approach to the
Development of Network-aware Applications. IEEE Transactions

on Software Engineering, May 1998.

76

[Bolliger, 1999] J. Bolliger, T. Gross, U. Hengartner. Bandwidth Modelling for
Network-Aware Applications. In Proceeding of IEEE INFOCOM
1999, page 1300-1309, March, 1999.

[Braden, 1989] R. Braden. Requirements for Internet hosts — Communication

Layers. Request for comment 1122, October 1989.

[Braden, 1997] R. Braden, L. Zhang et al. Resource ReSerVation Protocol -
Version 1 Functional Specification, Request for comment 2205,

September 1997.

[Brakmo, 1995] L. Brakmo, and L. Peterson. TCP Vegas: End-to-end congestion
avoidance on a global internet. [EEE Journal of Selected Areas in

Communication. Volumn 13, No. 8, page 1465-1480, October 1995.

[Casetti, 2000] C. Casetti, M. Meo. A New Approach to Model the Stationary
Behavior of TCP Connections. In Proceedings of INFOCOM 2000,
Vol. 1, page 367-375, 2000.

[Cheng, 2001] 1. Cheng, A. Basu. QoS Specification and Adaptive Bandwidth
Monitoring for Multimedia Delivery. In Proceeding of EUROCON
2001, Bratislava, Slovakia, July 2001.

[Christopoulos, 2000] C. Christopoulos, A. Skodras et al. The JPEG2000 Still Image
Coding System: An Overview. I[EEE Transactions on Consumer

Electronics, Vol. 46, No. 4, pages 1103-1127, November 2000.

[Floyd, 1993] S. Floyd, V. Jacobson. Ramdom Early Detection Gateways for
Congestion Avoidance. [EEE/ACM Transactions on Networking,
page 397-413, August 1993.

[Grossman, 2002]

[Haas, 1997}

[Harnett,1982]

[Hoe, 1996]

[Jacobson, 1988]

[Kumar, 1998]

[Lakshman, 1997]

[Lin, 1998]

77

D. Grossman. New terminology and clarifications of Diffserv,

Request for comment 3260, April 2002.

7. Haas, P. Agrawal. Mobile-TCP: an asymmetric transport
protocol design for mobile systems In Proceedings of the IEEE

International Conference on Communications (ICC '97), 1997.

D. Harnett. Statistical Methods, Third Edition. Addison-Wesley
Publishing Company, Inc. 1982

J. Hoe. Improving the start-up behavior of a congestion control
scheme for TCP. In Proceeding of ACM SIGCOMM °96, page 270-
280, August 1996.

V. Jacobson. Congestion Avoidance and Control. In Proceeding
of the SIGCOMM ’88 Symposium, page 314-332, August 1988.

A. Kumar. Comparative Performance Analysis of Versions of
TCP in a Local Network with a Lossy Link. [EEE/ACM
Transactions on Networking, Volume 6, No. 4, page 485-498,
August 1998.

Tl Lakshman, U. Madhow. The Performance of TCP/IP for
Networks with High Bandwidth-Delay Products and Random Loss.
IEEE/ACM Transactions on Networking, Volume 3, No. 3, page
336-350, June 1997.

D. Lin, H. Kung. TCP fast recovery strategies: Analysis and
improvements. In Proceeding of INFOCOM 98, page 263-272,
March 1998.

[Maly, 1997]

[Mathis, 1996]

[Mathis, 1997]

[Miloucheva, 1995]

[Padhye, 1998]

[Parsa, 1999]

[Peterson, 2000]

[Postel, 1981]

[Press, 1993]

78

K. Maly et al., Interactive Distance Learning over Intranets. /EEE
Internet Computing, Volume 1, No. 1, Jan/Feb 1997.

M. Mathis, J. Mahdavi, S. Floyd. TCP Selective
Acknowledgement Options. Request for comment 2018, October
1996.

M. Mathis, J. Semke, J. Mahdavi. The Macroscopic Behaviour of
the TCP Congestion Avoidance Algorithm. Computer

Communication Review, Volume 27, Number 3, July 1997.

1. Miloucheva, Quality of Service Research for Distributed
Multimedia Applications. ACM Pacific Workshop on Distributed

Multimedia Systems, Honolulu, Hawaii, 1995.

J. Padhye, V. Firoiu, D. Towsley, J. Kurose. Modeling TCP
Throughput: A Simple Model and its Empirical Validation. In
Proceedings of the ACM SIGCOMM, 1998.

C. Parsa, G. Aceves. Improving TCP congestion control over
Internets with heterogeneous transmission media. In Proceedings
of IEEE International Conference on Network Protocols
(ICNP °99), 1999.

L. Peterson, B. Davie. Computer Networks, A Systems Approach.
Morgan Kaufman Publishers, 2000.

J. B. Postel. Transmission Control Protocol. Request for

comment 793, September, 1981.

W. Press, B. Flannery, S. Teukolsky, W. Vetterling. Numerical

79

Recipes in C, second Edition. Cambridge University Press, 1993.

[Ramakrishnan, 1990]K. Ramakrishnan, R.Jain. A Binary Feedback scheme for

congestion avoidance in computer networks with a connectioniess
network layer. ACM Transactions on Computer Systems, Volume

8, No. 2, page 158-181, May 1990.

[Ramakrishnan, 1999]K. Ramakrishnan, S. Floyd. A proposal to add explicit congestion

[Stevens, 1997]

[Tanenbaum, 1996]

[Tsaoussidis, 2000]

[Tsaoussidis, 2002]

[Vogel, 1995]

notification (ECN) to IP. Request for comment 2481, January
1999.

W. Stevens. TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms. Request for comment

2001, January 1997.

A. Tanenbaum. Computer Networks, third Edition. Prentice-Hall,
Inc., 1996.

V. Tsaoussidis, H. Badr. TCP-probing: towards an error control
schema with energy and throughput performance gains. In
Proceedings of the 8" IEEE International Conference on Network
Protocols, 2000.

V. Tsaoussidis, I. Matta. Open issues on TCP for mobile
computing. Wireless Communications and Mobile Computing,

No.2, 2002.

A. Vogel, B. Kerherv'e, G. von Bochmann, J. Gecsei. Distributed
Multimedia and QoS: a Survey, I[EEE Multimedia, Vol.2 No.2,
Summer 1995.

[Wang, 1999]

[White, 1997)

[Zhang, 1993]

[Zwillinger, 1996]

80

X. Wang and H. Schulzrinne. Comparison of adaptive Internet
multimedia applications, IEICE Transactions on Communications,

Volume E82-B, Number 6, pages 806-818, June 1999.

P. White. RSVP and Integrated Services in the Internet: A
Tutorial, IEEE Communications, May 1997.

L. Zhang. RSVP: A new resource reservation protocol. IEEE
Network Magazine, 7(5):8-18, September 1993.

D. Zwillinger. CRC Standard Mathematical Tables, 30th Edition.
CRC Press, January 1996.

81

Appendix 1

Experimental Data

1. Data plotted in Figure 4.3. The data below are number of time slices used for real
data transmission (out of 500 total time slices, for & = 0.95) for four different number of
fixed sample size (10, 20, 30, 40). The mean of the bandwidth random variables are
always set at 100.0, while the standard deviation is from the set {2.5, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60}. Each number is the average of 200 runs, excluding those runs

that fail to finish the transmission within time limit.

10 20 30 40

2.5 483 475 466 457
5 476 470 462 453
10 461 460 454 447
15 446 451 447 440
20 431 440 439 434
25 416 431 431 427
30 401 421 423 420
35 387 411 416 414
40 372 401 408 407
45 357 392 402 401
50 343 382 393 396
55 331 374 389 391
60 319 366 383 386

2. Data plotted in Figure 4.4(a)(b)(c)(d). The data below are number of time slices

used for real data transmission (out of 500 total time slices, for a =0.95) for our

82

algorithm that determine the number of samples dynamically. The mean of the
bandwidth random variables are always set at 100.0, while the standard deviation is from
the set {2.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}. Each number is the average of
one group (200 runs), excluding those runs that fail to finish the transmission within time

limit. We have run 3 groups of experiments.

run 1 run 2 run 3
2.5 484 484 484

5 477 475 476
10 460 463 462,
15 449 450, 450
20 440, 439 436
25 431 428 432
30 421 426 426
35 414 418 418
40 407 406 408
45 400 400] 400
50 395 394 399
55 390 389 389
60 384 384 386

3. Data plotted in Figure 4.5. The data below are number of time slices used for real
data transmission (out of 100 total time slices, for a = 0.95) for four different number of
fix sample size (5, 10, 15, 20). The mean of the bandwidth random variables are always
set at 100.0, while the standard deviation is from the set {2.5, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 55, 60}. Each number is the average of 200 runs, excluding those runs that fail to

finish the transmission within time limit.

5 10] 15 20

2.5 93 89 85 79
5 91 88 84 78
10 36 85 82 77
15 82 82 80 76
20) 77 80 78 74
25 72 76 76 73
30 68 74 74 71
35 63 72 72 70

40 59 69 70 69
45 54 67 68 68
50 50 64 67 67
55 47 62 65 66
60 44 60 64 65

4. Data plotted in Figure 4.6(a)(b)(c)(d). The data below are number of time slices used
for real data transmission (out of 100 total time slices, for @ =0.95) for our algorithm
that determine the number of samples dynamically. The mean of the bandwidth random
variables are always set at 100.0, while the standard deviation is from the set {2.5, 5, 10,
15, 20, 25, 30, 35, 40, 45, 50, 55, 60}. Each number is the average of one group (200
runs), excluding those runs that fail to finish the transmission within time limit. We have

run 3 groups of experiments.

run 1 run 2 run3

2.5 93 93 93

5 91 91 91
10 87 87 86
15 83 82 82
20 80 79 79
25 76 76 76
30 73 74 73
35 71 72 70
40 69 69 69
45 68 68 67
50 67 66 66
55 65 66 65
60 65 64 64

5. This dataset is used to create Figure 4.7. It reports how many runs (out of 200)

fail to finish within time limit in fixed sampling algorithm in 100 total slices.

5 10 15 20

2.5 13 12 14 17
5 13 12 14 16
10 13 12 14 17

84

15 13 12 14 17
20) 13 12 14 17
25 13 12 14 17
30 13 12, 14 17
35 13 12 14 17
40 13 12 14 17
45 13 12 14 17
50 13 12 14 17
55 12 12 14 17
60, 12 12 14 16
6. This dataset is used to create Figure 4.7. It reports how many runs (out of 200)

fail to finish within time limit in dynamic sampling algorithm (100 total slices). We have

run three groups (each 200 runs). Results in Figure 4.7 are the average of three groups.

run 1 run 2 run 3
2.5 14 11 10
5 15 11 14
10 8 12 14
15 17 14 13
20) 20 7 18
25 11 13 18|
30 11 17 10
35 18 11 16
40 15 21 14
45 17, 17 13
50 11 13 17
55 16 18 15
60, 15 15 14
7. This dataset is used to create Figure 4.8. It reports how many runs (out of 200)
fail to finish within time limit in fixed sampling algorithm in 500 total slices.
10 20 30 40
2.5 8 11 13 11
5 8 11 13 11
10 8 11 13 11
15 8 11 13 11
20 8 11 13 11
25 8 11 13 11

30 8 11 13 11
35 8 11 13 11
40 8 11 12 11
45 9 11 10 11
50 9 12 9 9
55 9 12 9 7
60 9 12 8 7

8.

85

This dataset is used to create Figure 4.8. It reports how many runs (out of 200)

fail to finish within time limit in dynamic sampling algorithm (500 total slices). We have

run three groups (each 200 runs). Results in Figure 4.8 are the average of three groups.

run 1 run 2 run 3

2.5 7 13 8

5 13 10 8
10 7 14 13
15 14 9 13
20 6 16 8
25 15 9 13
30 13 15 11
35 11 14 13
40 9 17 14
45 11 10 16
50, 16 10 13
55 11 14 15
60 17 11 16

9.

This dataset is the experiment results of multi-server bandwidth estimation

algorithm for total slice of 100 (Figure 5.3). We present the real transmitted object size

for both dynamic algorithm and fixed sampling algorithm (for fix sample size of 8, 10,

12, 14, 16, 18, and 20). The result of each setting is in one table; each table contains

results for 169 parameter settings of variances (13 variances for channel #1 and 13

variances for channel #2). Each value in the table is an average of 1000 runs.

Real Transmitted Object Size for Dynamic Algorithm

2.5

5

10]

15

20

25

30

35

40

45

50

55

60,

0.25

10043

9836

9452

9079

8720

8471

8161

7861

7592

7361

7172

7037

6781

0.5

10013

9809

9440,

9048

8725

8371

8070

7812

7691

7356

7188

6997

6790

1.94

9960

9766

9385

9021

8699

8456

8080

7830)

7532

7338

7135

7055

6851

1.5

9915

9724

9359

9017

8683

8403

8044

77861

7597

7308

7237

6996

6786

2.0

9858

9670

9323

8973

8644

8335

8001

7792

7541

7323

7183

6990

6789

2.5

9818

9652

9291

8910

8630

8296

7983

7727

7483

7299

7096

6913

6821

3.0

9766

9592

9250,

8892

8569

8293

7941

7707

7460

7291

7086

6970

6782

35

9713

9550,

9213

8869

8543

8269

7867

7702

7503

7249

6995

6959

67438

4.0

9672

9507

9172

8859

8540,

8243

7963

7663

7444

7172

7068

6848

6674

4.5

9639

9473

9155

8805

8470

8127

7835

7617

7399

7223

7014

6799

6691

5.0

9598

9431

9136

8767

8442

8123

7868

7621

7429

7200]

7009

6816

6748

5.5

9568

9400,

9113

8780,

8436

8135

7855

7557

7335

71604

6878

6873

6684

6.0

9534

9365

9079

8745

8390

8107

7742

7538

7402

7126

6961

6790

6654

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 8

2.5

5

10

15

2

25

30

35

404

45

50

55

60]

0.25

9822

9658

9315

8963

8613

8304

7979

7642

7355

6999

6723

6435

6126

0.5

9807

9637

9311

8958

8643

8242

7938

7633

7366

6933

6728

6438

6146

1.0

9770

9606,

9259

8933

8585

8268

7924

7605

7221

6948

6610,

6456

6214

1.5

9743

9577,

9242

8898

8572

8296

7895

7552

7264

6897

6708

6442

6246

2.0

9702

9532

9202,

8873

8519

8219

7800,

7537

7239

6916

6675

6348

6145

2.5

9672

9513

9180,

8810

8510

8193

7810

7475

7119

6861

6679

6268

6126

3.0

9641

9477

9139

8807,

8433

8140

7737

7472

7113

6888

6606

6355

6159

3.5

9604

9431

9101

8752

8430

8117

7743

7494

7078

6854

6468

6316

6090,

4.0

9568

9402

9057

8753

8415

8091

7785

7416

7100

6722

6562

6268

6020

4.5

9540

9379

9040

8697

8323

8020

7648

7318

7050

6794

6495

6171

6079

5.0

9517

9332

9014

8665

8315

7978

7653

7341

7100

6796

6456

6306

6119

5.5

9483

9314

9006,

8662

8296

7960;

7681

7298

7020

6720,

6377

6293

6064

6.0

9461

9286,

8963

8622

8254

7956

7619

7241

7016

6679

6449

6268]

6052,

Real Transmitted Object Size for Fix Sampling Algerithm, Sample size

2.5

5

10}

15

20)

25

30

35

40)

45

50

55

60

0.25

9631

9485

9193

8908

8597

8331

8055

7788

7520,

72104

6996

6760

6552

0.5

9616

9470

9194

8904

8614

8278

8017

7741

7550

7171

7003

6741

6498

1.0

9585

9446

9151

8862

8533

8311

8022

7756

7420

71804

6877

6803

6515

1.5

9562

9420

9131

88353

8559

8312

7990,

7674

7439

7124

7004

6754

6570

2:0

9528

9385

9094

8814

8515

8265

7936

7702

7440,

7173

6941

6652

6490

2.5

9501

9369

9074

8773

8517

8245

7938

7662

7288]

7088

6921

6627

6463

3.0

9474

9334

9047

8762

8449

8203

7846

7601

7328

7072

6841

6690

6469

3.5

9446

9295

9030,

8730

8459

8147

7824

7615

7297

7061

6763

6634

6437

4.0

9420

9276

8969

8718

8425

8156

7888

7594

7302

6979

6848

6564

6393

4.5

9387

9247

8966

8674

8369

8082

7762

7527

7271

7024

6745

6506

6323

5.0

9369)

9218

8950,

8641

8344

8044

7792

7510

7257

6991

6759

6567

6410,

5.5

9343

9200]

8927

8643

8334

8041

7791

7463

7223

6971

6668

6587

6406

6.0

9321

9173

8904

8614

8296

80401

7737

7391

7226]

6952

6697

6534

6342

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 12

2.5

S

10,

15

20

2

30

35

40

45

50

55

60,

0.25

9431

9304

5046

8799

8510

8300;

8044

7811

7525

7321

7114

6949

6700

0.5

9417

9288

9043

8792

8536

8233

8041

7773

7614

7305

7119

6910

6713

1.0

9336

9268

9013

8755

8485

8287

8002

7787

7478

7280

7014

6947

6703

1.5

9368

9245

8995

8750

8491

8259

7987

7728

7534

7220,

71390

6899

6762

2.0

9340

9219

8964

8717,

8466

8221

7934

7731

7485

7291

7089

6829

6669

86

25

9319

9201

8936

8696

8450

8205

7930,

7682

7395

7235

7028

6846

6678

3.0

9297

9169

8916

8667

8403

8185

7871

7673

7404

7191

6995

6820

6677

3.5

9266

9139

8903

8633

8404

8141

7839

7659

7374

7200

6943

6782

6618

4.0

9244

9118

8854

8631

8370,

3119

7900,

7616

7393

7107

6989

6727

6608

4.5

9218

9096,

8843

8599

8335

8090,

7789

7583

7362

7154

6898

6671

6592

5.0

9205

9074

8832

8565

8312

8034

7816

7562

7328

7148

6893

6743

6586

5.5

9180;

9051

8814

8566

8298

8037

7814

7523

7297

7065

6806

6733

6594

6.0

9165

9033

8792

8536

8269

8023

7788

7480,

7308

7061

6856

6710,

6510

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size

14

2.5

5

16]

15

20,

25

3

35

40

45

50

55

60

0.25

9227

9114

88832

8668

8413

8211

8011

7777

7525

7324

7171

7027,

6815

0.5

9214

9097

8877

8658

8439

8171

7986

7746

7627

7318

7175

6974

6855

1.0

9185

95079

8859

8627

8384

8205

7957

7756

7460,

7301

7095

7043

6806

1.5

9171

9061

8844

8611

8393

8174

7939

7710,

7536

7274

7171

69838

6844

2.0

9144

9038

8813

8592

8385

8160

7899

7704

7485

7318

7137

6905

6782

2.5

9126

9024

8791

8573

8348

8117

7887

7687

7413

7282

7085

6945

6778

3.0

9106

8991

8765

8542

8311

8126

7835

7657

7429

7251

7062

6916

6823

35

9079

8967

8753

8514

8301

8081

7813

7658

7391

7216

7021

6877

6744

4.0

9061

8952

8716

8508

8281

8058

7862

7622

7410

7166

7033

6837

6662

4.5

9037

8928

8699

8477

8250,

8024

7764

7603

7392

7197

6970,

6795

6738

5.0

9026

8912

8696

8460

8233

7969

7796

7562

7366

7140

6985

6841

6698

5.5

9002

8889

8675

8453

8214

7993

7800

7520

7335

7136

6917

6819

6708

6.0

8991

8879

8662

8433

8200

7976

7740

7492

7316

7082

6969

6817

6663

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 16

2.5

5

10

15

20)

25

30

35

40

45

50,

55

60

0.25

9019

8917

8709

8519

8279

8107

7927

7736

7479

7317

7155

7038

6844

0.5

9007,

8903

8707

8507

8304

8070,

7898

7677

7570

7313

7174

7003

6865

1.0

8982

8888)

8690

8475

8259

8093

7872

7687

7448

7304

7130,

7072

6846

1.5

8970

8871

86704

8474

8270

8073

7862

7643

7483

7252

7168

7005

6882

2.0

8943

8848

8646

8442

8254

8057

7812

7648

7437

7287

7132

6957

6805

2.5

8926

8838

8627

8423

8234

8022

7800

7645

7397,

7260

7108

6954

6815

3.0

8911

8806

8605

8402

8193

8017

7766

7610

7394

7239

7082

6944

6827

35

8885

8785

8591

8378

8195

7987

7753

7593

7381

7224

7038

6910

6780,

4.0j

8869

8770

8558

8373

8159

7968

7785

7561

7371

7164

7022

6854

6769

4.5

8853

8755

8547

8344

8141

7933

7689

7537

7376

7204

6978

6841

6801

5.0

8840,

8735

8542

8330,

8126

7894

7748

7527

7335

7163

7002

6891

6769

5.5

8817

8715

8521

8328

8110

7909

7742

7488

7308

7141

6952

6864

6760

6.0

8809,

8700

8511

8302

8097

7892

7674

7459

7302

7090

6968

6841

6702

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size

2.5

5

10

15

20

25

3

35

40

45

50,

55

60

0.25

8808!

8716

8521

8360

8132

7982

7831

7636

7447

7268

7126

7014

6816

0.5

8798

8703

8526

8344

8165

7942

7796

7592

7489

7277

7129

6950,

6849

1.0

8777

8691

8510

8317

8119

7968

7757

7617

7381

7238

7117

7039

6876

1.5

8765

8670,

8487

8318

8127

7946

7753

7552

7414

7181

7145

7002

6871

2.0

8742

8657

8471

8284

8113

7932

7712

7588

7374

7251

7098

6940,

6811

2.5

8726

8644

8454

8263

8108

7906

7703

7556

7342

7223

7076

6934

6834

87

3.0 8709

8616

8436

8254

8055

7885

7668

7523

7328

7194

7070,

6946

6843

3.5 8688

8597

8420,

8224

8054

7869

7651

7490

7333

7161

7014

6902

6778

4.0, 8674

8583

8393

8219

8031

7837

7688

7491

7307,

7117

7002

6877

6760

4.5 8658

8570

8387

8198

8014

7832

7599

7450,

7322

7166

6971

6821

6798

5.00 8644

8547

8381

8176

8003

7792

7659

74504

7239

7118

6995

6887

6767

5.5 8627

8529

8358

8170

7982

7809

7649

7423

7244

7116

6929

6864

6774

6.0 8619

8524

8352

8161

7974

7788

7579

7401

7262

7077

6976

6827

6707

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size

2.5

5

10

15

204

25

30

35

40

45

50

55

60)

025 8597

8512

8337

8183

7967

7838

7702,

7521

7348

7190

7053

6981

6793

0.5 8588

8501

8339

8167

8005

7815

7673

7480

7391

7198

7057

6830

6793

1.0 8568

8491

8324

8157

7965

7828,

7641

7499

7281

7170,

7048,

6992

6828

1.5 8556

8472

8307

8150

7973

7815

7636

7445

7314

7125

7079

6957

6833

2.0 8535

8457

8293

8120

7956

7785

7599

7465

7285

7166

7045

6900,

6774

2.5 8522

8446

8275

8099

7943

1778

7584

7458

7249

7141

7005

6885

6797,

3.0, 8506

8423

8258

8087

7916

7753

7550,

7414]

7239

7120,

6997

6896

6807

3.5 8486

8409

8244

8060

7906

7740

7534

7391

7257

7084

6963

6876

6773

4.0 8474

8394

8217

8058

7886

7714

7574

7390;

7220,

7066

6930,

6824

6721

4.5 8458

8377

8212

8036

7872

7712

7498

7361

7253

7096

6899

6787

6766

5.0 8447

8357

8208

8018

7860,

7675

7539

7366

7211

7042

6940

6866

6735

5.5 8430

8345

8181

8009

78381

7683

7522

7333

7166

7052

6875

6831

6738

6.0 8424

8338

8182

8009

7833

7668

7480

7320

7169

7033

6912

67830,

6696

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 22

2.5

5

10

15

20,

25

30

35

40,

45

50,

55

60

0.25 8385

8307

8148

8005

7810,

7690

7551

7392

7227

7096

6975

6892

6731

0.5 8377

8298

8146

7989

7848

76353

7530

7352

7277

7108

6967

6819

6725

1.0, 8358

8286

8140

7974

7806

7679

7514

7366

7180]

7091

6961

6890

6775

1.5 8347

8271

8117

7967,

7807

7659

7503

7333

7218

7041

6986

6881

6770

2.0 8328

8256

8106

7942

7800,

7648

7456

7339

7169,

7075

6951

6833

6714

2.5 8316

8245

8088

7929

7780

7625

7452

7338

7159

7037

6926

6811

6730,

3.0, 8300

8224

8075

7915

7766

7610,

7427

7295

7142,

7009

6909

6818

6726

3.5 8282

8208

8062

7887

7746

7593

7423

7273

7167

6987

6906

6787

6716

4.0, 8273

8199

8035

7895

77306

7581

7431

7278

7115

6987

6867

6773

6663

4.5 8255

8181

8030,

7870,

7721

7577

7380,

7262

7138

6991

6836

6725

6681

5.0, 3248

8168

8027

7849

7708

7537,

7411

7253

7108

6964

6874

6805

6700

5.5 8231

8153

3004

7845

7686

7543

7391

7220

7075

6967

68006

6764

6670

6.0 8223

8147

8005

7846

7680,

7521

7353

7210

7074

6957

6859

6740

6645

10. This dataset is the experiment results of multi-server bandwidth estimation

88

algorithm for total slice of 500 (Figure 5.4). We present the real transmitted object size

for both dynamic algorithm and fixed sampling algorithm (for fix sample size of 11, 14,

17, 20, 23, 26, 29, 32 and 35). The result of each setting is in one table; each table

&9

contains results for 169 parameter settings of variances (13 variance for channel #1 and

13 variance for channel #2). Each value in the table is an average of 1000 runs.

Real Transmitted Object Size for Dynamic Algorithm

2.5 5 10] 15 20, 25 30, 35 40, 45 50, 55 60)
0.25] 53219] 52295] 50724] 49532] 48384] 47316] 46372| 45631} 44585) 43943| 43422 42712 42573
0.5 53159] 52267} 50705 49498 48388| 47492| 46614] 45399| 44596| 44123] 43392 42857 42235
1.0] 52933} 52062] 50535| 49326| 48212] 47220] 46156] 45439 44600 43867 43184 42863 42335
1.5] 52759] 51933| 50523] 49221 48169 47115] 46175 45161} 44537, 43803| 42922) 42984 42006
2.0] 52639| 51749] 50345| 490621 48028} 47090 46050 45195} 44240} 43621} 43153| 42678 42194
2.5 52409 51623] 50317| 49077| 47961] 46818 46167 45214 44284| 43410[42944] 42728} 42068
3.0{ 52266| 51455| 50168 48982 47782] 46860, 46005| 44933| 44243 43510] 42940 42252| 41840
3.5] 52080} 51360! 50007 48767 47738] 46820 45839{ 45013| 44127 43333} 42881| 42318} 41720
4.0 51973] 51160 49839 48695] 47545 46747| 45800 44924| 44041] 43308] 43008 42144} 41914
4.50 51793] 51032| 49722} 48538] 47531| 46639| 45673 44869| 44147] 43464] 42845 42262} 41806,
5.00 51653| 50885| 4962 1] 48408 47539] 46489 45545] 44896| 43864| 43471| 42533| 42482 41952
5.5 51544] 50726] 49515 48301 47463| 46556 45681{ 44608] 438611 43325 42693| 42155 41473
6.0| 51408| 50663| 49569 48112] 47279] 46385 45251| 44761] 43810] 43447 42735 41989 41661

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 11

2.5 5 10 15 20 25 30! 35 40 45 50 55 60)
0.25] 52824] 52042 50460 48953| 47359| 45738} 44367 42755| 41322 40017 38453} 37402} 36487
0.5(52773} 51992| 50419 48963| 47483 45828 44514| 426921 41207| 40160| 38532 37238 36261
1.0 52593| 51793| 50191} 48786] 47247 45551} 43901} 42860 41228| 39639 38462 37325 35729
1.5] 52446 51662| 50100 48612 47168 45478| 43779| 42535| 41154 39471{ 38126] 37299 36243
2.00 52334] 51522} 50015| 48418] 46894] 45388 43627 42447 40780| 39102) 38489 37397 36106
2.5] 52118 51342 49919} 48350} 46880 45039} 43773 41983] 40698j 38995 37997 37282 35637
3.0[52002 51199 49699] 48231| 46667 45242| 43506] 42024| 40391{ 38927} 38037 36169 35641
3.5] 51805| 51083| 49463| 47877} 46436 44742} 43493 41897] 40096| 38865| 37561] 36149 35526
4.0 51712| 50897 49373| 47866| 46156] 44757} 43273| 41655 40309 38888(37299} 36323| 35592
4.5 51553| 50780] 49149 47720] 46075 44614] 43191} 41914 40144 38595] 37238 36536] 35277
5.0 51404 50615 49005] 47599} 46061} 44501 42924 41779[39716| 38856/ 37068 36177 35186
3.5] 51310] 50454 48908| 47459] 45839| 44366| 42925 41295| 39735| 39055| 37584 36279 34657
6.0t 51178] 50420, 48947 47206 45793| 44455| 42742 41207| 39876| 39049| 37388 36025] 35000

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 14

2.5 5 10} 15 20 25 30, 35 40 45 50 55 60)
0.25] 52608/ 51916] 50541} 49299| 47848] 46423 45200 43944] 42588| 41531) 40010 39317| 38509
0.5 52558| 51868 S0538| 49230 47985 46627} 45413] 43803] 42596| 41598] 40174 39206 38325
1.0} 52417} 51697 50343| 49098 47736} 463411 44960| 43884 42384} 41037] 40246 39321) 37979
1.5 52276 51577 50284] 48942 47589 46169 44838| 43700 42616 41050 39771{ 39124} 37990,
2.0] 52186| 51474] 50128 48769, 47427| 46238! 44783] 43498| 42085| 40736; 40257| 39108} 37892
2.5 52005| 51324 50047 48720] 47456] 458911-44797] 43139 42161| 40685| 39655 39034 37940
3.01 51888 51182 49929| 48585 47266 45876| 44477] 43169 41919| 40806] 39926 38154 37764
3.50 51715} 51092| 49719 483501 47089 45658| 44511| 43085 41728[40423} 39364| 38508| 37663
4.0 51640] 50915} 49625] 48331 46846} 45646 44314| 42949 41664 40288] 39168 38148 37573
4.5] 51509| 50833} 49426| 48188 46731] 45523| 44240] 43118 41597 40408] 39074 38350 37510

5.0

51368

50688

49349

48072

46726

45387

44001

42982

41227

40432

38772

38120

37283

5.5

51282

50550,

49199,

47919

46635

45354

43937

42472

41272

40732

39356

38066

36955

6.0

51173

50524 49223

47787

46378

45318

43873

42452

41310

40600

39306

37858

37224

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 17

2.5

5

10

15

20

25

30

35

40

45

50

55

60;

0.25

52353

51735

50513

49400

43120

46862

45725

44661

43414

42499

41261

40464

39920

0.5

52306

51693

50497

49364

48177

47004

46001

44415

43392

42454

41351

40554

39859

1.0

52186

51542

50342

49211

47964

46735

45514

44569

43225

42201

41231

40441

39590

1.5

52058

51456

50280,

49062

47881

46611

45421

44448

43232

42081

40547

40296,

39325

2.0

51967

51325

50127

48923

47733

46715

453704

44135

42854

41755

41329

40271

39370

2.5

51823

51198

50079

48906

47766

46402

45361

44011

43053

41710

40743

40188

39187

3.0

51709

51088

50019,

48781

47485

46335

45126

43970

42704

41812

40988

39634

39235

3.5

51565

51021

49825

48578

47457,

46180

45064

43853

42661

41531

40632

39663

39205

4.0

51492

50867

49653

48497

47177

46175

44957

43815

42683

41455

402504

39517

35000

4.5

51370

50771

49579

48428

47148

46142

44923

43818

42551

41514

40400

39824

38792

5.0

51259

50627,

49421

48266

47166

458904

44670

43734

42210

41423

39965

39402

38796

5.5

51186

50524

49344

48171

46986

45829

44766

43295

42135

41668

40521

39512

38380,

6.0

51091

50498

49331

47977

46798

45853

44461

43299

42299

41529

40454

39142

38689

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 20

2.5

5

10

15

20

25

30|

35

40

45

50

55

60

0.25

52082

51526

50421

49387

48231

47103

45996

45206

43894

43189

42194

41234

40706

0.5

52040

51476

50409

49376

48269

47227

46236

44889

43964

43068

42262

41471

40679

1.0)

51931

51368

50235

49258

48117

47045

45852

45028

43848

42739

42074

41138

40437

1.5

51818

51264

50209

49079

48017

46856

45763

44754

43815

42647

41681

41243

40079

2.0

51732

51168

50043

48969

47933

46971

45700

44678

43432

42455

42002

41052

40333

2.5

51604

51039

49982

48914

47850,

46672

45806

44532

43605

42350

41734

41106}

40247

3.0

51501

50951

49955

48829

47662

46607

453523

44493

43282

42523

41764

40694

40142

3.5

51350

50854

49765

48630

47595

46470

45409

44323

43210

42162

41497,

40478

40040

4.0

51283

50721

49636

48554

47393

46474

45446

44331

43195

42147

41222

40416

40035

4.5

51171

50662

49537

48524

47379

46378

45313

44413

43177

42286

41141

40688

35888

5.0f

51087

50553,

49448

48407

47401

46168

45132

44349

42942

42204

40854

40411

39733

5.5

51022

50451

49351

48259

47194

46217

45171

43920,

42684

42340

41216

40573

39454

6.0

50961

50394

49368

48071

47085

46164

44942

43895

42934

42242

41339

40264

39641

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 23

2.5

5

10

15

20

25

30

35

40

45

50

55

604

0.25

51793

51284

50253

49331

48297,

47199

46187

45485

44281

43554

42742

41975

41310

0.5

51762

51248

50230

49327

48288

47340

46409

45148

44281

43554

42805

41987

41324

1.0

51650,

51145

50110

49155

48116

47129

46050,

45279

44127

43205

42753

41783

41104

1.5

51555

51053

50076

49036,

48031

47000

459404

45055

44285

43121

42222

42014

40789

2.0

51479

50943

49906

48933

47974

47094

45925

44949

43861

42983

42520

41714

41000

2.5

51351

50842

49869

48908

47915

46770

45969

44836

43958

42786

42287

41677

40962

3.0

51261

50743

49798

48774

47753

46768

45748

44750

43778

42997

42165

41205

40819

3.5

51133

50661

49676

48632

47691

46691

45681

44732

43640

42827

42021

41136

40664

4.0

51068

50548

49563

48570

47488

46529

45727

44634

43624

42586

41962

41023

40796

4.5

50959,

50486

49454

48501

47464

46544

45571

44812

43600

42748

41817

41208

40443

5.0

50897

50412

49378

48391

47462,

46354

45378

44671

43363

42783

41532

41219

40510

90

5.5

50830

50311

49277

48313

47308

46345

45537

44279

43178

42733

41775

41157

40160

6.0j

50769

502440

49301

48132

47194

46292

45243

44293

43351

42740

41873

40753

40200

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 26

2.5

5

10

15

20|

25

304

35

40

45

50

55

60

0.25

51501

51025

50083

49262

48277

47233

46324

45649

44514

43801

43149

42366

41738

0.5

51474

50989,

50031

49220

48236

47351

46496

45394

44529,

43873

43161

42538

41784

1.0

51374

50896

49912

49076,

48062

47174

46170,

45386

44403

43566

42545

42261

41559,

1.5

51285

50812

49916

48962

480338

47088

46131

45257

44540)

43498

42638

42471

41252

2.9

51207,

50713

49752

48825

47924

47132

46047

45201

44143

43312

42839

42128

41622,

2.5

51690

50619

49723

48798

47843

46813

46068

45030

44199

43175

42638

42244

41388

3.0

50999

50534

49668

48703

47722

46825

45866

44939

44075

43245

42663

41850]

41323

3.5

50885

50451

49525

48539

47733

467106

45823

44925

43878

43139

42377

41640

41139

4.04

50824

50344

49444

48524

47504

46651

45857

44840

43882

42982

42385

41415

41319

4.5

50728

50277,

49318,

48457

47468

46632,

45678

44956

43904

43146

42357

41622

40983

5.0

50671

50212

49238

48375

47457

46464

45566

44843

43735

43080

41995

41719

41070

5.5

50618

50132

49176

48264

47339

46496

45679

44556

43491

43125

42208

41641

40843

6.0

50571

50075

49188] 48119

47235

46379

45472,

44479,

43772

43079

42341

41365

40854

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 29

2.5

5

10]

15

20|

25

30

35

40

45

504

55

60)

0.25

51211

50751

49869

49129

48138

47165

46398

45682

44715

43980,

43384

42727

42054

0.5

51180

50717

49844

49059

48132

47331

46541

45549

44614

44056

43386

42813

42208

1.0

51087

50642

49723

48901

47980,

47158

46236

45481

44556

43774

43250

42685

42020

1.5

51000

50557

49729

48818

47972

47024

46163

45363

44702

43611

42889

42653

41629,

2.0

50930,

50463

49545

48724

47836

47105

46125

45259

44288

43625

43077

42476

41977

2.5

50822

50368

49537

48688

47773

46797

46146

45191

44415

43405

42935

42535

41727,

3.0

50735

50290,

49477

48574

47672

46832

45891

45048

44202

43540

42904

42075

41592

3.5

50639

50208

49337,

48453

47691

46708

45872

45064

44038

43312

42644

42044

41449

4.0

50565

50121

49293

43447

47476

46666

45622

44933|

44055

43238

42679,

41840

41727

4.5

50479

50061

49171

48378

47438

46594

45777

45104

44073

43331

42693

41915

41380

3.0

50421

49994

49096

48283

47412

46463

45671

45005

43917

43494

42287,

42028

41504

5.5

50380

49939

49014

48170

47317

46539

45722

44678

43779

43375

42540

41984

41331

6.0

50319

49875

49032

48052

47229

46373

45461

44606

43501

43130

42709

41740

41242

Real Transmitted Object Size for Fix Sampling Algerithm, Sample size 32

2.5

5

10j

15

20

25

30,

35

40,

45

50

55

60

0.25

50907

50475

49640,

48934

48011

47073

46380

45688

44783

44062

43441

42875

42308

0.5

508801

50444

49632,

48869

48036

47277

46442

45658

44714

44188

43501

43008

42347

1.0

50796

50383

49505

48766,

47885

47110

46207

45525

44694

43936

43421

42828

42343

1.5

50708

50299

49490

48656,

47863

46949

46167

45460

44759

43826

42997

42931

42021

2.0

50643

50207

49343

48559

47720

47037

46096

45274

44392

43732

43247

42591

42320

2.5

50545

50124

49343

48522

47659,

46788

46132

45261

44483

43618

43100

42738

42054

3.0

50459,

50044

49277

48405

47551

46789

45955

45057

44323

43639

43133

42309

41914

3.5

50363

49967,

49151

48327

47597

46660,

45881

45092

44160

43430

42797

42309

41777

4.0

50310

49874

49118

48316

47396

46662

45880

45008

44198

43370

42919

42109

41921

4.5

50229

49820

49003

48222

47344

46607

45833

45151

44163

43463

42891

42322

41700

5.0

50167

49751

48922

48147

47320

46467

45740,

44982

44075

43542

42512

42333

41823

5:5

50118

49710

48820

48030

47249

46493

45752

44745

43927

43437,

42754

42138

41617

91

[6.0] 50080] 49654 48900] 47957 47143] 46359] 45521] 44769] 44058] 43442] 42856| 42071] 41519

Real Transmitted Object Size for Fix Sampling Algorithm, Sample size 35

2.5

5

10

15

20,

25

30

35

40

45

50

55

60j

0.25

50601

50198

49392

48735

47855

46961

46266

45679

44864

44150

43657

43066

425501

0.5

50575

50157

49391

48662

47889

47181

46394

45615

44782

44294

43508

43103

42533

1.0

50497

50102

49268

48570

47743

46991

46197

45475

44738

44028

43452

42542

42498

1.5

50420

50026

49273

48425

47728

46865

46119

45454

44792

43869

43107

43041

42194

2.0

50348

49935

49108

48367

47612

46940

46074

45303

44408

43845

43375

42798

42471

2.5

50259

49857

49107

48355

47540

467291

46138

45254

44513

436996

43225

42875

42203

3.0

50184

49786

49072

48245

47434

46701

45864

45046

44373

43671

43189

42497

42198

3.5

50089

49721

48945

48160

47461

46589

45790

45108

44164

43549

43056

42499

42003

4.0

50041

49625

48913

48164

47280,

46610]

45834

45000,

44266

43383

43050

42299

42073

4.5

49961

49581

48799

48042

47210,

46526

45753

45161

44273

43624

43065

42564

41889

5.0

49905

49508

48721

47980,

47202

46425

45730

45042

44146

43611

42655

42462

42037

5.5

49861

49473

48651

47893

47152

46429

45679

44806

44009

43539

42875

42313

41839

6.0

49825

49421

48685

47795

47035

46343

45466

44835,

44069

43474

42913

42200

41689,

11

92

This dataset is the experiment results of the number of runs that fail to finish in

time limit in multi-server environment (Figure 5.5). Total time slice of 100. We present

the number of overtime run for both dynamic algorithm and fixed sampling algorithm
(for fix sample size of 6, 8, 10, 12, 14, 16, 18, 20 and 22). The result of each setting is in

one table; each table contains results for 169 parameter settings of variances (13 variance

values for channel #1 and 13 variance value for channel #2). The value plotted in Figure

5.5 is the average of the entire tables.

Number of Overtime Runs for Dynamic Sampling Algerithm (out of 1000 runs)

2.5 5 10| 15 200 25 30, 35 40 45 50 55| 60)

0.23 34 31 36 38 44 50 53 52 59 56| 69 65 60
0.5 29 27 38 38 39 40f 41 52 67 65 56 61 57
1.0 29) 31 41 46 39 56 53 53 56, 55 56 58 66
1.5 36 34 33 37 36 46 43 63 56, 55 62 65 52
2.0 34 33 40) 40) 39 52 42 57 54 60 66| 58 74
2.5 40 33 36 36 42) 49 48 54 56 64 64 58 61
3.0 30 27 37 35 42 47 47 52) 63, 59 65 47 51
3.5 28] 39 38 42 43 46} 43 49 60) 52 58 64 62
4.0 32 3 39 39 46 46 51 50 62, 63 73 58 61
4.5 39 33 36 35 43 47 46 50) 55 59 70) 56 61
5.0 26 4 41 36 47 47 51 54 57 60 63 58 67
5.5 4} 31 36 31 41 37 50 47 52 59 52 7 70
6.0) 30 29 32 31 37 51 49 50) 60 61 62, 56 60

Number of Overtime Runs for Fix Sampling Algerithm, Sample size 6 (out of 1000 runs)

2.5 5 0] 15 20 25 30 35 40 45 50) 55 60

0.25 38 34 38 34 32 39 42 25 33 36 35 28 26
0.5 32 31 35 34} 36 35 27 38 37 37 40 35 29
1.0 36 3] 47 38 38 44 35 25 35 34 32 33 32)
1.5 37 32 35 39 31 33 34 31 35 34 39 34 34
2.0 36 37 39 40) 32 42 32 41 39 38 42 37 37
2.5 44 38 40 34 37 37 31 32 34 35 39 37, 38
3.0 31 34 40 42 35 43 39 34 47 43 46| 43 40)
3.5 34 42 35 34 30 37 38 40 39 35 36 40 38
4.0 32 35 35 38 39 40 37 39 38 42 47 46 33
4.5 41 34 36 31 36) 40 38 36| 33 38 37 31 30
5.0 33 35 39 36 36 38 38 37 40) 50 42 37 40
5.5 44 32 33 33 37 36 44 31 40 44 36 41 40
6.0 37 33 38 29 39 3§ 39 35 47 41 37 40} 41

Number of Overtime Runs for Fix Sampling Algorithm, Sample size 8 (out of 1000 runs)

2.5 5 10 15 20 25 300 35 40 45 50) 55 60)

0.25 41 36 40 40 34 43 41 37 35 41 42| 33 31
0.5 36 32 36 32) 37 39 34 37 43 49 40 42 32
1.0 38 37 39 42 39 43 44 35 39 40 36 37 36
1.5 38 30 39 42 37 34 37 39 44 39 49 3] 31
2.0 35 39 44| 40| 35 40| 42 51 40) 41 46] 40 42
2.5 48 39 34 35 37 37 40) 43 37 36 45 36 41
3.0 39 32 39 35 3§ 42 37 38 46 44 43 47 39
3.5 34 46| 39 41 33 40 34 39 38 38 40 42) 43
4.0 39 37 42 44 49 43 38 39 41 43 49 51 39
4.5 43 36 42 35 38 40 43 39 32 39 35 39 41
5.0 2§ 45 47 37 43 36 44 41 43 404 4 34 40
5.5 44 31 31 35 37 37 43 34 40 43 39 46 41
6.0 34 27 35 42 36] 39 40) 40, 41 42 43 40| 48

Number of Overtime Runs for Fix Sampling Algerithm, Sample size 10 (out of 1000 runs)

2.5 5 10 15 200 25 30 35 400 45 500 55 60

0.25 40 35 38 37) 32) 40) 45 35 34 41 39, 34 30)
0.5 37 30 35 34 31 40 38 39 43 39 38 36 31
1.0) 32 33 40 41 31 45 37 36) 36 35 37 36 36}
1.5 37 31 36} 35 39 33 29 40 38 35 35 32 32
2.0 33 35 40) 35 30 35 36 44 43 43 43 43 37
2.5 51 4 42 35 36 34 33 40 41 39 35 31 37
3.0 43 33 33 33 37 40) 34 37 38 48 43 31 36
3.5 30 39| 35 37 37 40 34 37 35 36) 39 39 33
4.0 33 30) 37 42 44 42) 38 34 39 43 34 40 27
4.5 41 36 35 31 30 3¢ 39 32 30 38 37 32 40|
5.0 30) 36 40 34 39 35 45 31 39 38 38 31 33
5.5 39 34 32 34 33 39 39 37 36 32 35 42 38
6.0 34 39 29 39 31 34 37 32 39 33 49 37 46

93

Number of Overtime Runs for Fix Sampling Algerithm, Sample size 12 (out of 1600 runs)

2.5 S 10| 15 2 25 30 35 40 45 50 55 60
0.25 43 41 36 40| 44 48 53 36 40 43 43 38 36
0.5 37 32 39 4 36 42 41 39) 45 40 41 37 34
1.0 4] 36 45 47 37 46 44 35| 44 44 42 45 37
1.5 43 37 42) 32 33 41 32 45 34 41 46| 35 38
2.0 37 35 46 43 34 45 37 48| 46 39 46 41 46
2.5 46 47 48 35 43 47 40| 43 45 49 41 39 36
3.04 34 43 37 37 34 42 37 38 42 47 44) 35 38
3.5 40/ 37 35 40 41 44 43 35 39 34 35 50| 3]
4.0 38 39 42 39, 48 41 43 44 41 40) 39 46| 30
4.5 41 41 42 32 39 36| 42 42 36 4] 45 35 46
5.0 39 39 41 40) 42 36 45 39 39 36 41 47 34
5.5 37, 38 39 34 38 42 46 43 39 37 42 43 42
6.0j 30 39 32 35 32 40| 35 33 36 34 44) 37 45

Number of Overtime Runs for Fix Sampling Algorithm, Sample size 14 (out of 1000 runs)

2.5 5 10] 15 20 235 30 35 40 45 50 55 60

0.25 41 43 39 46 4 48 53 42) 52 50 49 4] 37
0.5 41 42 46) 45 33 46 44] 40 46 44 46, 38 39
1.0 44] 45 41 45 40 53 44 42 43 42 46| 41 38

1.5 43 37, 42 44 34 50) 35 53 42 40 47 43 42
2.0 43| 39 50) 44 40 46} 42 53 43 41 49) 45 46
2.5 53, 49| 43 40| 45 44 42| 41 45 44 50) 41 42
3.0 45 48 41 47 35 39 48 46 40| 47 43 36 39
3.5 4] 48 46 42 44 44 43 35 46| 40 38 43 36
4.0 41 41 43 51 49 46 46 44 42 46 51 44 38
4.5 48 47) 49 41 44 46 39 41 41 42 47 37 43
5.0 44 38 44 41 45 42, 50 41 41 43 42 39 38
5.5 43 48 40 36 37 43 44 47 39 36 43 42 39
6.0 31 44 39 39 36 44] 47 33 44 39 38 40 45

Number of Overtime Runs for Fix Sampling Algorithm, Sample size 16 (out of 1000 runs)

2.5 5 19 15 20 25 30 35 40 45 50) 55| 60
0.25 47 46 41 52 42 56 54 46 49 52) 54 47 42
0.5 47 38 49 54 35 47 48 48 53 50] 50 41 41
1.0 44 48| 49 50 47 59, 52| 45 54 51 47 48 49
1.5 44 3§ 53 47 42 57 42 54 47 50| 53 5(0) 45
2.0 46 44] 53 49 40 42 48 56) 44 50 53 48 56|
2.5 55 47 45 50) 45 48 43 49 42 47, 46| 46| 45
3.0 47 51 48| 48 38 48 49| 48 50 51 55 41 46
3.5 48 49 50 47 44 51 44 41 48 34 44] 46 41
4.0 46 48 48 51 56 47 49 49 46 49 56 46, 34
4.5 46 45 53 43 45 51 45 48 42 49 53 44 43
5.0 47 44 52) 42 51 42 48 47 50 42 49 45 47
5.5 48 47 42 39 39 43 42 48 45 45 43 44] 47
6.0 43 49 44 45 39 50) 45 41 48 41 48 44 51

Number of Overtime Runs for Fix Sampling Algorithm, Sample size 18 (out of 1000 runs)

2.5 5 10 15 200 25 30 35 40 45 50, 55 60)
0.25 46 45 42 46 44 59 49 44 46 48 52) 48 39
0.5 53 37 45 46 37 47 49 46, 54 47, 45 45 40|
1.0 37 46 51 47 45 56 48 43 53 43 48 41 44
1.5 39 45 50 48 47 56 46 53 45 45 47 48 46|
2.0 42 41 44 54 38 50) 43 45 43 48 55 50) 53
2.5 51 47 41 50 48 5 51 45 40 39 44 4 43
3.0 57 49 46 39 43 49 44 45 45 43 48 39 39
3.5 41 44 54] 47 49 51 41 44 45 35 42 44 43
4.0 43 49 41 48 54 50} 46 47 45 43 60| 43 33
4.5 48 43 52 38 47 47 44 57 42 40 43 45 41
3.0 50) 44 46 39 47 39 47 45 44 46 45 51 46
3.5 44) 54 36 43 44 40 41 48 44 41 41 43 45
6.0 38 41 42 41 36} 48 51 35 47 40 41 47 44

Number of Overtime Runs for Fix Sampling Algorithm, Sample size 20 (out of 1000 runs)

2.5 5 10] 15 200 25 30) 35 40, 45 50! 55 60)
0.25 50 51 41 51 57 62 52 50 53 51 58 49 44]
0.5 52 42 49 54 46 49, 48 47 60) 49| 48 53 42
1.0 40} 42 57 42 42 55 51 53 60) 43 49 41 55
1.5 49 48 50) 59 49 56| 44 52) 51 50 57, 45 49
2.0 53 54 47 5¢] 43 54 44 57 43 51 52, 45 57,
2.5 54 54 47 53 54 54 46 47 49 44 46 49 44
3.0 57 52 52) 48 48 54 48 45 50 48 55 42 48
3.5 48 46| 55 46| 53 50 52 42| 57 40 49) 45 45
4.0 50) 49 45 57 61 54 52 52} 52 48 63 53 45
4.5 57) 49 58 50) 49 48 46 54 44 46 49 49 48
5.0 53 50) 53 50 58 38 54 47 47 56 51 51 54
5.5 46| 55 46| 48| 54 39 50) 53 49) 46 47 47 53
6.0 42 47 50) 44 46 53 51 41 49 43 51 55 56

Number of Overtime Runs for Fix Sampling Algorithm, Sample size 22 (out of 1000 runs)

2.5 5 10 15 200 25 30 35 40 45| 50! 55 60|
0.25 55 54 42 54 53 64 59 55 61 54 60 56 51
0.5 52) 42 51 57 44 58 55 51 62 57 50 58 53
1.0 47 49 58 52 46 61 54 65 56 50) 56 47 59
1.5 54 58 60) 58 51 67 53 54 55 47 58 58 51
2.0 52 56 55 55 48 58 50) 65 49 55 62 52) 67
2.5 60 56 52 50) 64 64 49 57, 54 58 44 60) 51
3.0 58 56 57 54 47 56 54 53 56 55 62 54 52,
3.5 52 53 53 46 56, 54 55 49 57 47 51 54 50)
4.0 54 49 50) 60) 61 55 63 56 60) 55 59 51 54
4.5 67 48 64 50) 56, 51 50 50 50) 48 56 49 57
5.0 57 50, 56 55 60 42 58 51 51 58 61 48 57
5.5 51 56 47 55 62, 43 55 54 44 53 48 55 50)
6.0 49 50| 53 46 58 61 49 48 55 52 46 52 62

96

12. This dataset is the experiment results of the number of runs that use only one
channel for real transmission (Figure 5.6). The number of total time slices 1s 100. We
present the number for dynamic algorithm only. The table contains results for 169
parameter settings of variances (13 variance values for channel #1 and 13 variance values

for channel #2).

Number of Runs using only one channel for dynamic sampling algorithm (out of 1000 runs)

2.5 5 104 15 20 25 30 35 40, 45 50 55 60)

0.25 0 0 0 0 0 0) 1 7 18 22 42 59 68
0.5 0 0 0 0 0 0 8 10 21 27 45 61 83
1.0 0 0 0] 0 0 0 3 7 26 32 46 54 98
1.5 0 0 0 0 0 2 6 16 19 39 53 731 109
2.0 0 0 0) 0 1 8 24 32 51 44 731 112
2.5 0 0] 0 0 0 2 12 17 35 47 81} 104 100
3.0 0 0 0 1 1 16} 34 38 80 94 102] 149
3.5 0 0 0 0 3 9 21 35 37 72 99 1211 171
4.0f 1 0 0 1 7 17 32 51 64 82 119 159 176
4.5 1 0 1 6 6 22 25 58 85 112t 143 165 191
5.0] 3 0 2 6 8 26 56 64 98] 116] 156 199 214
5.5 5 2 9 10 16] 34 54 82 114 146] 166 194 225
6.0 7 10 5 17 31 44 78 88 143] 156] 167 232 291

Appendix 2

t-distribution Table

97

The t-distribution values used in this thesis are those d,) for a'e {0.75,0.90,0.95},

i=1...5, and n=1...500. We list here part of these values in the table below. Each row of

the table represents one n value, while each column represents one « value.

0.75 0.866025404 0.9 0.943683298) 0.95 0.974679434
1 1.000000001 2.233914076 3.077683551 6.149019487 6.313751452 12.544672930,
2 0.816496584 1.519671374 1.885618083 2.875841223 2.919985587, 4.273146763
3 0.764892332 1.356668770 1.637744345 2.324800286 2353363438 3.165878914
4 0.740697084] 1.285645447 1.533206273 2.108763997 2.131846780) 2.764005866
5 0.726686843 1.246039302 1475884044 1.994688367 2.015048359 2.560088784
6 0.717558200] 1.220818394 1.439755748] 1.924432651 1.943180291 2437533764
7 0.711141777 1.203362504 1.414923929 1.876892522] 1.894578617 2.355963644
8 0.706386613 1.190568844 1396815316 1.842612098 1.859548036 2.297842083
9 0.702722149 1.180791791 1.383028738 1.816734532) 1.833112934) 2254360914
10 0.699812063 1.173077978 1372183638 1.796513028! 1.812461112 2.220622124
11 0.697445328 1.166837197 1.363430324) 1.780278771 1.795884827 2.193688741
12 0.695482868 1.161684596 1.356217335) 1.766959787 1.782287564 2,171694487
i3 0.693829305 1.157358557 1.350171294 1.755836443 1.770933392) 2.153397165
14 0.692417071 1.153675083 1.345030381 1.746407652 1.761310128 2.137938305
15 0.691196951 1.150500966 1.340605610 1.738313958] 1.753050345 2.124705864]
16} 0.690132254 1.147737441 1336757164 1.731290738 1.745883678 2.113251761
17 0.689195073 1.145309710; 1.33337939¢6] 1.725138957 1.739606727 2.103240415
18] 0.688363807 1.143160090, 1.330390945] 1.719706005 1.734063611 2.094415645
19] 0.687621461 1.141243405 1327728212 1.714872895 1729132817 2.086578496|
20) 0.686954497 1.139523752] 1.325340709 1.710545551 1.724718243 207957211
21 0.686351990) 1.137972227 1.323187875 1.706648571 1.720742905 2.073271060;
22 0.685805030; 1.136565348) 1.321236743 1.703120803 1717144367 2.0675741 14
23 0.685306278 1135283784 1.319460245 1.699912176] 1713871537 2062398335
24 0.684849627 1.134111511 1.317835937 1.696981280) 1.710882084 2057675412
25 0.684429967, 1.133035123 1.316345076 1.694293576 1.708140760; 2.053348417
26 0.684042973 1.132043311 1.314971864 1.691819984] 1.705617923 2.049369598
27 0.683684979 1.131126500 1.313702913 1.689535915 1.703288453 2.045698604
28 0.683352843 1.130276488 1.312526781 1.687420416 1.701130928 2.042300999
29 0.683043862 1.129486226] 1.3114336353 1.685455465) 1.699127024 2.039147378
30] 0.682755694; 1.128749637 1.310415030 1.683625556 1.697260886 2.036212385

98

31 0.682486309 1.128061430, 1.309463551 1.681917254 1.695518778 2.033474064
32 0.682233920 1.127416990 1.308572793 1.680318802 1.693888754 2.030913276)
33 0.681996980; 1.126812276 1.307737129 1.678819954 1.692360314 2.028513304
34 0.681774103 1.126243715 1306951593 1.677411667 1690924261 2.026259480)
35 0.681564078 1.125708170 1,30621 1809 1.676085987 1.689572458 2.024138835
36 0.681365823 1.125202840, 1.305513887 1.674835861 1.688297722 2022139914
37] 0.681178377 1124725235 1.304854383 1.673655002 1.687093615 2.020252543
38 0.681000878 1124273147, 1.304230210 1.672537799 1685954467, 2018467616
39 0.680832559, 1.123844570 1.303638588 1.671479258 1.684875123 2016777010
40 0.680672718 1.123437728 1.303077058] 1.670474862) 1.683851017 2.015173482)
41 0.680520735 1.123050996 1.302543364] 1.669520582 1.682878006] 2.013650443
42 0.680376045 1.122682937 1.302035491 1.668612729 1.681952363 2.012202004;
43 0.680238137, 1.122332213 1.30155161 1.667748019 1.681070705 2010822762
44 0.680106538] 1.121997641 1.301090058 1.666923449 1.680229977 2.009507967
45 0.679980830) 1.121678122 1.300649333) 1.666136272 16794273806 2.008253103
46 0.679860628] 1.121372660 1.300228050! 1.665383996) 1.678660419) 2007054258
47 0.679745572 1.121080358 1.299824950) 1.664664337 1.677926723 2.005507707
48 0.679635344 1.120800379; 1.299438882 1.663975324 1.677224203 2.004810097
49 0.679529645 1,120531955 1.299068786| 1.663314924 1.676550903 2.003758401
50 0.679428200) 1.120274392 1.298713696 1662681438 1.675905031 2.002749778
51 0.679330761 1.120027038 1.298372715 1.662073226 1.675284957 2.001781622
52 0.679237087 1.119789301 1298045018 1.661488833 1.674689155 2000851557
53 0.679146973 1.119560632 1.297729847 1.660926873) 1.674116240; 1.999957394;
54 0.679060214 1.119340520 1.297426492] 1.660386100 1.673564909 1.999097061
55 0.678976631 1.119128492 1.297134301 1.659865305) 1.673033973 1.998268696)
56 0.678896048 1.118924114 1.296852669) 1.659363415 1.672522305 1997470530,
57 0.678818306 1.118726982 1.296581049] 1.658879430 1.6720288904 1.996700978
58] 0.678743265 1.118536707 1:296318893) 1.658412395 1.671552774 1.995958504]
59 0.678670779 1.118352943 1.296065724 1.657961449 1.671093027 1.995241689
60 0.678600720) 1.118175371 1.295821095 1.657525753 1670648868 1.994549250]
61 0.678532972 1.118003670 1.295584568 1.657104574 1.670219493 1.993879979
62 0.678467422) 1.117837557 1.29535576%) 1.656697178 1.669804170) 1.993232686
63 0.678403961 1117676764 1.295134297 1.656302903 1.669402223 1.992606348
64 0.678342493 1.117521035 1.294919825 1.655921130 1.669013035 1.991999941
65 0.678282930) 1.117370150 1.294712012] 1.655551267 1.668635977 1.991412533
60} 0.678225176 1117223868 1.294510567 1.655192766 1.668270514 1.990843238
67] 0.678169157 1.117081993 1.254315199) 1.654845127 1.667916123 1.990291243
68 0.678114791 1.11694432¢ 1.294125628] 1.654507848 1.667572279, 1.989755780
694 0.678062008 1.11681068Y 1.293941610} 1.654180465) 1.667238551 1989236102
70) 0.678010742 1.116680884 1.293762901 1.6538625704 1.666914485 1.988731511
71 0.677960925 1.116554771 1.293589268) 1.653553743 1.666599652 1.988241379;
72 0.677912499| 1.116432191 1.293420512) 1.653253601 1.666293701 1.987765078
73 0.677865406 1116312994 1.293256413 1.652961783 1.665996225 1.987302070
74 0.677819591 1.116197044 1.293096796 1.652677963 1.665706886 1.986851729
75 0.677775004 1.116084214 1.292941475 1.652401802 1.665425370 1.986413635
76 0.677731592 1.115974365 1292790269 1.652132999) 1.665151352 1.985987229;
77 0.677689313 1.115867397 1292643033 1.651871251 1.664884540 1.985572069
78 0.677648123 1.115763187 1.292499597 1.651616301 1.664624643] 1985167712
79 0.677607983 1.115661638] 1.292359829 1.651367883 1.664371416 1.984773763
801 0.677568847 1.115562650, 1.292223588] 1.651125751 1.664124581 1984389778
81 0.677530683 1.115466113 1.292090735) 1.650889660) 1.663883915 1.984015433
82 0.677493453 1.1153719504 1.291961141 1.650659391 1.663649187 1.983650355
83 0.677457120 1.115280075 1.291834703 1.650434732 1.663420186) 1.983294217,
34 0.677421660 1.115190401 1.291711302] 1.650215476 1.663196681 1.982946647
85 0.677387038 1.115102851 1.291590824] 1.650001435 1.662978507 1.982607367
86 0.677353219 1.115017349 1291473175 1.649792434 1.662765443 1.982276095
87 0.677320187, 1.114933321 1.291358250, 1.649588288 1.662557351 1.981952554
88 0.677287905 1:114852214 1.291245944 1.649388834 1.662354032 1.981636463

99

89 0.677256350) 1.11477244¢6 1.291136199) 1.649193896 1.662155334 1.981327566)
90| 0.677225500) 1114694460 1.291028899 1.649003336 1.661961083 1.981025632,
91 0.677195331 1.114618202 1.290923980) 1.648817025 1.661771163 1.980730402)
92 0677165820 1.114543609 1.290821354] 1.648634789 1.661585399 1.980441692
93 0.677136943 1.114470634 1.290720957 1.6484565 104 1.661403675 1.980159245
94 0.677108686 1.114399219 1.290622714 1.648232073 1.661225851 1.979882922
95 0.677081023] 1.114329317 1.290526544 1648111327 1.661051821 1.979612466}
96 0.677053942] 1.114260877] 1.250432399 1.647944190; 1.660881448 1.979347714
97 0.677027419) 1.114193862 1.250340204 1.647780510 1.660714613 1.979088481
98] 0.677001441 1.114128216) 1.290249906] 1.647620229 1.660551224 1.978834625
991 0.676975987, 1.114063908! 1.290161442] 1.647463196] 1660391153 1.978585939
100 0.676951045 1.114000892) 1.290074759 1.647309342 1.660234330 1.978342282
200 0.675718411 1.110890554 1.285798795 1639729226 1.652508113 1.966354577
30 0.675308416] 1.109857659 1.284379873 1.637218054 1.649948675 1962390216
400 0.675103586] 1.109341945 1.283671602 1.635965356 1.648671948 1.960413903
500f 0.674980739, 1.109032752) 1.283247024 1.635214651 1.647906855 1.959229982]

