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Abstract

The seismic wave propagation in laterally inhomogencous meda s most important
in current geophysical community. To provide the fow cost of computation and the ability
to associate individual events on synthetic scismogams with particular paihs ot energy
propagation (ray paths). asymptotic ray theory is well suited for this purpose.

However. the asymptotic ray theory has its limitations. It is not applicable in the
vicinity of singular points such as caustics and critical points.

The aim of this thiesis is to develop a fast and accurate ray tracing method apphceable
to numerical modelling of seismic body waves in laterally inhomogencous media with
curved interfaces and to extend the applicability of asvmptotic ray theory to include the
effects ot caustics. The travel time, amplitude—distance curves are computed for several

complex models.
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Chapter 1 General Introduction

One of the basic problems of theoretical scismology and scismic prospecting is the
computation of seismograms for inhomogencous media, AL present. various methods can
be used to compute the seismograras.,

It is fair to say that the clementary theory of those methods talls into two groups,
One is a direct computational solution of the elastodynamic equation (the so catled Tull wave
method). The other is based on a ray approach.

For the full wave theory, there are three main computational methods. The first is
the Cargniard inversion and its extension by Chapman (1976) i the time domain, The
sccond inciudes double integraticn over real slowness and real trequencey. T inchudes the
reflectivity method (Fuchs and Muller. 1971 that is directed toward the computation ol
waves within a medium composed ol very many homogencous fayers. It is based on the
matrix method (Haskell, 1953) for homogencous layers and extended by Gilbert and
Backus (1966) for continuously varying media. The third also uses double integration but
the integration is over -eal or complex slowness and real frequency. Inits high frequency
domain, approximate method called WKBJ scismogram can be derived by this ncthod
although the WKBJ can be considered a ray-based method. In this thesis, it will be used to
derive the amplitude in the vicinity of a caustic. The other method was proposed by
Alekseev and Mikhailenko (1980) and could produce highly accurate scismogram for
vertical inhomogeneous media. If properly applied, these methods can give a total solution
including reflected, refracted, diffracted and head waves. However, when using the above
methods to calculate the wave amplitude for complex media, a numes il method must be
employed since an analytical solution to the equations is unknown and hence vast amounts
of CPU time are needed. Furthermore, no identification of particelar phase can be made on

the resulting synthetic seismograms. For this purpose, one can usc ray theory.



The single most successful method for modelling seismic waves to investigate the
Farth's internal structure is ray theory, which interprets the short-period body-waves (AKi
and Richards 1980). The basic tenets of ray theory were developed by Babich und Alekseev
(1938) inn the Soviet Union and Karal and Keller (1959) in America. This ray theory is
powerful in that it can be applied to the elastodynamic equation in general inhomogeneous
media. Attempts to use ray theory for the calculation of the amplitude of body-wave arrivals
have been made by many rescarchers. These include asymptotic methods ranging in
complexity and accuracy (Wesson 197C. Hron and Kanasewich 1971. Chapman 1971.
Cerveny. Molotkov and Psencik 1977, Cerveny and Hron 1980. Clarke 1993) through
WKRBJ (Chapman 1978) and Maslov (Chapman and Drummond 1982) to the highly
accurate generalized ray method(Hembergurg and Harkrider 1979) . Using those methods.
the ray amplitude can be obtained successfully. However. these papers show that the
gcometrical spreading function can be an exceedingly sensitive function of the velocity
eradients. It is at this stage that one clearly recognizes the limitations in applying the ray
theory to the interpretation of seismic data. The problem is a breakdown of the ray theory
itself at a caustic where the geometrical spreading tends to zero. and also in shadow zones
where rays can not penetrate according to Snell's law. In those areas. the classical ray
theory is no longer applicable and sornie other methods must be employed.

The classical theories of comiputing ray paths for seismic energy fall into one of two
categories. One of these consists of a variational approach of Femat's Principle (i.e. the so
called Bending Method by Julian and Gubbins 1977). Another method consists of
numerically solving a system of first order ditferential equations. Various authors (Chen
and Ludwig 1972, Psencik 1972, Green 1976 and White 1978) have used different
approaches to arrive at these equations. But all of the above methods cannot avoid the
disadvantages stated above.

Recently. to overcome the inability to handle the missing of some raypaths in

complicated velocity structure. Marks and Hron(1978) changed the cell model into a model

(9]



consisting of grids with constant velocity gradients by smoothing the velocity of the cell
model. Vidale (1988). Asakawa et al (1993) made usce of the finite diftference method o

solve the eikonal equation which started a new cra of ray tracing. Morse (1989, 199 1) and

Saito ( 1989) proposed a ray tracing method based on Huygens' » oo sole s However, most
of those methods assume a constant velocity in cach cell and have difi. .0y producing

curved raypaths. Also. many of them cannot handle the model which the velocity eradient
changes sharply.

in this thesis, some techniques and numerical results related o asymptotic ray
theory are presented. A ray tracing method (Marks and Hron 1978) is proposed in Chapter
2. Some improvement of this method enable it to trace rays more etficiently and accurately.
Similar techniques were developed independently by Gebrande (1976), Aric and
Gutdeutsch (1978) and Maurks (1980). A!l of these technigues require the approximation of
the isovelocity lines of the medum.

To find geometrica, spreading, and hence the ray amplitude. one must solve a set of
differentian equations (Cerveny et al 1974). However,- this requires vast amounts of
computer time and furthermore. as stated above, the ray theory is not applicable in the
vicinity of a caustic. Chapter 3 will propose an analytical method(personal communication
with Dr. Hron) and a numerical method to calculate the ray amplitude based on our ray
tracing scheme. To calculate the amplitude in the vicinity of a caustic. a methaod called the
modified Airy approximation will be uscd and incorporated into our ray tracing program.

In Chapter 5,?some numerical and real models are investigated by our ray tracing
scheme. The accuracy and stability of this method are also discussed by comparing its

results with analytical solution or other rcliable methods.



Chapter 2 RAY TRACING BY CIRCULAR
APPROXIMATION

2.1. Introduction

As described in Chapter 1, there are many ray tracing methods for two-dimensional
media with curvilinear boundaries. The following will briefly introduce the differential
¢quation method and propose an efficient approximation.

Ray paths for seismic energy may be computed by solving a system of first order
differential equations. In two-dimensional media with a point source, three differential
cquations must be solved for the coordinates of the endpoint of the ray. (x(t),z(t)). and the
angle that the rays makes with the vertical, ©(t). as a function of ray travel time t.

Following Psencik (1972), these may be written as,

X Vsin(9)
—lz|= V cos(0) 0<0<2n (2.1
0 V,sin(0) — V_cos(0)

Where V(x.z) is the velocity (P or S wave) at the point (x,z). V., V, are its spatial
derivatives.

The initial conditions:

-\(0)‘_‘_‘ x()q Z(O)= Z(). e(()) = e()

are necessary to solve above equations. Here (X,.2,) is the source location and 9,
is the take-off angle. Note that the positive z axis is generally taken to point into the Earth
from the free surface and 6 is measured counter-clockwise from negative z axis to the

tangent of the ray path.



To solve equation (2.1). the velocity field and its spatial derivatives must be known
everywhere of the medium . However. due to the difficulty in finding & tunction which
reasonably approximate the true velocity-position relationships in complex media, the input
velocities are often specified on a rectangular grid rather than as analvtical expressions. So.
some numerical interpolation methods (such as linear interpolation and cubic interpolation)
are needed to determine the velocity and its derivatives wit. 1 any rectangular cell of the
grid. although this might introduce some errors.

One must take into account the effect of geological curvilinear interfaces where the
ray directions change discontinuously. when solving cquation (2.1). It will be turther
discussed later.

Generally, solving matrix equation (2.1) will give us ray paths which can be
considered to be correct: however, it has one serious drawback. This is the exuemely farge
amount of CPU time needed to solve the differential equations within a reasonable degree
of accuracy. The severity of this will be worsen when one computes synthetic seismograms
for which very many rays are needed. Secing that, an efficient and fast ray tracing method
was originally proposed by Marks & Hron (1980). and has been now improved by the

author.

2.2 Ray Tracing By Circular Approximation without interface

In this section, a ray tracing method(Marks and Hron, 1978) is proposed. Some
improvements have been made that enable it to trace rays more efficiently and accurately. I
also has the potential to extend to three dimensions. The difference between the original and
new one will be discussed later in this chapter.

This method is formulated for a 2D rectangular block method specified in an
Cartesian coordinate system with x oricnted horizontally and z vertically downward and

calculation of traveltimes and ray paths are carried out on the rectangle boundaries ( the



calculation of the inner points of the block is also easily performed). The ray paths within
the rectangle are straight lines for a homogencous block and circular arcs for an
innomogencous block. It implies that if the velocity field V(x,z) within one small

rectangular region of the model is approximated by

V(x,2) = V,(x,,2,)+VV edr (2.2)

where V, and VV are constant in this small region. then the ray endpoint location on the
block boundaries can be found as a function of travel time.

Considering an clastic isotropic medium whose velocity field V(x.z) is specitied by
velocities given on the nodal points of a rectangular grid. A point source of harmonic waves
is placed somewhere within the medium, say at (X,z)). Another set of coordinate axes
parallel to the original global coordinates and with the origin at the source is defined as local
coordinates. Employing the velocities at the four corner points of the block V.i =1.2.3.4

(Figure 2.1). one can compute a linear mapping

Vi(x,2)= Ax+Bz+C (

9
)
~—

by making use of atwo dimensional interpolation.

Vi (x;.7;) Va(Xi41-2;)

tJ

Va(xi-2i) V3(Xi+|’2i+|)
Fig. 2.1 Labeling of points used in the two-dimensional interpolation
The simplest interpolation in two dimensions is bilinear interpolaticn on the grid

square(Numerical Recipes, 1992). Its formulae are



em (sm ()

) (2.-h
u=(z-z,)/(z. —2%)
(so that v and u each lie between O and ). and
ViX.y)=(=v)(1 =)V, + vl =uw)V,+vuV, + (1 - viuV, (2.5
To find (2.2) at the center (.x... 2. )of the block, we have
X, = (x3 - x'%
z. = (23 - Z'%
and
V(X.:
A = oV(x.z)
ax (x:x‘., , )
V o 4
B__—_____a (x,2) (2.06)
aZ (‘:x‘ ., }

C=V(x..z,)—- Ax, - Bz,

For eachblock, the local conrdinate origin is set at the ray entry point.

As the interpolating point moves from grid square to grid square, the interpolation
function value changes continuously.

After obtaining the local velocity field given by (2.2), we rotate the axes through an

angle ¢ to get velocity which depends on z” only,

A
= —tan""(—-) 7
0] B (2.7)



Then we can define a set of local, rotated coordinates (x”.z") such that
x’ cos(d) sin(d)x}
L= . (2.8)
7 —sin(9) cos(o) || z

In Figure 2.2, note that ¢ is positive when measured in the clockwise direction.

In the coordinates (x°,z’), the velocity field is given by

L

V(x’.z’) = V(0.0)+ (A + B*) "z (2.9)
Clearly, it is depth - dependent only.

The analytical expression of seismic raypaths for a medium whose velocity medium
is V(z)=V,+kz was derived by Nettleton in 1940. Essentially. these ray paths are

circlular arcs in the (x’,z’) plane and are defined by

2 2

’ V() ) ( ’ V() )2 V()
Vo ] (e Moy o Mo 2.10
[x k tlln(e())J s k kSin(e()) ( )

where 6, is the angle made by the tangent to the ray with the gradient at (x” = 0.z" = 0).

0 <0, < 21, The travel time T to reach any point (x’,z”) on the ray path is

Ki(x"+2" 2.11)
T=lcosh'l ——(-————)+l (
k 2VV,

Of course. if V, =V, =V, =V, the block is homogeneous znd the rays degeneruie to

straight lines.
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Now, the ray can be traced through the block 1o its exit point. Determination of the
exit point is equivalent to the problem of finding the intersection between a circle (equation
2.10) and the boundaries of the current rectangular block where the ray is traveling. Since
there may be up to 4 intersection points between circular raypath and the four rectangular
boundarics, the criteria for determining the correct exit point are

1) those for which the intersection lies within rectangular boundaries

2)that travel time from entry point to exit point is minimal.

Then the ray crosses the boundary  and enters another adjacent block. Repeating this
procedure, the ray travels block by block unti! stopped at a receiver.

Duce to the use of analytical expressions in each rectangular block, this ray tracing
method considerably reduces CPU time when compared with the traditional methods.
Although, there ¢exist second order interfaces due to using local velocity field which lead to
a discontinuous derivative of the ray upon crossing the block boundaries. the effect is
usually small, as Section 2.4 of this chapter will demonstrate.

With a velocity field V(x",2") =V, + kz” and initial conditions x(0) = X,

7z(0) = z,,, 0(0) = 0,,, the differential equations (2.1) take the form,

o um((—’;—')(c:“ ~1)

X)) = 5
I+ ae™
. 2kt
727(1) = .YJL iti)%__l)
k L I4+ae™ (2.12)

0(1) = 2tan "(ek' l;m(f’:'—’))

V, (1 +a)e™

Vi) = T
I+ ae™

R
where a = lan'(—%’—).

10



2.3 The Effect of an Interface

The formulae derived in the previous section can be applied only when no intertace
exists in the medium. I a ray strikes an interface. its Kinematics and dynamic properties
will be changed discontinuously. The direction of the ray will be changed (retlection or
transmission) according to Snell's law and a special treatment is necessary to deal with the
interface. Further discussion on the effect of an interface on the ray amplitude will be
presented in the next chapter.

If curvilinear interfaces are to be introduced into the model, a numerical method
called parabolic spline interpolation(developed by Hron 1973) rather than  cubic
interpolation is used to approximate the interfaces. To show the advantage of the parabolic
spline interpolaticn, a real model with steeply sloping interfaces is investigated by applying
these two methods. Figure 2.3 shows that the parabolic spline approximates the real
interface very closely. Figures 2.4 and 2.5 which arc both cubic interpolations with
different boundary conditions (see Forsythe et al, 1977, de Boor, 1978) show that there are
some spurious oscillations at the steeply sloped zone of the interface. Furthermore, using
the parabolic spline interpolation to approximate the interfaces makes it simple to compute
the interface normal at the point of incidence, and the interscections between ray paths and
the interface:.

The approximation of interfaces by a piccewise continuous parabola is discussed in
Appendix A.

If a ray enters a block which contains an interface, the velocity value at any corner
point of the block which lies on the other side of the interface must be replaced by
extrapolation among the velocities at the points ncarest the point in question. If the interface

is described as

1
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P . . A Y Al R
2(X) = ax~ +bx +c¢ and the ray path is given by (8 = A)” + (2 = B)" = R~ then the points

(at most ) of intersction are the roots of the tollowing tourth degree polynomial

asxt + 2abx? -t-lh2 + 2a(c — B)I.\:

+2[b(c = B) = AN +[AZ =R +(c~B) | =0
This cquation can be solved numerically or sometimes analytically. After obtiining the
intersection, the criteria for determining the correct exit point cither at the block boundaries

or at the interface is the same as the last section, i.c.. by using the miinimum ravel tine._

2.4 Conclusions: Accuracy and Stability

Here., we shall discuss the accuracy and stability of this method. A\ comparison
between Marks' method (interpolating the velocity fuction in a triangle ) and the new
method (interpolating 2-dimensional velocity function in block) will also be conducted.

To evaluate the accuracy and stability ol this method, a numerical vertical
inhomogencous model V(z)=6.0+0.17 is usced. The model is divided into small
rectangles of different sizes which range from 10km x3km to 0.25km < 0. 25km. Figure
2.6(a) and (b) are the ray diagram for the 10 < Skm and the 0.25:<0.25km plocks. Table
2.1 shows the resulting traveltime and epicentral distance generated by this ray tracing
method and the analytical solution for a harmonic source of frequency 15 Hzoat the take-oft

angle, 52°,
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Table 2.1 Results of ray tracing and analytical solution tor V(2)=6.0+ 0.1z

CELL SIZE Epicentral Travel time (sec.)  CPUisec))
Distance(km)
10km x S5km 93.754272 14.359759 0.025
Skm x 5kim 93.754272 14.359759 0.0375
Ikn: x 1km 93.75428 14.359759 0.125
0.5km x 0.5km 93.75425 14.35976 0.3425
0.25km x 0.25km 93.754288 14.35976 1.O875
Analytical solution 93.754272 14.35976

The results show that this ray tracing method is accurate and stable.

To further our discussion, a general model of an inhomogencous medium useed by
Marks and Hron is employed. For a set of take-oft angles, the taveltime and epicentral
distance are calculated by this ray tracing method and the method by solving differential
equations(Cerveny. Lange: and Psencik, 1972). The results are listed in Tuble 2.2, Figure
2.7 is the ray diagram generated by those two methods.

Table 2.2 Results for general inhomogencous media

Take off angle Travel time (second) Epicentral Distance (km)

Our method Ditterential Eq. Our method Differential By

1° 14.913894 134.555333 50.615040 49,3630

i 14.950474% 13.57K881 55.234913 $5.03905¢6
¥ 15.014661 14.6367061 01.206530% 61.215430
13° 15.157248 14.784711 O6%.380112 07.9906422
17° 15.32778K 14.987059 74.5470684 74.7394302

From the results listed in Table 2.2, one can see that these two methods match
reasonably well. However, our method need much less CPU time 1o calculate above rays.

Furthermore, our method can handle a buried source casily. Figure 2.8 s an example

17



which has a buried source. It makes our method applicable to seismic tomography. The
other advantage of our method is that it cun be casily extended to three-dimensional media.
All the above points show that our ray tracing method is 4 reasonable accurate and
stable method. 1t is relible and efficient.
Now, for the purpose of calculating synthetic seismogram. the remaining problem
is how 1o calculate the ray amplitude using this method. The next chapter will deal with this

matler.
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Chapter 3 RAY AMPLITUDE
3.1 Introduction

An important class of methods for calculating body wave syathetic seismograms is
the set of ray-based schemes. These include asymptotic methods vanging in complexity and
accuracy from asymptotic ray theory (Hron and Kanasewich 1971, Cerveny. Molotkov,
Psenéik 1977, Cerveny and F. Hron 1980, Wooham Kim and V. Cormier 1990) through
WKBJ (Chapman. 1978) and Maslov techmques (Chapman and Drummond 1982), o
highly accurate methods such uas generalized ray theory (Helmberger and Harkride 1978).
What these methods have in common is that they are techniques for the computation ol a
ray contribution to the total seismic field in the time domain. For any ray theory. the most
complicated part in the computation of ray amplitudes of scismic body waves i
inhomogeneous media with curved interfaces lies in the evaluation of the geometncal
spreading.

In this chapter, the geometrical spreading will be given by analytical and numerical

means for different media and numerical tests will be performed.
3.2 Differential equation solution for ray amplitude

Differential equations have been derived by Cerveny ctal (1974) by which the cross
sectional area of the ray tube for an inhomogencous medium may be expressed. Even
though the geometrical spreading of the ray tube may be, in some cases, evaluated quite
simply, formally the geometrical spreading of the ray tube might be treateded using the
results of the differential geometry of surfaces. A brief summary of the above theory will be
given here. For a more in-depth discussion, an interested reader is referred to the original

publication.



Asymptotic ray theory is based on the concept of rays along which the seismic
energy propagates from the source. Mathematically, cach ray represents a characteristic line

to the cikonal equation

|
Vil= — (3.1
V| v )

where T is arrival time and V is the phase velocity of the wave propagation.

Mathematically, the wavetront is defined implicitly as
X)) =1, (3.2)

where  £=X(q;.92.T)=(x,(d}-92.7).X2(4}.92.7).x3(q1.92.7)) is the wavefront and
(4y.¢2.T) are ray coordinates where ¢, represent the declination of the ray at take-off angle
and ¢, the azimuthal angle. Thus, the cross sectional area of the ray tube do. (see Figure
3.1). is given by the standard formula from the differential geometry of a surface (Schartz.

1960). as

do =qu|dq2 (3.3)
where
ox ax -
J = |—— = X X 34

is the Jacobian of the transformation from Cartesian to ray coordinates.

Denoting the cross sectional area of the ray tube at s by dG(s()) and the area of the

same ray tube at s by do(s). then., according to ART, the ray amplitude of zero order is
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Als)= [V(SU G )dc(s(,)}m A(sy)

V(s)p(s)do(s) (3.5)

da(s)
dﬁ(.‘.(,)

where the ( ) =L is the so called geometrical spreading function. It plays a crucial

role in the computation of ray amplitude. We will derive some useful formulae for it.

From (3.3), we have

do(sy) = J(so )dy,dg,

(3.6)

do(s) = J(s)dy,dq-
It follows that

dG(S()) = "(S()) (3.7)

do(s)  J(s) N
which can serve us as a mathematicai . finition of Ll;(::))' when J(s) =X, XX, is used.
It yiclds

LlG(S()) _ .’(S()) _ |‘\'tll X xqz T=T(h“) (2 g)

dots) J6) Ry, x iq?lr:t(s)

The methods for evaluating X, XX are again known from differential gecometry.
& (ll q: fen o -

Using the Laplace identity ‘/—\ X E|2 = (Z\ o A)(E ° B) - (A ] B)Z and putting



then

R, =(EF—G3)”2 210)

.. . . . do(sy
This 1s convenient for calculation of Tc}((:_"))
do(s)

do(sg)

when the wavetront in known.

Another method to determine

is to make use of the radii of curvature of the

- - . 2 . .
wave front. First. we write V-1 in the form

v3r=\7-v1--_-V-(Lj=‘—'(-'-)+l(V-I) G
V) as\v)TV

where t is a unit vector tangent to the ray. From differential gcometry, we know that
V.t=—+— (312)

wkere r; and r» are the principal radii of the wave tront (sce detailed derivation in Kline

and Kay. 1965, PP184 - 6). Inserting (3.11), (3.12) into

v(s)do(s,) ) s
(—\;(s—()—)_dc—(t_)] —LXP{—%iVV ‘td.sj (313

Then, we have

172 S
(gdgc(—?%))-J = ¢exp —%_I[J—+J—)cls} (3.14)
$ ] I's

da(s,,)
{

T in terms ol the

where the integration path is along the ray. Thus. we have expressed

(8
principal radii of curvature of the wave front.
Now, the remaining problem is how to calculate the wavefront x;{(q;.4».T).

i=1,2.3 along with the ray tracing. The slowness vector P, (4).4a-T) and x,(4y.42.T),



i=1,2.3. cun be obtained by means of partial differentiation of equation (2.1) with respect

to y,,. ¢=1,2. Following Marks and Hron’s derivation. let us introduce

Ixi(4y.93.7T)

Y .(n,T) =
I(l.(ql g2 ) a(lu s
' (3.15)
; JdP;(4;.4>.T
/*ul.(ql’(h*r):—'l—(—___l
Jy,,
We have
dY. Y% >
——(réi=2Pin(lV5;(—f+V'Zi(L
]
(3.16)
AZiy _ Yiy | OV AV _ o’V
dt \/2 axi ax, axiaxj

This system of equations (3.16) must be solved simultaneously with the ray tracing
cquation (2.1), to obtain both kinematic and dynamic properties of waves in

inhomogencous media.

3.3 Computation of geometrical spreading

by Dynamic Ray Tracing

As described in the previous section, the geometrical spreading of a ray tube is
closely related to the curvature of the wavefronts i(q,,qz.‘c) with T fixed. Cerveny and
Hron {1980) studied the problem of computation of ray amplitude in generally
inhomogencous medium with curvilincar interfaces. They introduced the process of
'‘Dynamic Ray Tracing (DRT)'. which employs second derivatives of the seismic time field
with respect to the ray coordinates. The matrix of ray curvatures along the ray can be
obtained by solving a system of non-linear differential equations. Some equations will be

presented here and an interested reader can find the rigorous derivation by Cerveny and
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Hron in their already classic paper (Cerveny and Hron 1980). Some other methods such as
vicinity ray tracing by Wooham Kim and F. Cormicr(1990) and Hubral(1979) had some
similar results as DRT.

For an inhomogeneous 2-dimensional medium. the dynamic ray tracing system
reduces to a single first order differential cquation of the Riccati type. The phase matching
method is used to determine the discontinuities of the individual properties in DRT when
the wave impinges a curved boundary separating two generally inhomogencous media.

Following the derivation of Cerveny and Hron (1980), tor our type of media.,

which has constant velocity gradient in cach block. the dynamic ray tracing system is

i‘:iiu+ VM7, =0
™ (3.17)
522, vML =0
ds -
2%t
where My, = ———,i,j = 1,2.
N 9q;9q;

Eqquation (3.12) corresponds to equation (88) of the above reference(Cerveny and Hron
1980). The variable M, represents the product of the wavelront's radius ol curvature (in
the plane of propagation) divided by the velocity of propagation at that time  t. The variable
M5, is similar to M, but for the radius of curvature perpendicular to the plane of
propagation.

It follows that, the spreading function J for ray amplitude is given by

T
1(1) = 3(to)expd V(M +My)dE (3.18)
Ty {
. . I
If we consider first ray segment radiated from the source, then T, = —— corresponds to the

f)
ray travel time for a homogeneous unit sphere surrounding to the source. Vy, is the velocity

at the source and J(T,)=sin®,,, 0 is the ray take-off angle as measured from the vertical at
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the source. Otherwise, Ty, is the time at the beginning of the current ray segment. If the
medium has constant velocity gradient, we can obtain the analytical geometrical spreading
by using DR'T.

Incorporation DRT into our ray tracing method, we can calculate the geometrical
spreading of a ray from source to receiver block by block (Personal communication with
Dr. F. Hron), cach of which has the sume constant velocity gradient. We use the numerical
model V(2)=6.0+0.1z (see Figure 2.6a) to calculate the geometrical spreading using DRT.
The results are listed in Table 3.1

Table 3.1 Geometrical spreading by DRT

Take-off Angle DRT Analytical solution
52° 118.976 118.976
54° 107.767 107.767
56° 97.6325 97.6325
58° o 88.4199 88.4199
oy 80.000 80.000

From Table 3.1, one finds the spreading calculated by DRT is identical with the
analytical solution for vertical inhomogeneous media with a constant velocity gradient.

I the ray strikes a curved interface. special treatment is needed. The phase matching
method can obtain the same formula as those of Gel'chinskiy (1961). The next section will

deal with this problem.
3.4 The behavior of an interface
If the ray is incident on an interface which separates two difterent media. equations

(2.1, (2.16) and (3.17) must be supplemented by the appropriate boundary conditions at

the point of incidence. This is due to the fact that some variables such as the slowness



vector and the curvature of the wavetront will change discontinuously due to the existenee
of the interface. The change depends on both the velocity contrast across the intertace and
the curvature of the interface.

The change of slowness vector can be obtained castly from Snetl's Taw. The exact
derivation of the change of curvature of the wavelront is again carricd out with the help of
the differential geometry of surfaces. Since the algebra involved is rather tedious, only the
final formulac as derived by Gel'chinsky (1961) are presented below.

Gel'chinsky showed that when the ray strikes an interface of o two dimensional
medium with constant velocity gradient. the unknown principal radii off curvature of the

wavetront leaving the interface after reflection or transmission can be written as

0
v N
P=h =
Ay
(3.1
0
Y =) =L
2= ===
Ay
where
() ) . . - - . . - . .
I .l'l are the pricinpal radii of curvature of the incident wavelront at the point ol
incidence.

2 0
V., cos” 6 r .
Ay = —L + . Y cosB Teost,
Vyceos™ 8, Rycos 0|V,
VV
A =—Y
Vo

Ry is pricinpal radius of the curvature of the curved interface at the point of
incidence.
The new ray curvature. serves as the initial value for the dynamic ray tracing system
(3.17) or differential equation (3.16). In this way. the final kincmatic and dynamic

properties of the ray can be traced again from the source to the receiver.
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If there exist several interfaces in the medium along a ray from a point source M, to
receiver M, the ray can be broken into k ray segments passing through (K-1) points of
incidence o, . j=1. ....k-1. This is schematically shown in Figure 3.2 where oy denotes the
end of the ray at M. and oy, corresponds to the point on the ray with the unit radius of
curvature of the spherical wavefront. According to Asymptotic Ray Theory (Cerveny and

Ravindra 1971, P75). the ray amplitude of the wave arriving at the receiver M=o, equals

. - A2
AM) = g(q"qZ)[ Vopuy :Ilh h V((’j)p(oj) R. (3.20)
Lo [viMp) ] i V(ogle(o)) |
where
I .. radiation characteristic of the source (taken as unity for this study)
0, ... point of incedence of the ray upon the j-th interface that it encounters.
VoPo ... wave velocity and density at source
()(nj) ... angle of incidence upon the j-th interface
(-)(uj) ... angle after reflection or transmission upon the j-th intrface

and the relative geometrical spreading is

123 172
M -k dolo
L:(_____""( ) ] I1 __(__') (3.21)
dofo, cosBlo;
where _( ") = ( ") and do(M) is determined by (3.7).03.14H) or (3.18).

d(s(oj ) cos8(o; ) do(My,)



Figure 3.2 Explanation of various symbols for aray in amedium with an arbitrary

number of interfaces which may not be plane. The ray paths may be curved.

31



Employing this procedure, the analytical geometrical spreading for our circular
approximation can be obtained. However, we'll present a numerical method to calculate the

amplitude based on the circular approximation.



3.5

Ray amplitude by circular approximation

All gquantities in equation (3.20) are casily computed except the geometrical
spreading L because it includes do(M). We shall develop an algrorithm to compute do(M)
for laterally inhomogencous media with curved interfaces by means ol the circular
approximation described in Chapter 2.

From the geometry of Figure 3.3

do(M) = cos(0y )%drdd)(,
0

or Jy
= ——cos(0y ) ——dB,d (3.22)
()9(,(' s( M)F)(D(, odog

where r is the magnitude of the vector pointing from source My, to receiver M. Within the

unit sphere surrounding the source we assume it to be homogencous. Then we have

dG(M()) = Sin 9()d9()d¢() ( 121}
and
do(M) _ ar cos(By) dy (324)
do(M,) 90, sin8, do, T
where may be determined by numerical or analytical means. Numcrically. the

a9y
procedure is:
(1) Shoot three rays on cither side of the ray arriving at the receiver. this may be
done by substracting or adding small amounts A8, from the take-oft angle. The
change of 6, should yield a change in epicentral distance.
(2) Fit a cubic spline through the seven (8y,.r) data.
(3) Evaluate the derivative =2~ and the second derivative Uas

a8, -

l,',



Né&

Source (M,)

‘
~ \\ >

RECEIVER (M)
Fig. 3.3 Geometry of the ray tube at source and receiver. The heavy line
represents the earth’s surtace. The angle 6, is confined to x-z

plane, while @, is confined to the y-z plane



Analytically.

al' _ V() N_l—(cosei—C()SeiH)

: : (3.25)
99, sinQ, T k; cosB;,5in;
and
o°r OV, N | (cos®; —cos8;,, )(cnsei +cos; | — 2cost, con’ U”,)
0y sinBy Sk, cos’ B, sin" 9,
(3.20)

where N is the total number of blocks which the ray passes from source to receiver.

- § . . . . - . .
According to Cerveny et al (1974), g= oo 18 detined by the following differential equation
(1]

for a two dimensional medium,

d" \ln 6()
de Vo

V3(1) (3.27)

where t is the travel time. Integrating (3.27) and summing over all N blecks that the ray

passes through, we have

\lne ”'\ (l t I)
g= ”ZV(,, +a;) j St (3.28)
V“ 1= (l +:.l CZRI(lmll I)).—
where
Vi ... velocity at entry point of i-th block
0, ... angle of incidence upon entry of i-th block
a4 = tanz(e‘T")
k; ... constant velocity gradient in i-th block

t;_;.t; ... ray travel time of the i-th block from entry to exit
Note that ty, =0, ty=total ray travel time from source to receiver. Upon performing the

integration (3.26) and inserting the result into equation (3.24), we have
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3 -
I'*‘“i)r c'k'“' )
Zkl(ll—ll—l)
(&4

do(M) _ or cos(0y) SV,

= ( (3.29)
do(M,) @8, V4 S 2k |1+a

If the gradient k; = 0 in any of the blocks, the term to be added must be V(:,i (t; = t,_y). The
computation of ray amplitude in two dimensionally inhomogencous media with curvilinear
interfaces is now given by equations (3.20) and (3.21) and (3.27).

To assess the accuracy of the circular approximation. we calculated the geometrical
spreading by using both circular approximation and the analytical method for the velocity
maodel viz)=6+0.1z. In Figure 3.4. we can see that the circular approximation is accurate

enough to calculate the ray amplitude.  Further comparisons will be made in the next

section.
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VERTICAL AMPLITUDE

l XMPLITUDB BY CIRCULAR APPROXIMATION
2 A AMPLITUDE BY ANALYTICAL SOLUTION
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Figure 3.4 Numerical and anal ytical geometrical spreading for inodel v(z)=6. +0.12z
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3.6 Numerical tests

FORTRAN programs have been developed to caleulate the kinematic and dynamic
characteristics of waves in two-dimensionad  inhoniogeneous media using the circular
approximation and DRT. In this section. a comparison  between these methods s
conducted. The shear wave veloeity and volume density for all the models that we used are

given by

Vp(x,z)

V.(x.2)=
(x.2) NK

. p(x.z)= \/.ile”(x.z)

from Gardner ct al (1974).

We use different methods to caleulate the ray amplitude of” a converted wave in a
three-layer model of a converted wave. Figure 3.5 is the description of the model showing
converted wave S1P2P2P2S2S2S2P2P2S2P2S1 ray paths using the same model. Table
3.2 shows the amplitudes of cach ray as calculated by the different methods.

Table 3.2 The amplitude for wave SIP2P2P2S2S2S2P2P2S2P2S |

Epicentral Distance Vertical Amplitude Horizontal Amplitude
(ki) Circular method Hron's method Circular method Hron's method
2.5

|.nw47*l()’”‘ |.|:u*l()"”‘ :.|u577-*=l()_‘5 :.ml*l()"5

5.0 7520574107 034#107"% 7.s8a24¢107" 77ws¢ 107
7.5 5.10505* 107" 5244 107" 336458+ 1077 14560 T e
10.0 L 025405107 10551071 52077751077 sasex 1071
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The ray amplitudes for generally inhomogencous media are found in chapter 5. The
results showes our method is reliable in calculating the ray amplitude even in generally
inhomogencous media. However, it is not applicable to calculate the ray amplitude in the

vicinity of a caustic where an alternative high frequency method must be used.
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Chapter 4 RAY AMPLITUDE IN THE VICINITY
OF A CAUSTIC

4.1 Introduction

In Chapter 1. we noted that ray theory is not applicable near a caustic due to it
predicting an infinite amplitude for the particle displacement. To find the correct dynamic
properties of the wave field in the vicinity of a caustic, more exact methods must be used.

The basic theoretical problems associated with caustics have been investigated by
Brekhovskikh(1960,1990), Ludwig(1966). Sato (1969), and others.  In this Chapter,
following Choi and Hron (1981), the formal integral propagating in a  vertically
inhomogeneous medium solution for an arbitrary ray is presented using a maodified version
of the third-order saddle approximation yielding a new expression for the amplitude in the
vicinity of a caustic. This result is shown to be more accurate than a traditional Airy
approximation. Both the Airy approximation and the modified Airy approximation will be

introduced in this chapter and incorporated into our ray tracing program.
4.2 Airy Approximation

For a perfectly elastic, isotropic vertically inhomogeneous medium with interfaces
(Figure 4.1), the WKBJ solution for a P wave in frequency domain ( Appendix B) may be

expressed formally as

U(M.(D) — (_1)8 S(w)(%)jcl(n%—'}) j"(pk~i(uf(h.l')dp (4.1)

— 0

where

€ is the number of turning SV ray segments and is zero for P and SH waves.
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Figure 4.1 Ray character of a vertically inhomgeneous medium
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f(P)=qp(M \G (”) HGE ; (©5) (+.2)

which involves the product of retlection, transmission and surface conversion coeflicients

R along the ray. Also.

/72
qp =(‘\'/l_2'_ p-)
p

172
G= (iJ cos0
dp

and the phase function is

t(p.r)=pr+w(p) (-4.3)

k+1

w&0=§)mW)
with
y;(p) = f (p.€)dg

if the ray has no turning point between o —( =12 |) and o = (l._l"/‘,i)‘ and

i

vi(p)= 2I(p§M§

'-J

if the ray has a turning point at (r/’) between o and o;.
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For high frequencies. the second-order saddle point method may be applied to (4.1)

1 i

r -y
f i 5 i

| '
bre @TT

- ; |
. . P T-Thaen T+l —uint(p,.r)
~1)* S(o)f R I '
u(M.(r))z( ) S lg,z(pr)c ‘ - m ! (+.4)
T
r _ - 2.
adp b,

where p, is defined by the saddle point condition

ot

'»_—(pr ) =0

ap
From the definition of the phase function (4.3). we see that p, must in fact be the
geometrical ray parameter of the ray reaching the receiver. Theretore. T, = T{p,.r) is the

geometrical arrival time. Therefore, this (4.4) is called the geometrical ray approximation

and is identical with the zero order approximation of asymptotic ray theory.

However. the above approximation (4.4) tends to infinity as T;—'f—(p,..r) — 0 near a
ap-

caustic, which is physically meaningless. For regions near a caustic. we can expand the

phase function in a power series of & = p—p,. where p, is the geometrical ray parameter of
.- Since LI(p..r.)=0. the Taylor

the ray forming a caustic at cpicentral distance r )
dp

expansion yields

, I ., e3
Wp.r)=1 .+ 1.5+ —(—‘t\." E'l -
4]

wheie
T\ = t(p& -1 )
, Ot .
\‘—ap(pc'r)_l re.
1{/4 .)‘t (‘):x.c
c = —-f(pc o ) =- ]



Using up to the cubic term of this expansion. the displacement amplitude (4.1 may he

approximated by

. / 2 — 1 + ?_._7
u(M.m):(—l)ES((o)ki)—\J e RAE 4\l 1.5
2nr
where
e —im( ‘t:.'i_+-l-‘tki;\ .
1= [t(pk ° lag

Bringing the function f(p) outside the integral sign at p= p, (since {(p) is a slowly varying

function) and introducing a new vuriable of integration

s=sgn(t{ 0)}. g (4.0}
we obtain
1
(2 ?f( )ofy( M 4.7
= . s s 7
IO)T:,, pL o y
where
-—i{%%—_\’.\J
Y(y.s)=e
. 9 |2
r=sgn(t 1Yot/ l—
< g ( C t) C (’)12/1

The last Integral is the Airy fuction Ai (Abramowilz and Stegun 1965) and

1=2n f(p.)Aily) (4.%)

,7
<

Using this together with (4.2) in (4.5), we obtain the displacement in the vicinity ol a

caustic
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Mc'"’"& +i{n§-5)

u(M.m) = (1.9)
) L(M)
where
174 , JA
(Ve Rk Jove), |
2(M,o,p.) =(=1) S(0)}-——= v l_[ (Oj)
( )\1 j—“—l . |'
and
L
7r. | g
a > [ . 6 .O.e flll K + 2
(M) = — [I) [ru)s I\?.L S “] l—l J_
20w Aily) ] TV, sin@ j=1] LosB oJ

A graph of the Airy fuction Ai(y) is shown in Figure 4.2. It decreases monotonically with
increasing lyl if y>0, and decreases in an oscillatory manner for y<0. The physical meaning
of this is that y>0 and y<0 correspond respectively to the shadow and illuminated zones of
the caustic. At each point near the caustic on the illuminated side, two rays arrive almost
simultancously and the oscillation is due to the interference between these rays. On the
shadow zone, no ray present and the diffracted energy decays exponentially with distance
away from the caustic.

The above method has been used by Brekhovskikh (1960.1990), Sachs and

Silbiger (1970), Cerveny and Zahradnik (1972). Hron and Chapman (1973). amon others.

4.3 Modified Airy Approximation

The Airy approximation presupposes that f(p) (equation 4.2) is slowly varying near
a caustic. For rays in the illuminated zone of the caustic (y<0), Choi and Hron (1981)
proposed a different approach which avoids this limitation. We will briefly introduce their
method and incorporate it into our ray tracing progranm.

Muaking the change of variable (4.6) but keeping f(s) inside the integral, we have
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o
— [roYoy.sds (4.10)

ot

The saddle points of this integral are

S = F-y e m=1, 2 (+. 11}
which correspond to
- oAl 2T
Pu = Pe +sgn(1c’)‘TL, (+.12)
T/
Thus, it follows that
-0
1 o-r, 2
r=r‘.+~_)—T:#(pm—pc) m=|. 2 (4.13)
2 dp

Comparing this with the Taylor expansion, we sce that  p; and p> are in fact the ray
parameters of the two geometrical rays arriving at the same epicentral  distance r.
Specifically. py and p» correspond respectively to the arrival on the direct and reverse
geometrical ray branches which meet at the caustic.

Next, we deform the path of integration in (4. 0) from the real s-axis to an alternate
contour in the complex s-plane. The saddle points. branch cuts and poles in the complex s-
planc are shown in Figure 4.3,

Using the contours of the integration as shown in Figure 4.2, we obtain from

(4.1

ot e
i

R
== {1(p)) [ Y(y.8)ds + £(ps) [ Y(y.8)ds (4.14)
:

4
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It the endpoints of the new contours are kept within the shadow zones in Figure 4.3, the

integrals can be expressed as linear combinations of the Airy functions Ai and Bi. Then

I=nr

}
R . I . . . -
(r)‘c:.’“ {l(p,)[Al(y)+|Bl(y)]+t(p:)[An(y)—le(y)]} (4.15)

This. together with (4.2) and (4.5), yields the displacement amplitude

w{M,m) = Zum(M.(n)) (4.16)
m=1
where
Um(M.(!)) = ———————X(M.(!). pm ) C‘m)r( +i(ll’;~§)
l“Ill(h/l)
and
L
2‘|‘ a_—’;‘i— L ! ]
Jp~ rcos@y cos@, | helcos®] |- \

Lyw(M)=— ' : -
(,)(-lAi(y)iiBi(y)] T[V(M())Slne() j:| C()Sej

r’lll

where y(M.m.p,) denoted in (4.9) involves the product of reflection. transmission and
conversion coeflicients. This result is called as modified Airy approximation by Choi and
Hron(1981).

I the function f(p) is really slowly varying near caustic. then f(p;)=1(p2)=1t(p.)
and (4. 10) reduces to the Airy approximation (4.9) as is expected.

All quantities in equation (4.4).(4.9) and (4.16) arc casy o evaluate by the circular
approximation method of ray tracing, which renders the expressions very useful in

computing amplitude-distance curves or synthetic scismograms. The accuracy is closely
hl

o-r. . ) . _ ) ) )
5 and B; which is discussed in section 3.5. Further discussion will be
¢ o~

or,.

related to

undertaken in the next Chapter. As pointed out by Choi and Hron (1981) or Choy and

N
<



Richards (1975). a m/2 phase shift is auributed to the seismic pulse cach time the ray
passes through an internal caustic. The circular approximation ray tracing as developed in
Chapter 2 is well suited 0 determining the location and number of these caustics by
simultancously tracing (wo rays.  seperated by a small amount in take-oll angle, and
calculating the number and location of their intersections. Figures 4.4 and 4.5 are two
numerical results which calculated the location of caustics using our circular approximation
described above and analytical method which analytically caleulated the ray curvature along
the ray (personal communication with Dr. Hron). The caustic locations calculated by our

circular approximation and the analytical method are exactly the siune for this tvpe mediam,
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Chapter 5 NUMERICAL RESULTS

5.1 Introduction

The results of tracing seismic ray and computing the geometrical spreading of wave

fronts in two dimensional inhomogeneous media will be presented in this chapter.

5.2 Cerveny's Model

A vertically inhomogencous model, which was used by Cerveny and Zahradnik
(1972), was employed to study the wave field near a caustic. It consists of an upper layer
with a lincar velocity gradient overlying a homogeneous haltspace (Figure 5.1). The ray
diagram and travel time curves are shown in Figure 5.2. A surface caustic at epicentral
distance 120 Km can be calculated by both anaylitical techniques (Brekhoskikh 1960 and
Choi and Hron 1981), and our method. To compute the ray amplitude near this caustic (by

2 2
J°r, d°r,
i

or 5 must be first calculated. We use both analytical

p

cquations 4.9 and 4.16),

methods and the circular approximation to calculate the values listed in Table 5.1.

Table 5.1 The second derivative at caustic calculted by ditferent methods

Method azr.,“ 821'7,_.

00~ dp~
Circular Approximation 762.633 121591.267
Formula (3.25) 759.779 121122.986
Analytical solution 761.509 121399.624

Figure 5.3 contains the vertical amplitude in the vicinity of the caustic calculated by

the ray method. the Airy approximation and by the modified Airy approximation. It
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indicates that the ray branches no longer have comparable amplitude near the caustics when
calculated by the ray method. So. near the caustic, the ray method is inapplicable and Airy
and modified Airy approximations provide more accurate amplitudes. But, our ray tacing
program can reasonably calculate the O?‘r/?)p: (Table 5.1). Figure 5.4 contains the ray
amplitudes using the numerical azr/ .

The results show that our ray tracing methods provide rehiable calculations of
amplitudes whether or not caustics are present.

Using two point ray tracing and some ray generation schemes (Hrono 19720 1973,

Clarke), we can easily obtain the synthetic seismogram for a given recciver.
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Figure 5.1 Cerveny's model to investigate a caustic at surface

56

.00



o o

.00 20.00 40.00 o 8

o 1 ) o =

< o -3

Q o

< =] g

2 E B

o =

2 o g

=] E E

b4 (=}

< =] g

o E B
~

g g 8

g E -3

m o -

UO

&S 8 3

—o o —o-

[0 2= o7 o

[

D [~ e
2 | 8 a
S o N
g R 3
- - '—'-
w wn -4
S | S =
w w0 —‘5
[+ 2] o o
o o o
< | 2 | &
[+ o] ® o
—t — hod
o o o
o = o =
o T T o . T 7 T T T T o

0.00 20.00 40.00 1L°82 LL*S2 28°22 88" 61 v6°9l 00° 1
BEPTH (338) 3JWIL M3AHSL

57

EPICENTRAL DISTANCE (KM)
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Figure 5.3 Amplitude-distance curves of refracted P waves calculated by ray method and
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Figure 5.4 Amplitude-distance curvcs of refracted P waves calculated by ray method and modified Airy

approximation, ap' is obtained by numerical method from our ray tracing program
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5.3 A generally inhomogeneous medium

Two models (one has homogencous lay s as shown in Figure 5.5. and the other
has generally inhomogencous layers, as shown in Figure 5.6 but both have the same
curved interface) are designed to show that either an inhomogeneity or a curved interface
can form a forcusing point. Figure 5.5 shows that there is no forcusing point in the layer
for the chosen rays while Figure 5.7 shows clearly that there is a focusing point formed by
those rays due to the inhomogeneity of the medium.

Ty . o+-wing will find the ray amplitudes, or its vertical component of P-waves for
harmonic &  ..ce of frequency =15 Hz for this type of medium. Figure 5.8 is the travel
time - epicentral distance curve for the rays of the velocity model shown in Figure 5.7.
Figure 5.9 contains the ray amplitude-distance curves for different ray branches calculated
by the ray method, which again no longer have physically justified amplitudes near the
caustic. Figure 5.10 contains the amplitude curves calculated by our modified Airy
approximation, which has reasonable accurate results in the vicinity of caustics. This shows

our method can handle generally inhomogeneous media successfully.

60



omwoo—

(t't 314 10J [9pow Jwes Y] ) s194¢] SNOAUIBOWOY PUB IDBHIIUT PAATL Ll WIIPSW UE JOJ WeI3elp Avy ¢ amBlg

oonom

oo”oo

1

oo”op

1

0009
|

JINBISIO
00°0S

1 L _

00°0Y
1

1

oc“om

1

oo”ou

00°01
i

\ 1

oo°

50.00

|

T
40.00

. T
30.00

v
DEPTH

o
25%42
.
W
N /W

[
(4
'

i

S 001

0006

00°08

00°0L

00°09

' 4

00° 0%
JaNBLSIa

00°0Y

i

00° 0¢

ocwoN

00°01

20.00

10.00

)

00°0°

-00

61



[opow snoouadowoyur Affesale] ¥ 9°G ISy

JINH1SIA
OO0l 0006 00708  00°OL  00°0S  00'0S  00°O  00°0E  00°0Z  00°01  00°0
: ] i 1 1 1 ! ] ! 1 L ! 1 g I 1 i 1 1 ! o
Q \ (=]
n wn
o (=]
o 2
o Q
[=] 3 =]
e T | ©
Q » o
m N m
T
a. L
uwi
o8 ™ 8
o 2
N N
- o
»
g ; ., ; :
Q "o
: g
{ 1 { 1 { ] 3
of:001 ' 00°06 ' 00-08 ' 00'0L ' 00-09 ' 0005 ' 00'OY ' 00-0  00°02 = 00°01 = 00'0°

JINBLSIA

62



WNIpoW SNO3uaZowoyul Af[eIaie] swy Joj wederp sty ;¢ undig

JaNGLSIO

om. oot 00°06 0008 00°0L 00°08 ao-@s gg°or 00°0€ 00°02 00°01 00°02
7 1 1 1 1 | ] 1 ] 1 ] 1 1 1 ] ] L 1 J 1 o
=) Q
n w
2 .8
o o
- -

] i
g 2
o S
rm m

—
a -
u
ag| =
=] =]
N ~N
= 8
o] o
IA

8 e
N T T ) T T 1 T T Y T ) T T T T T T 1 o

0b™ oot 00°06 00°08 00°0L 00°09 00°0S oo*or 00°06 00°02 00°0! 00°0

30NBiSIO

DEPTH

63



AAIND JDUBISIP-OWN) [oARIL §°C amSig

(WY} ZoMNISIA TYHINIDIdE
00° 06 00°08 00°0L 62°09 00°0S 00° 0¥ 00° 0€ 00°02 0001 00°0,
i | 1 1 1 1 A { ] 1 1 i 1 | ] 1 1 { ] 1 .
—— e ——— w
o
-
"W
~J
-
w
P
n
o
Cn
N
3
"
w0

.9°61

dNIL TIAYHEL

(23S)

64



poyiou ARI AQ pIIRInfed prtjdure [N, 6'S Amiy

(W) FONVISIO TYEINIOIdE

00°08 00°0S no-ov 00°0€ oohom 00°01 00°0
1 1 1 ! ! L )

| 1

00°06 00-08 00-0L
! 1 ) 1 ! 1 !

0o-°0

T

e

T
ol-o0

L

-
02-0

L

—
0€E"0

T
0v°0

HANLITIRY IYOILYIA
65

.0Tx



1

0006
1

00-08
I

00* oL
]

!

uonewrxoidde Ly parjipows £q paternofed apnnjdwe [earaA ('S 2131

(W) FONVLSIA TYHINIOIAHE

00° 09 00°0S 00°Cv 00° Q€ 00°0¢ 00° 0T ao0
! L 1 I ! 1 o

-l 1 1 1 | !

00"

IR

+—
01-0

—
F A )
dANLITAWY TYOILYEN

T T T
0€e°0

T
or-0
0T«

(
0s°0

66



5.4 Bohemian Massif

The Bohemian Massif (see the P wave velocity model in Figure S.11, which is
generated by interpolation from the known velocity values) was used extensively by
Psencik (1972) to study the travel time of primary P waves. This model for the carth's crust
allows a full demonstration of the general modelling process for seismic waves in luerally
inhomogeneous mediua. Figure 5.12 shows the ray digram of reflected and retracted P orays
from a source located at (155.2 km, O km) . To sece the accuracy ol our method,
comparison between the differential equation method(Marks and Hron 1980) and our

method is listed in Table 5.2 for a ray taking off at the angle of 40° measured from the

vertical.
Table 5.2 The comparison of P rays computed by different methods
Ray method Take-cff angle Arrival time Angle with Emergent
(degree) (sec) vertical (degree)  distance (ki)
Differential Eq. 40. 18.301 40.339 247.454
Circular approx. 40. 18.371 41.630 247 835

To further investigate the accuracy and stability of our method for this type of
media, we used different cell sizes to divide the medium and calculate two rays' travel time,
emerger.ce distance and emergence vertical angle, both of which are necessary o caleulie
the ray amplitude. One is a reflected ray with a take-off anglc of 407, and the other is a
refracted ray with a take-off angle of 60°. The results are listed in Table 5.3 and the ray
diagram are in Figure 5.13. It appears that although there arc some differences betwwen the
results, they are acceptable. The error is mainly introduced by the velocity interpolation

when using different cell sizes.
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Table 5.3 Rays in a medium divided by different cell sizes

Cell size 0.5x0.25km 2 x1km 4 x1km
40° 60° 40° 60° 40° 60°
Offsct (Km) 246.382 273.312 247.835 274.676 249.186 275.127

Arrival time (sec) 18.217 20.702 18.371 20.866 18.530 20.992
Emergency Angle  42.94° 58.317° 41.63° 55.783° 41.863°  59.463°

We'll use mesh size 2 X 1kmto calculate the ray diagram and amplitude. Figure
5.14 is the travel time - distance curve. Figure 5.15 is the amplitude curve calculated by the
ray method and Figure 5.16 shows the the reasonable ray amplitude in the vicinity of
caustics calculted by the modified Airy function. Further investigation was made at take-off
angles ranging from 73.70° to 74.37° (where a surface caustic is located at (297.8 km, 0)),
and from 74.60° 1o 81°. Figures 5.17 and 5.18 are two ray branches near the caustic and
Figurc 5.19 is the travel time - distance curve of these two ray branches. Figure 5.20
shows the amplitude - distance curves calculated by the ray method and and the modified
Airy approximation. It shows again that the modified Airy approximation can get more
reasonable results near caustics. Figures 5.21 to 5.23 contain ray diagram and the travel

time, amplitude curves for refracted rays without caustics.
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5.5 Conclusions

From the discussion of previous chapters, the influence of different mesh sizes is
reasonubly small. The travel time found by this method is accurate for vertical
inhomogencous media and is reasonable well for inhomogeneous media compared with
other methods. However, this method needs much less CPU time than other methods. The
ray amplitude is also obtained using this method no matter there are caustics or not. Hence.
the technique of circular approximation appears to be a reasonable accurate and efficient ray
tracing method.

Although developed in two-dimensional media, it can be casily extended to three-

dimensional media.
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Appendix A
Approximation of interfaces by Parabolic Spline

A method of piecewise approximation of curvilincar interfaces by o group of
smoothly linked parabolae was first suggested by Marcinovskaya and Krasavin (1908). We
shall present a modified form devised by Hron (personal communication) and used in his
programs since 1973. It'll be presented bricfly in this appendix.

Suppose that a set of M discrete points. Specificd by their two-dimensional
Cartesian coordinates N =[§m.x’;m]. m=1... M, arc given as points lving on a

curvilinear interface. We may approximate this interface with the help of 1 parabolae

z(x) = (a;x; +b;)x; +¢;. i=l.ld (A

each of them being defined over the interval x €[x;.x;,,]. As continuity conditions, we

iinpose

zé(xi+l)=zi+l(xi+l)
dz |
dx

— dz;,,
dx

Xi+l Xi+i

The continuity of the curve that passes through all M points could be realized by solving the

following linear system for the (i+1)-th parabola given the i-th one:

2
Xivt X Dlag z;(Xi41)
9 v -~
g.t-n Em | by |= C.nn (A2}
2%, 1 Ofciy (2u; +b;)x;y,
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where [&,,.5,,] are coordinates of the closest input point for which x,,» =&, > X,
However. if this system were solved for all M-1 pairs of adjacent points, considerable CPU
time would be consumed and the surface would have a corrugated nature for some types of
input data. The problem can be settled by allowing the curve to fall short of some input
points by an arbitrarily specified distance. For this purpose, equation C.2 may be solved
for some more distant points(itertively. beginning with point M) and the (i+1)-th parabola

will be accepted if for any €

(“i Héj + hm)éj +Ciy —le
Max(Cj)—Min(Cj) l

<e

for

Xivt < E:j <&Em

This method failed it the §; are scattered over a large interval compared to the &;
interval. This will bring about the undersirable corrugated surface. In order to avoid this,
we must modify the approach. First, a parabola is found that passes through N,,N/ ..
N,,~ by solving the usual set of three linear equations for the coefficients a,,;. b, 4.
¢, 41 - Then the two predetermined parabolac (a,I-,,b,il.c,ﬂ) will be united by an inserted
parabola (a,,b,.c,). The right bound of the interval of definition of the /-th parabola is
termed X, and its left bound is x, =&, — Ax. The value Ax is selected iteratively 1o make
the relation

X <& <Xy <&y

to hold. The coefficients

=2a, X, +2a,4X, 4 — b + by

d, =
’ 2(Xt+| — Xy )
b, =2(a,4 — )X + by (A.3)
2
¢ = —(al+l - "‘f)xl‘+l +Cin

and the right bound
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Z(C‘H "Ct—l)'*'(b’*-i —b/~|)x’
2(11,_| —&l,+|)x1 +(b/~l _hH—l)

(A

XNjgg =

are the solutions of the following system algebraic cquations (with X as a parametern)
e ] ~
a, X7 +b,_yx, +¢,_y =a,x7 +b,x; +y¢
2a, X, +b,_;=2a,x, +b,
2 2 .
QX740 DX e =a X H b ey

211,X,+|+b, =2‘d,+].\',+| +bi+]
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Appendix B
Ray amplitude by wave method

We consider a perfectly clastic, isotropic medium in which the wave velocities and
density are functins only of the vertical coordinate z. For symmetry in the solution. we
consider an explosive source located at the point with cylindrical coordinate (r. z. ¢)=(0,

74, 0) and described by the following source function

8( 2 — 74 )d(r)

P(r.z,t) = P,(1) >
2mr

Since the ray path in a vertically inhomogeneous medium is a plane curve, the azimuthal

angle ¢ can be ignored. Within the medium, the equations of motion are

i -
Ves =plli_7 (B.1)
N>

where the body force per unit volume is
f(r,z.t} = —=VP(r,2,1)

and the stress dyadic G is

S=(AV e i)l +u| Vi +(@v)']
1 is unit dyadic and the superscript T indicates a transpose.
Equation B.1 can be considerably simplified if transformed coordinatres are used.

We'll use the Fourier transform in time defined by

oo

wr.z.m) = J.ﬁ(l'n z.0)e " dy
N (B.2)

o0

T 4 _— l it
a(r.z,0) = ?— j i(r.z,ok""dw
and the zzroth-order Hankel transform in the cylindrical radius r defined by
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u(p.z.0) = jﬁ(.r. z.)) g (pr)dr
8}

i(r.z.o) = @ j U(p.z.)pJ,(opr)dp
0

With these transformitions. the cquations of motion and constitutive cquations are

reduced to a system of first order ordinary difterential eqguations

v =c . =
L o iwAV+w (B.Y
dz
where
o —1d(ru, . —1 Jro,
vl = =19 '),0,,.1(011,.;——1—-(—(—1—”—)
pr Jr ' iopr dJr (B.-hH
are doubly transformed components of displacement and stress:
- . I a(rf,
w(p.z,®)=|0.-1,,0,- ((‘ ’) (3.5)
T impr  dr

are the doubly transformed force function: and the matrix A is given by

0 0 p L
1}
_ 0 0 p P
A= pA Lo o
A+2p A+2U
p_4p'u(7~+u) A o o
i A+21 A+2u |

After Gilbert and Backus (1966), we will call the non-sigular matrix V. a
fundamental matrix of the differential system B.3, if it is a solution of the homogencous

form of the system, i.e. if each of its colums satisfies

92



dv . =
e = AV (B.6)
dz

‘The propagator can be constructed from any fundamental matrix by

P(2:2,) =—V—,~(z)${'(z(,) (B.7)

Uising the propagators, the solution of the homogencous system B.6 cuan be casily
expressed as

V(p.z.m) = ﬁ(z;x,,)V(p.z(,.U)) (B.8)

while that for the inhomogencous system B.3 is
— I —
V(p.z7.m) = P(2:724)V(p.2y.0) + IP(Z:@)W(p.ﬁ.(n))d%’; (B.9)
‘4
Thus we see that the basic problem in solving the equation B.1 is to find a fundamental
matrix V.

The matrix A has cigenvalues +q, and £q, where

ta|=—
t -

| > 1 2
Yp = _\7'2__—p~ . ‘.h:(vz—.p-]

Then the corresponding normalized cigenvectors are

- ! _

V_:_'p = T(—p~ur*+qp'i2upqp)
(2P )

V1, = ——(%a,.£2upq,.—p.—HT)
(2pq,)™

/.
3

.- L
where [T = q_f —p? and i=(=1)".
Lot matrix N = {V+p.</_‘,.{/+s.</_s} and we can obtain
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Thus it follows that

NT'"A=QN"'

Using this relationship, the homogencous system B.6 can be re-written as

:—l —
) (o) B()
where
:-B_ - dﬁvl ﬁ—l
dz

Note that B involves the deriv ztises of the clasticparameters and is one ovder i frequencey
lower than i®Q. Therefore. §§ (i problem is such that the WKBJ conditions are satistied.
i.e.. if the variations in the elastic parameters of e wediny e small over a wavelength

and that the solution is not required near turning points where cither ¢, or g, vanishes,

then we can ignore the term in B and approximate the homogencous system 3.6 by
= io)Q(N"\/)

io [O(E)dz
for which e = is a solution matrix.

Therefore, in the WKBJ approximation, a fundamental matrix of the clastodynamic

equations B.3 is

_ i [O(E)e%
p =Ne -~ (B.10)

<
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T'o compute the synthetic seismograms along a ray. first. we need to caleulate the
wave in the source region which is regarded as homogencous. Using B.5. B.7. B.10 and

the radiation condition, we can obtain

4N
~ .[ql‘(i_)di_

1)

imP,(m)e

» @ (p.—ur,—-q P.:’.upqp)

\./".(p.M\.(l)) =

!

~ »
(12 )
nvp([()}(‘-pqp)mk(*pqp)M”
(B.11)
where M = (r .z, ) denotes a point within the source region.
FFor the computation of synthetic seismograms. the particle displacement @ s

desired. This can be obtained from the vertical displacement u, by

where 1, is unit vector in positive z direction and f may be the direction of P or SV
waves. Using this relation and the definition B.4 of V. the source wave displacement

M, = (r..z,) is

A
P/ B ~YC %
. ( Y p ) cos 8 —im jq p(g)d‘;
- S((O) 1\1” 70 —
i(p.M,.m) = - - — e i, (B.12)
)] P(M()) p/ 72 0
P cos §
N

where 8 is the acute angle between i, and 1, and

|— Py (0)q,

S(w) = =
2npvy cosO

l()

is the spectrum of the source pulse.



Qutside source region, wave propagation is described by the homogencous sysiem
B.6. At any two points M, = (r;.z;) and My = (r2.z:). the wave solutions are related

through the propagator by B.3. i.c.

_ i(n‘_l: (:\(’i)\l;__
V(p.M>.) = N(Ma,)e N M OV(p.MsL o) (B

Again. using the definition B.4 of v, for a givening type of wave, say a downgoing P

wave in our discussion. the complex amplitudes at the two points are related by

: it If\q‘('&)di

a(m,) L
u(p.M>.0) = ——=¢ V" ul(p.M;.m (.1 h
(p 2 ) G(M:)L ([ | ')

where
[

P p/ - [T 3
C:—(/,qp) coso v (3. 15)

From B.11 and B.14, we can finally obtain the amplitude of aray from sowrce 1o receiver.

If there is a turning point, its ctfect can be represented by the retlection coetficient

i
(&

[N

i

(3]

,i.c.. B.14 is multiplied by ¢ (Choi and Hion, 1981).

When a wave is incident upon an interface. it will cither be retlected or transmitted
and mode conversion can occur. The complex amplitude w of incident wave and the
complex amplitude ug of the reflected or transmiticd wave are related through the plane
wave reflection and transmission cocflicients R (as given by Ceveny and Ravindra 1971,
section 2.3)

up = Ruy (B.16)

Thus. starting with the source wave displacement 3,12, the relations Bol4, B.16 can be
used to construct the particle displacement of an arbitrary ray which has gone through n

turning points and suffered k reflections and transmissions at the points O, j=1,....k.

before reaching receiver point M. The particle displacement at M is
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. S(()))(]( M“) . amy(p)Hin , IL[ G(():I. )R((-)i)
i, (M, )G(M) 1 alor)

ul(p.M,m) =(=1)"

(B.17)
Inverting the Hankel transform and keeping only the first term of the asymptotic expansion
for the Hankel function (Abramocitz and Stegun 1965), from B.17. we obtain the solution

in the frequency domain

| I
WM.m) = (—l)"s((.))[—‘i’—]" c'("-’f" ) jr( pye TP gn (B.18)
2nr

where fip), T(p.r) and y(p) are defined in Section 4.1,

Lquation B.18 is the plane wave approximation of the WKBI solution for the

displacement amplitude of an arbitrary ray.
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